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Abstract

Word embeddings are nowadays widely deployed in a large number of Natural Lan-
guage Processing tasks. A word embedding is used to map each word belonging to
a corpus, into a vector space, keeping semantic and syntactic properties. They are
used in different implementations such as sentiment analysis, topic extraction, Part-
Of-Speech tagging and of course document summarization. The focus of this thesis
is towards this last job: the object is to extrapolate, given a collection of articles, the
most relevant sentences to provide the reader only a limited set of information but
hopefully the most meaningful.
Particularly, the scope of this work is to empirically show that a domain-specific word
embedding is able to extract a better summary with respect to a general-purpose one.
A general-purpose word embedding is obtained after a training phase in which the
input corpus is made of texts of various nature. On the other side, a domain-specific
word embedding is trained using only documents that are treating that particular do-
main. The idea behind is that, training a word embedding with documents belonging
to the same domain will produce a better representation of all the words related to
that argument, because, with respect to a non specific text, they are present more often
and used in a more specific context. Other than that, a domain-specific embedding
is capable to handle better words having multiple meanings: instead of treating each
meaning with the same weight, the one linked to the precise domain will receive more
relevance. This thesis is split mainly in two parts: the first one is about producing a
domain-specific word embedding and judging its quality; the second one is about ap-
plying the previous result to a downstream task, the multi-document summarization
indeed.
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Chapter 1

Introduction

With the uprising relevance that internet has assumed these last few years, people has
the possibility to access to a very large set of information by simply browsing the net
using devices that are now familiar with everyone, such as smartphones or personal
computers. The web may be considered as a huge library; indeed there is the chance
to obtain documents related to every possible topic, but also produced by writers
having different levels of preparation: the same subject may be treated using various
approaches, targeting people having a different sex, age or also opinion.
Natural language processing (NLP) is the branch of computer science devolved to
address and solve problems that are related to the human languages, implementing
models and algorithms that are able to analyze a text. Some of these tasks may be
solved easily by a human being, while instead machines are requested to implement
complicated procedures: a classic example is the speech recognition problem, in
which the machine has to understand what the speaker is saying.
Among all the tasks, the one chosen for the work of this thesis is the document or text
summarization, which has as objective to provide a summary given a collection of
texts. The goal is to extract as many meaningful information as possible, avoiding to
repeat them. This attempt to eliminate overlapping concepts is also due the fact that
each summary does not have an arbitrary number of words: a threshold is usually
defined (the output cannot exceed a given number of terms) and this is also pushing
this field of research to find always more accurate algorithms. Summarization is a
concept that is very well known to everyone, for example kids at school are taught
to underline with their highlighter all the periods they believe are containing the key
concept of the topic. Nonetheless, this job will become extremely hard and extremely
time consuming if the input data consists in thousands of articles and this is where
computer science intervenes.

Document summarization, in reality, is just a generic word to indicate a large number
of similar but at the same time different problems, because, as said previously, there is
a large variety in documents and each one of those kind has to be handled in a proper
manner. Throughout this work most of these aspects will be covered, even if the focus
is put on the multi-document summarization driven by domain-specific embeddings,
which becomes the most important actor while processing this task. A word embed-
ding is a model used to map words into real number vectors which can be used while
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1 – Introduction

Figure 1.1: Skimming, is a technique widely adopted by students in order to discern
which sentences are the most important; this helps further reading and memorizing
faster concepts contained. Image taken from the August/September 2018 publication
of the newspaper https://professionalartistmag.com/.

selecting which sentences are the most relevant. It is a very useful tool, because it does
not only provide a way to compare periods but the distance retrieved represents se-
mantic and syntactic relationships among words. Thanks to this aspect, it is possible
to overcome one of the major issues of the document summarization, that is dealing
with synonyms. Basic sentence selection algorithms, not based on word embeddings,
are only taking into account matching words in order to understand if two sentence
are similar and so if they are treating the same argument. On the other side, intro-
ducing a vector representation of a word or of a sentence will provide more degrees
of similarity and more easiness to compute how much information are shared among
two periods.
As just introduced, a word embedding is able to map a dictionary into a vector space,
generally according to their meaning. This vocabulary is built gathering word com-
ing from the input corpus used for training purposes: this means that, using different
collections, we will obtain, first of all, different dictionaries but also different vector
representations. Starting from this specific of word embeddings it is possible to for-
mulate the objective of this thesis: is it true that a domain-specific word embedding
is able to recognize with less difficulties terms belonging to a specific lexicon, with
respect to a general-purpose word embedding? Moreover, due the fact that a word
embedding is just a tool and it does not provide any meaningful results by itself, is the
summary produced by a model exploiting a domain-specific embedding more refined
with respect to a general-purpose one, while analyzing documents that are treating
arguments related to that specific domain?
In order to answer these questions multiple aspect should be covered, to understand
which actors are playing an important role in this task. The first step performed is
about evaluating the goodness of the representations provided by a word embedding,
focusing on those ones which are related to the domain chosen. It is important to have
a metric that, given two word embeddings, is able to return a score which indicates

2
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1 – Introduction

which one is the best in addressing those terms. Usually this test is done considering
couples of synonyms or analogies; unfortunately they are not suited for our purpose
and so we have chosen to introduce a new evaluation model, based on a glossary
containing definitions related to a specific domain. While dealing with the actual doc-
ument summarization task, in order to have a compete view of the scenario, five word
embeddings have been tested (four domain-specific and one general-purpose) using a
handful set of sentence selection algorithms on three different test datasets.
Results gathered are showing that domain-specific word embeddings are able to,
while dealing with homonyms (words written in the same way but having multiple
meanings), assert more relevance to the meaning most linked to the domain. How-
ever, the glossary evaluation attempt did not return positive results; there is, before
discarding it, still the possibility to refine it and improve it. Talking about, instead, the
quality of the summaries produced, the difference of scores while using algorithms
using word embeddings or less is very small. Finally a very good result has been
obtained in comparing domain-specific with general-purpose embeddings: in one of
the dataset implemented, summaries produced by domain-specific models are signifi-
cantly better. While considering these results, we must remind that the ROUGE metric
have been used, which rewards matching words and not synonyms: a summary with
a lower score could also signify that, to express the same concept, it has used different
terms.
This thesis is presenting other seven chapters after this introduction. In Chapter 2 there
is a brief explanation of the preprocessing techniques, used to elaborate and refine the
input text that, and of which datasets will be used. Chapter 3 is instead devolved to
introduce various models of word embeddings, presenting their evolution to solve is-
sues affecting previous implementations. Tests to validate them are introduced in the
chapter 4, which portrays intrinsic evaluation tools, including the summary approach
proposed. In the next two chapters, after a brief excursus of the actual state of extrin-
sic evaluation models, the focus is put on document summarization, describing many
ways to implement it (chapter 6 will treat only word-embedding based sentence se-
lection algorithms). Lastly, chapter 7 and 8 contain all the results gathered throughout
this work and the relative conclusions.

Workflow

In figure 1.2 there is the flowchart followed to reach the final result of this work.

Figure 1.2: Flowchart of the work made throughout this thesis.

This path may be implemented to deal with NLP problems regarding domain-specific

3



1 – Introduction

scenarios, even if the downstream task chosen is not the document summarization.
The starting point is represented by a collection of texts, all imprinted around the same
topic (domain-specific corpus in the figure), and by a word embedding that is suited to
address general-purpose tasks. Performing a new training phase on the above men-
tioned model it is possible to obtain a new representation, which goodness will be
tested to understand if the result desidered has been achieved (intrinsic evaluation).
It is possible to loop this first phase whenever the outcome is not satisfactory enough.
Once this has been completed, the first result will be implemented in a downstream
job (extrinsic evaluation) in order to understand which benefits it will carry with itself.
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Chapter 2

General Background

In this chapter the most important data preprocessing techniques are covered. NLP
implementations are usually solved using a cascade of intermediate tasks: their pur-
pose is to remove all the words that are not useful for the analysis and provide them
to the model in a standard form, so that it is easier for the machine to recognize them.
It will follow a brief introduction of the datasets used in this work.

2.1 Data preprocessing

Before explaining what a word embedding is, how it is obtained and how it can be
contextualized with regard of a specific argument, in this chapter different techniques
will be covered. They are implemented in a pipeline fashion and they are fundamental
in order to obtain a result that has any meaning. Indeed each text that is used has to
be first of all preprocessed in order to be ready to be handled. The following tasks
will be described keeping in consideration the fact that all the articles involved in this
thesis are written in English. Using a different language means that you have to deal
with very different grammatical aspects: different punctuation marks, the presence
or not of blank spaces to understand where a word ends and another begins or other
differences may vary by a lot the complexity of the following tasks. All the functions
described are taken from the NLTK python library(https://www.nltk.org/) that is
dedicated to solve natural language processing problems.

2.1.1 Sentence splitting

The first step to be performed is splitting the body of the text into sentences. Indeed
each word has a correlation only with other words within the same sentence; we can
consider each sentence as a different environment in which all terms co-operate to pro-
duce a meaning and so they are the basic units composing the text. The summary ob-
tained is in fact made of the most meaningful sentences, until reaching a given number
of words, produced by the algorithm chosen. In English the full stop is the punctu-
ation mark we are looking for to achieve this goal. Unfortunately it is used also for
other purposes such as an indication of omitted characters, an acronym or abbrevi-
ations. Because of this, the function sent_tokenize() and all the ones similar to it are
based on top of a model trained to recognize all the previous scenarios.
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import nltk

sentence = "B. Obama is a member of the Democratic Party.
He is the 44th president of the U.S.A."
sent_token = nltk.sent_tokenize(sentence)
print(sent_token)

['B. Obama is a member of the Democratic Party.',
'He is the 44th president of the U.S.A.']

2.1.2 Tokenization

The following step is the so-called tokenization that will produce as a result a list of
terms. Once each sentence has been separated by the others it becomes important to
analyze which words are found inside them and how many times they appear. This
step is also fundamental when using tools, like the document-term matrix, required
during the computation phase performed by NLP algorithms. In English is enough to
split the input sentence each time a blank space is found and that will produce a list
of words. This job is performed by the method word_tokenize() present in the NLTK
library.

word_token = []

for sent in sent_token:
word_token.append(nltk.word_tokenize(sent))

print(word_token)

[['B.', 'Obama', 'is', 'a', 'member', 'of', 'the', 'Democratic', 'Party', '.'],
['He', 'is', 'the', '44th', 'president', 'of', 'the', 'U.S.A', '.']]

2.1.3 Stop words

After reaching this point it is required to remove stop words. This particular type
of vocables do not provide any specific meaning to the context of the sentence and
because of that they need to be filtered before the start of the computation. They
usually represent the majority of words in a sentence; among the most used we can
find words like the, or, at, which and many other. There is not an universal list of stop
words and each library will use a slightly different version of it but it is also possible
to add or remove some of them depending on your needs. NLTK offers the possibility
to load pre-made stop words lists, according to the language required.

stop_words = set(stopwords.words('english'))
word_clean_token = []

for sent in word_token:
clean_sent = []
for w in sent:

if w not in stop_words:

6
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clean_sent.append(w)
word_clean_token.append(clean_sent)

print(word_clean_token)

[['B.', 'Obama', 'member', 'Democratic', 'Party', '.']
['He', '44th', 'president', 'U.S.A', '.']]

2.1.4 Stemming

Stemming is the last step to perform in order to complete the pre-processing phase.
This procedure is used to reduce the word to its basic form, the root form. This process
is fundamental for NLP problems because it makes converge many terms to the same
one: to understand the context of a sentence, for example, is not important to know
the tense of a verb or the fact that a noun is singular or plural because all the possible
forms that can be hold by a term are useless with regards of their actual meaning. The
stem does not need to be a word; if a word is instead required as an output then the
process is called lemmatization and it will substitute each word with their lemma. Even
if this looks like an easy step to implement, there are actually many algorithms that
can be chosen, depending on your needs. Indeed a trade-off between the accuracy
and the performance has to be evaluated when selecting one of them. The library
NLTK provides the Porter version that is de facto the standard algorithm for the Engish
language.

stemmer = PorterStemmer()

for sent in word_clean_token:
stemm_toke = [stemmer.stem(token) for token in sent]
print(stemm_toke)

['B.', 'obama', 'member', 'democrat', 'parti', '.']
['He', '44th', 'presid', 'u.s.a', '.']

2.2 Datasets

In this section a briefly explanation of the datasets used is provided. These datasets
have been used mainly for two purposes: to train the model that will be later on used
to produce summaries and to test their performance.

2.2.1 Reuters

Reuters https://www.reuters.com/ is a news agency founded in October 1851. Vari-
ous collections of articles written by their journalist are available and they will be used
in this work to train and to contextualize embeddings. The choice to utilize their doc-
uments is not casual, indeed, due to the fact that they have been produced by experts,
each text will contain a lexicon that is suitable to be printed on a newspaper. The aim
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is to obtain a model that is more capable to recognize this kind of terms and periods.
Two different collections have been chosen:

• Reuters27000, 27000 english news articles download from the main web page,
taking in account the argument they belong to. These categories are: health, art,
politics, sports, science, technology, economy and business;

• RCV1 (Reuters Corpus Volume 1), an archive containing more than 800000 En-
glish news articles collected from 1996-08-20 to 1997-08-19, available for research
purposes.

2.2.2 DUC-2002

The National Institute of Standards and Technology, NIST in shorthand, is an organization
which has its interests in promoting and in supporting technology innovations. They
set up many competition in which team of researchers may compete. It is organized
in laboratory programs dealing with different topics; among these we can find con-
test regarding the area of text summarization, called the Document Understanding
Conference (DUC). They propose challenges both in English and from foreigner lan-
guages to English (cross-language summarization). DUC-2002, particularly, is made
of 567 news articles coming from well-known American newspapers. For each docu-
ment a human-written reference summary has been provided. The final result has a
constraint of 100 words to be respected.

2.2.3 Opinosis

Opinosis is a dataset containing Amazon product reviews instead of new articles. For
this reason the result coming from it are not so relevant with respect to this work,
because the goal is to demonstrate that a word embedding trained using newspaper
article works better than a general-purpose word embedding. Nonetheless it is inter-
esting to compare the results coming from it in order to understand the goodness of
the model presented later on. Opinosis is made of 51 groups of reviews: each cluster
contains documents related to the same product. It is a rather small dataset so it is
very likely that it doesn’t hold any statistical relevance.

2.2.4 BBC

The British Broadcasting Corporation (BBC) is a society created to broadcast news all
around the world, using multiple channel of communications, such as radio, internet
or television. This dataset (http://mlg.ucd.ie/datasets/bbc.html) is made of 2225
articles, presenting a label according to their area (business, entertainment, politics,
sport, technologies), gathered from 2004 to 2005. BBC have created this datasets for
benchmark purposes, to be used during machine learning experiments, such as [9].
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Chapter 3

Word Embeddings

Word embeddings is the name to identify a collection of models used in the NLP en-
vironment to map words or sentences into a vector space. There are many ways to
obtain them, spacing from neural networks to probabilistic implementations, but the
final goal is always the same: mapping each term of the vocabulary into an array of
real numbers, in such a way there is the possibility to allow machines to analyze and
comprehends documents.
To produce a word embedding, a corpus, that is a collection of texts, is required; each
word presents an enough number of times will be mapped into the vector space. This
mapping depends on how the word is used: while analyzing each document, the fre-
quency of the word is taken into account, together with which terms are usually rather
close to it. The best quality of this model is that arrays of numbers are holding semantic
and syntactic properties among words, evaluated as distances between their vectors.
This characteristic allows to a handful set of NLP tasks to understand better docu-
ments they are analyzing. Indeed, in this vector representation, synonyms should be
located in the same area and relationships are underlined by a distance metric. For ex-
ample, this is very useful in document summarization, because the algorithm, chosen
to extract which sentences are the most relevant, is able to understand that two sen-
tences are introducing the same concept even if they contain very different terms. Due
the fact the final result is depending on the input corpus, it is possible to obtain word
embeddings which are most focused on different lexicons. Using a domain-specific
corpus should provide a better representation of every words strictly linked to that
argument, with respect to a corpus that is instead more general.
One of the most hard issue to solve is to correctly address terms that are holding vari-
ous meanings (homonyms), because this implementation will collapse all of them into
the same vector (each sequence of characters is mapped into the same representation,
the one-to-one correspondence is between points in the vector space and words and
not their meaning). In this chapter the most well-known methods to produce them are
explored, focusing on how to solve this recently introduced problem, emphasizing the
meaning that is more related to a specific topic.
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3.1 Word2Vec

Word2Vec (Mikolov et al., 2013a [22]) has been developed by Google and it is a tech-
nique that implements a neural network that is able to map words into a vector space,
such that each word will be translated into a real number vector. Within this model
synonymous words are expected to be near one to each other: this property is really
useful for many NLP tasks because algorithms implemented are relying on this metric
to evaluate their results. The best characteristic of this representation is given by the
fact that many types of similarities between words may be obtained through linear
translations (Mikolov et al., 2013c [23]). This is an incredible advantage because it al-
lows to literally process numbers, procedure that machines are excellent in, in order
to manipulate texts and words that do not hold any particular meaning to machines.
An example (fig 3.1), to clarify what just said, is the following: given three vectors,
corresponding to the words king, man and woman it is possible to obtain a vector close
to one that represents queen just doing this operation:

queen = king−man + woman (3.1)

Figure 3.1: This is a 2-D (the actual model has 300 dimensions instead) graphic rep-
resentation of how vectors associated to words can be manipulated. Both the cou-
ples man-king and woman-queen are linked by the concept of royalty; couples king-
queen and man-woman by the concept of female. Image taken from (Kawin Etha-
yarajh), Why does King - Man + Woman = Queen? Understanding Word Analogies
https://kawine.github.io/blog/nlp/2019/06/21/word-analogies.html.

Two different models exists for learning word representations continuous bag-of-words
(CBOW in short) and skip-gram.
CBOW architecture bases its algorithm on the neighborhood of each word. The start-
ing point of this procedure is to define a window, in the figure 3.2 starting from w(t-2)
until w(t+2), so that each word contained in this interval will be taken into consider-
ation while computing the result. To guess the term located in the middle w(t), the
model will combine all the other representations; this evaluation is based on the fact
that it is possible to understand the missing word just looking at the context in which
it is found. The order in which terms are appearing is not taken into account: the goal
is straightforwardly to make a prediction based on the presence of words regardless
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Figure 3.2: CBOW graphical representation; the surrounding words are combined in
order to predict the word in the middle. Image adopted from the original paper [22].

their location.
The Skip-gram is another variant of the Word2Vec model that works in an opposite
fashion with respect to the previous model.

As we can see from the figure 3.3 in this case the input is the word in the middle and
the model has the job to correctly address which words belong to its context.
Both these approaches may be performed starting from very large corpora because
they are characterized by a low computational complexity. Training the same corpus
with the two models will produce two results that are pretty similar; nonetheless there
are some minor drawback or advantages: Skip-gram usually returns a result that is
slightly more accurate; on the other hand CBOW is able to process more data in a
shorter time and so it is suited to deal with larger dataset.

3.2 GloVe

GloVe, or Global Vectors in full, is an example of word embeddings introduced by
Pennington et al. 2014 [28]. The name, Global Vectors, has derived by the fact that
with their model they are able to understand and reproduce global information com-
ing from the input collection of documents. In order to improve the previous model,
in their work they are giving a great relevance to the co-occurrence probabilities of
words, together used in the same context. This means that to obtain the final vector
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Figure 3.3: Skip-gram graphical representation; the distributed representation of the
input words is used to predict the context. Image adopted from the original paper
[22].

representation they are considering which words are often appearing in the same sen-
tence, but in a smarter way with respect to previous attempts. Indeed, this time, not all
the words in the context are considered equally, but just the ones which are strongly
characterizing. This strategy is used to give less relevance to words which are used
more times and so they are present in a large number of contexts. To understand if
two terms are correlated there is the need to introduce some probe words that will be
used to make a comparison. The probability of a word j to be present in the context of
the term i is given by the formula

Pij = P(j|i) =
Xij

Xi
(3.2)

where Xij is the number of times the word j can be found in the context of i and Xi is
the count of words in its own context. An example, provided by Pennington et al. 2014
[28], is about two words, ice and steam. The goal is to search which words are the most
able to discern these two targets terms. To obtain them it is requested to evaluate the
probability, introduced in 3.2, with probe k terms, such as solid, gas, water and fashion.
We are interested in those words which will return as result a proportion Pik/Pjk of
co-occurrence statistic that is larger than one, avoiding words which instead are given
as result a score smaller than one. Whenever this type of score is achieved it signifies
that the probe words chosen is correlated to just one of the two words and not both;
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on the other hand, when the probe words are water and fashion, the ratio is very close
to the unit because, in the first case, the word is correlated to both, in the second case
to none of them. This concept just introduced is at the base of the functioning of their
model: the word vectors used in the GloVe model are therefore acquired from this co-
occurrence score index rather than using the probability of having a certain word in a
document.

3.3 Sentence embeddings

It is possible to change the focus of the embedding from words to sentences. This need
to introduce a different implementation is provoked by the fact that almost never the
same word will be used to express a concept and there are many terms which are con-
sidered ambiguous, they can hold a different meaning depending on the context and
because of this they need to be treated differently. It is indeed very hard to understand
the content of a period just by analyzing separately word by word, leading most of
the time to a rather imprecise result. The straightest approach to solve this problem
is to perform operations (such as addition or multiplication) among terms (Mithcell
and Lapata, 2010 [24]) in order to obtain a representation of the sentence itself. Un-
fortunately this type of approach does not keep in consideration all the multiples re-
lationships between words that are present in every language: usually when a person
is producing a sentence, he does not just juxtapose words one next to each other but
they are put following a well-known order in such a way the final result is more com-
plex and more expressive (the easiest example can be found in common sayings, in
which the meaning of the sentence is far away from the literal meaning). This is why
sentence embeddings have been explored, so that is possible to process a document on a
sentence-level. Different models have been proposed; among these:

• Paragraph Vector [17] is a method that tries to overcome the drawbacks intro-
duced by the bag-of-words models, in which words are considered out of order
and the lack of information about words semantics. Paragraph vector is an un-
supervised model based on the forecasting of terms included into fixed-length
part of the text (for example a paragraph or a sentence);

• auto-encoder is a type of neural network (figure 3.4) that is usually used to learn a
representation (an encoding indeed) about your dataset. Its working its divided
in two main phases: an encoder to transform the input and then a decoder that
is able to reproduce an output, which should be as close as possible to the in-
put provided. It is possible to see then, how it can be used while dealing with
NLP problems. The goal of this architecture is to be able to understand how to
encode and summarize all the semantic and syntactic properties; the final encod-
ing will be used in future analysis to recognize with a higher precision patterns
of words. Slightly different models have been proposed, each one implementing
a diverse kind of neural network, such as a recurrent neural network [10] that is
able to keep a state evolving during time (very useful considering that each part
of speech is not randomly inserted into a sentence, but instead they are placed in
a fixed schema), an unfolding recursive auto-encoder [30] or the Skip Thought
model [14];

• Smooth inverse frequency proposed by Arora et al. (2017) [1] is the one that will
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Figure 3.4: Basic schema of an auto-encoder structure. The input is processed in
order to create a code that is going to be used to produce the output, the lat-
ter will be confronted with the source in order to understand if the encoding and
decoding procedures are working correctly. Image taken from Arden Dertat, Ap-
plied Deep Learning - Part 3: Autoencoders https://towardsdatascience.com/
applied-deep-learning-part-3-autoencoders-1c083af4d798.

be used in this work and because of this it will be explained with a little more
details. The algorithm that has been used to produce this new embedding is the
following:

Algorithm 1 Sentence Embedding algorithm from Arora et al. (2017) [1].
Input: Word Word embeddings vw : w ∈ V, a set of sentences S, parameter a and esti-
mated probabilities p(w) : w ∈ V of the words.
Output: Sentence embeddings vs : s ∈ S

1: for all sentence s in S do
2: vs ← 1

|s| ∑
w∈S

a
a+p(w)

vw

3: end for
4: Form a matrix X whose columns are vs : s ∈ S, and let u be its first singular vector
5: for all sentence s in S do
6: vs ← vsuuTvs
7: end for

This approach starts computing the vector average of every terms contained in
each period, introducing a weight factor that indicates the estimated probability
to have that precise word in that context. Once this has been computed, the first
principal component is obtained and the projection of each sentence onto it is re-
moved. This is done to remove syntactic information in the sentence embedding
in order to amplify the semantic one instead.
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3.4 Text similarities

As explained before, word embeddings are used to retrieve a numeric representation
of word belonging to a dictionary. These numbers have been used to perform many
operations, but one of the most relevant statistic that could be evaluated is the distance
or similarity. The similarity among two periods is used very often to understand if
they are dealing the same argument. It is enough to think about search engines and
the work that they are implementing. Search engines are requested to, given an input
made of a group of words, find as many web pages containing a sentence that is, in
the best case scenario, equals to the target one or otherwise the closest one. This task
is not strictly linked to the world of retrieval information but its importance may be
found also in legals situations. Indeed, the Case Law principle guarantees that identical
scenarios should be treated in a similar way. A judge should be able to read all the
papers related to two cases and to understand if their content is similar enough to
reserve them the same treatment.
Identifying two similar periods for a human is a rather easy action to do; it becomes
a little more complicated if it is done by a computer. The most basic approach is
to check the presence of the same words in both sentences, but this is sometimes
misleading. Just think about the following sentence:
A dog is eating a piece of meat.
It is possible to change completely the meaning of it without introducing any new
words, but just changing their order. This is because, for example, it is possible to
switch the subject of the sentence with the object complement. In this case the period
would become:
A piece of meat is eating a dog.
Another important aspect is about recognizing that two sentences are explaining the
same concept even if the words contained inside them are different (for example, in
the previous period the meaning stays the same if instead of the word eat there would
have been the term consume).
This is why is very fundamental to pick the correct implementation of distance. Now
it will follow a list of similarities used while dealing with NLP problems and a short
description about their goodness.

• Jaccard similarity; the Jaccard similarity is defined as the number of matching
words divided by the total number of words. As told before this is a really bad
solution because it does not take into account synonyms or the functionality of
each word in the sentence;

• Cosine similarity; thanks to the mapping obtained through word embeddings it is
possible to evaluate the cosine between two words

cos(θ) =
∑
i

AiBi√
∑
i

Ai
√

∑
i

Bi

(3.3)

It represents an improvement with respect to the Euclidian metric because, if the
embedding has been correctly trained, similar concepts are mapped into arrays
with a rather similar angle;
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• Word Mover’s distance; to apply this metric it is first required to have evaluated
a word embedding. Word Mover’s distance (fig. 3.5) considers the shortest dis-
tance that a sentence has to "move" in order to reach the other one. This move-
ment should be thought as the vector required in the embedding space to reach
a word B starting from a word A.

Figure 3.5: In the image the distance to reach the words belonging to the second sen-
tence are represented by the black arrows. Couples considered are not randomly gen-
erated: each term is paired with the word of the other period that is the closest. Image
adopted from the original paper [16].

This way to evaluate a distance could be seen as a transportation problem, a prob-
lem that is solved by the path to be followed in order to spend the lowest quantity
of resources (for example, choosing the correct sequence of routes to distribute
packages by a courier service);

• Latent Dirichlet Allocation (LDA); a generative approach that is able to identify
arguments inside texts and how much they have been treated, in order to assign
a different degree of relevance. Indeed most of the time a single text is cover-
ing multiple arguments, from the start to the end, and because of this there is the
chance to compare two articles depending on which topic have been touched and
the relevance they assume inside the document. LDA, besides learning which
topics are covered, is also linking to each topic a group of terms that are charac-
teristic of it. Once these sets have been evaluated, LDA implements the Jensen-
Shannon divergence to assign a score of analogy between two bodies of text.

3.5 Domain adaptation techniques

As previously introduced, word embeddings are providing a mapping of words to
a high dimensional vector space, maintaining semantic and syntactical information.
While building this model a vocabulary is built, gathering all the words contained in
the corpora used for the training phase. Because of this, only the terms contained in
these documents are actually mapped (only if there is a big enough number of them)
and the final representation obtained is strongly dependent on the corpora itself. Let
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us consider an embedding obtained after a training phase using a dataset coming from
Twitter. This model will be very precise in addressing all the words that are used com-
monly by the people that are using the platform. As soon as we decide to apply this
model to a downstream task, for example, like in this work, about document sum-
marization of newspapers articles, we could encounter a few problems, such as the
absence of words belonging to a specific lexicon or an imprecise mapping of words
that are rarely used. Another issue that can be encountered is that really often, specific
datasets are too small: to correctly train a word embedding a big quantity of input text
is required, otherwise the results will be affected by a large noise, affecting the final
result.
To solve this lack of information, there is the need to improve word embeddings
model, contextualizing their dictionary and representation to deal with a more specific
domain. This technique is called Domain adaptation and it is about, using as starting
point a generic word embedding, performing an ulterior training phase to add more
information.
This procedure, known as transfer learning, has to be implemented carefully because it
is possible to obtain a better representation for the specific lexicon, but at the same time
we could ruin all the previous results produced by the first phase of training, with the
generic corpus. We have to ensure, while retraining word embeddings, to provide a
dataset that contains most of the terms inside a normal dictionary. Word embeddings
models are implemented to map semantically synonyms words into similar region
of the vector space. Whenever we are retraining word vectors, we are shifting every
word and it is possible that the model "forgets" that two words are synonyms if they
are not present a sufficient number of times in the new corpus. This aspect introduces
a problem about the number of samples to be contained inside a dataset: trying to
contextualize a word embedding using a small dataset could actually decrease the
performance instead of increasing them.

Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) [13] is a method to infer information exploiting
cross-covariance matrices. In this scenario, the aim is to add any relevant information
from the vocabulary obtained starting from a domain specific collection into a generic
one. Given two arrays X and Y of random variables, CCA algorithm is able to find
a linear combination of them, having the highest correlation, if the two starting ar-
rays are correlated. This procedure is performed on a single dimension, but it can be
expanded to a case having a number d > 1 dimensions. It is possible to introduce a ker-
nel function to improve the previous approach. Indeed, CCA works in a linear fashion
and it may happen that it will not provide the best result possible in the starting vector
space. This is where kernel function are enters in action: a kernel function (fig. 3.6 is
able to map all the data into a feature space, enabling the possibility to reach a better
representation. This solution is instead called KCCA;

Retrofitting with semantic lexicons

Retrofitting with semantic lexicons is the attempt performed by Faruqui et al. (2014) [8]
to refine and improve word vectors, trying to provide closer representations to couple
of words that are strictly linked among them. The procedure is based on the concept
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Figure 3.6: Simple example of why kernel functions are useful. The issue of finding
a function that separates the two classes (red and blue) can be easily solved in the
feature space, where this problem is linear. Image taken from [25].

of an ontology, which contains relationships among words contained in the dictionary,
built as a collection of every words contained in the word embedding. This kind of
relationships are dependent on the lexicon chosen to retrofit: using different lexicons
will imply that different environments will be considered and so the meaning of each
word will be slightly shifted. These connections among words are represented by an
edge in a graph (figure 3.7), in which each vertex is a term of the vocabulary. Given a
matrix Q containing all the word representations vectors as columns, the goal of this
technique is to find a matrix R, such that each column will contain a vector that is,
not only similar to the same word vector in the matrix Q, but also to each other term
sharing an edge with it in the graph representation.

Figure 3.7: Vertex colored in grey are the original word representation while white
ones are the inferred ones. Image adopted from the original paper [8].

The distance used in this implementation is the Euclidean distance and the objective
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is to find the minimum of the formula

Ψ(R) =
n

∑
i=1

αi ‖qi − ri‖2 + ∑
(i,j)∈E

βij
∥∥qi − qj

∥∥2

 (3.4)

where α and β are parameters indicating how significant is the relationship among
two words. ψ is a convex equation and so its solution may be found implementing a
system of linear equations; its first derivative will be used to settle all the vectors to a
new value and this procedure may be repeated multiple times to obtain an outcome
with an higher degree of precision at each iteration.

Subword information

Subword information [3] is an approach which has a background idea different from the
previous ones; indeed here the key concept is to infer new information into the word
embedding using the morphology of each word. Due to this feature, this implemen-
tation may vary its performance depending on which vocabulary it is applied: each
language presents its own number of words (the more terms there are, the more there
is the chance to find similar words, sharing chains of characters) and there are differ-
ent rules to obtain their variations, such as singular/plural form or verbs conjugations.
This model is exploiting the skipgram model that has been previously explained (figure
3.3) but this time it will be applied to each single term obtaining as results groups of
characters, instead of having group of words coming from a sentence. To provide an
example we can analyze the word where, using n = 3; the 3-grams are going to be:

<wh, whe, her, ere, re>.

Particular attention has to be put on the sequence her because it will be treated dif-
ferently from the actual English word her, furthermore groups composed by a single
character are discarded because they don’t hold any relevant meaning. From this pre-
vious example it is possible to understand that there is the chance to divide and cap-
ture all the prefixes and suffixes, morphemes that are placed before or after the stem
of the word. Given a word, its representation will be obtained this time by gather-
ing all the n-grams and adding their representations. Implementing this model, terms
containing sub-sequences of the same characters will share the same partial repre-
sentation, leading to have a final vector more similar with respects to words that are
completely different.

Contextualized word vectors

Contextualized word vectors (CoVe in shorthand) is a method to improve the goodness
of a word embedding, which has its root in computer vision techniques. In image
recognition problems, an improvement has been registered while using weights that
have been trained on previous sets (i.e. ImageNet). This behaviour is justified by the
fact that models which share the same common goal may benefit from partial results
coming from synergistic tasks. Whenever different architectures are made of analogous
elements there is the possibility to inherit some information to speed-up or boost the
training phase. Even if image recognition and NLP tasks are very different one from
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each other, both of them are implementing a neural networks: this is the reason why
this approach has been explored and implemented.
Word embeddings have proven multiple times to be a very solid starting point to deal
with a large set of NLP tasks; nonetheless there is a major concern about their imple-
mentation. Indeed the output of a word embedding is a vector representation of each
word without any context: this represents an issue because, each time a document is
analyzed, words are not appearing by themselves and the general meaning is created
by a chain of terms placed in the correct order. The key point of this model is to learn
a representation of words within a specific context, such that it will be used in other
NLP related tasks. In this particular scenario, instead of learning weights like in the
computer vision field, the main goal is to learn an encoder starting from a large NLP
problem, which will be used later on other implementations.
In the original paper McCann et al. (2017) [20] the task chosen to test this new method
is the Machine translation: given a portion of text to the machine, the algorithm im-
plemented needs to return as an output the best possible translation possible. It is
rather easy to see how context is fundamental in this type of operations, because each
term will be replaced in the new language by its correspondent but this is not always
a 1-on-1 correspondence. For example the word "water" may be translated to Italian
with two words, "acqua" or "annaffiare", depending on if it is used as a noun or as a
verb. This information, like many other, is possible to be understood only if the target
word is not isolated but it is considered inside a context.

Sense embeddings

Sense embeddings is an attempt of transfer learning made by Comacho-Collados et al.
(2018) [4] to produce a representation that is based on the meaning of each word, rather
than a representation of each "sequence" of characters. As explained before, one of the
major restriction of word embeddings is that if a term holds multiple meanings, they
will all collapse into the same vector.

Figure 3.8: 2D representation of the neighbours of the ambiguous word mouse. It is
possible to notice how there are words related to two main groups, animals or techno-
logical devices. Image adopted from the original paper [4].
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As shown in figure 3.8 in each language there are multiple words that are defined
ambiguous, or homonyms. In a sense embedding each one of these term will have in the
final vector space multiple independent representation, one for each meaning and all
different among them.
Word Sense Disambiguation (WSD in short) is a NLP job that is trying to solve the
meaning conflation deficiency. Every time an homonym appears in a period the goal
is to retrieve, among all the different meaning, the one that is the most related to its
environment. Even if it may looks like a rather simple issue to be solved by a human
being, it is instead very complex to be solved by a machine and it is still today a very
open problem. Different solution have been proposed in recent years and they may be
mainly split into unsupervised or supervised. In the first case, all the details required
are learnt from the input corpus. To learn these representations there is the possibility
to use, as input, a collection of documents written in multiple languages. This solution
is based on the fact that, if a term is a case of homonymy in a certain language, it does
not necessarily happens in another language too. This gives the possibility to learn
the correct context of an ambiguous word from the vector of a word embedding of a
foreign language. In the supervised environment, on the other hand, there is the aid
of an external source which is providing more information to understand which is the
correct context and direct the final outcome towards the correct representation.

3.5.1 Observations on models

The main goal of this work is to obtain a word embedding that it is able to recog-
nize with more accuracy words belonging to a certain topic with respect to a non-
contextualized word embedding. Once this has been obtained it will be used with
a downstream tasks that benefits from this: for example, while extracting sentences
from a set of articles during the text summarization job, it is more convenient to have
an embedding trained with specialised lexicon. Indeed the training phase of these
models makes use of texts related to the topic chosen and because of this the embed-
ding will learn to map with more precision all these words that belongs to a jargon that
it is rarely adopted in other contexts. In order to obtain this new contextualized vector
space, continual learning has been applied to an English Word2Vec model generated
using a Wikipedia corpus, a collection of every English page present in Wikipedia. The
new input consists of articles coming from the Reuters 27000 collection; they have not
been used all together, but they were split previously into eight different categories
(art, business, economy, health, politics, science, sport and technology), obtaining so
eight new different word embeddings.
A first hint to understand if the process has returned what we expected is to look at
the most similar words and see what happened. A good example could be found in
observing the behaviour of your model addressing words that are spelled at the same
way but having different meanings depending on their context. There are two main
classes to distinguish this kind of terms:

• homographs, words that are formed by the same sequence of characters; when-
ever they are pronounced the same way they are called homophones, otherwise
heteronyms;
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• polysems, words equally written having various meaning but all of them are con-
nected. This last characteristic is the main distinction between polysems and ho-
mographs, it is very subtle and the usage of a dictionary may become in handy
to distinguish them: if multiple meanings are found in the same entry they are
polysems, otherwise homographs are represented by multiple entries, one for
each meaning;

• capitonyms, words spelled the same way but they holding a different meaning
when the starting character is capitalized; usually it does not represent an issue
but most of the time corpora are saved with no capital letters inside and so the
misunderstanding may happen.

To provide an example, here, the word volume will be used as a test. Volume may
indicate a book, a certain amount, the level of sound or the amount of space occupied
by something. The goal of contextualization is to reward those meanings that are
inherent to the specific argument. For each of the following cases the twenty most
similar words are shown.

Figure 3.9: Wikipedia embedding.

Besides the first word that is volumes every time, it is possible to observe that in figure
3.9 most of the words are correlated to the book meaning. So what happens when we
are analyzing a contextualized embedding instead?

From figure 3.10 we can see what does it mean to "shift" the word embedding mapping
towards a contextualized environment. Indeed on the left science-related words ap-
pear, such as density or measure, because in this embedding the target word is located
in a scientific background, denoting a volume of a liquid or of a substance for exam-
ple; on the right economy related words appear, such as profits or bulk, because in this
case the target word is used to indicate the market volume. In this previous example
the two embeddings have been obtained after a training phase using Reuters articles.
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Figure 3.10: Science and Economy Reuters embedding.

What does happen if, instead, we try to use science pages coming from Wikipedia?

Figure 3.11: Science Wikipedia embedding.

In figure 3.11 is true that every words is science-related but at the same time none of
them is actually linked to the scientific meaning of the word volume. In fact, in this
scenario the target word is still correlated to the book meaning, but at this time to sci-
entific books titles. This is a proof that the corpus you are using to contextualize your
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embedding is strongly dependent on the source: a Reuters dataset will contains surely
articles written by people more expert in the particular topic and this will benefit the
mapping. Moreover each text is thought to be read by different public and so the lingo
used will suit the level of knowledge of the reader.
Another way to perform a similar analysis, not related to a language property, is to
check what happens to words that are specific of a certain argument. Indeed we should
expect that specific terms are pretty infrequent in general texts and because of this usu-
ally word embeddings struggle to locate them with precision into the vector space: the
mapping is based also on the frequency of a word and so if it appears just a few time
the result will be highly inaccurate.
As previously, in the following figures, the most similar words are displayed. This
time syloxane, a word related to the scientific lexicon, has been chosen as a test.

Figure 3.12: The 20 most similar words to syloxane according to the Wikipedia embed-
ding.

From figure 3.12 and 3.13 we can notice that all the three different embeddings are
presenting as most similar most of the time the same words. This means that the
Wikipedia embedding, even if it has not been trained using a domain-specific dataset,
is actually able to map in a nice way terms belonging to a specific lexicon. It could be
interesting to repeat the same test, using a dataset that is even more specialized with
respect to ones used in this work.
The last consideration that can be done is about the distance number next to each
word. Its usage depends strongly on the downstream task implemented: if the goal is
to find clusters then the higher this value is the better is because it means that clusters
which will be found are going to be well separated. On the other hand, speaking
about the document summarization problem, the most relevant factor is the rank and
not the similarity; the same word, represented in two different word embeddings, will
be accounted with the same weight if its rank is 1, nonetheless the distance number.
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Figure 3.13: The 20 most similar words to syloxane according to the Reuters science
embedding (left) and Wikipedia science embedding (right).
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Chapter 4

Intrinsic Evaluation

Word embeddings are used for a wide range of NLP related tasks, such as recognizing
the argument of a document, producing summaries, question answering and many
others. Most of the times these downstream tasks are hard to elaborate and they re-
quire an high computation time. Because of this, usually whenever a new word em-
bedding is produced, first its goodness is tested using intermediate easier sub-tasks
that are considerably faster; the results they will return is used to confront embed-
dings and understand which one is the best one. There are multiple implementations
of intrinsic evaluation to be used, even though it must be taken in consideration the
fact that a requirement is that the intrinsic evaluation has a positive correlation with
the final task; among these we can find:

• word vector analogies; it is one of the most implemented and it consists of com-
pleting a word analogy of the form

a : b = c : ? (4.1)

Among all the vocables existing in the vocabulary the one chosen is the one
which maximizes the cosine similarity:

d = arg max
i

(xb − xa + xc)Txi

||xb − xa + xc||
(4.2)

It is possible to use semantic 1 or syntactic analogies 2, depending on which
downstream will be later on applied;

• word semantic similarity; this sub-task evaluates the embedding through a set
of couples of words that are considered synonymous. This test assigns a score to
each couple based on the distance among them, assuming that synonyms should
be located pretty close in the vector space. It is also possible to define different
grades of similarities, considering how much the words holds the same meaning;

• word clustering; this method evaluates the possibility to identify clusters in the
embedding space. In order to achieve this result, a dataset containing words be-
longing to a specified number of different topic is defined. The score used to

1For example: Capital citya : Countrya = Capital cityb : Countryb
2For example: Verba − ing f orm : Verba past participle = Verbb − ing f orm : Verbb past participle
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evaluate the embedding is obtained through any metric for clustering evalua-
tion;

• synonym selection; this test consists of retrieving the most similar words to a list
of input. Each input has associated a target word which is though to be the best
possible outcome;

• sentiment analysis; this analysis has as goal to understand which are the beliefs
of a customer through reviews and surveys

4.1 Glossary evaluation

Unfortunately at this moment there is no data set available to test a domain-specific
embedding with the techniques introduced before. Because of this, to test the qual-
ity of the embedding created a different approach has been used, based on a topic-
oriented glossary, exploiting PetScan 4.1, a website that it is able to retrieve the content
of Wikipedia pages.

Figure 4.1: Petscan main web page.

It offers various options, among these:

• language: search only among Wikipedia pages written in the selected language;

• category: extract pages that are labeled with the selected category;

• negative category: ignore pages that have this among their labels, even if they
satisfy the previous category constraint;

• depth: it is possible to build a tree starting from each Wikipedia page: the root
will be the page itself and then its children will be all the pages that are accessible
from the links contained. This process can be repeated an arbitrary number of
times and this value represents the maximum depth that this tree can reach. So,
setting this value to a number different from 0 will imply that in order to extract
a page, not only the page itself will be considered but also all its children, always
applying the same constraint described in the previous points.

Thanks to PetScan, it is possible to collect a large set of Wikipedia pages with the same
argument of the articles that have been used to train the contextualized word embed-
ding and then from it build a glossary. Each page will be an entry of the glossary and
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the body of the definition will be made of the first two sentences contained, consider-
ing that usually Wikipedia articles are written in such a way as the definition or the
most meaningful information are located in the immediate beginning. The two first
problems related to this approach are:

• definition of a category, unfortunately there is not a strict segmentation of cate-
gories, specially when dealing with arguments that are very wide, such as tech-
nology or science, where they overlap most of the time because no rigid rules are
enforced. Indeed different newspapers or websites could label articles describ-
ing the same topic in different ways and this aspect loosen the level of contex-
tualization of the word embedding. A good solution to this could be to narrow
the category to something more specific, like natural disaster, thereby it can be
detected easily, but the following problem prevent to follow this path;

• number of entries in the glossary, in order to obtain a result that holds a strong
meaning and that is not much biased, the glossary should contain an high num-
ber of definitions. The number of articles filtered using PetScan is determined by
the depth value: the higher it is the larger the number of page will be. Increasing
this parameter has a major drawback due from the fact that the root page is less
and less related to a page the deeper that page is in the tree. This means that
using a large number for depth is not a good approach (and already 2 is large
enough in this context). For example, a search performed among the English
politics pages with depth 2, returns "Drogowskaz" as a result, that is a font type
used in public signage in Poland. Poland is the first link that can be run through
and then in the Poland’s page there are a lot of links that bring to a politic related
article.

4.1.1 Results

The metrics that have been used to evaluate the performance of this approach are the
typical ones used for addressing the results about information system retrieval system.
This kind of metrics, called evaluation measures, are used to understand how well the
search result satisfied the user’s query intent, such as a search engine results page. In
this scenario the query is represented by the definition and the search result by the list
of most similar words to it. A positive outcome for this problem is whenever many
words retrieved in this way are contained in the body of the definition but also their
rank is relatively high. Usually the importance associated to each words decreases as
soon as the rank decreases, so that the first word is significantly more relevant than
the fifth one for example. These are the measures that have been used:

• recall at K: recall is the percentage of words contained in the most similar list
that are also in the body of the definition. Due to the fact that this list might be
composed by as many words are in the dictionary it is important to limit it to the
first K elements, in this way we are basically just considering the recall related to
the most meaningful words that are also the one we do only care about;

• precision at K: precision is the percentage of words contained in the body of the
definition that are present in the most similar list, always limited to K elements
for the same reasons as before;
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• MMR: mean reciprocal rank is given by the following formula

MRR =
1
|Q|

i=1

∑
|Q|

1
ranki

(4.3)

The reciprocal rank is the multiplicative inverse of the rank, meaning that the
lower the rank is, the lower its score will be.

For both recall@K and recall@K three values of K have been computed: 5, 10 and 20.
Previously higher values of K have been considered but the importance associated to
a word that holds the fiftieth position, for example, is so low that is negligible. Un-
fortunately, as we can see from the graphs reported from figure 4.2 until figure 4.8,
for each metric chosen and for each value of K the original embedding, that is the one
obtained using all the pages present in Wikipedia, outscores the two contextualized
models involved in this study. The first problem about this glossary evaluation is that
all the definition have been extracted from Wikipedia pages. Wikipedia is a platform
in which every article is written by users and so it is very likely that the language
used is somewhat different from the one used by journalists in their jobs. Indeed it
would be very interesting to repeat the same kind of test using a specific glossary,
hand-written by someone who has a knowledge in the selected topic. In this way it
is possible to address all the issues arisen by the use of PetScan. A similar solution
has been performed in this study [26]. They have used a domain specific glossary, the
Schlumberger Oilfield Glossary https://www.glossary.oilfield.slb.com/, contain-
ing definitions, synonyms, antonyms and labeling each word to its discipline. They
reported positive results about their model evaluation and this could also signify that
instead of contextualizing a word embedding to an extensive topic such as politics it
may be better to shrink it to a more selective scope. For example we could select natu-
ral catastrophes as a topic to train a word embedding model but this represents a rather
hard challenge: not only the dataset needs to be large enough but we must guarantee
that almost every word is also present in this new dataset otherwise the new model
is going to be able to recognize correctly only words related to natural events and it
will produces large error according to all the other terms. A further explanation to
this result is that the contextualized embedding has been trained using only four-five
thousands articles for each topic: this is an abysmal number with respect to the num-
ber of input given to the Wikipedia embedding; probably a bigger number of training
samples could shake more the word representation and provide a more meaningful
mapping. The contextualized models have been obtained after a single epoch of train-
ing; anyway increasing this said number the results obtained are basically identical; as
explained in 3.5 increasing too much the number of epochs is leading to scores which
are each time worse.
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Figure 4.2: Precision at 5 for the glossary evaluation. These are the colors used:
Wikipedia - Blue, Wikipedia single domain - Yellow, Reuters 27000 - Green, Reuters
27000 single domain - Red.

Figure 4.3: Precision at 10 for the glossary evaluation. These are the colors used:
Wikipedia - Blue, Wikipedia single domain - Yellow, Reuters 27000 - Green, Reuters
27000 single domain - Red.
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Figure 4.4: Precision at 20 for the glossary evaluation. These are the colors used:
Wikipedia - Blue, Wikipedia single domain - Yellow, Reuters 27000 - Green, Reuters
27000 single domain - Red.

Figure 4.5: Recall at 5 for the glossary evaluation. These are the colors used: Wikipedia
- Blue, Wikipedia single domain - Yellow, Reuters 27000 - Green, Reuters 27000 single
domain - Red.

Figure 4.6: Recall at 10 for the glossary evaluation. These are the colors used:
Wikipedia - Blue, Wikipedia single domain - Yellow, Reuters 27000 - Green, Reuters
27000 single domain - Red.
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Figure 4.7: Recall at 20 for the glossary evaluation. These are the colors used:
Wikipedia - Blue, Wikipedia single domain - Yellow, Reuters 27000 - Green, Reuters
27000 single domain - Red.

Figure 4.8: MRR for the glossary evaluation. These are the colors used: Wikipedia -
Blue, Wikipedia single domain - Yellow, Reuters 27000 - Green, Reuters 27000 single
domain - Red.
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Chapter 5

Extrinsic Evaluation

The start of this chapter signs the beginning of the second phase of this work. So
far we have dealt with word embeddings and understood their goodness, but they
are not very useful by themselves. Their main purpose it is, indeed, to be tuned into
an extrinsic task which represents a problem that NLP technologies are trying to solve.
The majority of these problems is related to a classification problem. A classic example
is the named-entity recognition (NER) in which the model is built in such a way it is able
to assign the correct class label to named-entities, such as person name, organization,
time expressions, monetary values, etc.

5.1 Document summarization

Document summarization is the extrinsic evaluation method that has been chosen for
this work. The goal of this task is to process a collection of texts in order to retrieve
the most meaningful sentences, that are going to compose the summary. While imple-
menting it, a length constraint needs to be taken in consideration: in fact the summary
cannot exceed a prefixed number of words or sentences. Each sentences is going to
be extracted such that at the end the summary will contain as many information as
possible also avoiding repetitions. The first way to distinguish various techniques of
summarization paradigms is to look at how the summary has been made; abstractive
summarization will produce a result without using words and sentences coming from
the original text; on the other side extractive summarization, as the name suggests, will
indeed extract sentences from the document chosen and the result will be obtained by
a concatenation of them.
The starting point of document summarization is, as said before, a collection of docu-
ments. Nonetheless it is possible to have just a single text or a set of them. Depending
on this aspect, document summarization is implemented in different applications to
satisfy different requests. Single-document summarization is characterized by the usage
of a single text as starting point. It is implemented for example in:

• question answering has as a goal building a system that is able to answer to ques-
tions written by humans. This task is divided in two main steps: the first one is
to "understand" what the question is about and then retrieve a suitable answer.
To achieve this objective, the system has to query a database, that acts as a back-
ground knowledge, containing information related to the specific question (such
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as a collection of articles from newspapers or a set of web pages);

• providing recommendations tools are implemented each time an application re-
quires to understand which are the interests of a person and suggest accordingly
new materials that is inherent. A common example is given by the system of
recommendations that can be found in newspapers web pages. Their aim is to
constantly provide new articles that are similar to the current one. To fulfill this
task, the system needs, first, to label correctly the article that is displayed in that
moment and then understand which others papers are similar to it.

On the opposite, whenever the starting point of the process is made of multiple doc-
uments, the summarization task is called multi-document. In this other scenario the
summary produced will be obtained gathering sentences obtained from different texts:
this procedure allows to ensemble an output that will contains different point of views,
coming from various sources and will provide to the reader a set of information more
waste with respect to the single-document scenario. Thus, it is possible to have in the
same summary discordant opinions on the subject treated; this should be not seen as
a drawback but rather as a different outcome for the same problem. Nonetheless the
result will be computed through an algorithm, ensuring it will be completely unbi-
ased. Having to deal with different documents at a time, this task represents a harder
challenge with respect to the previous scenario because the aim is not only to short the
content, to provide a summary, but it has to collect pieces of information from multiple
views.
Finally, the last way to discretize the document summarization problem is concerning
the topic involved. Indeed not every text has been written in the same way and for
the same purposes: we have documents produced for the scientific audience, news
articles or magazine and many others. Because of this variety of content, it is possible
to distinguish two many categories: general purpose and domain-specific. In the domain
specific case all the articles chosen to be elaborate have been written most of the time
by people with a high level of knowledge of the argument itself; thanks to this aspect
the content will be aimed to a limited audience and the lexicon used will be hard to
understand to any person not familiar with the topic. Terms used and the way the
sentences are composed are very different from argument to argument and this is the
reason why models developed to solve this problem are different from the general
purpose ones. In this latter case all the articles involved are intended for a waste pub-
lic and so it is very unlikely to encounter specific words or anyway words that are not
familiar with most of the people.

5.2 Sentence selection

In this work the approach chosen is the extractive one and because of this the main
step of the algorithm provided is the sentence selection. As said before, this is the
crucial point of the document summarization because it will decree which periods
will form the final summary. In the following paragraphs the main techniques will be
presented, with a bigger focus on the one actually used during the experiments.
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5.2.1 Cluster based

Each document is usually written providing a differentiation among all the topics pre-
sented. Instead of having a single body of words, writers will organize their work in
paragraph or sections. For example every time a reader finds a blank space wider with
respect to the common usage, he will immediately recognize that something is going
to change in the next few lines. The cluster based approach bases its functioning on
top of a topic detection phase. MEAD [29] presents a Topic detection and Tracking phase
to scan all the documents in the dataset in order to create different clusters represent-
ing the various arguments touched by the corpora. This study is performed with the
aid of the TF-IDF measure that provides a score of similarity used to establish to which
cluster each object belongs to. As soon as this starting phase has terminated, with the
centroid-based summarization the most relevant sentences will be selected. The centroid
in a cluster is the average of every elements belonging to it and because of this prop-
erty it is usually declared as the representative point of the group. This algorithm is
then able to guarantee the coverage of every argument present in the collection thanks
using the most important sentences coming from each different cluster.

5.2.2 Frequent weighted itemsets

Frequent itemset represents one of the main problem dealt by data mining studies. An
itemset is a group of items belonging to a transactional dataset and the main inter-
est is to select only those ones which have a frequency higher than a certain fixed
threshold. This analysis may be, for example, performed by a market which is inter-
ested in discovering which items are the most sold and in which combinations. The
concept of weighted itemsets has been introduced in order to consider each object in
a different way, within each transaction, depending on its relevance. It is possible
to apply the same methodology to retrieve and select the most important sentences
from a document: the collection of document will be our database of transaction and
each document may be interpreted as a transaction or a sequence of words. So, in the
document-summarization case, each itemset will be formed by terms and the aim is
to understand which groups of them appear most of the time. This solution may lead
to an abstrative summarization task (Hynek and Jezek [11]) or to an extractive one
(Baralis et al. 2012 [2]).

5.2.3 TextRank

TextRank is one of the most used algorithm while dealing with document summa-
rization. It is derived from another very famous algorithm, PageRank, developed by
Google [27] in order to rank pages while performing a research on their search engine.
The goal of this process is to assign a score to each page, depending on the probability
of a user to click on it. The most basic way to evaluate it is to consider every links
contained in every page, except link that are pointing to the page itself. PageRank is
firstly initialized to the same score, corresponding to 1 divided by the total number of
pages. After this first initialization phase, each page will "transfer" a portion of its own
score to every page that is directly accessible trough a link; whether more links are con-
tained in it then this propagated value will be divided by the number of links. This
propagation basically represents the flow of a user that is surfing on a specific page
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and then he is deciding to change page by clicking on a link. The general formula to
express the PageRank value of a web-page w is the following:

P(w) = ∑
l∈Bu

P(l)
s

(5.1)

where l is a page accessible through a link in the set Bu (all the pages accessible) and s
is the total number of links contained.

Figure 5.1: Visual representation of the graph obtained at the end of the PageRank
algorithm. The larger the circle (vertex) is the higher its score associated is. Each
edge is a link between two web pages. Image taken from the Wikipedia page https:
//en.wikipedia.org/wiki/PageRank.

It is possible to notice from figure 5.1 that the vertex with the highest score associated
it is also the one having the most links pointing towards it. Edges are oriented, because
the presence of a link towards a page does not guarantee to have another one going
backwards in the destination page.
TextRank [21] bases its own working on top of the previous algorithm, considering
that the focus at this time is put on sentences and not on web pages. Indeed, the
probability described before is now replaced by the similarity between two sentences:
the higher the number (N) of words shared among them is, the closer they are. This
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similarity, given two periods Si and Sjis then defined as:

similarity(Si, Sj) =
N

log(|Si|) + log(|Sj|)
(5.2)

As previously, a fully connected graph (figure 5.2) is build and each edge E is initial-
ized to the similarity score between the two sentences (represented by vertices V in
the graph, initialized to 1). The value of each vertex is then updated taking into con-
sideration neighbor vertices, scaled according to the edge score. The score of a vertex
Vi is defined as:

Figure 5.2: Graph that describes both the TextRank and the LexRank algorithms. Each
vertex is a sentence and each edge has as weight the similarity score. The value written
in square brackets is the score used to draft the ranking. Image taken from the original
paper [32].

The main difference between the graph 5.2 and the graph 5.1 is that here there is an
edge between each couple (this could be obtained if every web page has a link for each
other page).

S(Vi) = (1− d) + d ∗∑ j ∈ ln(Vi)
1

|Out(Vj)|
S(Vj) (5.3)

where d is a damping factor, usually set to a number between 0 and 1 (it is equals to
0.85 in the original paper [21]) and it is used in order to introduce the concept of a
"random surfer model", described before, that is the probability to navigate from a
page into another one (in this case from a sentence to another). This operation is is
repeated until the convergence or until the change of values between two iterations is
below a certain threshold. When the convergence is obtained sentences will be ranked
according to their vertex score associated and they will be picked until the maximum
number of words is reached.
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5.2.4 LexRank

LexRank [7] is another algorithm that belongs to the family of algorithm derived from
the PageRank one. The main difference to the previous approaches is to research in
the definition of similarity between two sentences. There the value associated to each
edge is provided by the following formula:

id f −modi f ied− cosine(x, y) =

∑
w∈(x,y)

t f w,xt f w,y(id f w)2

√
∑

xi∈x
(t f xi,xid f xi)

2X
√

∑
yi∈y

(t f yi,yid f yi)
2

(5.4)

where x and y are two sentences, tf is the term w frequency and idf is the inverse
document frequency. The TF-IDF measure is often used while dealing with analysis
of documents and that is the reason why has been used there. This measure takes into
account not only how many times a term is repeated through the corpora but also in
how many texts is found. This is fundamental because with this consideration a word
that appears in most of the documents has an higher value associated with respect to a
word that is present a lot of times but just in one text. Besides this aspect the algorithm
is the same one explained in the paragraph 5.2.3.

5.2.5 Latent semantic analysis

Latent Semantic Analysis (LSA) is an algebraic-statistical method used while perform-
ing text summarization in order to retrieve the most relevant topics related to a collec-
tion of documents. LSA works in an unsupervised environment and it learns which
words are the most impactful depending on their frequencies and on their usage, that
is, the more certain words are found together in the same sentence, the more they
will be correlated. Meaningful sentences are then decided based on the importance
of each word they contain. To implement this algorithm Singular Value Decomposi-
tion (SVD) is used to obtain a representation of your dictionary and also to reduce the
noise related to the problem itself. A term-document matrix A is used as input for
the SVD. There are different possibilities to compute this matrix given a collection of
documents; in this implementation each row m represents a document, each column n
is a word of the dictionary and each entry is how many times that particular words is
contained inside that sentence. SVD will produce three matrices as output:

A = UΣVT (5.5)

where U is an m x n matrix containing words’ weights related to each topic, Σ is an n
x n matrix containing the importance of each topic and VT is an n x n matrix contain-
ing sentences’ weights related to each topic. Once this result has been obtained it is
possible to select the most relevant sentences according to it. Again, there are different
approaches to choose them because there are different criteria, i.e. selecting the most
important sentence for each topic. Here the approach that has been selected is the one
presented by Steinberger and Jezek (2004) [31], which states that scores, used during the
selection phase, are evaluated as the weighted sum of each sentences with regard to
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every topic; with this implementation a sentence that has an high score on a non rel-
evant topic will be chosen after a sentence that has a lower value on a more relevant
topic.

5.2.6 Other algorithms

Besides the algorithms explained in the previous paragraphs, summaries have been
extracted using also algorithms implemented by L. de Haas thesis [6]. Below is a
briefly explanation of them.

Not embedding-based summarization algorithms

• LEAD, this is one of the most basic algorithm and its based on the concept that
the most meaningful information are contained in the first sentences of an article.
Because of this it will select the first n sentences, given a constraint that may be
regarding the number of words or the number of sentences itself. The rank is
merely chosen on their order;

• Maximizing semantic volume [33], instead of maximizing the coverage of original
text a new maximizing objective has been introduced. The result of MSV is found
in the subset of sentences of which the convex hull 5.3 in semantic sentence space
is maximal. A convex hull of a shape is the smallest convex set that contains it; it
belongs to the NP-hard class;

Figure 5.3: A convex hull; each dot is a sentence, the subset chosen as a solution is
made of red dots touching the line.

• Greedy submodular optimization [18] [19], this algorithm exploits the concept that,
each time a summary is extrapolated the goal is to retrieve the largest percent-
age of information avoiding as most as possible repetitions. Both this aspects,
informativeness and diversity, are naturally modelled as monotone submodular
functions. This means that every time a new sentence is added to the summary
its value will be smaller with respect to the previous ones. Again this maxi-
mizing problem belongs to the NP-complete class and because of it these two
approaches are implementing a greedy approach (algorithm 2) to resolve it.
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5 – Extrinsic Evaluation

Algorithm 2 Greedy algorithm by Lin and Bilmes (2010) [18].
Input: Article sentences V, scaling factor r, threshold B and monotone submodular
function f(·).
Output: summary periods.

1: G ← ∅
2: U ← V
3: while U /= ∅ do
4: k← arg max

l∈U

f (G∪l)− f (G)
(lengthl)r

5: if ∑
i∈G

(lengthi) + lengthk ≤ and f (G ∪ l)− f (G) ≥ 0 then

6: G ← G ∪ k
7: end if
8: U ← U k
9: end while

10: v∗ ← arg max
v∈V,lengthv≤B

f (v)

11: return G f = arg max
S∈v∗,G f (S)

In this algorithm r is a scaling factor introduced to assign a lower score to longer
sentences, because it is possible to have multiple shorter periods covering the
same concept. The threshold B used in document summarization is of 100 words.
The last step of the algorithm is to consider what to return, between the set of sen-
tences extracted or asingleton summary, made of a single sentence achieving the
best score. In the 2010 paper [18] the submodular function used is the maximal
marginal relevance (MMR in short); the following year (2011 [19]) they have in-
troduced new functions focusing on how to retrieve the most information while
maintaining the highest possible degree of diversity.

5.3 ROUGE

Recall-Oriented Understudy for Gisting Evaluation, or ROUGE in short, is a set of
metrics used to evaluate automatic summarization and machine translation in nat-
ural language problems. It makes a comparison between an automatically generated
summary and one or more human-produced references. There are different available
metrics, depending on how the comparison is performed, and for each one of these
precision, recall and F-measure has been evaluated. Even if it is the most adopted
metric the main problem concerning it is that it bases its own functioning on word
coverage and not on "information" coverage: this means that two sentences containing
synonyms instead of the same words will score poorly, while a human would be able
to correctly identify those summaries as pretty similar. There are many sub-categories
of this metrics; among these:

• ROUGE-N measures how n-grams are overlapping. An n-gram is a continuous
sequence of words of length n. This latest number is decided arbitrarily but the
larger it is the harder it is to reach high values of precision: very long series of
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words will be compared among them. N-gram precision is computed as follows:

pn =

∑
C∈Candidates

∑
n−gram∈C

Countclip(n− gram)

∑
C∈Candidates

∑
n−gram∈C

Count(n− gram)
(5.6)

• ROUGE-L measures the longest matching sequence of words, the longer this se-
quence it is the more similar the two summaries will be;

• ROUGE-SU4 tries to overcome the rigidity of having the words in the same order,
indeed it allows to re-organize a sentence to find matches. This means that it is
possible to have bigrams interleaved by other words (4 in this case) and that will
still be considered as a positive outcome. It also takes into account unigram in
common between two sentences.
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Chapter 6

Summarization Based on Embedding
Models

In this chapter embedding-based algorithm will be introduced and explained. This
category of algorithm represents the main objective of this work. As explained previ-
ously, a domain-specific word embedding should have a better mapping with respect
to a general purpose one. Because of this characteristic it is possible to suppose that
implementing them in a document summarization task could provide some kind of
benefits. Naturally, the documents of which the summary has to be extracted has to
be inherent with the same topic of the corpus used to train the word embedding: this
means that a dataset containing newspaper articles, for example, will be handled in
a better way by a model trained using Reuters or Google News. The algorithms that
will be in short explained are an "enhanced" version with respect to the basic form;
domain-specific embeddings are used to provide an ulterior information which may
be exploited in the process to boost the performance.
As explained in the chapter 3 there are many approaches to achieve a word or sentence
embeddings: this variety introduces many diverse paths to follow, while exploring the
possibility to implement them in the document summarization.
Results obtained with all these implementations will be firstly compared with the al-
gorithms explained before; then in a second moment there will be an analysis aimed
to check the variations of performances among all the word embeddings presented in
this work.

Textrank

The main procedure and implementation of this algorithm has been already elucidated
in the paragraph 5.2.3. Here there is an attempt to enrich this model with details
coming from word embeddings. Indeed, this time the definition of distance is not
given by the equation 5.2 or by the TF-IDF distance (used, instead, in the LexRank
approach), but by the distance among vectors representation of sentences. In order
to evaluate this distance it is possible to apply any of the method illustrated in the
paragraph 3.4; each one of those will end in different result and so it is likely that using
a different text similarity will lead to picking other sentences to shape the summary.
In this work the cosine similarity has been chosen; although is one of the most basic
approach it has been widely implemented and its results are acceptable. It may be
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worth to explore other similarity metrics and study how they can impact the final
result. In the results three voices of TextRank are shown: one obtained through the
basic Word2Vec model, another one trough an embedding re-weighted with TF-IDF
and the last one through a SIF embedding.

Kågebäck

Kågebäck et al. (2014) [12] have introduced a new method to evaluate which sentences
are the most relevant. This algorithm is an "extension" with respect to the greedy
sumbodular one described in 5.2.6, because it introduces all the benefits coming from
the use of a word embedding. Indeed word embedding representations have been
used instead of using TF-IDF vectors. The easiest way to obtain the representation of a
sentence is to average all the word vectors that are composing it. In this other scenario
instead, there is an attempt to take into account also in which order these terms are
appearing. To satisfy this request an unfolding recursive auto-encoder (uRAE) has
been used, introduced by Socher et al. (2011) [30]. Its functioning (figure 6.1) is based
on two phases similar to the ones explained in merit of the auto-encoder structure, in
section 3.3. Sentence selection has been implemented this time, using two definitions
of similarity among periods; the first measure is based on cosine similarity

Sim(i, j) =

(
xT

i xj∥∥xj
∥∥ ∥∥xj

∥∥ + 1

)
/2 (6.1)

while the second one is based on the complement of Euclidean distance

Sim(i, j) = 1− 1

max
k,n

√
‖xk − xn‖2

√∥∥xj − xk
∥∥2 (6.2)

where x is the vector associated to a sentence.

Figure 6.1: Structure of the uRAE architecture. The input layer is compressed into a
code (root layer) and then used to produce the final output layer. Image taken from
[12].
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DocEmb & EmbDist

Similarly to the previous attempt, Kobayashu et al. (2015) [15] have introduced two
implementations which are trying to improve the greedy submodular optimization,
but this time using a different objective function. DocEmb, first, evaluates a document
embedding produced by the sum of all the words present in a text, ignoring sentence
boundaries. The objective function is given by the cosine similarity between the rep-
resentation of the document and the summary chosen as benchmark:

f obj(C) =
vSvD

‖vS‖ ‖vD‖
(6.3)

where ‖vS‖ and ‖vD‖ are the summary and document vector. It is possible to notice
how this time the main unity of the process is not a sentence or a word but instead
the whole document (the origin of the name DocEmb is indeed coming from this as-
pect). However this function is not submodular and that is why EmbDist has been
introduced. It does resolves this issue introducing anyway a more complex solution:
this time the objective function is the inverse average distance between every sentence
in the document and its most similar summary sentence:

f obj(C) = − ∑
s∈D

N(s, S) (6.4)

where N(s, S) is the distance between a document sentence and its closest sentence in
the set of summaries S. There is also another version in which the focus is placed on
words instead of sentences;

RNN

Cheng and Lapata (2016) [5] took a different approach, which exploits a recurrent neu-
ral network combined with a single-layer convolutional neural network (figure 6.2). It
is possible to apply this method for both the abstractive and extractive summarization
tasks (only the second one has been taken into account in this work).

This architecture works as a document encoder in which each input text is analyzed in
order to discern which sentences are meaningful and which are not. From the figure
6.2 we can distinguish three main tasks:

• the sentence encoder is a convolutional neural network in charge of providing a
representation to each sentence. To obtain the final outcome, multiple vectors
are computed and summed, using many kernels to obtain many feature maps
and "observing" the input period by many point of views;

• the document encoder is a recurrent neural network that receives data coming from
the sentence encoder and elevates the analysis from the level of sentences to
the level of documents. A document vector is indeed obtained by gathering
together the representations associated to each sentence which is made of. Each
hidden state (green rectangle containing the h followed by a number) is a non-
complete representation of the text that is going to be enriched at each step by a
new incoming sentence (green rectangle containing the s followed by a number);
at each step there is a tendency to give more relevance to the last period with
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Figure 6.2: Structure of the RNN proposed by Cheng and Lapata (2016) [5]. Image
taken from the original paper.

respect to the previous ones. This set of states is the global representation of the
document;

• the sentence extractor is another recurrent neural network that bases its own
working on an attention mechanism that will determine which periods will be
chosen to compose the final summary. This mechanism is used to individuate
which portion of the text is the most relevant.

Extracting a summary using this method is similar to a segmentation problem: the
goal is to assign a label to each sentence depending on how much they are relevant; in
this case three classes are given:

• 0 - the sentence should not be extracted;

• 1 - the sentence should be extracted;

• 2 - the sentence may be extracted.

In order to train the neural network, previously, each sentence has to be labelled. This
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process can be performed manually or otherwise it is possible to build a ranking sys-
tem in which the order is given first by ROUGE-2 and then in case of equality by
ROUGE-1. After this list has been computed the first third will be labeled with the
class 1, the second one with 2 and the last one with 3.
This approach has been modified in [6] from the original version proposed, in order to
adapt it to a an extractive summarization problem. The input is indeed made of static
sentences embedding, obtained through the average of word embeddings of every
term contained in the period.
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Chapter 7

Experimental Results

The last experiment done is about producing summaries on different datasets, using
many algorithms: some of them will exploit a word embedding and some of them will
not. The first objective is to evaluate their performance, understanding which sen-
tence selection method achieves better results, taking in consideration also the pres-
ence or the absence of a word embedding to obtain the outcome. After this, there is
a brief comparison between two models, both trained using two corpora composed
of Reuters articles to evaluate how much the number of input samples impact the
goodness of a word embedding. The last objective is about, using three test datasets,
underlining the differences in performance using five word embeddings, one general-
purpose and the other four domain-specific. This is the most relevant result gathered:
having bigger scores related to domain-specific models could empirically show that
their usage is more suited to summarize texts dealing with a particular topic.
To evaluate all these scores it is requested to have:

• word embedding trained using the domain-specific corpus;

• SIF word embedding trained using the domain-specific corpus (facultative1);

• matrix containing the final state of the RNN trained using the domain-specific
corpus(facultative2);

• test datasets with two collections, one for the articles and the other for the sum-
maries.

The program works in a pipeline fashion: first all the articles will be pre-processed
(as explained in 2.1); this first intermediate results is used as input by all the sentence
selection methods, which will return an ordered list of sentences, ranked by relevance;
last, these summaries are compared with the ones hand-written using the ROUGE met-
ric.
The code has been written using Python version 3.7, besides the ROUGE library (ver-
sion 1.5.5) which is implemented in Perl. All the experiments reported in this work
were run on a machine equipped with with a Intel® Xeon® X5650, 32 GB of RAM and

1Algorithms using the facultatives models will be skipped if not provided as input.
2See footnote number 1.
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running Ubuntu 16.04.6 LTS.

Models specifics

In table 7.1 we can observe how many words are present in each word embedding;
note that Rcv1 and Reuters have been obtained after continuing training the Wikipedia
model and that is the reason why all the numbers are equal (only vectors associated to
each word are different).

Total # of words # different words
Google 4500001500000 3000000
Reuters_27000 2529859941 2306479
RCV1 2529859941 2306479
Blendle 275519659 196167
Wikipedia 2529859941 2306479

Table 7.1: Total number of words contained in each corpus and total number of distinct
words in each word embedding.

The RNN model is trained using the same dataset used by Cheng and Lapata (2016)
[5], a collection made of 216483 articles; the training time is about 26/28 hours. The
Word2Vec model is trained using the implementation provided by Gensim (https:
//radimrehurek.com/gensim/); the training time to process the RCV1 dataset (over
800000 articles) is about 8 hours. The SIF Word2Vec model is trained using the imple-
mentation which can be found at https://github.com/oborchers/Fast_Sentence_
Embeddings; the training time to process 200000 articles is about 2 hours (for very
large dataset such as RCV1 not every article has been considered due to insufficient
memory, in those cases articles have been randomly sampled).

Algorithms specifics

All runtimes were calculated using the DUC-2002 dataset (533 articles). Note that the
time provided includes all the steps required to process an article before selecting the
most relevant sentences. In tables 7.2 and 7.3 the following notations have been used:

• n: number of sentences, if followed by a subscript it is not referred to the whole
text but just to it;

• w: number of words contained in the environment specified by the subscript;

• k: number of cluster obtained with k-means;

• T: number of iterations;

• t: number of topics.
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Runtime Complexity
MMR 06:05 (1.95 it/s) O(n²*((n-1)/2))

TextRank w2v 05:04 (2.30 it/s) O(T*(n+e))
Kågebäck 06:08 (1.94 it/s) O(K*(2 ncluster))

TextRank TF-IDF 05:05 (2.29 it/s) O(T*(n+e))
DocEmb 05:45 (2.02 it/s) O(n * nsummary)

EmbDist (sentence) 05:39 (2.05 it/s) O(n*(nsummary * ntext)
TextRank sif 05:06 (2.28 it/s) O(T*(n+e))

RNN 05:39 (2.13 it/s) O(# hidden units * # weights)
EmbDist (word) 06:00 (1.97 it/s) O(n*(wsummary * wtext)

Table 7.2: Execution time and complexity of word-embedding based algorithms.

Runtime Complexity
LB 2010 05:42 (2.03 it/s) O(n²((n-1)/2))
LB 2011 06:11 (1.95 it/s) O(K*(2 ncluster))

MSV 06:21 (2.02 it/s) O(n * log(n))
TextRank 05:12 (2.25 it/s) O(T*(n+e))
LexRank 07:03 (1.97 it/s) O(T*(n+e))

LSA 05:06 (2.28 it/s) O(t * n)
Lead 05:02 (2.30 it/s) O(1)

Table 7.3: Execution time and complexity of not word-embedding based algorithms.

Structure of the chapter

This chapter is divided as follows:

• the first section is dedicated to an analysis of which are the most common words
contained in the Opinosis and DUC-2002 dataset, a brief introduction to explain
further results;

• the second section is devolved to show performances of the various algorithms
implemented in the sentence selection phase, underlining the difference between
word-embedding based or not approaches;

• the last section contains all the scores associated to every summary produced,
having as a goal to show the goodness of all the word embeddings used in this
work, trying to understand if there is an advantage in using domain-specific
embeddings rather than general-purpose ones.

7.1 Consideration of most frequent words

To validate and provide an ulterior context to the results that will be shown in the
next section, in this paragraph an analysis on which are the most frequent words in
the Opinosis and DUC-2002 datasets is presented. This easy step has been introduced
to verify that there is actually a reason to believe that a domain-specific embedding
will be able to address and produce an improved summary with respect to a general

53



7 – Experimental Results

purpose embedding. These are the two lists of the twenty most frequents words and
how many times they are repeated through the whole corpora:

• Opinosis: (’staff’, 10404), (’friendly’, 2295), (’hotel’, 2091), (’helpful’, 2040),
(’room’, 1428), (’desk’, 1377), (’great’, 1326), (’front’, 1071), (’nice’, 1020), (’ser-
vice’, 867), (’us’, 765), (’courteous’, 612), (’professional’, 612), (’check’, 612), (’lo-
cation’, 510), (’like’, 459), (’concierge’, 459), (’efficient’, 459), (’swissotel’, 408),
(’rooms’, 408);

• DUC-2002: (’thatcher’, 3731), (’party’, 2665), (’next’, 1599), (’elections’, 1599),
(’long’, 1599), (’britain’, 1066), (’conservative’, 1066), (’minister’, 1066), (’vote’,
1066), (’could’, 1066), (’head’, 1066), (’someone’, 1066), (’place’, 1066), (’likely’,
1066), (’tax’, 1066), (’embattled’, 533), (’margaret’, 533), (’remains’, 533), (’leader’,
533), (’country’, 533)

These first analysis is confirming the prior belief inherent about the content of these
datasets. Opinosis is made of reviews by Amazon users and indeed it is possible to
note that most of the words are related to a sentiment about the object just acquired or
a description about its use. On the other hand we can see that the DUC-2002 dataset
is containing, for the majority, articles related to the politic sphere. Thanks to this little
study performed here, it is possible to deduce that the second one will be more suit-
able for our purpose, because all the documents are related the a specific-domain, the
politic one in particular.
As done in the section 3.5.1, here the most similar words for the various models pro-
posed are shown, in order to have a first idea about what to expect from the results
and also to have a tool that will help us to understand them.
The first example can be found in table 7.4. In the context of the DUC-2002 Thatcher
is referred to Margaret Hilda Thatcher, former Prime Minister of the United Kingdom.
In the wikipedia embedding we are finding surnames of other famous people named
"Margaret", such as "Tyzack" or "Drubble". Blendle appears to be the one which has
the most politic words, while the other three models are presenting a mix of industries
names, people called "Margaret" or politics terms.

Rank 1 Rank 2 Rank 3 Rank 4
Google draper drystone laird watermill
Reuters_27000 canovan bondfield atwood asquith
RCV1 blair beckett conservatives bondfield
Blendle margaret reagan mitterrand ronald
Wikipedia bondfield drabble asquith tyzack

Table 7.4: 4 most similar words to "Thatcher" according to each embedding.

The example reported in table 7.5 is definitely more meaningful with respect to the
one introduced in the table 7.4 because party is not only a group of politicians with
the same belief but it may also signify a social event. Nonetheless this last meaning is
completely absent in all the embeddings introduced here and all of them are returning
as result words that are close to the politic lexicon. Even Wikipedia, that is not a
domain-specific embeddings, is addressing correctly the word.
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Rank 1 Rank 2 Rank 3 Rank 4
Google Party parties partys Democratic Party
Reuters_27000 parties volksunie partynational coalition
RCV1 parties pary coalition peronists
Blendle democratic parties centerright party which
Wikipedia parties democrats coalition faction

Table 7.5: 5 most similar words to "party" according to each embedding.

As we can see from this results (table 7.6), whenever the target term does not present
any possible ambiguity all the different embeddings provide results which are pretty
consistent.

Rank 1 Rank 2 Rank 3 Rank 4
Google election parliamentary_elections electoral polls
Reuters_27000 election vote electoral constituencies
RCV1 election polls vote referendum
Blendle election electoral parliamentary primaries
Wikipedia election referendum electoral referendums

Table 7.6: 4 most similar words to "election" according to each embedding.

When these domain-specific embeddings are tested using a generic words (table 7.7)
they perform similarly to Wikipedia or sometimes even worse (like in the case of the
Blendle embedding in which the words "staffto" and "staffand" appear).

Rank 1 Rank 2 Rank 3 Rank 4
Google staffs staffers FRANK_PEEBLES_Citizen personnel
Reuters_27000 staffs personnel administrators macv
RCV1 employees personnel staffs staffers
Blendle staffers staffand staffs staffto
Wikipedia staffs employees instructors officers

Table 7.7: 4 most similar words to "staff" according to each embedding.

In table 7.8 all the embeddings are able to correctly address words inherent to the
target term. Surprisingly Wikipedia is among all the one which is returning two words
("wcq" and "wcqg") that are not strictly related to it (this acronym should represent
some sort of league presenting "friendly" matches). There two are other aspects worth
to be noted: Google return as first result "freindly" that could be the target word but
misspelled and Reuters is giving a connotation of "loyalty" to the meaning of term.
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Rank 1 Rank 2 Rank 3 Rank 4
Google freindly Friendly unfriendly friendlier
Reuters_27000 environmentally personable trustful friendliness
RCV1 unfriendly cordial friendlier constructive
Blendle friendlier respectful unfriendly cordial
Wikipedia unfriendly friendlies wcq wcqg

Table 7.8: 4 most similar words to "friendly" according to each embedding.

In table 7.9 Wikipedia is providing four synonyms of the target word and it is probably
the best solution among these. Reuters, RCV1 and Blendle, besides the presence of the
plural form and "restaurant" which is really often linked to the image of a hotel, are
returning names of corporation specialized in management of hotels. This should not
represent a surprise: these names (such as "Hyatt" or "Sheraton") are probably reported
a number big enough of times in the articles contained in the corpora, to provide a
mapping close to the target word.

Rank 1 Rank 2 Rank 3 Rank 4
Google hotels Hotel motel boutique_hotel
Reuters_27000 motel sheraton kempinski restaurant
RCV1 hotels restaurant hyatt sofitel
Blendle hotels restaurant ritzcarlton sheraton
Wikipedia restaurant motel hotels inn

Table 7.9: 4 most similar words to "hotel" according to the each embedding.

As proven in these previous tables, it is true that domain-specific embeddings are able
to address and contextualize with more precision word belonging to a precise lexicon,
but the difference between their result and the one reported by the Wikipedia embed-
ding is unexpectedly is very small. This is a witness that, even if the Wikipedia corpora
is not domain-specific, it is still able to handle correctly specific terms. This could be
explained by the presence of pages that are dealing with really narrow arguments and
it appears that this embedding has learned enough information even from those.

7.2 Comparison between sentence selection algorithms

This section will, first, introduce the reader to all the results gathered using the Reuters
27000 dataset, with an analysis on the sentence selection algorithms used. In the sec-
ond half, due to the fact that the RCV1 dataset is a collection of article coming from
the same newspapers, there is a comparison of these two datasets, showing how the
number of input samples is affecting the word representation inside the embedding
and thus the final score of the summary.

7.2.1 General performances

From figure 7.1 to figure 7.5 all the results gathered using all the algorithm are dis-
played. Columns in dark blue related to a word-embedding based algorithm, while
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light blue to a not word-embedding based algorithm. For these charts and for the
following ones, only the recall measure has been reported because summaries have
a fixed length. It is possible to observe that word-embedding based algorithms per-
form similar or even worse to the other. The most interesting cases are provided by
the couples LB 2010 with MMR, LB 2011 with Kågebäck and TextRank with all the
TextRank word-embedding versions, because the algorithm used is identical with the
definition of distance being the only difference. In each one of this scenarios the word-
embedding algorithm is returning the worse score besides the TextRank algorithm.
TextRank has took advantage of the usage of a word embedding (nonethless the mar-
gin is very slight). The highest gap of results is measured in the ROUGE-4 metric but
they all scores pretty poorly, indeed ROUGE-4 is a very hard metric in which reaching
a good result. Performances have not shown a huge difference among methods using
or not word-embedding and they may be a few reasons why this has happened. The
first one could be found in using the cosine similarity to measure the distance between
two vectors: it is a very simple approach that has been proven to work correctly, but
there are finer solutions which could improve the final result; another cause could be
imputed to the ROUGE metric itself, because it considers only matching words and
not synonyms. This could be a great disadvantage towards algorithms exploiting the
word embedding representation because, in this case, the score of similarity is pro-
vided by a distance in the vector space and not by a count of shared words, for exam-
ple. It is very likely that all the summaries produced by these models are achieving a
good accuracy without using the same very terms, thus scoring poorly in the context
of this metric.

Figure 7.1: Comparison between ROUGE-1 recall scores between all algorithms im-
plemented - DUC-02 test - Reuters-27000 dataset.
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Figure 7.2: Comparison between ROUGE-2 recall scores between all algorithms im-
plemented - DUC-02 test - Reuters-27000 dataset.

Figure 7.3: Comparison between ROUGE-4 recall scores between all algorithms im-
plemented - DUC-02 test - Reuters-27000 dataset.
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Figure 7.4: Comparison between ROUGE-L recall scores between all algorithms im-
plemented - DUC-02 test - Reuters-27000 dataset.

Figure 7.5: Comparison between ROUGE-SU4 recall scores between all algorithms
implemented - DUC-02 test - Reuters-27000 dataset.

7.2.2 Reuters embedding results

From figure 7.6 to figure 7.14 there are all the comparison among the RCV1 and the
Reuters27000 datasets. These two collections have been chosen to be compared be-
cause all the articles have been taken from the same news agency and so they should
contain similar documents. The main difference among these two sets is about the
number of samples: the first is made of 27000 articles while the other by 800000, so
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there is one order of magnitude of difference. As we can see, the gap of performance
is probably not enough to justify the usage of a larger dataset. From these figures it
appears that, in order to improve these models, other paths should be considered.

Figure 7.6: Comparison between Reuters2700 and RCV1 models - MMR algorithm.

Figure 7.7: Comparison between Reuters2700 and RCV1 models - TextRank w2v algo-
rithm.
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Figure 7.8: Comparison between Reuters2700 and RCV1 models - Kågebäck algorithm.

Figure 7.9: Comparison between Reuters2700 and RCV1 models - TextRank TF-IDF
algorithm.
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Figure 7.10: Comparison between Reuters2700 and RCV1 models - DocEmb algorithm.

Figure 7.11: Comparison between Reuters2700 and RCV1 models - EmbDist sentence
algorithm.

62



7.2 – Comparison between sentence selection algorithms

Figure 7.12: Comparison between Reuters2700 and RCV1 models - TextRank sif algo-
rithm.

Figure 7.13: Comparison between Reuters2700 and RCV1 models - RNN algorithm.
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Figure 7.14: Comparison between Reuters2700 and RCV1 models - EmbDist word
algorithm.

7.3 Comparison between word embeddings

In these section the main result of the work will be reported. It is a comparison, di-
vided by test dataset, among all the word embeddings implemented. In all the fol-
lowing tables, each number may have a superscript that represents the value obtained
with the t-test. Due the fact that each dataset has a rather small sample size, it is impor-
tant to verify that the average value obtained has or not a statistical relevance. Blendle,
Google and Wikipedia results have been tested using the results coming from RCV1
and Reuters 27000. In this work, a result has been considered statistical relevant when-
ever the p value obtained was less than 0.05, using so a 95% interval of confidence, high
enough to guarantee the null hypothesis. The following superscripts have been used:

• V : null hypothesis guaranteed using the RCV1 dataset;

• R : null hypothesis guaranteed using the Reuters 27000 dataset;

• * : null hypothesis guaranteed using both RCV1 and Reuters 27000 datasets.

7.3.1 Opinosis dataset

With respect to the Opinosis dataset, the best results are achieved by the RCV1 dataset
most of the time but in every other scenario the scores recorded are very close. This
result was in a certain way already foreseen, because of the nature of this collection.
It is still remarkable to see that domain-specific embeddings are able to handle it with
no problems: this is a sign that the transfer learning phase did not only improved the
representations, but it also preserved all the vectors associated to "common" words.
This is usually a good sign of model trained in the correct manner.
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ROU-1-R ROU-2-R ROU-4-R ROU-L-R ROU-SU4-R
Google 42.22 11.29V 0.81 35.16 15.95
Reuters_27000 42.11 11.98 0.74 35.88 16.02
RCV1 42.78 12.69 1.10 36.12 16.64
Blendle 42.23 10.77∗ 0.69 35.30 15.84
Wikipedia 41.25V 11.65V 0.72 35.09 15.65V

Table 7.10: Recall measure - MMR algorithm - Opinosis dataset.

ROU-1-R ROU-2-R ROU-4-R ROU-L-R ROU-SU4-R
Google 40.92 9.12V 0.69 33.50 14.50
Reuters_27000 40.81 10.91 0.98 34.07 15.25
RCV1 41.06 11.29 1.27 34.93 15.86
Blendle 40.46 9.08∗ 0.59 32.49V 14.03V

Wikipedia 42.17 10.13 0.67 34.14 15.38

Table 7.11: Recall measure - TextTrank w2v algorithm - Opinosis dataset.

ROU-1-R ROU-2-R ROU-4-R ROU-L-R ROU-SU4-R
Google 42.25 11.66 1.28 35.90 16.15
Reuters_27000 41.78 11.09 0.75 34.58 15.83
RCV1 42.48 12.19 1.47 35.44 16.49
Blendle 42.29 11.41 0.90 35.07 15.71
Wikipedia 41.88 11.10 0.92 35.16 15.75

Table 7.12: Recall measure - Kågebäck algorithm - Opinosis dataset.

ROU-1-R ROU-2-R ROU-4-R ROU-L-R ROU-SU4-R
Google 40.66 9.20V 0.51∗ 31.79V 13.95V

Reuters_27000 40.89 9.31 0.97 33.25 14.60
RCV1 41.17 10.72R 1.37 34.03 15.29
Blendle 38.92V 8.25V 0.45V 29.94V 13.08V

Wikipedia 41.82R 9.48V 0.59∗ 33.44R 14.69R

Table 7.13: Recall measure - TextRank TF-IDF algorithm - Opinosis dataset.

ROU-1-R ROU-2-R ROU-4-R ROU-L-R ROU-SU4-R
Google 43.05 10.81 1.03 36.12 15.32
Reuters_27000 43.51 10.39 0.58 36.31 15.57
RCV1 43.57 11.19 0.65 36.68 16.10
Blendle 42.47 10.38 0.92 35.12 14.95V

Wikipedia 42.67 10.53 0.68 35.79 15.68

Table 7.14: Recall measure - Docemb algorithm - Opinosis dataset.
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ROU-1-R ROU-2-R ROU-4-R ROU-L-R ROU-SU4-R
Google 41.21 9.89 0.64 32.06 14.38
Reuters_27000 42.48 10.81 0.65 33.83 15.27
RCV1 41.68 10.21 0.71 33.28 14.67
Blendle 41.02R 9.18R 0.53 32.25R 13.85R

Wikipedia 40.93 9.01R 0.40V 32.53 14.32R

Table 7.15: Recall measure - Embdist sentence algorithm - Opinosis dataset.

ROU-1-R ROU-2-R ROU-4-R ROU-L-R ROU-SU4-R
Google 41.22 9.00∗ 0.62 33.62 14.43∗

Reuters_27000 41.65 11.45 1.02 34.73 16.13
RCV1 41.11 11.33 1.23 34.62 15.89
Blendle 40.83 8.55∗ 0.51R 32.39∗ 13.64∗

Wikipedia 42.07 9.97∗ 0.94 34.49 15.25

Table 7.16: Recall measure - TextRank sif algorithm - Opinosis dataset.

ROU-1-R ROU-2-R ROU-4-R ROU-L-R ROU-SU4-R
Google 37.33 6.91 0.66 30.09 12.17
Reuters_27000 38.55 7.56 0.73 31.01 12.90
RCV1 38.43 7.04 0.59 30.60 12.56
Blendle 38.13 6.36 0.56 30.94 12.21
Wikipedia 39.31 8.21V 0.85V 2.66V 13.08

Table 7.17: Recall measure - RNN algorithm - Opinosis dataset.

ROU-1-R ROU-2-R ROU-4-R ROU-L-R ROU-SU4-R
Google 37.31 5.87V 0.19 27.95 11.37
Reuters_27000 37.05 6.13 0.21 28.61 11.53
RCV1 37.00 7.12 0.46 29.01 11.90
Blendle 37.47 6.40 0.18 28.66 11.64
Wikipedia 36.63 6.41 0.60 28.30 11.60

Table 7.18: Recall measure - Embdist word - Opinosis dataset.

7.3.2 DUC-02 dataset

In this section all the results achieved while using the DUC-02 dataset are reported.
These are the most surprising results: this collection is made of news documents
but there is basically no difference in results while deploying a domain-specific or a
general-purpose embedding. This behaviour could be explained by a not well trained
domain-specific word embedding or by the fact that this dataset is not suited to be con-
sidered in this kind of experiments. To answer this question, the study introduced in
the section 7.1 has been done, together with considering another collection of articles
to understand if the outcome is the same while analyzing another documents.

66



7.3 – Comparison between word embeddings

ROU-1-R ROU-2-R ROU-4-R ROU-L-R ROU-SU4-R
Google 20.96∗ 6.62∗ 2.45∗ 19.36∗ 8.06∗

Reuters_27000 25.53 8.59 3.44 23.61 10.30
RCV1 24.13R 7.85R 2.87R 22.27R 9.48R

Blendle 19.30∗ 6.09∗ 2.27∗ 17.87∗ 7.40∗

Wikipedia 23.67R 7.29∗ 2.60R 21.82R 9.06R

Table 7.19: Recall measure - MMR algorithm - DUC-02 dataset.

ROU-1-R ROU-2-R ROU-4-R ROU-L-R ROU-SU4-R
Google 42.01V 17.21V 7.79V 38.50∗ 19.38V

Reuters_27000 42.59 17.83 8.07 39.30 19.82
RCV1 43.53 18.77 8.59 40.17 20.64
Blendle 42.48V 17.48V 7.88V 38.90V 19.62V

Wikipedia 42.39V 17.43V 7.98V 38.92V 19.74V

Table 7.20: Recall measure - Textrank w2v algorithm - DUC-02 dataset.

ROU-1-R ROU-2-R ROU-4-R ROU-L-R ROU-SU4-R
Google 42.59 17.66 7.87 39.59 19.60
Reuters_27000 42.42 17.44 7.82 39.42 19.57
RCV1 42.83 17.83 7.97 39.72 19.81
Blendle 41.97V 17.11V 7.49 39.03V 19.07V

Wikipedia 42.22V 17.18V 7.53 39.17 19.29

Table 7.21: Recall measure - Kågebäck algorithm - DUC-02 dataset.

ROU-1-R ROU-2-R ROU-4-R ROU-L-R ROU-SU4-R
Google 43.95R 19.27R 8.97R 40.47R 21.05R

Reuters_27000 43.06 18.20 8.23 39.72 20.09
RCV1 44.22R 19.31R 8.84R 40.78R 21.12R

Blendle 43.96R 19.37R 8.93R 40.43R 21.04R

Wikipedia 43.80R 18.93R 8.78R 40.48R 20.80R

Table 7.22: Recall measure - Textrank TF-IDF algorithm - DUC-02 dataset.

ROU-1-R ROU-2-R ROU-4-R ROU-L-R ROU-SU4-R
Google 43.65 18.25 7.99 40.37 20.18
Reuters_27000 43.80 18.33 8.24 40.55 20.29
RCV1 43.72 18.12 7.93 40.40R 20.08
Blendle 43.20 17.73 7.87 39.86R 19.77
Wikipedia 43.44 17.74 7.66R 40.16 19.79

Table 7.23: Recall measure - Docemb algorithm - DUC-02 dataset.
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ROU-1-R ROU-2-R ROU-4-R ROU-L-R ROU-SU4-R
Google 39.69 16.80R 7.54 36.43 18.54
Reuters_27000 39.45 16.13 7.24 36.33 18.13
RCV1 40.24 17.01 7.72 37.06 18.88
Blendle 38.78V 16.57R 7.52R 35.57V 18.17V

Wikipedia 40.93R 17.11R 7.67 37.64R 19.03R

Table 7.24: Recall measure - Embdist (sentence) algorithm - DUC-02 dataset.

ROU-1-R ROU-2-R ROU-4-R ROU-L-R ROU-SU4-R
Google 41.87∗ 17.05∗ 7.66∗ 38.36∗ 19.23∗

Reuters_27000 42.85 18.28 8.43 39.55 20.16
RCV1 43.41 18.69 8.62 40.14 20.59
Blendle 43.36 18.52 8.46 39.83 20.37
Wikipedia 42.59V 17.77V 8.02V 39.15V 19.71V

Table 7.25: Recall measure - TextRank sif algorithm - DUC-02 dataset.

ROU-1-R ROU-2-R ROU-4-R ROU-L-R ROU-SU4-R
Google 46.42 22.14 10.74 43.09 23.31
Reuters_27000 46.58 22.15 10.83 43.25 23.46
RCV1 46.50 22.02 10.64 43.11 23.30
Blendle 46.70 22.33 10.84 43.31 23.52
Wikipedia 46.95* 22.63* 11.06* 43.63* 23.82*

Table 7.26: Recall measure - RNN algorithm - DUC-02 dataset.

ROU-1-R ROU-2-R ROU-4-R ROU-L-R ROU-SU4-R
Google 41.72∗ 16.81∗ 7.62 38.18∗ 18.91∗

Reuters_27000 40.95 16.18 7.30 37.45 18.35
RCV1 41.15R 16.26R 7.36 37.60R 18.48R

Blendle 41.79* 16.83* 7.53 38.21* 18.94*

Wikipedia 41.01 16.20 7.31 37.51 18.40

Table 7.27: Recall measure - Embdist word algorithm - DUC-02 dataset.

7.3.3 BBC dataset

The decision to use also this dataset as benchmark for this series of test has been taken
after the disappointing results gathered in the previous section 7.3.2. This collection
of articles immediately looked more promising for our purpose: not only it contains
a larger number of documents but they belong to different topics, while DUC-02 is
mainly made of politics one. This composition is rather similar with respect to the
miscellaneous articles coming from Reuters-27000: also in this latter group each docu-
ment has been previously labeled according to its topic and they share every domain
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(besides health and science which are not contained in the BBC collection). The exper-
iment performed here is the same in relationship with the ones done previously and
from table 7.28 to table 7.36 it is possible to read each result.
The outcome for this dataset has been a success for multiple reasons:

• Wikipedia word embedding never returns the best score in each algorithm and
metric, besides while using RNN, in which anyway every model is performing
very similar (there is a maximum difference of 0.5); this means that all the contex-
tualized models are able to deal better with the words and sentences contained
in the benchmark;

• Reuters_27000 and RCV1 most of the time are the best model to solve this prob-
lem, this could be explained thanks to two main justifications: the first one, as
said before, is about sharing the same topics and the second one is that all these
models have been trained using a corpus made of articles coming from newspa-
pers (so in theory they should share a common similar lexicon);

• the best results are coming from the runs of the experiment while using TextRank
(in all its variances) and these scores are the best one that have been obtained
throughout all the work; RNN and the two versions of EmbDist are the worst
algorithms instead;

• while using RNN or EmbDist word all the scores are pretty similar, this could
signify that these methods are not too proper to be used for domain-specific im-
plementations.

To summarize, this dataset has shown to be very suited to make tests related to multi-
document summarization tasks, driven by embeddings contextualized with newspa-
per articles.

ROU-1-R ROU-2-R ROU-4-R ROU-L-R ROU-SU4-R
Google 19.33∗ 10.62∗ 8.27∗ 16.53∗ 11.20∗

Reuters_27000 22.64 12.62 9.87 19.11 13.30
RCV1 22.00R 12.31 9.68 18.70 12.97
Blendle 17.47∗ 9.16∗ 6.94∗ 14.92∗ 9.75∗

Wikipedia 20.97∗ 11.39∗ 8.81∗ 17.70∗ 12.06∗

Table 7.28: Recall measure - MMR algorithm - BBC dataset.

ROU-1-R ROU-2-R ROU-4-R ROU-L-R ROU-SU4-R
Google 61.23∗ 48.99∗ 43.95∗ 54.33∗ 48.61∗

Reuters_27000 63.39 51.88 46.69 56.95 51.16
RCV1 63.31 52.15 46.91 57.22 51.42
Blendle 60.99∗ 49.01∗ 43.96∗ 54.41∗ 48.66∗

Wikipedia 58.50∗ 45.09∗ 40.04∗ 51.21∗ 45.11∗

Table 7.29: Recall measure - textrank w2v algorithm - BBC dataset.
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ROU-1-R ROU-2-R ROU-4-R ROU-L-R ROU-SU4-R
Google 54.70R 39.44R 33.91R 47.35 39.60R

Reuters_27000 55.41 40.24 34.85 47.94 40.48
RCV1 55.20 39.90 34.41 47.74 40.12
Blendle 53.72∗ 38.11∗ 32.58∗ 46.30∗ 38.34∗

Wikipedia 54.69R 39.35R 33.96R 47.22R 39.62R

Table 7.30: Recall measure - Kågebäck algorithm - BBC dataset.

ROU-1-R ROU-2-R ROU-4-R ROU-L-R ROU-SU4-R
Google 62.34* 50.46* 45.37* 55.73* 49.93*

Reuters_27000 60.96 48.46 43.26 54.19 48.04
RCV1 61.40 49.00 43.79 54.70 48.52
Blendle 62.14∗ 50.18∗ 45.09∗ 55.53∗ 49.68∗

Wikipedia 61.35 48.89 43.70 54.59 48.44

Table 7.31: Recall measure - textrank TF-IDF algorithm - BBC dataset.

ROU-1-R ROU-2-R ROU-4-R ROU-L-R ROU-SU4-R
Google 55.82∗ 40.13∗ 34.65∗ 48.19∗ 40.46∗

Reuters_27000 56.73 41.46 35.87 49.19 41.63
RCV1 57.59R 42.62R 37.07R 50.13R 42.69R

Blendle 55.39∗ 39.43∗ 33.98∗ 47.65∗ 39.88∗

Wikipedia 57.28R 42.02 36.45 49.71 42.18

Table 7.32: Recall measure - Docemb algorithm - BBC dataset.

ROU-1-R ROU-2-R ROU-4-R ROU-L-R ROU-SU4-R
Google 50.39 39.48 35.12R 44.65 39.22
Reuters_27000 49.86 38.62 34.17 44.05 38.41
RCV1 51.27R 39.78R 35.22R 45.28R 39.54R

Blendle 48.22∗ 37.88V 33.75V 42.74∗ 37.60∗

Wikipedia 50.90R 39.00 34.42 44.69 38.86

Table 7.33: Recall measure - Embdist sentence algorithm - BBC dataset.

ROU-1-R ROU-2-R ROU-4-R ROU-L-R ROU-SU4-R
Google 61.30∗ 49.08∗ 44.03∗ 54.40∗ 48.69∗

Reuters_27000 63.83 52.85 47.57 57.69 52.02
RCV1 63.09R 51.96R 46.76R 57.02R 51.24R

Blendle 63.05R 51.89R 46.77R 56.97R 51.22R

Wikipedia 62.68R 51.46R 46.29R 56.62R 50.76R

Table 7.34: Recall measure - textrank sif algorithm - BBC dataset.
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ROU-1-R ROU-2-R ROU-4-R ROU-L-R ROU-SU4-R
Google 57.47 43.51 38.09 50.27 43.38
Reuters_27000 57.41 43.47 38.03 50.22 43.33
RCV1 57.57 43.57 38.08 50.29 43.40
Blendle 57.17 43.08 37.60 49.90 42.97
Wikipedia 57.59 43.70 38.15 50.38 43.47

Table 7.35: Recall measure - RNN algorithm - BBC dataset.

ROU-1-R ROU-2-R ROU-4-R ROU-L-R ROU-SU4-R
Google 51.99* 36.12* 31.38* 44.31* 36.94*

Reuters_27000 51.28 35.21 30.56 43.71 36.16
RCV1 51.33 35.41 30.69 43.80 36.26
Blendle 51.92∗ 36.07∗ 31.28R 44.37∗ 36.88∗

Wikipedia 51.89∗ 36.09∗ 31.43∗ 44.34∗ 36.94∗

Table 7.36: Recall measure - Embdist word algorithm - BBC dataset.

7.3.4 Further considerations

While evaluating all the scores associated to the t-test, the results obtained for the BBC
set were definitely stronger with respect to the two other datasets (more p-values un-
der the threshold and values lower than previous cases). This means that, besides
achieving an overall better series of summaries, the ROUGE scores obtained are also
more statistical relevant. This is an ulterior proof that the BBC dataset is more suitable
to be implemented in this kind of tasks. The last consideration about all the results
obtained trough all the tests performed is introduced by the table 7.37. It is possible
to notice that, for each different metric of ROUGE, the best results are obtained while
using the BBC benchmark. This is not surprising at all, because this dataset is the
closest one to the news world and, thanks to this, the four domain-specific models are
able to produce summaries with a very good precision. The strong difference of scores
in both ROUGE-4-R and ROUGE-SU4-R is the main responsible for this considera-
tion: these two metrics are the hardest one to obtain a large number, because they are
considering multiple words at the time. Reaching a recall of 35.19% and 40.02% is a
remarkable result.

ROU-1-R ROU-2-R ROU-4-R ROU-L-R ROU-SU4-R
Opinosis 40.82 9.64 0.75 33.26 14.51
DUC-2002 40.63 17.00 7.69 37.47 18.85
BBC 53.05 40.02 35.19 46.51 40.02

Table 7.37: Average of every model according separately to each metric proposed.
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Chapter 8

Conclusion & Future Directions

To conclude and summarize all the results gathered in this thesis there is the need to
split this speech in two parts.
In the first half of the work a new intrinsic evaluation method has been introduced,
based on producing a summary focused on a single topic to understand the good-
ness of a domain-specific word embedding. The outcome ended up being not very
good, because the Wikipedia embedding showed itself to be the best one to correctly
address this kind of job. This approach could be improved in the future, creating a
hand-made glossary, written by people who have a high degree of knowledge about
the argument: with this little change there is the hope to obtain more detailed def-
initions, probably more suited for this evaluation task. There is also the possibility
to introduce a weight in this approach to reward mostly embeddings addressing cor-
rectly the specific lexicon: a definition has to include also words of common use and
it may be that a general-purpose embedding is able to achieve a great score just be-
cause of them. Whereas this should be still not enough, there is nonetheless the need
to have a benchmark that can be used to test domain-specific embeddings: the current
state-of-art is made of datasets to realize if the vector space created is able to correctly
identify semantic relationships, while for this type of problems the most important
aspect is to recognize with more ease words belonging to a specific lexicon, giving
more relevance to the meaning strictly correlated to it. There are many ways to create
a new benchmark, for example synonyms and antonyms couples that do not include
terms belonging to the common language or clusters of words, each one representing
a sub-argument of the topic (for example, given two groups of words, related to hard-
ware or software terms, is it true that an embedding trained using computer science
documents is able to distinguish them?). Another aspect to deepen is the "coverage"
of the topic: choosing an argument that is too wide (such as Science) could be very
close to not specialize at all the embedding because of the number of different subjects
involved. Choosing a more narrow argument could be the correct implementation (for
example natural disaster) but at the same time there is the need to provide new train-
ing datasets, large enough to obtain a new good representation.
In the last half of the thesis the main concern was about understanding the perfor-
mance of various models in solving document summarization tasks. The first two
datasets (Opinosis and DUC-2002) resulted in a failure but with a major difference:
Opinosis was expected to return poor results because of its nature, DUC-2002 was not.
This unexpected behaviour could be a symptom of the absence of suited datasets to
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test domain-specific document summarization problems. Once again, there is the need
to create new datasets to be used specifically in the context of multi-document domain-
specific summarization task. Indeed, the only promising results achieved, was the one
related to the BBC dataset, which contained a larger choice of articles, spacing among
all the topics touched by the Reuters27000 group of articles. To be discussed is also the
implementation of the ROUGE metric because it rewards only identical words, while
all the models that have been introduced in this work are using a vector representation
to compute a distance. It could be useful to compare the hand-written summary and
the one obtained at the end of the procedure with metrics that are taking into account
also their word-embedding representation.
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