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Abstract

Deployment of Artificial Intelligence for understanding clinical notes in the healthcare sector is a crucial

step to extract meaningful phrases based on diseases. Electronic Health Records (EHR) are stored in the

health care system in an unstructured and event associated way. Public clinical records can be used for

billing, monitoring and insurance purpose. These clinical notes contain abbreviations, acronyms, and a

non-uniform dictionary. Various Machine learning models are used with different approaches to under-

stand these notes, these models are evaluated in various criteria based on datasets. These techniques

differed mainly in pre-processing and code assignments as well as architecture for reading long medical

documents.

In this thesis work, we propose a layered model of Convolution Neural Networks with pre-trained

embeddings. This architecture uses multiple dilation layers with a label-specific dot-based attention

mechanism. We have extracted the embeddings from Common Crawl GloVe (Global Vector). The archi-

tecture of the model is designed to calculate attention to words and their context. The model is trained

on MIMIC-III data set labeled with the ICD-9-CM hierarchy.

This research is helpful in highlighting and perceiving useful information from medical reports to

a physician, this step will apparently increase treatment quality and support administrative tasks. We

conclude with optimal results compared to state-of-the-art models, proposing certain limitations and

possible developments in the near future. It will address a significant role in health security for nations

using their public healthcare systems.
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CHAPTER 1

Introduction

1.1 Overview

Technological advancement can be observed in every field nowadays. Today, the empirical research and

experiments are results of common phenomena, some of them are unexplainable and different from

previous trends. New technological resolution to these phenomena is more adaptable and cognitive

now than they used to be decades ago. High speeding processing, memory performance and electronic

bottlenecks have been widening at a much higher speed. This solution produces space for high efficient

algorithms and artificial intelligence technologies to grow.

Human communications nowadays are more text-based because of social media. Natural language

can be utilized by many algorithms to extract meaningful understanding. The processing of this natu-

ral language for human-computer interaction is known as Natural language processing(NLP). It is used

to understand commonly used language and feed it to algorithms. The involvement of NLP is general-

ized into two main streams, Natural Language Understanding (NLU) and Natural Language Generation

(NLG).

After the advent of social media networks and verbal enriched platforms, the need for developing

text-based algorithms has given broader space. Every document presents a topic as a general context of

text. This may help to predict much about the situation. In theory, we can understand and even predict

human behavior using that information.

1.2 Health Records

The healthcare sector is one of the most important public care departments in any country. It monitors

national health and governs the public health of the coming generations. Electronic Health Records

(EHR) contains patient’s basic information like date of birth, height, weight, blood-pressure, blood-

sugar level and other suggestions to doctors [26]. In some cases when this history becomes chronic, we

have a lot of text related to prescriptions, medical procedures, and discharge suggestions. EHR frame-

works are supposed to keep track of information precisely in a timestamped manner. It helps to avoid

the use of any allergic drug or practice in the future. Substantially saving billions of dollars for any econ-

omy worldwide.

1



1.3. GOAL

With the rising popularity of clinical notes for text-processing, National central bodies started mak-

ing it safer for research purposes. HIPPA (Health Insurance Portability and Accountability Act) has al-

lowed medical institutes and research organizations to avail publicly de-identified patient records [45].

These notes contain no personal data and assign Subject-ID to every person for their relevant profile.

Moreover, these documents are labeled with the International Classification of Diseases (ICD) standard

to ensure the proper multi-label classification of several records and identify diseases [28].

1.3 Goal

The purpose of this work is to develop an architecture that can understand clinical notes and their ICD

labels. The available notes are very vague and contain a lot of unnecessary details. Data is processed

prior to feeding to a Machine Learning model. This research work in also an academic requirement of

masters degree program. This practice will facilitate in developing research-based knowledge of real-

world problems in a sophisticated manner. In this document, we will try to utilize the existing state-of-

the-art frameworks and develop deep five-layer dilation of neural networks with various embeddings

and stacking those embeddings in a supplementary fashion to cop with out-of-vocabulary works and to

tune the results and achieve more efficient framework.

The main objective is to predict labels based on text. Results will be described in several evaluation

criteria. The trained model will provide a huge application of automated disease labeling for physicians

based on available notes. It can further post-process the text and highlight the important phrases out of

it.

2



CHAPTER 2

Related Work

Text classification is a problem where we have a fixed set of classes and any given text is assigned to one

of these categories. In clinical documents, these classes are labeled, proclaiming a particular disease of

a patient. This can be done with numerous machine learning approaches.

2.1 Basic Definitions

Artificial Intelligence is an applicable field of machine learning where trained models are deployed to

make a decision and mimic human behavior based on their training. In the real world, we have our

experiences and prior knowledge of the particular areas to make a decision. Similarly, computers are

trained and tested on data-sets to make proper judgments. These Machine learning algorithms are usu-

ally categorized into three, supervised, unsupervised and reinforcement learning.

2.1.1 Supervised Learning

In this method, data has a described relation between ground truth output and input. This means data

is labeled: for example if we have several text-documents and we know their genre we can predict the

similar document relation for others. This approach is widely used in sentiment analysis, text classifi-

cation and spam filtering. Some most common algorithms are Support Vector Machine, Naïve-Based

and Nearest Neighbour for classification and Linear Regression, Decision Trees, Neural Networks for

Regression [47].

2.1.2 Unsupervised Learning

Contrary to supervised learning, data is unlabelled here which defines the main objective of arranging

data in structures and identify patterns. Unsupervised Machine Learning has three basic objectives,

dimensional reduction, Clustering, and Association. This technique is simply used in Sentence seg-

mentation, Machine Translation, and Dependency Parsing. Some common algorithms are fuzzy logic,

Bayesian Clustering, Hidden Markov Model, PCA (Principal Component Analysis and LDA (Linear Dis-

criminant Analysis) [47].

3



2.1. BASIC DEFINITIONS

2.1.3 Semi-Supervised Learning

Semi-supervised learning techniques are a blend of the previous two (supervised and unsupervised)

exhibited in the above section, this approach address problem where majority samples of the training

are unlabeled, even though only limited data points with label are available. Advantage of this is that in

several areas a huge amount of unlabeled data points is willingly available. Applications, where semi-

supervised learning is used, are nearly the same as supervised learning [47].

This type of learning is most beneficial when the labeled data points we have are not too common

or so exclusive to get then using that unlabeled available data points can raise the performance. It has a

common application of speech analysis and web-content classification.

2.1.4 Reinforcement Learning

This approach is widely used in robotics, record management, and finance where the prime goal is to

develop a policy. For instance: in games where a correct step gives some rewards and wrong movement

penalize the score. The Reinforcement Learning helps agents to learn by witnessing the available be-

haviors and their conduct by using only an evaluative response, called the return. The policy‘s ultimate

goal is to increase its long-term success. Few well-known algorithms are Q-learning, SARSA, Deep-Q

Network [48].

Figure 2.1: Description of Machine Learning types, taken from https://cleanpng.com/Rusbert

4



2.2. FUNDAMENTALS OF TEXT-PROCESSING

2.2 Fundamentals of Text-Processing

Text processing is a staging process, which requires filtering text according to an end-to-end pipeline.

This pipeline comprises tokenizing raw text, cleaning punctual and other signs, vectorizing text, apply-

ing the desired model for training, validating model and filtering desired results.

2.2.1 Tokenization

Tokenization is a very useful process before applying NLP methods. It is simply breaking a stream of

text into words, phrases or meaningful symbols knows as tokens. Many built-in methods are used for

splitting sentences of clinical notes based on spaces, punctuations, medical notations and symbols. It is

also known as lexical analysis.

2.2.2 Text Cleaning

After the text is split, Some most commonly repeated words which are known as stopwords are removed.

These tokens do not contain much contextual meaning and are often repeated for grammatical pur-

poses. Stemming and Lemmatization are known as text normalization techniques. Stemming removes

suffixes, prefixes and extra additions to words. These words are normally inflected with addition to the

present form of the verb.

Lemmatization is similar to stemming but it brings context to the words. So it links words with sim-

ilar meaning to one word. Text preprocessing includes both Stemming as well as Lemmatization. Many

times people find these two terms confusing. Some treat these two as same. Actually, lemmatization is

preferred over Stemming because lemmatization does a morphological analysis of the words.

2.2.3 Vectorizing Text

Machines can only understand and process numbers but texts. So these cleaned tokens need to be

converted in vectors of number in a reasonable way. This process of converting text into numbers is

known as vectorization or embeddings. There various techniques available for this task.

One-hot Encoding

Integer encoding or frequency-based encoding suffers from many problems such as long-tail or distri-

butional bias. Some token may appear very regularly whereas some may be less common. This creates

a need to present words in a one-dimensional vector. This form of vectorization takes categorical data

and return numerical binary data for it. Here (1) shows the presence and (0) poses the absence.

For Example:

“Black” ===> [1,0,0,0]

“White” ===> [0,1,0,0]

“RED” ===> [0,0,1,0]

“BLUE” ===> [0,0,0,1]

0ne-hot encoding eliminated the tokens distribution disparity and is most appropriate for shorter

documents with fewer repetitive words.

5



2.2. FUNDAMENTALS OF TEXT-PROCESSING

Bag-of Words Model

Bag-of-Words is the crudest model available in Natural Language Processing. It predicts the current

word based on context. This representation is formed based on the occurrence of words in a document.

It involves a vocabulary of knows words and the total count of the presence of known words. Order of

words or information is lost that’s why it is called a “bag”.

For Example: “It is the best time. It is the time when we have the technology.”

Here we have 9 unique words. We will make a frequency vector with one-position for the corre-

sponding word.

“It” ===>[ 1 0 0 0 0 0 0 0 0 ]

“is” ===>[ 0 1 0 0 0 0 0 0 0 ]

“the” ===>[ 0 0 1 0 0 0 0 0 0 ]

“best” ===>[ 0 0 0 1 0 0 0 0 0 ]

“time” ===>[ 0 0 0 0 1 0 0 0 0 ]

“when” ===>[ 0 0 0 0 0 1 0 0 0 ]

“we” ===>[ 0 0 0 0 0 0 1 0 0 ]

“have” ===>[ 0 0 0 0 0 0 0 1 0 ]

“technology” ===>[ 0 0 0 0 0 0 0 0 1]

Now to vectorize the sentence , we present the count on corresponding position in frequency vector.

“It is time when we have technology” ==> [ 1 1 0 0 1 1 1 1 1]

There comes a problem when corpus increases and we have a large vocabulary this results in a vector

with a higher dimension and a lot of zeros for less frequent words. It requires memory resources and

makes computation inefficient. A different approach of k-gram can be used in this case to combine

multiple common recurring words and use on position for them [15].

Term-Frequency (TF-IDF)

A concern with scoring word frequency is that in the text, highly common words tend to dominate (e.g.,

greater score), but may not contain as much "information content" as rare but perhaps domain-specific

words to the model. One solution is to re-scale the frequency of terms by how often they occur in a doc-

ument, in order to penalize the scores for commonly used words such as "the," which are also common

across all documents [46].

TF-IDF takes into account the relative frequency of tokens in the database in other corpus docu-

ments against their size. Term Frequency tf(t,d) is the number of times that term t occurs in document

d but there are many variants with different weights. Generally, term frequency is scaled logarithmically

to prevent bias caused by longer documents or terms that appear much more frequently with respect

to other terms: tf(t;d) = 1 + log(ft;d). Inverse document frequency idf(t,D) is the logarithmically scaled

inverse fraction of the documents that contain the word obtained by dividing the total number of docu-

ments (N) by the number of documents containing the term (nt), and then taking the logarithm of that

quotient log(N/nt).

6



2.2. FUNDAMENTALS OF TEXT-PROCESSING

The TF-IDF is the product of two statistics, term frequency, and inverse document frequency. There

are various ways of determining the exact values of both statistics.

T F − I DF (t ,d ,D) = t f (t ,d).i d f (t ,D) = log (N /nt ). (1 + log ( f t ,d))

The result of each term lies between [0,1] where term closer to 1 is more meaningful and vice versa.

For Example:

The cat and the dog play ===> [0.42 0.00 0.30 0.42 0.00 0.42 0.60]

Cosine Similarity

Counting the common words or Euclidean distance is the general approach used to compare related

documents based on the number of mutual words between the documents. Even if the number of com-

mon terms increases, this strategy will not work, but the document talks about different topics. The

"Cosine Similarity" technique is used to evaluate the resemblance between the documents to solve this

error. Mathematically θ, smaller the angle, higher is the similarity between the words.

cosθ =
−−→
a.b

||a||.||b||

Cosine similarity not only demonstrates vector similarity, but it also avoids word count frequency.

Figure 2.2: Word Similarity From Word2Vec Model

7



2.2. FUNDAMENTALS OF TEXT-PROCESSING

Distributed Models

Words embeddings are efficiently generally formed the pre-trained models for large corpus. It is a faster

approach that follows the property of cosine similarity. The most frequent problem in these models is

out-of-vocabulary words and the use of language in which similar distribution in language has a similar

meaning. These similarities are either paradigmatic like things which co-occur, bee and amp; honey,

light, and bulb. And syntagmatic similarities for things that are similar and used to extract some kind of

word from a vector. We will describe some of those models here such as Word2vec, GloVe and FastText.

Figure 2.2 shows how these models form the space for similar words.

Word2Vec Model

Natural language processing systems treat words as a tiny unit. NLP systems have constraints to calcu-

late this similarity especially when there are billions of tokens. Word2Vec was introduced by Mikolov et

al (2013) [15]. It is a deep learning technique where a two-layer neural network takes input and produces

a corresponding vector space. Essentially, Word2Vec positions the word in the space of the pre-trained

model so that its location is determined by its meaning, i.e. words with similar meanings are grouped

together and the distance between two words also has the same meaning. For Example, Words share

the same analogy as “Paris is to France as Berlin is to Germany”.The vector VParis, VFrance, VBerlin and

VGermany are encoded in a fashion that it reserved their semantic meaning.

Figure 2.3: CBOW Model from Original Paper[15]
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2.2. FUNDAMENTALS OF TEXT-PROCESSING

Word2Vec has two main architectures:

Continuous Bag-of-Words(CBOW):

In this model, we find the probability of focused words given the corpus. CBOW is primarily used in

smaller datasets since it treats the context of the sentence as a single observation towards predicting the

target word. In practice, this becomes very inefficient when working with a large set of words.

In figure 2.3 , Input Layer x is an encoded vector of x = {x1k, x2k, . . . ., xCk} where C is the context win-

dow and V represents vocabulary size. All input layer is forwarded to a hidden layer with a particular

weight matrix W ∈R V × N Where N is a number of the hidden layers. Afterward, Hidden layers are few to

output layer with weight matrix W‘∈ RV × N. This procedure takes in the background window the W rows

corresponding to the words vocabulary indexes (this is a function of x’s one-hot encoding) and averages

them. Later used for computation at the output layer.

u j = hv ‘w j

h = 1

C
(

CX
i=1

Xi )W

y j = p(wy j |w1, ..., wC ) = exp(u j )PV
j ‘=1 exp(u j ‘)

The final output yj is computed by passing uj through the softmax function. Loss Function here is to

minimize the conditional probability.

Figure 2.4: Skip-gram Model from Paper [15]

9



2.2. FUNDAMENTALS OF TEXT-PROCESSING

ζ=− log(p(w0|w1))

ζ=−u j ∗− log(
VX

j ‘=1
exp(u j ‘))

Continuous Skip-gram Model: Here we find the probability of the corpus-based on focus words. We

use negative sampling here to avoid softmax computation. Spearman correlation is used to compare

the ranked list with cosine similarities. There is an extension for Word2Vecfor Bioinformatics. (ProtVec

and BioVec).

The Figure 2.4 shows that this is opposite to CBOW as defined before. Here we predict the output

from hidden layers. Hidden Layers compute h = x.W and output hidden layer is forwarded as

uc,j = uc = hv ‘wj∀ j ∈ {1,2, ...,C }

Loss function changes here because of C nominal distribution.

ζ=− log(p(w0,1, w0,2, ..., w0,C |w I ))

ζ=−
CX

c=1
uc, j ∗+C log(

VX
j ‘=1

)exp(u j ‘)

Output Layer results:

yc, j = p(wc j = w 0,c|w I ) = exp(uc,j)PV
j ‘=1 exp(uj‘)

FastText

FastText is Facebook’s planned expansion of Word2Vec, released in 2016 [40]. FastText splits words into

several n-grams (sub-words) instead of feeding individual words into the Neural Network. For example,

the tri-grams for the word apple are “app”, “ppl”, and “pl” (ignoring the beginning and end of the word

boundary). The term enclosing vector for apple will be the sum of all these n-grams. Figure 2.5 shows

the structural form of FastText.

Xi is the n-gram feature that will be converted to (one-hot encoded representation) embedded and

averaged from the hidden variable. This design is similar to the paper [15]. CBOW model (2013) with a

label that is replacing the middle word. A softmax function is used to calculate probability distribution

over a number of classes but when the number of classes is large, computing the linear classifier is

computationally expensive [40].

− 1

N

NX
n=1

yn log( f (B Axn))
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2.2. FUNDAMENTALS OF TEXT-PROCESSING

Figure 2.5: FastText Architecture from paper [40]

In the equation above, A is lookup Matrix, B is Output transformation and hierarchical softmax is

applied to their product. Often, when looking for the most likely class, the hierarchical softmax is ben-

eficial at test time. The likelihood that the path from the root to this node is associated with each node.

So a node is always less probable than the parent’s probability.

GloVe (Global Vectors)

Word2vec was mainly based on preserving semantic analogies on basic algorithms using Neural Net-

works. It was a window-based approach and has the demerit of ignoring global statistics. The GloVe

makes a global co-occurrence matrix by approximating the probability a given word will co-occur with

other words. This presence of globals GloVe ideally work better. GloVe, 2014 introduced by Pennington

et al [5] at Standford was a log-bilinear model combing local context- matrix factorization.

The count matrix in the case of GloVe is preprocessed by standardizing numbers and smoothing

them. The GloVe makes the parallel implementation, in comparison to word2vec, making it much eas-

ier to train more data. This produces the word vectors, which operate well both on word comparison

and on similarity tasks and on the identification of entities. Matrix factorization methods for producing

low-dimensional representations of words have origins that stretch back to Latent Semantic Analysis.

The first step is to create a matrix for co-occurrence. Calculation of the matrix with a fixed window

dimension (words are jointly valid when they appear together in the same window) takes into account

the local context. The GloVe is a count-based model whereas count-based models learn vectors by doing

dimensionality reduction on a co-occurrence counts matrix. On the other hand, Word2vec is a predic-

tive model. The principle of GloVe is that the relationships of co-occurrence between two words in a

sense are strongly related to their meaning. Instead of the probabilities of themselves, the correct start-

ing point should be the term vector learning with the coexistence likelihood ratios. The most popular

model takes the form of the Pik / Pjk ratio, which relies on three terms i,j,& k.
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2.2. FUNDAMENTALS OF TEXT-PROCESSING

Here, w ∈R and the information present the ratio Pi k /P j k in the word vector space. Pij indicates the

probability of the term j to appear in context with i and can be calculated as

F (wi , w j , ŵk ) = Pi j

P j k

Pi j =
Xi j

Xi

In the equation above X represents co-occurrence matrix and Xi which is the total number of words that

appeared in context. Xij denotes i,j th term in the matrix.

F is a function that takes the embedding of the words i,k,j as input. The number of possibilities for

F is vast, but by enforcing a few desiderata we can select a unique choice. Since one of GloVe’s goals is

to create word vectors that express meaning using simple arithmetic (vector addition and subtraction),

a function F must be chosen to match this property with the resulting vectors. Considering that vector

spaces are essentially linear structures, with vector differences the most natural way of doing so is to

restrict our consideration to those F functions which only depend on the difference of the two target

terms. The simplest way to do this is to calculate the input to F as the disparity between the compared

vectors.

F (wi −w j , ŵk ) = Pi j

P j k

In the case of word-word co-occurrence matrices, the distinction between the word and the meaning

word is arbitrary and we are free to swap the two functions. In order to do so reliably, we will swap X =⇒
XT &w =⇒ ŵ .

F ((wi −w j )T , ŵk) = F (W T
i ŵk)

F (W T
j ŵk

The ratio can be transformed into a subtraction of probabilities by taking the logarithm of likelihood

ratios, and a bias term is for each word to take into consideration the fact that some terms occur more

often than others. The product of these operations can later be converted into an equation over a single

entry in the co-occurrence matrix.

wi ∗ ŵk +bi = log(Pi k) = log(Xi k)− log(Xi )

w T
i ŵk = log(Pi k) = log(Xi k)− log(Xi )

this term is independent of k so it can be absorbed into a bias bi for wi. Finally, adding an additional

bias ebk for fwk restores the symmetry.

w T
i ŵk +bi + b̂k = log (Xi k)
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A major drawback to this model is that all co-occurrences are measured equally, even those that rarely

or never occur. To avoid this a weighted least squares regression model by introducing a weight function

into Objective Function J. Training is aimed at minimizing J.

J =
VX

i , j=1
f (Xi j )(w T

i ŵ j +bi + b̂ j − log Xi j )2

Here V is the Vocabulary and Weighted function must obey three rules:

• If function f is viewed continuous then it should vanish faster as square-log limit tends to infinity

f(0)=0.

• F (x) should be non-decreasing in order to prevent over weighting with unusual co-occurrences.

• For large values of x, f(x) should be relatively small, so that repeated co-occurrences are not over-

weight.

f (Xi k) = mi n(1, (
Xi k

xmax
)α)

This function slashes the output of exceedingly common word pairs (where Xij > xmax) and simply re-

turns one. Since this number is always smaller than the total number of matrix entries, the model scales

no worse than O( ||V||2)[5].

Figure 2.6: Attention Mechanism by Vinalys et al (2015) [44]

2.3 Attention mechanisms

Itti et al (1998) [32] described attention for the first time in his short paper. Attention is similar to visual

focus for humans at first sight. This practice was dominantly introduced for computer vision to take
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the most important objects from any picture into consideration. The idea of attention-mechanism be-

came popular mainly for its application to image captioning and neuroscience computation in neural

network architectures. Cho et al (2014) [31] used it in recurrent neural networks to compute weights

of image segments and Vinalys et al (2015) [44] combined LSTM with DeepCNN for image captioning.

Figure 2.6 is the model flow for visual attention.

Soft attention is a completely differentiable deterministic mechanism that can be inserted into an

existing system, and the gradients are propagated through the process of attention at the same time that

they are propagated through the rest of the network. On the other hand, hard attention is a stochas-

tic process in which instead of using all hidden layer weights only a randomly chosen sample is used.

Both systems have their advantages and disadvantages, but the trend is to focus on mechanisms of soft

attention as the gradient can be calculated directly rather than estimated by a stochastic process. An-

other similar difference in global attention and local attention described by research work Kelvin Xu et

al (2016) [27]. Figure 2.7 describes the generic difference between the two.

Figure 2.7: Global (L) & Local (R) Attention from paper [25]

In soft attention, all image segments have weights at any given time whereas in hard attention the

only patch of the image is considered. But local Attention is not the same as the hard Attention used

in the image captioning task. In soft attention, the model is smooth and differentiable but expensive

when the source input is large. Whereas in hard attention, less calculation at the inference time and

the model is non-differentiable requiring more complicated techniques such as variance reduction or

reinforcement learning to train.
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Recently, in machine translation attention is gaining popularity because of its encoder-decoder ar-

chitecture. Transduction model by Bahdanau et al (2014) was first in natural language processing to

apply attention in NMT using RNN and CNN [33]. In order to predict or infer a single element such as

a pixel or a word in an image or in a paragraph, the attention vector uses the value to determine how

strongly it is associated (or "attends to" as you may have read in many documents) with other elements

and how much their values are measured by the attention vector. This mechanism is analogous to the

human sight where specific spots or words are read at contact. It is commonly said that attention saves

time for humans but loses for machines [21].

Self-attention, also called intra-attention, is a process of attention that relates different positions of

the individual sequence to determine the same sequence of the representation. The machine inter-

pretation, abstract summarizing or image description creation have proven to be very realistic. Math-

ematically, three separate vectors, namely key, query, and value, should be used per embedding of the

word Such vectors can easily be generated by multiplying matrices (K, V, Q). First, a function f is used

to compute the similarity between each key Ki and query Q to obtain weight W. Many different kinds of

functions are listed in table 2.1.

Name Function

Content-based Attention f(QT ,Ki ) = cosi ne[QT ,Ki ]
Additive f(QT ,Ki ) =V T

a ∗ tanh(W [QT ,Ki ])
Location-Based αl ,i = So f tmax(W QT )
General f(QT ,Ki ) =QT W Ki

Dot-Product f(QT ,Ki ) =QT Ki

Scaled Dot-Product f(QT ,Ki ) = QT Kip
n

Table 2.1: Functions for Various Attentions

A softmax is used to normalize the weights and then finally attention weights are used to compute a

final context representation

ai = So f tmax( f (Q,Ki )) = exp( f (Q,Ki ))P
i exp( f (Q,Ki ))

At tenti on(Q,K ,V ) =X
i

ai ∗Vi

The transformer model is one of the efficient encoder-decoder architectures, presented a lot of im-

provements to the soft attention and make it possible to do transduction modelling without recurrent

network units [2]. The Multihead Mechanism goes through the scaled dot Product attention several

times in parallel, rather than only once measuring the attention. Simply connected and linearly trans-

late independent attention outputs into the necessary dimensions. The use of this kind of mechanism

is suggested in chapter 8 for future work.
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2.3. ATTENTION MECHANISMS

Figure 2.8: Multihead Attention

The documents are created in a hierarchal way where every document contains sentence and sen-

tences are further formed by words and characters. The model proposed by Yang et al 2016, discussed

in the literature review where the flow of information is not uniform across the whole document. The

attention used in this work is hierarchal in a way that during the layer of dilation we are using different

filters to form an n-gram while higher to lower representation [18].

We normalize the word weight by the weight of the sentence because of its hierarchical structure to

ensure that only important words are emphasized in important sentences. Here every line is a sentence

which sometimes surpasses many lines. Figure 2.9 shows sentence-level attention for semantic analysis

a blue depicts word-level attention for meaningfulness. It can be seen from the yahoo answer which

words (web, browser, etc) typically contribute more to the question paradigm.

Figure 2.9: Document form Yahoo Answers
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2.4 Convolution Neural Networks

Neural networks are composed of human brain-inspired algorithms. Generally, when you open your

eyes, what you see is called data and is processed in your brain by the Neurons (data processing cells)

and knows what’s around you. Alex Waibel et al (1987) [42] introduced convolution networks inspired

by the visual cortex of the human brain . Applicative CNN by Yan LeCun et al (1998) were class of deep,

feed-forward artificial neural networks used for banking systems to recognize numbers on cheques [41].

Neural Networks are commonly known as Artificial Neural networks (ANN), because of their artifi-

cial capacity to mimic brain were primarily used in computer vision tasks. Artificial Neural Networks are

universal approximators which means they can form any function. Nevertheless, most recently, Convo-

lutional Neural Networks have found prominence in addressing NLP-related issues such as Sentence

Classification, Text Identification, Sentiment Analysis, Text Summarization, Machine Translation, and

Answer Relations. This is because CNN has the capability of dealing with data parallelly. CNN among its

other variants like RNN is preferred on account of fast response and possible implementation on GPU

units.

The receptive field for text processing convolution neural networks is created by striding filter over

words instead of image patches. We feed words as matrices into the input layer of the neural networks.

Variation in the size of the Kernel may be helpful in detecting different kinds of patterns in text. The

pattern is an n-gram that can be located anywhere in the document regardless of its position.

Figure 2.10: Architecture of Convolution Neural Network

Figure 2.10 shows how CNN performs classification on documents. A matrix embedding for the

sentence is fed to it and the different sizes of filters are convoluted to evaluate features. It results in 6

features that are concatenated to generate a feature vector for sentence representation. The softmax

layer receives this vector as input and classifies the document.
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Figure 2.11: Document Classification using CNN Moreno et al (2017) [35]

Pooling plays an important role in convolution neural networks. It helps to reduce spatial size and

number of the parameters by down sampling the convolution results which subsequently avoids over-

fitting. Some of the common pooling methods are max-pooling and avg-pooling. The pooling procedure

gives another form of translation in-variance. Pooling can be performed over a matrix or window. In

order to get a fix size matrix pooling is evaluated at the end of the result in natural language processing

[35].

In other words, Pooling reduces output dimensionality but retains the most relevant information.

By performing the max procedure, only the most significant features are sampled: as a result, global

localization information (where a pattern was identified in a sentence) is lost, but local information

captured by the filters (features generated by high-value convolutions) is retained.

Rectified linear units (ReLU) are placed after the output of every layer to ensure non-linear properties

and omit negative results from matrices. It trains network faster without introducing any penalty, in

our model we have utilized tanh activation function. Parts of Speech tagging and entity extraction are

considered unfit for CNN because of the loss of information at pooling layers.

Huges (2017) [36] used CNN to classify text from two medical datasets. He evaluated the model

with various filter sizes and configurations. The best performing network was obtained with a pair of

two convolution layers followed by SoftMax. Later drop-out of 0.5 was introduced to avoid overfitting,

the model was tested against state-of-the-art BOW and Doc2Vec model and it outperformed in various

evaluations.
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Figure 2.12: CNN Model by Hughes (2017)[36]

2.4.1 Dilated Convolutions

Fisher Yu et at (2015) [37] presented the idea of dilation in convolution neural networks from wavelet

decomposition. In particular, dilation refers to the size of spatial coverage by Kernel. Variation in the

size of the kernel allows covering a wider range from the input. In NLP, it will naturally help to preserve

semantic meaning from longer sentences be creating an n-gram. Considering * as discrete convolution

operator and l as dilation factor, F as a function and K as kernel size then we can describe it as :

(F ∗K )(p) = X
k+l t=p

F (s)∗F (t )

In the equation placing l = 1 changes it to standard convolution. The dilated convolution operator can

use the same filter at various ranges using different dilation factors. The definition reflects the proper

implementation of the dilated convolution operator, which does not involve the construction of dilated

filters.

Figure 2.13 shows the variation in the dilation layer covers a longer area of the receptive field. A

similar trend can be observed in the text. In our model, we have used five dilation layers with 1,2,4,8,16

kernels. Which helps to create 64-gram which is enough to cover the longest sentence in discharge sum-

maries. Figure 2.14 shows the rough estimation of flow from dilation to the text.
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Figure 2.13: Dilation at 3x3,7x7,15x15 spatial field [37]

Figure 2.14: Dilation forming 64-gram for 5 layers

2.5 ICD Health-Care System

World Health Organization (WHO) among its many other initiatives maintains and develops the Inter-

national Classification of Diseases (ICD) Health management system. This system has standardized a

hierarchy of codes for all kinds of medical diseases, procedures, and surgical operations. It categorizes

a wide variety of symptoms with its child codes for every main code. Codes may be six-digit longer

based on specific variations. First, worldwide procedural codes were published in 1949, namely ICD-6.

Eventual development in medical science made it necessary to create frequent updates and in 1978 final

ICD-9 was presented [49].

ICD-10 is currently used and is available multi-lingually. It contains nearly 155,000 codes for new

procedures and diagnoses. It has two variant ICD10-AM and ICD10-CA based on country guidelines.

ICD-11 is supposed to become from January 2022. It will contain the addition of Diagnostic and Static

Mental Disorders (DMS). It is supposed to be easier and semantically reliable than all previous versions

[49].
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RANGE Class of Disease/Symptom

001-139 Infectious and parasitic diseases
140-239 Cancer
240-279 endocrine glands, nutrition , metabolism, and disorders immune
280-289 blood and hematopoietic organs
290-319 Mental Disorders
320-389 nervous system and sense organs
390-459 circulatory system
460-519 respiratory system
520-579 digestive system
580-629 genitourinary system
630-677 pregnancy, childbirth, and the puerperium
680-709 Skin and tissue diseases
710-739 musculoskeletal system
740-759 Congenital malformations
760-779 conditions of perinatal
780-799 Symptoms and signs of morbid states
800-999 Traumatism and poisoning

Table 2.2: Code Ranges in ICD-9-CM

Most of the ICD-9-CM codes are numeric, while the additional classifications contain alphanumeric

codes. All are composed of three, four or five characters and each has a specific description. The classi-

fication contains over 12,400 final diagnosis codes and about 3,700 final procedure codes. Final ICD-9-

CM integrates all the official updates published from October 1986 to October 2006. This classification

only contains numeric codes, between 001 and 999.9 [12].

The sections between 01 and 86 include major surgery, endoscopies, and biopsies. Headings 87

through 99 include other diagnostic and therapeutic procedures and are grouped on the basis of the

type of procedure. In table 2.2 below is described details of code ranges according to specific diseases.

Given ICD-9-Clinical Modification, the structure is aggregated further into subcodes. Where the

main code head (parent code) refers to the generic concept and lower tail (Child Code) shows a specific

procedure or condition. Additional information on the organization can be obtained from BioPortal

where all root level details are described. The average number of children to code head is five but some

codes have a maximum of 21 children. This hierarchy is imbalanced and grouped based on codes relat-

ing to similar nature like all procedures are lined in a row.

MIMIC (Multiparameter intelligent monitoring intensive care) Dataset was labeled following guide-

lines dictated by Unites States National Center for Health Statistics (NCHS). All clinical notes from MIMIC

are marked with single or multiple codes of ICD-9 CM. ICD9-CM is the additive abstraction of ICD-9.

There are three volumes of this coding system. The first volume is a tabular index with a list of disease

codes. Second is an alphabetical index to disease entries and the last volume is for therapeutics proce-

dures with alphanumeric codes.
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Code Labeled Disease

16 Tuberculosis of genitourinary system
16.0 Tuberculosis of kidney
16.00 Tuberculosis of kidney, unspecified examination
16.01 Tuberculosis of kidney, bacteriological or histological examination not done

16.02 Tuberculosis of kidney, bacteriological or histological examination unknown (at
present)

16.03 Tuberculosis of kidney, tubercle bacilli found (in sputum) by microscopy

16.04 Tuberculosis of kidney, tubercle bacilli not found (in sputum) by microscopy, but
found by bacterial culture

16.05 Tuberculosis of kidney, tubercle bacilli not found by bacteriological examination,
but tuberculosis confirmed

16.06 Tuberculosis of kidney, tubercle bacilli not found by bacteriological or histological
examination.

Table 2.3: A layout from ICD-9 Hierarchy

In order to issue a patient’s codes, a labeler must first decide the cause for the patient’s appoint-

ment by analysing the signs, symptoms, diagnoses, and impediments recorded in the doctor’s notes.

Conditions classified as "possible" must not be labelled and only specific signs and diseases must be

considered. Each medical condition is classifiable only in one of the final groupings of the classification

[45]. Some most used codes in MIMIC-III are shown in table 2.4.

Codes Type of Disease Assignments

427.31 Atrial fibrillation 17903
401.9 Unspecified essential hypertension 17903
428 Congestive heart failure, unspecified 11731

584.9 Acute kidney failure 7926
518.81 Acute respiratory failure 6490

Table 2.4: 5 Most Frequent codes in MIMIC-III

During the last decade, Artificial Intelligence research has been expedited especially in sectors where

text-processing has a significant role. It is difficult to equally compare different methods because they

are formed on different points of Dataset. In this section, an overview from existing work (Lita et al.

2008; Perotte et al,2013; Kavuluru et al 2015; Yang et al, 2016; Shi et al, 2017; Crammer et al,2017; Baumel

et al, 2017; Mullenbach et al 2018) will be presented.

2.6 Background

In the study, conducted by Lita et al (2008) [30]. Two models, Support Vector Machines (SVM) and

Bayesian Ridge Regression were tested to understand word distribution in clinical text. In SVM, a posi-

tive to negative example ratio from the targeted test was applied with a linear kernel. Gaussian process in

a probabilistic approach sought in BRR. Ridge Regression computes the likelihood function from labels

conditioned to weighted inputs of the document. Both Support Vector Machines and Bayesian ridge re-

gression methods are fast to train and achieve comparable results. Evaluation is based on the precision
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score on top 5 codes with balanced distribution. BRR outperform SVM by 3% standing at 65.7% while

F-1 Score show contrasting ( 78.4% vs 77.2 %) for SVM and BRR respectively [30].

Perotte et al. (2013) experimented with flat and hierarchic SVMs with MIMIC-II data collection

TFIDF functionality, using ICD9 hierarchy and only predicts child codes with positive parent codes.

The hierarchical SVM also considers the structure of the ICD9 code tree during training. An increased

data set is created, where each document is labeled with codes from the whole tree, not just the leaf

nodes. During training many SVM classifiers are created and trained, one for each code of the hierarchy

excluding the root [16].

The classifier associated with the code in the hierarchy is used only if its parent code has been clas-

sified as positive. Therefore, only documents with a positive parent code are fed to the child classifier.

Hierarchy-based classification produces better ICD9 coding results than flat classification for MIMIC

patients. The classifier works from the root down to classify until negative codes are found. The proce-

dure is repeated to result in a tree for multi-label classification for a given document.

Figure 2.15: Hierarchal Attention from Yang et al

The flat SVM views every label as an individual binary decision. For each possible ICD9 code, one

linear distinct SVM classifier is generated, except for the root, which is always positive. Those documents

in the training set classified with the ICD9 code are considered to be valid and all other documents are

considered to be negative. Positive ICD9 code‘s head code must also be positive, and negative ICD9
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code descendants must also be negative. Only during the test setups, when single predictions include

all ancestors, is this relationship taken into consideration.

The outcomes of the study show hierarchy based SVM performs better than flat SVM in some eval-

uation criteria results in improved recall (30% vs 16.4%) with the expense of precision (57.7% vs 86.7%).

However, he hierarchy-based SVM reached 70.0% recall and 83.6% precision for cerebral artery occlu-

sions [16].

Ramakanth Kavuluru et al (2015) built a classifier on ICD-9-CM labeled data from the Medical Center

of the University of Kentucky. Their proposed model showed a learning-to-rank based binary approach

for different scales of the dataset. The problem was approached with logistic regression, SVM and naïve

base feature selection [20].

Figure 2.16: Hierarchal GRU Model (Baumel et al)

In all codes, they achieved a micro F-score of 0.48 with at least 50 training cases. For regard to the

collection of codes that appear at least 1 percent in the two years data set, a micro F-score of 0.54 was

achieved [20].

Yang et al (2016) proposed a hierarchal attention network with two distinct characteristics. Primar-

ily, a hierarchal architecture for structural documents and distributed attention for word and sentence

level. The model comprises of numerous parts: a sentence encoder, a sentence-level attention layer,

word sequence encoder, and a word-level attention layer. The model suggested projections of the raw

text into a vector representation on which we construct a classifier for the classification of documents.

Figure 2.15 above is the structure of flow in the model. Results show evaluation on Yelp and Yahoo an-

swers. Hierarchal Attentional networks with Gated Recurrent Unit achieved 0.682 and 0.758 precision

respectively [18].

Baumel et al (2017) experimented on MIMIC-II and MIMIC-III with four different models. He ob-

served code assignment to discharge summaries with SVM-based one-vs-all model, a bidirectional Gated

Recurrent Unit (HA-GRU), a convolutional neural network (CNN) model and a continuous bag-of-words

24



2.6. BACKGROUND

(CBOW) model. Baumel applied hierarchical segmentation for pre-processing. He proposed two moti-

vations for preprocessing the input texts with sentence breakdown. First, it is impractical and ineffective

to train a sequence model like a GRU on such long sequences. Secondly, he chose to implement a mov-

ing window for discharge summaries [11].

The continuous BOW model was an applicative use of Mikolov et al (2013) model [15]. This was

based on creating embedding of fix-size. Instead of averaging embedding, a One-dimensional convo-

lutional filter is applied. Hierarchal (HA-GRU) is set to handle multi-label classification where instead

of applying a common GRU on the whole document, which is a certainly slower approach. Two-level

hierarchal bidirectional GRU encoding is used. The second GRU unit was aimed at keeping attention

on each label. The input text sentence will be encoded to a fixed-length (64) vector by using an em-

bedding layer on all inputs, applying a bidirectional GRU layer on the embedded words and encoding

bidirectional GRU outputs using a neural attention mechanism (size 128).

The Result indicates that the HA-GRU model outperforms CNN, CBOW, and SVM with the micro-

F measure. The CBOW model score 43.30% compared to 55.86% of HA-GRU. Collectively, Hierarchal

Attentional GRU 7.4% and 3.2% improvements over CNN and SVM. The ability to feature the decision

process of the model is important for the implementation of such models by medical professionals.

Conclusively, HA-GRU needs less training data to achieve top performance, which is crucial for domain

adaptation efforts when applying such models to patient records from other sources.

Crammer et al (2017) formed a learning system based on features. In every document input and out-

put were built with a vector-valued representation where each input corresponds to one or few output

variables. A linear model of weight vectors is used to rank the labels. Specific Features were indexed

with their names and presented with specific labels. MIRA algorithm is used to create weight vectors

during learning for each input document. A rule-based approach was set up to deal with uncommon

configuration. The recall score at the top 30 codes approached 76.6% compared to their baseline score

of 72.58% [13].

Horan Shi et al (2017) [19] offered attention-based character aware neural language models to clas-

sify diagnosis descriptions. The model has prepared on a portion of the top 50 codes from MIMC-III

summaries. Which included 8,066 hospital admissions. The coding model consists of four modules. A

diagnosis description encoder, ICD Code encoder, attention for assigning codes and matching text with

relevant code. The detailed model is shown in figure 2.16 .

Encoding is leveraged on a Long-Short term memory LSTM network which a variant of recurrent

neural networks (RNN). LSTM is efficient here because of a long diagnosis text document. Hidden rep-

resentation for each input is obtained with character level LSTM and Word Level LSTM. Character level

encoding is expected to catch better features because of their many medical terms with the same suffix.

The input is the sequence of sentence matrices in the word-level LSTM, each obtained by concatenating

the word representations derived from the previous layer. The last hidden state is the interpretation of

each sentence. The same two-level LSTM architecture is implemented for embedding descriptions of

ICD codes in order to obtain the hidden representations. The layer parameters for the code definition

encoder and the document encoder are separate in order to better respond to the different language

forms in each of the two text sets [19].
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2.6. BACKGROUND

Figure 2.17: Model From Original Paper (Shi et al 2017) [19]

The number of written diagnosis summary is not equal to the number of ICD code assigned, because

one code for the same diagnostics description cannot explicitly be allocated. The attention mechanism

offers a recipe to determine the diagnostic details for coding are relevant. It evaluates cosine similarity

between text and ICD code before supplying it to the SoftMax classifier. Finally, we use sigmoid to nor-

malize the confidence score into a probability value. F1 and area under the curve (AUC) scores for soft

attention models are 0.532 and 0.900 correspondingly.

James Mullenbach et al (2018) [8], in their work, “Explainable Prediction of Medical Codes from Clini-

cal Text” proposed a variant of Yang et al (2016) work on hierarchical attention network with Convolution

neural networks. The proposed method Convolutional Attention for Multi-Label classification (CAML)

was based on a per-label attention mechanism. Instead of taking whole representation after aggregating

their proposed applying attention to the area of the document where the relevant text is present. Moving

weighted matrix to output layer applying a sigmoid function to find the likelihood of code. Pre-trained

embeddings are formed for each token in the document in the form of a one-dimensional vector. An

element-wise non-linear transformation is applied with a fix size filter and unitary stride.

Input is padded to form the output matrices of similar dimensions. The result of the operation is

moved to computer attention, the target is designed to create multiple labels using k-grams. A later at-

tention vector with lower dimensions is used to compute vector representation for each label. Training

of the model was aimed at reducing binary-cross entropy and penalizing L2 weights with Adam Opti-

mizer.
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2.6. BACKGROUND

Figure 2.18: CAML Architecture (Mullenbach et al 2018) [8]

The model is validated broadly for MIMIC-II, MIMIC- III, and top k codes. A recent work has pro-

vided vast evaluations in order to compare the model with Baumel et al (2017) [11] and Crammer et al

(2017) [13]. He presented precision scores for most common eight and fifteen labels across the dataset.

Additionally, micro and macro scores have shown significant improvement in their baseline models.

Their best model achieved 0.709 scores for precision on top 8 codes and 0.539 for micro F-1 measure

[13].

Analysing the relevant studies we can say The CAML architecture suggested in this paper shows

better results under all experimental circumstances. Recurrent neural networks perform slower than

convolution neural networks because of their sequential flow. Moreover, longer text documents do not

essentially preserve the semantic understanding in LSTM.

Improvements are due to the mechanism of attention which focuses on the most critical elements

for each code instead of using a standardized pooling procedure for every code. We also found that

convolution-based models are at least as effective as recurring neural networks such as the Bi-GRU, and

substantially more computationally powerful. Models that exploit the hierarchy of ICD codes and at-

tempt the more difficult task of predicting diagnosis and treatment codes for future visits from discharge

summaries are better from the application perspective.
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CHAPTER 3

Methodology

Despite this progress, the digital system‘s interoperability continues to be an open problem that poses

challenges in data integration and processing for a model. The capacity for the interpretation and en-

hancement of treatment offered by hospital data is therefore still to be fully realized. At the same mo-

ment, there are increasing concerns from the scientific community that experiments are not quantifi-

able. Based on previous MIMIC (MIMIC-II), which was published in 2010 MIMIC-III, we predict that

MIMIC-III will be commonly used worldwide in fields such as scientific and industrial science, quality

improvement programs and higher education.

The Computational Physiology Laboratory is an interdisciplinary unit of data scientists and clini-

cians at the Massachusetts Institute of Technology. MIMIC-III is the third MIMIC critical care database

version and helps us to build on previous data processing and development expertise. The MIMIC-

III database was filled with data collected during routine hospital care, so patients were not burdened,

and their workflow was not interrupted. The information has been downloaded from various sources,

including the Social Security Administration’s death master file, electronic health record databases, crit-

ical care information system documents [45].

3.1 Information Flow

For the prediction of ICD9 codes from clinical notes, we are using the table of NOTEEVENTS which are

free text notes providing progress notes and hospital discharge summaries. Many previous studies like

Baumel et al (2017) and Mullenbach et al (2018) used discharge summaries or discharge procedures[11][8].

Only a few others like Kavuluru et al (2015) used patient stays from other databases of UKY [20]. For

each patient entry in discharge summary ICD-9 code is present (Labeled 1) or (Labeled 0) and likeli-

hood ranges between 0-1. Output values that are higher than 0.5 are counted for the presence of code.

In this work, we are using diagnosis and procedure codes to combine for localizing patient sum-

maries. We are using a full dataset with 9017 codes. Processing of clinical notes with five-layer dilated

convolution networks gives better results than all previous Mullenbach et al (2018) [8] and Shi et al (2017)

28



3.2. PRE-PROCESSING

[19]. We initialized embedding from pre-trained distributed models. Training contains the choice to ei-

ther evaluated embedding using Word2Vec or GloVE 42B with 300 dimensions. There is an additional

option to create stack embedding because many relevant embeddings are not able to any of these mod-

els. So, we create random embeddings for out-of-vocabulary terms. Stack embeddings are supposed to

increase coverage external embeddings from glove are Common English corpus instead of any special-

ized medical corpus. In order to protect the health information and input tokens, these embeddings are

kept trainable to divert according to the relevant context [19] [8].

We are experimenting with the model used by Stefano et al (2019) [43] with a variant of computing

embeddings with word level. The model computes dilation at the sentence level by changing filter size

from lower to a higher level to compute attention in a hierarchal way similar to Yang et al (2016) [18].

Model formed by Mullenbech et al (2018) was tuned for top 50 codes and parameters were optimized

for top 8 occurring codes whereas we propose a model for full codes in MIMIC-III. Attention is scored

based on embedding descriptions at the word level.

3.2 Pre-processing

The creation of the MIMIC dataset involved balancing interpretation simplicity against proximity to

ground-based facts. As such, information is a representation of the underlying data sources, updated

in response to user feedback through the MIMIC database iterations. The problem with the underlying

text is its uncommon nature. As discussed previously in section 2.5 ICD Coding system, the medical

text is different in terms of acronyms, short form. Medical drug names, vital signs and abbreviations.

Applying simple lemmatization and stemming tools may lose the semantic meaning of diagnosis notes.

Additionally, these notes are de-identified based on regulations of (H.I.P.P.A) to protect health infor-

mation. Information like Lastname, first name, location, dates is removed and is replaced with generic

unknown tokens. For Instance [** Known Lastname 025046**], the purpose of putting this number is

to keep human identification hidden from the researcher. MIMIC presents subject_ID to interpret the

related history to every person. Various text-preprocessing approached were tried on MIMIC, Baumel

et al (2017) replaced non-alphabetical characters to pseudo tokens [11].

Shi et al (2017) [19] transformed the messy and inconsistent raw note texts in these parts into tidy di-

agnosis details. He used a number of regular text pre-processing techniques such as regular expression

matching and tokenization. That resultant mark is a short sentence or a term that articulates a disorder

or illness. In order to evaluate the model in a common way, he visited patients that do not include details

of the condition are rejected and worked on top 50 codes.

The strategy of removing tokens that do not contain alphabetical characters (e.g. remove "500" but

keep "250 mg"), lower all tokens, and replace tokens that appear with a ’ UNK ’ token in less than three

training documents[8]. He cropped documents at a maximum of 2500 token in each summary.

The text processing data consumed by this work is similar to the work in which we are using SpaCy to
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3.3. MODEL OVERVIEW

create custom tokenization with the rule-based approach [43]. The prime reason behind this approach

is the nature of MIMIC notes described in section 4.1. To treat the most common medical abbrevia-

tions accurately, as the tokenizer sometimes breaks them incorrectly. Therefore we delete tokens with

no alphabetic characters: this law excludes numbers and bogus tokens made entirely of symbols, but it

preserves words containing numbers like (from 60 Capsules, removing 60).

This mapping retains the text structure, is easily interpretable when interpreting the written annota-

tions, and allows such words to be accurately tokenized. We have checked the numerical attributes asso-

ciated with the anonymized tokens: just as [**Unknown 5252**] is set to be preserved as “unknown_5252”.

We found that this strategy resulted in a significant increase in the number of distinct tokens in the body,

leading to yet more complex outcomes. Also, dates are ignored just the name of months is taken as a

string from discharge and admission dates for example 2008/8/24 is left as “august”.

Similar to Tal Baumel et al (2017) [11] approach of dealing with out-of-vocabulary words, We took all

those tokens that repeated at least three times in training corpus. Special UNK token is introduced for

OOV words. The approach of shortest Levenshtein distance was implemented to map unknown words

to known words but it does not show any significant development in evaluation metrics [14].

Here is an example that illustrates some of these tokenization excerpts: anonymized dates and

names, organized alphabetically lists, information on drug delivery, essential signs, etc. This illustrates

a sample of clinical notes before or after our preprocessing and tokenization. The note processed with

a one-sentence-per-line format is generally clearer and we can observe how most problem expressions

are treated correctly. The main problem is the detection of the sentence boundaries, with many phrases

incorrectly separated into two or more phrases.

3.3 Model Overview

The model is based on three components, embedding layer, convolution layers, and attention layer.

Data is fed to embedding layers which then initializes matrices for text present and forwards to the con-

volution layers. These embeddings can be computed in various ways with selective option to choose

Word2Vec, Fasttext English common crawl of GloVe with forty-two billion tokens. Although this corpus

is not medical specific, it yields a good coverage for text present in discharge summaries. Dilation layers

create an overview of sentence-level understanding to create attention at sentence vectors.

Document D comprises of L sentences si, where i presents the number of the sentence. Assuming

each sentence holds Ti words where wit,t ∈ [1,L] and t ∈ [1,Ti] represents Tth word in the ith sentence.

Each word is wit mapped to a unique embedding vector through the embedding word matrix W, we are

using embeddings of 300-dimension. Where this can be mathematically described as

X it =W ∗w it
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3.3. MODEL OVERVIEW

Similar to the work [43], The words that form a description are mapped through the same embed-

ding matrix W used for the documents to their continuous embedding space. The resulting sequence

of vectors is then applied to a non-linear projection. A max-pooling operation reduces the sequence to

a vector, followed by a final non-linear projection. The representation of each code that has been ob-

tained is then used as a query vector to calculate the attention scores for that code. For every code c,

corresponding context vector uc is computed from its description dc using:

W c =W ∗d ce(Wc ) = tanh(Wa1wc +bc )

hc = maxpool (e(Wc ))

uc = tanh(Wa1hc +ba2)

Attention has been described previously in section 2.3, It is really important to infer the key infor-

mation from text. For words-level attention representation, word representation hit goes through a fully

connected layer and a non-linear activation function.

ui t = tanh(Ww hi t +bw )

The importance of each word can be estimated through its similarity with a uw vector normalized using

SoftMax. This normalization is obtained using exponential nonlinearity.

αi t = exp(ui t TuW )P
T exp(ui t TuW )

To obtain a final vector representation of the input at sentence level si, the sum of the input vectors

measured by their respective attention values is determined.

si =
TX
t
αi t h

As a function of the input attention is formally measured as a set of key-value pairs K, V and Q query

matrix. Next, a function f measures the similarities between each Ki key and the query to achieve weight.

A common similarity function used is the dot product, but it is also possible to use other functions. In

order to normalize these weights, a SoftMax function is then used. Finally, the weights of focus are used

to measure a weighted sum of the values and to achieve the final representation.

F (Q,Ki ) =QT ∗Ki

ai = so f tmax(F (Q,Ki ))

At tenti on(Q,K ,V ) =X
i

ai Vi
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3.3. MODEL OVERVIEW

In our model K=V=h refers to the output of convolutions. For each label, c attention is a product of h

and uc where uc is query vector. Every element of ai vector includes the sequence V’s corresponding ele-

ment’s attention value. The sum of the Vi components measured by ai focus scores creates a vector text V.

High-level representation is held by the document vector v which can be used for classification tasks.

This document representation is fed to a fully connected layer and passed by sigmoid function β to

compute the final likelihood of each label c.

yc =β(Wc V +bc )

During the training, the classifier tries to fit the model to training points. We are using binary cross-

entropy to compute loss on the output layer. The model is trained to minimize this loss.

LBC E
¡
y, ey¢=−

CX
c=1

yc log
¡fyc

¢+ (1− yc ) log(1− fyc )

Figure 3.3: Model Flow Diagram
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3.3. MODEL OVERVIEW

Figure 3.1: A section from MIMIC Discharge Summary
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3.3. MODEL OVERVIEW

Figure 3.2: Preprocessed discharge summary
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CHAPTER 4

Experimental Setup

A common issue with classification of clinical notes is constructing interference between model loss

and assigned labels. This mapping generalizes models for code prediction to sensible clinical data. Nev-

ertheless, it was seldom used for automatic assigning to medical records with medical codes such as

ICD9. Much of it is because it is difficult to obtain data and labels. For instance, the online versions

of http:/www.icd9coding.com/ are mostly used by ICD9 code assignment systems with a rule-

based engine.

Hospitals are typically hesitant to share their patient data with research groups and sensitive infor-

mation (e.g. patient name, date of birth, home address, social security number) must be anonymized to

comply with HIPAA requirements. Protected health information was excluded from free text areas, such

as diagnostic records and medical notes, using a rigorously validated de-identification system based on

extensive dictionary searches and regular expression patterns. When new data are obtained, the com-

ponents of this monitoring system are continuously expanded.

4.1 The MIMIC Dataset

MIMIC (Medical Information Mart for Intensive Care) is an open-source clinical database. It contains

information on patients confined to critical care facilities in a major tertiary hospital. The data includes

critical information, medication, laboratory tests, care provider findings and notes, fluid balance, pro-

cedure codes, diagnostical codes, photo reports, stay-length hospital data and more. Recovery data. The

database serves projects such as scientific and market research, programs to improve quality and higher

education [45].

The first release is known as MIMIC- II (Multiparameter Intelligent Monitoring Intensive Care) which

contained the data of patients at Beth Israel Deaconess Medical Center between 2001 and 2008. Since

the MIMIC was one of the few first available databases, A lot of research publication is concluded based

on MIMIC-II. To relate it with the current data websitehttps://mimic.physionet.org/mimicdata/

whatsnew/ describes the relationship between tables to understand how it was upgraded. MIMIC-III

is an extension of old MIMIC-II which was later incorporated with further data from 2008–12. This

transition was done in several queries some items like D_MEDITEMS, D_IOITEMS, D_CHARTITEMS
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4.1. THE MIMIC DATASET

were merged to D_ITEMS. Admissions and Discharges were labeled with a time component. More-

over, CENSUSEVENTS replaced by TRANSFERS, DEMOGRAPHIC_DETAIL merged into ADMISSIONS

DRGEVENTS renamed DRGCODES, ICD9 renamed DIAGNOSES_ICD and so on [45].

Currently, in this work, we have used version is MIMIC-III (v1.4), released in 2016. MIMIC-III in-

cludes data associated with 53,432 adults and 8100 new-born children admitted to critical care units

between 2001 and 2012. In addition. The median age of adult patients is 65.8 years. The median length

of an ICU stay is 2.1 days and the median length of a hospital stay is 6.9 days. A mean of 4579 charted

observations (’chart events’) and 380 laboratory measurements (’labevents’) are available for each hos-

pital admission. Table 4.1 provides a breakdown of the adult population by the care unit.

MIMIC-III is presented as a compilation of comma-separated value (CSV) files. A free demo version

of 100 records can be downloaded directly from Physionet but in order to access all 26 tables, a special

MIT based course is required. The course “Data or Specimens Only Research” course ensures defining

data regulation laws for research purposes. Here is a table presenting details of data. The tables are asso-

ciated with identifiers that usually have the suffix ‘ID’. For example, SUBJECT_ID describes to a unique

patient, HADM_ID points to a unique admission to the hospital, and ICUSTAY_ID refers to a single ad-

mission to an intensive care unit.
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4.1. THE MIMIC DATASET

Table Name Description

ADMISSIONS Every unique hospitalization for each patient in the database

(defines HADM_ID).

CALLOUT Information regarding when a patient was cleared for ICU dis-

charge and when the patient was actually discharged.

CAREGIVERS Every caregiver who has recorded data in the database (defines

CGID).

CHARTEVENTS All charted observations for patients.

CPTEVENTS Procedures recorded as Current Procedural Terminology

(CPT) codes.

D_CPT High-level dictionary of Current Procedural Terminology

(CPT) codes.

D_ICD_DIAGNOSES Dictionary of International Statistical Classification of Dis-

eases and Related Health Problems (ICD-9) codes relating to

diagnoses.

D_ICD_PROCEDURES Dictionary of International Statistical Classification of Dis-

eases and Related Health Problems (ICD-9) codes relating to

procedures.

D_ITEMS Dictionary of local codes (’ITEMIDs’) appearing in the MIMIC

database, except those that relate to laboratory tests.

D_LABITEMS Dictionary of local codes (’ITEMIDs’) appearing in the MIMIC

database that relates to laboratory tests.

DATETIMEEVENTS All recorded observations are dates, for example, time of dial-

ysis or insertion of lines.

DIAGNOSES_ICD Hospital assigned diagnoses, coded using the International

Statistical Classification of Diseases and Related Health Prob-

lems (ICD) system.

DRGCODES Diagnosis Related Groups (DRG), which are used by the hos-

pital for billing purposes.

ICUSTAYS Every unique ICU stays in the database (defines ICUSTAY_ID).

INPUTEVENTS_CV Intake for patients monitored using the Philips CareVue sys-

tem while in the ICU, e.g., intravenous medications, enteral

feeding, etc.

INPUTEVENTS_MV Intake for patients monitored using the iMDSoft MetaVision

system while in the ICU, e.g., intravenous medications, enteral

feeding, etc.

OUTPUTEVENTS Output information for patients while in the ICU.

LABEVENTS Laboratory measurements for patients both within the hospi-

tal and in outpatient clinics.
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4.1. THE MIMIC DATASET

MICROBIOLOGYEVENTS Microbiology culture results and antibiotic sensitivities from

the hospital database.

NOTEEVENTS Deidentified notes, including nursing and physician notes,

ECG reports, radiology reports, and discharge summaries.

PATIENTS Every unique patient in the database (defines SUBJECT_ID).

PRESCRIPTIONS Medications ordered for a given patient.

PROCEDUREEVENTS_MV Patient procedures for the subset of patients who were moni-

tored in the ICU using the iMDSoft MetaVision system.

PROCEDURES_ICD Patient procedures, coded using the International Statistical

Classification of Diseases and Related Health Problems (ICD)

system.

SERVICES The clinical service under which a patient is registered.

TRANSFERS Patient movement from bed to bed within the hospital, includ-

ing ICU admission and discharge.

Table 4.1: Tables from MIMIC-III.

Level Nodes Total Count

0 1 891094
1 4 891094
2 73 891094
3 526 891094
4 3585 887782
5 10038 768131
6 7313 249010
7 867 10304

Table 4.2: Codes distribution in MIMIC-III

We hold only the summaries of discharge and their addenda providing the most detailed diagnostic

information. The timestamp of the documents gives us the correct reading order for patient admission.

Also, some of the hospital stays do not have discharge summaries: following previous studies, we only

consider those that do (Perotte et al, 2013; Baumel et al, 2017; Mullenbach et al, 2018). The data set

comprises 8,929 unique ICD codes for patients with discharge summaries (6,918 diagnoses & 2,011 pro-

cedures). We ignore five of them, however, and use 8,924 codes. Total number of header codes are 1168.

Codes are structurally hierarchal as described in section 2.5, Head code presents the general disease

and tail presents specific symptom/disease. Yang et al (2016) worked on the hierarchal level [18]. Our

experiment is based on the main codes to find coarse values. It should be remembered that the repre-

sentation of codes by means of a hierarchy is for convenience purposes only: the only legitimate codes
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4.1. THE MIMIC DATASET

for diagnosis and billing are the leaf nodes containing the complete codes. No details on the code’s hi-

erarchy are included in MIMIC-III, only complete codes are allocated to the nodes. The data set codes

are distributed in such a way that most label occurrences are transmitted by a minority of the codes. An

unbalanced distribution would significantly decrease the predictive power of the models for rare codes

due to a large number of labels. Table 4.2 shows the code hierarchy in detail.

The pre-processed data is split the same way as Mullenbach et al (2018) has done. These splits are

patient independent. The summaries of subject discharge can be very long, and this can cause problems

as any architecture based on temporal dependencies would fail without long-term memory. The mean

number of words per summary is 1505, with a standard deviation of 775. Discharge summaries demon-

strate a fixed composition: the note is usually partitioned into segments such as "history of present

illness", "social history", "family history”, “past medical history", "discharge medications". "hospital

course", "discharge diagnosis". We have a fixed maximum size of 5000 tokens in order to avoid very long

text.

Code Label Description for ICD9 Code

401.9 unspecified essential hypertension
38.93 venous catheterization not elsewhere classified
428.0 congestive heart failure unspecified
427.31 atrial fibrillation
414.01 coronary atherosclerosis of native coronary artery
96.04 insertion of an endotracheal tube
96.6 enteral infusion of concentrated nutritional substances
584.9 acute kidney failure unspecified
250.00 diabetes mellitus without mention of complication type ii or unspecified

type not stated as uncontrolled
96.71 continuous invasive mechanical ventilation for less than 96 consecutive

hours
272.4 other and unspecified hyperlipidemia
518.81 acute respiratory failure
99.04 transfusion of packed cells
39.61 extracorporeal circulation auxiliary to open-heart surgery
599.0 urinary tract infection site not specified
530.81 esophageal reflux
96.72 continuous invasive mechanical ventilation for 96 consecutive hours or

more
272.0 pure hypercholesterolemia
285.9 anemia unspecified
88.56 coronary arteriography using two catheters

Table 4.3: Top 20 codes in MIMIC-III
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Figure 4.1: Distribution of top-20 codes

Mullenbach et al (2018) [8] performed experiments on top-50 codes that had better distribution.

However, each section may contain relevant information: e.g. the patient history section is important

because some codes are related to past conditions or procedures (e.g. "personal history of malignant

prostate neoplasm" or "personal history of venous thrombosis and embolism"). These codes somehow

better present the diagnosis of common illness among patients. table 4.3 shows a list of top-20 ICD-9

labels for the codes displayed in figure 4.1.

4.2 Training & Development details

The model was trained on HPC Polito Server using Pytorch coding structures of neural networks. The

training was done on a node of Legion Cluster with one GPU nVidia Tesla V100 SXM2 for dilated con-

volution neural networks and two CPU Intel Xeon 2.10 GHz for data loading. Gradient optimizer for

weight was done with ADAM optimizer (Kingma & Ba, 2014) with initial learning rate 0.0001 β0 = 0.9,

β1 = 0.999, † = 1e08 [50]. The model is designed to save optimum epoch and early-stop training with

training criteria. For the reason of the chosen evaluation metric, this criterion is fixed to micro-F1 with

the patience of 5.

Neural networks are commonly prone to overfitting, for this reason, various dropouts were tried the

best results appeared on 0.15 after many variations. Cross-entropy loss helps to fit the model to targeted

labels. After the dropout, each layer performs normalization for smooth convergence. Layer normaliza-

tion also helps to speed-up training. Data is split into training, validation, and testing using a similar

approach by Mullenbech et al (2018) as presented in Table 4.4.
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DataSet Subjects Total Admissions Unique Codes

Training 36998 47723 8692
Validation 1374 1631 8929

Testing 2755 3372 3012
Full 41127 52726 4085

Table 4.4: Data Splitting

Numerous training experiments were performed with a batch size of 8 and a maximum token length

of 5000. To capture some relevant parameters we performed a trial approach from work done by Mul-

lench et al (2018) and Stefano et al (2019) for Word Embedding dimensions dw, dropout probability pd,

kernel size k, channel size on layers c and dilation length dL. In table 4.5 below is the selected range of

these values for optimal results.

Paramters Candiate Values Mellenbach et al,(2018) Stefano et al (2019) Our work

dw 50,100,200,300 200 200 300
pd 0.1,0.15,0.2 0.2 0.5 0.15
k 3,4,5,6,10 10 3 4
c 100,125,150,200 200 125 125

dL 3,4,5 - 3 5

Table 4.5: Parametric tuning for the model
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CHAPTER 5

Evaluation Metrics

The interpretability of results is of key importance when it comes to the medical domain. Any project

requires the evaluation of machine learning models or algorithms. A variety of evaluation approaches

for assessing a model are available. One way to give insight into the model’s decision-making process is

to analyse which sections of the text were considered to be the most important to each document. As

current models assign importance to a token in the input document by the label-dependent attention

process, analysis of the focus core assigned to various parts of the documents may indicate the linguistic

patterns used by the model to create predictions for each document.

For the task of understanding clinical notes, it is important to understand which matrix described

the relation between the text and code. Since the distribution of codes across summaries is not bal-

anced. We performed experiments with micro and macro averaged parameters. Micro-averaged val-

ues are computed by independently predicting the pairs (texts, codes). The macro-averaged values are

determined by combining per-label metrics while less frequently reported in multi-label classification

literature.

Mi cr o −R =
P|ζ|

l=1 T PζP|ζ|
l=1 T Pζ+F Nζ

M acr o −R = 1

|ζ|
|ζ|X

l=1

T Pζ

T Pζ+F Nζ

Here, TP and FN stand for True positive and False-negative. ICD code classification is usually rare,

with most of them labelled false and just a few true, we offer a more detailed quantitative metric of our

assessment to the micro-averaged values. The accuracy of a model is how well it captures the portion

of correct prediction among all test data points. Precision is a metric that measures the correctness

among all positive labels whereas Recall is a metric that measures how many positive labels are success-

fully predicted amongst all positive labels. Parametric changes make these values fluctuate. A common

harmonic mean of these values is known as F-measure. The F1 Score is the simply 2*((precision * re-

call)/(precision + recall)). the F1 score conveys the balance between the precision and the recall.
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The value of the PR-AUC (area under the curve) is determined as the region under the ROC curve

for precision, obtained by comparing the true positive rate (TPR) with the false positive rate (FPR) in

different thresholds. The ROC AUC value intuitively tests the likelihood that the formula gives a positive

instance better than a negative one. The lower bound is 0.5, which is the score obtained by a classifier

that classifies the samples as positives with probability 0.5 (a random classifier). ROC AUC tests the

actual negative effects which are extremely frequent for this issue, it has the potential to produce very

high scores (above 0.9). Next section will compare various scores to the chosen baselines in terms of F1,

PR-AUC and P@8.
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CHAPTER 6

Results

Our quantitative evaluation is based on finding full ICD-9 codes on MIMIC-III discharge summaries.

The results are shown in table 10 with two chosen baseline models Mullenbach et al (2018) [8] and Ste-

fano et al (2019)[43]. The table demonstrates the different results achieved after various experiments.

Comparison is being performed with chosen micro evaluation metrics as stated in chapter 5. Our pro-

posed variant of Stefano et al (2019) architecture shows improved results over the state-of-the-art model

[43].

We have performed various other kinds of embeddings to observe its effects over coverage and per-

formance. We have made individual coverage tests for Glove, Word2Vec, FastText and stacking them

with each other. Mainly, we observed nearly 2 % higher coverage of vocabulary with a different GloVe

embedding. This embedding model also expedited learning speed on GPU. Making changes in the em-

bedding layer shows the effectiveness of the model in terms of all evaluation metrics. Out-of-Vocabulary

words are initialized in two ways, In the first case for individual pre-trained models, we use random vec-

tors and marked them to become trainable. Additionally, stack embeddings are introduced to cover the

gap of OOV words and they perform better in terms of precision but loses the performance in all other

metrics. Embeddings with fasttext converge results faster and give full coverage but perform worse than

others in terms of evaluation matrices.

Secondly, we use stack embeddings to join results from both embeddings to increase coverage. As

compared to Stefano et al (2019) work, there is a noticeable increase in micro-precision, micro-recall,

micro-F1 measure on the cost of a decrease in precision area under the curve precision at top 8 codes.

These results are computed on coarse evaluation. Model outperformed contrasted to Mullenbach et al

(2018) in the PR-AUC score only. Codes for these results can be found at https://github.com/

NeelKanwal/AI-Technologies_For_Clinical_Notes.

Our model with five dilation layers and GloVe (42B) pretrained embeddings were tested on the vari-

ous parameters to tune performance. The best results with GloVe embeddings were obtained with ker-

nel size k=3 and dropout probability 0.15, although with variation in these parameters depicted a slight

improvement in precision and recall scores. Our proposed model with GloVe delivers (0.772 vs 0.742 vs

0.6322) compared to the work [43] and CAML model [8]. A noticeable rise of almost 3% precision which
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shows truly detected codes out of total correct and wrong predicted codes. Additionally, a stacked em-

bedding architecture shows a further hike of 1% in precision relative to other architectures.

Moreover, minor growth can be seen in F-1 and micro-recall (0.661 and 0.595 respectively). These

matrices have improved sufficiently at nearly 10% and 6% Mullenbach et al (2018) [8]. We have chosen a

potential evaluation metric of precision at the top 8 codes to demonstrate further comparison. The deep

dilated model shows a slight decline in this matrix. Table 6.1 outlines all relevant scores and chosen eval-

uation matrices. PR-AUC is an average of precision score computed for each recall which inherits how

better a positive class is chosen. A prime improvement can be seen in this area which is nearly 13%. Our

model shows significant development in all areas except precision@8 which is the parameter for the top

eight codes only.

Figure 6.1 & 6.2 shows effects on chosen metrics based on filter size and dropout probability re-

spectively. Extending filter size reduces precision on account of longer n-grams that hauls the informa-

tion from multiple sentences. On the other hand figure, 6.3 & 6.4 visualized the similar outcomes for

Word2Vec embeddings. A legend is placed in between to identify the score based on different colors.

Figure 6.1: GloVe based Embedding with different Kernel Size (dropout=0.15)

Figures 6.5 and 6.6 show the performance of the model with Facebook‘s fastText embeddings. These

embeddings show full coverage based on their mechanism of breaking words but results in an unstable

performance in all matrices except precision. It outcomes a slim rise in precision compared to GloVe

embeddings after best-chosen parameters. In order to compensate for the performance of other evalu-

ation criteria, we have merged embeddings in a stacked manner with FastText and Word2Vec. Figure 6.7

shows two tables with a change in pre-trained embeddings but performance is lesser to the first model.
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Figure 6.2: GloVe based model with K=3 and various dropout probabilities

Figure 6.3: Word2Vec Based Model with K=3 and Varying Dropouts
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Figure 6.4: Word2Vec based Model with Dropout= 0.1 and varying filter size

Figure 6.5: FastText Embeddings with Variable Pd

Figure 6.6: FastText Embeddings with variation in filter size
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Figure 6.7: Stack Embeddings with different flavours
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CHAPTER 7

Conclusion

A large number of categorization and classification schemes are used by the health care system to help

with data management for a variety of tasks including patient care, and retrieval, record storage, statisti-

cal analysis, insurance, and billing. We have proposed an architecture with deep dilation neural network

model for automated clinical notes labeling. The architecture comprises of multiple options of keeping

embedding from pre-trained models or keeping a stack from those models jointly. These embeddings

are statically formed on word level. The embedding vectors are fed to a five-layer convolution neural

network with different spatial filters to understand notes at different levels. The output of this deep di-

lated convolution is fed further to the dot-based attention layer for label-based attention.

The model is assessed on discharge summaries and procedures of the MIMIC-III v 1.4 dataset. Ob-

tained results here surpasses the existing state of the art model in some evaluation metrics. Preprocessed

data is more structures and filter compared to previous studies of shallow CNN and SVM models. We

showed how the GloVe 42B model with 300 dimensions gives a better word coverage and improves pre-

cision where word2vec based unigram embeddings result in more out-of-vocabulary words.

The model was trained based on the early stopping criteria of the F-1 Score. The training was done a

single GPU with 24 gigabytes of RAM. This model has the potentiality of being applied to clinical systems

for supplementary assessment. It can deal with a bit of noise data. This model can be pipelined with the

data-preprocessing system prior to evaluation.
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CHAPTER 8

Future Work

Recent advancement in Natural Language Processing has a huge impact on the deployment of ML algo-

rithms in the healthcare sector. Particularly for medical summaries which can now be better processed

than ever before. A significant trust level can be achieved by improving the model to further accu-

rate automated understanding. Distributed models have given a strong foundation for next-generation

Biomedical Natural Language Processing (Bio-NLP). Several propositions can be presented for this work.

First development can be improving word embeddings from statical embeddings to dynamic (Con-

text Level Embeddings). These dynamic embedding can create a strong semantic understanding of

words that have a different meaning in different sentences. Moreover, embeddings can be created with

newer models like BioWord2Vec or Biological Encoder Representation from Transformers (Bio-Bert)

which are medical terminology oriented. These models can also reproduce lower-dimensional embed-

dings which may result in faster processing and better accuracy.

Secondly, Transformer based models can be implemented for similar tasks on account of its diversity

in NLP tasks. It has encoder-decoder multi-head attention layer [2]. These attention scores can be used

to extract most important sentences in summaries. Seq2seq models have shown great potential in ma-

chine translation and can deal with longer dependencies. In clinical notes, prescriptions are sometimes

longer where some sentences deal with disease identification. This matter can be better understood

with a sentence level self-attention mechanism. Domain specialized Transformer models like Clinical

Bidirectional Encoder Representation from Transformers (Clinical Bert or Medical Bert) can produce

performance enhancements on common clinical NLP tasks respect to nonspecific embeddings [4].

Most of the research in clinical NLP so far has been carried out on the semantic parsing of patient

notes. Forming a state-of-Art Model for a long text-document with the characteristic of the healthcare

domain is pipe-lining work. Especially, dealing with many technical words and typos/misspellings is

tricky at first hand. Upcoming fine-tuned transformer models for the medical domain may totally auto-

mate a clinician job.
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Future Work

Figure 8.1: Transformer Model (Ashish et al 2017[2])
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