
POLITECNICO DI TORINO & EURECOM - TÉLÉCOM PARISTECH
Master Degree course in Electonic Engineering

Master Degree Thesis

Multimarket Feedhandler
Single FPGA solution to consume market data over multiple

feeds

Supervisors
Prof. Luciano Lavagno
Prof. Sophie Coudert Candidate

Alberto Anselmo

Novasparks
Company supervisor
Eng. Guillaume Taba

Academic year 2019-2020

Abstract
In the context of low latency solutions in the finance environment FPGAs
stand as middle ground in both cost and timing. Despite being faster than
software and cheaper of custom hardware the latter can still be a strong
deterrent for customers. In particular one of the main constraint which
renders these solutions less cost effective, and thus less desirable, is the one
to one relationship between a product and a market. On the other hand its
flexibility allows to follow the continuous markets migration and evolution
making it the perfect medium for a long lasting product.
This internship aims to mitigate this problem by adapting the current
Feed Handler architecture, provided by Novasparks, to handle multiple
data feeds coming from different markets. With this goal in mind this
work will propose a solution with a good balance between scalability and
latency while still trying to remain flexible to account for the needs of
different customers.

Résumé
Dans le contexte de solutions à faible latence pour un environnement fi-
nancier, les FPGA constituent un bon compromis en termes de coûts et
de délais. Bien qu’il soit plus rapide que le logiciel et moins cher que IC
personnalisé, ce dernier peut toujours être un puissant moyen de dissuasion
pour les clients. En particulier, l’une des principales contraintes qui rend
ces solutions moins rentables, et donc moins souhaitables, est la relation
un à un entre un produit et un marché. D’autre part, sa flexibilité permet
de suivre la migration et l’évolution continues des marchés, ce qui en fait
le support idéal pour un produit de longue durée.
Ce stage vise à atténuer ce problème en adaptant l’architecture actuelle du
Feed Handler, fournie par Novasparks, pour gérer plusieurs flux de données
provenant de différents marchés. Dans cet objectif, ce travail proposera une
solution avec un bon équilibre entre évolutivité et latence tout en essayant
de rester flexible pour tenir compte des besoins des différents clients.

Contents

1 Introduction 6
1.1 The Low Latency scene . 6
1.2 About Novasparks . 7

2 Feed Handler 8
2.1 Feed Handler Overview . 8

2.1.1 Market Feeds . 9
2.2 Feed Handler by Order Architecture 10
2.3 Input Section . 11
2.4 Proposed Architecture . 13

2.4.1 Renormalizer . 13
2.4.2 Command Arbiter 13

3 Development 15
3.1 Packages . 15
3.2 Renormalizer . 16

3.2.1 Validation . 18
3.3 Command Arbiter . 18

3.3.1 Latency . 18
3.3.2 Round Robin . 20
3.3.3 Validation . 23

3.4 Market Decoder . 23
3.4.1 Name Conflict . 23
3.4.2 Libraries Integration 24
3.4.3 Backpressure . 25
3.4.4 Validation . 26

3.5 Feed Handler core . 26
3.5.1 Problems encountered 27
3.5.2 Configuration . 27
3.5.3 Validation . 30

4 Synthesis 31
4.1 FPGA . 31

4

4.2 Block Placement . 32
4.2.1 Floorplanning basic 32
4.2.2 Floorplan evolution 33

5 Software 37
5.1 Global structure . 37
5.2 Software changes . 38

6 Testing on FPGA 40
6.1 ATST . 40
6.2 Testing Methodology . 41

6.2.1 Exchange Bitmap . 42
6.3 Effective instruments . 44
6.4 Results . 45
6.5 Future Improvement . 47
6.6 Conclusion . 48

Appendices 49

A Avalon 50

B Component Communication 52

C Jinja2 53

D commands.json 56

Bibliography 58

5

Chapter 1

Introduction

1.1 The Low Latency scene
High Frequency Treading is a financial sector that can be grouped under the
umbrella of algorithmic trading. It employs powerful computers to carry
out complex strategies and perform large number of orders in fractions of
a second. The general idea is to make up for the low margin of such a
short term investments with incredibly high volumes of trades, frequently
numbering in the millions.
The start of this trend in finance can be traced back to 1998 when the SCE
authorized computerized trading, which was capable of executing trades
1000 times faster than humans. At that time it was really a niche mar-
ket, with latencies in the order of several seconds. But with coming of the
21st Century and its advancement in transistor technology a rush started
to reach ever lower latencies. By 2010 HFT had already reached the mi-
crosecond mark and it was not a niche anymore, in the US 56% of the total
equity trading could be attributed to HTF. During those years, while try-
ing to hit the nanoseconds mark1 different solutions were explored, among
which custom ICs and FPGA.
The latter in particular can provide better and more consistent latencies.
One problem of computer solution is the possibility of bottleneck forma-
tion during high market activity periods, this degrades performance and
generate high delay in the decision process, which is the critical part for a
strategy to be profitable. Using an FPGA shows instead good consistency
even when faced with a huge amount of incoming data, assuring always at
least a microsecond overall latency.
Despite the advantages, in order to reach such level of performance, top

1The goal was reached in 2012 with a custom IC

6

Introduction

of the line FPGAs are needed and thus the cost remains pretty high. In
order to mitigate this downside, I have been trying, during the course of
the internship, to improve the existing solution developed by Novasparks.
The focus of my work will a component called Feed Handler in the attempt
to enable the monitoring of multiple market in the same board.

1.2 About Novasparks

Novasparks is a young company, specialized in market data packet process-
ing, algorithmic trading and complex financial product valuation accelera-
tion. Founded in 2007 by Eric Le Rolland (CTO) and Marc Battyani. The
company, previously named HPC Platform, was rebranded as Novasparks
in June 2010. The headquarters are located in Paris. The company also
has facilities in Nantes and in the United States with offices in New York
City (NY).
Novasparks is developing products to reduce processing latency to help
high frequency traders of investment banks, hedge funds and proprietary
trading firms. All products have both low power and low latency charac-
teristics in common. To provide the best performance to their customers,
and to achieve critical latency processing, the technology is based on FP-
GAs. With their modular design, Novasparks’ technical solutions are al-
ways adapted to the client’s needs.
Novasparks’ major product is the Feed Handler (FH), which captures mar-
ket data frames (Ethernet frames), processes them and accelerates the
client’s trading decisions. But it is also capable of offering custom solution
in order to cover a full Tick to Trade cycle, which correspond to market
data processing and order execution, based on client strategies, fully in
FPGA.

7

Chapter 2

Feed Handler

2.1 Feed Handler Overview

Figure 2.1. Simplified Order Book.

Every market provide a data feed specialized in broadcasting messages
regarding each and every movement of the market. The job of a feed
handler is to decode these messages and keep track of the changes in order
to provide a snapshot of the market at a specific moment in time. These
photographs of the market are called Order books.
A book is composed of two side, ask and bid, moreover it is specific to
an instrument or share, so one will be generated for each stock present in
the market or for each one we intend to follow. The two sides keep track

8

Feed Handler

respectively of the sell and buy orders which are aggregated based on the
price, effectively creating bins or level. The number of level available is
usually referred as market depth and it is in general limited when tracking
a lot of instruments.
In Figure 2.1 for example, we have a market depth of five and the levels
are dictated by the price. For the bid side the orders are placed in an
increasing manner since the lowest price is the most desirable. In contrast
for the ask side the order is decreasing as highest price determines bigger
profits. Oddly enough this Order book has been designed to be read bottom
up.
This book mechanism is the tool used to take trading decision as it allows
to have an idea of demand and offer in real time. For such reason it is
beneficial to always have the most recent version of it, especially when
faced against other HFT strategies even a couple of nanoseconds can make
the difference.

2.1.1 Market Feeds
Although the definition of book is unique there exists two type of market
feed:

• By level, the messages it generates are bid or ask limits. They are
the cumulated sum of all orders available at a specific price for a
given stock. Limits are calculated by the exchange. An example of
this kind of market is CME1

• By order, the messages it generates are commands to buy or sell
shares at a specific price. These commands are created by traders.

The same two categories are reflected in the Feed Handler, two solution
have been developed to handle the different feed types. An example are
the US Equities, NASDAQ, BATS and NYSE.
Feed Handlers by level are in general faster to develop because the stock
exchange publishes limits instead of orders. Usually, the level of the limit
is given (Eurex, Xetra, CME, etc.). The order book’s update is then only
an add limit (if the limit does not exists), delete limit or modify limit.
Whereas, for Feed Handlers by order, the stock exchange publishes orders.
This fact complicates a lot the generation of the book, not only each order
needs to be stored to account for changes or deletions, but the stock needs
to be extracted and the limit of its book recomputed.
For the scope of the internship the focus will only be on markets by order

1Chicago Mercantile Exchange

9

Feed Handler

but all the work performed could in theory be translated to the other type
of markets.

2.2 Feed Handler by Order Architecture

Figure 2.2. Current architecture of the feed handler.

The Figure 2.2 shows the current architecture of the Feed Handler by or-
ders, which is the focus of this work. It is structured as a long chain of
components with little to no branching inside of it. Even if each component
has its own functionality we can group them together to separate the FH
into three section:

• Input section, goes from the beginning up to the decoder. It receives
the IP/UDP packets, perform arbitration among the multiple inputs,
decode the messages and normalize them into commands understand-
able by the feed handler.

• Processing section, goes from the Order Processor to the Command
Updater. It processes the commands to create the order and level
book.

10

Feed Handler

• Output section, goes from the NSWF2 Message Encoder to the out-
put. It transforms the internal commands and the books in a stan-
dardized format called NSWF, encapsulate them in IP/UDP packets
and output them.

Out of the three sections there will be extra focus on the first one as it is
impacted more by the addition of another market. Nonetheless, if needed,
a more in-depth analysis will be performed for components of the remaining
sections.

2.3 Input Section
All components in the first part of the chain will be briefly described to
understand their role and their current limitations.

Ethernet and arbiter

Figure 2.3. Front of an appliance with space for four FPGA.

The appliance3 is composed by eight port which can be configured indepen-
dently to be either input or output.The arbiter can support a maximum of
two input flux and its role is to provides recovery functionalities through
redundancy. If enabled in advanced mode it will allow to detect missing
packets in one stream and try to obtain them from the other stream. This
kind of functionality reduce the necessity of retransmission and thus lower
the possibility of latency penalty associated with it. In particular it can
be very useful when paired with a mixed input composed by fiber optic

2NovasparkS Wire Format
3This term refers to the full product, motherboard and FPGA, integrated in a server

rack

11

Feed Handler

and microwave since The latter provides better latencies but it is less re-
liable. A secondary feature but still important consists in a first coarse
filtering, based on the destination IP, to avoid overwhelming the following
components.

Recovery Router

The recovery router purpose is to maintain a communication channel be-
tween the FPGA and the computer. It forewords all incoming packets
through PCIe in such a way that the software is able to detect possible
gaps into the data sent by the markets. When a gap is detected it will halt
the flux of market messages until the software has recovered the correct
message. This mechanism is in place to avoid breaking causality, mean-
ing that we should always consider orders in the correct sequence to avoid
scenarios like deleting an order prior to its submission. Currently the ap-
pliance is limited to one PCIe lane even if more are present on the board,
thus limiting the possibility of communication.

Market decoder

This component is at the interface with the processing segment and its task
is to convert the messages into an internal format understandable by the
rest of the chain. It is divided into two part. The Market parser extracts
all needed fields present in a message and assign an opcode to it in order
to identify the type. The Normalizer arranges all the useful fields based on
the opcode and through the aid of some hashtable it is able to correctly
identify the instrument, if present, in order to perform a mapping between
its name and two unique identifier, the instrument number and a prehash.
Those, associated with the exchange id, assures that no collision is present
when storing, processing an order and updating the ask or bid books.

The parser is fully auto-generated while the normalizer only in part4 but in
any case this ease the process of adoption of new markets and migration of
older one. The automation process ensure a certain level of optimization, in
particular for the encoding of the commands generated by the normalizer.
But it also means that each market will have commands of different length,
with the fields in slightly different positions.

12

Feed Handler

Figure 2.4. Modified architecture of the feed handler.

2.4 Proposed Architecture
The new architecture consists in duplicating the first part of the feed han-
dler and recombining the two flows into a single stream. This approach is
rather simple and naive but it carries some major advantages.

• There are only a few component which need to be developed from
zero and thus there is more time left to testing and validation.

• Reusing most of the already existing components make the project
easier to maintain and prevents it from diverging from other products.

• The parallel structure is easy to integrate in term of component in-
stantiation and does not require a new dedicated wrapper.

Considering also the recent migration towards a larger FPGA, the Virtex-
XCVU13P Ultarscale+, this solution becomes pretty viable. Thanks to the
new free space, there is the possibility to accommodate the extra compo-
nents that will be added.

2.4.1 Renormalizer
It is used to translate the different formats coming out of the two normalizer
into a common format which will be used in the remaining part of the chain.
This function can be realized by simply wiring bit x to bit y and apart form
some cases in which a MUX will be used it will generate no logic. For this
reason it will be fully combinational.

2.4.2 Command Arbiter
Its purpose is to merge the streams of incoming commands into one. Like
a set of semaphore in a crossing it will prevent crushes by allowing only
one lane at a time to go foreword.

4The prehash for example is market specific and optimized for use in the Order
Processor

13

Feed Handler

Since the feed handler is not a perfect pipeline5 and data activity will
change over time, this component is crucial. It represents a weak point
as its forewarning method could lead to data loss inside the chain. For
this reason multiple criteria were tested and validated in order to avoid the
above mentioned scenario.

5Look at B for its communication protocol

14

Chapter 3

Development

The work was carried out using the vhdl language for the RTL descrip-
tion and python for verification and testing purposes. The focus will be
the coexistence of two markets, NASDAQ and bats, on the same feed han-
dler. However for generality purposes a python extension called Jinja has
been used to grantee the possibility of changing the target markets with
ease. For a better description of this templating language I remind to
Appendix C.

3.1 Packages
Before approaching the development of any new component it is necessary
to define a common reference. In case of the FH we need a VHDL package
with the structure of the commands described in it. Such package will be
referenced throughout all the chain and it is always specific to the market.
Each command is identified by an opcode and associated with it there are
a series of fields. All those information, along with size, encoding1 and
names, are stored inside a .json file. An example is sown in Appendix D
where a delete order can be found.
The normal procedure to obtain this file and the package usually goes along
those lines

• Reading the market data documentation and extrapolating all the
relevant information

• Creating a .json with all the extracted information translated in the
commands used internally

• Feeding the market_commands.json to a proprietary script

1Unsigned or Signed field

15

Development

the result is the desired package with the minimum command length ob-
tained through the overlapping of non concurring fields.
This flow is not applicable for the project due to the lack of a single docu-
mentation. Using one of the already existing .json is no solution either as
a consequence of the difference of the markets. To accommodate for this
diversity the new nasdaq_bats_commands.json was generated as the union
of the two nasdaq_commands.json and bats_commands.json. It is a non
optimal solution especially when dealing with the fields, some of them will
be only used with bats and some others only with NASDAQ. This means
that the final size will surely increase with respect to the one of the origin
markets. As example here are the dimensions for the single and combined2

version
NASDAQ BATS NASDAQ + BATS

Bit Width 440 540 644
Having now the stepping stone the development can proceed with the first
component, the Renormalizer.

3.2 Renormalizer
As stated before the already existing normalizer will be reused and thus a
translation is necessary to pass from the standard their family use to the
one defined above. According to the input market a different mapping will
be needed and this can be solved in vhdl with the approach below

1 -- MARKET_NAME : string, declared inside generic
2 architecture rtl of renormalizer is
3 -- Signals declaration
4 begin
5 if MARKET_NAME = "bats" generate
6 process(opcode, command)
7 begin
8 case opcode is
9 -- Slice mapping

10 end case;
11 end process;
12 end generate;
13
14 if MARKET_NAME = "nasdaq" generate

2Note that command size change frequently, over the course of six month it went
from 670 to 652, 664 finally landing to 644

16

Development

15 -- Slice mapping
16 end generate;
17 end architecture;

The problem with this method, apart from being error prone, is the fact
that markets evolve and so do their commands. This file would need to be
constantly updated and to avoid it a Jinja template3 has been used.

Figure 3.1. Diagram for Jinja template generation

In the diagram we can see how with the aid of python it is possible, given
a series of family, to retrieve all the needed information and generate the
desired mappings inside the renormalizer. Concerning the translation it
mainly consists in moving slices of bits from a certain offset to anther.
There is only one exception, the ns_order_id field. This element, corre-
spond to the prehash mentioned in Section2.3 and covers an important role
in the Order Processor. It is used as key for the hash functions of the order
hashtable and normally it is unique. For this reason it is stored together
with the other information to correctly identify and order in case of hash
collision. Due to the structure of the prehash the unicity cannot be assured
between multiple markets and thus the renormalizer will assign a number
to each family present and concatenate such number to the ns_order_id,
forming a new field called unique_ns_order_id. The latter will take the
role of unique identifier for an order solving all collision problems but at
the same time it also degrades the total capacity of the hashtable.
The DQR memory used in the Order Processor has a data size of 144-
bit and can be configured to be written and read in chunks of 36-bit since

3Refer to Appendix C for more details about Jinja

17

Development

unique_ns_order_id needs at least 37-bit its size will immediately saturate
to 72-bit in the QDR, reducing the memory space that can be used to store
new orders.

3.2.1 Validation
The component has been validated with the following methodology4:

• The target family is specified and fed to a python script

• The python file recovers the informations for the origin families and
randomly generate a series of N command, then dumps them to a
input.txt file

• The N command are translated to the common standard and written
to a ref.txt file

• A testbench loads the input from the first file and checks if the gen-
erated output is in line with the reference created by the software. It
also saves the output of the renormalizer in case a check is needed if
the simulation fails

3.3 Command Arbiter
The component’s role is to merge the streams coming from the decoder
stage avoiding any possible collision. It will thus be inevitable to stall some
commands for one or more cycle. This fact provides not only a random
increase in the overall latency but also a possible point of failure. The
ability to buffer the incoming data is limited and we risk to lose some of it
if a branch of the input section is halted for a relatively long time. To avoid
the scenario two operating mode have been devised and thoroughly tested.
Depending from the scenario the use of one of the other could provide some
advantage but ultimately both of them were developed with different goals
in mind. Before diving into them I remind that the possibility to have
different configurable mode is allowed by the Avalon interface programmed
into the FPGA, for further reference on this topic refer to A.

3.3.1 Latency
This operating mode is the simpler and its objective is to maintain timing
as small as possible. It takes advantage of an internal timestamps, used to
measure the point to point latency, and prioritize the least recent command.

4This will roughly be followed to test all future components

18

Development

Such behaviour is actually not applied in all collision, the reason being that
commands are grouped into units called packets and separated by an EOP5.
It is important keep this logical units separated and once a side has been
chosen it will keep consuming the following commands until we find an
EOP. The figures display the state diagram of the FSM used to implement

Figure 3.2. Finite State Machines for the Latency mode

this mode. Here is a brief explanation of each state

• CHOOSE, decided which command is acknowledged. In case of
collision compares the latency field and takes the command with the
higher one. If the latency is the same priority is given to the first
market, NASDAQ in our case. Once the choice has been made, it is
stored stored into a register and the same is done for the command

• LOCKED keeps consuming, according to the choice register, as long
as the command in the pipeline is ready to be consumed by the fol-
lowing component

• DISPATCH oversees the transaction with the Order Processor as-
suring that no new command is accepted until the one stored has
moved on

Overall the latency for this mode is two clock cycle. Despite the fact that
the DISPATCH state actually wastes one cycle, stalling the input, this
solution remain pretty optimal. From the simulators it emerged that at
least one clock cycle is necessary between two following command, so in
case of immediate reaction at the output everything remains well coordi-
nated.

5End of Packet

19

Development

3.3.2 Round Robin
This mode, as the name says, employs a round robin algorithm in case of
multiple command ready at the same time. It keeps consuming commands
until an EOP is present at all inputs. At this point only one of the End of
Packet is forwarded while the others are discarded. The objective of this
behaviour is to merges packets from the two markets to reduce the waiting
time for both data streams and also the amount of commands sent to the
next stage.
The main player used for this component is the logic involved into the
decision process. The starting point is a fixed priority encoder. It is defined
by this 3.1 kind of truth table

req0 req1 req2 · · · reqn garnt0 garnt1 garnt2 · · · grantn

1 X X · · · X 1 0 0 · · · 0
0 1 X · · · X 0 1 0 · · · 0
0 0 1 · · · X 0 0 1 · · · 0
0 0 0 · · · 1 0 0 0 · · · 1

Table 3.1. Truth table for fizzed priority logic.

and can be can be summarized with the following equation

grantn =
(

n−1∑
i=1

reqi

)
· reqn

To make the priority variable it is sufficient to replicate the above logic and
feed it with a rotated version of the input. An AND gate is the added to
each fixed priority at the output and each of the is ored together. In this
way there is the possibility to choose which of the rotation is being used.
To conclude a ring counter is used as select signal for the multiplexer, so at
each clock cycle the higher priority input is shifted by one. This component
will be referred from now on as root arbiter. On its own this component
would be sufficient for two markets but to accommodate for the possibility
of joining four or more6 a general solution has been developed. For it a
variation of the base arbiter it is needed. It will be called base arbiter and
the only addition is an output consisting of the OR between all the input,
to detect if the component is active or not.
In Figure 3.3 we can see how it is used to generate a tree structure for the
final arbiter. The root arbiter are used to generate the grant output in the

6This would be feasible only by reducing the number of instruments per market, to
avoid excessive ram usage/

20

Development

Figure 3.3. Example of a four input arbiter.

first layer while in the middle one they use the active signal as input and
their output are fed back as enable signal to the previous layer. The last
layer is made of a root arbiter since it is not necessary the active signal.
The result is the desired Round Robin behaviour. The output is delivered
as one hot encoded signal but to be used as select signal of multiplexer it is
also converted into an unsized representation. The logic for the decoding
is quite simple and by observing the 4-bit case in 3.3.2

req0 req1 req2 req3 sel0 sel1

0 0 0 0 0 0
0 0 0 1 1 1
0 0 1 0 1 0
0 1 0 0 0 1
1 0 0 0 0 0

Table 3.2. Part of truth table for one hot encoding to two’s complement.

21

Development

we can derive some generic rule

seln =
∑
i∈A

reqi and A = {x | x ∈ [0, N − 1] ∧ x mod 2n+1 ≥ 2n}

where N is the length of the input signal and n ∈ [0, dlog2 Ne − 1].

Figure 3.4. Finite State Machines for the Latency mode

The Round Robin logic needs to be integrated with some registers and
control logic to properly foreword commands. On the first iteration a final
state machine was used. Its structure was pretty smiler to the one used
in the Latency mode, its state diagram is visible in 3.4, but instead of
locking into a stream the choice was active each time. Moreover one state
was dedicated at the synchronization. This solution, although working
as intended, immediately showed its limitation when the component was
integrated in the feed handler and tested with some real market data. We
cannot expect a continuous and regular flux of packets at all time, there will
be some moment of inactivity and precisely during those moment the FSM
would remain stuck on the synchronization stage waiting for a packet to
arrive in one of the two input. As a result incoming packets were lost.
The second iteration, available in Figure 3.5, replaced the FSM with just
control logic. In particular, instead of pretending that all markets are active
and for each of them a packet needs to arrive, it will register which one are
active and base the synchronization only on them. This kind of behaviour
is mainly due to the accumulation of incoming requests with the following
relationship

req_acci+1 = validi

∑
req_acci

These registers will then be erased once the synchronization is reached and
the accumulation process can restart. The final result has a much more
flexible management of the inputs and it now allows to handle the case in
which only one market is programmed into the feed handler.

22

Development

Figure 3.5. Block diagram of the Round Robin arbiter.

3.3.3 Validation
The correctness of the behaviour for the arbiter has been carried out in a
similar manner to the renormalizer thus I remind to Section 3.2.1.

3.4 Market Decoder
The conceptual idea is very simple, as shown in the image all there is to do
is just to instantiate the necessary component and test with some inputs
that the decoder is producing the desired outputs. Unfortunately, since
the existing code was not conceived with this future prospective in mind a
series of technical challenges arose. The first one being entity conflict.

3.4.1 Name Conflict
The problem lies in the fact that for each family the decoder always uses
the same name/identifier for the entity and for the architecture. Since
Modelsim, but also Vivado, allows only the existence of one entity under
the same name, if we try to include two or more it would just overwrite
the already compiled market_decoder each time a new one is encountered.

23

Development

Figure 3.6. Block diagram of the market decoder.

In this way we would never be able to instantiate different one within the
same design.

One possible solution is to just rename the architecture of each decoder.
Since the interface is standard across all of them this is sufficient to reach
the desired result, however it will require a big code refactoring and it
would also break the current structure of the feed handler and some other
automation tools which are centred around the market_decoder name. For
such reasons the proposed and adopted solution was to utilize libraries. By
compiling the necessary components into different libraries it is possible to
use them even if they share the same name. The only caveat is that we
cannot directly refer to them but we have to specify the their full path,
library_name.entity_name, in order not to cause name conflicts.

3.4.2 Libraries Integration
In order to add such support, the way in which the compilation is handled
was partially modified. The two main player in this step are:

• info.txt files, written in json format, contain a list of sources, com-
ponents as well as packages which are used inside a specific .vhdl file.
They are also used to record information on the available testbenches
and to pass generics and commands to the simulation or synthesis en-
vironment.

• simulate.py script, which uses the above files in a recursive manner,
to resolve dependencies across all the components used by the selected
entity. Moreover it also parse all command directed to the simulation
and correctly set up the software.

24

Development

A neat little feature, already available into the info files, is the possibility
to specify some attributes to sources or components by grouping them
together in a list. It is possible to take advantage of this feature and
expand it, intro ducting a new attribute.

1 {
2 "src":
3 {
4 "MyComponent",
5 "MyPakage",
6 ["MyFile.vhd", "example_lib"]
7 }
8 }

As shown in the example above it is now sufficient to use a string with the
suffix _lib to specify the name of the library, while when not specified the
work library will be the default one.

The main change to achieve this result was the passage from a list base
storage to keep the sources to a dictionary based one. In this way each list
of files is directly associate with library which is used as key of the dictio-
nary. As for the algorithm used to detect dependencies it just needs to be
directed to the right library before looking for the desired sources. The last
adjustment was the addition of the same algorithm used to solve depen-
dency but targeted to the libraries instead. This addition was necessary to
determine the correct compile order.

3.4.3 Backpressure

Another problem which stood out after the first simulation was that regular
decoder do not support backpressure. Unlike all other components inside
the FH they need to receive a ready high signal before asserting their valid
signal. This kid of behaviour renders impossible any kind of arbitration
since we have no way of knowing when a command is available unless we
already commit to accept that command. To correct this, a set of register
has been applied to the output of each market decoder in order to buffer
the commands and give the possibility at the arbiter to correctly exert
backpressure. This solution is unfortunate since we are forced to add one
cycle to the whole chain and the goal is to keep the latency low, but since
modifying the decoder is currently not an option, this remains the best
solution.

25

Development

3.4.4 Validation
The testing of the market_decoder aims to reuse as much as possible the
pieces of software used in the other families. Generating inputs and refer-
ence for each market separately is thus easy but since the output is gen-
erated from two streams we would need timing information on when the
commands arrive at the arbiter in order to create a timing model. This task
can although be avoided by sorting the output again into separate streams
for each market and checking that each message arrives in the right order.
For this reason a signal has been added to the arbiter7 and also to the
decoder in order to uniquely identify the origin market of a command, but
it will only be used for simulation purposes.
Before actually arriving at a testing stage some other issue needed to be re-
solved. The normal validation procedure for the market decoders is to first
define a simulation functions package. It contains the procedures necessary
to write the registers8 configuration. Since some procedures already existed
for each market, a wrapper was created. This although generated also con-
flict, due to the library solution. It was discovered that if a custom type
is compiled, even from the same source code, into two different libraries it
is not recognised as the same type and thus it is impossible to make any
assignment without defining a casting function. In this case the procedures
used to configure each decoder were compiled in their own library and thus
making it impossible to make them all work together with a single signal
type. To solve this issue it was decided to refactor all simulation oriented
packages into a library on their own. As second problem, in order for the
configuration to currently work it is necessary that each instance of the
same entity is assigned at compile time a different ID9 to correctly address
them. This prompted to some code refactoring and addition of generics
which have now been integrated into the main developer branch.

3.5 Feed Handler core
The structure of the fh_core is rather simple in terms of logic and mainly
consists of component instantiation. For this reason the bulk of the work
consists into introducing for generate statements to replicate components
and expanding the width of some signals. A constant was introduced to
keep track of the markets used in a family. This new constant is called
NUMBER_OF_MARKETS and used to correctly parametrize the

7The signal market_id is visible in 3.5
8The same one which will be software configurable, refer to A
9The identifier is used by the Avalon interface to detect a component.

26

Development

structure of the fh_core according to the used family.

3.5.1 Problems encountered
During the integration process two major problem were encountered. The
first one regards the market decoder, there is mismatch between the input
port structure. Normally ready and valid signals are of type std_logic
but for the nasdaq_bats family they are of type std_logic_vector since it
has to receive at the same time data from multiple markets. Normally this
would not be a big deal, nothing that a simple if generate statement cannot
solve. However the structure of the fh_core has been consolidated over the
years and there are multiple case in which components are addressed in
simulation and synthesis using the absolute path from the top entity. This
means it would be required to track and modify every occurrence regarding
the market decoder. To avoid this error prone kind of work, the standard
interface of the markets decoder were vectorized. This is indeed much
simpler as a single modification is applied in the common template and
refreshing the decoders solve the problem for all markets.

The second problem regards the input output interface of the core. In order
to communicate with the software a connection is created through PCIe,
and such link takes the name of fast path. There are only a limited number
of PCIe lane available, and not all of them are used, but unfortunately the
PCIe controller used inside the fh_core does not support more than one
lane. After discussing the matter with the appropriate team it was decided
to leave the problem in standby since adding support for recovery of lost
packet is a secondary feature. For the moment the goal is to test that the
chain is able to support the amount of data coming from two markets.
In any case the possibility are two:

• Maintain a single PCIe lane and split data internally.

• Add a second lane, and later expand it to three or more according to
the number of markets.

3.5.2 Configuration
The validation procedure consists into feeding to the fh_core real captures
of market messages registered using Wireshark. Then checking the mes-
sages at the output against a reference generated by a piece of software,
developed internally, called Comparator.
Since the comparator is market specific it can process only one type of data
for each source file. Due to this limitation the basic idea is the same used
to test the market decoder. Start from two different captures, interleave
the packets and then split the output messages based on the market of

27

Development

origin. Unlike before we cannot add a signal to carry the information of
the parent market. It would be very difficult to integrate this functionality
into every component of the chain. The solution lies directly on the fea-
tures embedded in the core. With the right configuration we can decide
for each instrument the destination IP and port. This will allow us to split
the output capture in two and use the respective Comparator to check the
correctness.

Involved Components

All the following components are based on the same principle. In order to
allow a configuration of part of the fh_core we use ram in order to store
informations which can be used to generate different behaviours. So the
configuration depends in general from the content of the memories and
what is used to access them.

Instrument Hashtable

The first elements to configure are the instrument hashtables10. They are
used to specify which instruments we are following and which we are ig-
noring11. They contain normally the id used by the market to identify the
instrument, the name of the instrument, as well as the id which will be
used inside the FH core. This translation is necessary to avoid collision in
the following stages, especially when we are trying to track the orders to
generate the books.
The hashtables are initialized through some .mem files. Luckily it is possi-
ble to directly use already existent .mem file coming from other tests. The
only change we need to apply regards the last 4-byte in order to insure that
the any instrument uses the same internal identifier.

In stream arbiter

The second component is the packet filter inside the in stream arbiter. As
its name suggest it is used to filter incoming IP/UDP packets based on the
destination multicast address. Each component offers a set of six pair of
registers, used to define six different ranges of IP address. The registers
are only 23 bit long but this is sufficient based on the market that the feed
handler supports. In the Tables 3.3 and 3.4 there is an example for the
configuration of both markets. Looking at table defined for NASDAQ it
is evident that there are just three IP address, 233.54.12.101, 233.54.12.40
and 233.54.12.101, while for BATS there are proper ranges since it uses

10They are mapped as ram in the design like all the rest of configurable part
11All instrument mapped to a zero cell in the ram are ignored.

28

Development

Register Value
address-0-low 0x360c65
address-0-high 0x360c65
address-1-low 0x360c28
address-1-high 0x360c28
address-2-low 0x360c2d
address-2-high 0x360c2d
address-3-low 0x000000
address-3-high 0x000000
address-4-low 0x000000
address-4-high 0x000000
address-5-low 0x000000
address-5-high 0x000000

Table 3.3. NASDAQ IP range table

Register Value
address-0-low 0x003e02
address-0-high 0x003e0c
address-1-low 0x003e1e
address-1-high 0x003e20
address-2-low 0x003ec0
address-2-high 0x003ece
address-3-low 0x008240
address-3-high 0x008247
address-4-low 0x008200
address-4-high 0x008207
address-5-low 0x000000
address-5-high 0x000000

Table 3.4. BATS IP range table

way more than six addresses, thirty one in my case. Note that not all
IP considered in a range are actually useful, an example is range zero
for BATS. It includes from xxx.0.62.2 to xxx.0.62.12 but in reality the
important addresses are only half, the one terminating with an even number
(xxx.0.62.2, xxx.0.62.4, xxx.0.62.6 etc.).

NSWF encoder

This component is close to the output of the chain and performs a trans-
lation of the internal instrument id, defined in the hashtable, into a series
of information. Here is the mapping of the data inside the decoder:

4 bit 4 bit 4 bit 24 bit
bitmap exchange_id channel_id out_id

• bitmap, used to specify to which output interface the packet will be
sent. Each bit correspond to one Ethernet port.

• exchange_id, identifier assigned to the exchange12.

• channel_id, used in the framer to decide the destination IP and
port of the packet.

• out_id, identifier used at the output for the instrument correspond-
ing at this address.

12Each market is in general composed by sub-markets called exchange

29

Development

Framer Wrapper

This component uses the channel_id specified above to retrieve the all
information necessary to a IP/UDP packet. It is possible to have a max-
imum of 16 channels and the information stored into the session memory
are:

16 bit 16 bit 32 bit 42 bit
checksum ip port ip address mac address

3.5.3 Validation
Once all configuration files were generated the design was tested at first
using captures containing 5000 packets coming from a single markets and
the output was validated with the comparator. This step was necessary to
identify possible bugs related to only one side of the chain. Then a joint
capture was created through the use of Wireshark. The first step is to
modify the initial captures and set the timestamps in such a way that the
time frame is the same, then the following command generates the final
capture

mergcap inputs.pcap -w outputs.pcap -F pcap

With a proper input the fh_core was tested for both mode of the command
arbiter. To separate the output capture Wireshark is used again with the
following command

tshark -r input.pcap -w output.pcap -F pcap -R "ip.dst==192.168.1.10" -2

and at last the resulting capture can be fed to the Comparator.

30

Chapter 4

Synthesis

4.1 FPGA

Figure 4.1. Diagram for an SSI structured FPGA

As mentioned in the introduction the FPGA used for the implementation
is part of the Virtex Ultrascale+ from Xilinx. It is one of the top product
available in this market and for good reasons. Starting by its size1 this
FPGA is huge, to put things in prospective there is around an order of
magnitude in difference between the logic element present in the Virtex

1Packaging size is 52× 52 mm, close and even bigger then some modern CPU

31

Synthesis

compared to more normal FPGAs, like the Zynq 7000 or the Cyclone V
series (millions against hundred of thousands at best). But the differences
does not stop here, either if we are talking about memory (BRAM, DDR4,
QDR), DSP or IO this FPGA will have plenty to spare. It even offers a
category of its own the UltraRAM, which are quite large, fast and reconfig-
urable memories directly integrated into the die, to be specific dual-ported
288Kbit SRAM.
In order to fit all this feature a multi-die approached is used. As shown
in the figure each die corresponds to a SLR (Super Logic Region) which
is connected to the adjacent die through a SLL (Super Long Line). These
connections resides on the Silicon Interposer, a layer used in-between the
IO component of the package and the dies. This kind of structure is called
SSI (Stacked Silicon Interconnect) and it strongly influence the design
methodology for this kind of FPGA, since it allows to cram more silicon
together but at the same time it can hinder performance and thus where
and what is passing through this communication layer needs to be carefully
planned.

4.2 Block Placement
To correctly implement your design in this kind of device it is necessary
to roughly assign a zone of the die to the major building blocks of our
project. This process constitute a coarse floorplan and it is needed since
the software, Vivado, used to synthesized has some difficulty in exploring
the design space, due exactly to the dimension of the FPGA. It does a
much better job when we restrict the area and position of the design’s
component.

4.2.1 Floorplanning basic
As starting point an identifier is assigned to specific region of the FPGA
through this command

create_pblock pblock_name X4Y3:X7Y11

The arguments correspond to the name and the identifier of a clock region.
Such regions are distinct part of the FPGA characterised by a fixed number
of resources. They also correspond to the basic building block that you can
select2. By using the two clock region joined with a colon, a rectangular

2It is also possible to select directly the resources, LUT, BRAM, DSP, etc. in order
to finely define your selected area

32

Synthesis

space is generated with those two regions at opposite corners. Once the
necessary pblock are crated a reference to the components in the design
can be obtained with this kind of command

get_cells -hierarchical -filter {NAME =~ "regexp_expression" ||
REF_NAME =~ "regexp_expression"}

One can use either the NAME or REF_NAME the difference is simply
that the latter is unique. Moreover in this case due to the use of libraries,
a _libName suffix is added to the NAME in case of the same entity being
present in different libraries. The bizarre fact is that when a library is not
explicitly defined for a component it gains _default ending, meaning that
contrary to Modelsim the default library is not called work. The last step
is then to assign all instances of the component to the pblock with the
following command

add_cells_to_pblock pblock_slr1_left_bottom [get_cells $inst$]

where the variable $inst contains the path to a specific component instance
in the design.

4.2.2 Floorplan evolution
This initial placement is stored into a .xdc file and the one already available
for the normal FH was used as starting point. Figure 4.2 shows where the
component are usually placed.

Farts Iteration

This configuration allows to reach a slack of roughly −2.213 ns. But even
to do so some initial constraint needed to be relaxed, in particular the areas
assigned to the market decoder and NSWF encoder were not sufficient and
thus they were expanded.
From the figure it is obvious that the FPGA is not fully occupied and
a lot of space is still available. SLR0 is not used at all and also part of
SLR3 remains unused, while SLR1 and SLR2 result very congested and the
routing proves to be the major player in the timing violation. Considering
the worst path from the instrument hashtable to the arbiter, it shows that
of the total delay 0.355 ns is due to the actual logic and 4.821 ns to the
routing, which corresponds at 93% of the whole delay.

Second Iteration

After trying to adjust this configuration with little improvement it was
obvious that some change was needed. The first step was to move the

33

Synthesis

Figure 4.2. Schema of default placement for FH core

market decoders into the SLR0. This move was done not only to relieve
congestion on SLR1 but also with a regard for the future. In case a new
market is added to the project there would be no space for it in the SLR1
while there is plenty in the SLR0.

34

Synthesis

This solution demanded an addition of two pipeline register, between the
market decoder and the in stream arbiter, in order to use some specialized
registers, called Laguna, to efficiently cross SLR. The results of this change
were not immediately evident, the slack got worse, −2.510 ns, but now the
timing inside the decoders were much better and close to zero.

Third Iteration

The problem was now with the component after the decoder, the Order
Processor. Due to their connection the solution was to move also this
component to the SLR0 and an additional division was made. The market
decoders would take the left half while the order processor the right one.
This displacement also demanded a change in the QDR used, the third was
deactivated and replaced by the zero in order to keep the memory as close
as possible to the order processor. This time the improvement were quite
significant with a slack of −1.598 ns.

Forth Iteration

Despite the improvement the major problem, the NSWF encoder, still re-
mained. This component is at its core a big RAM with also a bit of logic
in it. Since its memory cell are scattered in the right part of SLR2 and
the area is fairly congested, the interconnection delay results too high. To
solve the problem as many components as possible were moved into the
newly available space in the right half of the SLR2. Again a good result
(−0.844 ns) but nowhere near to an acceptable one.

Fifth Iteration

After some more experimentation the area assigned to the NSWF encoder
was reduced a bit and shifted away from the output interfaces. Moreover a
new area was created in the middle of the right half of SLR2. It was then
assigned to the message injector3 for two reason:

• Having a more chain like structure in the floorplan, instead of using
a single area for more components

• Correcting a bad tendency shown across all synthesis iteration, which
was placing the message injector in the clock region X5Y8, which is
in the bottom-left corner of SLR2 right half

3This component visible in Figure 2.2 and 4.2 collects various periodic messages
from the software, like packet statistics or status of the board, and foreword them to
the output

35

Synthesis

This solved almost every problem in that zone and It allowed to reach a
−0.124 ns slack. The tool was now consistent and always hitting around the
−100 ps mark. The best so far reached the −60 ps. This is how the best run
looks like: Although not positive it is possible to state with a certain degree

Figure 4.3. Image of the final synthesis

of confidence that anything below the −100 ps threshold will work without
a problem. This is mainly due to the pessimistic estimate performed by
the software and related to temperature, clock uncertainty etc.

36

Chapter 5

Software

The software is currently not ready to support two market together and due
to the mole of code involved I am currently unable to propose an effective
solution1. Nonetheless after some reverse engineering and debugging it has
been modified to crudely configure in the correct way the appliance.

The main limitation derives by the fact that no configuration model cur-
rently exists with the presence of multiple markets and thus the only way
is to trick the software into thinking that is dealing with a single one. This
cause the information to mix together and renders sometimes impossible
to associate them to the correct market, making necessary the use of ad
hoc coding just to re-establish the boundaries between the markets.

5.1 Global structure
A file called application_description.json, which contains all of the com-
ponents configurable by the software, is parsed and for each element its
possible settings are recorded. All the settings are merged together with
the patches.json, corresponding to common properties and market specific
variations, to create a file called apg.json. Such file represent a template
used to generate actual settings.json, which are records of a configuration.
The apg file is then compiled together with the C++ sources to create the
nsapg binary which takes three file as input

• feeds.csv, contains the exchanges involved and the IP/PORT coor-
dinates.

1Due to delivery time of other projects no one in the software department could
develop the code alongside my work.

37

Software

• instrument_dictionary.csv, contains a list of the instruments we
want to follow, as well as to which exchange they belong to and what
output id they will have.

• settings.ini, list of value used to configure the component of the FH,

The nsapg compiles the information in those three files into a settings.json,
then goes over all the cores and configure them through the Avalon inter-
face.

5.2 Software changes
The only areas that needed to be touched were the one used to configure the
hashtables inside the normalizer. The reason being that the exchange_id
is involved in both the hash generation to recognize an instrument and the
key generation which will be used in the order hashtable. Currently such
field uses 4-bit inside the FH but depending from the market a slice of 2 or 3
bit is used for the two processes mentioned in the previous statement.

This behaviour derives from the general amount of exchanges being below
four and also from avoiding the number zero as exchange id. Taken into
account these details it is obvious that at most three of the four bit actually
carry important information. Since the nasdaq_bats family will have at
most seven exchanges all the four bits become important and some care
needs to be taken in how the exchange ids are assigned.

The exchange id is supposed to be a unique field and the same applies to the
slices used in the normalizer, at least inside the same market. To respect
these rules, the solution is to force the assignment of this field to NASDAQ
and then to BATS. In this way they will have range 1-3 and range 4-7. The
next step is to count how many of the NASDAQ exchanges are present and
subtract that number to wherever exchange id is used for BATS exchanges.
In such way the mapping used in the hashtable will consider the last three
bit and derive the usual range of 1-4.

The last remaining step is to hard code a filtering process before the con-
figuration of both the hashtable and the in stream arbiter. For the first the
aim is to avoid passing instruments which do not belong to the renormal-
izer of a specific market and for the second instead is to correctly compute
the IP ranges based on the exchanges of a market.

This solution is very simple but has also big problems. The software is able
to correctly configure the FPGA only in two cases

• Only one market is present

• Both market are present, but NASDAQ has all the exchanges

38

Software

The remaining case, both market present but with only some exchanges,
risks to not work correctly as there is the possibility that orders from the
different markets could be confused and mixed inside the order proces-
sor.

39

Chapter 6

Testing on FPGA

With both software and firmware ready the work done so far can be vali-
dated on an actual board.

6.1 ATST

Figure 6.1. Example architecture of the ATST platform

All test conducted on real hardware pass through the ATST platform. It is
an automated server which lets users submit jobs easily, without worrying
about competing for resources or inappropriate hardware configurations.
It is a very useful platform and this are its main features:

• automated job queueing system

40

Testing on FPGA

• management of hardware resources
• allocation of bays1 to a job based on its requirements
• allocation of CPU resources for running comparators
• email notification upon test completion

6.2 Testing Methodology
The methodology remains very similar to Section 3.5.3, but with two main
differences. The main one is the size of captures that the appliance allows
to run. To be more precise this difference is dictated by time. It is pos-
sible to use big captures containing million of packets in Modelsim but it
is not practical. For a better prospective here a simple comparison. The
test used in the above mentioned section, takes around 20-30 minutes with
10000 packets, while the average time for a 10 million capture is between
8-11 minutes on the FPGA. This diversity motivates the use for real hard-
ware as an in depth validation tool, while software simulation is better for
debugging, corner cases exploration and small regression testing.
The other change concerns the channel id. While validating the correct
functioning of both markets some problems emerged with three class of
messages:

• Version messages, used to broadcast the version for the output pro-
tocol, i.e. the proprietary NSWF

• Gaps messages, used to signal the presence of a gap at the input.
Meaning that the books published after such messages may be inco-
herent with the real state of the market

• Exchange messages, used for delivering some information regarding
a single exchange, like temporary interruption of the treading services

The common factor among these three types is that they are mapped to the
zero address of the instrument ram used in then NSWF encoder. By default
this address contains the value 0xF00000000, referring to Section 3.5.2 the
extracted information result in

bitmap = F, exchange_id = 0, channel_id = 0, out_id = 0
Among the four identifiers out_id, bitmap and exchange_id do not pose
any problem. The latter is not even used, a separate memory stores the
values for the translation. The channel_id value instead correspond to a
special mapping and forces the MMC Duplicator to broadcast the message

1This terms refers to an appliance

41

Testing on FPGA

on all the configured multicast group. This means that on the IP address
reserved for NASDAQ there will be some messages belonging to BATS and
vice versa. The comparator is unfortunately unable to cope with those mes-
sages and generates an error, making the validation of the output capture
impossible.

The simple solution would be filtering the unwanted messages but only in
case of small captures, around the 1G mark or 10 million packets. When
dealing with more consistent tests, in the order of 40 to 70 gigabytes which
represents half or a full day, this approach is really time consuming and
from my experience not fully stable2 with the current tools.

The best solution would be changing the behaviour of the MMC Duplicator
in order to tie an exchange with the channels actually used by it. A proposal
regarding this topic already exists and it implies the passage from a number,
to encode the channel_id, to a mask representation. It means not only a
rise in the field size, from 4 to 16 bits, but also a revision of the whole output
section. Since the development for this idea requires a considerable amount
of time3 and this feature is not currently in demand by any customer, the
use of the channel_id was dropped entirely.

The appliance has at its disposal four different outputs and it gives the
possibility to associate an instrument to an ethernet port through the use
of the bitmap. Although the problem for the three category of messages
remains, due to the default value 0xF for instrument zero, it is easier to
fix. Moreover with the used of multiple output the sorting of the output
capture based on the IP address is no longer required.

6.2.1 Exchange Bitmap
A comparator is used to detect when a message requests the zero ele-
ment of the instrument ram. In such case the internal exchange_id is
used to access a small ram which contains the real bitmap. The substi-
tution between the default and real value happens through the use of a
multiplexer. To regulate this behaviour on a user level a flag, called ex-
change_msg_sorting_enable has been added to the Avalon registers
of the NSWF decoder. Note that depending on the type of market the in-
ternal exchange_id may or may not assume the value zero, for this reason
when not used it is set to 0xFFFFFFFFFF as in Figure 6.2. That value
should aid with the debug of the output capture in case address assumes
the unexpected zero value.

2When trying to edit large capture crashes are quite frequent
3The estimate made by the manager is around three months

42

Testing on FPGA

Figure 6.2. Exchange bitmap block diagram

In the image below is shown an example of how the feature is enabled
together with other parameters.

[processing]
book_shift_enable = false
trade_id_enable = true
delta_prices_enable = true
publication_depth = 5
decross_enable = false
exchange_msg_sorting_enable = true

The configuration of the small ram uses the already existent address and
data interfaces dedicated for the instrument ram but an enable signal needs
to be added to regulate the access specifically for the exchange bitmap ram.
The value stored inside the ram are determined at boot time. The bitmap
field is stored in an optional row inside the instrument_dictionary.csv file,
of which an example is available here.

market_instrument_id, exchange_name, out_instrument_id, bitmap_enable
A, inet, 1, 0x0000000010
BAK, bx, 664, 0x0000000010
CDI, psx, 1226, 0x0000000010
GURI, byx, 3289, 0x0000000020
MLAB, bzx, 4763, 0x0000000020
REX, edga, 6176, 0x0000000020
WGA, edgx, 7896, 0x0000000020

43

Testing on FPGA

By oring each bitmap belonging to the same exchange the result is a
cumulative bitmap of all the outputs used by the exchange and it can be
stored inside the newly added ram. This process takes advantage of the
configuration code for the NSWF encoder, it exploits the iteration over all
the instruments to compute the real bitmap and thus it does not have a
significant impact on the boot up time.

6.3 Effective instruments
Before discussing the results it is necessary a small digression on the hashtable
used in the Order Processor. The order hashtable is split in smaller mem-
ories (QDRs) and it employs six different hash functions in parallel on the
same key. This kind of redundancy assures in general the capability to find
a free cell inside the table. However depending on the type of keys and
the filling of the hashtable it is possible that no place is available. In these
cases an external memory can be used but not only it degrades performance
when looking for an instrument, it also carry the risk of becoming full and
thus it is better to avoid its use.

This is exactly the case for the BATS market. From the tests emerged that
during high activity period some order were lost. The cause can be traced
to the use of the uniqie_ns_order_id coupled with the ns_order_id. This
latter field is composed in different manners depending on the market but
it is always used as key for the hash functions. Its value is very impor-
tant and directly connected to the distribution of the orders inside the
hashtable. Normally it is constructed in such a way to be unique but in
some cases this condition may be impossible to respect with only 36-bit
so the uniqie_ns_order_id comes into play to fill this role with its 72-bit.
This field is than stored inside the hashtable instead of the ns_order_id to
correctly identify an order. The doubling in dimension degrades the total
capacity of the hashtable and thus reduce the maximum number of orders
that can be stored inside of it.

This downside become even more accentuated when both markets are active
at the same time but since the study of new key values optimized for this
structure is outside the scope of the internship the only available solution
is to restraint the maximum number of instruments. In this way number of
live orders is reduced and the table never incurs in any space problem. In
particular NASDAQ is reduced from its theoretical limits of 27000 to 13600
and BATS, which is heavily effected by this issue, goes from 36000 to 13000.
In general the conclusion is that 26000 can be considered the current limit
when mixing the two markets, independently on the proportion.

44

Testing on FPGA

Figure 6.3. Timing NASDAQ only
configuration

Figure 6.4. Reference timing for
NASDAQ test

6.4 Results
The performance metric used to evaluate the NASDAQ/BATS feed handler
will be latency. As stated before the objective is to maintain it as low as
possible. Considering the changes made to the architecture a minimum
shift of six cycles can be expected. Two cycles due to the command arbiter,
another two to cross SLR and last two pipeline stages at the output of the
normalizers to allow backpressure. This corresponds to roughly 18 ns which
is nearly the case for an only NASDAQ configuration.
In Figure 6.3 and 6.4 are available the histograms for a full day capture.
Around 330 million packets are registered at the output and for each of
them the latency is computed with the aid of two synchronized counters,
one at the input and one at the output. Although the possible granularity
of the data is really fine the tails results invisible a cause of the main spikes
around the 600 ns mark. Nonetheless it is still evident that a shift has
occurred. Comparing the averages reveals a difference close to 17 ns, from
594.64 ns to 611.62 ns.
Conducting the same comparison for a BATS only configuration results in
a similar outcome but it yields a greater shift in the overall distribution.
The average moved from 611.775 ns to 635.64 ns, a total displacement of
roughly 24 ns.
Passing now to the captures of both market together, Figure 6.7 shows the
latency histogram for a joint configuration of 13K instruments per market,
with again roughly 330 million packets. The performance in this case is
exceptionally good with an average of 610.303 ns. This value is better,
even if by a small margin, than the NASDAQ only test and clearly it is
this market which dominates the distribution. Even changing the selected

45

Testing on FPGA

Figure 6.5. Timing BATS only
configuration

Figure 6.6. Reference timing for
BATS test

instruments does not change much meaning that this result is mostly linked
to the ratio of instruments between the markets.

Figure 6.7. Timing for NASDAQ+BATS configuration

Regarding the uneven delay between the two markets it still has no clear
origin. Since stressing the architecture revealed the complete absence of

46

Testing on FPGA

collision on the command market.
Another small remark regards the worst possible timing. This information
seems consistent and remains nearly unchanged for both sides, it usually
accumulate only three or four nanoseconds. But when looking closely at
the tails it is possible to see that they are actually less populated when
compared to the reference distributions. This is overall a good factor but
it must not be mistaken as an improve in performance since it is probably
due to the additional pipes which gives a little more time to the chain
during processing. To put it simply the extra delay makes the chain less
clogged than usually is. But nonetheless it remains overall slower.

6.5 Future Improvement
As stated before the current prototype has may issue, but of course it is
the first of its kind, and thus it means that there is still a lot of room for
improvement. Here is a rundown of all the features which are missing or
could get improved:

• support for data recovery in case of gaps, two possible routes have
already been proposed in 6.2

• rework on the hash key or in alternative addition of unused QDR34

to the Order Processor to reach support of the maximum number of
instruments on all markets

• proper generalization of the software and specific template definition
for the settings of the multimarket family

• definition of standard validation flow which is automated and inte-
grated with the ATST platform

Looking now at future prospects the most important aspect will be to
explore different families combination and test how scalable this solution
is. By looking at Figure 4.3 it is evident that there is definitely enough
space left in the FPGA to fully fit a third market. One of the major
limiting factor will be for sure the order hashtable. The more market are
joined together the more difficult it will be to reach an even distribution
on the hash functions, moreover if the peak activity grows the space will
eventually reach critical capacity and orders will be lost. For these reasons
for the four markets mark and onwards, the number of instruments will
be limited and careful analysis should be performed to decide how the
partition for each market influence the overall behaviour.

4Preliminary tests show that this is possible with non negligible performance hit of
around 8 clock cycles

47

Testing on FPGA

6.6 Conclusion
The purpose of this work was to cover the development and decision pro-
cess adopted in the making of a new category of products for the company
Novasparks. At the same time it shows how in the context of a consol-
idated architecture it is sometimes necessary to make some compromises
and trade-off possible performance for development time.
Overall the goal for the internship was met. The Feed Handler is work-
ing as intended and it is true that there are stills some problems in the
architecture, like the hash distribution and the recovery portion, but this
first NASDAQ/BATS hybrid can serve as proof of concept as it shows the
feasibility of an FPGA Feed Handler linked to more than one market.
This work will be a valuable asset for the company. In the recent years more
small markets have appeared, like LTSE (Long Term Stock Exchange) and
MEMX, and more are likely appear in the future. With the possibility to
aggregate them together in a single FPGA Nova sparks will be able to offer
a compelling product for trading company eager to engage in these new
treading territory.

48

Appendices

49

Appendix A

Avalon

The Avalon interface is used to create an addressable space usable by the
software. In this way we provide a mean to set some configurable parame-
ters, once the FPGA has already been programmed, and to report possible
internal error. In particular this interface is used during boot of the appli-
ance to correctly setup the RAM and user defined parameter.
The section of the standard used is the Avalon-MM1 and in general this
are the signal it uses:

• amm_clk: clock signal, it can be on another frequency domain with
respect to the rest of the design. In such a case the incoming data
needs to be resynchronized.

• amm_reset: reset signal, restore the component to a user defined
state. It is synchronous.

• address: on the master side the default behaviour is to allow byte
addressing while on the slave side we have a word addressing by de-
fault. In both cases the addressing unit can be configured, in general
the word mode is used.

• byteenable: each bit of this signal state which byte in the data is
eligible to be written or read.

• read: used by the master to initiate a read communication.
• readdata: used by the slave to acknowledge a read transaction with

the master.
• write: used by the master to initiate a write transaction.
• writedata: used by the slave to acknowledge a write transaction

with the master.

1Memory Mapped

50

Avalon

• waitrequest: asserted when the lave is not capable to immediately
answer to the master. It is a way to stall communications until the
slave is ready.

Figure A.1. Simple AMM tree like structure.

The AMM uses an hierarchical structure where one or more master initiates
transaction with slave nodes. As shown in Figurer̃effig:ammtree there could
be different slaves and each of them can have its own addressing space. The
address size of the master does not limit the one of the slaves and it is even
possible for them to have a bigger address of the master but in this case
a suitable decoding logic needs to be developed. Regarding the addressing
capabilities the master is bound to some conventions. A byte alignment is
forced in relation to the data width. Example, if the readdata port is 32-bit
than addresses for a contiguous read must be spaced of 0x4.
For reading and writing operation many mode are available and I remand
to the official documentation for some detailed information on all the spec-
ification and operating mode.

51

Appendix B

Component Communication

Figure B.1. Example of transaction with the ready/valid protocol.

Although all functional components work at the same frequency inside the
FH, they do not create a perfect pipeline, meaning that some may have a
variable latency. For this reason the communication among them is coordi-
nated through a ready/valid handshake. This protocol is very starightfore-
ward and simply data on the output is carrying meaningfull information
when the valid siganl is asserted, while data is considered consumed when
both signals are asserted at the rising edge of the clock. A sample wave-
form is shown on the Figure B.1. One advantage of this protocol is the
possibility to exhert back pressure. This term refer to the fact that a com-
ponent is able to regulate the incoming flux of data through the use of the
ready signal. Whenever it is deasserted new data could be accumulate at
the iterface or rirectly being halte, this behaviour can be seen as pressure
acumulating at the input of the component. This property, for example,
is crucial for the arbiter to function but it represents also a weak point.
In case the incoming data cannot be saved or put on wait it ends up as
discarded.

52

Appendix C

Jinja2

Jinja is a powerful templating language which allows to organize any data
coming from a python script into text format. Its syntax1 is encapsu-
lated inside what we could call container in order to differntiate it from
normal text which is part of a template. There are four different type of
container:

• {% ... %} , is used for statements like loops and branches. It con-
tains in general the logic of the template

• {{ ... }} , is used to evaluate expressions and print the result inside
the template

• {# ... #} , is used for comments so the text inside of it will not be
included in the template output

• # ... ## , is used for line stetements. They are a configurable and
alternative way of marking some text as a jinja specific command

The philosophy of Jinja consists in using the language to place the data at
the right place in a file and relegate the processing to the python source.
Despite this the language does not enforce this behaviour and result very
flexible providing also a lot of tools when some logic is needed. To the
point that it can be as expressive as python itself.
As example the source file of the renormalizer is provided in the following
pages. The code employees a wide varieties of the offered features, like
variable assignment at line 47, loops, conditional statements, text format-
ting and also custom functions. At line 77, log, ceil and int are explicitly
imported from python and the symbol | act as a pipe and feed the outcome
of a function as input to the next one.

1For further referece refer to the project manual [1]

53

Jinja2

1 --
2 -- NovaSparks Confidential
3 --
4 -- (c) Copyright NovaSparks. 2010, 2019
5 -- The source code for this program is not published or otherwise
6 -- divested of its trade secrets.
7 --
8 -- This module is generated by script gen_renormalizer.py
9 --

10
11 library ieee;
12 use ieee.std_logic_1164.all;
13 use ieee.numeric_std.all;
14 use work.commands_pkg.all;
15
16 entity renormalizer is
17 generic
18 (
19 FAMILY_NAME : string;
20 IN_OP_WIDTH : positive := 7;
21 IN_CMD_WIDTH : positive := 1
22);
23 port
24 (
25 in_ready : out std_logic;
26 in_valid : in std_logic;
27 in_cmd_valid : in std_logic;
28 in_opcode : in std_logic_vector(IN_OP_WIDTH-1 downto 0);
29 in_cmd : in std_logic_vector(IN_CMD_WIDTH-1 downto 0);
30
31 out_ready : in std_logic;
32 out_valid : out std_logic;
33 out_cmd_valid : out std_logic;
34 out_opcode : out std_logic_vector(OP_WIDTH-1 downto 0);
35 out_cmd : out std_logic_vector(CMD_WIDTH-1 downto 0)
36);
37 end entity;
38
39 architecture rtl of renormalizer is
40 begin
41 -- Simply foreward the ready and valid commands no latency loss here
42 in_ready <= out_ready;
43 out_valid <= in_valid;
44 out_cmd_valid <= in_cmd_valid;
45 out_opcode <= in_opcode;
46 {% set out_fields = out_info.fields %}
47 {% set uoid = out_fields['unique_ns_order_id'] %}
48 {% for market_name, market_info in markets_dict.items() %}
49 {% set in_fields = market_info.fields %}
50 {% set mkt_loop = loop %}
51 {{ market_name}} _renormalizer : if FAMILY_NAME = "{{ market_name}} "

generate↪→

54

Jinja2

52 process(in_opcode, in_cmd)
53 variable in_opcode_v : natural range 0 to 99;
54 variable out_cmd_v : std_logic_vector(CMD_WIDTH-1 downto 0);
55 begin
56 in_opcode_v := to_integer(unsigned(in_opcode));
57 -- Adding default zero value for the output
58 out_cmd_v := (others => '0');
59 case in_opcode_v is
60 {% for command, command_info in market_info['commands'].items() %}
61 {% if command_info['width'] != 0 %}
62 when {{ "{:2d}".format(command_info['opcode'])}} =>
63 {% for field in command_info.fields %}
64 {% set in_field = in_fields[field] %}
65 {% set out_field = out_fields[field] %}
66 {% if in_field.width == out_field.width %}
67 out_cmd_v({{ out_field.offset + out_field.width - 1}} downto

{{ out_field.offset}}) := in_cmd({{ in_field.offset + in_field.width
- 1}} downto {{ in_field.offset}});

↪→

↪→

68 {% else %}
69 {% if in_field.is_signed %}
70 out_cmd_v({{ out_field.offset + out_field.width - 1}} downto

{{ out_field.offset}}) :=
std_logic_vector(resize(signed(in_cmd({{ in_field.offset +
in_field.width - 1}} downto {{ in_field.offset}})),
{{ out_field.width}}));

↪→

↪→

↪→

↪→

71 {% else %}
72 out_cmd_v({{ out_field.offset + in_field.width - 1)}} downto

{{ out_field.offset}}) := in_cmd({{ in_field.offset + in_field.width
- 1}} downto {{ in_field.offset}});

↪→

↪→

73 {% endif %}
74 {% endif %}
75 {% if field == 'ns_order_id' %}
76 out_cmd_v({{ uoid.offset + out_field.width - 1 + (mkt_loop.index |

log(2) | ceil | int))}} downto {{ uoid.offset}}) :=
"{{ "{:b}".format(mkt_loop.index0)}} " & in_cmd({{ in_field.offset +
in_field.width - 1}} downto {{ in_field.offset}});

↪→

↪→

↪→

77 {% endif %}
78 {% endfor %}
79 {% endif %}
80 {% endfor %}
81 when others => out_cmd_v := (others => '0');
82 end case;
83 out_cmd <= out_cmd_v;
84 end process;
85 end generate;
86 {% endfor %}
87 end architecture;

55

Appendix D

commands.json

The following json is an extarct from the nasdaq_bats_commands.json
file used to generate the VHDL command package for the studied family.

{
"commands":{

"del_order": {
"fields": [

"buy_nsell",
"do_not_publish_flag",
"exponent",
"instr_id",
"instr_seqnum_valid",
"latency",
"latency_enable",
"market_seqnum",
"market_seqnum_valid",
"market_time",
"market_time_valid",
"ns_order_id",
"ns_order_number",
"price",
"quantity",
"unique_ns_order_id",
"unit"

],
"opcode": 8,
"width": 350

}
},
"fields": {

"price": {
"is_signed": true,
"mod4": false,
"occurrence": 22,

56

commands.json

"offset": 171,
"width": 33

}
}

}

57

Bibliography

[1] Jinja2 Documentation, 9 2017. Release 2.9.6.
[2] E. S. Shin, V. J. Mooney, and G. F. Riley, “Round-robin arbiter design

and generation,” in 15th International Symposium on System Synthesis,
2002., pp. 243–248, Oct 2002.

[3] S. Rudregowda, “Implementation of bus arbiter using round robin
scheme,” IJIRSET, vol. 3297, 07 2014.

[4] Altera-Intel FPGAS, Avalon Interface Specification, 1 2020. Rev. 17.
[5] Xilinx, Large FPGA Methodology Guide - Including Stacked Silicon In-

terconnect (SSI) Technology, 10 2012. Rev. 14.3.
[6] S. T. Trade, “The history of high frequency trading from 1602 to the

present day,” 2017.
[7] Wikipedia, “High-frequency trading,” 2017.

58

	Introduction
	The Low Latency scene
	About Novasparks

	Feed Handler
	Feed Handler Overview
	Market Feeds

	Feed Handler by Order Architecture
	Input Section
	Proposed Architecture
	Renormalizer
	Command Arbiter

	Development
	Packages
	Renormalizer
	Validation

	Command Arbiter
	Latency
	Round Robin
	Validation

	Market Decoder
	Name Conflict
	Libraries Integration
	Backpressure
	Validation

	Feed Handler core
	Problems encountered
	Configuration
	Validation

	Synthesis
	FPGA
	Block Placement
	Floorplanning basic
	Floorplan evolution

	Software
	Global structure
	Software changes

	Testing on FPGA
	ATST
	Testing Methodology
	Exchange Bitmap

	Effective instruments
	Results
	Future Improvement
	Conclusion

	Appendices
	Avalon
	Component Communication
	Jinja2
	commands.json
	Bibliography

