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Sommario

La tesi si occupa nella progettazione di un modello orientato al controllo per sistema
Inertial Sea Wave Energy Converter (ISWEC). Il sistema ISWEC consiste in un dispostivo
galleggiante composto da uno scafo che ospita un sistema di giroscopi il quale il sistema
è indotto da oscillazioni dello scafo galleggiante sul mare. L’estrazione di energia è
ottenuta dallo smorzamento del moto di precessione del giroscopio attraverso un unita
elettrico di potenza (PTO), implementata da un motore capace di esercitare una coppia
indotta nello smorzamento del moto. L’albero, al quale opera il moto di precessione, è
meccanicamente conneso all’albero del PTO. In questa tesi, una procedura basata sulla
tecnica dell’identificazione del set-membership è proposta per la progettazione di un
modello multi-input di un sistema con dati input-output sperimentali. Dal momento
che la tecnica del Set-membership permette di quantificare l’incertezza di un modello
identificato, la descrizione del sistema ottenuto può essere utilizzato per progettare un
controllo robusto per massimizzare la conversione dell’energia. Basata su un modello
indetificato orientato al controllo, uno studio preliminare è stato condotto per ricercare
la possibilità di una formulazione del problema di massimizzazione della conversione di
energia nei termini di un controllo robusto su anello chiuso.



Abstract

This thesis aims at designing a control-oriented model for the Inertial Sea Wave Energy
Converter (ISWEC) system. The ISWEC system consists of a floating device composed
by a hull which hosts a gyroscope system whose motion is induced by the pitching
oscillations of the hull floating on the sea surface. Energy extraction is obtained by
damping the gyroscope precession motion through an electrical Power Take Off (PTO)
unit, which is implemented by an electric motor able to exert the torque intended for
damping such a motion. The shaft, about which the precession motion takes place,
is mechanically connected to the PTO shaft. In this thesis, a procedure based on set-
membership identification techniques is proposed for building a multi-inputs linear model
of the system from input-output experimental data. Since set-membership techniques
allow the user to quantify the uncertainty of the identified model, the obtained system
description can be profitably exploited to design a robust controller aimed at maximizing
the energy conversion. Based on the identified control-oriented model, a preliminary study
has been conducted in order to investigate the possibility of formulating the problem of
maximizing the energy conversion in terms of robust closed loop control.
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Chapter 1

Introduction

Ocean wave energy is one of the most promising renewable energy source and
realizes a significant contribution in the world energy mix, as discussed in [1]. The
ocean owns different energy sources such as wave motion, current tide, salinity
gradient, temperature differential and offshore wind. The wave motion is the
ocean energy source topic of this thesis work, as it realizes the excitation input of
the considered system to control. Moreover, wave energy is one of the densest
since it allows yearly extraction of an average power density up to 80kW per
meter of shoreline. Energy harvesting from wave motion has been topic of many
research activities in the world since the oil crisis in the seventies. In the last
twenty years the main purpose of such activities has been developing suitable
devices capable to effectively produce energy facing issues such as reliability and
efficiency, in order to achieve effective performance in terms of energy production
cost. Nowadays different Wave Energy Converter (WEC) devices have been
developed and tested in the sea with promising results, where it is presented a
thorough review of existing WEC systems. In this thesis work the Inertial Sea
Wave Energy Converter (ISWEC) developed in Politecnico di Torino is considered.
A picture of the ISWEC in Pantelleria sea is reported in figure 1.1.
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Introduction

Figure 1.1 – ISWEC device in Pantelleria Sea

The ISWEC project started in 2006 at Politecnico di Torino and involved several
modelling and experimental activities at different scale levels. In August 2015, a
full scale 100 kW prototype has been constructed and located near the shore of
Pantelleria island (Sicily, Italy), which is one of the most effective energy sites in
the Mediterranean sea. The ISWEC system consists of a floating device composed
by a hull which hosts inside a gyroscope system whose motion is induced by
the pitching oscillations of the hull floating on the sea surface. Energy extraction
is obtained by damping the gyroscope precession motion through an electrical
Power Take-Off (PTO) unit, which is implemented by an electric motor able to
exert the torque intended for damping such a motion. The shaft about which the
precession motion takes place is mechanically connected to the PTO shaft. The
use of this application device is born for the Ocean application, but the quality
of sea waves are best in Mediterranean sea, because the waves are short and
frequent. So there should be a best energy conversion and development of electric
energy.

As already mentioned the energy harvesting is accomplished by the action of
damping the precession motion of the gyroscope by imposing a suitable torque to
the PTO shaft. The damping action is computed by a suitable automatic control
strategy, which in this thesis work it is based on the robust technique. Since the
starting of project many control design are done, as for example a quite effective
PD controller has been employed to compute the PTO command torque, and a
MPC controller, that allows to handle efficiently different requirements by tuning
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Introduction

a customized quadratic cost function, which allows to find an optimal tradeoff
among the different requirements such as energy production, command effort
and PTO shaft speed limitation.

In this thesis the proposal is the design of a control-oriented model able to
generate a simulated output with minor error from the real output. The design is
computed with the Set-membership technique that allows at the user to quantify
the uncertainty of the identified model through chosen constraints. Thanks to this
building, a new project for a control will be simplest respect at the past control
design, reducing the complexity of the system. At this model ,in the thesis, there
is a preliminary robust control design with H-infinity technique, that allows to
improve the output power, and so to improve the efficiency of ISWEC system.
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Chapter 2

ISWEC system

The Inertial Sea Wave Energy Converter (ISWEC) is a system whose purpose is
harvesting electric energy by converting the energy owned by the sea motions
into electric energy. The following sections give a brief description of the ISWEC
system and its main components relevant for understanding and addressing the
control problem, as well as and its working principle and the dynamic equations
which describe its behaviour.

2.1 System Description

The ISWEC consists of a hull floating on the sea surface which hosts in the inner
environment different elements intended for producing and harvesting electrical
energy. The hull inner environment is sealed such that the contained elements are
safe from the outer environment, which could result otherwise dangerous. The
main units hosted in the inner environment of the hull are the gyroscope system,
which implements a spinning flywheel, and the Power Take-Off unit, which is the
element intended for producing electric power. The ISWEC hull and the layout
configuration of its main elements are shown in Figure 2.1
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ISWEC system

Figure 2.1 – ISWEC device

The figure also show the reference frame XYZ of the gyroscope system fixed
with the hull. The axes X-axis, Y-axis and Z-axis can be equivalently referred to
as -axis, -axis and -axis respectively.

The size of ISWEC device is described in this table 2.1:

Parameter Value

Total Mass (of which sand ballast) 316 ton (200 ton)
Floater length 15 m
Floater width 8 m
Floater height 5 m
Water depth 32 m

Table 2.1 – ISWEC device

The gyroscope system is composed of a spinning flywheel which is enclosed
in a case kept at low pressure for minimizing the drag resistance on the flywheel
during the rotational motion. An electric motor is responsible for spinning the
flywheel about the Z-axis. The flywheel case is mounted on a structure which
allows the rotation about the X-axis. The physical phenomenon known as gyro-
scopic effect is responsible for rotating the spinning flywheel about the X-axis.
More in details, as the gyroscope structure is rigidly connected to the hull floor,
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2.2 – System Dynamics

whenever the hull undergoes a rotation about the Y-axis due to the excitation
of the incoming wave, then the spinning flywheel of the gyroscope system un-
dergoes the same pitch motion, and therefore an induced torque occurs on the
spinning flywheel given by gyroscopic effect law which induces the flywheel to
rotate about the X-axis. This phenomenon is also known as precession, and the
induced rotational motion in consequently known as precession motion.

The energy production takes place by exploiting precession phenomenon. In
particular the energy is obtained by damping of the precession motion through
the Power Take-Off (PTO) unit, in fact the PTO is composed by an electric motor
able to impose a suitable torque T induced for damping. The gyroscope shaft,
which the precession motion takes place, is mechanically connected to the PTO
shaft, and therefore the imposed torque by the PTO is able to damp the precession
motion of the gyroscope system.

The ISWEC device in Pantelleria is composed by two gyropscopes in paral-
lel. This application is imposed because of increasing of power of the system.
Mechanically the device has the rated capacity as shown in the table 2.2 :

Parameter Value

Rated Power 250 kW
Rated torque 200 kNm
Rated speed 25 rpm

Table 2.2 – Rated parameters of ISWEC device

2.2 System Dynamics

It’s possible to provide a brief description on the dynamics of the system. It’s not
relevant in the computation of identification of model, but needs to understand
what is the topic of the problem.

The introduced dynamics can be modelled by writing differential equations
based on Newton torque equilibrium approach. Following this approach the

7



ISWEC system

resulting dynamic equations with respect to the reference frame XYZ presented
in figure 2.1 are the following:

The variables Tϵ(t), Tδ(t) and Tφ(t) represent the external torque exerted
on the gyroscopic system respectively about X-axis,Y-axis and Z-axis.Ig is the
total moment of inertia of the gyroscope system with respect to the ϵ-axis (or
equivalently to the δ-axis due to the symmetry of the disc shape of the flywheel). J
is the gyroscope axis-symmetric moment of inertia and φ̇ is the flywheel spinning
speed. ϵ̇ is the precession angular velocity and δ̇ the hull pitching speed, whereas
ϵ̈ and δ̈ are respectively their angular acceleration.

The ISWEC device is self-orientating with respect to the incoming wave, thus
the device interaction with waves can be formulated to a planar problem in the
plane defined by the vertical Z-axis. Therefore the external dynamics can be
expressed through only one degree of freedom which represent the ISWEC pitch
motion about the -axis:

(2.1)

So the system can be evaluate second the system equation, composed by (2.1)
and the precession motion description:

(2.2)

Only this equation from the three degree equations, because this is the unique
torque that acts on the direction of wave propagation, and that acts on the me-
chanical shaft, and so as consequence, on the PTO shaft. This is the torque which

8
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it will be evaluated and analyzed to compute the control-oriented model.

It can be evaluate the hydrodynamics effect of the wave on gyroscope oscilla-
tion effect:

(2.3)

2.3 Linearized model

For control purposes a linear model of the ISWEC system is required. Starting
from equations (2.1) and (2.2) it is possible to apply a linearization in the neigh-
borhood of the equilibrium position corresponding to ϵ = 0 and δ = 0. Moreover,
the flywheel is supposed to spin at a constant speed φ̇ =const.

The linearization of the first dynamic equation (2.1) gives:

(2.4)

Considering equation (2.2), it’s possible to define a LTI system equation that
describe the system:

(2.5)

where

This LTI system equation are useful to the design of a control in LTI technique,
as PD controller or MPC controller, used in past project topics. This linearization
is useful for these, because they base their technique on the mechanical theory
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knowledge. For identification technique is useful to know the numbers of the
states, expressed as follows, second the formulated LTI matrix:

A suitable choice for the value of υ which results in valid approximation is
υ=4. According to the approximation introduced in (2.5) the linearization of the
second dynamic equation (2.2) gives:

(2.6)

The term β|δ̇(t)|δ̇(t)| has been neglected as it assumes negligible values with
respect to the other terms. This is due to the fact that the pitching angular speed
of the hull δ̇ assume very small values.

And so the state vector has defined as:

(2.7)

Appearing in the LTI dynamical system equation:

(2.8)

where the matrix are:
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2.3 – Linearized model

(2.9)

Ieq is expressed as:

Futhermore it The linearized ISWEC model (2.8) represents the state-space
model of the ISWEC which can be used for control purposes. The variable Tϵ(t) is
the manipulable input, usually identified by the letter u(t). The variable τw(t) is
the input, consisting in the applied torque by the incoming wave on the hull about
the pitch axis δ, and it is considered as a disturbance as it is a not manipulable
input.

For the computation of identification the identified state are 8. In fact remem-
ber that the number of states/variables is important for identification because
define the complexity of order of model. More variables define a more complex
computation, but there is more accuracy. As discuss in chapter 3, the choice of
number of variables in identification has been based on compromise between
complexity and accuracy. Complexity has done by used processor (Intel Core
i7-7700HQ Quad Core, 2.8 GHz frequency).
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2.4 Power extraction

The importance of control-oriented model is to design a controller that improve
the efficiency of the system, i.e. increase the output power and reduce the power
absorbed by the mechanical system. The PTO power has defined as:

So the quantity Ppto(t) is a power absorbed by the system provided by the
external environment. Therefore a power produced by the system extracted from
the external environment is characterized to be a negative quantity. This implies
that the quantity Ppto(t) has to be minimized by the robust controller in order to
be as negative as possible during time.

A negative quantity of the power Ppto(t) is obtained by damping the gyro-
scope shaft precession motion through a given command action Tϵ(t) provided by
a suitable feedback control law. Moreover, the computed command action Tϵ(t) is
supposed to let the gyroscope system assume an oscillating behaviour around
ϵ=0, thus avoiding full rotations, despite mechanically feasible. In addition the
values of the PTO shaft angular speed ϵ̇(t) should be minimized to reduce wear
and solicitations on the PTO gearbox and power drive line. Furthermore, for
optimizing the energy production, the control energy effort spent by the PTO
torque action must be minimized.

The desired behaviour of controller is to reduce the PTO power and to make
the control robust, i.e. stable at any disturbance.

12



Chapter 3

Set-Membership Identification

3.1 Introduction to Set-Membership theory

The problem of model identification for linear systems is considered, using a
finite set of sampled data affected by a bounded measurement noise, with un-
known bound. The objective is to identify models and their accuracy in terms of
worst-case simulation error bounds. To do so, the Set Membership identification
framework is exploited. Theoretical results are derived, allowing one to estimate
the noise bound and system decay rate. Then, these quantities and the data are
employed to define the Feasible Parameter Set (FPS), which contains all possible
models compatible with the available information. Here, the estimated decay rate
is used to refine the standard FPS formulation, by adding constraints that enforce
the desired converging behavior of the model’s impulse response. Moreover,
guaranteed simulation error bounds for an infinite future horizon are derived,
improving over recent results pertaining to finite simulation horizon only. These
bounds are the basis for a result and method to guarantee asymptotic stability
of the identified model. Finally, the desired model is identified by means of
numerical optimization, and the related simulation error bounds are evaluated.
Both input-output and state-space model structures are addressed.

13



Set-Membership Identification

3.1.1 Set-Membership (Bound error) Approach

It analyze a model in Time-Invariant, i.e. the model function doesn’t depend on
time. Otherwise it’s said to be Time-Variant. To introduce at the bound error
approach of a LTI model, there are two assumptions to know:

1) A-Priori assumption on the Plant: as seeing in figure 3.1 the plant can be
a function that belongs to the a class function F. In this class belong non-linear
function that have characteristics of continuos, differentiable, polynomial, linear
comibination... The model plant is said to be Parametric when the class F is
described by means of a finite number of parameters. Instead the Non-Parametric
model is a model when F can not be described by means of a finite number of
parameters.

Figure 3.1 – Plant model

2) A-Priori assumption on the Noise: the errors ϵ(t) and η(t) belong to the class
Be, i.e. the class set that determines the set of errors (constraints).

As described before, the error has to bounded. Much important to derive
the parameters of model is to get a bound in the errors. Bound set knowing the
system disturbances. Remember that I have to not define the distribution of error
in the set. It’s not to known the distribution probability of error. The important
qualities are the extremes of set, as example in figure 3.2.

14



3.1 – Introduction to Set-Membership theory

Figure 3.2 – Example of set in 2D

So the A-priori assumptions are traduced as:

The linearized equation of plant, defined in the example as EE(Equation error):

y(t) = −α1y(t − 1)− α2y(t − 2)− ... − αny(t − n)+

+ β0u(t) + β1u(t − 1) + ... + βnu(t − n) + e(t)
(3.1)

The set equation of bounded error:

S = {e(t), t = 1, .., N :,

|e(t)| ≤ ∆e}
(3.2)

These equations are essential to define a parameter set, which are consistent
with a-priori information on the plant and the noise for all the collected data. This
set is called Feasible Parameter Set (FPS):

Dθ = {θ = [θ1, θ2, ..., αN , β0, β1, ..., βN] ∈ R2n+1 :,

y(t) = −α1y(t − 1) + ... − αny(t − n) + β0u(t) + ... + βnu(t − n) + e(t)

|e(t)| ≤ ∆e, t = n + 1, ..., N}

(3.3)

15



Set-Membership Identification

If it defines the error by the plant equation 3.1 as:

e(t) = y(t) + α1y(t − 1) + α2y(t − 2)− ... + αny(t − n)+

− β0u(t)− β1u(t − 1) + ... − βnu(t − n)
(3.4)

And substituting in 3.3:

Dθ = {θ ∈ R2n+1,

|y(t) + α1y(t − 1) + α2y(t − 2)− ... + αny(t − n)+

− β0u(t)− β1u(t − 1) + ... − βnu(t − n)| ≤ ∆e, t = n + 1, ..., N}

(3.5)

Analyzing the absolute value it’s possible to define two equations depending
on the bounded error, one for lower value, and the other one for higher value:

Dθ = {θ ∈ R2n+1,

y(t) + α1y(t − 1)− α2y(t − 2)− ... ⩾ −∆e,

− y(t)− α1y(t − 1)− α2y(t − 2)− ... ⩾ −∆e, t = n + 1, ..., N}

(3.6)

With FPS, it’s defined first constraints on the system for Set-Membership Iden-
tification. The two equations 3.6 give constraints on the set of parameters of plant
model.

Look an example with only two parameters:

Dθ = {θ = [θ1, θ2] : |y(t)− θ1y(t − 1)− θ2u(t)| ⩾ −∆e

t = n + 1, ..., N}
(3.7)

Dθ = {θ = [θ1, θ2] : y(t)− θ1y(t − 1)− θ2u(t) ⩾ −∆e,

− y(t) + θ1y(t − 1) + θ2u(t) ⩾ −∆e, t = n + 1, ..., N}
(3.8)
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3.1 – Introduction to Set-Membership theory

By highlighting the parameters, it can see that they depend on:

Dθ = {θ = [θ1, θ2] : θ2 ⩾
y(t − 1)
−u(t)

θ1 +
∆e − y(t)
−u(t)

,

θ2 ≤ y(t − 1)
−u(t)

θ1 +
−∆e − y(t)

−u(t)
, t = n + 1, ..., N}

(3.9)

In this way, it analyzes the dependence of the parameters on each other, and
observe the set in the graph 3.3:

Figure 3.3 – Example of a Feasible Parameter Set

From the FPS it is possible to define parameter ranges given by the system
uncertainty, Parameter Uncertainty Intervals (PUI), as can be seen from the figure
above 3.3. From this it has the ability to give an objective function 3.10 to the
problem, i.e. to minimize a linear function in order to obtain the desired parameter
interval.

θ1in f = minθ1 (3.10)

When it has a minimization of a linear function of variables, subject to a set
of a equalities and/or inequalities constraints which are linear in optimization
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problem, it solves with Linear Programming problem (LP), that is a convex opti-
mization problem,i.e. have not local minimum, but only global one.

Before talking about Linear programming, it should anticipate an alternative
analysis method for the Feasible Parameter Set. Sometimes the output error can
be expressed as the difference between real and simulated output as in 3.11. This
type of approach is called EIV (error invariable), because the error enters the
system according to the error invariable structure.

e(t) = y(t)− w(t) (3.11)

,where e(t) is the error, y(t) is the real output, and w(t) is the simulated output.

The Feasible Parameter Set is integrated with the output dependent error
constraint. In this way the inequalities that make up our constraints are enriched
by an additional constraint..:

Dθ = {θ = [α1, α2, ..., αN , β0, β1, ..., βN] ∈ R2n+1 :,

y(t) = −α1y(t − 1) + ... − αny(t − n) + β0u(t) + ... + βnu(t − n),

y(t) = e(t) + w(t), |e(t)| ≤ ∆e, t = n + 1, ..., N}

(3.12)

By replacing the output the main equations also depend on the error, and
simulated output as see in equation 3.13.

Dθ = {θ = [α1, α2, ..., αN , β0, β1, ..., βN] ∈ R2n+1 :

e(t) + w(t) = −α1(e(t − 1) + w(t − 1))... − αn(e(t − n) + w(t − n))

+ β0u(t) + ... + βnu(t − n), |e(t)| ≤ ∆e, t = n + 1, ..., N}

(3.13)

Now this type of Feasible Parameter Set strictly depends on the error that
enters with an EIV approach, and where the variables are the system parameters.
But in order to make the set solvable you need to integrate the errors that enter
as variables as well. So the FPS will be called Extended Feasible Parameter Set
(EFPS). A much more complex set that no longer needs a solution in Linear
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Programming(LP), but that needs a Bilinear Programming Optimization Problem,
since there is a direct interaction between several variables (θ*e). So the problem
results: not convex (presence of more local minima); it is defined as a special case
of a Polynomial Optimization Problems; at least theoritically bilinear optimization
problems are not easier than generical polynomial optimization problems.

3.1.2 Bilinear Optimization Problem

In mathematics, a bilinear program is a nonlinear optimization problem whose
objective or constraint functions are bilinear. A NonLinear Programming (NLP) is
the process of solving an optimization problem where some of the constraints or
the objective function are nonlinear. An optimization problem is one of calculation
of the extrema (maxima, minima or stationary points) of an objective function
over a set of unknown real variables and conditional to the satisfaction of a system
of equalities and inequalities, collectively termed constraints.
A nonlinear minimization problem is an optimization problem of the form:

Figure 3.4 – Example of form of NLP

The difficulty of a non-convex problem can be solved with Polynomial Opti-
mization Problem (POP), i.e. problem is optimized through polynomials (equality
or inequality) imposed to solve the minimization of the variability(s).

3.1.3 SparsePOP

A tool used for the POP problem is SparsePoP.
SparsePOP is a Matlab package for finding global optimal solutions of poly-
nomial optimization problems (POPs). The package is an implementation of a
sparse semidefinite programming (SDP) relaxation method for POPs, proposed
to improve the efficiency of Lasserre’s hierarchy of LMI relaxations of increasing
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dimensions. SparsePOP exploits the sparsity of POPs so that it can handle POPs
of larger dimensions.The package accepts a POP as input, and outputs solution
information and statistics. The main part constructs a sparse SDP relaxation of
the POP and uses SeDuMi to obtain an approximate global optimal solution.

The objective and constraint polynomials of a POP can be described in two
different ways, namely, the GAMS scalar format and the SparsePOP format, to be
read by SparsePOP.

A polynomial class is defined for this purpose as follows:

The name objPoly is for the objective polynomial function f0(x) and ineqPolySysj(j =
1,2, ..., m) for the polynomials f j(x)(j = 1,2, ..., m) of the constraints. The problem
is described using the polynomial class as follows.
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We note that -1.0e10 in lbd and 1.0e10 in ubd mean -∞ and ∞, respectively,
indicating x3 can take any value in the above example.

Since example1.m contains the description of the POP in the SparsePOP
format, the POP can be solved by SparsePOP as follows:
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3.1.4 Optimization toolbox for SparsePOP

When Optimization Toolbox is available in Matlab, it can help refine an approxi-
mation to an optimal solution of a POP obtained from its sparse SDP relaxation by
setting the parameter. That is, set param.POPsolver to ‘active-set’, ‘trust-region-
reflective’ or ‘interiorpoint’ to apply the Matlab function fmincom.m from the
toolbox. For example, if we issue the commands.

Then Matlab computes the parameters of objective value and defined it as:
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It is noted that the parameters calculated by Optimization tool are under the
POPxVectL field unlike POPxVect which are the parameters without optimization
calculated by SparsePop. In addition, the optimized parameters are better because
they assume precise values. Observe how the second value from 10-8 has passed
to 0, since the number 10-8 is very small and therefore negligible.
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3.2 Identification for ISWEC model

This section will show the identification procedure adopted in the ISWEC model.
Procedure described in the previous sections, but that undergoes modifications
because the objective function does not result the parameters, as described in
the chapter 3.1.1, but the error between real and simulated output. This kind of
procedure is done because the goal is to minimize the error to find the parameters
referred to the minimum calculated error.

3.2.1 Collected Data

First of all, the collected data used to identify the multi input-output model (Dou-
ble Input Single Output) was taken from old projects, where a MPC controller
was used. It collected the inputs, such as the wave signal, where we remember
there are 9 different types of wave signals, and the torque generated by the drive
shaft, which then continues towards the PTO shaft. Instead as output, the angular
speed of the PTO shaft, i.e. the first derivative the angular displacement ϵ, is taken.

So the model that will be analyzed will be the one that will try to simulate the
behavior of a model in which there is a MPC controller. So the output is not just
the mechanical system, but a controlled output.The input of the torque is also
subject to the action of the controller.

This approach is useful to try to carry out a control that improves the efficiency
of the model, since it is already based on a first controller.

It shows the Simulink block where the data is taken from:
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Figure 3.5 – MPC controller
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3.2.2 SparsePOP Identification

Once the data has been collected, the next step is to define a SparsePOP construct
to identify the model. To do this, it need to build and define equalities and
inequalities adhering to the system.
Before imposing the transfer function equation, it is necessary to impose and
decide how many states the model must be in order to understand how many
parameters must be identified.
And above all, the parameters are variables in the system and therefore more
parameters there are, more complex the system becomes. So the decision is taken
according to the states of the mechanical model, which are 8, as observable in
2.7, and the desired complexity that one wants to give to the model. Obviously,
the more complex the system is, the more accurate it will be, but there is a limit
depending on the processor used. So it was decided to use a model that had 9
states.

Therefore the plant model will be of this structure:

G1(q−1) =
ϵ1̇(z)
Tϵ(z)

=
β10 + β11q−1 + β12q−2 + ... + β19q−9

1 + α11q−1 + α12q−2 + ... + α19q−9 (3.14)

This is the model that relates the PTO torque input Tϵ with simulated output
ϵ1̇ . This is the plant model of the system.

But as mentioned earlier, this is a system with two inputs and one output.
The other input is the wave signal, which in our system we will evaluate as
disturbance. A disturbance, however, which, as you can see in the control chapter,
will have the input functionality in the system such as to generate output power,
just like in the mechanical operation of the system.

Therefore the disturbance model will be of this structure:

G2(q−1) =
ϵ2̇(z)

Fry(z)
=

β20 + β21q−1 + β22q−2 + ... + β29q−9

1 + α21q−1 + α22q−2 + ... + α29q−9 (3.15)

This is the model that relates the signal wave input Fry with simulated output
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ϵ2̇ .this is the disturbance model

Note that in the two transfer functions there are the ϵ1̇ and ϵ2̇ outputs, which
are the contributions of the angular speed of the PTO shaft, of each input. Where
their sum makes up the system’s output ϵ̇:

ϵ̇(t) = ϵ1̇(t) + ϵ2̇(t) (3.16)

From these three equations 3.14, 3.15, 3.16 are the constraints of SparsePop.
Together with these, we have to add the equation that links the real output with
the simulated one, then we show the link with the error, which its minimization
will be the objective function.

y(t) = ϵ̇(t) + η(t) (3.17)

And also because the Set Membership approach is a bounded error. You will
have to put the inequality that says that the absolute value of the error must be
less than or equal to a value, in order to make it bounded.

|η(t)| ≤ γ (3.18)

From these simple equality and inequalities it will be possible to define a
SparsePop structure. First of all you have to work on the transfer functions in
order to make them dependent on input and output and build an equation that
affirms this.

Starting from the transfer function G1 3.14, an equation is defined:

ϵ1̇(t)
Tϵ(t)

=
β10 + β11q−1 + β12q−2 + ... + β19q−9

1 + α11q−1 + α12q−2 + ... + α19q−9 (3.19)

ϵ1̇(t)(1 + α11q−1 + α12q−2 + ... + α19q−9) =

Tϵ(t)(β10 + β11q−1 + β12q−2 + ... + β19q−9)
(3.20)
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Applying the rules of discretization defines the equation as:

ϵ1̇(t) + α11ϵ1̇(t − 1) + α12ϵ1̇(t − 2) + ... + α19ϵ1̇(t − 9)) =

β10Tϵ(t) + β11Tϵ(t − 1) + β12Tϵ(t − 2) + ... + β19Tϵ(t − 9))
(3.21)

And so the equation is found:

ϵ1̇(t) + α11ϵ1̇(t − 1) + α12ϵ1̇(t − 2) + ... + α19ϵ1̇(t − 9))−
− β10Tϵ(t)− β11Tϵ(t − 1)− β12Tϵ(t − 2) + ... − β19Tϵ(t − 9)) = 0

(3.22)

An equation is found that determines the relationship between the torque of
the PTO shaft and the angular speed of the shaft in this equation constraint.

Same thing it has to do for the other transfer function, where instead it deter-
mines the relationship between the wave signal and the speed.

ϵ2̇(t)
Fry(t)

=
β20 + β21q−1 + β22q−2 + ... + β29q−9

1 + α21q−1 + α22q−2 + ... + α29q−9 (3.23)

ϵ2̇(t)(1 + α21q−1 + α22q−2 + ... + α29q−9) =

Fry(t)(β20 + β21q−1 + β22q−2 + ... + β19q−9)
(3.24)

ϵ2̇(t) + α21ϵ2̇(t − 1) + α22ϵ2̇(t − 2) + ... + α29ϵ2̇(t − 9)) =

β20Fry(t) + β21Fry(t − 1) + β22Fry(t − 2) + ... + β29Fry(t − 9))
(3.25)

ϵ2̇(t) + α21ϵ2̇(t − 1) + α22ϵ2̇(t − 2) + ... + α29ϵ2̇(t − 9))−
− β20Fry(t)− β21Fry(t − 1)− β22Fry(t − 2) + ... − β29Fry(t − 9)) = 0

(3.26)

In the equation 3.22 there are ϵ1̇ and the parameters α1i and β1i that turn out
to be variables, i.e. unknowns of the system. Instead in the 3.26 as variables there
are ϵ2̇ and the parameters α2i and β2i. This shows that the resolution is bilinear
where only Tϵ and Fry are known values.
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The relationship that links the two outputs of the transfer functions is the
equation 3.16:

ϵ̇(t) = ϵ1̇(t) + ϵ2̇(t) (3.27)

,where ϵ̇ is known, and ties the two unknown output ϵ1̇ and ϵ2̇ with the sum
of the two.

Now moving on to the equation that links the real output with the simulated
one, it can define an equation in which the error is present. So from the equations
3.17 and 3.18 the equation is formed:

η(t) = y(t)− epsilon(t)̇ (3.28)

|y(t)− epsilon(t)̇ | ≤ γ (3.29)

From this equation it is possible to define two constraints equalities, negative
and positive value of the absolute value:

y(t)− epsilon(t)̇ ≤ γ (3.30)

−y(t) + epsilon(t)̇ ≤ γ (3.31)

To put them as constraint inequalities in SparsePop they must be represented
in this way:

−ϵ(t)̇ ≤ γ − y(t) (3.32)

ϵ(t)̇ ≤ γ + y(t) (3.33)

From these 3.33, 3.32, substituing in 3.16, inequalities are formed to put inside
in SparsePop structure:

ϵ1̇(t) + ϵ2̇(t)− y(t) + γ ⩾ 0 (3.34)
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−ϵ1̇(t)− ϵ2̇(t) + y(t) + γ ⩾ 0 (3.35)

From the equations 3.22, 3.26, 3.27, 3.32 e 3.33 it can form the Extended Feasible
Parameter Set (EFPS), so formed:

Dθ,ϵ1̇,ϵ2̇,y,γ = {θ = [α11, α12, ..., α19, β10, β11, ..., β1N ,

α21, α22, ..., α29, β20, β21, ..., β2N] ∈ R2n+1 :

ϵ1̇(t) + α11ϵ1̇(t − 1) + α12ϵ1̇(t − 2) + ... + α19ϵ1̇(t − 9))−
− β10Tϵ(t)− β11Tϵ(t − 1)− β12Tϵ(t − 2) + ... − β19Tϵ(t − 9)) = 0,

ϵ2̇(t) + α21ϵ2̇(t − 1) + α22ϵ2̇(t − 2) + ... + α29ϵ2̇(t − 9))−
− β20Fry(t)− β21Fry(t − 1)− β22Fry(t − 2) + ... − β29Fry(t − 9)) = 0,

ϵ1̇(t) + ϵ2̇(t)− y(t) + γ ⩾ 0,

− ϵ1̇(t)− ϵ2̇(t) + y(t) + γ ⩾ 0, t = n + 1, ..., N}
(3.36)

Where the objective function is:

argminγ (3.37)

It will minimize the error to find the parameters corresponding to its mini-
mization.

When talking about the constraints,it will discuss the choice of the values to
be placed within the SparsePop structure, which values will reflect the translation
of the chosen constraints.

The first things to do are to define the objective function structure, objPoly
, where it enter global information about the whole structure to be given on
polynomial constraints:
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It is observed that the values objPoly.typeCone=1 because it is used for the
objective function, objPoly.degree=1 for a single varable which is the error γ in
the objective function, objPoly.dimVar=39+2*N. which defines the size of the vari-
ables and therefore 38 parameters to identify θ, 1 error variables γ , and 2*N
variables of the outputs of the two transfer functions which are unknown to
us. Other parameters to set are objPoly.noTerms=1. , which is the number of
terms placed in the objective function, only one since the function contains only
one term. objPoly.coef=1 which defines that the term has coefficient 1, and ob-
jPoly.support(39)=1 which defines that at position 39 of the support matrix (matrix
that defines whether the parameters are unknown or not, where 1 is placed if the
variable is unknown) there is an unknown variable (the error bounded γ).

The equalities in the SparsePop structure enter as:

This is the SparsePop structure for the equation 3.25, disturbance transfer
function.
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The values ineqPolySys.typeCone=-1 because it is used for the equalities func-
tion, ineqPolySys.degree=2 for a bilinear function which is the product between
the parameters θ and output 2, ineqPolySys.dimVar=39+2*N. which defines always
the size of the variables. Other parameters to set are ineqPolySys.noTerms=20,
inequality composed by 20 terms. ineqPolySys.coef=1 which defines that the term
has coefficient 1, and ineqPolySys.supports= [(zeros(20,39+2*N)] which defines the
structure of support matrix (size of matrix is the product between number of
terms and number of dimVar).
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ineqPolySys.coef defines the coefficients of terms, where is =1 for the term with
only variables, and =Fry(t-i) for term with direct dependence with signal wave
input.ineqoPolySys.support(i,j)=1 defines the positions in the support matrix of the
variables.

Now it see the analysis for the SparsePop structure for the equation 3.22:

Same structure for this equality.
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ineqPolySys.coef defines the coefficients of terms, where is =1 for the term
with only variables, and =Tϵ(t-i) for term with direct dependence with torque
input.ineqPolySys.support(i,j)=1 defines the positions in the support matrix of the
variables.
Note that some of them are marked with t-i+39+N, where N is present, which
identifies the sample number of the data collection. So it marks the position for
the variable ϵ1̇, present N times, referring to the collected data, because it defines
that it is after N+39 position of the matrix, i.e. present after 38 parameters, the
bounded error, and N values of ϵ2̇, placed in the previous equality.

Now it observes the expression in the SparsePop structure of the constraint
inequality 3.36:
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The structure analyzes an inequality, so the value ineqPolySys.typeCone=1, as in
the objective function. Moreover, the inequality shows the relationship between
real and simulated output, in particular the simulated output of the two transfer
functions. For this reason, in the ineqPolySys.coef it reports the output collected ϵ̇

to the position of the real outptut of the SparsePop structure.
The other parameters of the SparsePop structure are identical to the structures of
the equations described above.

The expression in the SparsePop structure of the constraint inequality 3.37:

Identical to the previous structure, only the coefficients and their signs change
in the parameter ineqPolySys.coef.

The last step to give in the SparsePop structure is to define the boundary of
each single variable of the structure. As expressed below:

The choice of lower and upper limits was arbitrary, because there was no
constraint on that. That’s why it was chosen to put a very large value (1e10),
which simulates the value of infinity ∞ (+∞ for upper bound (ubd) and −∞ for
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lower bound (lbd)).

Once the SparsePop structure is defined, it runs the script used to launch
the SparsePop function created, to calculate the desired parameters of the two
analyzed models:

From this script it can see that only 100 data from the 3000 available from
the collected data sample are taken for identification, to facilitate the calculation
difficulty.
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It also uses the SparsePop calculation optimization, it can see it from the pa-
rameter on the script param.POPsolver=’activeset’.It was also used as a parameter
param.relaxorder=1. This defines the relaxation order of the non-convex problem
with which it is solved. Obviously the larger the order, the more complex the
calculation will be, so it wanted to use 1 to define a low degree of complexity to
best perform the calculations on the processor in use. By using this optimization it
has to impose that the values of the desired variables are those of the POP.xVectL,
obvious the values ranging from the position 1 to 38.

3.2.3 Identification Results

By identifying the models for all 9 types of wave signals, and then for all 9 types
of collected data, it can study and analyze them to understand how much error
they individually have. To do this we define the error between real and simulated
output. Real output is the one provided by collected data from previous projects,
as analyzed in previous chapters. The simulated output is the one obtained by
stimulating the model found with the input collected.
To define the simulated output, there is a need to build models. Models that
depend on the parameters found. The parameters, as explained above, are
optimized, but it is necessary to check between models with optimized and
non-optimized parameters (use of ’active-set’ tool), in order to understand if the
identification has been successful.

The output is defined as the sum of the two outputs described by the two
transfer functions G1 and G2. It is easier to understand if a simple Simulink model
is shown where the model simulation is represented:
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Figure 3.6 – Simulink simulation identificated model

A check is made between optimized and non-optimized model output. And
to do this, take the first data set as reference:

Figure 3.7 – Comparison between optimized and non-optimized models
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Observable in more detail in the figure 3.7:

Figure 3.8 – Detail of comparison between optimized and non-optimized models

It is noted that there is a huge difference between the two outputs, the opti-
mized and the non-optimized. This helps to understand that the use of identifica-
tion optimization has led to a huge improvement.
To understand the actual improvement an analysis is made with the real output:

Figure 3.9 – Comparison between optimized, non-optimized models and real output
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Observable in more detail in the figure 3.9:

Figure 3.10 – Detail of comparison between optimized,non-optimized models and
simulated output

The real output is highlighted with blue, and it can see that it similarly retraces
the trend of the optimized output, unlike the non-optimized one which has a
trend that differs from the real one. This means that the optimization has served,
and that the models that will be analyzed will be based on the optimized identifi-
cation (remember that it was done thanks to the ’activeset’ function of SparsePop).

So it can see the effectiveness of the identification. The figure 3.9 represents the
identification for the first set of data. It was necessary to make an identification
for each of the 9 sets, to understand if the optimization was good for all of them.

Once an identification is made for each of the 9 sets, a table showing the
effectiveness is represented, highlighting the RMSE (Root-mean-square deviation)
error and the maximum error in the output peaks. The error that is represented is
not defined on the angular velocity output, but on the power, since our goal is to
create a model to simulate the power in order to perform a control that improves
the efficiency.

Remember that the power calculation, as described in the chapter 2.4, depends
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on the torque, collected data, input to the plant model, and the angular speed
of the PTO shaft, a value analyzed and found as the real output of the model
identified.

A comparison is made between real power, taken from real output, and
simulated power, taken from simulated output from the model. And it can see it
in the following figure:

Figure 3.11 – Comparison between Real and Simulated Power
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Observable in more detail in the figure 3.12:

Figure 3.12 – Detail of peak of comparison between Real and Simulated Power

It can see from the picture that the error is minimal in the peaks. One more
detail to say that the identification was successful, through the parameters found.
This comparison, as already mentioned, was based on the first data set. A com-
parison is made on each of the 9 available data sets. A comparison based on the
maximum error by observing the peaks, i.e. the maximum values of the power
curve. But the analysis of this type of error is not very influential for a correct
estimation. This is why an analysis of the RMSE error must be carried out.
This type of error is made considering the trend of the whole curve, and therefore
considering the error on each single value of the real curve compared to the
simulated one.
The RMSE error is calculated as follows:

The RMSE error has been calculated for each of the 9 available data sets.
The comparison is shown first by analyzing the maximum peak error and then,
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the RMSE error. The comparison that will be made shows the iteration of a model
identified with a given data set with other data sets, to understand if it is possible
to define a unique model that simulates each type of data set and therefore each
type of wave signal entering the model.

The table that defines the maximum errors of the detected peaks for each of
the 9 models and iteration with each data set is shown:

Table 3.1 – Table of maximum error

As said, the comparison of each individual model with each data set is made
to identify a unique model that can best simulate each data set.
For each data set a better model has been found (note the yellow highlighting for
the best one). Instead, the model calculated for that particular data set is written
in red color. In order to understand how in some cases another model can cause a
minor error and therefore a better identification.
This analysis is also valid for RMSE error.
Error to give more attention, as said before, for the fact that it analyzes every
single value of the simulated output curve compared to the real one.
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It shows the table 3.1, with a percentage expression:

Table 3.2 – Table of maximum error in percentage

A further analysis carried out is to understand which model is the best. It is
easy to understand that there is not a single model capable of being better for
each data set, but there are two models (the first data set, and the fifth one) that
are the best for more than two data sets. To understand which is the best of the
two it need to understand what are the results of the RMSE error.

Table 3.3 – Table of RMSE error
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It shows the table 3.3, with a percentage expression:

Table 3.4 – Table of RMSE error in percentage

It analyzes the model of the first data set and the fifth, and we find that al-
though the first model is able to define minimum errors for some data sets, which
the second model is not able to do (from the identification of the fifth data set).
But this feature is not constant for all data sets, for example for the second data
set it assumes an error of 1.27%, too big.
Instead, for the same data set, the fifth data set assumes a smaller error of 0.64%.
Also it has to understand that the data sets are different from each other, and for
example the fifth model assumes much larger values of power, in the order of
105W. And it find that the fifth model has the ability, as for the second data set,
to define minimum errors for data sets capable of producing large power in the
order of 105W(= 100kW), a feature not found for the first model. In fact, it is only
able to define a minimum error only for data sets that generate power smaller
than the order of 104W(= 10kW).

So it can say that the fifth model, even if assuming a bit bigger errors, is the
best because it has a constant error in all 9 data sets, and unlike the first one it
assumes smaller error values for data sets with more power.
For this reason the fifth model is evaluated as the best, since it can give even
more priority to the datasets with more power, since the goal is to improve the
efficiency of the system, and thus improve the power generated compared to
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the power absorbed. So it is right to focus on datasets with more power generated.

Below it shows the transfer function of the fifth model (remember that the
system model includes two, one for the disturbance, and one for the plant):

G1(z) =
−1.6462 · 10−05(z + 0.8825)(z2 − 1.958z + 0.9999)(z2 − 1.253z + 0.5234)

(z + 0.7451)(z2 − 1.638z + 0.7177)(z2 − 0.1205z + 0.295)
(z2 − 0.949z + 0.7326)(z2 + 1.18z + 0.9467)
(z2 + 1.172z + 0.6663)(z2 − 0.3242z + 0.5984)

(3.38)

,where G1(z) is the transfer function of the plant, expressed in discrete, Z-
Domain.

It shows its expression 3.40 in continuous , in Time-Domain, so that the transfer
function can be used in the control design:

G1(s) =
−1.6462 · 10−05(s − 43.26)(s − 0.798)(s2 + 2.904s + 11.95)(s2 + 7.642s + 127)

(s2 + 3.317s + 9.49)(s2 + 5.134s + 191.5)(s2 + 12.21s + 250.3)
(s2 − 1.738s + 431.2)(s2 + 1.053s + 999)
(s2 + 4.06s + 566.4)(s2 + 5.885s + 995.6)

(3.39)

The second transfer function is shown, that of the disturbance model:

G2(z) =
5.8069 · 10−08(z − 0.9619)(z − 1.01)(z − 1.051)(z2 + 1.996z + 1.126)

(z − 0.7525)(z2 − 1.969z + 0.9837)(z2 + 1.516z + 0.6354)
(z2 − 1.061z + 0.9271)(z2 + 1.2z + 1.067)

(z2 + 0.8057z + 0.6857)(z2 − 0.3268z + 0.6004)
(3.40)

It shows its expression 3.38 in continuous , in Time-Domain, so that the transfer
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function can be used in the control design:

G2(s) =
5.8069 · 10−08(s − 0.9926)(s + 0.5759)(s − 0.04332)(s2 − 3.135s + 116.6)

(s + 2.843)(s2 + 0.1639s + 1.456)(s2 + 5.101s + 191)
(s2 + 1.468s + 549.3)(s2 − 21.12s + 1123)
(s2 + 3.773s + 435.7)(s2 + 4.534s + 804.1)

(3.41)

These are the models G1(s) and G2(s) identified to simulate the ISWEC system,
which will be used in the next chapter for the design of the robust control to
improve efficiency.
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Chapter 4

Robust Control for ISWEC

The identified models have the function of simplifying the ISWEC system model.
But, as mentioned in the previous chapters, the aim is to build a model designed
to design a control to improve the power of the system in a simple way. To do this
we try to design a preliminary Robust Control, since it is a simple computational
mode, which compared to past designs, there is no need for any prediction that
makes the calculation more complex. The Robust Control is designed considering
the angular speed as a reference to follow, since the power generation mainly
depends on it. And it is also designed to mitigate the disturbance, from which
the model was also built.
This is the block tracking error, where shows that output power is generate by
output of model (angular speed) and PTO torque (that is the input of model Gpn):

Figure 4.1 – Tracking error control
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4.1 Introduction to Robust Control theory

In this chapter robustness for single-input single-output (SISO) linear time invari-
ant systems is considered.

Irrespective of their complexity, mathematical models cannot exactly describe
a real physical process. Sometimes we may prefer simplified approximate models,
as the model identified.
Thus, model uncertainty has to be taken into account when a mathematical model
is used to analyze the behavior of a system or to design a feedback control system.

Model uncertainty is essentially due to:
- physical parameters not exactly known;
- unmodeled (linear or nonlinear) dynamic;

Uncertainty due to approximate knowledge of some parameter values is called
parametric uncertainty, instead a uncertainty due to unmodeled dynamics is
called dynamic uncertainty.
The basic approach to take uncertainty into account is to describe the plant under
study as a member of a set of systems (also called model set).
A LTI System is considered as in this figure:

Figure 4.2 – LTI System

Model sets for LTI uncertain systems can be classified as:
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4.1 – Introduction to Robust Control theory

- structured uncertainty model set: when the set is parameterized by a finite
number of parameters;
- unstructured uncertainty model set: when complete ignorance regarding the
order and the phase behavior of the system is assumed;

Parametric uncertainty can also be described (with some conservativeness) by
means of unstructured model sets. And there are different unstructured model
sets to be considered:
- additive uncertainty;
- multiplicative uncertainty;
- inverse additive uncertainty;
- inverse multiplicative uncertainty;

The additive uncertainty model set is defined by:

Figure 4.3 – Additive uncertainty

where Gp(s) is the transfer function of the generic member of the uncertainty
set, Gpn(s) is the transfer function of the nominal model, ∆(s) can be any possible
transfer function whose H∞ norm is less than 1, Wu(s) is a weighting function
which accounts for the size of the uncertainty, and it is assumed that all systems
belonging to Ma must have the same number of unstable poles.

By construction, the weighting function Wu must satisfy the following condi-
tion:
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(4.1)

which is equivalent to:

(4.2)

The weighting function Wu has this slope, which is greater than the error
between nominal and generic model:

Figure 4.4 – Example of Wu of additive uncertainty

The multiplicative uncertainty model set is defined by:

Figure 4.5 – Multiplicative uncertainty
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,where, by construction, the weighting function Wu must satisfy the following
condition:

(4.3)

which is equivalent to:

(4.4)

The weighting function Wu has this slope, which is greater than the error
between nominal and generic model:

Figure 4.6 – Example of Wu of multiplicative uncertainty

The robustness of the system and analysis in an unstructured uncertainty is
now considered. The robustness of the system and analysis in an unstructured
uncertainty is now considered. This is called Robust Stability:
The feedback system in figure is robustly stable if and only if it is internally stable
for each Gp which belongs to Mm.
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Assume that Gp belongs to Mm. Assume that the feedback control system is
stable when the nominal model Gpn for the plant is considered. The feedback
system is robustly stable if and only if the following condition is satisfied:

Where Tn is the nominal complementary sensitivity function:

Now it has recalled the nominal performance conditions (i.e.performance
conditions in the uncertainty-free case) derived previously. Performance require-
ments affecting the sensitivity function leads to the following condition:

,while performance requirements affecting the complementary sensitivity
function are translated into:

From nominal performances it has defined the Robust performances. His
definition is:
The feedback system guarantees robust performance if and only if performance
requirement are satisfied for each Gp which belongs to the given uncertainty
model set. So the robust performance if and only if the following condition is
satisfied:

This is the result that by definition, the feedback system guarantees robust
performance if and only if:
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where

thus, it can write the following robust performance condition:

(4.5)

which, being L = Ln(1 + Wu∆) , can be equivalently written as:

(4.6)

Now it’s considered the following relation straightforwardly derived from the
definition of multiplicative uncertainty model set on the loop transfer function:

(4.7)

From the following figure it is clear that the feedback system guarantees robust
performance if and only if the two disks do not overlap:
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the condition to avoid overlapping of the two disks can be formally written
as:

Before talking about the H∞ approach, it is useful to write where the weight-
ing funcion on the sensitivy and complementary sensitivity comes from.
A weighting function is a weight function that keeps track of a function. It defines
the low and high frequency amplitude limits of a function. Taking for example
the sensitivity function, it can define a weight function on it.

And it may take this form according to such limitations:

Figure 4.7 – Weighting function on the sensitivity example

The same analysis is carried out with regard to complementary sensitivity:
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Its figure:

Figure 4.8 – Weighting function on the complementary sensitivity example

4.1.1 Introduction to H∞ design for robust control

First of all, let us recall the definition of the H∞ norm of a SISO LTI system with
transfer function H(s) :

(4.8)

The H norm minimization approach, called H control, refers to a general
formulation of the control problem which is based on the following block diagram
representation of a general feedback system.

Figure 4.9 – Robust control H∞ representation
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,where M is the generalized plant, Gc is the controller, u are the control inputs,
v are the controller inputs, w are the external inputs and z are the external outputs.
The external input and output signals of the generalized plant are not necessarily
physical variables of the control system. The external input and output signals of
the generalized plant must be carefully selected in order to take into account the
stability/performance requirements of the considered control problem.

In the H design, the controller is obtained by solving the following optimiza-
tion problem:

(4.9)

,where Twz is the closed loop transfer function between the input w and the
output z.

It consider the problem of designing a controller Gc to robustly stabilize an
uncertain system described by means of the unstructured multiplicative model
set (look equation of figure 3.3) and ||WuTn||∞ < 1. The problem can be solved
chosen:

where

Assume, without loss of generality, that: G f = Gs = Ga = 1.
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Figure 4.10 – Generalized Plant M

Now it consider the problem of designing a controller Gc to satisfy the nominal
performance conditions:

can be solved by choosing the following transfer function Twz:

where

So, considering these conditions, the generalized plant is:
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The generalized plant M can be internally stabilized by an LTI controller
Gc having input v and output u if and only if W1 and W2 are stable transfer
functions. However, it knows that some common performance requirements on
the steady-state response to polynomial reference signals and disturbances lead
to an unstable weighting function W1 (due to the presence of one or more poles
at s=0).
In order to satisfy the assumption of stability it replaces W1 in the generalized
plant M with a new weighting function W1∗ obtained as follows:

where λ∗ > 0 is a low frequency pole (a reasonable choice for λ∗ is λ∗ ≤
0.01ωc). The controller obtained with such a modified weighting function will
have, if any, at most +p poles at about s = −λ∗ . Each pole at about s = −λ∗ in
the controller must be replaced with a pole at s = 0.

For W2 it has to make a choice, in fact as explained above, it depends on Wt

and Wu.The choice is based on choosing W2 as the maximum between Wt and
Wu, as can be seen in the following figure:

Figure 4.11 – Wt e Wu weighting function example

The maximum choice between the two weighting functions is W2.
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4.2 – H∞ approach for ISWEC model

The problem is that it has to make the generalized plant M stable, and to do this
the weighting function W2 must be stable too, but it can see from the previous
figure that it is an improper function. So it makes a choice. In the generalized
plant you put only its dc gain(W2mod), and forcefully add the poles. Poles that
will be the cut-off frequency of the W2, (added with the function sderiv).

4.2 H∞ approach for ISWEC model

The first step for the H∞ approach is to define the weighting functions, both
uncertainty and sensitivity and complementary, such as to build control.
The uncertainty weighting function Wu is calculated based on the 9 models
calculated by identification. In fact, as mentioned in the previous chapter, the Wu

is based on the error between the nominal model and the other general models of
the system. The fifth model is identified as the nominal model, and the other 8
models as general models. The multiplicative uncertainty model set is used as
uncertainty calculation, so the error will be based on the ratio between nominal
model and general models, as written in equation 4.4.
Then the relative error is calculated eight times, one for error with any 8 general
models, then eight possible weighting functions are calculated, and the Wu is
chosen as the maximum. It can see the superpostion of the 8 weighting functions
on the following graph:

Figure 4.12 – Wu weighting function superposition
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Through the ginput Matlab function it takes several points on the graph where
it takes the maximum at each point on the function overlap. In this way it builds
the Wu, defined:

Wu = 5.5721
s2 + 28.86s + 987.2
s2 + 2.942s + 1017

(4.1)

Once it defines the Wu construction, it has to build the Wt and Ws to define
the W1 and W2, for the H∞.
The Wt and Ws are built based on the information it has from the system and
that we try to impose. For example, we try to define an error to infinity of 0.02
(errin f = 0.02). And a sinusoidal reference that it imposes, is 0.5, which corre-
sponds to the maximum angular velocity reference of the 9 data sets (R0 = 0.5001).

These parameters are used to evaluate the a parameter of the Butterworth
function, which is used to build the Ws weighting function:

W−1
s =

as(1 + s
w1
)

1 + 1.414 s
w2

+ ( s
w2
)2 (4.2)

This a parameter is defined by resolving the limit:

,where the a is calculated as Sstar0. From this limit it can see that:

Sstar0 =
er∞

KdR0
(4.3)

,where Kd is the gain imposed on the reference (constant scaling factor), and
=1 is imposed. So a is given by the ratio of erin f and R0. Value equal to =0.04.

Other parameters to be defined are the frequencies w1 and w2 . The w2 depends
strictly on w1 and a, so let’s focus on the choice of w1. It depends on the cut-off
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4.2 – H∞ approach for ISWEC model

frequency that it wants to give on the open loop function Ln. To calculate it, it
relies on the settling time dependent calculation:

The inverse calculation of settling time equation defines wn and thus the cal-
culation of wcts. After defining this parameter, it is useful to understand that w1

is empirically less than half of wcts. wcts for the calculation is equal to 0.1468. So
this defines that the minimum cutting frequency is 0.1468. In fact, remember that
this calculation does not exactly define the wc, but only a minimum of the range.

w2, as mentioned above, depends on w1 and a, as:

w2 =

√︃
Sp0w1

a
(4.4)

Sp0 is the maximum peak in sensitivity amplitude that is imposed per project
on 1.4. Tp0 is the peak for the complementary sensitivity that is imposed on 1.05.
So for the calculation w2 is equal to 1.5652. This builds the Ws, which we will be
modified for optimal control calculation.

Now the focus shifts to the Wt calculation, which is calculated as:

W−1
t =

Tp0

1 + 1.414 s
wt

+ ( s
wt
)2 (4.5)

The calculation of the wt (complementary sensitivity cut-off frequency) is
very empirical. In fact, since it has no information on complementary sensitivity
constraints. It will be considered a one decade than the ws cut-off frequency.

After building the main weighting functions, you have to build the weighting
functions for the generalized plant. W1 as in the previous paragraph, is based on
the Ws and the deletion of the pole at 0 and the replacement of a fairly small pole.
The choice of the (s+0.01wc) pole, where wc is the system’s cut-off frequency, is
chosen as the average of the previously calculated wcts and wt.
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The construction of the Ws depends on the choice of a and w1. Now a is
imposed by the choices made previously (0.04). But that doesn’t mean that a is a
fixed value, it can be modified to build a Ws appropriate to the control design.
We empirically noted two types of weighting function Ws, one capable of tracking
angular velocity output but not capable of generating and improving power,
another capable of improving power but not tracking output. We analyze the first
one, the one capable only of chasing the output:

W−1
s =

1.4s(s + 7e − 05)
(s2 + 0.05715s + 0.001633)

(4.6)

Here there is the choice of a = 0.06 and w1 = 0.00007rad/s.

Figure 4.13 – Ws and W1 weighting function

The other, the one capable to improve the power is:

Ws =
1.4s(s + 0.7)

(s2 + 9.898s + 49)
(4.7)

Here there is the choice of a = 0.02 and w1 = 0.7rad/s.
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Figure 4.14 – Ws and W1 weighting function

For both it chooses a wc that is the average between wcts and wt, where wt

will be a chosen value of 5 rad/s, a choice that will be motivated later with the
superposition of Wu.

The construction of W2, as mentioned in the previous paragraph, is calculated
as the maximum between Wt and Wu. Through this superposition it is also possi-
ble to define the wt cut-off frequency of the complementary. Because if there is
an overlay of Wu on Wt, the cut-off frequency wt to be imposed in the sderiv for
the control calculation changes, since it must be adjusted to W2. To practically
understand it, it has to take the Wu and see what the compare with Wt. Now see
an example, bearing in mind the construction conditions of the Wt, said on the
previous page.

Considering the Wu calculated before, and defined the Wt with the frequency
wt of 10 rad/s we define the W2 considering the maximum superposition of the
two weighting functions:
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Figure 4.15 – Wt and Wu weighting function

Note that the choice of the wt of 10 rad/s was correct, since the superposition
with the Wu, except for a small overlap, is not a problem except for the dcgain
part. In fact you can see that the Wu cuts Wt in the dcgain part (constant part
of the function). The dcgain of Wt is 0.9524, that of Wu is 5.4091. This is very
important because it defines the W2mod (see previous paragraph).

So with the calculation of W1 and W2 it can define the control. Obviously two
Ws were defined first, and then two W1. Then you will have two different controls.
They will be:

-For the first weighting function Ws 4.1:

Gc =
10.516(s + 1.099e05)(s + 0.05091)(s2 + 3.317s + 9.491)

(s + 135.5)(s + 8.511)(s + 3.715)(s + 0.05073)(s + 7e − 05)(s2 + 2.922s + 11.95)
(s2 + 5.134s + 191.5)(s2 + 12.21s + 250.3)(s2 + 4.06s + 566.4)(s2 + 5.885s + 995.6)

(s2 + 7.641s + 126.9)(s2 + 4.474s + 432.8)(s2 + 1.053s + 999)
(4.8)
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-For the second weighting function Ws 4.2:

Gc =
−1.4325e06(s + 1e05)(s + 1.071)(s2 + 3.317s + 9.49)

(s + 2.798e04)(s + 0.7)(s + 0.05073)(s2 + 2.904s + 11.95)(s2 + 7.642s + 127)
(s2 + 5.134s + 191.5)(s2 + 12.21s + 250.3)(s2 + 4.06s + 566.4)(s2 + 5.885s + 995.6)

(s2 − 1.61s + 409.6)(s2 + 1.053s + 999)(s2 − 24.77s + 4538)
(4.9)

4.3 Robust Control Results

As mentioned in the previous paragraph, the first control (4.8) has the function
of following the reference signal, i.e. the angular speed, but is not capable of
generating a high power, so much so as to improve or even emulate the initial
power. For this case it is right to entrust only an analysis for a given set, since it
does not improve the power.

Figure 4.16 – Output and Input reference of tracking error control
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Figure 4.17 – Output power of control

It is possible to notice that the power is generated very far from our goals, but
the control is able to follow the reference input even if it is very attenuated. A
result that we have not been able to improve. These two graphs were made on
the ninth data set, where the power is in the order of 104W.

Let’s shift our attention completely to the second control, which is capable of
generating emulating the initial power for each data set.
An analysis is always performed on the ninth data set. These are the graphs that
show the input trend that is not followed by the output and the power generated
by it:

Figure 4.18 – Output and Input reference of tracking error control
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It can see in the ninth data set that the control is not able to follow the reference
input. This means that the control enters a phase of delay with the reference, even
if it is able to follow and understand the trend of it. But there is a non-negligible
delay, which however it can notice defines greater powers than the previous
control. it can now see the graph of the generated power:

Figure 4.19 – Output power of control

Reproduced powers in the same order of the initial reference power of the
ninth data set. This means that the system is able to generate higher powers but
without being able to follow the reference. It test the controller for all nine data
sets.

Table 4.1 – Table of maximum of power

As can be seen from the table 4.2 larger powers are generated, but by making
them less stable, in fact, positive powers are also generated that are not negligible.
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In fact you can see from the following table that the average power is lower than
the reference power of the MPC project.
Power generated according to this formula:

The table showing the average power is as follows:

Table 4.2 – Table of average of power

It can be noted that compared to the MPC reference design, the average power
generated by Robust Control is minimal compared to the reference power. You
can see that you reach minimum errors of 2% as in data sets 5 and 6, and max-
imum errors of 7% as in data set 1. This means that the robust control did not
improve the average power generated, because it generates positive power which,
as it can see, even if it generates higher maximum power, lowers the average
power.
Losses of power not too high, but not negligible.

What it has analyzed is the result of a Robust control, and as noted in section
4.1, a control to be considered robust must meet certain conditions, such as Robust
Stability, Nominal Performances and Robust Performances. These conditions
shall be analysed according to paragraph 4.1.
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The Robust Stability:

Figure 4.20 – Robust Stability

The Nominal Performance:

Figure 4.21 – Nominal Performance
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The Robust Performance:

Figure 4.22 – Robust Performance

It can be observed that all the robustness conditions are not respected, in fact
all the values are over 1. And they are not respected so much, in fact it comes
to maximum values of 65.9 for Robust and Nominal Performances, and 43 for
Robust Stability. This non-respect of conditions confirms that the control cannot
be defined as robust, even if it almost succeeds in reproducing the power of old
designs such as MPC. A next goal for a next application is to improve the control
by making it robust (i.e. respecting the main conditions of robustness).
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Chapter 5

Conclusions

This thesis showed the effects of identification on an ISWEC (Inertia Sea Wave
Energy Converter) device. An identification that simplifies the most complex
mechanical model for the design of a Control, for example a Robust Control.

The identification made using Set-Membership theory, with the SparsePop
technique used for its bilinear complexity, shows positive results. Even more
promising if it uses optimization tools, able to reduce the error. In fact, the models
identified for each data set have small errors compared to the mechanical model.

Each model defines a minimum error for its own data set, but this is also
positively guaranteed for other data sets. In fact, when trying to use the models
for each data set, there are always minimum errors.

This means that the identification is derived from the goal of computing mod-
els for each data set, capable of being applied to different inputs, in addition to
those used as reference in the identification.

By checking all the models identified on each data set, it has the possibility to
define a model capable of defining an output with an error below 1% for each
available data set.

This model is applied in a Robust Control. Control used for its feature of
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using less computational work on the controller, unlike the MPC controller used
in older projects.

The Robust Control was able to replicate the average power generated by
the old controls, but with a small margin error. But it has not been possible to
define a Control that respects the conditions of robustness, that is to say that it is
able to attenuate any kind of disturbance and uncertainty that is affected a system.

Future Development
The model identified was believed to be capable of bearing any type of data

set, and therefore wave signals. But in the preliminary study of a Robust Control
it was not possible to improve the power generated in the conversion of mechani-
cal energy into electrical energy.

For the next applications it would like to define a control starting from this
simplified model able to improve the power, ensuring a robust control so that it
is an effective control for any kind of disturbance and system uncertainty.

It is always advisable to use a Robust Control to continue with the simplifi-
cation of the system. After simplifying the model it is correct to use a Robust
Control that simplifies the computational effort of the control respect than the
predictive control of the MPC controller.
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