
POLITECNICO DI TORINO
Master’s Degree in ICT for Smart Societies

Master’s Degree Thesis

Experimental implementation of a LoRa
sensor network and robustness analysis
of simulated TX-RX LoRa signals using

LabVIEW

Supervisors

Prof. Daniele TRINCHERO

Prof. Vahid MEGHDADI

Candidate

Elena FILIPESCU

1 April 2020

Summary

The Internet of Things (IoT) is the network of physical objects that contain
embedded technology to communicate and sense or interact with their internal
states or the external environment. Low-Power Wide-Area Networks (LPWAN)
represent a set of long-range communication technologies suitable for supporting
IoT applications, which need multi-year battery lifetime and usually send small
amount of data over long distances a few times per hour.

An example of LPWAN is LoRa (Long Range), which refers to the physical
layer of LoRaWAN protocol standardized by LoRa Alliance, an open and non-profit
association. LoRa is the first low cost implementation of Chirp Spread Spectrum
(CSS) modulation for commercial usage suitable for meeting IoT requirements,
such as long range of communication, low power consumption, low data rate, low
cost, due to its simplified star network topology and the use of Industrial, Scientific
and Medical (ISM) radio bands, and high level of robustness to interference.

In this scenario, a LoRa wireless sensor network in a real IoT application is
interesting to be implemented. However, the parameters setting of LoRa transceivers
sometimes can be critical, since many combinations are possible and testing all of
them in a real case might be time consuming. To cope with this, a useful tool is
represented by a simulated LoRa system aimed at providing a performance analysis
of the network. In particular, a preliminary study of the robustness against different
types of interference is essential to reduce the probability of errors due to noise
sources.

The main objectives of this thesis are two: the former concerns an experimental
implementation of a LoRa sensor network installed by some students of Electronic
Engineering inside the building of ENSIL (École National Supérieure d’Ingénieurs
de Limoges), at the University of Limoges in France; the latter consists in the
robustness evaluation of a transmitter-receiver LoRa signal, simulated with the help
of LabVIEW, by analysing the bit error rate under different noise environments.

For what concerns the first part, 30 sensors for monitoring temperature and
humidity are all wirelessly connected to a gateway using LoRa technology and
microcontrollers programmed in C++. The purpose of the infrastructure is to
convey temperature and humidity information from sensors to a gateway, based on

iii

a Raspberry Pi board, which used to upload the data to the IoT platform service
ThingSpeak. However, the overall power consumption is too high, making the
network last about 3 months. Thus, the goal is to increase the battery lifetime at
the sensor level. Therefore, after a preliminary analysis of LoRa operating modes,
some modifications at the power management level have been applied to both the
sensor and gateway side. For what concerns the packet structure, some additional
fields have been added to allow both sides to filter the incoming packets which
belong to this network. On the other hand, all the bytes which were not strictly
necessary have been removed from the node packet. A new power management
technique replaced the original one, which was not optimal. The adopted choices
now allow the gateway to send back a command to properly increase or decrease
the transmit output power of the sensing device, if necessary, according to the
Received Signal Strength Indicator (RSSI) of the LoRa node signal. Also, a new
packet field has been added to the sensing node to check the value of the transmit
output power. Finally, the range of possible power value has been extended to
achieve lower power levels. This way, a contribution in terms of adaptive power
management has been provided to the wireless sensor network. In addition to
this, the computional complexity such as the bit conversion of RSSI has been
moved to the gateway side when possible, since not affected by power limitations.
These operations helped to lighten the burden at the sensor level and to reduce the
related power needs. Furthermore, the LoRa operating mode of the sensing device
after the transmission of the measured data has been changed from continuous
to single receive mode, allowing thus the receiver to go to sleep mode right after
the end of a given receive window, in order to reduce the consumption. Finally,
some bugs were corrected as well as other methods that used to cause a useless
waste of power. For example, some parameters were originally set to values which
did not grant a successful packet reception or the function in charge of the error
reception used to make the program stop, instead of remaining in receive mode.
Moreover, the program of the end-node microcontroller has been adapted in order
to retransmit the same packet in case of timeout interrupt, instead of performing a
new measurement in the same transmit period. Overall, all these new or updated
operations improved the performance of the microcontroller program, especially
for what concerns the early stops or malfunctionings of the original version of the
codes.

At the same time, ThingSpeak has been replaced by a new server, generated
with PHP language and hosting a MySQL database, along with a web user interface.
In particular, the data are sent via HTTP GET request from the Raspberry Pi to
the server, which uploads the records to the database. The HTML webpage has
been created to allow users to access the database records of interest, by means of
a form to select some specific entries and to download a .csv file containing the
visualized data. Eventually, some records can be deleted if the proper password is

iv

inserted. This eased the data retrieving required by the data analysis which will
be performed by students and researchers.

Some parts of this LoRa sensor network can be further developed and improved.
This is the case of the gateway, which could be replaced by a new one able to
work with more than just one channel and a unique spreading factor. Indeed, the
exploitation of different channels and the adaptive control of spreading factors of
LoRa nodes could enhance the orthogonality of LoRa signals and reduce the errors
due to packet collisions, which could be significant in case of more sensing devices.
Moreover, the web user interface is still basic and could be improved by means of a
testing phase, which might be useful to get several feedbacks on the userfriendliness
of the HTML application.

The second part, instead, aims at realizing a simulated TX-RX LoRa signal,
by means of the graphical programming language provided by LabVIEW. The
final purpose is to investigate the LoRa robustness under different noise conditions,
without the need of real hardware transceivers. To accomplish this task, a deep
analysis of the literature was essential to reach a sufficient level of knowledge of
the proprietary LoRa protocol. In the state-of-the-art, several studies tried to
reveal more details about LoRa PHYsical (PHY) layer, intercepting over-the-air
LoRa signals by means of a Software Defined Radio (SDR) enabled LoRa gateway.
Their results and conclusions have been exploited to implement the TX-RX LoRa
signal, with some simplifying assumptions about the frame synchronization and the
channel coding. The implementation of the LoRa modulation, demodulation and
symbol baseband generation constitutes a potential contribution to the available
LabVIEW codes that might be used by whoever is interested in LoRa.

Among the related works considered in the literature, some studies tried to
demonstrate the advantages of using this type of modulation and analysed the
impact of an Additive White Gaussian Noise (AWGN) on the error rate, whose
value is used to evaluate the robustness performance. Based on this, the Gaussian
noise was added to the LoRa signal between the transmitter and the receiver
simulated in LabVIEW. The simulation results in the case of uncoded signals, i.e.
without considering the channel coding, have been validated with the work of Ferré
and Giremus (2018). The only significant difference between the simulated and
thereotical results lies in the minimum error value that can be detected, which
is higher in the first case due to the limited number of packets that could be
held by the simulation. After that, the advantage of introducing the channel
coding technique has been shown. Indeed, considering a BER of around 10−3, an
improvement of −1dB occurs in the value of the Signal-to-Noise Ratio (SNR) due
to the AWGN, as shown in Figure 1a which represents the resulting BER curves
obtained before and after applying the adopted channel coding.

Finally, the addition of a narrowband signal allowed to provide a reliable and
innovative study of the effects of a narrowband interference on the Bit Error Rate

v

(BER) of a LoRa signal, in addition to the condition of AWGN channel. The study
takes into account the BER for different combinations of spreading factor, SNR
of the AWGN and carrier frequency and power of the narrowband signal. The
most important result demonstrates that LoRa modulation is greatly robust to a
narrowband interference, even if this is characterized by a power which is about
10 times higher than the LoRa signal. Indeed, the error rate is worsened in a
significant way only for really powerful narrowband noise sources, i.e. characterized
by a power of about +15dB for the coded case, as shown in Figure 1b. Reasonably,
the analysis for different values of SNR shows that the amplitude of the narrowband
signal has a negligible impact on the BER when the error is already high due to
the Gaussian Noise contribution.

-40 -35 -30 -25 -20 -15 -10 -5

 [dB]

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

BER vs

Unc SF=7

Unc SF=8

Unc SF=9

Unc SF=10

Unc SF=11

Unc SF=12

Cod SF=7

Cod SF=8

Cod SF=9

Cod SF=10

Cod SF=11

Cod SF=12

(a) Coded and uncoded BER vs SNR

-5 0 5 10 15 20 25 30 35

NB Power [dB]

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

BER vs NB Power, =-22dB

SF=7

SF=8

SF=9

SF=10

SF=11

SF=12

(b) Coded BER vs NB Power, Γ = −22dB, f =
1kHz

vi

Table of Contents

List of Tables xi

List of Figures xii

Acronyms xv

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis objectives . 2
1.3 Thesis outline . 3

2 LoRaWAN and LoRa 5
2.1 LoRa PHY . 5

2.1.1 Chirp Spread Spectrum . 5
2.1.2 LoRa PHY Packet Format 7
2.1.3 LoRa PHY Block Diagram 7

2.2 LoRaWAN Network Architecture 8

I Experimental implementation of a LoRa sensor net-
work 11

3 State-of-the-art 13
3.1 Overview . 13
3.2 Architecture . 13
3.3 Tools . 14

3.3.1 Hardware . 15
3.3.2 Software . 16
3.3.3 Libraries . 17
3.3.4 Project building and Firmware upgrading 17

3.4 Algorithms . 17

viii

4 Power Management 21
4.1 LoRa operating modes . 21
4.2 Power consumption test . 22

4.2.1 Results . 23
4.3 Proposed solutions . 23

4.3.1 LoRa node . 23
4.3.2 Gateway . 26

5 Server 27
5.1 Overview . 27
5.2 Database . 27
5.3 Raspberry Pi . 28
5.4 Architecture . 28
5.5 Web user interface . 30

6 Conclusions 33
6.1 Conclusions . 33
6.2 Future works . 34

II Robustness analysis of TX-RX LoRa signals using
LabVIEW 35

7 State-of-the-art 37
7.1 Introduction . 37
7.2 Related works . 38

8 Architecture Design and Implementation 39
8.1 Assumptions . 39
8.2 Design . 40
8.3 Implementation . 41

8.3.1 LabVIEW . 41
8.3.2 Modulation . 41
8.3.3 Coding . 44
8.3.4 Decoding . 46

9 Robustness analysis 51
9.1 Introduction . 51
9.2 AWGN channel . 52

9.2.1 Implementation . 52
9.2.2 Results . 53

9.3 Narrowband interference . 55

ix

9.3.1 Implementation . 55
9.3.2 Results . 56

10 Conclusions 59
10.1 Conclusions . 59
10.2 Future works . 60

Bibliography 61

x

List of Tables

4.1 Current measurements without UART, with antenna 23

9.1 Number of packets per simulation 54

xi

List of Figures

2.1 Symbol-chirp association process - (a) up raw chirp - (b) process
illustration - (c) chirp associated to the mth symbol [9] ©2018 IEEE 6

2.2 LoRa PHY Block Diagram . 8
2.3 LoRaWAN Network Architecture [4] 9

3.1 Project architecture . 14
3.2 Example of sensing node . 14
3.3 Temperature/humidity sensor AM2320 15
3.4 NZ32-SC151, with STM32L151RC 15
3.5 Wireless SX1276 LoRa module . 16
3.6 Raspberry Pi 3 Model B . 16
3.7 LoRa network implementation algorithm 18
3.8 Transmitter output power adjustment 18
3.9 Sleep mode setting . 19

4.1 Power management algorithm . 25

5.1 Table t_h_data . 28
5.2 Insertion of data in the database 28
5.3 Data selection: index.php . 29
5.4 Data retrieving: db.php . 29
5.5 .csv file download and record removal: download.php, delete.php 30
5.6 index.php webpage . 30
5.7 db.php webpage . 31

8.1 Simplified LoRa PHY block diagram 40
8.2 Demodulation procedure . 40
8.3 LabVIEW logo [37] . 41
8.4 LoRa symbol block diagram . 42
8.5 LoRa symbol front panel . 42
8.6 Downchirp block diagram . 43
8.7 Demodulation block diagram . 43

xii

8.8 Input data bit generation block diagram 44
8.9 Hamming encoder loop block diagram 44
8.10 Hamming encoder VI . 45
8.11 Interleaving block diagram . 45
8.12 Gray indexing block diagram . 46
8.13 Gray indexing VI front panel . 46
8.14 Gray coding . 47
8.15 Symbol to bit matrix conversion block diagram 47
8.16 Deinterleaving VI block diagram . 47
8.17 Hamming decoding block diagram 48
8.18 Hamming decoder VI . 49

9.1 LoRa PHY block diagram with channel interference 51
9.2 AWGN block diagram . 52
9.3 BER vs SNR front panel . 53
9.4 SER vs SNR, without channel coding. Comparison with reference

plot ©2018 IEEE . 54
9.5 Comparison between coded and uncoded BER vs SNR 55
9.6 NB interference block diagram . 56
9.7 BER vs NB Power with Γ = −22dB and f = 1kHz 57
9.8 BER vs NB Power with SF = 10, f = 1kHz and varying Γ 57
9.9 BER vs NB Power with SF = 9, Γ = −10dB, B = 125kHz and

varying f . 58

xiii

Acronyms

LPWAN
Low-Power Wide-Area Networks

UNB
Ultra Narrow Band

SS
Spread Spectrum

IoT
Internet of Things

CSS
Chirp Spread Spectrum

CHIRP
Compressed High Intensity Radar Pulse

SF
Spreading Factor

PHY
PHYsical

ISM
Industrial, Scientific and Medical

SNR
Signal-to-Noise Ratio

xv

CRC
Cyclic Redundancy Check

SFD
Start Frame Delimiter

FEC
Forward Error Correction

UART
Universal Asynchronous Receiver-Transmitter

SDR
Software Defined Radio

I2C
Inter-Integrated Circuit

IDE
Integrated Development Environment

RSSI
Received Signal Strength Indicator

AWGN
Additive White Gaussian Noise

SPI
Serial Peripheral Interface

RF
Radio Frequency

PLL
Phase-Locked Loop

RX
Receive

xvi

TX
Transmit

HSI
High Speed Internal

GPIO
General Purpose Input/Output

MCU
MicroController Unit

ID
Identification Number

LAMP
Linux, Apache, MySQL, PHP/Perl/Python

IP
Internet Protocol

LAN
Local Area Network

BER
Bit Error Rate

SER
Symbol Error Rate

FER
Frame Error Rate

LabVIEW
Laboratory Virtual Instrument Engineering Workbench

VI
Virtual Instrument

xvii

NB
Narrow Band

CFO
Carrier Frequency Offset

xviii

Chapter 1

Introduction

1.1 Motivation
The Internet of Things (IoT) is the network of physical objects that contain
embedded technology to communicate and sense or interact with their internal
states or the external environment [1]. IoT applications can improve their decision
making by exploiting the information collected by each connected device. According
to Cisco, 500 billion devices are expected to be connected to the Internet by 2030
[2], implying a huge amount of data exchange.

In this scenario, Low-Power Wide-Area Networks (LPWAN) represent a set of
long-range communication technologies suitable for supporting IoT applications,
which need multi-year battery lifetime and usually send small amount of data over
long distances a few times per hour. Indeed, the main technology attributes of
LPWAN are [3]:

• Long range of communication

• Low power consumption

• Low data rate (the price for the previous two features)

• Low cost of device and deployment

• Simplified network topology and deployment (thanks to the adoption of a star
topology, which allows to remove repeaters)

• Full penetration coverage

• Network scalability and capacity upgrade

1

Introduction

In addition to the classification between licensed and unlicensed, two categories of
LPWAN technologies can be identified according to the physical layer: Ultra Narrow
Band (UNB), e.g. SigFox, and Spread Spectrum (SS), e.g. LoRa (LongRange).

For its low power capability, long communication range and high level of ro-
bustness to interference, Chirp Spread Spectrum (CSS) was traditionally used for
military and space purposes. LoRa is the first low cost implementation of CSS
modulation for commercial usage [4].

In a nutshell, LoRa is the physical layer protocol, while LoRaWAN refers to
the IP network and transport layers on top of LoRa. The LoRaWAN protocol is
standardized by LoRa Alliance, an open, non-profit association of members [5].

In this scenario, a practical implementation of a LoRa wireless sensor network
in a real IoT application is interesting to be pursued. However, the parameters
setting of LoRa transceivers sometimes can be critical, since many combinations
are possible and testing all of them in a real case might be time consuming. To
cope with this, a useful tool might be a simulated LoRa system aimed at providing
a performance analysis of the network. In particular, a preliminary study of
the robustness against different types of interference is essential to reduce the
probability of errors due to noise sources.

1.2 Thesis objectives
The goals of this thesis are two: the former concerns a practical LoRa network
implementation started by some students of Electronic Engineering at the Univer-
sity of Limoges, in France, in collaboration with the Department of Water and
Environment Engineering; the latter consists in the design, implementation and
validation of a simulated transmitter-receiver LoRa signal, by means of LabVIEW.

Experimental implementation of a LoRa sensor network Inside the build-
ing of ENSIL (École National Supérieure d’Ingénieurs de Limoges), 30 sensors
monitoring temperature and humidity are all wirelessly connected to a gateway
using LoRa technology and the data are uploaded to the IoT platform service
ThingSpeak. However, the overall power consumption is relatively high for the
purpose of such an IoT application. Thus, the objective is to increase the lifetime
of the network. Moreover, another request is to replace ThingSpeak with our own
server.

Robustness analysis of a simulated TX-RX LoRa signal This second
objective aims at simulating with LabVIEW a transmitter-receiver LoRa signal,
in order to analyse its robustness to interference, evaluating the behaviour of bit
error rate under different noise environments.

2

1.3 – Thesis outline

1.3 Thesis outline
Here the structure of the thesis is presented.

Chapter 2 will provide an introductory technical overview of the basic principles
of LoRa and LoRaWAN, with a particular attention to the physical layer, essential
to pursue the second objective. Then, following the division of the objectives, the
thesis is split into two parts as follows:

• Part I, concerning the sensors network installed at ENSIL. Chapter 3 will
provide an overview of the state-of-the-art of the developed sensor network,
presenting the issues, the architecture and the tools. Right after, Chapter 4
describes the new power management strategies which have been adopted.
After that, the design and implementation of the new server and web user
interface are shown in Chapter 5, ending with the final Chapter 6 of conclusions.

• Part II, for the LabVIEW simulation and robustness analysis. The state-of-
the-art is analysed in Chapter 7, focusing on the available documents which
provide relevant technical specifications on the physical layer, whose protocol
is proprietary, and on the closed-form approximations for the bit error rate in
the case of LoRa modulation. Then, the architecture design and the LabVIEW
implementation are described in Chapter 8. After that, Chapter 9 collects
the design, implementation and results of the robustness analysis of LoRa to
interference. Chapter 10 is the last chapter with the conclusions of this second
part.

3

4

Chapter 2

LoRaWAN and LoRa

As mentioned in Chapter 1, the LoRaWAN specification is a LPWA networking
protocol designed to wirelessly connect battery operated ’things’ to the Internet in
regional, national or global networks, and it is particularly suitable for meeting IoT
requirements such as bi-directional communication, end-to-end security, mobility
and localization services [6].The underlying physical layer is LoRa.

2.1 LoRa PHY
LoRa is a proprietary spread spectrum modulation technique that is derivative
of Chirp Spread Spectrum (CSS) [7]. It uses the entire channel bandwidth to
broadcast a signal, providing a great robustness to channel noise. Moreover, the
use of a broad band of the spectrum makes the modulation resistant to long
term relative frequency error, multi-path, fading and Doppler effects [8]. The
counterpart is a low data rate, with a range between 250 bps and 50 kbps.

The low cost of LoRa is also maintained by means of the use of Industrial,
Scientific and Medical (ISM) radio bands which are license-free and, in particular,
169 MHz, 433 MHz, 868 MHz (Europe), 915 MHz (USA) and 923 MHz (Asia).

2.1.1 Chirp Spread Spectrum
In general, spread-spectrum techniques allow to compensate for the degradation of
the Signal-to-Noise Ratio (SNR) of a radio channel, by exploiting the increase of the
signal bandwidth. Chirp Spread Spectrum, based on CHIRP signal, which stands
for Compressed High Intensity Radar Pulse, was developed for radar applications
in the 1940s [7]. To encode the information, wideband linear frequency modulated
chirp pulses are used with a frequency that increases (up-chirp) or decreases
(down-chirp) over a certain amount of time and with a constant amplitude.

5

LoRaWAN and LoRa

In the case of LoRa, the signal is transmitted using different values for the
Spreading Factor (SF), which represents the length of each sub-sequence of infor-
mation flow generated from the MAC layer or, equivalently, the number of bits per
symbol, with SF ∈ [7...12]. The number of possible symbols Sm is thus equal to
M = 2SF . Therefore, each symbol is associated to a chirp, whose duration, deter-
mined by the value of SF, depends on the communication requirements. Intuitively,
the higher the SF, the higher the robustness to interference, the lower the reachable
data rate.

The chirp transmitted at time mTs and defined as fmc (t), where Ts = M
B

is the
symbol duration and B (125kHz, 250kHz or 500kHz) is the CSS signal bandwidth,
can be obtained using a cyclic shift of τm = Sm

B
, as shown in Figure 2.1.

Figure 2.1: Symbol-chirp association process - (a) up raw chirp - (b) process
illustration - (c) chirp associated to the mth symbol [9] ©2018 IEEE

According to [10], considering the relation:

fmc (t) = 1
2π

dφmc (t)
dt

(2.1)

The instantaneous phase can be expressed as (2.2) for t ∈
5

− Ts

2 ,−
Ts

2 + τm

6
and

(2.3) for t ∈
5

− Ts

2 + τm,
Ts

2

6
:

φmc (t) = 2π
C
B

2Ts
t2 − Sm

Ts
t

D
(2.2)

φmc (t) = 2π
C
B

2Ts
t2 −

A
Sm
Ts

−B

B
t

D
(2.3)

6

2.1 – LoRa PHY

Then, the complex envelope of the signal modulated with CSS can be defined
as follows:

s(t) =
Ø
k∈Z

ejφ
k
c (t−kTs) (2.4)

2.1.2 LoRa PHY Packet Format
From official documents provided by Semtech [11], the packet is structured as
follows:

• Preamble

• Header (Header and Cyclic Redundancy Check (CRC) in explicit mode only)

• Payload

• Payload CRC

Several studies tried to reveal more details about LoRa PHY layer, intercepting
over-the-air LoRa signals by means of a Software Defined Radio (SDR) enabled
LoRa gateway [12], [13].

The preamble consists in a training sequence of repeated upchirps, followed by
a mandatory preamble of 4.25 symbols, of which 2 synchronization word symbols
and 2.25 downchirps as Start Frame Delimiter (SFD).

According to the presence or absence of CRC, uplink and downlink packets can
be distinguished. Moreover, if implicit header is disabled, the header is encoded in

4
4+CR , where CR is the code rate, i.e. the number of parity bits (from 1 to 4).

Then, depending on the SF, a variable number of data chirps is used to send
the payload.

Finally, CRC is added at the end of uplink packets.

2.1.3 LoRa PHY Block Diagram
According to Semtech European Patent Application [14], data are encoded before
being transmitted. In particular, four operations are applied to the input bits [15]:

• Hamming(M,4) Forward Error Correction (FEC), which adds a certain number
of parity bits (N) according to the coding rate.

• Whitening, that randomizes data, helping the receiver synchronization.

• Interleaving, which distributes bits within the packet. The interleaver is
diagonal.

7

LoRaWAN and LoRa

• Symbol "Gray indexing" (i.e. Gray de-coding) to increase error tolerance.
Indeed, in Gray code two successive values differ in only one bit. It is up to
the receiver the Gray encoding procedure.

The block diagram is represented in Figure 2.2 [16].

Header
Payload
CRC

Hamming	
encoding Whitening Interleaving Gray	

indexing
LoRa	

modulation

Preamble

Received	
symbol

Hamming	
decoding Dewhitening Deinterleaving Gray	

coding
LoRa	

demodulation

Preamble	detection
Synchronization

Bit	operations

Sample	operations

Figure 2.2: LoRa PHY Block Diagram

2.2 LoRaWAN Network Architecture

LoRaWAN network architecture is shown in Figure 2.3.

8

2.2 – LoRaWAN Network Architecture

Figure 2.3: LoRaWAN Network Architecture [4]

The long range star architecture is adopted to reduce the power consumption.
On the left, the end nodes transmit data packets that are typically received by
several gateways that will forward them to the network server via backhaul, e.g.
3G or Ethernet. The network server manages complex operations, such as filtering
redundant packets, security or adaptive data rate.

The communication protocol adopted by LoRaWAN network layer is Aloha
type, where the nodes transmit messages in an asynchronous way, i.e. triggered by
events or scheduled.

Since the gateway must be able to receive packets at the same time by a huge
amount of end-nodes, the network capacity is increased by exploiting adaptive data
rate and a multichannel multi-modem transceiver in the gateway.

Moreover, by exploiting the orthogonality provided by the use of different
spreading factors, multiple signals with different data rates can be simultaneously
handled by the gateway on the same channel.

The devices can be classified as follows:

• Class A, for bi-directional communications where each uplink transmission is
followed by two short downlink receive windows. It grants the lowest power
consumption to the applications that only require downlink right after the
transmission.

• Class B, for battery powered actuators. It adds scheduled receive slots to
Class A.

9

LoRaWAN and LoRa

• Class C, for main powered actuators that can listen continuously with maximal
receive slots.

10

Part I

Experimental
implementation of a LoRa

sensor network

11

Chapter 3

State-of-the-art

3.1 Overview

The development of the sensor network inside the building of ENSIL was managed
by Peng Xu and Rufei Yang, students of Electronic and Telecommunication En-
gineering, under the supervision of professors Vahid Meghdadi and Abdul Karim
Yazbek [17]. The purpose of the infrastructure is to convey temperature and
humidity information from sensors to a central station.

The data analysis is performed by the research institute XLIM and the Water
and Environment Engineering department, in order to identify proper solutions for
energy waste minimization and study the environment aspects, relatively.

To further increase the battery lifetime, the energy consumption must be reduced
at the sensor level.

3.2 Architecture

The packets are wirelessly sent using LoRa protocol to the receiver that forwards
the data to the gateway, via Universal Asynchronous Receiver-Transmitter (UART)
serial port. The gateway, based on a Raspberry Pi board, uploads the data to
ThingSpeak [18] cloud, to be further visualized and downloaded eventually by the
user via Internet. Figure 3.1 shows the project architecture.

13

State-of-the-art

Sensors

Gateway-Rasperry	Pi ThingSpeak Application

LoRa IP HTTP

Figure 3.1: Project architecture

An example of sensing device is provided in Figure 3.2.

Figure 3.2: Example of sensing node

3.3 Tools

In this section, both hardware and software tools are presented.

14

3.3 – Tools

3.3.1 Hardware
• AM2320 sensor: Figure 3.3 shows the temperature and humidity combined

sensor AM2320 [19], which consists of a capacitive moisture element and
an integrated high-precision temperature measurement device. It employs a
standard Inter-Integrated Circuit (I2C) and single-bus output.

Figure 3.3: Temperature/humidity sensor AM2320

• NZ32-SC151 board (Figure 3.4), assembled with a STM32L151RC Microcon-
troller [20], is designed for low power applications. It contains an on board
battery charger for a 3.7V Li-Ion or Li-Polymer battery and it has 3 iMod
ports to add Modtronix iMod modules, such as LoRa SX1276/SX1278 Wireless
iMod module. The board can be powered via USB connector, external battery
or 5V pin headers. The firmware can be upgraded via USB port, by entering
bootloader mode.

Figure 3.4: NZ32-SC151, with STM32L151RC

• Wireless SX1276 LoRa Module: Figure 3.5 shows the inAir9B board, a
868/915 MHz wireless module using the Semtech SX1276 chip [21], which
is pin compatible with STM23L151RC. The SX1276/77/78/79 transceivers
provide long range capability and high interference immunity whilst minimising
current consumption, thanks to the use of Semtech’s patented LoRa modulation
technique. A sensitivity of over -148dBm can be reached and the maximum
output power is +20dBm.

15

State-of-the-art

Figure 3.5: Wireless SX1276 LoRa module

• Raspberry Pi 3 Model B: Figure 3.6 shows the Raspberry Pi model [22], based
on a Quad Core 1.2GHz Broadcom BCM2837 CPU .

Figure 3.6: Raspberry Pi 3 Model B

• Antenna 868MHz 1/4wave

• Li-Polymer battery 3.7V 2000mAh

3.3.2 Software
• System Workbench for STM32 [23], the free Integrated Development Envi-

ronment (IDE) for STM32 microprocessors developed by Ac6 Tools [24].

• Dfu file manager, to generate the .dfu file from a .hex file

• DfuSeDemo, which can be installed by downloading STSW-STM32080 in
"Required software" from [25]. It is used to send the .dfu file in the microcon-
troller memory. The values for Vendor ID, Product ID and Version must be
the same as those used by Dfu file manager;

• hercules_3-2-8.exe, for the serial interface to send and receive data through
the proper USB COM port of a PC.

16

3.4 – Algorithms

3.3.3 Libraries

For the transmission and reception of packets, a GitHub library [26] is required,
whose folder SW4STM32 needs to be set for the workspace, while running System
Workbench. It allows to exploit SX1276Lib.

3.3.4 Project building and Firmware upgrading

First of all, in order to create and run the bootloader, the IDE must generate, in
addition to the binary file, the .hex file which can be obtained by:

Project » Properties » C/C++ Build » Setting » Build Steps »
Post-build steps » Command: arm-none-eabi-objcopy -O ihex

"${BuildArtifactFileBaseName}.elf"
"${BuildArtifactFileBaseName}.hex" && arm-none-eabi-size -B

"${BuildArtifactFileName}"

Then, the project must be rebuilt and the .hex file can be found in the Debug
folder. Now, Dfu file manager can be launched to generate the .dfu file.

After that, the firmware can be upgraded via USB port by means of DfuSeDemo
application. In order to do that, the bootloader mode on the module has to be
accessed, so once it is connected to the PC, one must press and hold BOOT button,
toggle RESET button and, finally, release BOOT button.

At this point, the device is visible in the available DFU devices field of the
application.

Then, the current firmware can be uploaded on the device as follows:

Choose » select *.dfu file » Upgrade

Finally, with RESET button, the program is started.

3.4 Algorithms

This section provides a quick overview of the solution used to reduce the energy
consumption. Figure 3.7 shows the algorithm implemented for the LoRa network,
while Figure 3.8 describes the way the transmitter output power is adjusted.

17

State-of-the-art

LoRa	TX

1.	Send	packet
2.	Listen	5	seconds
3.	sleep	30	minutes

Gateway

Process	(cloud)

End

Packet

If	
Power	OK:		forward	packet

else
Forward	packet	

&
	Send	new	power	to	LoRa	TX

Figure 3.7: LoRa network implementation algorithm

Receive	data

Receiver

Measure	RSSI

Define	power

Send	commands	to
transmitter

Send	data

Transmitter

Time	period	of	30
mins	(changeable)

Receive	parameters

Reconfigure	output
power

T/H

Figure 3.8: Transmitter output power adjustment

18

3.4 – Algorithms

In particular, the calculation is performed according to the Received Signal
Strength Indicator (RSSI) of the receiver. Indeed, the output power, between
0dBm and +14dBm, is associated to eight different RSSI intervals, that allow to
estimate the distance between the node and the gateway.

Moreover, to improve the battery lifetime, the device is put in sleep mode
considering each component, i.e. the microprocessor, the radio module and the
sensor, as shown in Figure 3.9.

Disactivate	GPIO
D/E/H

Initialization

while(1)

Enter	Stop	Mode

Time	period	of	30	mins

Exit	from	Stop	Mode

Figure 3.9: Sleep mode setting

Applying all these methods, the network can last around 3 months, which is not
optimal.

19

20

Chapter 4

Power Management

For this part, the IDE has been used with C++ as programming language.

4.1 LoRa operating modes
From the Semtech datasheet of SX1276 [21], different operating modes are available,
among which:

• Sleep: low-power mode in which only Serial Peripheral Interface (SPI) and
configuration registers are accessible. No blocks are enabled. The supply
current has a typical value of 0.2µA and a maximum of 1µA;

• Standby: mode in which crystal oscillator and top regulator are turned on,
while Radio Frequency (RF) part and Phase-Locked Loop (PLL)s are disabled.
Typical and maximum values for the supply current in Standby mode are
1.6mA and 1.8mA, respectively.

• Transmit (TX): frequency synthesizer and transmitter blocks are enabled.
When the packet transmission ends, the module goes to Standby mode.

• Receive (RX) continuous: all the blocks required for reception are enabled
until a new user request is made to change operating mode.

• RX single: all the blocks required for reception are enabled until a valid packet
has been received and then the SX1276 returns to Standby mode.

Practically, after each transmission, so at each OnTxDone routine, the radio has to
be manually set to Standby or Sleep mode, despite the datasheet specification.

Moreover, registers are readable in all the modes, but Sleep or Standby modes
must be called in order to write into the configuration registers.

21

Power Management

Single RX mode and Continuous RX mode

In battery operated systems or in systems with a limited number of timers for the
companion microcontroller, the use of the timeout present in LoRa single reception
mode allows to reduce the amount of time spent in reception, while not using any
of the companion MicroController Unit (MCU) timers. The adoption of this mode
is suitable for the power saving purposes.

At the end of the reception, the RxTimeout interrupt is triggered and used to
wake up the companion MCU. Only if the data reception is corrupted by external
perturbations, the interrupt is generated before the end of the reception and the
device goes to Standby mode.

On the other hand, the LoRa continuous reception mode is adopted in systems
with no power limitations or where the use of a companion MCU timer is preferably
chosen over the radio embedded timeout system. In this configuration, the radio is
continuously ready for the reception of LoRa packets, until the companion MCU
timer sets it into another operating mode.

Practically, the single reception mode should only be used when the arrival time
window of the packet is known, in order to allow a temporal window for receiving
a possible incoming packet, after which, if nothing arrives, the timeout interrupt is
raised and the radio goes to Standby. Otherwise, the RxDone routine is generated
before going to Standby.

4.2 Power consumption test
A simple program has been developed to test the LoRa network and, in particular,
to study the different behaviors of the main radio modes.

Initially, two devices, i.e. two couples of inAIR9B and NZ32-SC151 boards, have
been programmed as follows:

• A transmitter, transmitting a packet every 20 seconds. At each OnTxDone
interrupt, the module is put in single reception mode for about 10 seconds,
after which, RxDone routine or the receiver timeout are called depending on
the reception of a valid packet, or not.

• A receiver, in continuous mode. At each successful reception, it answers back
to the transmitter. Then, it is put in transmit mode and it goes back to
continuous receive mode until the next incoming packet.

It is important to properly set the value of LORA_SYMBOL_TIMEOUT, because if it
is too short the receive timeout interrupt will be raised before the actual timeout
value. In this case, its value has been found by inspection, by checking on Hercules
application that the packet sent by the transmitter was effectively received.

22

4.3 – Proposed solutions

Subsequently, to properly measure each contribution to the current consumption,
the microcontroller is put in sleep mode. Moreover, after the packet reception
or after 5 consecutive RX_TIMEOUT interrupts, the sensor power is turned off, by
disabling the General Purpose Input/Output (GPIO) and then the STM32 enters
the stop mode, after setting a wakeup period.

Therefore, the High Speed Internal (HSI) clock is enabled after waking up with
the STM32L151RC and the sensor power is turned on.

Also, it is important to notice that the microprocessor always needs to go to
deep sleep mode after SX1276 and, especially, after setting the wakeup period,
otherwise the LoRa module may never wake up again.

Moreover, the UART was disconnected during the measurement to reduce the
consumption.

4.2.1 Results
In order to measure the current consumption, a resistor of 10Ω was used to calculate
the voltage due to the current supply. Therefore, the current values, shown in
Table 4.1 have been computed by means of the simple formula I = V/R. The
transmit case is related to a transmit output power of +14dBm

Table 4.1: Current measurements without UART, with antenna

Tx Rx Sleep LoRa Sleep LoRa/STM32/Sensor
Current [mA] 75 20 12 1.2

Then, LoRa sleep mode allows to save around 8mA, while the microcontroller
and the sensor together 10.8mA. Considering the time spent in transmit mode, its
current contribution can be neglected compared to the others.

4.3 Proposed solutions
4.3.1 LoRa node
The structure of the packet sent by the end-node has been optimized, even though
the size was maintained equal to 10.

A NET_ID field was added and set to 56, in order to filter and recognize only
the LoRa packets belonging to this network.

Moreover, the RSSI bytes have been deleted because not strictly necessary on
the node side.

On the other hand, a field for TX_OUTPUT_POWER has been appended to help the
power management.

23

Power Management

To sum up, the new packet has been defined as follows: ID number, message
number, 2 symbols for temperature, 2 symbols for humidity, 2 symbols for voltage
level, network ID, transmit output power.

LORA_SYMBOL_TIMEOUT was increased up to 11 symbols, value found by inspec-
tion, in order to grant a successful packet reception.

In OnRxDone callback, a condition is added to filter only the packets whose buffer
size is equal to 3, the ID_NO of the incoming packet is equal to the Identification
Number (ID) of the current node and the network ID is correct.

OnRxError function has been modified too, since the testing phase allowed to
notice that the program used to early block here. This issue was managed by calling
again radio.Rx(RX_TIMEOUT_VALUE) function, in order to remain in receive mode.

ticker_callback, which is the function recursively called, has been changed to
avoid to always read the sensor data and the battery value in case of receive timeout,
which means that the answer from the gateway is not received. In fact, these
operations must be done only at the first occurrence of the timeout interrupt, i.e.
if the counter variable is equal to 0. In the original version, indeed, the device used
to perform the measurements at each attempt of packet transmission, increasing at
each time the message number value. That way, the gateway used to receive up to
5 different packets almost simultaneously, even though the first one was actually
processed, with a consequent waste of energy on the sensing node.

Consequently, with this update, each device performs only one measurement
every 30 minutes.

Instead of continuous receive mode, the single receive mode is used to set up
the modem, by changing the code as follows:

radio.SetRxConfig(
MODEM_LORA,
LORA_BANDWIDTH,
LORA_SPREADING_FACTOR,
LORA_CODINGRATE,
0,
LORA_PREAMBLE_LENGTH,
LORA_SYMBOL_TIMEOUT,
LORA_FIX_LENGTH_PAYLOAD_ON,
0,
LORA_CRC_ENABLED,
LORA_FHSS_ENABLED,
LORA_NB_SYMB_HOP,
LORA_IQ_INVERSION_ON,
false);

The last parameter corresponds to rxContinuous, that sets the reception in
continuous mode if true, single mode if false. Also, another difference to be taken

24

4.3 – Proposed solutions

into account is the value of RX_TIMEOUT_VALUE given to the function used to set
the radio in reception mode for a given time in microseconds, which is equal to 0
for continuous receive mode.

As suggested by the removal of the corresponding packet field, the part related
to the bit conversion of the RSSI of the gateway has been removed, limiting thus
the computational complexity, which is better to move to the gateway side, not
power constrained.

Gateway End-node

tx_output_power
+

power_set

T/H
Receive	data Send	data

RSSI

Send	command

Power_set=+1

Power_set=-1 Power_set=0
>-105

<-115

else

Receive	parameters

New	power
in	[-4,	+14]dB

yes

no

Reinitialize	power

Sleep	30	minutes

Figure 4.1: Power management algorithm

Finally, RX_DONE case has been updated too. After checking the destination
node ID of the received packet, the value contained in Power_set field is considered
and used to reinitialize the transmit radio modem as follows:

• Power_set=0: the packet is processed with no effects.

• Power_set=±1: this value is added to the actual TX_OUTPUT_POWER.

25

Power Management

If the new value is in the range [−4,+14], the Reinitialize_TX_Modem function is
called with this new parameter for the power setting. Differently from the original
version, the power range has been extended in order to achieve lower power levels.

The procedure for the transmit output power value adjustment is summarized
in Figure 4.1.

4.3.2 Gateway
Similarly to the LoRa node case, the NET_ID constant was added, while
RX_TIMEOUT_VALUE has been set equal to 0, since the continuous receive mode is
employed here.

The packet structure has been reduced from 4 to just 3 symbols: destination
node ID, network ID and the power command, which can assume the values 0, +1,
-1.

In OnRxDone, the check on the NET_ID and buffer size was added. In this case,
the continuous receive modem is used.

Reasonably, the old part related to the bit conversion for the RSSI symbols
sent by the end-node has been removed, since the RSSI is measured only by the
gateway.

Before printing the data on the Raspberry Pi to update the ThingSpeak channel,
the program used to wait 17 seconds, which can be here avoided since ThingSpeak
is replaced by another server, that does not require a delay.

Moreover, a filter for redundant received packets was added, since now the
end-node can retransmit the same packet up to 5 times in case of 5 consecutive
receive timeout interrupts, in the worst case. For this reason, a support buffer has
been created to save the previous values for the node ID and message number of
received packet. Any new incoming packet is processed only if these two fields are
different from the old ones.

Finally, the transmit output power adjustment is modified. If the RSSI value is
higher than −105, Buffer[2], which is the field hosting the power command, is
set to −1, in order to reduce the transmit power. Instead, if it is lower than −115
the gateway asks the end-node to increase the power of one unit, otherwise, it will
forward 0.

26

Chapter 5

Server

5.1 Overview

The purpose of this phase is to build our own server in order to be able to replace
the use of ThingSpeak, which does not offer the full ownership of data to the end
user.

Initially, while waiting for the necessary permissions from the administration, a
local database was designed and implemented on the Raspberry Pi by means of the
Linux, Apache, MySQL, PHP/Perl/Python (LAMP) stack, a group of open-source
software that is typically installed together to enable a server to host dynamic
websites and web applications. Thus, an Apache web server was exploited together
with a MySQL database to store the data. The dynamic content of the web user
interface is processed using PHP language.

The final version of the server relies on an Internet Protocol (IP) address assigned
by the administration, which makes it accessible only inside the university Local
Area Network (LAN).

5.2 Database

Figure 5.1 represents the structure of the table used to store data in the MySQL
database ensil_wsn_db. The first column is related to the ID number of the current
entry in the table, therefore it has been set as an integer with an auto-increment
primary key. The other columns are for the source ID of the end-node, the message
number, the temperature in degree Celsius, the humidity in percentage, the battery
level in millivolt, the date string and the transmit output power used by the LoRa
node in decibel.

27

Server

Figure 5.1: Table t_h_data

5.3 Raspberry Pi

HTTP
t_h_data

MySQL
loraweb.unilim.fr/upload.php

Figure 5.2: Insertion of data in the database

Once the packet is received by the gateway, the program installed on the Raspberry
Pi reads and extracts the values of each field and adds the current date and time.
Then, it exploits an HTTP GET request with the format key=value for each
parameter in order to upload the data to the server, where the file upload.php is
in charge of inserting the new records to the table. The procedure is graphically
represented in Figure 5.2.

5.4 Architecture
The server, located at loraweb.unilim.fr, hosts five different programs:
upload.php, index.php, db.php, download.php and delete.php. A further file,
global.php collects the variables used to store the names of the server, user and
database and the secret password for deleting the database records.

upload.php is in charge of reading the data sent via HTTP by the program
running on the Raspberry Pi and updates the database.

index.php contains an HTML form, used to apply the desired filters to the
records of interest for the user. It allows to choose one specific source ID, which is

28

5.4 – Architecture

correlated to the sensor location, through a drop down menu. Moreover, a range of
values can be selected for the humidity, temperature, battery and datetime. These
values are then saved inside the PHP session as global variables, used to apply the
MySQL query. This webpage is shown by default when accessing the server url.
The procedure is shown in Figure 5.3.

index.php

POST	(submit)
t_h_data

query	(db.php)

loraweb.unilim.fr

ensil_wsn_db

Figure 5.3: Data selection: index.php

db.php applies the query to the database according to the requests submitted
by the user and shows the resulting records. It allows to send a request for deleting
some entries, sensitive operation that is allowed only by entering a specific password.
A download button is inserted to eventually download a .csv file containing the
selected records. This last function is managed by download.php, where the PHP
session is ended and all the global variables which were previously set are destroyed.
The data retrieving and download request are represented in Figure 5.4.

db.php

POST	(download)
t_h_data

records

loraweb.unilim.fr

ensil_wsn_db

query	(download.php)

Figure 5.4: Data retrieving: db.php

After getting the .csv file, if triggered by the proper button in db.php, delete.php
applies a delete query to the database using the parameters chosen by the user in
the previous webpage in case of correct password. This last procedure is described
in Figure 5.5.

29

Server

db.php	+	.csv

POST	(delete)
t_h_data

records

loraweb.unilim.fr

ensil_wsn_db

query	(delete.php)

Figure 5.5: .csv file download and record removal: download.php, delete.php

5.5 Web user interface
The proposed user interface consists of a first form in which the desired records
can be selected by means of a list of range values for the temperature, humidity,
battery and period of time, as shown in Figure 5.6a, where a drop down menu,
visible in Figure 5.6b, allows to select the sensor ID of interest, or all. To ease the
selection, each source node is correlated with the actual position.

(a) Insert filter webpage (b) Drop down menu for source ID

Figure 5.6: index.php webpage

30

5.5 – Web user interface

After that, the user can press the download button in order to get a .csv file
containing all the current records that are visualized on the webpage, as shown
in Figure 5.7a. Moreover, if necessary, some records can be deleted, by means of
a new MySQL query of type DELETE, whose parameters are chosen again though
a filtering mask, as represented in Figure 5.7b. If the password is not correct, an
error message is visualized.

(a) Data visualization

(b) Deleting data procedure

Figure 5.7: db.php webpage

31

32

Chapter 6

Conclusions

6.1 Conclusions
The purpose of this part was to improve the adopted techniques at the power
management level of the LoRa sensor network installed in the building of ENSIL.
Moreover, a new server was necessary in order to replace the use of ThingSpeak,
together with a web user interface to retrieve the data.

The main goal was to reduce the energy consumption of the sensor nodes, in
order to increase the battery lifetime. To accomplish this task, some changes have
been applied to both the node and gateway C++ programs.

For what concerns the packet structure, a field containing the network identifi-
cation number has been added to both sides to perform packet filtering.

Other additional fields have been introduced since required by the new power
management algorithm, such as the actual transmit output power for the LoRa
node packet. This value, in fact, together with the RSSI is taken into account by the
gateway to properly reinitialize the transmit radio modem. According to the RSSI,
the transmit output power of the sensing node is increased or decreased by 1, in the
range [−4,+14]dB, which has been extended with respect to the state-of-the-art
version in order to achieve lower power values. To deliver this command, a field in
the packet coming from the gateway is used to communicate if the power must be
increased, decreased or not.

Some complex operations, such as the RSSI bit conversion have been moved to
the gateway side only, to limit the computational complexity of the sensor node,
indeed the gateway has no restrictions in terms of power supply.

Moreover, at the sensing node side, the Single RX mode replaced the Continuous
RX mode to further limit the power consumption. Then, to avoid to consume
unnecessary energy, a correction has been applied to the program to make that in
case of receive timeout events, the node attempts to retransmit the same packet

33

Conclusions

and not a new one, which would derive from a new measurement.
At the same time, a filter for redundant packets has been added to the gateway

side by means of a support buffer, in order to print on the Raspberry Pi only the
first occurrence of that packet.

These operations gave a contribution to the wireless sensor network, in terms
of performance of the microcontroller program, by means of bug correction and
optimization of power management choices.

On the other side, a new server based on a MySQL database has been designed
to allow the data retrieving, visualization and download to ease the data analysis
performed by the researchers in charge.

Also, a web user interface has been created by means of PHP language, to allow
the user to search for the data related to a particular room, a given period of time
or other criteria.

6.2 Future works
Some parts of this LoRa sensor network can be further developed and improved.
This is the case of the gateway, which could be replaced by a new one able to
work with more than just one channel and a unique spreading factor. Indeed, the
exploitation of different channels and the adaptive control of spreading factors of
LoRa nodes could enhance the orthogonality of LoRa signals and reduce the errors
due to packet collisions, which could be significant in case of more sensing devices.

Moreover, the web user interface is still basic and could be improved by means
of a testing phase, which might be useful to get several feedbacks on the user-
friendliness of the HTML application.

34

Part II

Robustness analysis of
TX-RX LoRa signals using

LabVIEW

35

Chapter 7

State-of-the-art

7.1 Introduction
As anticipated in Chapter 2, LoRa PHY layer protocol is proprietary, therefore,
special hardware provided by some companies, e.g. Semtech, is required for the
transmission and reception of LoRa packets.

Semtech, a major provider of LoRa devices and services, has published some
documents about LoRa modulation basics [7]. In addition to this, the European
Patent Application [14], whose inventors are Olivier Bernard André Seller and
Nicolas Sornin, is available.

However, the information provided by these public documentations is not suffi-
cient to build a decoder able to interoperate with real hardware LoRa transceivers.

The full access to the LoRa PHY layer may have interesting implications in terms
of research and development of this wireless technology. Indeed, the possibility
of applying modifications to the PHY layer could improve the protocol security
and performance. Moreover, it could enable some software simulations of the PHY
layer, in order to study the effects of different noise channel conditions without the
need of multiple hardware transceivers.

Several are the attempts of decoding LoRa modulation scheme, by means of
a reverse engineering approach, such as the already cited Matthew Knight, who
presented a first complete analysis of the PHY layer. However, in his work the
interleaving pattern is assumed to be different from the one described in the patent
application, fact that was not confirmed by other studies [27].

Furthermore, different open-source implementations [27] [15] [28] found different
whitening sequences, due to the fact that obtaining an error-free transmission is
quite difficult.

Moreover, an error in the reverse engineering process highly affects the perfor-
mance.

37

State-of-the-art

7.2 Related works
With reverse engineering in mind, several studies tried to exploit the acquired
information, in order to be able to simulate the physical layer and analyse LoRa
robustness. In particular, the Bit Error Rate (BER) performance of LoRa modu-
lation is crucial to be able to assess the robustness. Closed-form approximations
were derived for both Gaussian noise and Rayleigh fading channels [29]. The error
rate of LoRa-like modulation was deeply studied in range analyses [30].

A study [31] confirmed the good transmission properties of CSS modulation over
time and frequency selective channels and, then, it implemented channel coding,
whitening and interleaving using GNU Radio, showing the beneficial gain. On
the other hand, the large propagation losses due to the long range and the larger
footprint make CSS prone to collisions with other noise sources, possibly greater
than the coding gain [32].

Another one [33] performed a Frame Error Rate (FER) analysis that also
includes the channel coding, interleaving and Gray mapping of LoRa physical layer.

The performance gain of channel coding was studied in [34] and compared
to uncoded transmissions, in both Additive White Gaussian Noise (AWGN) and
multipath channels.

Others based their research only on the theory. A numerical approximation for
the LoRa BER performance under the same SF interference was derived in [35],
but it does not take into account the channel coding, whitening and interleaving
stages.

A further interference analysis demonstrated that interfering signals from other
LoRa devices cause significant errors in reception if they have the same chirp
rate [36].

None of these works focussed the attention on the interference case with nar-
rowband signals.

38

Chapter 8

Architecture Design and
Implementation

8.1 Assumptions

Before the description of the architecture design of the TX-RX LoRa signal, some
assumptions must be taken into account, as follows:

• Preamble detection and synchronization: for simplicity, the synchronization
is assumed to be perfect, therefore, the LoRa packet does not contain the
preamble nor the header field in its structure. Moreover, CRC is not appended
to the payload.

• Data whitening, that should be applied to induce randomness into the symbols
to provide more features for clock recovery, is not included in this simulation.
Indeed, it has a minimal impact on the bit error rate [34].

• Hamming Code is used to perform FEC with 3 parity bits, since Hamming(8,4)
does not provide any advantage in terms of error correction with respect to
Hamming(7,4).

• Diagonal interleaving, with a downward direction, even though it appears to
have an upward direction [27], in contrast with LoRa patent specifications.
However, this detail does not change the interleaver performance in the
simulation, indeed a completely corrupted chip continues to affect only one
single bit per codeword.

39

Architecture Design and Implementation

8.2 Design

Figure 8.1 shows the new LoRa block diagram which takes into account the
assumptions.

Payload Hamming(7,4)	
encoding Interleaving Gray	

indexing
LoRa	

modulation

Received
	data	bits

Hamming(7,4)	
decoding Deinterleaving Gray	

coding
LoRa	

demodulation

Bit	operations

Sample	operations

Figure 8.1: Simplified LoRa PHY block diagram

Moreover, the demodulation stage is performed as illustrated in Figure 8.2. The
modulated symbol is multiplied by the reference downchirp, which can be set as
the complex conjugate of the upchirp signal of the symbol 0.

Then, the magnitude of the Fast Fourier Transform is applied to the resulting
signal.

Finally, the received symbol is estimated by computing the index of the maxi-
mum.

s[n]

s*	[0]

FFT |			| arg	max
k∈	S

symbol

Figure 8.2: Demodulation procedure

40

8.3 – Implementation

8.3 Implementation

8.3.1 LabVIEW

Figure 8.3: LabVIEW logo [37]

Laboratory Virtual Instrument Engineering Workbench (LabVIEW) (logo in Fig-
ure 8.3) is a proprietary product of National Instruments [38], offering a graphical
programming language. It allows to visualize every aspect of the application,
including hardware configuration, measurement data and debugging.

In this context, it has been used to simulate a TX-RX LoRa signal.

8.3.2 Modulation
Before applying all the coding techniques, the modulation stage must be taken into
account.

Below, the generation of the LoRa symbol baseband is presented, together with
the complex conjugate of the reference chirp.

Finally, the demodulation phase, which allows to retrieve the original symbol, is
presented.

LoRa symbol baseband

A modification of the equation (2.2) has been derived for the phase of LoRa
baseband:

φ = 2π
C
B

2Ts
(ndt)2

D
(8.1)

Where the time has been discretized and n can assume any integer value in
[−N

2 ,+
N
2]. Also, dt is equal to 1

OSF×B , with OSF representing the oversampling
factor.

Figure 8.4 shows the block diagram of the LoRa symbol baseband generation.
On the left, the spreading factor, bandwidth and symbol are given as input, where
the last one should be a natural number in the range [0, 2SF].

41

Architecture Design and Implementation

Then, a for loop is added, where N is the loop count, set equal to 2SF ×OSF
and i is the loop iteration. The result of the loop is the phase that is used to
modulate the given symbol.

After that, the complex number is derived from the polar representation, with
r = 1.

In Figure 8.5 the front panel with all the mentioned inputs and output is visible.
For what concerns the output, for brevity’s sake, only the first entries are shown.

Figure 8.4: LoRa symbol block diagram

Figure 8.5: LoRa symbol front panel

Downchirp

Figure 8.6 shows the downchirp generation. It is important to maintain the same
value as the LoRa symbol baseband for the oversampling factor and, in order
to get the complex conjugate, the sign minus is added at the end of the phase
computation.

42

8.3 – Implementation

Figure 8.6: Downchirp block diagram

Demodulation

Figure 8.7: Demodulation block diagram

For what concerns the demodulation process, the LoRa symbol baseband generation
is inserted into a for loop whose N is equal to the size of the array of input symbols,
as shown in the left loop in Figure 8.7. At the same time, the downchirp is created
below.

Then, a for loop takes as input the incoming LoRa signal and multiplies each
component by the downchirp. After that, since an oversampling factor was used,
the array is decimated according to the value of OSF .

At this point, to the first resulting decimated array, the FFT is applied with
size equal to 2SF . Afterwards, the complex number is converted into its polar
representation and the modulus is considered to take the maximum index of the
array.

Finally, by means of Quotient and Remainder Function, the received symbols

43

Architecture Design and Implementation

are extracted, and, since it is still an ideal case without any source of interference,
they must be coincident with the original ones.

8.3.3 Coding
In order to increase the robustness to interference, several operations are applied
to payload data before being modulated.

The following blocks are all inserted into a general for loop that allows to
simulate the desired number of LoRa packets.

Hamming encoding

Figure 8.8: Input data bit generation block diagram

First of all, the Hamming(7,4) algorithm requires a bit matrix {0, 1}SF×4, i.e. SF
arrays of 4 data bits, a monodimensional array of length SF ×4 is randomly created
in the first loop in Figure 8.8. After that, the second loop arranges the bits into a
real 2D array, with SF arrays each of 4 bits.

Figure 8.9: Hamming encoder loop block diagram

The loop in Figure 8.9 applies the Hamming encoding algorithm to each subarray
of 4 bits. The output is a bit matrix {0, 1}SF×(4+CR), where CR = 3 is the number
of parity bits.

44

8.3 – Implementation

Inside the loop, a Virtual Instrument (VI) manages the Hamming(7,4) algorithm,
whose front panel is shown in Figure 8.10a. The block diagram in Figure 8.10b was
built by exploiting LabVIEW MathScripts Node provided by the MathScript RT
Module engine. The four input data bits, represented by vector x, are multiplied by
the code generator matrix [39] and, then, taken modulo 2. This way, the original
data bits are encoded and converted into an array y of 7 bits.

(a) Hamming encoder VI
front panel

(b) Hamming encoder VI block diagram

Figure 8.10: Hamming encoder VI

Interleaving

Figure 8.11 represents the interleaving stage. The input is a matrix {0, 1}SF×(4+CR),
which is immediately converted into a real 2D array, in order to be compliant with
the type of input of the Rotate 2D Array VI [40], which performs a rotation of
180°.

Then, the 2D array is transposed in order to perform a downward circular shift
by column index with Rotate 1D Array Function inside a for loop.

Finally the 2D array is transformed into a matrix {0, 1}(4+CR)×SF .

Figure 8.11: Interleaving block diagram

45

Architecture Design and Implementation

Gray Indexing

Figure 8.12: Gray indexing block diagram

In Figure 8.12, the matrix coming from the interleaving block must be converted into
a 1D array of 4+CR symbols. The two nested loops have the function of converting
each binary number with SF bits to its equivalent decimal representation.

Therefore, a further for loop applies the Gray decoding algorithm [41], whose
front panel is shown in Figure 8.13.

The resulting array is given as input to the modulation block presented in
Chapter 8.3.2.

Figure 8.13: Gray indexing VI front panel

8.3.4 Decoding

After the demodulation, all the channel coding techniques are applied in reverse.

Gray Coding

The for loop in Figure 8.14a takes as input the array of demodulated symbols,
the array size, which is still 4 + CR, and the value of the spreading factor. These
parameters are required by the Create Gray Code VI [41], whose front panel is
visible in Figure 8.14b.

46

8.3 – Implementation

(a) Gray coding block diagram (b) Gray Code VI front panel

Figure 8.14: Gray coding

De-interleaving

Before applying the opposite operation of interleaving, the array of symbols must be
mapped into a matrix {0, 1}(4+CR)×SF . In the for loop, each symbol is converted
into an array of SF binary bits, by means of some array manipulation blocks.

Then, the 2D array is transformed into a matrix. The related block diagram is
represented in Figure 8.15.

Figure 8.15: Symbol to bit matrix conversion block diagram

After that, the obtained matrix is given as input to the De-interleaving VI,
whose schema is visible in Figure 8.16. The matrix is converted into a 2D array
and a for loop is used to apply the downward circular shift by column index.

After the transposition, the 180° rotation is applied and the deinterleaved matrix
is obtained.

Figure 8.16: Deinterleaving VI block diagram

47

Architecture Design and Implementation

Hamming decoding

Figure 8.17 shows the bit operations applied for the FEC. The incoming matrix is
converted into the equivalent 2D array in order to retrieve each subarray of 4 +CR
bits, that are given as input to the Hamming decoder VI. The result is an array
of 4 bits, which must be coincident with the original ones sent by the transmitter
side. After the for loop, the matrix is converted into a 1D array.

Figure 8.17: Hamming decoding block diagram

In this LabVIEW MathScripts Node in Figure 8.18a, the parity-check matrix H
is defined to compute the syndrome vector at the receiver side, by means of the
modulo 2 operation between the received bit array and H. According to the non-
zero value of the syndrome vector, computed by means of polyval function, the
bit that was eventually flipped can be assessed and corrected. The correspondence
between the value of S = polyval(s,2) and the bit error position is defined in the
switch.

Finally, the bits can be decoded to the original four bits, by means of the matrix
R which is multiplied by the transposed corrected vector y.

An example of conversion is provided in the front panel in Figure 8.18b.

48

8.3 – Implementation

(a) Hamming decoder VI block diagram

(b) Hamming decoder VI front panel

Figure 8.18: Hamming decoder VI

49

50

Chapter 9

Robustness analysis

9.1 Introduction
The analysis of LoRa robustness in noise channels has been performed considering
two scenarios as follows:

• LoRa modulated signal, uncoded, with Gray code.

• LoRa modulated and coded signal.

In this simulation the presence of Gray code does not much affect the error
calculation, because all symbol errors are equally likely when Carrier Frequency
Offset (CFO) is not introduced [34].

Figure 9.1 shows the second case, including all the channel noise sources that
will be taken into account in the simulations. The Additive White Gaussian Noise
(AWGN) is added to the modulated signal, together with the Narrow Band (NB)
interfering signal. At the receiver side, the demodulated and decoded bits are
compared with the transmitted ones, in order to compute the bit error rate.

Payload Hamming(7,4)	
encoding Interleaving Gray	

indexing
LoRa	

modulation

Received
	data	bits

Hamming(7,4)	
decoding Deinterleaving Gray	

coding
LoRa	

demodulation

+AWGN NB=?BER

Figure 9.1: LoRa PHY block diagram with channel interference

51

Robustness analysis

9.2 AWGN channel

By definition, the SNR is defined as the ratio between the signal power and the
noise power as follows.

SNR = Psignal
N0B

(9.1)

Since the modulus of the polar representation of LoRa symbol was set equal to 1,
Psignal = 1. Consequently, the relation in (9.2) can be derived:

σ2 = N0B = 1
SNR ·B

·B = 1
SNR

(9.2)

9.2.1 Implementation

The AWGN is added to the modulated signal as a complex number whose real and
imaginary parts follow a Gaussian noise pattern with standard deviation equal to

1√
SNR

.
Figure 9.2 shows the block diagram of the LabVIEW implementation. On the

left, the SNR value is converted from decibel into decimal and it is divided by two.
Then, the square root is taken to derive the standard deviation, which is given
as input to two Gaussian White Noise VI blocks, respectively for the real and
imaginary part. The size of the modulated signal is used for the number of required
samples.

Finally, the two parallel outputs are used to derive a complex number, which is
added to the modulated signal.

Figure 9.2: AWGN block diagram

In the real implementation, a for loop is used to compute the BER for different
values of SNR, as shown in the front panel in Figure 9.3

52

9.2 – AWGN channel

Figure 9.3: BER vs SNR front panel

9.2.2 Results
This part shows the simulation results of the error rate with varying SNR, identified
as Γ, without and with channel coding and interleaving.

Uncoded

This section treates the graphical validation of the obtained SER curves, by means
of the comparison with the theoretical and experimental results of Ferré and
Giremus [9], under the same condition of AWGN. To do this, a conversion from
BER to SER was required and derived by approximating the probability of symbol
error rate with twice the probability of bit error rate.

The theoretical approximation for the SER is reported for completeness in
(9.3), where N = 2SF , NMC is the number of iterations for the Monte Carlo
approximation, W is a Gaussian noise sample with variance σ2 and Fχ2 is the
cumulative density function of the χ2 distribution with 2 degrees of freedom:

Pwrong_symbol = 1
NMC

NMCØ
i=1

1 −

Fχ2

---√N +W (i)

---2
σ2

N−1

(9.3)

53

Robustness analysis

Figure 9.4: SER vs SNR, without channel coding. Comparison with reference
plot ©2018 IEEE

Figure 9.4 was built by superimposing the LabVIEW simulation curves to the
graphical results of the cited authors.

From the comparison between the theory and simulation, small differences can
be spotted in the length of the simulated curves that are cut for low error values.
The reason lies in the limited number of packets per simulation, that does not allow
to detect error with a very high precision.

Besides that, the significant level of overlapping of the graphs proves the relia-
bility of the LabVIEW simulation.

In general, increasing the SF of one unit reduces the SNR of around 3dB.
Table 9.1 collects the number of packets that could be held by the simulation

with a given SF.

Table 9.1: Number of packets per simulation

SF #packets
7 9000
8 8100
9 7200
10 6400
11 5700
12 4000

54

9.3 – Narrowband interference

Coded

Figure 9.5 represents the resulting BER curves that are obtained after applying
channel coding.

Considering a BER of around 10−3, this additional operation provides a gain of
about −1dB, which is expected to increase with the decrease of the error value if
the trend is held.

-40 -35 -30 -25 -20 -15 -10 -5

 [dB]

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

BER vs

Unc SF=7

Unc SF=8

Unc SF=9

Unc SF=10

Unc SF=11

Unc SF=12

Cod SF=7

Cod SF=8

Cod SF=9

Cod SF=10

Cod SF=11

Cod SF=12

Figure 9.5: Comparison between coded and uncoded BER vs SNR

9.3 Narrowband interference
This section presents the analysis of the LoRa performance in an AWGN channel,
with the addition of a narrowband interference to both uncoded and coded cases.

The study takes into account the BER performance with varying spreading
factor, narrowband power and SNR.

9.3.1 Implementation
In order to generate a narrowband signal, two Sine Wave VI blocks have been
employed, one for the cosine, the other one for the sine. The former is obtained by
changing the phase in to 90°.

The array size of the LoRa signal is given as input for the number of samples to
the VI.

55

Robustness analysis

The amplitude, which is the second input of the block, assumes values in the
range fom 0 to 70, which are later converted into power in decibel.

The third parameter required by the Sine Wave VI is the frequency in nor-
malized units of cycles per sample, that can be derived by means of f

B×OSF . The
allowed range of normalized frequency is thus

è
− f

B×OSF ,+
f

B×OSF

é
, where f is a

value between
è

− B
2 ,+

B
2

é
.

Finally, the output of cosine and sine are used as real and imaginary part,
respectively, to derive the complex signal.

Figure 9.6 shows the LabVIEW block diagram used for the narrowband interfer-
ence implementation.

Figure 9.6: NB interference block diagram

9.3.2 Results

Here, the resulting BER curves with respect to the narrowband signal power are
reported, varying SF, SNR and carrier frequency in multiple combinations.

56

9.3 – Narrowband interference

-5 0 5 10 15 20 25 30 35

NB Power [dB]

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

BER vs NB Power, =-22dB

SF=7

SF=8

SF=9

SF=10

SF=11

SF=12

(a) Uncoded BER vs NB Power

-5 0 5 10 15 20 25 30 35

NB Power [dB]

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

BER vs NB Power, =-22dB

SF=7

SF=8

SF=9

SF=10

SF=11

SF=12

(b) Coded BER vs NB Power

Figure 9.7: BER vs NB Power with Γ = −22dB and f = 1kHz

Figure 9.7a and Figure 9.7b represent the BER with the variation of SF, NB
power and SNR = −22dB for the uncoded and coded cases, respectively. The
leftmost points of all the curves correspond to the BER value for that given SNR
found in Figure 9.5, since the amplitude of the narrowband signal is 0.

In Figure 9.7a, the impact of the interference on the curve for SF = 12 starts
to worsen the performance when the signal power is around +6dB, value for which
the BER is higher than 0.001.

On the other side (Figure 9.7b), the coded one, the error rate is lower than 0.001
until a signal power equal to +15dB.

-5 0 5 10 15 20 25 30 35

NB Power [dB]

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

BER vs NB Power, SF=10

=-22

=-19

=-17

=-16

=-14

=-10

(a) Uncoded BER vs NB Power

-5 0 5 10 15 20 25 30 35

NB Power [dB]

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

BER vs NB Power, SF=10

=-22

=-19

=-17

=-16

=-14

=-10

(b) Coded BER vs NB Power

Figure 9.8: BER vs NB Power with SF = 10, f = 1kHz and varying Γ

57

Robustness analysis

Figure 9.8a and Figure 9.8b show the resulting BER curves with varying nar-
rowband power for SF = 10 and different values of SNR (Γ).

It can be noticed that according to the value of SNR, the impact of the interfer-
ence makes the BERs increase faster or slower up to the highest value.

Moreover, for signal power values higher than +20dB, all the curves converge
to the constant value of BER Ä 0.5.

Also, the amplitude of the narrowband signal has a negligible impact when the
error is already consistent due to the high level of SNR of the AWGN.

In general, even though the power of the interference is 10 times higher than
the LoRa signal, the BER is still low, fact that proves the good robustness of LoRa
modulation.

Finally, a further analysis aimed at studying the behavior of the error rate
varying the carrier frequency of the narrowband signal, as shown in Figure 9.9.

In the LoRa signal bandwidth, some frequencies were chosen close to the center
of the band, such as 1Hz, others closer to the extremes, i.e. ±6kHz, with others
assuming intermediate values.

The first observation that can be made is that for a narrowband signal power
greater than +15dB, the performance for small absolute values of f is better than
intermediate and higher ones.

On the other side, before +15dB, the trend is the opposite, indeed, the closer
to the middle point of the band, the higher the BER.

Moreover, the case for the exact f = 0Hz was taken into account but not shown
here, due to the inconsistent results of each simulation run.

5 10 15 20 25 30 35

NB Power [dB]

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

BER vs NB Power with SF=9, =-10dB, B=125kHz

f=1Hz

f=10Hz

f=100Hz

f=1kHz

f=2kHz

f=6kHz

f=-6kHz

Figure 9.9: BER vs NB Power with SF = 9, Γ = −10dB, B = 125kHz and
varying f

58

Chapter 10

Conclusions

10.1 Conclusions
The complete knowledge of the LoRa PHY layer, which is a proprietary protocol,
would imply a lot of advantages, such as the possibility of realizing software
simulations to analyse the effects of different types of interference without using
multiple hardware transceivers.

Consequently, a deep analysis of the literature was necessary to obtain a sufficient
level of information. Indeed, several attempts of decoding the LoRa modulation
have been taken into account.

The first goal of this second part was the realization of the LoRa PHY layer by
means of the simulation tools provided by LabVIEW.

Before the implementation, some assumptions have been adopted together with
some simplifications, such as the preamble detection and whitening that have not
been employed and the hypothesis of perfect synchronization of LoRa signals.

This part can be considered as a contribution in terms of available LabVIEW
codes related to LoRa modulation, demodulation and symbol baseband generation.
Indeed, they might be used by whoever is interested in LoRa PHY layer.

The second goal, instead, concerns the robustness analysis of LoRa modulation,
whose performance can be assessed by means of the BER.

The study of the state-of-the-art covered several works which are related to the
analysis of both CSS and LoRa modulation. All of them confirmed the good quality
of this technique, but none focussed the attention on the case of interference due
to a narrowband signal.

The LabVIEW implementation was adapted to compute the BER for different
values of SNR in AWGN channels. The results have been validated by means of the
comparison with the work of Ferré and Giremus (2018) considered in the literature
review phase, to prove the reliability of the simulation.

59

Conclusions

Then, the performance gain in terms of BER due to the adopted channel coding
and interleaver was shown.

Finally, the additional interference source coming from a narrowband signal has
been considered. The analysis covered different parameter settings and demon-
strated that the LoRa modulation is able to provide a great robustness against
narrowband interference. Indeed, considering the case of spreading factor equal
to 10 and a reasonable value for the SNR of the AWGN, an interfering noise
characterized by a power which is slightly more than 10 times higher than the
LoRa signal does not worsen in a significant manner the bit error rate value.

10.2 Future works
The simulator can be further improved, by means of the addition of the whitening
and removing the assumption of perfect synchronization.

Also, the impact of the Gray Code is interesting to be analysed.
Moreover, the actual program exploits the use of only Hamming(7,4) as error

correction technique, which might be extended to the other types of FEC, such as
Hamming(8,4).

The ideal case would be to achieve the highest level of compliance with the real
hardware transceivers.

60

Bibliography

[1] url: https://www.gartner.com/en/information-technology/glossary/
internet-of-things (cit. on p. 1).

[2] url: https://www.cisco.com/c/dam/en/us/products/collateral/se/
internet-of-things/at-a-glance-c45-731471.pdf (cit. on p. 1).

[3] N. Naik. «LPWAN Technologies for IoT Systems: Choice Between Ultra
Narrow Band and Spread Spectrum». In: 2018 IEEE International Systems
Engineering Symposium (ISSE). 2018, pp. 1–8. doi: 10.1109/SysEng.2018.
8544414 (cit. on p. 1).

[4] url: https://lora-alliance.org/sites/default/files/2018-04/what-
is-lorawan.pdf (cit. on pp. 2, 9).

[5] url: https://lora- alliance.org/sites/default/files/2018- 04/
lorawan-technical-intro.pdf (cit. on p. 2).

[6] url: https://lora-alliance.org/about-lorawan (cit. on p. 5).
[7] url: http://wiki.lahoud.fr/lib/exe/fetch.php?media=an1200.22.

pdf (cit. on pp. 5, 37).
[8] url: https://www.cambridgewireless.co.uk/media/uploads/reso

urces/Connected%20Devices%20Group/21.04.15/ConnectedDevices-
21.04.15-Semtech-Jeff_McKeown.pdf (cit. on p. 5).

[9] G. Ferré and A. Giremus. «LoRa Physical Layer Principle and Performance
Analysis». In: 2018 25th IEEE International Conference on Electronics, Cir-
cuits and Systems (ICECS). 2018, pp. 65–68. doi: 10.1109/ICECS.2018.
8617880 (cit. on pp. 6, 53).

[10] Mohamed Amine Ben Temim, Guillaume Ferré, and Romain Tajan. «Analysis
of the Coexistence of Ultra Narrow Band and Spread Spectrum Technologies
in ISM Bands». In: (2019) (cit. on p. 6).

[11] url: https://www.rs-online.com/designspark/rel-assets/ds-assets
/uploads/knowledge-items/application-notes-for-the-internet-of-
things/LoRa%20Design%20Guide.pdf (cit. on p. 7).

61

https://www.gartner.com/en/information-technology/glossary/internet-of-things
https://www.gartner.com/en/information-technology/glossary/internet-of-things
https://www.cisco.com/c/dam/en/us/products/collateral/se/internet-of-things/at-a-glance-c45-731471.pdf
https://www.cisco.com/c/dam/en/us/products/collateral/se/internet-of-things/at-a-glance-c45-731471.pdf
https://doi.org/10.1109/SysEng.2018.8544414
https://doi.org/10.1109/SysEng.2018.8544414
https://lora-alliance.org/sites/default/files/2018-04/what-is-lorawan.pdf
https://lora-alliance.org/sites/default/files/2018-04/what-is-lorawan.pdf
https://lora-alliance.org/sites/default/files/2018-04/lorawan-technical-intro.pdf
https://lora-alliance.org/sites/default/files/2018-04/lorawan-technical-intro.pdf
https://lora-alliance.org/about-lorawan
http://wiki.lahoud.fr/lib/exe/fetch.php?media=an1200.22.pdf
http://wiki.lahoud.fr/lib/exe/fetch.php?media=an1200.22.pdf
https://www.cambridgewireless.co.uk/media/uploads/resources/Connected%20Devices%20Group/21.04.15/ConnectedDevices-21.04.15-Semtech-Jeff_McKeown.pdf
https://www.cambridgewireless.co.uk/media/uploads/resources/Connected%20Devices%20Group/21.04.15/ConnectedDevices-21.04.15-Semtech-Jeff_McKeown.pdf
https://www.cambridgewireless.co.uk/media/uploads/resources/Connected%20Devices%20Group/21.04.15/ConnectedDevices-21.04.15-Semtech-Jeff_McKeown.pdf
https://doi.org/10.1109/ICECS.2018.8617880
https://doi.org/10.1109/ICECS.2018.8617880
https://www.rs-online.com/designspark/rel-assets/ds-assets/uploads/knowledge-items/application-notes-for-the-internet-of-things/LoRa%20Design%20Guide.pdf
https://www.rs-online.com/designspark/rel-assets/ds-assets/uploads/knowledge-items/application-notes-for-the-internet-of-things/LoRa%20Design%20Guide.pdf
https://www.rs-online.com/designspark/rel-assets/ds-assets/uploads/knowledge-items/application-notes-for-the-internet-of-things/LoRa%20Design%20Guide.pdf

BIBLIOGRAPHY

[12] Jansen Liando, Amalinda Gamage, Agustinus Tengourtius, and Mo Li. «Known
and Unknown Facts of LoRa: Experiences from a Large-scale Measurement
Study». In: ACM Transactions on Sensor Networks 15 (Feb. 2019), pp. 1–35.
doi: 10.1145/3293534 (cit. on p. 7).

[13] url: https://static1.squarespace.com/static/54cecce7e4b054df18
48b5f9/t/57489e6e07eaa0105215dc6c/1464376943218/Reversing-Lora-
Knight.pdf (cit. on p. 7).

[14] url: https://patents.google.com/patent/EP2763321A1/en (cit. on
pp. 7, 37).

[15] Matthew Knight and Balint Seeber. «Decoding LoRa: Realizing a Modern
LPWAN with SDR». In: 2016 (cit. on pp. 7, 37).

[16] Reza Ghanaatian, Orion Afisiadis, Matthieu Cotting, and Andreas Burg.
LoRa Digital Receiver Analysis and Implementation. Nov. 2018 (cit. on p. 8).

[17] Peng Xu and Yang Rufei. Déploiement d’un réseau de capteurs sur le site de
l’ENSIL. Report. Université de Limoges. 2019 (cit. on p. 13).

[18] url: https://thingspeak.com (cit. on p. 13).
[19] AM2320 Product Manual. Datasheet. Aosong (cit. on p. 15).
[20] url: http://modtronix.com/nz32-sc151 (cit. on p. 15).
[21] SX1276/77/78/79. Datasheet. Rev. 6. Semtech Corporation. Jan. 2019 (cit. on

pp. 15, 21).
[22] url: https://www.raspberrypi.org (cit. on p. 16).
[23] url: http://www.openstm32.org (cit. on p. 16).
[24] url: https://www.ac6-tools.com (cit. on p. 16).
[25] url: http://wiki.modtronix.com/doku.php?id=products:nz-stm32:

nz32-sc151#programming_and_debugging (cit. on p. 16).
[26] url: https://github.com/modtronix-com/devkit_sx1276 (cit. on p. 17).
[27] Pieter Robyns, Peter Quax, Wim Lamotte, and William Thenaers. «A Multi-

Channel Software Decoder for the LoRa Modulation Scheme». In: Jan. 2018,
pp. 41–51. doi: 10.5220/0006668400410051 (cit. on pp. 37, 39).

[28] url: https://myriadrf.org/news/lora-modem-limesdr/ (cit. on p. 37).
[29] T. Elshabrawy and J. Robert. «Closed-Form Approximation of LoRa Mod-

ulation BER Performance». In: IEEE Communications Letters 22.9 (2018),
pp. 1778–1781. issn: 2373-7891. doi: 10.1109/LCOMM.2018.2849718 (cit. on
p. 38).

62

https://doi.org/10.1145/3293534
https://static1.squarespace.com/static/54cecce7e4b054df1848b5f9/t/57489e6e07eaa0105215dc6c/1464376943218/Reversing-Lora-Knight.pdf
https://static1.squarespace.com/static/54cecce7e4b054df1848b5f9/t/57489e6e07eaa0105215dc6c/1464376943218/Reversing-Lora-Knight.pdf
https://static1.squarespace.com/static/54cecce7e4b054df1848b5f9/t/57489e6e07eaa0105215dc6c/1464376943218/Reversing-Lora-Knight.pdf
https://patents.google.com/patent/EP2763321A1/en
https://thingspeak.com
http://modtronix.com/nz32-sc151
https://www.raspberrypi.org
http://www.openstm32.org
https://www.ac6-tools.com
http://wiki.modtronix.com/doku.php?id=products:nz-stm32:nz32-sc151#programming_and_debugging
http://wiki.modtronix.com/doku.php?id=products:nz-stm32:nz32-sc151#programming_and_debugging
https://github.com/modtronix-com/devkit_sx1276
https://doi.org/10.5220/0006668400410051
https://myriadrf.org/news/lora-modem-limesdr/
https://doi.org/10.1109/LCOMM.2018.2849718

BIBLIOGRAPHY

[30] B. Reynders, W. Meert, and S. Pollin. «Range and coexistence analysis of long
range unlicensed communication». In: 2016 23rd International Conference on
Telecommunications (ICT). 2016, pp. 1–6. doi: 10.1109/ICT.2016.7500415
(cit. on p. 38).

[31] A. Marquet, N. Montavont, and G. Z. Papadopoulos. «Investigating Theoreti-
cal Performance and Demodulation Techniques for LoRa». In: 2019 IEEE 20th
International Symposium on "A World of Wireless, Mobile and Multimedia
Networks" (WoWMoM). 2019, pp. 1–6. doi: 10.1109/WoWMoM.2019.8793014
(cit. on p. 38).

[32] B. Reynders and S. Pollin. «Chirp spread spectrum as a modulation technique
for long range communication». In: 2016 Symposium on Communications and
Vehicular Technologies (SCVT). 2016, pp. 1–5. doi: 10.1109/SCVT.2016.
7797659 (cit. on p. 38).

[33] Orion Afisiadis, Andreas Burg, and Alexios Balatsoukas-Stimming. Coded
LoRa Frame Error Rate Analysis. Nov. 2019 (cit. on p. 38).

[34] G. Baruffa, L. Rugini, V. Mecarelli, L. Germani, and F. Frescura. «Coded LoRa
Performance in Wireless Channels». In: 2019 IEEE 30th Annual International
Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC).
2019, pp. 1–6. doi: 10.1109/PIMRC.2019.8904298 (cit. on pp. 38, 39, 51).

[35] T. Elshabrawy and J. Robert. «Analysis of BER and Coverage Performance
of LoRa Modulation under Same Spreading Factor Interference». In: 2018
IEEE 29th Annual International Symposium on Personal, Indoor and Mobile
Radio Communications (PIMRC). 2018, pp. 1–6. doi: 10.1109/PIMRC.2018.
8581011 (cit. on p. 38).

[36] B. Dunlop, H. H. Nguyen, R. Barton, and J. Henry. «Interference Analysis for
LoRa Chirp Spread Spectrum Signals». In: 2019 IEEE Canadian Conference
of Electrical and Computer Engineering (CCECE). 2019, pp. 1–5. doi: 10.
1109/CCECE.2019.8861956 (cit. on p. 38).

[37] url: https://en.wikipedia.org/w/index.php?curid=54205915 (cit. on
p. 41).

[38] url: https://www.ni.com/labview (cit. on p. 41).
[39] url: https://en.wikipedia.org/wiki/Hamming(7,4) (cit. on p. 45).
[40] url: https://forums.ni.com/t5/Example-Programs/Rotate-2D-Array-

Using-LabVIEW/ta-p/3506774?profile.language=en) (cit. on p. 45).
[41] url: https://forums.ni.com/t5/Example-Programs/Converting-Gray-

Codes- to- Their- Corresponding- Standard- Binary/ta- p/3527189?
profile.language=en (cit. on p. 46).

63

https://doi.org/10.1109/ICT.2016.7500415
https://doi.org/10.1109/WoWMoM.2019.8793014
https://doi.org/10.1109/SCVT.2016.7797659
https://doi.org/10.1109/SCVT.2016.7797659
https://doi.org/10.1109/PIMRC.2019.8904298
https://doi.org/10.1109/PIMRC.2018.8581011
https://doi.org/10.1109/PIMRC.2018.8581011
https://doi.org/10.1109/CCECE.2019.8861956
https://doi.org/10.1109/CCECE.2019.8861956
https://en.wikipedia.org/w/index.php?curid=54205915
https://www.ni.com/labview
https://en.wikipedia.org/wiki/Hamming(7,4)
https://forums.ni.com/t5/Example-Programs/Rotate-2D-Array-Using-LabVIEW/ta-p/3506774?profile.language=en)
https://forums.ni.com/t5/Example-Programs/Rotate-2D-Array-Using-LabVIEW/ta-p/3506774?profile.language=en)
https://forums.ni.com/t5/Example-Programs/Converting-Gray-Codes-to-Their-Corresponding-Standard-Binary/ta-p/3527189?profile.language=en
https://forums.ni.com/t5/Example-Programs/Converting-Gray-Codes-to-Their-Corresponding-Standard-Binary/ta-p/3527189?profile.language=en
https://forums.ni.com/t5/Example-Programs/Converting-Gray-Codes-to-Their-Corresponding-Standard-Binary/ta-p/3527189?profile.language=en

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Motivation
	Thesis objectives
	Thesis outline

	LoRaWAN and LoRa
	LoRa PHY
	Chirp Spread Spectrum
	LoRa PHY Packet Format
	LoRa PHY Block Diagram

	LoRaWAN Network Architecture

	I Experimental implementation of a LoRa sensor network
	State-of-the-art
	Overview
	Architecture
	Tools
	Hardware
	Software
	Libraries
	Project building and Firmware upgrading

	Algorithms

	Power Management
	LoRa operating modes
	Power consumption test
	Results

	Proposed solutions
	LoRa node
	Gateway

	Server
	Overview
	Database
	Raspberry Pi
	Architecture
	Web user interface

	Conclusions
	Conclusions
	Future works

	II Robustness analysis of TX-RX LoRa signals using LabVIEW
	State-of-the-art
	Introduction
	Related works

	Architecture Design and Implementation
	Assumptions
	Design
	Implementation
	LabVIEW
	Modulation
	Coding
	Decoding

	Robustness analysis
	Introduction
	AWGN channel
	Implementation
	Results

	Narrowband interference
	Implementation
	Results

	Conclusions
	Conclusions
	Future works

	Bibliography

