
Master Degree in Computer EngineeringSoftware Engineering Track

Politecnico diTorino KTHRoyal Institute ofTechnology
Extracting contact surfaces from
point-cloud data for autonomous

placing of rigid objects
Supervisors
Prof. Alessandro Rizzo
Joshua A. Haustein, Ph. D.

Candidate
Carolina Bianchi

AY 2019–2020



i



Abstract

Nowadays, thousands of human workers engage daily in non-creative and physicallydemanding tasks such as order-picking-and-placing. This task consists of collectingdifferent goods from warehouse shelves and placing them in a container to fulfill anorder. The robotics research community has put much effort into investigating theautomation of the picking problem for robotic manipulators. The placing problem,however, has received comparably less attention.A robot tasked with placing a grasped object has to choose a suitable pose andmotion to release the item inside a container, that may be partially filled with othergoods. The aim of this thesis is to develop and evaluate a system that automatesthe placing of objects in a container, whose content is perceived through an RGB-Dcamera. To accomplish this goal, we develop a perception module that estimatesthe volume of the objects inside the container and extracts horizontal surfaces aspotential supporting regions for the object from RGB-D data. We integrate thismodule with a state-of-the-art placement planner to compute placement poses forthe grasped object, that are stable and reachable by the robot among the perceivedobstacles.We evaluate the system by manually reproducing the computed placements indifferent test scenarios. Our experiments confirm that with the developed pipelineit is possible to automatically compute feasible and stable placements poses fordifferent objects in containers filled with various objects, perceived through an RGB-D camera.

ii



Contents

1 Introduction 11.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.1.1 Scope and Limitations . . . . . . . . . . . . . . . . . . . . . . . 51.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Related Work 72.1 Obstacle Volume Estimation . . . . . . . . . . . . . . . . . . . . . . . . 72.2 Placement Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.3 Plane Detection in Point Clouds . . . . . . . . . . . . . . . . . . . . . . 112.3.1 Attribute-based Methods . . . . . . . . . . . . . . . . . . . . . . 112.3.2 Model-based Methods . . . . . . . . . . . . . . . . . . . . . . . 182.4 Placement Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212.5 Placement Search Space Exploration . . . . . . . . . . . . . . . . . . . 22
3 Method 243.1 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243.1.1 The Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243.1.2 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283.1.3 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293.2 Obstacle Volume Estimation . . . . . . . . . . . . . . . . . . . . . . . . 313.3 Horizontal Regions Extraction . . . . . . . . . . . . . . . . . . . . . . . 333.3.1 Normal Vectors Estimation . . . . . . . . . . . . . . . . . . . . . 333.3.2 Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

iii



3.4 Integration with the Placement Planner . . . . . . . . . . . . . . . . . . 37
4 Results 404.1 Placing on a Single Surface . . . . . . . . . . . . . . . . . . . . . . . . 404.1.1 Toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404.1.2 Cans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424.1.3 Bag of Pet Food . . . . . . . . . . . . . . . . . . . . . . . . . . . 444.1.4 Water Bottles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464.2 Placing in Semi-filled Roller Containers . . . . . . . . . . . . . . . . . 484.2.1 Roller Container filled with Boxes . . . . . . . . . . . . . . . . 484.2.2 Semi-filled Roller Container . . . . . . . . . . . . . . . . . . . . 514.2.3 Clutter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5 Discussion 555.1 Plane Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555.2 Integration with the Placement Planner . . . . . . . . . . . . . . . . . . 56
6 Conclusion 586.1 Possible extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Bibliography 60

iv



Chapter 1

Introduction

One of the main changes that our economy, industry, and society is undergoingin the present years is the so-called fourth industrial revolution, or Industry 4.0.Although it is too soon to provide a formal definition of this process, it is clear thatInformation and Communication Technologies are the main drivers of this change[1]. A milestone in this process is the automation of warehouses, which constitutesa step towards the full implementation of smart factories. Smart factories leveragethe latest innovations in the fields of communication, data science, and roboticsto automatize and optimize processes that have historically been carried out byhumans.A central task in this context is order-picking-and-placing, which is the operationof collecting different goods from warehouse shelves and placing them in containersto fulfill an order [2]. This non-creative and physically demanding task is hard toautomate, due to the inherent difficulties of developing a technology that is able totackle multiple object shapes, potentially in collaboration with humans in a dynamicand unstructured environment.E-commerce corporations like Amazon have a strong interest in warehouse au-tomation and thus launched initiatives like the Amazon Picking Challenge [3] toencourage the development of new technologies to automate the pick-and-placeprocess. This includes solving the problem of identifying a single item in an un-structured collection of similar items on warehouse shelves or on pallets, planning
1



Introduction
and executing a collision-free motion to approach and grasp the object stably, andselecting a stable placement pose and a feasible motion to realize the placement.The object identification and localization problem has received much attention bythe computer vision research community [4]-[5]. Similarly, the robotics research com-munity has extensively investigated the grasp and motion planning task, for whichthe developed methods range from analytical approaches to data-driven strategies[6]-[7] and, more recently, vision-based solutions [8]. In this work, we focus on thethird problem, placing, which has received comparably less attention.Placing consists of deciding where and how to place a grasped object. Here, arobot is presented with several challenges:

1. If the robot has no prior knowledge about the environment, it has to interpretnoisy sensor data and reconstruct a model of its environment.
2. It has to find a suitable pose in the environment that affords a stable placementfor the object. To this aim, it has to reason about the item and the physicalcharacteristics of the environment.
3. Not all the possible placements are equally desirable. The robot has to rankthe available placements according to a quality metric that encodes an objectivethat should be maximized, e.g., semantic preference, clearance from obstacles,or space optimization.
4. It has to compute a collision-free motion to reach the placement.
5. Finally, the robot needs to execute the planned motion and release, push, throw,or nudge the object to its target location.

In this thesis, we will focus on the perception and planning challenges (1-4) ofthis placement problem. The control of the execution (challenge 5) is not explicitlyaddressed in this thesis.

2



Introduction
1.1 Problem Statement

We address the placement problem for scenarios as shown in Figure 1.1: a roboticmanipulator is tasked to place a grasped rigid object o in a partially-filled rollercontainer. To describe the placement problem, we adopt the notation of Haustein,Hang, Stork, et al. in [9].
Placement search space: Initially, the robot is at a pre-place configuration

qo ∈ C that offers it a top-view over a target volume Vt ⊂ R3 and it has to placethe object in this volume. The robot can sense a volume Vs ⊂ Vt and it has to find aplacement pose x̂o for the object. The search space of the object placement positionis thus limited to Vs. The robotic manipulator that is employed in this thesis can re-orient the object only around the world z-axis and therefore the orientation searchspace is SO(2). The total search space for object placements is thus Vs × SO(2).
Motion reachability constraint: We focus on prehensile manipulation: the robotwill hold the object, move it to the final pose and release it. Thus, the placement pose

x̂o has to be reachable by the robotic manipulator. Given the robot’s configurationspace C , there must be a continuous path τ(qo, q1) that connects the robot initialconfiguration q0 ∈ C to a final configuration q1 ∈ C that results in the object beingat x̂o. Let the predicate r(xo) express this constraint: if a pose xo is reachable, then
r(xo) evaluates to 1, else to 0.

Collision-free constraint: During the execution of the motion, the object and therobot must not collide with the environment. If this condition is satisfied, we saythe no-collision constraint c(τ) evaluates to 1, otherwise to 0. To evaluate thisconstraint, the robot has to interpret the sensor data to understand which part of
Vs is occupied by rigid objects. For example, in the scenario in Figure 1.1 it hasto infer the volume Vobs occupied by the cans, the box and the bag in the rollercontainer, and by the roller container itself.

Stability constraint: Furthermore, the manipulator has to choose a target posethat affords a stable placement for the grasped item. For example, it needs to knowthat a placement across objects at very different heights (the two stacks of cans) isnot stable. This additional constraint s(xo) evaluates to 1 if the placement is stable,
3



Introduction
to 0 if not.

Placement objective: Lastly, the robot needs to choose among multiple place-ment possibilities. For this, we define with ξ(xo) a scalar metric that expresses aplacement preference score that has to be maximized.

(a) A partially filled roller container with com-mon goods: cans, a bag of pet food, and a box. (b) A new object (water bottles package) isplaced automatically in the roller container.
Figure 1.1: The robot needs to find a suitable placement for a package of water bottles ina semi-filled roller container. In the picture on the right, the resulting placement is realizedby the robot.

With these definitions, the placement problem can then be formulated as aconstrained-optimization problem:
4



Introduction
max

xo∈Vs×SO(2),τ(C0,xo)
ξ(xo)

subject to: r(xo) = 1

c(τ) = 1

s(xo) = 1

(1.1)

Most of the positions in the sensed volume Vs are not valid for a placement:they will be in mid-air, violating the stability constraint, or inside objects volume,violating the non-collision constraint. The goal of this thesis is therefore to developa perception module that restricts the position search space Vs to positions thatare more likely to satisfy the problem’s hard constraints. This perception moduleis then integrated with a state-of-the-art placement planning algorithm [9] to solvethe above optimization problem.
1.1.1 Scope and Limitations

In our target scenario, we operate a robotic manipulator, of which the full geomet-ric and kinematic model is known. The manipulator can perceive the environmentthrough an RGB-D camera, and the environment is rigid and static over the timeframe needed to carry out the placement task. Initially, the robot is at a pre-placeconfiguration, from which it has a view over the placement volume, and the robot isgrasping the target object, which is rigid and has a known geometry. To evaluatethe computed placements, we manually reproduce them in the real world scenario.
1.2 Outline

The remainder of this thesis is organized as follows. Chapter 2 presents relatedwork relevant to challenges 1-3. The motion planning (challenge 4) is solved by theplacement module in [9]. In Chapter 3, we detail the employed RGB-D sensor andthe format of the data it produces and we explain the algorithms that are used toimplement the perception module and its integration with the planning algorithm in[9]. In Chapter 4, we illustrate the results of the experiments conducted to assess
5



Introduction
the system performance, and in Chapter 5 we analyze the results and the systemlimitations. Lastly, in Chapter 6 we summarize the work done in this thesis, and wesuggest possible future developments.

6



Chapter 2

Related Work

In this chapter, the scientific literature relevant to the challenges 1-3 introducedin Chapter 1 is presented. Section 2.1 overviews the methods that are commonlyemployed for obstacle estimation in applications that require motion planning in un-known scenes. Section 2.2 illustrates the strategies that state-of-the-art placementalgorithms employ to ensure a stable placement. Section 2.3 reviews the methodsthat have been developed to extract primitive shapes from point clouds. Section 2.4lists some of the metrics that can be employed to evaluate the quality of a place-ment. Finally Section 2.5 illustrates the placement sampling strategies encounteredin literature.
2.1 Obstacle Volume Estimation

Many robotics applications require having a tractable model of the environment.Mobile robots need it to plan their navigation dynamically without crashing intoobstacles and similarly do robotic manipulators. In our application, we need a mapto plan the motion of the robot so that it does not collide with the objects in thescene.When the surroundings are not previously known, the robot has to perceive theenvironment through sensors. Commonly employed range-measuring sensors servingthis purpose are: tilting laser range finders (LIDAR), ultrasonic distance sensors,
7



Related Work
Time of Flight cameras, or RGB-D sensors.Measurements taken by such sensors are affected by noise, therefore the mapbuilding procedure has to deal with uncertainty. Common ways to do this areto either employ a probabilistic framework or to apply obstacle inflation, i.e., toestimate the obstacle volume and add some padding to ensure extra safety.The main trade-off when it comes to mapping is between memory and time effi-ciency and precision. In some cases, mapping can be reduced to a 2D problem, forexample, if the robot motion is constrained to be on a planar surface or if it is in astructured environment.Commonly employed data-structures in this context are occupancy grids [10].Each cell in the grid holds the probability of being occupied, which is initialized to be0.5 and can range from 0 to 1. When the sensor perceives an obstacle, the occupancyprobability of the cells on the ray that connects it to the obstacle decreases, andthe occupancy probability of the cell containing the obstacle increases. This simplemodel has been extended to elevation maps [11], which store in each cell the heightof the perceived obstacle, or multi-level surface maps, which offer a multi-surfaceview of the environment [12].The natural extension of two dimensional occupancy grids to the 3D case, isthe use of occupancy voxel grids. This approach, however, scales poorly as it isvery memory-demanding. To mitigate this issue, Hornung, Wurm, Bennewitz, et al.[13] proposed an octree-based data structure, that enables temporal measurementintegration, handles unseen space, and is time and memory efficient. The datastructure holds the map representation in an octree (see Figure 2.1), where eachnode in the tree represents a cube (voxel) in the space and can have zero or eightchildren. The node contains a value that expresses its voxel occupancy probability;children nodes are created only when necessary. The occupancy probabilities areupdated similarly to the two dimensional case.

8



Related Work

Figure 2.1: Octree data structure. Each node in the structure represents a three dimensionalcube in the space. The root of the tree and each intermediate node in the tree have exactlyeight children. Image from [14].
In this thesis, we will take advantage of the prior knowledge that we have aboutthe placement scenario. The robot has a top-view on the target placement volume,therefore we use a reconstruction of the scene similar to the elevation map approach.The obstacle resolution depends on the local resolution of the point cloud. Thedeveloped method is illustrated in Section 3.2.

2.2 Placement Stability

In order to solve the placement problem, it is necessary to reason about the stabilityof a placement pose. A rigid body rests in equilibrium if the forces that act on itsum to zero and if they do not induce any momentum. The forces that we considerin this context are gravitation, support reaction forces and friction. Gravity actsfrom the object center of mass towards the ground. Reaction forces act at the pointsof contact between the object and the support to impede the motion of the objecttowards the support. Friction is exerted between the object and the support contact
9



Related Work
surfaces in the direction that hinders a sliding motion of the object on the surface.Baumgartl, Werner, Kaminsky, et al. in [15] developed a placement planner thatbases its stability analysis by explicitly reasoning about friction. When computinga placement, the authors identify the set of contact points between the object andthe supporting surface. They project the object center of mass along the gravitydirection and verify that the projection lies within the contact points’ convex hull,which ensures rotational stability. Furthermore, they assume a minimum frictioncoefficient µ, which defines the maximum allowed slope of the contact surface thatguarantees a static equilibrium.If it is not possible to make any assumption about the object or environmentmaterials, the most general approach remains to consider only planar surfaces ascandidate placement regions to ensure force equilibrium. In this case, the gravita-tional force acts perpendicularly to the placement surface that, given its rigid nature,will counteract with an equal and opposite normal force, regardless of the frictioncoefficient, thus ensuring force equilibrium.Following this method, Harada, Tsuji, Nagata, et al. in [16] identify candidateplacement areas by deriving polygon models of the object and the environment frompoint cloud data, and considering only horizontal surfaces. The authors cluster theobject and the environment in approximately planar surface patches and base theirstability evaluation on a convexity test between the contact surface of the objectand the placement region. Haustein, Hang, Stork, et al. in [9], similarly, do notassume any friction coefficient and restrict placements to horizontal surfaces. Ananalogous method was employed by Schuster, Okerman, Nguyen, et al. in [17], whofocus their research on the perception of flat surfaces on cluttered tabletops thatcan afford placements.Jiang, Lim, Zheng, et al. in [18] develop a strategy to compute more complexplacements such as hanging and caging. To this aim, they manually design severalfeatures to characterize a placement, which aim to capture the placement stabilityand preferred orientation. They then produce a training set of placement combina-tions by employing a rigid-body simulator, and train a Support Vector Machine torank candidate placements automatically.

10



Related Work
In this thesis, we build on the work of Haustein, Hang, Stork, et al. in [9] tocompute stable and reachable placements among clutter, see Section 2.5. Therefore,also in this work we constrain placements to the horizontal case and thus develop amethod to detect planar surfaces from noisy point clouds. As a drawback, complexplacements (such as hanging or caging) will not be considered.

2.3 Plane Detection in Point Clouds

Range measuring sensors produce point clouds, i.e. sets of points in space. Severalstrategies can be found in the scientific literature to identify primitive shapes in apoint cloud, and we focus on the ones which aim at isolating flat surfaces. Givena point cloud P = {pi}, pi ∈ R3, the goal is to find the regions Rj ⊂ P that weregenerated by a planar surface in the scene.We can divide the most popular state-of-the-art point cloud segmentation strate-gies into two classes: attribute-based methods and model-fitting methods. In thefollowing, we give an overview of each of these strategies.
2.3.1 Attribute-based Methods

Region growing procedures segment point clouds in the spatial domain, a typicalregion-growing algorithm is summarized in Algorithm 1.Key concepts in this approach are:
• Neighborhood Nq of a point pq: a collection of points in P that satisfy someproximity condition to pq (Algorithm 1 line 2).
• Local features: the set of geometric attributes that are computed to characterizeeach point pi in the cloud.
• Seed point ps: reference point from which the region is currently growing(Algorithm 1 lines 1 and 4). An alternative is using voxels, rather than singlepoints, as working units, thus preserving only one measurement or the averagemeasurement in each voxel [19], [20], [21].

11



Related Work

Algorithm 1: Region growing algorithm
Data: P = {p1,...,N} point cloud
Result: R1,..,n set of horizontal regionsinitialize R = ∅;

1 select an initial seed point ps;
i = 1;
Ri = {ps};
Pr = P r ps set of points that do not belong to any region;
while Pr /= ∅ do

2 Ns = neighborhood (Pr, ps) ;
for pn ∈ Ns do

3 if pn and ps belong to the same region then
Ri ← Ri ∪ {pn};
Pr ← Pr r {pn};

end
end
if Ri can still grow thenpick ps in Ri;
elsegrow a new region: i← i + 1;

4 choose ps ∈ Pr;
Ri ← {ps} ;

end
end
Procedure neighborhood(Pr, ps)

Ns is the set of points in Pr that are close to ps;
return Ns;

12



Related Work
• Region growing criterion: a condition that the point pi has to satisfy in orderto be joined to the region Rj , taking into consideration the source point ps(Algorithm 1 line 3). This condition is evaluated by considering the two points’local features.
The choices regarding the definition of the local neighborhood of a point, itslocal features, the seed point and the region growing condition differentiate eachalgorithm and its performance. In the following, we present some of the strategiesencountered in literature.

Neighborhood definition

Defining a suitable neighborhood is one of the most challenging aspects of thealgorithm, as it influences the computed local features. Some options are:
• Define a fixed-size k neighborhood of pq: Nk

q contains the closest k points to
pq . Closeness is evaluated in the sense of Euclidean distance [22].

• Define a fixed-radius ρ sphere around pq: Nρ
q is the set of points within thissphere. Fan, Wang, Geng, et al. in [23] propose a method to automaticallydetermine ρ based on global consideration of the sparseness of the point cloud.

• Dynamically define the geometry of the neighborhood based on local consid-erations such as the currently estimated slope [24].
• Divide the point cloud into voxels and define each voxel as a neighborhood [20].
• TOF cameras and RGB-D cameras produce a point cloud organized in a matrixshape, like a standard picture. In this case it is then possible to use a fixedpixel-sized square neighborhood [19] to avoid the complex neighbors search oralternatively to adapt the size of the pixel-neighborhood to the local depth ofeach point [25].

Local Features

The local features, that are computed to characterize each point, include:13



Related Work
• The local surface normal nq of point pq .It can be computed by the Principal Component Analysis (PCA) as proposedin [26] and done in [22], [20], [27] and [21]. It corresponds to finding the normalof the least-squares-fit plane πq of pq’s neighborhood Nq .Let Cq be the covariance matrix Cq = 1

k

Kq
i=1

(pi − p̄)T (pi − p̄) of neighborhood
Nq of the queried point. p̄ is the average of pi. Let λ0, λ1, λ2 be the eigenval-ues of Cq , which satisfy 0 ≤ λ0 ≤ λ1 ≤ λ2, and let νi be the eigenvector thatcorresponds to λi for i = 0, 1, 2. Then:

nq =


ν0 if ν0 · (νp − pq) > 0,

−ν0 if ν0 · (νp − pq) < 0

 (2.1)
νp is the sensor pose when the point cloud was acquired.This method fails in case of surface discontinuities and noise. An alternativeproposed by Fan, Wang, Geng, et al. is to use a constrained nonlinear least-squares algorithm that weights each point contribution proportionally to its fitto the plane πq [23].Holzer, Rusu, Dixon, et al. focus on picture-shaped point clouds (TOF andRGB-D data). The authors adopt a square neighborhood definition Npm,n =1 pm−r,n−r ... pm−r,n+r

... pm,n ...
pm+r,n−r ... pm+r,n+r

2. The authors adjust the size of the neighborhood r tothe local point depth, based on the observation that farther measurements tendto be affected by heavier noise. Moreover, they implement an edge detectionmechanism to avoid averaging depth data in the presence of depth discontinu-ities.A further time-improvement by Holz, Holzer, Rusu, et al. in [19] is based onthe use of integral images, which allows averaging measurements over anyrectangular-shaped pixel neighborhood in constant time. An integral image Iof a source image S = Si,j of dimension h× w is defined in Equation 2.2:
Ii,j =

l=iØ
l=0

m=jØ
m=0

Sl,m for i = 1,.., h j = 1,.., w (2.2)
14



Related Work
Each element of the integral image can be computed iteratively as follows inEquation 2.3 and shown in Figure 2.2:

Ii,j = Si,j + Ii−1,j + Ii,j−1 − Ii−1,j−1 (2.3)
thus needing a single pass over the image for the full integral image retrieval.

(a) The source image S. (b) The integral image I .
Figure 2.2: Toy example of an integral image. On the left we have the original image S, onthe right its integral image I . As an example of Equation 2.3 I4,4 = S4,4 +I3,4 +I4,3−I3,3 =
4 + 30 + 30− 22 = 42.

By considering the matrices containing the x, y and z coordinates of the pointsin the organized cloud as source images Sx, Sy , Sz , then it is possible tocompute the sum of measurements (hence the average) over any square neigh-borhood of size r in the picture with only four memory accesses:
m+rØ
i=m−r

n+rØ
j=n−r

Si,j = Im+r,n+r − Im−r,n+r − Im+r,n−r + Im−r,n−r. (2.4)
Given these premises, once the neighborhood size r in pixels of p ∈ P atpixel position m, n is computed, the normal vector is retrieved as the crossproduct between the vectors connecting pixels pm−r,n and pm+r,n and pm,n−rand pm,n+r, where the coordinate of each of the four points is smoothed over a
r − 1 side square within the neighborhood of pm,n as illustrated in Figure 2.3.

15



Related Work

(a) Cross product of the vec-tors connecting the points atthe horizontal and verticalboundaries of the neighbor-hood (thick line).
(b) In yellow the measure-ment smoothing region for thepoint at the bottom limit of theneighborhood.

(c) In yellow the measurementsmoothing region for the pointat the upper limit of the neigh-borhood.
Figure 2.3: Normal computation over an organized point cloud with local smoothing. r isthe size of the neighborhood (in pixels).

• The local curvature, as introduced by Pauly, Gross, and Kobbelt in [28] andused by Wang, Zou, Shen, et al. in [22], is computed as:
σq = λ0

λ0 + λ1 + λ2
(2.5)

λi are the eigenvalues of the neighborhood covariance matrix with the sameorder considered in the computation of the surface normal. Another methodto assess the local curvature is to compute the distance of the point to thefitting plane [29], or by summing the squared residuals of the points in theneighborhood of pq w.r.t. the computed fitting plane πq [20], [27].
Seed Point Definition

The methods to choose a new seed point, include:
• Randomly pick a point in the cloud.
• Choose the point with the smallest curvature, when explicitly searching forplanar clusters [22].

16



Related Work
• Identify points which present high-density peaks [30] and are sufficiently dis-tant one from the other, following the assumption that cluster centers are sur-rounded by neighbors with lower local density.
Strategies for the choice of subsequent seed points include:
• Keep the same seed point until it is impossible to aggregate more points tothe current cluster.
• Choosing a new seed point in the region pj if the angle between its local normalvector and the region normal vector does not exceed a threshold [22].

Region Growing Criterion

A similarity condition is needed to decide whether a point in the neighborhood of
ps belongs to the same region (Algorithm 1 line 2). Standard strategies are:

• Defining a maximum angular threshold θmax between the normal of the seedpoint and the new point [20], [22], [23], [27], [31]. Given the seed point ps andits normal νs, the neighboring point pi is added to the region if its normal νiis such that:
cos−1( | νs · νi |

ëνsëëνië
) < θmax (2.6)

θmax is a parameter that limits the allowed local roughness, as it is evaluatedbetween two close points.
• Using a threshold on the sum of residuals, that enforces smooth areas to bebroken at edges [27].
• If the focus is on detecting horizontal clusters, testing the difference of the zcoordinate of the seed point ps and the neighboring point pi [21].

Attribute-based methods are a robust approach to point cloud segmentation [32].However, the definition of neighborhood in an unevenly sampled space can be diffi-cult. Moreover the computation time can be unfeasible in case of multidimensionalattribute spaces and highly dimensional input point clouds.17



Related Work
2.3.2 Model-based Methods

When models of the different parts composing the scene are known, it is possibleto employ model-fitting methods to detect those shapes. The two standard waysto implement model-fitting are the Hough Transform (HT) and RANdom SAmplingConsensus (RANSAC) methods.
Hough Transform

Hough Transform was first introduced by Hough in [33] to detect patterns in binaryimages, and it was later successfully applied in 2D greyscale images to recognizelines and circles. This method is useful to fit parametric shapes to sampled data,and its application was extended to 3-D data as well.To work with the Hough Transform for shape detection on the point cloud P =
{pi} ∈ R3, one has to define:

• A parametric shape Γ ⊂ R3 defined over a set of parameters α ∈ RN .
• A relation Λ : R3 → 2RN between each point and the parameters in RN thatdescribes the family of shapes to which the point could belong.
• A suitable discretization of the parameter space RN and an N-dimensionaldata structure (accumulator ) with a one-to-one correspondence to each cell ofthe discretized parameter space.

The most straightforward implementation of the Hough Transform for primitive shapedetection follows Algorithm 2.
Algorithm 2: Hough transform algorithm

Data: P = {p1,...,N} point cloud; Γ : RN → R3, Λ : R3 → 2RN ;zero each entry of the accumulator;
for pi ∈ P dofind the parametric shapes to which the point could belong Λ(pi);increment the corresponding cells in the accumulator;
endlook for peaks in the accumulator and extract the corresponding shapes;

18



Related Work
Some improvements of the algorithm are reviewed in [34]:
• Select active peaks at regular intervals instead of sweeping and updating thewhole parameter space.
• Instead of working point-by-point, use randomly drawn minimal set of pointswhich identifies one single corresponding shape (three points for a plane), onlyupdate that cell in the accumulator.
• Create a one-to-one correspondence between the point and the shape (a plane),by locally estimating the normal [35], eventually, smooth the vote with a Gaus-sian distribution in parameter space [36].

RANSAC

RANSAC strategies stem from the algorithm introduced by Fischler and Bolles in[37]. It is considered the state-of-the-art method for model fitting. Some key conceptin this technique are:
• The consensus set of Γ(α) in P is the set of points pi ∈ P within a certainthreshold from a shape Γ(α).
• The size M of the minimal set of points in P which uniquely identify one shape.
• The inverse function Γ−1 : R3M → RN that allows retrieving the single shapeidentified by a minimal set: Γ−1(p1, ..., pM) = (α1, ..., αN).

A typical RANSAC algorithm is presented in Algorithm 3.Several improvements have been studied about each step of the algorithm. Schn-abel, Wahl, and Klein in [38] use this method to efficiently extract primitive shapessuch as planes, torus, cylinders, cones, and spheres from point clouds. The authorsimplement a sampling criterion which follows the assumption that the a-priori prob-ability that two points belong to the same shape is higher for closer points. Torr andZisserman in [39] formulate the problem in a probabilistic framework, thus basingthe shape re-fit (Algorithm 3 Line 1) by finding the maximum-likelihood shape thatfits the points. 19



Related Work

Algorithm 3: RANSAC algorithm
Data: P = {p1,...,N} point cloud; Γ: RN → R3, Γ−1: R3M → RN

nc = 0 ;
i = 0 ;
while nc < cons_min and i < max_i doSample a subset S ∈ P : |S| = M ;Find the parametric shape that fits the points α = Γ−1(S) ;Find S∗ = p1, ..., pk ∈ P within a tolerance from Γ(α) ;

nc =| S∗ |= k ;
i← i + 1 ;

end
if i < max_i then

1 refit the whole consensus set S∗ minimizing some cost function;
else

failure
end

20



Related Work
Overall, model-based methods are fast and robust to outliers [32] and in particularRANSAC is considered the state-of-the-art primitive shape extraction method.Given the works illustrated in this section, we decide to adopt a region-growingalgorithm for horizontal surfaces detection presented by Dong, Gao, Zhang, et al. in[21]. The reason behind this choice is twofold: the strategy presented by the authorsspecifically aims at finding horizontal surfaces in contrast to the other reviewedmethods. Moreover, the algorithm is simple and its results are comparable with thestate-of-the-art RANSAC algorithm, while the runtime is lower [21]. We adapt thealgorithm to the case of organized point clouds like the ones generated by RGB-Dor TOF cameras, by integrating the contributions of Holz, Holzer, Rusu, et al. in[19] and Holzer, Rusu, Dixon, et al. in [25] about fast neighbors retrieval and normalvectors estimation in organized point clouds.

2.4 Placement Quality

If the robot manages to find multiple solutions to the placement problem, it has tobe able to rank them and choose the most suitable one to solve the problem at hand.One way to rank different placement poses is to take into account their semanticpreference: not all the object’s orientation feel equally desirable to humans, andneither do all locations. Baumgartl, Werner, Kaminsky, et al. in [15] define an objectpreferred orientation by aligning the object’s volume first dominant principal axis tothe placement surface normal. This encourages vertical placements over horizontalones. A complementary work on this topic is presented in [40], where the authorstrain a Support Vector Machine on hand-made geometric features to predict theupright orientation of objects. A similar method is implemented in [18]. The authorspredict the semantically preferred placement areas and orientations for objects. Forexample, they learn that a plate is preferably placed on a table or in a dish-rackand that in the first case it should be placed horizontally, and in the second case itshould be caged by the racks.Other placement objectives are to maximize the clearance from obstacles to ensurea safe placement, or to minimize it to implement a packing procedure [9].
21



Related Work
In this work, we choose to minimize the object placement height, following theempirical observation that to fill up roller containers it is beneficial to start placingobjects at the lowest layer available, hence:

ξ(xo) = −xo,z (2.7)
2.5 Placement Search Space Exploration

We operate in the presence of several obstacles, hence it is important to efficientlyexplore the search space, as most of the poses will not satisfy the problem con-straints. Most of the works presented in Section 2.2 do not explicitly mention thestrategy adopted to sample candidate placement poses. Baumgartl, Werner, Kamin-sky, et al. in [15] guide their search starting from an arbitrary point in the space,and they progressively explore the nearby positions and orientations; they stop thesearch as soon as a valid pose is found. Haustein, Hang, Stork, et al. in [9] performan efficient search biased towards regions which are expected to be more favorableto satisfy the problem hard constraints, while maximizing a user-provided objectivefunction ξ(xo). This algorithm aims to find quickly a feasible solution and to pro-gressively optimize it in an anytime fashion. We adopt this second strategy as itis tailored for placements in cluttered scenes and explores the solution space whileexploiting the local information progressively collected during the search.To explore the solution space, the authors employ a tree structure to hold thehierarchical subdivision of the position search space (in our case RH ) and the ori-entation search space (in our case SO(2)). At the first level of the tree, we find theclusters that were produced by the horizontal region detection algorithm, and eachof them is associated with the complete orientation solution space of [−π, π). Ateach deeper layer in the tree, the region is recursively split in four regions alongits principal axes and the orientation space is divided in k equal-width segments.The splitting process is continued until a user-defined resolution either in space ororientation is reached. Each node in the tree, therefore, restricts the search to asmall area in the space and a subset of orientations.
22



Related Work
The authors use this tree-structure for a Monte Carlo tree search to incorpo-rate feedback to bias the sampling process towards more promising regions, whilekeeping the search explorative of untested spaces. Every time a point is drawnfrom a region, a heuristic that takes into account the hard constraints and the user-provided objective is computed. The reward is propagated back to the parents ofthe region (see Figure 2.4), thus indirectly informing the sampling process about theexpected results in the nearby space as well. Each time a kinematically reachablecollision-free and stable placement pose that improves the objective ξ(xo) is found,the motion planning algorithm is invoked to verify its path-reachability and computethe motion τ(C0, xo).

Figure 2.4: Hierarchical representation of the search space. Each node in this tree repre-sents a region (or a sub-region). When a region is sampled, the number of visits increasesand the corresponding reward is computed according to an heuristic function which evaluatesthe hard and soft constraints of the problem.
The observation that motivates the algorithm in [9] is that there exists a spatialcorrelation between the poses that satisfy the hard constraints: for example, if apose produces a collision with the nearby environment, close poses will likely dothe same and vice-versa. Similarly, the adopted sampling strategy is helpful inthe case ξ(xo) has a limited local growth within contiguous regions in the solutionspace, which is certainly true for the z coordinate of points belonging to the samehorizontal region.By integrating the perception of the obstacle volume and using the extracted pla-nar surfaces from the point cloud as candidate placement regions with this placementmodule, we are able to compute placement poses in new scenes for known objects.

23



Chapter 3

Method

Figure 3.1 illustrates the overall system that was developed in this thesis. Thischapter covers the method that was developed to implement the perception moduleand the integration with the planning algorithm in [9]. Throughout this chapter weuse the notation introduced in Section 1.1. Section 3.1 briefly describes the sensorthat produces the input data, its format and how the data is pre-processed. Section3.2 presents the strategy adopted to estimate the volume occupied by the obstaclesin the sensed space. Section 3.3 illustrates the method used to extract horizontalflat regions from a point cloud, which restricts the search space for the placementposition. Section 3.4 details how the work in [9] was integrated with the perceptionmodule.
3.1 Input Data

The robot perceives the environment through an RGB-D camera. In the followingsubsections we briefly describe the working principle of the employed sensor.
3.1.1 The Sensor

The robot is provided with an Intel® RealSense™ D435 depth camera with thetechnical specifications in Table 3.1 [41].
24



Method

Figure 3.1: The overall system that was developed in this thesis is summarized in this figure.The robot can perceive the environment through an RGB-D sensor, that produces a pointcloud. The point cloud is the input of the perception module, that produces an estimationof the obstacle volume in the environment and extracts horizontal planes that restrict theposition search space. The obstacles and the horizontal regions are then fed to the planningmodule, together with the robot and object model. The planning module samples a feasibleplacement for the object in the environment, and computes a motion for the robot. Lastlythe placement is evaluated by manually reproducing the computed placement in the realscenario.

Figure 3.2: Intel® RealSense™ D435 depth camera. The picture shows the Infrared stereomodule (right and left imager), the Infrared projector and the RGB Module. Picture takenfrom [41] .
Working Principle

The sensor has two infrared (IR) cameras, an RGB sensor, and an IR pattern projector(see Figure 3.2). It is a stereo camera, which means that depth information estimation25



Method
Features Environment: indoor/outdoorImage Sensor Technology: Global Shutter, 3 µmxµm pixel sizeMaximum range: approx 10 meters.
Depth Depth technology: Active IR StereoDepth field of view (FOV) : 87°± 3°× 58°± 1°× 95°± 3°Maximum range: approx 10 meters.Depth output resolution and frame rate: Up to 1280 × 720 activestereo depth resolution. Up to 90 fps.
RGB RGB Sensor Resolution and Frame Rate: 1920× 1080RGB frame rate: 30 fpsRGB Sensor FOV (H x V x D): 69.4°× 42.5°× 77°(±3°)Majorcomponents Camera Module: Intel RealSense Module D430 + RGB CameraVision Processor Board: Intel RealSense Vision Processor D4
Physical Form Factor: Camera PeripheralConnector: USB-C* 3.1 Gen 1*Length × Depth × Height: 90 mm × 25 mm × 25 mmOne 1/4-20 UNC thread mounting point. Two M3 thread mount-ing points.

Table 3.1: Technical specification of Intel® RealSense™ D435 depth camera.
is based on the comparison of the output produced by two identical (IR) sensors,displaced along one of their axis with a known offset (left and right imagers inFigure 3.2), as to mimic human vision.After having acquired two IR images at the same time, the procedure to infer theper-pixel depth is the following:

1. Solve the correspondence problem: find a per-pixel correspondence betweenthe two images (i.e., match pixels which were originated by the same worldlocation). For each corresponding pair of pixels, its disparity is computed, i.e.,the shift that separates the two pixels in the two images along the camerasdisplacement axis (see Figure 3.3 and 3.4). The objects which are closer to thecamera will experience a larger displacement with respect to the objects thatare far away in the background.
2. Triangulate each pixel to find its location in the camera frame, leveraging theknowledge of the spatial offset between the two cameras.

26



Method
The result of this operation is an IR image with associated a per-pixel depth infor-mation, hence their location in the camera reference systems. The image is enrichedwith the color data retrieved by the RGB camera.

(a) A landscape as seen from the left camera ofa stereo system. (b) A landscape as seen from the right camera ofa stereo system.
Figure 3.3: A landscape as seen from two cameras of a stereo system. The orange (red)square highlights a point in the world and its different locations in the two camera’s frames.The orange (red) line connecting the two squares represents the disparity between the twopixels. Images from [42].

(a) An example of a disparity map. (b) Retrieving depth from disparity maps.
Figure 3.4: The image on the left contains a toy example of a disparity map. Pixelsbelonging to closer objects have higher disparity values. Images from [42].
Limitations

The key operation that enables the stereo camera to retrieve the depth of each pixelis finding correspondences between the two pictures, which is easier if the scene in
27



Method
the field of view as a highly varied texture. Therefore the camera is more appropriatefor applications in external environments, whereas it may be challenging to retrievereliable data when dealing with homogeneously textured patches (such as walls orfloors). An example of this effect can be observed in Figure 3.5.

(a) A flat homogenously col-ored surface, with a randomnoise patch in its top-left cor-ner.
(b) Heatmap of the variance ofthe estimated per-pixel depthover ten frames.

(c) Infrared pattern projectedon the scene.
Figure 3.5: The depth estimation is more consistent when the surface has a varied texture.

To overcome this limitation, the camera is provided with an IR projector, whichprojects a semi-random light pattern on the scene consisting of five thousand points[43] (see Figure 3.5c). This pattern enriches the scene with more recognizablekey-points that help finding correspondences in low-textured scenes. If the scenematerial is poorly reflective such as transparent plastic or dark surfaces, however,the projector will bring no advantage.
3.1.2 Data Format

The data produced by this sensor is a collection of points in camera frame organizedin a two dimensional matrix P =
1 p1,1 ... p1,w

... pm,n ...
ph,1 ... ph,w

2, hence called organized pointclouds. h is the height of the cloud (1280 in our sensor) and w is its width (720).Each point pi,j carries its location in camera frame (x, y, z) ∈ R3 together with thecolor (r, g, b) ∈ [0.0,1.0]3 information provided by the RGB camera. This data canbe interpreted as a general picture (3.6a), a depth map (3.6b) or a point cloud inspace (3.6c).
28



Method

(a) Color information.
(b) Depth information [m]. Redpixels represent missing data. (c) Color and depth informationcombined in a point-cloud.

Figure 3.6: Three ways to interpret the output of the RGB-D camera.
3.1.3 Preprocessing

Stereo cameras like the one that we employ in this project are heavily affected bylocal noise, and we need a way to mitigate the derived uncertainty.If the sensor and the scene are steady, each pixel measures the same point inthe space in subsequent frames. Hence, it is possible to average several sensormeasurements over time in a per-pixel basis. To do this, we apply the temporalfilter provided by the Realsense Library [44] and implemented in an exponentialmoving average (Algorithm 4). This strategy allows us to mitigate the per-pixelnoise, as well as to recover partially missing frames.
Algorithm 4: Exponential temporal filtering

Data: Dt1 = {dt1i,j} depth matrix acquired at t1;
D̂t0 = {d̂t0i,j} filtered depth data at the previous time step t0;
Result: D̂t1 filtered depth data at t1
for dt1i,j ∈ Dt1 do

if | dt1i,j − d̂t0i,j |< δmax then
d̂t1i,j = αdt1i,j + (1− α)d̂t0i,j

else
d̂t1i,j = dt1i,j

end
end

29



Method
To make the computation feasible in short times sequentially on a CPU, we willuse only a downsampled version of the point-cloud (originally made of 1280 ∗ 720 =

921600 points) both in the obstacle volume estimation operation (Section 3.2) and inthe horizontal region extraction (Section 3.3). To reduce the size of the point cloudwe employ a decimation step: given a resolution d, only the points at a row/columnwhich is multiple of d are kept in the cloud (Equation 3.1):
P = {pi,j | i = k ∗ d, j = n ∗ d, k = 0, 1, ...,

h

d
, n = 0, 1, ...,

w

d
} (3.1)

Obviously decimating the point cloud worsens the spatial resolution of the avail-able data. This effect is linearly dependent on the depth of the points in the cameraframe (Figure 3.7). To choose a suitable decimation factor, we consider the fact thatour maximum working depth is of 1.5 m. Therefore we decide to use a decimationfactor of 4, which means having a spatial resolution at 1.5 m distance of 0.0066 m,while bringing down the number of points to 57600.

Figure 3.7: Resolution along the camera x and y-axis for different decimation factors atdifferent depths. The spatial resolution is computed according to the equations in [45].
Using these strategies we produce a reduced version of the original point-cloudwhich is robust to local noise. Neither filtering nor decimating merges any mea-surements spatially, thus preserving edges.

30



Method
3.2 Obstacle Volume Estimation

Obstacle volume estimation is needed to assess the non-collision constraint of themotion of the robot c(τ). As described in Chapter 1, initially the robot is graspingan object and it is at a pre-place configuration that allows it to have a top view overthe placement volume (Figure 3.8). The robot end-effector grasping the object is atthe same height of the camera.

Figure 3.8: Point cloud acquired from the RGB-D camera showing the view of the robotover the placement volume.
We restrict the motion of the robot to be within the camera field of view (FOV),therefore all the obstacles that have to be take into account are visible. The place-ment volume is at the center of the FOV, such that we can approximate occlusion tobe vertical.To place the object, the robot will realize a vertical descending motion thatbrings the object to the target placement pose. In addition, the mounting point ofthe camera limits the view to top surfaces in the placement volume. Therefore, wecan consider the space that lies underneath the perceived surfaces and above thefloor as occupied or unknown. In this way, we allow placements only on the topsurfaces of the visible objects, and we prevent the robot to move underneath visiblesurfaces.To do this, we employ a simple obstacle representation similar to a heightmap.Namely, we use a composition of axis-aligned cuboids to describe the occupied31



Method
space, which allows fast collision checking. The method to retrieve this volumetricdescription is detailed in Algorithm 5 and Figure 3.9.

Algorithm 5: Estimate obstacle volume from a point cloud.
Data: P = {pi}, k inflation factor
Result: Vobs ⊂ Vs volume occupied by obstaclesinitialize Vobs = ∅;
for i = 1, ..., h− 1 do

for j = 1, ..., w − 1 do
pr, pd, pdr = neighbors (pi,j) ;find Vobs,pi,j

, the axis-aligned rectangular cuboid that fits the fourpoints;inflate its base by k;
Vobs ← Vobs ∪ Vobs,pi,j

;
end

end
Procedure neighbors(pi,j)

pr = Pi,j+1 ;
pd = Pi+1,j ;
pdr = Pi+1,j+1 ;
return [pr, pd, pdr];

(a) Rectangular cuboid fit to the first four pixelsof the image. (b) Original and inflated obstacle. The base isinflated by a 1.10 coefficient.
Figure 3.9: Obstacle volume approximation. Each pixel contains one measurement (a pointin the space). Pixels are processed four-by-four; a rectangular axis-aligned cuboid is fit toeach group of pixels. The obstacle base is then inflated by a coefficient (right image), whichin the example is 10%. This operation ensures further safety during motion planning.

32



Method
3.3 Horizontal Regions Extraction

To ensure placement stability, we follow the strategies presented in Section 2.2:the planning algorithm in [9] ensures that the center of mass of the target item fallsinto the candidate placement face, and we restrict placements to flat surfaces.We need to detect horizontal segments in the input point cloud, to restrict theplacement position search space. We choose the world frame orthonormal referencesystem {x̂, ŷ, ẑ} in which gravitation acts in the negative direction of the z-axis
þFg = −|Fg|ẑ. A plane in this reference system is horizontal if its normal vector isparallel to ẑ. Given P = {pi}, the output of the sensor brought to the world frame,we want to cluster together those points which belong to the same horizontal regionand therefore will share a similar z coordinate. We want to filter out the points thatdo not belong to horizontal segments.To this aim, we keep the overall structure of the algorithm in [21] and summarizedin Algorithm 6 for horizontal clusters extraction. We change the pre-processingmethod (Section 3.1.3), post processing strategies (Section 3.3.2) and the normalvectors estimation method (Section 3.3.1).
3.3.1 Normal Vectors Estimation

The two features used in Algorithm 6 are the point z coordinate (line 4) and itslocal normal vector (lines 1-2). Dong, Gao, Zhang, et al. estimate this vector byemploying a fixed-size neighborhood using standard PCA as illustrated in Section2.3.1.Instead, we adopt the method presented by Holzer, Rusu, Dixon, et al. in [25],who implement a depth-adaptive normal estimation mechanism precisely for orga-nized point clouds. Table 3.2 summarizes the time-improvement experienced whenadopting the decimation and integral-images-based normal computation method,with respect to the voxel filter and PCA based on KD-tree strategy adopted in [21].We adopt the square-neighborhood definition used in [25] to speed up the neigh-bor search needed in line 2 of Algorithm 6. This concept is implemented in the PointCloud Library [46] by Radu B. Rusu et al. with the name of OrganizedNeighbor.
33



Method

Algorithm 6: HoPE: Horizontal Plane Extractor for Cluttered 3D Scenes[21]
Data: P = {pi}, N = {Npi

} neighbors of each point in P
Result: RH = {Rj} horizontal segments: Rj = {pk} set of points belongingto the same horizontal surfaceinitialize RH = ∅, j = 0;
preprocess(P);

1 compute point-wise normals {ni};
2 keep points with almost vertical normals: P = {pi} | cos−1( éni,ẑê

ëniëëẑë) < θmax;select a seed point ps;
P ← P r ps;
Rj = {ps};
while P /= ∅ do

3 for pn ∈ Nps neighbor of ps do
4 if |pn,z − ps,z| < δzmax then

Rj ← Rj ∪ {pn};
P ← P r pn ;
pn can be chosen as new seed to grow region j;

end
end
if There is a point in Rj that has not been used as seed yet thenchoose ps from Rj , keep growing this region;
else

RH ← {RH ∪Rj };Choose ps from P ;
j = j + 1;Start growing a new region Rj = {ps}

end
end
postprocess(RH);

Procedure preprocess(P)remove points out of the camera working depth ranges ;remove outliers ;down-sample P using a voxelized filter;
return P;

Procedure postprocess(RH)detect false positives by analyzing each region’s points normaldistribution;
return RH ;

34



Method
Method Time/point(avg) [µs] Std dev [µs]Voxel filter + KD-tree 3.23 0.135Decimation + Integral image 0.156 0.0298

Table 3.2: Per-point processing time to downsample and estimate the normals of anorganized point cloud initially made of 921600 points. We compare our method with theone in [21]. Dong, Gao, Zhang, et al. in [21] use a voxel-approach to reduce the pointcloud dimensionality (Section 2.3) and a standard KD-tree and PCA strategy for normalvectors estimation (Section 2.3). The results are taken by using a voxelized filter with
1.0cm resolution (output 14615 points), and a the decimation method with decimation factor
8 (output 14400 points). The experiment were run on an Intel Core i7-8550U CPU, 1.80GHz of standard frequency and up to 4.00 GHz of turbo frequency. The second methodgives a ∼ 20x time improvement.
This definition of neighborhood takes down the temporal complexity of neighborsextraction from O(log(N)) in a K-D tree data structure [47] to constant time.Lastly, to choose the maximum value for the tilting angle θmax between ẑ and
ni (Algorithm 6 line 2), we examine the distribution of those angles at a planarsurface (Figure 3.10) and pick the one corresponding to its 99th percentile, namely
0.531 rad (30.42°).

(a) Distribution of the angle formed by thelocal normal and the z axis on a flat surface.The vertical lines cut the distribution atthe 90th, 95th and 99th percentile of thedistribution.
(b) Distribution of the x and y components ofthe normal vectors on a flat surface. If thesurface is planar with white noise, the dis-tribution should be gaussian, as the one inthe picture. The colored circles represent the90th, 95th and 99th percentile of the distri-bution.

Figure 3.10: Distribution of the tilting angle of the estimated normals at a planar surface.
35



Method
3.3.2 Postprocessing

Once the candidate planar clusters RH = {Ri} have been extracted, we conduct apost-processing procedure to exclude false positives. An example of a false positive,can be a slightly tilted planar surfaces: the per-point normal vectors are almostvertical, but the cluster is not overall horizontal. Similarly, the upper face of asphere presents almost vertical normal vectors.To effectively detect sloped planar clusters from our final result, we compute theleast-squares plane fit πq of each cluster and enforce a threshold on the allowedoverall slope, which in this case can be much finer than θmax. Namely, we filter outthose point clusters which overall normal is tilted of more than 0.08 rad (5.0°) fromthe reference vertical vector ẑ (Figure 3.11).

(a) Pitch: 0 rad(0 °) (b) Pitch: −0.05 rad(−3.0 °) (c) Pitch: −0.07 rad(−4.0 °)
Figure 3.11: To test the post processing analysis, we progressively tilt the scene by addingsome pitch to the camera transform. We highlight in green the points that belong to planarclusters. When the tilting reaches about 4 degrees, almost no point in the original planarsurface is detected as planar.

To tackle the second case of false positives, we test the cluster curvature [28]:given the cluster Ri, the covariance matrix of the cluster is computed as in Equation3.2.
Ci = 1

K

KØ
j=1

(pi − p̂)T (pi − p̂) (3.2)
being p̂ the centroid of the points set. We let λ0, λ1, λ2 be the eigenvalues of Ci,such that 0 ≤ λ0 ≤ λ1 ≤ λ2. If the cluster is planar, we expect it to have a

36



Method
principal component decomposition such that the two principal components wouldexplain most of the cluster variance, therefore λ1 >> λ0 and λ2 >> λ0. Given thisprinciple, the curvature is computed as in Equation 3.3.

σ = λ0

λ0 + λ1 + λ2
(3.3)

We put an upper bound on the curvature of 0.02, i.e. only 2.0% of the clustervariability can be explained by the third principal component (the normal) of thecluster.
3.4 Integration with the Placement Planner

The set of horizontal regions RH , restricts the search space for the candidate place-ment positions from Vs to RH . Next, we integrate the perceived regions with theplanner in [9] and reviewed in Section 2.5.We provide a way to hierarchically split the placement regions, as required tobuild the Monte Carlo Search Tree. To do this, we use the Principal ComponentAnalysis to find the placement region principal axis and its centroid. We assigneach point to a different sub-region, according to their position w.r.t. the center andthe two principal axis of the region (Figure 3.12).

37



Method

Figure 3.12: Creation of children regions from an initial set of points. The points in theplot are the projection of the points in the space into the xy plane. Each color representsthe assignment of those points to a specific subregion. To subdivide the regions producedby the segmentation algorithm hierarchically, we use the Principal Component Analysis tofind the central point of the area and the two horizontal principal axes. Then, we consider alocal reference system centered in the mean position and with the axes found by PCA: eachpoint is assigned to one of the four child regions based on the sign of the local coordinatesin this new reference system.
The pose that is sampled in the solution space refers to a reference system thatis centered on one of the points in the base surface of the target object’s convexhull (Figure 3.13). To assess the support constraint, we verify that each of the othervertices in the placement face is in contact with some surface in the scene. To dothis, we perform a radius search for each of the vertices of the object on the originalinput point cloud. If all of them have a minimum amount of neighbors within a radius

r, we consider the placement to be stable.

Figure 3.13: Cubic object that has to be placed in the scene. The red points are checkedto assess the stability constraint. The arrows symbolize the object’s local reference system.
38



Method
The integration of the perception and placement planning module, allows thecomputation of a placement pose x̂o and a corresponding motion τ to place a knownobjects in a scene perceived through an RGB-D sensor. The pose satisfies theno-collision and stability constraint. Moreover, it maximizes the objective function

ξ(xo), i.e. is the lowest feasible placement.

39



Chapter 4

Results

In the following, we illustrate the result of the plane extraction process and place-ment computations in some placement scenarios of increasing difficulty. To evaluatethe computed placements, we manually reproduce them in the real scenario.
4.1 Placing on a Single Surface

To assess the performance of the pipeline, we first test if it is possible to computesimple placements like placing small boxes on a single object. Each supportingobject stands on a layer of boxes and in this phase we force the plane extractionmodule to ignore the boxes.
4.1.1 Toolbox

As first supporting object, we choose a rigid toolbox. The toolbox has an upperrigid surface of 15.0 cm ×40.0 cm and is slightly sloped on the side. We compute aplacement for a small carton box with a bottom face of 8.0 cm ×19.0 cm. Table 4.1shows the process of plane extraction. Table 4.2 shows the result of the obstaclevolume estimation applied to the content of the roller container (in red); the volume ofthe roller container (in grey) is known. Table 4.3 shows multiple planned placementposes and the reproduction of one of those in the real setup.
40



Results
Plane extractionPoint cloud Normal vectors

Clusters Planes

Table 4.1: Plane extraction process applied to a toolbox. In the upper-left corner theoriginal point cloud. In the upper-right corner the estimated normal vectors: the red onesare filtered out according to line 2 of Algorithm 6. In the bottom-left corner the remainingpoints are divided in clusters, each color corresponds to a new cluster. The bottom-rightcorner shows the cluster that pass the post-processing test.
Obstacles

Table 4.2: Obstacle estimation (in red). In grey the obstacle volume of the roller container,its pose and volume is known.
41



Results
PlanningPlanned placements Example Real placement

Table 4.3: Computed placement for a small box. The leftmost picture shows the footprintof the object in different computed placement poses. In the middle one of the computedplacements, on the right the reproduction of the placement.
4.1.2 Cans

As a second experiment, we use as support a package of 24 cans. Cans have circularplanar surfaces of 2.5 cm radius and are wrapped in a plastic film that is overallplanar. The size of the top layer of the can box is circa 38.0 cm ×29.0 cm. We plana placement for a box with a base of 26.0 cm ×20.5 cm. Table 4.5 shows the result ofthe obstacle volume estimation. Table 4.6 shows multiple planned placement posesand the reproduction of one of those in the real setup.

42



Results
Plane extractionPoint cloud Normal vectors

Clusters Planes

Table 4.4: Plane extraction process applied to a box of cans. In the upper-left corner theoriginal point cloud. In the upper-right corner the estimated normal vectors: the red onesare filtered out according to line 2 of Algorithm 6. In the bottom-left corner the remainingpoints are divided in clusters, each color corresponds to a new cluster. The bottom-rightcorner shows the cluster that pass the post-processing test: curved clusters between thepackages are discarded.
Obstacles

Table 4.5: Obstacle estimation (in red). In grey the obstacle volume of the roller container,its pose and volume is known.
43



Results
PlanningPlanned placements Example Real placement

Table 4.6: Computed placement for a box with a base of 26.0 cm ×20.5 cm. The leftmostpicture shows the footprint of the object in different computed placement poses. In the middleone of the computed placements, on the right the reproduction of the placement.
4.1.3 Bag of Pet Food

The next supporting surface that we use is a pet food bag. The bag is not rigid,therefore it has several local bumps and is overall curved. The size of the bagcan be approximated to be 42.0 cm ×26.0 cm. The sides of the bag are slightlycurved, therefore it is not possible to find placements that require having all thesupports on its most external sides. For this reason, it is not possible to find aplacement of the 26.0 cm ×20.5 cm side box. We compute placement poses for a boxof size 26.0 cm ×16.0 cm. Table 4.7 shows the result of plane extraction: the localbumps constitute small clusters at different heights. Table 4.8 shows the results ofobstacle volume estimation applied to the content of the roller container. Table 4.7illustrates multiple solutions found by the planning algorithm and the realization ofone of them.

44



Results
Plane extractionPoint cloud Normal vectors

Clusters Planes

Table 4.7: Plane extraction process applied to a the bag of pet-food. In the upper-leftcorner the original point cloud. In the upper-right corner the estimated normal vectors:the red ones are filtered out according to line 2 of Algorithm 6. In the bottom-left cornerthe remaining points are divided in clusters, each color corresponds to a new cluster. Thebottom-right corner shows the cluster that pass the post-processing test.
Obstacles

Table 4.8: Obstacle estimation (in red). In grey the obstacle volume of the roller container,its pose and volume is known.
45



Results
PlanningPlanned placements Example Real placement

Table 4.9: Planned and real placement. The object appears to be bigger in the realplacement scenario, due to perspective distortions.
4.1.4 Water Bottles

Lastly we use as supporting objects four packs of water bottles, the size of onepackage is approximately 15.0 cm ×21.0 cm. Water bottles are wrapped in a plasticfilm which is in fact overall almost planar. However, the plastic film is transparentand as a result it is hardly perceived by the sensor. Thus, only a small section ofthe top surface is detected as planar (Table 4.10). Nonetheless, it is possible tocompute multiple placements for a box of size 26.0 cm ×20.5 cm (Table 4.12).

46



Results
Plane extractionPoint cloud Normal vectors

Clusters Planes

Table 4.10: Plane extraction process applied to a water bottle package. In the upper-leftcorner the original point cloud. In the upper-right corner the estimated normal vectors:the red ones are filtered out according to line 2 of Algorithm 6. In the bottom-left cornerthe remaining points are divided in clusters, each color corresponds to a new cluster. Thebottom-right corner shows the cluster that pass the post-processing test. Almost all theclusters found by the algorithm do not pass the post-processing step, due to the high z-variation.
Obstacles

Table 4.11: Obstacle estimation (in red). In grey the obstacle volume of the roller container,its pose and volume is known.
47



Results
PlanningPlanned placements Example Real placement

Table 4.12: Placement for a box. On the left several proposed placement poses, in thecenter and right picture the realization of one of them. The box in the real scenario appearsto be bigger than the Planned one, due to perspective distortion.
4.2 Placing in Semi-filled Roller Containers

Next, we test the system on more complex scenes, namely roller-containers filledwith several objects. We use three different target objects: the package of waterbottles (base 18.0 cm ×24.0 cm), a box (base 26.0 cm ×20.5 cm), and a can package(base circa 40.0 cm ×27.0 cm). The objects are approximated with their boundingboxes.
4.2.1 Roller Container filled with Boxes

As first scenario, we choose a roller container filled with boxes. This first scenario iseasy, as the top surface of the boxes is planar. Table 4.13 illustrates the process ofthe plane extraction: the surfaces of the boxes are recognized as planar. The upperlayer is perceived as two different clusters due to a perceived local discontinuity.Table 4.14 illustrate the result of obstacle volume estimation. Tables 4.15-4.17 showsome planned placements for the water bottles, a box and the cans package.

48



Results
Plane extractionPoint cloud Normal vectors

Clusters Planes

Table 4.13: Plane extraction process applied to a roller container filled with boxes. In theupper-left corner the original point cloud. In the upper-right corner the estimated normalvectors: the red ones are filtered out according to line 2 of Algorithm 6. In the bottom-leftcorner the remaining points are divided in clusters, each color corresponds to a new cluster.The bottom-right corner shows the cluster that pass the post-processing test.
Obstacles

Table 4.14: Obstacle estimation (in red). In grey the obstacle volume of the roller container,its pose and volume is known.
49



Results
Planning - water bottlesPlanned placements Example Real placement

Table 4.15: Placement for a water bottle package. Placement for a water bottle package.On the left, the footprint of the bounding box of the package is plotted on the scene inseveral planned poses. The right image is the manual reproduction of the placement in thecentral image.
Planning - boxPlanned placements Example Real placement

Table 4.16: Computed placement for a box (26.0 cm ×20.5). On the left, the footprint of thebounding box of the package is plotted on the scene in several planned poses. The rightimage is the manual reproduction of the placement in the central image.
Planning - cansPlanned placements Example Real placement

Table 4.17: Computed placement for a package of cans. On the left, the footprint of thebounding box of the package is plotted on the scene in several planned poses. The rightimage is the manual reproduction of the placement in the central image.
50



Results
4.2.2 Semi-filled Roller Container

In the next scenario, we fill up the roller container with a combination of cans, boxesand pet food. We compute a placement for the water bottles (Table 4.20) and thebox (Table 4.21). No placement is found for the cans.
Plane extractionPoint cloud Normal vectors

Clusters Planes

Table 4.18: Plane extraction process applied to a roller container filled with differentobjects: two stacks of beverage cans, a bag of pet food and a carton box. In the upper-leftcorner the original point cloud. In the upper-right corner the estimated normal vectors:the red ones are filtered out according to line 2 of Algorithm 6. In the bottom-left cornerthe remaining points are divided in clusters, each color corresponds to a new cluster. Thebottom-right corner shows the cluster that pass the post-processing test. The sloped clusterat the rightmost edge of the pet-food bag is discarded, as well as the clusters that separatethe two columns of cans in the lower layer.
51



Results
Obstacles

Table 4.19: Obstacle estimation (in red). In grey the obstacle volume of the roller container,its pose and volume is known.
Planning - water bottlesPlanned placements Example Real placement

Table 4.20: Placement for a water bottle package. On the left, the footprint of the boundingbox of the package is plotted on the scene in several planned poses. The right image is themanual reproduction of the placement in the central image.
Planning - boxPlanned placements Example Real placement

Table 4.21: Placement for a box. Placement for a box. On the left, the footprint of thebounding box of the package is plotted on the scene in several planned poses. The rightimage is the manual reproduction of the placement in the central image.
52



Results
4.2.3 Clutter

Finally, we create a highly cluttered scene with several objects (Table 4.22-4.23)and we show that it is still possible to find a placement for the box (Table 4.24). Theperception module is able to find planar clusters in this highly cluttered an doisyenvironment: namely it detects the top surface of the bag of pet food, of the toolbox,of the can package and of the box in the bottom left corner.
Plane extractionPoint cloud Normal vectors

Clusters Planes

Table 4.22: Plane extraction process applied to a roller container filled with differentobjects. In the upper-left corner the original point cloud. In the upper-right corner theestimated normal vectors: the red ones are filtered out according to line 2 of Algorithm 6. Inthe bottom-left corner the remaining points are divided in clusters, each color correspondsto a new cluster. The bottom-right corner shows the cluster that pass the post-processingtest.

53



Results
Obstacles

Table 4.23: Obstacle estimation (in red). In grey the obstacle volume of the roller container,its pose and volume is known.
Planning - boxPlanned placements Example Real placement

Table 4.24: Placement for a box. On the left several proposed placement poses, in thecenter and right picture the realization of one of them.

54



Chapter 5

Discussion

In this section, we discuss the results of the experiments in Chapter 5 and highlightthe main findings and limitations.
5.1 Plane Extraction

The experiments in Section 4 show that the plane extraction algorithm recognizesplanar clusters and discards surfaces that are not planar for the different objectsthat we have employed. A meaningful case is the last example in Table 4.22. Thescene is highly cluttered and the data is particularly noisy, nonetheless the planeextraction algorithm succeeds in finding planar surfaces on the bag of pet food, thetoolbox, the cans and the boxes. Moreover it does discard the surfaces belonging tothe ball and the toy car in the roller-container.In order to be successful, the plane extraction algorithm has to be able to tacklethe source of erroneous depth estimation presented in Section 3.1. In table 4.1 and4.13 it is possible to observe the local error in depth estimate at homogeneouslycolored surfaces. From these examples it is clear that noise is not spatially indepen-dent, and a wrong estimate at pixel i, j affects the estimates at the nearby pixels aswell. Therefore planar surfaces present several local bumps. In both cases in Tables4.1 and 4.13 the extraction algorithm does recognize the surfaces as planar, andlocal bumps are integrated in bigger overall-planar clusters. Two different clusters
55



Discussion
are created on the higher layer of boxes in Table 4.13. This is due to the fact thatnone of the pixels on the border between the two clusters are perceived as beingat similar heights, hence there is no evidence that the two clusters are connectedaccording to proximity condition in line 4 of Algorithm 6.A challenging case is the case of soft surfaces like the bag of pet-food in Table4.7. This surface is not rigid, hence it has small local deformations and it is slightlycurved on the sides. The algorithm is able to assign most points in the surface to thesame planar cluster. Few small clusters that do not satisfy the proximity condition(line 4 of Algorithm 6) are isolated from the main cluster.Another very challenging scenario is the case of water bottles. The depth estimatein case of translucent materials like the plastic film that wraps the water bottles(Table 4.10) is affected by the light conditions. In most of the cases the sensorperceives correctly the center of the bottles cups. The data in the space between thecups measures the depth of the bottles, rather than the plastic film. In the examplein Table 4.10, the package in the upper-right corner of the image is affected less bylight reflection, and the algorithm manages to find the planar cluster that connectsthe bottles cups.Overall the results demonstrate that the plane extraction algorithm is able totackle small local deformations, both in the case of sensor noise, or partially planarsurfaces as in the case of non-rigid bags. Some sensor limitations such as consistentnoise or significant deformations (as the rightmost edge of the package of cans inTable 4.4) cannot be mitigated in absence of prior knowledge about the objects inthe scene.
5.2 Integration with the Placement Planner

The integration with the placement planner shows promising results. The com-puted placements do satisfy the reachability, no-collision and support constraintsof the problem. No faulty placement were ever computed, and the simple obstacleestimation strategy used seems to be sufficient to guarantee feasible placements.
56



Discussion
It is always possible to compute placements where enough planar space is avail-able on the scene. Moreover, it is possible to compute placements even in the casethat very small planar clusters are found, as the in the experiment with bottles (Table4.10).

57



Chapter 6

Conclusion

In this thesis, we addressed the problem of automating the placement of knownobjects in an unknown and unstructured environment such as partially-filled con-tainers. To do this, we used an RGB-D sensor to perceive the working scene, andwe extracted planar surfaces as candidate placement regions. Then, we made useof the algorithm developed in [9] to find a suitable placement pose.Under the hypothesis of dealing with rigid objects and a static environment,our experiments show that given enough space, the overall system succeeds to findstable placements for simple objects like boxes. Overall, this work constitutes a steptowards the automation of placement tasks.
6.1 Possible extensions

To develop this work we relied on some simplification. For example, we assume thatthe pose and volume of the target container is known. In some placement scenarios,this is not the case, and a container-localization step must be included.Moreover, we assume that a model of the object that has to be placed is available,or we approximate box-shaped objects with their bounding boxes when needed. Ifa model of the object is not available, an extension could be to estimate the objectshape from perceived data. https://doi.org/10.1007/s11042-018-6912-6Additionally, we consider a region of interest at the center of the camera field of
58



Conclusion
view, which allow us to make use of a simple obstacles volume estimation method. Ifa wider area has to be considered, a more sophisticated volume estimation methodhas to be applied, possibly integrated over time [13].A further improvement could be to design a placement objective function thataims at producing placements that are favorable to the goal of filling up the rollercontainer tightly. Alternatively, such a mapping could be learnt empirically, possiblythrough synthetic data, similarly to what was done in [48] or [49], where the authorsuse physics simulators to learn robust grasps from RGB-D images.

59



Bibliography

[1] Y. Lu, «Industry 4.0: A survey on technologies, applications and open researchissues», Journal of Industrial Information Integration, vol. 6, pp. 1–10, Jun. 2017,issn: 2452414X. doi: 10.1016/j.jii.2017.04.005. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S2452414X17300043(visited on 01/24/2020).[2] T. Ketelaars and E. van de Plassche, «An Industrial Solution to AutomatedItem Picking», in Automation in Warehouse Development, R. Hamberg andJ. Verriet, Eds., London: Springer London, 2012, pp. 105–115, isbn: 978-0-85729-968-0. doi: 10.1007/978- 0- 85729- 968- 0_8. [Online]. Available:
https://doi.org/10.1007/978-0-85729-968-0_8 (visited on 09/06/2019).[3] Robot Challenges - ICRA 2015, http://icra2015.org/conference/robot-

challenges. (visited on 01/25/2020).[4] H.-Y. Kuo, H.-R. Su, S.-H. Lai, and C.-C. Wu, «3D object detection and pose es-timation from depth image for robotic bin picking», in 2014 IEEE InternationalConference on Automation Science and Engineering (CASE), Taipei: IEEE,Aug. 2014, pp. 1264–1269, isbn: 978-1-4799-5283-0 978-1-4799-5282-3. doi:
10.1109/CoASE.2014.6899489. [Online]. Available: http://ieeexplore.

ieee.org/document/6899489/ (visited on 03/23/2020).[5] R. D. Singh, A. Mittal, and R. K. Bhatia, «3D convolutional neural networkfor object recognition: A review», Multimedia Tools and Applications, vol. 78,no. 12, pp. 15 951–15 995, Jun. 2019, issn: 1380-7501, 1573-7721. doi: 10.

60

https://doi.org/10.1016/j.jii.2017.04.005
https://linkinghub.elsevier.com/retrieve/pii/S2452414X17300043
https://doi.org/10.1007/978-0-85729-968-0_8
https://doi.org/10.1007/978-0-85729-968-0_8
http://icra2015.org/conference/robot-challenges
http://icra2015.org/conference/robot-challenges
https://doi.org/10.1109/CoASE.2014.6899489
http://ieeexplore.ieee.org/document/6899489/
http://ieeexplore.ieee.org/document/6899489/
https://doi.org/10.1007/s11042-018-6912-6
https://doi.org/10.1007/s11042-018-6912-6


BIBLIOGRAPHY
1007/s11042-018-6912-6. [Online]. Available: http://link.springer.

com/10.1007/s11042-018-6912-6 (visited on 09/19/2019).[6] A. Sahbani, S. El-Khoury, and P. Bidaud, «An overview of 3D object grasp syn-thesis algorithms», Robotics and Autonomous Systems, Autonomous Grasping,vol. 60, no. 3, pp. 326–336, Mar. 1, 2012, issn: 0921-8890. doi: 10.1016/j.

robot.2011.07.016. [Online]. Available: http://www.sciencedirect.com/

science/article/pii/S0921889011001485 (visited on 02/27/2020).[7] J. Bohg, A. Morales, T. Asfour, and D. Kragic, «Data-Driven Grasp Synthesis- A Survey», IEEE Transactions on Robotics, vol. 30, no. 2, pp. 289–309, Apr.2014, issn: 1552-3098, 1941-0468. doi: 10.1109/TRO.2013.2289018. arXiv:
1309.2660. [Online]. Available: http://arxiv.org/abs/1309.2660 (visitedon 02/27/2020).[8] G. Du, K. Wang, and S. Lian, «Vision-Based Robotic Grasping from Object Lo-calization, Pose Estimation, Grasp Detection to Motion Planning: A Review»,arXiv:1905.06658, May 16, 2019. arXiv: 1905.06658 [cs]. [Online]. Available:
http://arxiv.org/abs/1905.06658 (visited on 02/27/2020).[9] J. A. Haustein, K. Hang, J. Stork, and D. Kragic, «Object Placement Planningand optimization for Robot Manipulators», arXiv:1907.02555, pp. 7417–7424,2020. doi: 10.1109/iros40897.2019.8967732. arXiv: 1907.02555.[10] S. Thrun, «Probabilistic robotics», Communications of the ACM, vol. 45, no. 3,pp. 221–242, Mar. 1, 2002, issn: 00010782. doi: 10.1145/504729.504754.[Online]. Available: http://portal.acm.org/citation.cfm?doid=504729.

504754 (visited on 03/23/2020).[11] R. Hadsell, J. A. Bagnell, D. F. Huber, and M. Hebert, «Accurate rough terrainestimation with space-carving kernels.», in Robotics: Science and Systems,vol. 2009, 2009.[12] R. Triebel, P. Pfaff, and W. Burgard, «Multi-Level Surface Maps for OutdoorTerrain Mapping and Loop Closing», in 2006 IEEE/RSJ International Con-ference on Intelligent Robots and Systems, Oct. 2006, pp. 2276–2282. doi:
10.1109/IROS.2006.282632. 61

https://doi.org/10.1007/s11042-018-6912-6
https://doi.org/10.1007/s11042-018-6912-6
http://link.springer.com/10.1007/s11042-018-6912-6
http://link.springer.com/10.1007/s11042-018-6912-6
https://doi.org/10.1016/j.robot.2011.07.016
https://doi.org/10.1016/j.robot.2011.07.016
http://www.sciencedirect.com/science/article/pii/S0921889011001485
http://www.sciencedirect.com/science/article/pii/S0921889011001485
https://doi.org/10.1109/TRO.2013.2289018
https://arxiv.org/abs/1309.2660
http://arxiv.org/abs/1309.2660
https://arxiv.org/abs/1905.06658
http://arxiv.org/abs/1905.06658
https://doi.org/10.1109/iros40897.2019.8967732
https://arxiv.org/abs/1907.02555
https://doi.org/10.1145/504729.504754
http://portal.acm.org/citation.cfm?doid=504729.504754
http://portal.acm.org/citation.cfm?doid=504729.504754
https://doi.org/10.1109/IROS.2006.282632


BIBLIOGRAPHY
[13] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, «Oc-toMap: An efficient probabilistic 3D mapping framework based on octrees»,Autonomous Robots, vol. 34, no. 3, pp. 189–206, Apr. 1, 2013, issn: 1573-7527. doi: 10.1007/s10514-012-9321-0. [Online]. Available: https://doi.

org/10.1007/s10514-012-9321-0 (visited on 12/02/2019).[14] Wikipedia, Octree, https://en.wikipedia.org/wiki/Octree#/media/

File:Octree2.svg. (visited on 01/25/2020).[15] J. Baumgartl, T. Werner, P. Kaminsky, and D. Henrich, «A fast, GPU-based ge-ometrical placement planner for unknown sensor-modelled objects and place-ment areas», in 2014 IEEE International Conference on Robotics and Au-tomation (ICRA), Hong Kong, China: IEEE, May 2014, pp. 1552–1559, isbn:978-1-4799-3685-4. doi: 10.1109/ICRA.2014.6907058. [Online]. Available:
http://ieeexplore.ieee.org/document/6907058/ (visited on 09/19/2019).[16] K. Harada, T. Tsuji, K. Nagata, N. Yamanobe, and H. Onda, «Validating anObject Placement Planner for Robotic Pick-and-Place Tasks», Robotics andAutonomous Systems, vol. 62, no. 10, pp. 1463–1477, Oct. 1, 2014, issn: 0921-8890. doi: 10 . 1016 / j . robot . 2014 . 05 . 014. [Online]. Available: http :

//www.sciencedirect.com/science/article/pii/S0921889014001092(visited on 08/13/2019).[17] M. J. Schuster, J. Okerman, H. Nguyen, J. M. Rehg, and C. C. Kemp, «PerceivingClutter and Surfaces for Object Placement in Indoor Environments», in 201010th IEEE-RAS International Conference on Humanoid Robots, Dec. 2010,pp. 152–159. doi: 10.1109/ICHR.2010.5686328.[18] Y. Jiang, M. Lim, C. Zheng, and A. Saxena, «Learning to Place New Objectsin a Scene», arXiv:1202.1694, Feb. 8, 2012. arXiv: 1202.1694 [cs]. [Online].Available: http://arxiv.org/abs/1202.1694 (visited on 08/17/2019).[19] D. Holz, S. Holzer, R. B. Rusu, and S. Behnke, «Real-Time Plane SegmentationUsing RGB-D Cameras», in RoboCup 2011: Robot Soccer World Cup XV, T.Röfer, N. M. Mayer, J. Savage, and U. Saranlı, Eds., ser. Lecture Notes in
62

https://doi.org/10.1007/s10514-012-9321-0
https://doi.org/10.1007/s10514-012-9321-0
https://doi.org/10.1007/s10514-012-9321-0
https://en.wikipedia.org/wiki/Octree#/media/File:Octree2.svg
https://en.wikipedia.org/wiki/Octree#/media/File:Octree2.svg
https://doi.org/10.1109/ICRA.2014.6907058
http://ieeexplore.ieee.org/document/6907058/
https://doi.org/10.1016/j.robot.2014.05.014
http://www.sciencedirect.com/science/article/pii/S0921889014001092
http://www.sciencedirect.com/science/article/pii/S0921889014001092
https://doi.org/10.1109/ICHR.2010.5686328
https://arxiv.org/abs/1202.1694
http://arxiv.org/abs/1202.1694


BIBLIOGRAPHY
Computer Science, Springer Berlin Heidelberg, 2012, pp. 306–317, isbn: 978-3-642-32060-6.[20] A.-V. Vo, L. Truong-Hong, D. F. Laefer, and M. Bertolotto, «Octree-Based Re-gion Growing for Point Cloud Segmentation», ISPRS Journal of Photogram-metry and Remote Sensing, vol. 104, pp. 88–100, Jun. 1, 2015, issn: 0924-2716. doi: 10.1016/j.isprsjprs.2015.01.011. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S0924271615000283(visited on 08/17/2019).[21] Z. Dong, Y. Gao, J. Zhang, Y. Yan, X. Wang, and F. Chen, «HoPE: Horizon-tal Plane Extractor for Cluttered 3D Scenes», Sensors (Switzerland), vol. 18,no. 10, 2018. doi: 10.3390/s18103214.[22] X. Wang, L. Zou, X. Shen, Y. Ren, and Y. Qin, «A region-growing approach forautomatic outcrop fracture extraction from a three-dimensional point cloud»,Computers & Geosciences, vol. 99, pp. 100–106, Feb. 2017, issn: 00983004.doi: 10.1016/j.cageo.2016.11.002. [Online]. Available: https://linkinghub.

elsevier.com/retrieve/pii/S0098300416306471 (visited on 09/13/2019).[23] Y. Fan, M. Wang, N. Geng, D. He, J. Chang, and J. J. Zhang, «A self-adaptivesegmentation method for a point cloud», The Visual Computer, vol. 34, no. 5,pp. 659–673, May 2018, issn: 0178-2789, 1432-2315. doi: 10.1007/s00371-

017-1405-6. [Online]. Available: http://link.springer.com/10.1007/

s00371-017-1405-6 (visited on 09/13/2019).[24] S. Filin and N. Pfeifer, «Segmentation of airborne laser scanning data using aslope adaptive neighborhood», ISPRS Journal of Photogrammetry and RemoteSensing, vol. 60, no. 2, pp. 71–80, Apr. 2006, issn: 09242716. doi: 10.1016/

j . isprsjprs . 2005 . 10 . 005. [Online]. Available: https : / / linkinghub .

elsevier.com/retrieve/pii/S0924271605000638 (visited on 09/16/2019).[25] S. Holzer, R. B. Rusu, M. Dixon, S. Gedikli, and N. Navab, «Adaptive neigh-borhood selection for real-time surface normal estimation from organized pointcloud data using integral images», in 2012 IEEE/RSJ International Conferenceon Intelligent Robots and Systems, Vilamoura-Algarve, Portugal: IEEE, Oct.
63

https://doi.org/10.1016/j.isprsjprs.2015.01.011
http://www.sciencedirect.com/science/article/pii/S0924271615000283
http://www.sciencedirect.com/science/article/pii/S0924271615000283
https://doi.org/10.3390/s18103214
https://doi.org/10.1016/j.cageo.2016.11.002
https://linkinghub.elsevier.com/retrieve/pii/S0098300416306471
https://linkinghub.elsevier.com/retrieve/pii/S0098300416306471
https://doi.org/10.1007/s00371-017-1405-6
https://doi.org/10.1007/s00371-017-1405-6
http://link.springer.com/10.1007/s00371-017-1405-6
http://link.springer.com/10.1007/s00371-017-1405-6
https://doi.org/10.1016/j.isprsjprs.2005.10.005
https://doi.org/10.1016/j.isprsjprs.2005.10.005
https://linkinghub.elsevier.com/retrieve/pii/S0924271605000638
https://linkinghub.elsevier.com/retrieve/pii/S0924271605000638


BIBLIOGRAPHY
2012, pp. 2684–2689, isbn: 978-1-4673-1736-8 978-1-4673-1737-5 978-1-4673-1735-1. doi: 10.1109/IROS.2012.6385999. [Online]. Available: http:

//ieeexplore.ieee.org/document/6385999/ (visited on 01/29/2020).[26] J. Berkmann and T. Caelli, «Computation of surface geometry and segmentationusing covariance techniques», IEEE Transactions on Pattern Analysis and Ma-chine Intelligence, vol. 16, no. 11, pp. 1114–1116, Nov./1994, issn: 01628828.doi: 10.1109/34.334391. [Online]. Available: http://ieeexplore.ieee.

org/document/334391/ (visited on 09/13/2019).[27] T. Rabbani, F. Van Den Heuvel, and G. Vosselman, «Segmentation of PointClouds Using Smoothness Constraint», International Archives of Photogram-metry, Remote Sensing and Spatial Information Sciences, vol. 36, no. 5, pp. 248–253, 2006.[28] M. Pauly, M. Gross, and L. Kobbelt, «Efficient simplification of point-sampledsurfaces», in IEEE Visualization, 2002. VIS 2002., Boston, MA, USA: IEEE,2002, pp. 163–170, isbn: 978-0-7803-7498-0. doi: 10.1109/VISUAL.2002.

1183771. [Online]. Available: http://ieeexplore.ieee.org/document/

1183771/ (visited on 09/13/2019).[29] J. M. Biosca and J. L. Lerma, «Unsupervised robust planar segmentation ofterrestrial laser scanner point clouds based on fuzzy clustering methods», IS-PRS Journal of Photogrammetry and Remote Sensing, vol. 63, no. 1, pp. 84–98, Jan. 2008, issn: 09242716. doi: 10.1016/j.isprsjprs.2007.07.010.[Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/

S0924271607000809 (visited on 09/17/2019).[30] A. Rodriguez and A. Laio, «Clustering by fast search and find of density peaks»,Science, vol. 344, no. 6191, pp. 1492–1496, Jun. 27, 2014, issn: 0036-8075,1095-9203. doi: 10.1126/science.1242072. pmid: 24970081. [Online]. Avail-able: http://science.sciencemag.org/content/344/6191/1492 (visitedon 09/15/2019).[31] Y. Ge, H. Tang, D. Xia, L. Wang, B. Zhao, J. W. Teaway, H. Chen, and T.Zhou, «Automated measurements of discontinuity geometric properties from a
64

https://doi.org/10.1109/IROS.2012.6385999
http://ieeexplore.ieee.org/document/6385999/
http://ieeexplore.ieee.org/document/6385999/
https://doi.org/10.1109/34.334391
http://ieeexplore.ieee.org/document/334391/
http://ieeexplore.ieee.org/document/334391/
https://doi.org/10.1109/VISUAL.2002.1183771
https://doi.org/10.1109/VISUAL.2002.1183771
http://ieeexplore.ieee.org/document/1183771/
http://ieeexplore.ieee.org/document/1183771/
https://doi.org/10.1016/j.isprsjprs.2007.07.010
https://linkinghub.elsevier.com/retrieve/pii/S0924271607000809
https://linkinghub.elsevier.com/retrieve/pii/S0924271607000809
https://doi.org/10.1126/science.1242072
24970081
http://science.sciencemag.org/content/344/6191/1492


BIBLIOGRAPHY
3D-point cloud based on a modified region growing algorithm», EngineeringGeology, vol. 242, pp. 44–54, Aug. 2018, issn: 00137952. doi: 10.1016/j.

enggeo.2018.05.007. [Online]. Available: https://linkinghub.elsevier.

com/retrieve/pii/S0013795217317477 (visited on 09/13/2019).[32] A. Nguyen and B. Le, «3D Point Cloud Segmentation: A Survey», in 20136th IEEE Conference on Robotics, Automation and Mechatronics (RAM), Nov.2013, pp. 225–230. doi: 10.1109/RAM.2013.6758588.[33] P. V. C. Hough, «Method and Means for Recognizing Complex Patterns», U.S.Patent 3069654A, Dec. 18, 1962. [Online]. Available: https : / / patents .

google.com/patent/US3069654A/en (visited on 09/17/2019).[34] D. Borrmann, J. Elseberg, K. Lingemann, and A. Nüchter, «The 3D HoughTransform for plane detection in point clouds: A review and a new accumulatordesign», 3D Research, vol. 2, no. 2, p. 3, Jun. 2011, issn: 2092-6731. doi:
10.1007/3DRes.02(2011)3. [Online]. Available: http://link.springer.

com/10.1007/3DRes.02(2011)3 (visited on 09/16/2019).[35] R. Hulik, M. Spanel, P. Smrz, and Z. Materna, «Continuous Plane Detec-tion in Point-Cloud Data Based on 3D Hough Transform», Journal of VisualCommunication and Image Representation, Visual Understanding and Appli-cations with RGB-D Cameras, vol. 25, no. 1, pp. 86–97, Jan. 1, 2014, issn:1047-3203. doi: 10.1016/j.jvcir.2013.04.001. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S104732031300062X(visited on 09/03/2019).[36] X. Leng, J. Xiao, and Y. Wang, «A Multi-Scale Plane-Detection Method Basedon the Hough Transform and Region Growing», Photogrammetric Record, vol. 31,no. 154, pp. 166–192, 2016. doi: 10.1111/phor.12145.[37] M. A. Fischler and R. C. Bolles, «Random sample consensus: A paradigm formodel fitting with applications to image analysis and automated cartogra-phy», Communications of the ACM, vol. 24, no. 6, pp. 381–395, Jun. 1, 1981,issn: 00010782. doi: 10.1145/358669.358692. [Online]. Available: http:

65

https://doi.org/10.1016/j.enggeo.2018.05.007
https://doi.org/10.1016/j.enggeo.2018.05.007
https://linkinghub.elsevier.com/retrieve/pii/S0013795217317477
https://linkinghub.elsevier.com/retrieve/pii/S0013795217317477
https://doi.org/10.1109/RAM.2013.6758588
https://patents.google.com/patent/US3069654A/en
https://patents.google.com/patent/US3069654A/en
https://doi.org/10.1007/3DRes.02(2011)3
http://link.springer.com/10.1007/3DRes.02(2011)3
http://link.springer.com/10.1007/3DRes.02(2011)3
https://doi.org/10.1016/j.jvcir.2013.04.001
http://www.sciencedirect.com/science/article/pii/S104732031300062X
http://www.sciencedirect.com/science/article/pii/S104732031300062X
https://doi.org/10.1111/phor.12145
https://doi.org/10.1145/358669.358692
http://portal.acm.org/citation.cfm?doid=358669.358692
http://portal.acm.org/citation.cfm?doid=358669.358692


BIBLIOGRAPHY
/ / portal . acm . org / citation . cfm ? doid = 358669 . 358692 (visited on09/17/2019).[38] R. Schnabel, R. Wahl, and R. Klein, «Efficient RANSAC for Point-Cloud ShapeDetection», Comput. Graph. Forum, vol. 26, pp. 214–226, 2007. doi: 10.1111/

j.1467-8659.2007.01016.x.[39] P. Torr and A. Zisserman, «MLESAC: A New Robust Estimator with Applica-tion to Estimating Image Geometry», Computer Vision and Image Understand-ing, vol. 78, no. 1, pp. 138–156, Apr. 2000, issn: 10773142. doi: 10.1006/

cviu.1999.0832. [Online]. Available: https://linkinghub.elsevier.com/

retrieve/pii/S1077314299908329 (visited on 09/18/2019).[40] H. Fu, D. Cohen-or, G. Dror, and A. Sheffer, «Upright Orientation of Man-MadeObjects», ACM Trans. Graphics, pp. 1–7, 2008.[41] Depth Camera D435, https://www.intelrealsense.com/depth-camera-

d435/. (visited on 01/27/2020).[42] Stereo depth cameras for mobile phones, https://dev.intelrealsense.

com/docs/stereo-depth-cameras-for-phones. (visited on 02/24/2020).[43] Projectors for D400 Series Depth Cameras, https://dev.intelrealsense.

com/docs/projectors. (visited on 01/28/2020).[44] I. RealSense™, Intel® RealSense™ SDK 2.0, https://github.com/IntelRealSense/

librealsense. (visited on 02/24/2020).[45] Camera Calibration and 3D Reconstruction — OpenCV 2.4.13.7 Documenta-tion, https://docs.opencv.org/2.4/modules/calib3d/doc/camera_

calibration_and_3d_reconstruction.html. (visited on 02/24/2020).[46] Point Cloud Library (PCL): PCL API Documentation, http://docs.pointclouds.

org/1.8.1/index.html. (visited on 09/10/2019).[47] J. L. Bentley, «Multidimensional binary search trees used for associative search-ing», Communications of the ACM, vol. 18, no. 9, pp. 509–517, Sep. 1, 1975,issn: 00010782. doi: 10.1145/361002.361007. [Online]. Available: http:

66

http://portal.acm.org/citation.cfm?doid=358669.358692
http://portal.acm.org/citation.cfm?doid=358669.358692
https://doi.org/10.1111/j.1467-8659.2007.01016.x
https://doi.org/10.1111/j.1467-8659.2007.01016.x
https://doi.org/10.1006/cviu.1999.0832
https://doi.org/10.1006/cviu.1999.0832
https://linkinghub.elsevier.com/retrieve/pii/S1077314299908329
https://linkinghub.elsevier.com/retrieve/pii/S1077314299908329
https://www.intelrealsense.com/depth-camera-d435/
https://www.intelrealsense.com/depth-camera-d435/
https://dev.intelrealsense.com/docs/stereo-depth-cameras-for-phones
https://dev.intelrealsense.com/docs/stereo-depth-cameras-for-phones
https://dev.intelrealsense.com/docs/projectors
https://dev.intelrealsense.com/docs/projectors
https://github.com/IntelRealSense/librealsense
https://github.com/IntelRealSense/librealsense
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
http://docs.pointclouds.org/1.8.1/index.html
http://docs.pointclouds.org/1.8.1/index.html
https://doi.org/10.1145/361002.361007
http://portal.acm.org/citation.cfm?doid=361002.361007
http://portal.acm.org/citation.cfm?doid=361002.361007


BIBLIOGRAPHY
/ / portal . acm . org / citation . cfm ? doid = 361002 . 361007 (visited on01/29/2020).[48] E. Johns, S. Leutenegger, and A. J. Davison, «Deep Learning a Grasp Func-tion for Grasping under Gripper Pose Uncertainty», in 2016 IEEE/RSJ In-ternational Conference on Intelligent Robots and Systems (IROS), Oct. 2016,pp. 4461–4468. doi: 10.1109/IROS.2016.7759657.[49] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea, and K.Goldberg, «Dex-Net 2.0: Deep Learning to Plan Robust Grasps with SyntheticPoint Clouds and Analytic Grasp Metrics», Mar. 27, 2017. arXiv: 1703.09312

[cs]. [Online]. Available: http://arxiv.org/abs/1703.09312 (visited on09/24/2019).

67

http://portal.acm.org/citation.cfm?doid=361002.361007
http://portal.acm.org/citation.cfm?doid=361002.361007
https://doi.org/10.1109/IROS.2016.7759657
https://arxiv.org/abs/1703.09312
https://arxiv.org/abs/1703.09312
http://arxiv.org/abs/1703.09312

	Introduction
	Problem Statement
	Scope and Limitations

	Outline

	Related Work
	Obstacle Volume Estimation
	Placement Stability
	Plane Detection in Point Clouds
	Attribute-based Methods
	Model-based Methods

	Placement Quality
	Placement Search Space Exploration

	Method
	Input Data
	The Sensor
	Data Format
	Preprocessing

	Obstacle Volume Estimation
	Horizontal Regions Extraction
	Normal Vectors Estimation
	Postprocessing

	Integration with the Placement Planner

	Results
	Placing on a Single Surface
	Toolbox
	Cans
	Bag of Pet Food
	Water Bottles

	Placing in Semi-filled Roller Containers
	Roller Container filled with Boxes
	Semi-filled Roller Container
	Clutter


	Discussion
	Plane Extraction
	Integration with the Placement Planner

	Conclusion
	Possible extensions

	Bibliography

