
POLITECNICO DI TORINO

Dipartimento di Elettronica e Telecomunicazioni

Analysis and Modeling of an
Energy Management System in

Automotive Environment

Tesi di Laurea Magistrale in
Ingegneria Elettronica

Relatore:

Prof. M.R. Casu

Candidato:

Leandro Malara

Marzo 2020

Contents

List of Figures 4

1 Introduction 6

2 Energy storage systems introduction and analysis 7

2.1 Batteries principles . 8

2.2 Battery packs: overview . 10

3 Slave unit modeling 13

3.1 Microcontroller approach . 14

3.2 Final choice and implementation . 17

3.2.1 Basic Principles . 17

3.2.2 Cell measurement . 17

3.2.3 Cell balancing . 19

3.2.4 Temperature measurement . 21

3.2.5 Power Supply . 23

3.2.6 Chain communication . 25

3.2.7 Host communication . 27

4 Master unit modeling 30

4.1 HVIL and Contactors management 31

4.2 High Voltage measurement . 34

4.3 Current sensing . 38

4.3.1 Shunt based method . 38

4.3.2 Hall effect-based method . 39

2

Chapter 0

4.4 Isolation resistance monitoring . 41

4.5 CAN bus communication . 43

4.6 SoH and SoC . 47

4.7 Additional considerations . 51

4.8 Microcontroller . 52

5 Software implementation 54

5.1 General Structure . 54

5.2 Chain communication . 56

5.2.1 UART driver and functions 56

5.2.2 Initialization and configuration 56

5.2.3 CRC . 58

5.2.4 Sampling the values . 58

5.3 Temperature conversion algorithm . 62

5.4 Error Detection Mechanism . 65

6 Conclusion 66

A Matlab script of temperature approximation 68

B Temperature algorithm C code 70

C UART driver 71

D Sending a Command to the chain 73

E CRC driver 76

F Chain sampling function 78

Acronyms 82

Bibliography 84

3

List of Figures

2.1 Power vs Energy density chart (Ragone plot) 8

3.1 A2D with resistor dividers approach 14

3.2 A2D with switches . 15

3.3 I2C (top) and SPI in daisy-chain (bottom) layouts 16

3.4 hardware interface between BQ76 and cells 18

3.5 highest cell hardware interface . 20

3.6 NTC specifications, chosen one is the second 21

3.7 circuit for NTC measurement . 22

3.8 circuit for pseudo-differential NTC measurement 23

3.9 power supply circuit . 24

3.10 Isolated dc-dc converter . 25

3.11 chain communication interface . 26

3.12 host communication interface . 28

3.13 input and output circuit of the ISO7742 28

3.14 Complete Slave device schematic . 29

4.1 Typical structure of battery safety components 32

4.2 Hardware for controlling the relays 33

4.3 Measuring HVIL voltage . 33

4.4 High voltage bus measurement points 35

4.5 AMC1311 overview . 36

4.6 The two phases of a Push-Pull converter 36

4.7 High voltage measurement circuit . 37

4

Chapter 0

4.8 Hall effect current sensors: Open (left) and Closed (right) loop [1] . . 39

4.9 Accuracy data of low (top) and high (bottom) current channels . . . 40

4.10 Current sensor input . 40

4.11 IMD signals input . 41

4.12 Standard CAN message frame [2] . 43

4.13 CAN bus physical layer [2] . 44

4.14 CAN transceiver circuit . 44

4.15 transceiver schematic . 45

4.16 Capacity vs Voltage curves of a cell with a nominal capacity of 90Ah 48

4.17 Voltage recovery effect after charge/discharge [3] 49

4.18 Thevenin equivalent circuit model . 49

4.19 Master unit schematic . 53

5.1 Firmware flow chart . 55

5.2 CRC unit schematic . 58

5.3 Sampling request transaction . 59

5.4 Plot of equation 5.4 . 63

5.5 Piecewise integer approximation . 64

6.1 CAN database file . 66

5

Chapter 1

Introduction

In the pursue of less CO2 emissions and pollution, the last decade saw an exponential

growth of batteries driven applications. This growth evolved in many directions:

it involved classic vehicles for public roads (cars, buses, vans, etc.), competition

vehicles in tracks, but also industrial equipment and infrastructures (e.g. backup

power for elevators), and gave birth to new micro-mobility concepts and new vision

for public transportation. Thus the need for a system that manages all battery pack

operations and its safety became evident. The requirement for this system may vary

depending on the target application and use case. In this document I put the focus

on what is the modern automotive energy storage use case, that may be also valid

for the next years to come, until new technologies, currently developing at early

stages, incompatible with the current ones in terms of system management, will be

available.

The objective of the thesis is to analyse the requirement of a system capable of

handling a typical automotive battery pack and model it, both in hardware and

in software, in a prototypal version, on a microcontroller platform with existing

hardware. The prototype has been tested on a test bench with evaluation modules

and a small battery string. This involved analysing a broad spectrum of aspects

related to batteries itself but also to their use inside battery packs. An introduction

of some concepts and topics will also be given in order to better understand the

document. The carrying out of my work has been done in collaboration with Bylogix,

inside their facilities.

6

Chapter 2

Energy storage systems

introduction and analysis

The need of a battery pack management system comes from two contributions: one

is the cell itself, in order to guarantee that they will operate in optimal conditions

in terms of safety and performance; the other is the environment of interaction, i.e.

the battery pack subsystem and the other subsystems of the vehicle. For this reason

in this chapter it will be given an introduction on current battery cells technologies,

in order to identify their problems, advantages, disadvantages, and the parameters

which need to be monitored. An analysis on the typical structure of a battery pack

and its implementation inside a vehicle architecture will determine the feature and

characteristics that the management system should meet.

7

Chapter 2

2.1 Batteries principles

The most known electrochemical devices that allows to store energy through it are:

• Rechargeable batteries: also called accumulators, allows for energy to be

charged and discharge, theoretically infinite times, composed of an anode, a

cathode and an electrolyte. Depending on the materials used for these parts,

the resulting battery may have different advantages and disadvantages in terms

of energy density, specific density, power density and safety risks. The resulting

nominal voltage across the terminals is ranging between 1.2V and 3.9V

• Supercapacitors: constituted by two electrodes separated by an ion perme-

able membrane, ionically connected by an electrolyte, as opposed to having a

solid dielectric between them like in conventional double layer capacitor. It is

an hybrid between a double layer capacitor and a rechargeable battery, having

a power density far higher than the latter but still lower than the former.

Figure 2.1: Power vs Energy density chart (Ragone plot)

It is noticeable, as reported in [4] and shown in figure 2.1, how supercapacitors

and rechargeable batteries have a wide range of possible characteristics, and thus

8

Chapter 2

application field. Although there exist some application of supercapacitors in the

automotive industry, they are mostly related to high performance vehicles as sec-

ondary traction energy source, like in the case of Lamborghini latest supercar, the

Sian, or to public transportation like buses or trams. Instead, almost every produc-

tion car with a battery, whether it is used for traction or supplying energy for all

other services, relies on rechargeable batteries.

The most commonly used, due to their technological advancement and cost are:

• Lead-Acid

• Lithium Batteries (LIBs), which comprehends among the others Lithium

Cobalt Oxide, Lithium Nichel Aluminum Cobalt Oxide, Lithium Iron Phos-

phate and many others

• Nickel-Metal Hydride (NiMH)

Also, it must be noted that LIBs can assume many forms, which have been recently

stardandized by various international organization, like the International Organiza-

tion for Standardization (ISO), regarding their size. In particular, Prismatic, Pouch

and Cylindrical are the common standard type cells. With the exception of Toyota,

which made a large long term investment on NiMH, all recent car makers uses LIBs

due to their large saving in weight and space. Since they are the most technologically

advanced and it is expected an increase in overall performance in the next decade,

as targeted by national organization like USABC, NEDO, EUCAR (USA, Japan,

Europe), this will be the chosen type of battery that this project will be based on.

As said at the beginning of the chapter, there are three main parameters to be

monitored in a cell: temperature, voltage, current output. These are crucial in per-

formance improvement and safety of the batteries, because LIBs, more than other

rechargeable battery types, have a quite narrow window of safe operation zone,

which if exceeded can lead to permanent loss of performance or, in the worst case,

to thermal runaway and subsequent explosion or fire. It is deduced then that the

management system should perform a double task, guaranteeing safety operation

and improving performance by tracking these characteristics and acting on external

environment.

9

Chapter 2

2.2 Battery packs: overview

Since obviously a single cell would not provide sufficient energy, they are collected in

strings of series and parallel cells. Their number is highly depending on the target

application, on which we can have an overview:

• HEV: the Hybrid Electric Vehicless, being at the moment the most diffused

type of hybrid vehicle, uses small energy battery packs (0.7∼1.6 kWh) usually

with a single string of series cell. Their battery can’t be externally charged,

and it is used for accumulating energy during braking and releasing it in the

form of small power boost, which can be up to 60 kW in the case of highly

performing vehicles. These vehicles can’t be powered only by the electric

powertrain, but rather assisted by it

• PHEV: the substantial difference from Plug-In Hybrid Electric Vehicless and

HEV is that the battery can be externally charged. This time the energy can

range typically from 3 to 15 kWh, with some exceptions reaching 30kWh, as

in Porsche 918 car, and the battery usually is made of more strings of cell in

parallel. The level of integration with the Internal Combustion Engine (ICE)

is deeper, providing the capability of covering up to 60km while being powered

only with the electric motor(s)

• EV: in Electric Vehicles, the only power that can move the vehicle comes from

the battery. Battery energy span is very large (30∼100 kWh), and consists in

a high number of parallel strings.

The terminology that will be used for indicating the cells arrangement in a battery

pack is XSY P, which states for Y parallel strings of X series.

In addition, when considering the type of battery pack, another parameter must

be accounted for: its working voltage. As defined in [5], there is a classification

between Low Voltage (LV) (≤ 60V DC or 30V AC) and High Voltage (HV) (≥ 60V

DC or 30V AC, and ≤ 1500V DC or 1000V AC), called respectively voltage class

A and B by International Organization for Standardization (ISO) in [6]. Few HEV

10

Chapter 2

implements a LV architecture, due to the lower cost, because when dealing with HV

systems, more precautions need to be taken both in electronic circuits and mechan-

ical components. Instead virtually every PHEV and EV vehicle on the market is

based on an HV system, with a nominal voltage of ∼ 400V ± 50V , but exceptions

exist, like the latest Porsche Taycan with 800V.

For the requirement of the proposed system, I will focus my analysis in series ”dom-

inated” battery packs, because parallel strings does not add complexity in terms of

management. The battery pack is of course made from strings of cells, but that is

not the only component. A definition of a battery pack in [7] says that it is made

from:

• Voltage class A connections

• Voltage class B circuit and connections

• Cell assemblies

• Cell electronics

• Cooling interface

• Service disconnect

• Battery Control Unit (BCU)

• inside an impact-resistant case

;oreover, the definition of BCU is an object that calculates State-of-Charge (SoC)

and State-of-Health (SoH) and provides battery operational limits to the vehicle

management unit. It may have direct access to the main contactors of the battery

system in order to interrupt the voltage class B circuit under specified conditions, e.g.

overcurrent, over voltage, low voltage, high temperature, and may vary in design and

implementation (i.e. integrated in a single or multiple unit(s) and placed inside or

outside the battery pack). Moreover, some of its funcionalities may be implemented

by other vehicle control units [7]. All of the previously cited components making

up the battery pack will be analysed in the next chapter in order to set constraints

11

Chapter 2

to meet the requirements in the ISO rule. Notice that the ISO rules have not been

used as a target, as it would not be possible for a project like this, but rather as a

criteria and guidance.

12

Chapter 3

Slave unit modeling

The first subject to treat is how to measure and monitor the cells, the part of the

battery pack previously called ”cell electronics”. As said, there are two possibilities

for the management system: a distributed system and a centralized one. If we

take a look to every battery pack, the total of the cells is divided into (usually

equal) battery segments for more reasons: cheaper production mechanism, easier

assembly and intervention for post production (lower weight) and lower voltage at

the terminals of each segment (the division is made by breaking the series string).

Due to this segmentation, a centralized unit would not be feasible for large battery

packs: connections would be too long and too many, with a large and expensive

printed circuit board (PCB), and it would not be as modular as a decentralized

unit.

An option could be to have replicated hardware units doing the same thing on each

segment, and a central unit collecting all the information. This solution is often

referred as a Master/Slave configuration. The focus now will be on the Slave unit.

The main task for this unit will be measuring cell temperatures/voltages, and share

the information with the Master unit. This can be obtained in different ways, two

of them will be analysed.

13

Chapter 3

3.1 Microcontroller approach

The first way to implement the Slave unit would be with a microcontroller and

a suitable ADC interface with the cells. When measuring a string of cells, which

voltage can go up to several tens of volts, with a simple microcontroller, some

architecture possibilities are proposed in the next figures. Shown in 3.1, the simplest

approach would be to choose suitable resistors to make voltage dividers. The ADC

peripheral of the µC has a the lowest cell negative terminal as lower voltage reference.

Although simple, voltage dividers would result in poor uncertainty due to resistors

intrinsic uncertainty, on the other hand the use of high precision resistors would

increase cost. Also the maximum number of measurable cells depends on the chosen

µC ADC input lines, which is usually around 8 for a 48 pin package. Otherwise an

external A2D with more input channels should be used.

Figure 3.1: A2D with resistor dividers approach

Another approach [3.2] is to make the reference voltage changing with every

measured cell. This can be achieved by using digital bilateral switches like the

CD4066B or similar, and alternating the control signals in order to measure all

cells. Just one ADC input channel could be used, but one control signal is needed

for each cell, and switches integrated circuits could be expensive.

The most difficult task however would be implementing the communication be-

tween the Master and Slaves. At the hardware level, two simple solutions could

14

Chapter 3

Figure 3.2: A2D with switches

be:

• I2C: a single I2C bus has the benefit of using only two wires and 7-bit ad-

dressing is enough for the number of slave units we are dealing with.

• SPI: can be used in daisy-chain configuration, because otherwise it would lead

to an high number of chip-select lines.

Both buses can be physically deployed as a chain by using intermediate board

as buffers for the next boards [3.3] , leading to a simple layout.

These solutions will not be further detailed as the common problematic fac-

tor would be designing the communication protocol. Tuning the synchronization

between all the Slaves with respect to each other and to the Master could be a dif-

ficult task. Every Slave unit needs to be singularly programmed and their position

in the chain is crucial, meaning for example that they can’t be swapped or replaced

with ease with another one.

15

Chapter 3

Figure 3.3: I2C (top) and SPI in daisy-chain (bottom) layouts

16

Chapter 3

3.2 Final choice and implementation

Looking for a commercial available solution can be the best sometimes. At the be-

ginning of portable electronics era, relying on a single battery cell, some integrated

circuit (IC) were deployed, able to measure and monitor a single cell, in a more

or less independent fashion. As of today, with growing applications relying on a

string of cells, many products developed under the form of multi-cell monitoring

IC, differentiating for number of possible cell to be monitored, communication pro-

tocol, cell balancing capability, auxiliary I/O, and many other peculiarities. An

example are Analog Devices LTC68XX and Texas Instruments BQ76XXX series.

The chosen IC that will serve as Slave unit is the Texas Instruments BQ76PL455

from the latter family. In this section it will be discussed how this has been used in

the final implementation, with detailed description on hardware needed for correct

functioning.

3.2.1 Basic Principles

This device can measure from 6 to 16 cells connected in series, can be stacked in

a chain of up to 16 devices, allowing to monitor a battery pack that can reach the

limit of voltage B class. The communication in the chain happens with a capacitor-

isolated serial transmission (similar to a Universal Asynchronous Receiver Trans-

mitter (UART)). A µC host is needed, that can communicate only with the bottom

device of the chain with a normal UART protocol. It has a 14-bit Successive Ap-

proximation Register (SAR) ADC measuring the cells and an additional 8 auxiliary

analog inputs that can be used for temperature monitoring or other sensors. Passive

balancing can be activated by dedicated pins. The device is powered from the cells

portion that it is monitoring.

3.2.2 Cell measurement

The IC is able to measure up to 16 cells, from a minimum of 6. This is achieved by

adopting a level shifter, lowering the voltage level of higher cells, directly integrated

17

Chapter 3

in the die in a portion called Analog Front-End (AFE). The ADC input is multi-

plexed in order to measure not only cell voltages but also: auxiliary inputs, internal

voltage reference(s) and internal temperature sensor for monitoring the device sta-

tus itself. At the hardware level, the interface with the cells (reported in 3.4 for the

first 2 cells is) serves different purposes. Each cell positive tap input (named Celln)

is fused and for voltage measurement the ADC input is filtered with a low pass RC

filter of the 1st order (R5 and C2). Resistor is also used for limiting inrush current

to the pin in case of hot-plug.

Figure 3.4: hardware interface between BQ76 and cells

The choice of the value for resistance and capacitance depends on the target

performance, but however manufacturer specify the bounds to 100Ω ∼ 1kΩ for the

resistance and a minimum of 0.1µF for the capacitor. In particular, the resistor

18

Chapter 3

value affects the ADC error measurement by a quantity:

Verr = 2RIsample

where Isample = 7.6µA is specified as maximum value in test conditions. Choosing

a resistance of 220Ω and a capacitor of 0.22µF we have:

Verr = 3.3mV, fcut =
1

2πRC
= 3.3kHz

which is a good result. Notice that all capacitors are connected to lowest cell

ground, which means that in the worst case (16 cells connected) they must with-

stand at least 80V. Ceramic capacitors rated X7R and 100V in 0805 package are a

compromise between size and cost. In addition, in order to limit transient voltages

from to adjacent channels, a clamping zener diode (D2) of Vz = 6.2V is added. Both

positive terminal of top cell (VTOP) and negative terminal of bottom cell(V sense0)

are input to the ADC for measuring total string voltage. The connection to V TOP

[3.5] is coupled to V sense16 through two back-to-back signal diodes, with fast re-

sponse and high Vf , for hot-plug robustness and to avoid noise coupling to the

adjacent channel. The same is applied to the connection between V sense0 and the

analog ground pin (AGND). When less than 16 cells are used per Slave, all vacant

pin connections must be tied to the highest cell, and can be done by replacing the

zener diodes with 0Ω resistors, thus the design of the board is not modified, but

components selection during assembly assures modularity.

3.2.3 Cell balancing

When cells are connected in series, the energy that can be charged/discharged will

depend on the conditions on the single cell: the one with highest voltage will limit

the pack when charging, the one with lowest when discharging. The difference on

energy/voltage level between cells in series is due to many reasons, for example

storage conditions of single cells before assembly or temperature difference when in

operation due to the cooling system. Achieving a balanced battery pack is funda-

mental in order to maximize the energy stored and at disposal for the vehicle. This

19

Chapter 3

Figure 3.5: highest cell hardware interface

could be done in dissipative and non-dissipative way. The non-dissipative method

uses flyback DC-DC converters in order to take energy from most charged cells and

transfer it to less charged ones; its cost in terms of control system and extra hard-

ware make this solution less desirable, but considering its main advantage, speed,

it could be implemented in the perspective of future super-fast charging. The dissi-

pative method consists in discharging individually all cells down to the level of the

lowest cell. In the BQ76PL455A there is a control signal (EQn) able to control an

external NMOS (Q2) that will discharge each cell over a resistor (R6). The choice

for the resistor depends on the energy stored in the series connection, accounting

for all cellls connected in parallel. This energy value will be lower for high voltage,

thus high series connections, battery packs and higher for low voltage, high parallel

connections (or just cells with high ampacity). For example choosing a 50Ωresistor,

a typical Li-Ion cell at its maximum voltage of ∼ 4.2V will dissipate 0.35W, that

can be obtained with a surface mounted component in 1206 package. For a large

battery of let’s say 60kWh and made with 100 series connections, a constant dissi-

pation of 0.35W means being able to equalize the battery by 1% every 17 hours. In

this case using larger through-hole axial resistors, e.g. 20Ω rated for 2W, this time

20

Chapter 3

can decrease down to 3.5 hours. Of course in the latter case, the Slave board area

would increase, and also heat dissipated by resistors should be taken away from the

board. The FET must be chosen with VDS ≥ 50V and VGS ≥ 15V , preferably with

an integrated zener protection for the gate. In addition, resistor R7 limits current

going to the EQ pin of the IC during inrush current events, resistor R8 make sure

the gate is not left floating.

3.2.4 Temperature measurement

In this decentralized model, the chosen Slave unit is capable of measuring 8 analog

additional inputs. Two types of analog sensors commonly used are thermocouples

and thermistors. Thermocouples working principle is the seebeck effect, that is a

voltage difference across two metals produced by the temperature gradient between

a cold and hot end. This method requires knowing the temperature of the ”cold”

end by the use of a specific local circuit, and can be inconvenient when measuring a

lot of points located far from each other. The use of thermistors is easy and cheap,

with the drawback of a more limited temperature range and accuracy. A Negative

Temperature Coefficient (NTC) thermistor has been used for this project, but final

choice will depend on application. The chosen thermistor is from Murata, has a

nominal resistance R0 = 10kΩ @ 25°C with an operating range of -40°C to +125°C

(see 3.6).

Figure 3.6: NTC specifications, chosen one is the second

In order to be measured, the NTC can be used as a resistor in a voltage divider

circuit [3.7]. The value of R15 can be chosen as the smallest possible value that assure

thermistor safe operating conditions (maximum current and power dissipation) so

that voltage swing is maximized, thus precision. The worst condition is at maximum

temperature when the resistor value is at minimum. Since +125°C are unrealistic in

21

Chapter 3

normal operating condition inside a battery pack, +80°C will be used as maximum.

Rmin ≈ 1.66kΩ @ +80°C (see equation 3.1)

Figure 3.7: circuit for NTC measurement

R = R0 ∗ eβ(
1
T−

1
T0

) (3.1)

At this value, current flowing in the NTC needs to be:

VDD
R15 +Rmin

≤ Imax = 0.12mA

thus R15 ≥ 43kΩ. Regarding lower temperatures, also here -40°C are unrealistic

and -20°C will be consiered as minimum: Rmax ≈ 27kΩ. If the resistor value is

47kΩ, the voltage swing will be:

Vmax − Vmin = 1.9937V − 0.1808V = 1.7529V

If the system should be able to have a 0.1°C precision on a 100°C temperature

range, the ADC should be able to have at least Vres ≤ 1.7529
1000 = 1.75mV . The 14-

bit ADC with Vref = 5V of the BQ76PL455A has a voltage resolution of Vres = 5V
214

so the requirement is met. Notice that the value of VDD used as power supply for

22

Chapter 3

the NTC circuit is 5.3V, as described later in the chapter. An additional low pass

RC filter (R16, C6) with fcut = 160Hz provides some noise immunity. If the

working environment is too noisy, a pseudo differential measure can be performed

(3.8) by using two inputs of the ADC instead of one and subtracting the two readings

to obtain the voltage across the thermistor, at the cost of halving the number of

measurable sensors to 4.

Figure 3.8: circuit for pseudo-differential NTC measurement

3.2.5 Power Supply

The IC is able to be powered by the monitored cells. By driving an external NPN

transistor, the linear converter can provide a fixed voltage of 5.3V on the VP pin (cir-

cuit in 3.9). The maximum current request of the device is stated as IMAX = 8mA

when active and communicating. Also, VP is used as supply for the NTC circuit,

drawing ∼ 0.1mA for each NTC in the worst case, so additional 1mA should be con-

sidered for worst case calculations. When working at maximum cell voltage, that is

Vmax = 16 ∗ 4.2V = 67.2V , the power dissipation of the NPN will be :

23

Chapter 3

PMAX = 8mA ∗ 67.2V = 0.6mW

The transistor should also withstand VCE ≥ 100V and have have an hfe ≥ 100.

One recommended choice from the manufacturer is ZXTN4004K [8]. Resistor R18

in series with the collector limits current in the case of fault events and and shift a

fraction of the dissipated power away from the transistor. It also provides filtering

together with C7. The maximum value is given by formula 3.2

RMAX =
Vmin − VCE,sat − VP,max

IMAX
≈ 900Ω (3.2)

• Vmin is the minimum expected voltage of the cell string: 6*2V = 12V;

• VCE,sat = 0.25 maximum, from transistor datasheet;

• VP,max = 5.5V from datasheet;

Figure 3.9: power supply circuit

VDIG pin is used for the communication among Slaves in the chain and has 1Ω

resistor in series as recommended, because it helps the loop stability of the converter.

The same holds for VIO, that is used for digital I/O and/or communication with the

host via UART. In the case of the first device in the chain, VIO must be externally

supplied by the microcontroller in order to match voltage levels on communication

24

Chapter 3

channels, so R20 can be left unmounted, while VIO will be provided through an

isolated converter [3.10]. This is to ensure insulation between the Master, which is

a class A circuit, and the Slaves which are class B.

Figure 3.10: Isolated dc-dc converter

3.2.6 Chain communication

The communication is differential and capacitor isolated. When a message is sent

from the host to the first device, it then transmits it up to the next device. The same

is done when a device needs to send a message to the host. The speed is fixed to 4

Mbit/s and the protocol, even if not disclosed, is similar to an UART having 1 start

bit, 1 byte data and 1 stop bit as stated by manufacturer. The communication has

two buses, one used to pass data and commands, another to pass fault information

regarding monitored parameters [3.11]. The data bus is bidirectional, with one

HIGH/LOW bus to connect with higher/lower device in the stack. The fault bus

instead is not used to pass data, but rather signal the presence of a fault to the lower

devices by sending an ”heartbeat”, i.e. a pulsating voltage that, when absent, states

a fault presence. The communication hardware can be seen in 3.11. It comprises of

a series resistor, used to limit inrush current (10Ωon each end), a Transient Voltage

Suppressor (TVS) diode used to absorb high voltage transients, and optionally one or

two common-mode filters. These filters value depends on surrounding environment

noise, so that it is recommended to use normally a single 51µH filter, or in strongly

noisy environments two filters of 470µH and 100µH. It is also specified that total

capacitance on each line should be less than 140pF to support all 16 stacked devices.

Accounting for the capacitance of the common-mode filters and TVS diode (usually

25

Chapter 3

one order of magnitude less) we can calculate in 3.3 the maximum cable length that

can be used to connect two devices so that the total capacitance stays less than

140pF , where Ccable is the capacitance per meter of the cable.

lcable =
140pF − 2Cfilter − CTV S

Ccable
(3.3)

Figure 3.11: chain communication interface

Due to the fact that the first device in the chain has no lower device to be

26

Chapter 3

connected to, the COMM LOW bus can’t be left unconnected, so a pull-up resistor

to a 5V pin is placed on the + line and a pull-down to GND on the - line, both

100kΩ.

3.2.7 Host communication

The communication with the host takes place only with the first device in the chain

via UART, but the protocol will be described in chapter 4. The host interface com-

prises also of a FAULT N pin, which translates the described fault differential bus

to a single active low signal, and a WAKEUP pin. This pin is used to set the device

into SHUTDOWN mode, allowing for low power consumption when the battery is

not used for long periods of time. The transition from ACTIVE to SHUTDOWN

occurs if the WAKEUP pin is held low and a certain command via UART is sent

from the host. The idea is to hold all the devices WAKEUP pin low with a pull down

resistor, while connecting the first device pin to the host, then it will be possible to

put all the devices in SHUTDOWN mode just by broadcasting the command. In

order to pass from SHUTDOWN to ACTIVE it will be necessary to pull up the first

device WAKEUP pin, then this will send a ”wake tone” on the COMM HIGH bus,

waking the next device, and so on. The pin must be held high for enough time in

order to wake up the first device, then the in order to start to communicate again

with the chain, wake up time for the other devices must be accounted for.

Every communication line should be isolated for the reasons previously described.

A single IC can be used like the ISO7742 from Texas Instruments [9]. It provides

4 isolated buffer channels, 2 for each direction (schematic in 3.13) which ca be used

as shown in 3.12 to isolate both the UART lines and the two digital I/O. The two

enable signals (EN1, EN2) can put the respective outputs into high-impedance state

if tied to ground, but in this case they are left open, that is output enabled. The

isolator shall be mounted only for the first Slave. The pull-up resistor on RX line

prevents the false triggering of a UART communication on higher devices in the

stack.

27

Chapter 3

Figure 3.12: host communication interface

Figure 3.13: input and output circuit of the ISO7742

28

Chapter 3

Figure 3.14: Complete Slave device schematic

29

Chapter 4

Master unit modeling

The Master module has multiple tasks to fulfill. As seen before, one of the task

is to communicate with the Slave chain, but many other parameters need to be

monitored inside a battery pack. Collected data need to be processed and sent to

external controlling units of the vehicle, such as motor controller(s), Human-Machine

Interface (HMI), Vehicle Management Unit (VMU) or others. Every aspect will be

discussed in detail, in order to come up with a set of requirements for the Master

unit.

30

Chapter 4

4.1 HVIL and Contactors management

In a battery pack, the flow of current from the battery must be controlled and

interrupted. High voltage must not be always present, i.e. when the vehicle is not

used, and must be interrupted when hazards may arise or battery presents issues.

For this purpose are used heavy load current relays, also called contactors, because

of their ability to break circuits at high currents for a large amount of times and

arc suppression. As a reference, in [10] the datasheet of a contactor from Tyco

Electronics, with a current capability of 500A and an interruption capability of up

to 2000A. The contactors are, in almost all cases, normally open (often referred as

Form A) and are closed when energy flows inside the coil operating the switch. In

this case the coil absorbs around 14W of power at 24V. The typical configuration

(4.1) consists in one contactor on each battery pole. The low sides will be controlled

directly by the Master unit, while the high side connection comes from a circuit

called High Voltage Interlock (HVIL). The HVIL consists in a sequence of switches

or physical disconnections that can interrupt the power supply of the contactors.

For example, this power supply line is closed first on the ignition key, then passes

on all high voltage connectors, so that in the event of mechanical failure the power

is interrupted. Any other failure detection mechanism can act on the HVIL, such

as crash detection sensors. The HVIL must not be confused with the High Voltage

Disconnect (HVD), that physically breaks one or both cables of the high voltage

bus, in fact HVIL is supplied by an external low voltage power source, usually 12 or

24V.

Although it is not technically a contactor, a precharge relay is placed in parallel

to the positive contactor. Its purpose is to close the high voltage bus on a precharge

resistor that will charge the big capacitors placed at inverters input, by limiting the

current that would otherwise be uncontrolled and damage both capacitors and the

battery. This relay can be of another type because of its different use with respect to

the main contactors, e.g. a solid state one, with a much smaller current and power

switching capability.

The interface for controlling the three relays is shown in 4.2 in the simplest of the

31

Chapter 4

Figure 4.1: Typical structure of battery safety components

forms. One NMOS is used for pulling down each coil of the relays. Since the coil

is an inductive load, when the current is interrupted, either because the HVIL has

interrupted the high side or we just want to open the relay, it will try to keep the

current constat by creating a reverse voltage that can destroy the mosfet or the

switch that opened the HVIL. A free wheeling diode between the low side and the

high side of the coil can prevent these effects, as the current will flow into the diode

wh. The side effect is that the relay will take more time to open, and could be a

problem in high speed switching applications, but this is not the case. Diode must

be chosen according to its maximum reverse voltage (i.e. the contactors supply) and

the current flowing into the coil.

32

Chapter 4

Figure 4.2: Hardware for controlling the relays

It could be useful to monitor the HVIL so that start-up sequence can be prevented

if HVIL is already missing or if there is an error while contactors are closed. The

circuit in 4.3 scales down the HVIL voltage by ten with a resistor divider (R17,

R19), for a maximum of 33V input. A rail to rail Operational Amplifier (OpAmp)

is used in buffer configuration with a low pass filter in output (R18, C12). The

input is protected from overvoltage and undervoltage by two diodes (D7) which are

commonly found in a single package for this purpose.

Figure 4.3: Measuring HVIL voltage

33

Chapter 4

4.2 High Voltage measurement

In order to detect correct operating condition, the voltage on the bus must be mea-

sured at least in two points, shown in 4.4, that is before and after the contactors,

often referred as VBATT and VBUS. Any discrepancy between the intended opera-

tional state, i.e. relay open/closed, and the measured voltage in the two points will

result in an error detection, for example:

• VBATT = 0V : fuse blown or damaged connection between cells or disconnected

cable

• VBATT > Vmin&VBUS = 0V & Contactor Command = closed : one or both

contactors are stuck open

• VBATT = VBUS > Vmin & Contactor Command = open: both contactors are

stuck closed

The list is not exhaustive and obviously depends on the overall architecture of the

vehicle. More measured points would of course allow to cover more error cases and

identify precisely the error source.

In order to measure an high voltage circuit while maintaining isolation, there is

basically one way to achieve it, that is to locally convert the analog signal with an

A2D circuit and send the digital signal through an insulating barrier, for example

with an optocoupler. There are many market solutions that integrate these func-

tions in to single packages, in this case the AMC1311 from Texas Instruments. Its

schematic can be seen in 4.5, and it consists in a ∆Σ modulator with a single ended

input that converts the signal into a digital bitstream sent through a SiO2 barrier,

converting again the signal into an analog one through a filter, with a gain of 1 [11].

The adopted implementation scheme is in 4.7.

The voltage is measured through a resistor divider (R4, R5, R9) so that the input

VIN does not exceed its limit, being the full scale range 2V. For VBATT,max = 800V ,

R4=R5=4.22MΩare used, while R9=21kΩ. This allows to use the entire full scale

range: VIN = 1.985V@800V . Surface mount resistors can’t withstand such high

34

Chapter 4

Figure 4.4: High voltage bus measurement points

voltage (∼ 400V) so through-hole axial resistors must be used, whose lowest tol-

erance value is however 1%. R9 can be chosen as surface mount type with 0.5%

tolerance as it is a commonly available product. The output is converted in single

ended with the use of a rail to rail OpAmp, U4, with a gain of 1 and an offset of

0.5V through U3, so that the output ranges from 0.5 to 2.5V. The differential stage

has a low pass filter, through C10 and C6, with fcut = 16kHz.

The high voltage domain of the IC must be powered from a 5V source. This can be

obtained as in section 3.2.5 with an integrated monolithic isolated DC-DC converter

or with discrete components, that although occupying more area it is cheaper. The

regulator consists in a specialized push-pull driver, SN6501 [12], driving a trans-

former in push-pull configuration [4.6].

This allows a flexible circuit that can be tuned by choosing the transformer to

achieve wanted output voltage and isolation. The driver can work with 3.3V or 5V

supply, in this case a 3.3V supply will be considered for reasons that will be seen

later. The transformer chosen is from Wurth Electronics (part number 760390015)

35

Chapter 4

Figure 4.5: AMC1311 overview

Figure 4.6: The two phases of a Push-Pull converter

and has a turn ratio of 1 : 2.1 ± 3% with 2.5kV isolation. The schottky diodes

on secondary side are MBR0520L from Fairchild Semiconductors, because of their

low Vf and Vr,max = 20V . The output is unregulated and could be used for wide

input voltage applications, or can be further regulated with an LDO converter, as in

this case. Full schematic in 4.7. It is important to notice that, in order to actually

measure the two voltages shown in 4.4, two circuit in 4.7 needs to be replicated

exactly as it is, by changing the high voltage inputs. In this way each circuit

can measure the voltage independently when the contactors are open, while when

they are closed the two isolated power supply ciruits will be in parallel, and thus

redundant.

36

Chapter 4

Figure 4.7: High voltage measurement circuit

37

Chapter 4

4.3 Current sensing

Measuring the current flowing in and out the battery pack is of fundamental impor-

tance, because:

• maximum charge/discharge current indicated by cell manufacturer need to be

observed

• is used to calculate energy used/stored for SoC calculation

• observing current levels throughout the battery life determines SoH

two are the most common ways to obtain a measure of the current, and they will

be both discussed to point out strength and weakness of these methods.

4.3.1 Shunt based method

By placing a resistor in series with one terminal of the battery it is possible to

measure a differential voltage across it when current is flowing in both direction.

The resulting measurement has an excellent linearity and minimal offset error due

to today high precision resistors manufacturing, but of course a certain amount of

power will be dissipated on the resistor. The choice of resistor value depends on

the battery maximum current output. Based on some products available on the

mainstream market, the range of possible measurements in shown in 4.1.

Pmax R Imax VFSR

36W
100µΩ ±600A ±60mV
250µΩ ±380A ±90mV

25W 500µΩ ±220A ±110mV

Table 4.1

Since the resistor is placed on a ”hot side” (i.e. on high voltage bus), a solution

similar to what described in section 4.2 can be adopted, by using a specialized

isolated differential amplifier similar to the AMC1311, called AMC1301, that has a

±250mV VFSR and a gain of 8.2 on the (differential) output. This solution can be

much cheaper, at the same performance, if compared to the next solution.

38

Chapter 4

4.3.2 Hall effect-based method

By exploiting Faraday’s Law of current it is possible to measure the magnetic flux

generated in a magnetic core when a current flows in a conductor passing through

it. This technology uses a flux gate element, that can be used in a open or closed

loop configuration [4.8].

Figure 4.8: Hall effect current sensors: Open (left) and Closed (right) loop [1]

An open loop sensor has a built-in amplifier circuit so that the output can be

input to an ADC without much further components needed, while the closed loop

sensor has a current output which need to be sensed via a sense resistor and a

differential amplifier. The advantages of (both) hall effect current sensor over shunt

resistor method are:

• Built-in voltage isolation, output on the ”cold side” can be sensed without the

need of ensuring isolation

• Power is supplied by a low voltage source, power consumption two or more

order of magnitude lower

The disadvantage are cost and worse accuracy overall, which can range from 0.5%

to 3.5% in general, with an exponential cost increase for higher accuracy devices. In

4.9 it can be seen the accuracy over temperature of an automotive open loop sensor

[13] with two output channels optimized for resolution, with ±100A and ±350A

range respectively.

39

Chapter 4

Figure 4.9: Accuracy data of low (top) and high (bottom) current channels

The output has a bias of 2.5V at 0V and a gain of 20mV/A and 5.7mV/A for the

two channels, for a total of 4V swing. The resolution is however the same, 2.5mV,

leading to a resolution of 55mA and 440mA respectively. The bandwidth is limited

to 1.1kHz On the other hand is easy to provide an hardware interface for reading

such sensors, as shown in 4.10.

Figure 4.10: Current sensor input

The voltage is scaled from 5V to 3.3V with a voltage divider at the input of a

rail to rail OpAmp. Capacitor C21 creates a low pass filter with fcut = 1.5kHz.

The values chosen depends on the sensor, in order to respect maximum load ratings

of current and capacitance.

40

Chapter 4

4.4 Isolation resistance monitoring

In order to ensure protection against electrical shock and hazards, the high volt-

age bus must maintain a certain isolation with the GLVS (Grounded Low Voltage

System), i.e. the chassis and any conductive part of the vehicle. The isolation is

measured by the ohmic resistance between them, and the minimum value depends on

the maximum voltage of the bus and whether is AC or DC. [5] states the minimum

resistance value as 100Ω/V for DC and 500Ω/V for AC, with some exceptions. Usu-

ally the measurement takes place in more than one physical part of the Grounded

Low Voltage System, for example inside the battery pack grounded case and in an-

other part of the chassis of the vehicle. I will not cover the methods to measure

the isolation resistance as this function is often left to stand-alone devices. However

the BMS must be aware of this parameter and monitor it for keeping the battery

in safe operating conditions, thus must show an adequate interface for reading an

Isolation Monitoring Device (IMD). For instance, an automotive IMD from Bender

[14] is able to measure isolation resistance with respect to two chassis points and

send the result through two signals: a Pulse Width Modulated (PWM) signal with

changing frequency (10Hz to 50Hz) carrying the resistance value and a secondary

parameter ,and a digital signal indicating if the resistance is above/below a preset

threshold. Both signals are open emitter circuits, switching to KL15−2V according

to datasheet. The circuit in 4.11 can handle both signals offering a robust protection

Figure 4.11: IMD signals input

against ESD and EMC, and by choosing a MOSFET with an adequate VGS,max can

41

Chapter 4

work with a wide range of supply voltages (notice that it is an inverting configu-

ration). The digital I/O is also fail safe in case of disconnection, since a digital 0

correspond to a fault.

42

Chapter 4

4.5 CAN bus communication

The most used communication method as of today automotive standards is the

Controller Area Network (CAN). It is a multi-master bus which has good noise

immunity and allows for a large number of node connected, consisting of only a

twisted-pair cable (differential communication). Some concept of the bus will be

presented in order to understand this section, but a detailed description will not

given and is left to the reader. The CAN protocol is defined in the ISO-11898 as

CSMA/CD+AMP, that is:

• Carrier-Sense Multiple-Access: every node can access the bus, waiting for a

certain amount of time before trying to send a message

• Collision Detection and Arbitration on Message Priority: each node can de-

tect a collision between the actual bus state and the attempted transmission,

by a predefined message priority.

The protocol consists of frames sent by the nodes, shown in (4.12), that can contain

at most 8 data bytes. The identifier is 11 bits in the Standard CAN and 29 bits in

the Extended CAN. Maximum baud rate is 1 Mbps.

Figure 4.12: Standard CAN message frame [2]

A line driver is needed to interface the bus in order to ensure correct arbitration:

In fact these drivers implement the hardware layer required by the ISO standard

and sit between the bus and the CAN controller implemented by the node. The bus

requires two line termination of 120Ωat each (physical) end 4.13.

A new standard, called CAN Flexible Data rate (FD), can be used to increase

the baud rate during data transmission portion of the frame while increasing the

number of possible data bytes transfer in a single frame up to 64, allowing a huge

43

Chapter 4

Figure 4.13: CAN bus physical layer [2]

increase in throughput. The physical layer of the CAN FD bus is compatible with

the standard CAN bus. Due to the increasing need of data transmission speed, it is

a wise choice to adopt a CAN FD capable node so that it will be possible to exploit

this functionality if requested by the application.

The chosen transceiver is TCAN1051V-Q1, circuit in 4.14.

Figure 4.14: CAN transceiver circuit

The transceiver is able to transform a serial communication (TX and RX pins) in

a differential communication for the CAN bus (4.15) and is capable of FD function.

The drivers work at 5V supply while the serial communication has a dedicated

supply pin should the working voltage differ (3.3V in this case). The select pin S

can be pulled high if only ”listening” is needed, so it is tied to ground in this case.

The transceiver pins are protected from ESD with TVS diodes(D6). The use of

44

Chapter 4

Figure 4.15: transceiver schematic

a common mode choke (FL1) can greatly increase system reliability for Electromag-

netic Compatibility (EMC), filtering high frequency noises from the node to the bus

and vice versa. But as pointed in [15], this could lead to transceiver damage due

to high voltage transients if a short circuit of the bus to a dc voltage should occur,

caused by the inductive flyback of the choke itself. TVS diodes placed before the

choke and integrated protections inside the transceiver offer some immunity to these

transients, but if the application allows it, it is advised not use them. However, in

the same report, many automotive chokes have been tested, and results show that

the ones based on a toroidal core generates lower transients, so they are preferable.

Although it is not advised to place a termination on a node but rather on the bus

lines, due to the fact that removing that node would effectively kill the bus, it is

offered the option to mount the termination on the PCB. The splitting termination

(R24, R26) creates a filter with C17 which helps coupling high frequency noises to a

solid ground potential. The value of the capacitor depends on the speed of the bus,

as

45

Chapter 4

fcut =
1

2π ∗ 120Ω ∗ C

For a 1 Mbps bus, a 4.7nF capacitor creates a 3dB point at 1.1 MHz. Instead for

a CAN FD bus at, for instance, 5 Mbps during data transmission phase, a 1nF

capacitor moves the 3dB point at 5.17 Mhz. The resistor needs to be matched and

have an appropriate power rating in order to withstand a short circuit of the bus to

dc voltages.

46

Chapter 4

4.6 SoH and SoC

Determining the State-of-Charge and State-of-Health of batteries is a long discussed

topic. The definition of SoC can be given as the percentage on the remaining capacity

over the maximum capacity of a battery:

SoC =
Qrem

Qmax
x100% (4.1)

The SoH can be defined as the actual maximum capacity of a battery over the

nominal one:

SoH =
Qmax,act

Qmax,nom

x100%

The health of a battery is an important parameter in a vehicle, as it estimates

with more accuracy the possible driving range for the user, but also indicate when

the battery need to be changed, with a threshold of about 80% in general. This

parameter is mainly due to the aging of the battery electrochemical properties,

which can vary depending on how the battery has been used (temperature and

current conditions) over its life.

The simplest method to calculate SoC is by Coulomb Counting (CC) method:

SoCt = SoCt0 −
1

Qmax

Z t

t0

ηIbatt (4.2)

the meaning is that the SoC value (at time t) is obtained from the initial SoC

at start time (t0) by subtracting the integral over this time of the current flowing

from/in the battery. The parameter η accounts for the coulombic efficiency of dis-

charge and charge processes. This method has low impact on processing power, but

its inaccuracy is due to:

• knowledge of SoCt0 : how to choose this initial parameter?

• accumulated error over the integral due to current sensor intrinsic error

The difficulty of determining the SoC of a battery reside in the impossibility to

establish a one to one correlation between it and the voltage measured at the cell

47

Chapter 4

terminal. In fact, battery voltage and its energy are related by multiple factors as

temperature, charge/discharge rate and cycle time, as shown in figure 4.16 reported

from [16].

Figure 4.16: Capacity vs Voltage curves of a cell with a nominal capacity of 90Ah

There is instead a correspondence between energy and Open Circuit Voltage

(OCV), i.e. the voltage at cell terminals when no load is applied. The OCV is

obtained when the battery is at rest for a certain amount of time, due to an effect

called voltage recovery 4.17.

48

Chapter 4

Figure 4.17: Voltage recovery effect after charge/discharge [3]

This is better understood if the equivalent circuit model of a cell is observed.

Many of them have been formulated, but a compromise between simulation com-

plexity and accuracy has been found to be the Thevenin circuit model [17] shown

in 4.18. The parasitic resistance and capacitance Rp and Cp explain the voltage

relaxation effect, while RΩ is the cell intrinsic resistance, that accounts for η, thus

wasted heat.

Figure 4.18: Thevenin equivalent circuit model

In order to accurately estimate the SoC, many studies in literature [17] [18]

adopted equivalent circuit models like the previous and identified their parameters

through recursive algorithm and Kalman Filters.

49

Chapter 4

Since the scope of the work is not to provide an algorithm for SoC estimation, as

this is a parallel subject heavily correlated to the used cells for the battery pack,

but rather providing an hardware platform capable of running such algorithms, this

topic will not be further detailed. Depending on the complexity and required speed

of the chosen algorithm, it could be necessary to introduce a DSP or a FPGA in

order to create specific hardware structures supporting them, without taxing the

microcontroller, that would otherwise not be able to complete all the required work

in time.

50

Chapter 4

4.7 Additional considerations

In addition to what previously described, there could be some other features that

need to be implemented by the Master unit that mainly depends on the level of

integration of the BMS in the overall vehicle architecture, i.e. how information are

passed between the BMS and others ECU.

Depending on the battery pack construction, it could be necessary for instance to

monitor the pressure inside the pack for sealed case and/or humidity and water

leakage for water cooled batteries. It can be wise to provide additional analog

inputs with the same interface as seen in 4.10, that can handle typical 3-wire sensors

(5V power supply and 0.5-4.5V analog output). Another option can be the use of

digital integrated sensors relying on silicon sensing technologies, which can monitor

more than one parameter and provide the result on digital communication buses.

One example is the HDC2021 [19] which uses capacitive based sensing for relative

humidity and a bandgap reference for temperature sensor, sending information on

a I2C bus. This solution can be less accurate, due to size, position and intrinsic

accuracy of integrated miniature sensors, but strongly cost effective.

Based on these readings, the BMS can potentially be able to handle the cooling

system of the battery by itself. This is useful when the BMS is developed as part of

a power train system that will be used in many vehicles and sold to customers.

51

Chapter 4

4.8 Microcontroller

The chosen microcontroller is S32K144 from NXP. Its characteristics make it suit-

able for this job for a number of reasons.

• It is an automotive certified AEC-Q100 microcontroller, which is a mandatory

requisite.

• Easy to implement as a prototype thanks to available evaluation boards and

a dedicated IDE

• Already used inside the company, so faster development due to a deeper knowl-

edge of the product (both HW and SW).

• A complete set of peripherals for the needed communication buses: 2 CAN

bus ports (one with FD capability) and 3 each of UARTs, SPI, I2C.

• Has a Cortex-M4F core, which has a Single precision Floating Point Unit. Low

power and High Speed up to 112MHz mode available.

• 2 ADCs with 12 bit resolution and 8 channels each, 32 timer channels (16 bit),

DMA with 16 channels and 63 configurable trigger inputs

In the next section it will be described how the microcontroller peripherals will

be programmed and exploited in order to implement all the functions discussed up

to now. The full schematic for the Master unit is 4.19

52

Chapter 4

Figure 4.19: Master unit schematic

53

Chapter 5

Software implementation

5.1 General Structure

No Real Time Operative System has been adopted in the first place. The simple

structure in 5.1 allows for a precise timed routine. The initialization phase runs

once and configures all the required peripherals. The routine is timed through the

use of a timer, which is configured to fire an interrupt at a fixed rate. The Interrupt

Service Routine (ISR) triggered by this timer increments a free running counter,

used to check whether the code can be executed or not. In the scheme there are

three different pieces of code that run with three different frequencies, but they

could be also just one or more than 3. In order to assure that every piece of code is

always executed at the same frequency, the constraint is

• T1 = a · T2 = b · T3 with a, b ∈ N, 1 < a < b

that is all code pieces must run at integer multiple frequencies of the fastest.

• Tex1 + Tex2 + Tex3 < min{T1, T2, T3}

Considering a worst case execution time of all code pieces.

In this chapter it will be shown mainly how the Slaves chain is handled by the

Master using low level C programming configuring every needed peripheral and with

some algorithms, while something will be omitted for sake of simplicity.

54

Chapter 5

Figure 5.1: Firmware flow chart

55

Chapter 5

5.2 Chain communication

5.2.1 UART driver and functions

The first thing to do in order to be able to communicate is configuring the UART

peripheral and creating functions that can send and receive some messages (driver

file in appendix C). The initialization function (line 3) first disable the clock gating,

then selects the wanted clock source for the peripheral and writes to the (possibly

multiple) configuration registers. This procedure is almost the same for every pe-

ripheral initialization (or however when configuration registers are changed). It is

really important when working with peripheral that are connected with other com-

ponents that their interface is interrupted when changing the configuration, in order

to avoid unwanted damages. The peculiarity of this initialization is that it could be

necessary to call it more than once, due to the fact that the Slave unit at start up

works with a 250 kbit/s baud rate, and in order to configure a faster baud rate it

must be communicated at this speed. After this, the function can be called again

to change the baud rate to the desired one. The baud rate is selected by passing an

argument to the function. This argument is used to divide the clock source of the

UART peripheral in order to match the bit speed (line 10).

Sending a number of bytes via UART (line 18) is done by writing to the periph-

eral FIFO (line 27) in a blocking way (wait for it to be free if full at line 23). For

receiving a number of bytes, the function in line 39 waits for every byte to arrive

and saves it into a receiving buffer. A timer is started before the waiting while (line

45) that is set to trigger an interrupt after 1ms. If an error occurs and nothing is

received, the interrupt sets a flag, timeout, and returns it to the caller.

5.2.2 Initialization and configuration

At start up, during the initialization phase in schematic 5.1, the chain is config-

ured following the example of [20]. Communication is made of transaction frames

composed of the following fields:

• Frame initialization, 1 Byte: If a command is issued from the Master, it

56

Chapter 5

contains which type of request is made, how many data bytes will be sent,

register addressing mode (1 or 2 byte). The type of request can be Single

Device, Group Device or Broadcast, being them with or without a following

response.

If the message is a response from the chain, it contains how many bytes are to

be expected;

• Device Address or Group ID, 1 Byte: specify who needs to receive the

command or who is responding;

• Register Address, 1 or 2 Byte: specify the register addressed for writing the

following data;

• Data: data to be written or returned;

• CRC, 2 Bytes: Cyclic Redundancy Code to be sent or received.

In appendix D the function (line 36) sends a command to the chain, parametrized

by type of request cmdtype with a switch case statement. Two type definitions (line

7,13) give names to the command types and device registers addresses. The buffer

msgbufsend is filled with data to send depending on the command, while the data

to be written inside device register is written, before calling the function, in TXbuf.

CRC is calculated on every byte in the buffer with the function CRC16 calc and

then appended to it. The buffer is finally passed to the UART function for sending

it.

This initial configuration is a collection of call of this function, assigning to the

devices parameters such as address, sampling mode and time for sensed cells, how

many connected cells, etc. In order to keep the firmware flexible, the structure in

line 3 is used to create an array of bytes (line 30) indicating how many devices

the intended configuration is for, and for each device how many cell voltages and

temperature sensors are connected to it.

57

Chapter 5

5.2.3 CRC

The Cyclic Redundancy Check to implement with the BQ76PL455 uses a IBM

polynomial (0x8005). The microcontroller offers a CRC unit able to calculate a 16

or 32 bit CRC in just two clock cycles. In appendix E the driver does a one-time

Figure 5.2: CRC unit schematic

initialization CRC16 init configuring the unit for a 16 bit protocol transposing all

bits entering and exiting (required by IBM CRC) and writing the polynomial to the

dedicated register. There are two ways offered for CRC calculation. ”Burst” mode

by calling the function CRC16 calc writes the seed with the function CRC seed init

and then writes the data whose CRC need to be calculated in the data register for

the specified number of times, both passed as argument to the function; at the end

the function returns the 16 bit value by swapping upper and lower byte, required by

BQ76PL455. In the ”continuous” mode the application must call CRC seed init at

the beginning, then CRC intermediate how many times needed to write data byte

wise, and must retrieve the result with CRC result. The former method is useful

for example when computing CRC for entire buffers, while the latter can be used

for computing intermediate result between the reception of different bytes, as it is

shown in the next section.

5.2.4 Sampling the values

A sampling request must be done in order to sample the configured number of

channels (cells and temperature). This can be issued addressing single devices or

58

Chapter 5

group of devices (if configured) or broadcasting. The last method is the quickest

because it takes only one transaction from the Master to the Slaves via UART.

By broadcasting the sampling request, all devices will sample and send the values

Figure 5.3: Sampling request transaction

starting from the last one. A rough estimation on how much time this will take id

given by the formula

Ttransaction = Tcommand + Twait +N · Tresponse

Where N is the number of devices. Each contribution will be analysed.

• Tcommand = 5bytes · tbyte(UART), where tbyte(UART) is time needed for a byte

to be transmitted on UART, i.e. 10 bit ·tbit depending on selected transmission

speed;

• Twait = 2 · tbyte(BQ) ∗ (N − 1) + Tsample that accounts for the transmission of

the command up to the last device, sampling time of all signals and back to

the first device. tbyte(BQ) is fixed to 2.5µs/byte.

• Tresponse = tbyte(UART) · [2 ·(Xi+Yi)+3], where Xi, Yi are each device sampled

cell and temperature channel (2 bytes each) and the term 3 accounts for 1 byte

header and 2 bytes CRC.

As an example, for N=12, X=12, Y=6, UART speed = 500 kbps, Tsample = 100µs

Ttransaction ≈ 11.3ms. This is an estimation, due to the fact that it is not possible

59

Chapter 5

to know a priori the exact communication timing of chained devices (apart from

transmission speed). It is important to measure this time in the actual implementa-

tion in order to establish the frequency at which the Master can measure the entire

system.

Sampling cells voltages and temperatures is the most critical task of the system,

since the actions to be taken depends on them. After receiving all values, calcula-

tions on data need to be done, further increasing cycle time. What can be done is

try to manipulate the received data before the next one arrives, considering that, in

the worst case, at an UART baud rate of 1Mbps one byte takes 10µs to be received.

The proposed algorithm in appendix F uses previously described drivers to cycle the

reception of each device response frame. The function (line 18) returns a boolean

value, true if an error occur either because the chain did not respond (line 38) or due

to non correspondent CRC (line 97). For every device (line 46) first all cell voltages

are received (line 48), then all temperatures (line 70). Some structures are used in

order to store values:

1 struct VCELL{

2 uint16t cellH;

3 uint16t cellL;

4 uint16t cellAvg;

5 uint08t cellHid;

6 uint08t cellLid;

7 };

8

9 struct TCELL {

10 sint16t tempH;

11 sint16t tempL;

12 sint16t tempAvg;

13 uint08t tempHid;

14 uint08t tempLid;

15 };

16

17 struct TDEBUG{

18 uint16t tmux;

19 sint16t t1;

60

Chapter 5

20 sint16t t2;

21 sint16t t3;

22 };

23

24 struct VDEBUG{

25 uint16t vmux;

26 uint16t v1;

27 uint16t v2;

28 uint16t v3;

29 };

30

31 struct SYS_INFO{

32 uint16t TotalPackV;

33 sint16t Current;

34 uint16t status;

35 uint16t SOC;

36 };

VCELL contains the highest and lowest cell voltage, together with their ID (i.e.

position in the chain), together with average value. The same is done for tempera-

tures in TCELL. These structures are pointed by the CAN driver (not treated) so

that they are sent as messages of 8 bytes each. The information provided by these

structures can be enough for an external ECU in order to take decisions, as they

report the worst cell conditions. Sending all temperature and voltage readings can

be too taxing on the CAN bus, so structures TDEBUG and VDEBUG are used to

send only 3 values at each iteration together with a multiplexing value in order to

identify their ID. In SYS INFO the total pack voltage is obtained as sum of every

single cell, and is also stored current sensor value and SoC. The status variable will

be described in another section.

61

Chapter 5

5.3 Temperature conversion algorithm

The Slave unit will send the sampled value of the NTC in the configuration seen in

3.7. From measured voltage, the resistance value need to be calculated, and then

converted to temperature. For simplicity we will call Rp the pull up resistor, R0 the

NTC resistance value at T0 = 25°C, R the resistance of the NTC at temperature

T to be measured, VDIG the value in LSB of the ADC measure received from the

Slave, VFSR the ADC full scale range in Volts, Nb the ADC number of bits

VDIG = VFSR
R

R +Rp

2Nb − 1

VFSR
=

R

R +Rp
(2Nb − 1) (5.1)

Then R can be calculated as:

R = Rp
VDIG

2Nb − 1− VDIG
(5.2)

From the NTC characteristic equation we can get temperature from resistance

by inverse formula of 3.1:

T =
1

1
T0

+ 1
β ln(RR0

)
(5.3)

By substituting 5.2 into 5.3 we obtain:

T =
1

1
T0
− 1

β ln(R0

Rp
(2

Nb−1
VDIG

− 1))
(5.4)

62

Chapter 5

In case Rp = R0 the term R0

Rp
can be eliminated. The temperature obtained is

Kelvin, so a quantity of 273 should be subtracted for transforming it in °C.

Figure 5.4: Plot of equation 5.4

The equation could be implemented as it is by using a recursive method for ap-

proximating the natural logarithm, but it would be too slow for using it between

the reception of two consecutive voltage measurements as done in 5.2. A first ap-

proximation can be done by fixing a number of points, let’s say 20, and obtain a

linear piecewise function. To further improve speed, calculations can be done as

the integer unit of the microcontroller would do, by truncating the decimal part,

obtaining the function in 5.5. As not to lose too much precision, equation 5.4 has

10 at nominator, so only the second decimal digit is lost.

A piecewise approximation is more accurate when the slope of the function is

closer to 0. The biggest error is indeed from 70 to 100°C, which is maximum 0.8°C.

Error can be decreased if more points are considered when linearizing the function.

Considering the intrinsic inaccuracy of an NTC measuring process, this error is

acceptable, also because is a worst case estimation for normal use, as the temperature

sensed is higher. These calculations have been carried out with a Matlab script (A).

How does this approximation translates in the code is shown in B. The temperature

value of 21 equally spaced points is saved in the vector y[i] (two bytes each), from a

63

Chapter 5

Figure 5.5: Piecewise integer approximation

digital value of 6000 to 56000, i.e. 99°C to -15°C. The function called converts the

unsigned value passed to it into a signed temperature value through the formula at

line 13.

64

Chapter 5

5.4 Error Detection Mechanism

One of the BMS role is to inform the motor controller of its operational status (con-

tactors management, errors detection, etc.) and cell status. In order to this, a status

variable of two bytes lenght is used. Each bit corresponds to the presence/absence

of a specific error. After collecting data (see previous sections) each value is com-

pared to predetermined thresholds, but they must exceed them several times before

of resulting in an error. For example, if values are sampled every 10ms and the

system need to react (i.e. open/close contactors) every 100ms, it can be useful to

wait for the 10th error to be detected before opening the contactors. Error bits can

be sent to the CAN bus in order to tell the motor controller to interrupt current

flow as soon as possible. If the error persists for more than 100ms, contactors will

be opened anyway in order to avoid battery pack damages. These information can

also be used to let the vehicle users know battery problems.

65

Chapter 6

Conclusion

In order to evaluate the proposed work, a test bench has been created, composed of

a small Li-Ion battery pack in 12S1P made from Sony VTC6 cells monitored from

two evaluation boards of the BQ76PL455A [21] connected in chain with an eval-

uation board of the microcontroller described in the previous chapter [22]. These

evaluation modules offer the possibility of creating a system without the need of

hardware development, reducing cost and saving time, at the compromise of having

an hardware platform that is the most generic possible, i.e. not tailored for any

specific application. The goal was to establish a stable communication with the

chain of monitoring devices, exploiting all of their functions, thanks to the use of

all peripherals as previously described. The microcontroller board offers a CAN bus

transceiver, to which a CAN to USB device has been connected from a PC.

The CAN database shown in figure 6.1 is used to send commands and receive infor-

mation through a dedicated software on the PC that simulates a CAN node.

Figure 6.1: CAN database file

66

Chapter

Remarking the scope of the thesis, the objective was to lay the foundation for an

energy management system by an extensive analysis of various hardware

possibilities and choosing one to develop. The result is a multi slave single master

architecture. The first stage of development consisted in using evaluation modules

hardware for both Master and Slave units building a simple test scenario with a

small battery pack. The work then consisted in conceiving a firmware architecture

that:

• has an extensive library for Slave settings and communication

• Fully exploits hardware microcontroller peripherals for computation and

communication (CRC, UART, CAN) for maximum flexibility and efficiency

• Cyclically check and intervene on battery safety components to keep safe

operating status and inform other ECUs on the CAN bus.

67

Appendix A

Matlab script of temperature

approximation

N = 19;

stp_x = 50000/(N+1);

BETA = 3428;

x1 = 6000:1:56000;

y1 = 10*(1./(1/298 - (1/ BETA)*log ((65535./ x1) -1)) - 273);

%%NTC equation gives 0.1 C as unit of measure

x2 = 6000: stp_x :56000;

v=round(interp1(x1,y1,x2 , 'linear ')); %%rounded linear

interpolation of the function

for i=1:N+1

stp_y(i)= v(i+1)-v(i);

end

y2 = 0:1:50000;

for i=1:50000

y= x1(i) - 6000;

rem = floor(y/stp_x);

y2(i) = v(rem +1) + round(round(stp_y(rem+1)*(y-rem*

stp_x))/stp_x);

end

68

Chapter A

y2 (50001) = v(21);

e = y2 -y1;

m = max(e)

figure (1)

plot(x1,y1, 'LineWidth ', 1)

hold on

plot(x1,y2, 'r')
xlabel('Digital value')
ylabel('Temperature (C /10)')
set(gca ,'FontSize ' ,14);
legend('Reference ','Approximated ')

figure (2)

plot(x1,e, '.')%%, 'LineStyle ', 'dot ')
xlabel('Digital value')
ylabel('Absolute error (C /10)')

69

Appendix B

Temperature algorithm C code

1 #define TOFFSET = 6000

2 #define TSTEP = 2500

3 uint16t y[21] = {993, 841, 732, 646, 575, 513, 458, 409, 363, 319, 278, 238,

200,161, 123, 84, 44, 2, -43, -92, -147};,→

4

5 sint16t Get_T(uint16t value)

6 {

7 uint08t i;

8 sint32t temp;

9

10 if((value > 5999) && (value < 56000))

11 {

12 i = (value - TOFFSET)/TSTEP;

13 temp = y[i]+(value - TOFFSET - i*TSTEP)*(y[i+1]-y[i])/TSTEP;

14 return (sint16t) temp;

15 }

16 else if(value < 6000)

17 {

18 return -250; /*min value saturation*/

19 }

20 else

21 {

22 return 800; /*max value saturation*/

23 }

24

25 }

70

Appendix C

UART driver

1 boolt timeout;

2

3 void UARTinit(uint08t speed_sel) /*1=1M, 2=500k, 4=250k*/

4 {

5

6 PCC->PCCn[PCC_LPUART0_INDEX] &= ~PCC_PCCn_CGC_MASK; /* Ensure clk

disabled for config */,→

7 PCC->PCCn[PCC_LPUART0_INDEX] |= PCC_PCCn_PCS(6u) /* Clock Src= 6

(SPLLDIV2_CLK) */,→

8 | PCC_PCCn_CGC_MASK; /* Enable clock

for LPUART1 regs */,→

9

10 LPUART0->BAUD = 0x0FA00000 & (0x05 << speed_sel); /* Initialize for

selected baud, 1 stop bit, 8 data bits: */,→

11

12 LPUART0->CTRL=0x000C0000; /* Enable transmitter & receiver, no

parity, 8 bit char: */,→

13

14 }

15

16 //function for sending a vector of bytes

17

18 void UARTsend(uint08t *data, uint08t size)

19 {

20

21 for(uint08t i=0; i<size; i++)

22 {

23 while((LPUART0->STAT &

LPUART_STAT_TDRE_MASK)>>LPUART_STAT_TDRE_SHIFT==0),→

24 {

25 //wait for fifo to be empty;

26 }

27 LPUART0->DATA= *(data+i);

71

Chapter C

28 }

29

30 }

31

32 /*UART receive function

33 * Parameters:

34 * 1) "data" for storing the received characters

35 * 2) "size" for how may characters to be received

36 * 3) "offset" for storing characters in "data"

37 */

38

39 boolt UARTreceive(uint08t data[], uint08t size, uint08t offset){

40 timeout = BOOL_FALSE;

41

42 for(uint08t i=0; i<size ; i++){

43 LPIT0->TMR[1].TCTRL |= LPIT_TMR_TCTRL_T_EN(1); /*enable the

timer */,→

44

45 while(((LPUART0->STAT &

LPUART_STAT_RDRF_MASK)>>LPUART_STAT_RDRF_SHIFT==0) && timeout

== BOOL_FALSE)

,→

,→

46 {

47 //wait for a byte to be received, timeout expires in 1ms

48 }

49

50 LPIT0->TMR[1].TCTRL &= ~LPIT_TMR_TCTRL_T_EN(1); /*disable the

timer */,→

51

52 if(timeout == BOOL_FALSE){

53 data[offset+i] = LPUART0->DATA;

54 }

55 else{

56 return timeout;

57 }

58

59 }

60 return timeout;

61 }

72

Appendix D

Sending a Command to the chain

1 #define DevNum 2

2

3 typedef struct{

4 uint08t DevCell; uint08t DevTemp;

5 }BMS_slaveconfig_t;

6

7 typedef enum{

8 SingleNoResp = 0x9U, SingleResp = 0x8U,

9 BroadcastNoResp =0xFU, BroadcastResp = 0xEU,

10 GroupNoResp = 0xBU, GroupResp = 0xAU,

11 } BMS_msg_cmd_t;

12

13 typedef enum{

14 CMDreg = 0x2U, CHANNELSreg = 0x3U,

15 OVERSAMPLEreg = 0x7U, DEVADDRreg = 0xAU,

16 DEVCTRLreg = 0xCU, NCHANreg = 0xDU,

17 DEVCONFIGreg = 0xEU, COMCONFIGreg = 0x10U,

18 BALCONFIGreg = 0x13U, BALENreg = 0x14U,

19 SAMPLEDELAYreg = 0x3DU, CELLSPERreg = 0x3EU,

20 AUXSPERreg = 0x3FU, STATUSreg = 0x51U,

21 FAULTSUMMARYreg = 0x52U, FAULTUVreg = 0x54U,

22 FAULTOVreg = 0x56U, FAULTAUXreg = 0x58U,

23 CELLUVreg = 0x8EU, CELLOVreg = 0x90U,

24 AUX0UVreg = 0x92U, //offset for AUX1, AUX2 etc. is 4 up to AUX7UV

25 AUX0OVreg = 0x94U, //offset for AUX1, AUX2 etc. is 4 up to AUX7OV

26 CELLOFFSETreg = 0xD2U, CELLGAINreg = 0xD3U,

27 AUX0OFFSETreg = 0xD4U, //offset for AUX1, AUX2 etc. is 2

28 } BMS_registers_t;

29

30 BMS_slaveconfig_t BMSslaves[DevNum] = { //for every slave set how many cells/temp

it monitors, 1st is bottom of stack,→

31 {6,8}, /*1st*/

32 {6,8} /*2nd*/

73

Chapter D

33 };

34

35 uint08t TXbuf[8];

36 void BMS_send_cmd(BMS_msg_cmd_t cmdtype, uint08t devaddr, BMS_registers_t

regdest, uint08t datasize, uint08t respsize),→

37 {

38 static uint08t i;

39 static uint16t tempcrc;

40 static uint08t msgbufsend[8];

41

42 msgbufsend[0] = ((uint08t) cmdtype << 4) + datasize;

43

44 switch (cmdtype)

45 {

46 case SingleNoResp: //device address is sent

47 {

48 msgbufsend[1] = devaddr;

49 msgbufsend[2] = (uint08t) regdest;

50 for (i=0; i<datasize; i++)

51 {

52 msgbufsend[3+i] = TXbuf[i];

53 }

54 tempcrc = CRC16_calc(&msgbufsend[0], 3+datasize);

55 msgbufsend[3+datasize] = tempcrc >> 8;

56 msgbufsend[3+datasize+1] = tempcrc;

57 UARTsend(&msgbufsend[0], 5+datasize);

58 break;

59 }

60 case SingleResp: //device address and response size is sent

61 {

62 msgbufsend[1] = devaddr;

63 msgbufsend[2] = (uint08t) regdest;

64 msgbufsend[3] = respsize-1;

65 tempcrc = CRC16_calc(&msgbufsend[0], 4);

66 msgbufsend[4] = tempcrc >> 8;

67 msgbufsend[5] = tempcrc;

68 UARTsend(&msgbufsend[0], 6);

69 break;

70 }

71 default: //if broadcast type, no device address is sent

72 {

73 msgbufsend[1] = (uint08t) regdest;

74

75 for (i=0; i<datasize; i++)

76 {

77 msgbufsend[2+i] = TXbuf[i];

74

Chapter D

78 }

79 tempcrc = CRC16_calc(&msgbufsend[0], 2+datasize);

80 msgbufsend[2+datasize] = tempcrc >> 8;

81 msgbufsend[2+datasize+1] = tempcrc;

82 UARTsend(&msgbufsend[0], 4+datasize);

83 break;

84 }

85 }

86

87 }

75

Appendix E

CRC driver

1 #define CRC16_IBM_POLY (0x8005)

2

3 void CRC16_init(void){

4 PCC->PCCn[PCC_CRC_INDEX] |= PCC_PCCn_CGC_MASK; /* enable CRC clock

*/,→

5

6 CRC->CTRL |= CRC_CTRL_TCRC(0); /* enable 16-bit CRC protocol */

7 CRC->CTRL |= CRC_CTRL_TOT(2); /* all bits transposed in write */

8 CRC->CTRL |= CRC_CTRL_TOTR(2); /* all bits transposed in read*/

9 CRC->CTRL |= CRC_CTRL_FXOR(0); /* no XOR on reading. */

10 CRC->GPOLY = CRC16_IBM_POLY;

11 }

12

13 void CRC_seed_init(void){

14 CRC->CTRL |= CRC_CTRL_WAS_MASK; /* Set to program the seed value.

*/,→

15 CRC->DATAu.DATA = 0x0000; /* seed value */

16 CRC->CTRL &= ~CRC_CTRL_WAS_MASK; /* Clear to start writing data

values. */,→

17 }

18

19 void CRC_intermediate(uint08t *data){

20 CRC->DATAu.DATA_8.LL = *data;

21 }

22

23 uint16t CRC_result(void){

24 uint16t temp_crc;

25 temp_crc = ((uint16t)CRC->DATAu.DATA_8.HL << 8) + CRC->DATAu.DATA_8.HU;

26 return temp_crc;

27 }

28

29 uint16t CRC16_calc(uint08t *data, uint08t size){

30 uint16t temp_crc;

76

Chapter E

31 CRC_seed_init();

32 for(uint08t i=0; i < size; i++) {

33 CRC->DATAu.DATA_8.LL = *(data+i); /* write data values */

34 }

35 temp_crc = ((uint16t)CRC->DATAu.DATA_8.HL << 8) + CRC->DATAu.DATA_8.HU;

/*bytes are swapped for BQ76PL455*/,→

36 return temp_crc;

37 }

77

Appendix F

Chain sampling function

1 /*structure are used to pass the values for sending via CAN*/

2 struct SYS_INFO BMS_SYS_INFO;

3 struct TCELL BMS_TCELL;

4 struct VCELL BMS_VCELL;

5

6 uint08t RXbuf[3]; /*UART RX buffer*/

7 uint08t TXbuf[8]; /*UART TX buffer*/

8 uint16t allV[12]; /*store all V, used for debug*/

9 sint16t allT[18]; /*store all T, used for debug*/

10

11 /*

12 * Function that issue the sampling for all devices and receive the sampled

values,→

13 * Between reception of values on UART, all operations including CRC are

performed in order to eliminate overhead,→

14 * Since CRC is calculated with intermediate values, driver function 'CRC16calc'

is not used because we don't want,→

15 * to reset the seed nor to read the intermediate value

16 * TRUE = error, FALSE = ok

17 */

18 boolt BMS_get_values(void){

19 //local var

20 static uint16t tempoVar; //used to combine 2 bytes

21 static uint32t cellV;

22 static sint16t cellT;

23 static boolt locRet;

24

25 /*

26 * START

27 */

28

29 //send sampling request for every device starting from top, manage data

before the reception of the next one,→

78

Chapter F

30 TXbuf[0] = DevNum-1;

31 BMS_send_cmd(BroadcastResp, 0, CMDreg, 1, 0);

32 CRC_seed_init();

33

34 //reset indexes

35 uint08t indexcell= SeriesCell, indextemp=TotalTemp;

36

37 //receive 1st header

38 if(UARTreceive(RXbuf, 1, 0) == 0){ //no timeout

39 //reset variables

40 uint32t temptotalcellV = 0;

41 sint32t totalcellT = 0;

42 BMS_VCELL.cellH = 0, BMS_VCELL.cellL = 6000;

43 BMS_TCELL.tempH = -300, BMS_TCELL.tempL = 6000;

44 CRC_intermediate(&RXbuf[0]);

45

46 for(uint08t index=DevNum; index>0; index--){

47 //cell voltages

48 for(uint08t i=BMSslaves[index-1].DevCell; i>0;

i--) {,→

49 (void)UARTreceive(RXbuf, 2, 0);

50 tempoVar = ((uint16t)RXbuf[0] << 8) |

(uint16t)RXbuf[1]; //16-bit ADC value of cell

voltage

,→

,→

51 cellV = (tempoVar * 5000) / 65535; //cell voltage

in mV,→

52 CRC_intermediate(&RXbuf[0]);

53 CRC_intermediate(&RXbuf[1]);

54 indexcell--;

55 //check if it is the currently highest/lowest

cell voltage,→

56 if(cellV > BMS_VCELL.cellH){

57 BMS_VCELL.cellH = (uint16t) cellV;

58 BMS_VCELL.cellHid = indexcell;

59 }

60 else if(cellV < BMS_VCELL.cellL){

61 BMS_VCELL.cellL = cellV;

62 BMS_VCELL.cellLid = indexcell;

63 }

64 else{}

65 temptotalcellV += cellV;

66 allV[indexcell] = cellV;

67 }

68

69 //cell temperatures

70 for(uint08t i=BMSslaves[index-1].DevTemp; i>0; i--){

79

Chapter F

71 (void)UARTreceive(RXbuf, 2, 0);

72 tempoVar = ((uint16t)RXbuf[0] << 8) | RXbuf[1];

//16-bit ADC value of NTC voltage,→

73 cellT = Get_T(tempoVar); //cellT contains the

signed temperature in 0.1C,→

74 CRC_intermediate(&RXbuf[0]);

75 CRC_intermediate(&RXbuf[1]);

76

77 indextemp--;

78 //check if it is the currently highest/lowest

cell temperature,→

79 if(cellT > BMS_TCELL.tempH){

80 BMS_TCELL.tempH = cellT;

81 BMS_TCELL.tempHid = indextemp;

82 }

83 else if(cellT < BMS_TCELL.tempL){

84 BMS_TCELL.tempL = cellT;

85 BMS_TCELL.tempLid = indextemp;

86 }

87 else{}

88 totalcellT += cellT;

89 allT[indextemp] = cellT;

90 }

91

92 //receive CRC

93 (void)UARTreceive(RXbuf, 2, 0);

94

95 if((RXbuf[0] == CRC->DATAu.DATA_8.HL) && (RXbuf[1] ==

CRC->DATAu.DATA_8.HU)){ //check CRC,→

96 }

97 else{

98 locRet = BOOL_TRUE; //wrong CRC

99 }

100

101 if(index != 1){

102 //receive next header

103 UARTreceive(RXbuf, 1, 0);

104 CRC_seed_init();

105 CRC_intermediate(&RXbuf[0]);

106 }

107 else{}

108 }

109

110 if(locRet == BOOL_FALSE){

111 BMS_VCELL.cellAvg = (uint16t)

(temptotalcellV/SeriesCell);,→

80

Chapter F

112 BMS_TCELL.tempAvg = (sint16t) (totalcellT/TotalTemp);

113 BMS_SYS_INFO.TotalPackV = (uint16t) (temptotalcellV/100);

//0.1V format,→

114 }

115 else{}

116 }

117 else{

118 locRet = BOOL_TRUE; //timeout

119 }

120 return locRet;

121 }

81

Acronyms

µC microcontroller. 14, 17

AFE Analog Front-End. 18

BCU Battery Control Unit. 11

CAN Controller Area Network. 43

CC Coulomb Counting. 47

DSP Digital Signal Processor. 50

EMC Electromagnetic Compatibility. 45

EV Electric Vehicles. 10, 11

FPGA Field Programmable Gate Array. 50

Grounded Low Voltage System GLVS. 41

HEV Hybrid Electric Vehicles. 10

HMI Human-Machine Interface. 30

HV High Voltage. 10, 11

HVD High Voltage Disconnect. 31

HVIL High Voltage Interlock. 31

IC integrated circuit. 17

ICE Internal Combustion Engine. 10

IMD Isolation Monitoring Device. 41

82

Chapter F

ISO International Organization for Standardization. 9, 10

ISR Interrupt Service Routine. 54

LIBs Lithium Batteries. 9

LV Low Voltage. 10, 11

NiMH Nickel-Metal Hydride. 9

NTC Negative Temperature Coefficient. 21

OCV Open Circuit Voltage. 48

OpAmp Operational Amplifier. 33, 35

PCB printed circuit board. 13

PHEV Plug-In Hybrid Electric Vehicles. 10, 11

PWM Pulse Width Modulated. 41

SAR Successive Approximation Register. 17

SoC State-of-Charge. 11, 38, 47

SoH State-of-Health. 11, 38, 47

TVS Transient Voltage Suppressor. 25

UART Universal Asynchronous Receiver Transmitter. 17

VMU Vehicle Management Unit. 30

83

Bibliography

[1] Krunal Maniar. Comparing shunt- and hall-based isolated current-sensing

solutions in hev/ev. http://www.ti.com/lit/an/sbaa293b/sbaa293b.pdf,

2018.

[2] Introduction to the controller area network.

http://www.ti.com/lit/an/sloa101b/sloa101b.pdf, 2002.

[3] Y. Jeong, Y. Cho, J. Ahn, S. Ryu, and B. Lee. Enhanced coulomb counting

method with adaptive soc reset time for estimating ocv. In 2014 IEEE Energy

Conversion Congress and Exposition (ECCE), pages 1313–1318, Sep. 2014.

[4] M. S. Halper and J. C. Ellenbogen. Supercapacitors: A Brief Overview. The

MITRE Corporation, 2006.

[5] UNECE. rule n° 100, rev. 2, 12 August 2013.

[6] ISO. 6469-3, 2011-12-01.

[7] ISO. 12405-2, 2012.

[8] https://www.diodes.com/assets/Datasheets/ZXTN4004K.pdf.

[9] http://www.ti.com/lit/ds/symlink/iso7742.pdf.

[10] https://www.te.com/commerce/DocumentDelivery/DDEController?

Action=srchrtrv&DocNm=5-1773450-5_sec7_LEV200&DocType=CS&DocLang=

English.

[11] https://www.ti.com/lit/ds/symlink/amc1311.pdf.

[12] https://www.ti.com/lit/ds/symlink/sn6501.pdf.

[13] https://www.lem.com/sites/default/files/products_datasheets/dhab_

s_157_public_datasheet.pdf.

[14] https://www.bender-it.com/fileadmin/content/Products/d/e/

IR155-32xx-V004_D00115_D_XXEN.pdf.

84

Chapter F

[15] Ole-Kristian Skroppa and Scott Monroe. Common mode chokes in can

networks: Source of unexpected transients, 2008.

[16] Jiuchun Jiang and Caiping Zhang. Fundamentals and Applications of

Lithium-Ion Batteries in Electric Drive Vehicles. Wiley, 2015.

[17] P. A. Topan, M. N. Ramadan, G. Fathoni, A. I. Cahyadi, and

O. Wahyunggoro. State of charge (soc) and state of health (soh) estimation

on lithium polymer battery via kalman filter. In 2016 2nd International

Conference on Science and Technology-Computer (ICST), pages 93–96, Oct

2016.

[18] P. Shen, M. Ouyang, L. Lu, J. Li, and X. Feng. The co-estimation of state of

charge, state of health, and state of function for lithium-ion batteries in

electric vehicles. IEEE Transactions on Vehicular Technology, 67(1):92–103,

Jan 2018.

[19] http://www.ti.com/lit/ds/symlink/hdc2021.pdf.

[20] Stephen Holland. bq76pl455a-q1 software design reference, 2014.

[21] http://www.ti.com/lit/ug/sluuba7a/sluuba7a.pdf.

[22] https:

//www.nxp.com/docs/en/quick-reference-guide/S32K144EVB-QSG.pdf.

85

