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Abstract

A typical aircraft engine has many assemblies made up of thousands of contacts, such as blade
tip shrouds and blade root joints. These contacts are employed to provide friction damping
and vibration amplitude reduction at resonances. Contacts between components are a signif-
icant source of non-linearity due to the slip, stick and separation behavior during operation,
which affect the structural response and the global dynamics of the engine. The tangential slip
occurring at the interfaces leads to contact hysteresis and energy dissipation, thereby causing
wear, which alters the contact behavior and change the dynamics. In particular, the aim of this
study is to numerically predict of such contact parameters evolution during the wear process
comparing the numerical results with the experimental one in order to validate the numerical

models used to perform the analysis .
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1 Introduction

Aircraft gas turbines are characterized by thousand of mechanical joints connecting compo-
nents together. These joints introduce frictional contact because contact interfaces suffer from
relative (sliding) motion due to vibration. Due to frictional contact the in service components
are affected by wear that could dramatically change the interface and result in degraded per-
formance or failure. Hence, it is of high importance to be able to accurately predict the effect
of wear on the dynamics of the system. In order to predict wear, it is necessary to accurately
model the contact, and this is done by means of the hysteresis loop. A typical hysteresis loop
is shown in the fig. [1| and it is a plot of the friction force versus the relative displacement

between two sliding contacts.
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Figure 1: Typical hysteresis loop

From the hysteresis loop it is possible to extract the tangential contact stiffness from the
slope of the stick portion and the friction coefficient from the sliding limit. These two param-
eters are given as input in numerical simulations in order to predict the nonlinear dynamics
of structures with friction.The prediction of the dynamics of structures is very important in
order to prevent failures. For this reason nonlinear dynamic modelling techniques were de-
veloped. Contact interfaces are modelled by several elements with relative nodes. Each pair of
nodes of each surface in relative motion condition are linked with a normal and a tangential

contact stiffness working in parallel. Predictive models to estimate tangential contact stiffness



and friction coeflicient are needed to improve the accuracy of the simulations. However, good
predictive models are missing in the literature due to a lack of physical understanding, which
prevents the accurate modelling of these parameters. Botto and Lavella proposed a numerical
method [3] to compute contact stiffnesses in quasi-static conditions using as input FE models.
The routine from the Botto-Lavella study is used here to compute the contact stiffness of the
specimen pairs used in the fretting rig. Specimens are discretized using a FE method and the
contact area is finely meshed. Tangential forces and contact stiffness are computed from the
code numerically, by giving as input the experimentally known parameters such as applied
normal force and specimens’ relative displacement at the contact. The routine also computes
the evolution of hysteresis loops, normal pressure distribution, shear traction and slip distri-
butions with progressing wear. For what concern the prediction of the non-linear dynamic
behaviour of the structures the Vibration University Technological Center in Imperial College
of London proposed a numerical method (FORSE) based on a multiharmonic representation
for steady-state response and large-scale realistic friction interface modelling . The aim of this
thesis is to use the two different numerical techniques to replicate the contact behaviour of

sliding contacts and the dynamics behaviour of the structure undergoing such sliding contact.

1.1 Objectives

The objective of this thesis project is to perform static and dynamic simulations to replicate the
behaviour of the friction rig built at Imperial College London. The test rig can perform high
frequency fretting test in order to evaluate the dynamic friction contact parameters: friction
coefficient ;1 and the tangential contact stiffness £;. Experimental results have been provided as
a benchmark to validate the numerical simulations. The latter have been performed according
to static and dynamic conditions. A first set of static simulations, using the Botto-Lavella code,
was run to investigate the effects of fretting wear on the evolution of the tangential contact
stiffness and contact interfaces. A second set of dynamic simulations, using FORSE, was run
to simulate the dynamic response of the friction rig undergoing fretting wear.

In particular, the following parameters have been obtained from simulations and compared to

experiments:



Hysteresis loops (and tangential contact stiffness) — from both static and dynamic sim-

ulations;
Worn area of contact — from static simulations;
Evolution of tangential contact stiffness with wear — from static simulations;

Frequency response function - from dynamic simulations.

The obtained results have been compared to experimental results and provided insights on

the reliability of the modelling approaches and on the physical origin of the contact phenom-

ena.

1.2 Outline of the Thesis

This Master Thesis’ work is organized as follow:

Chapter 2 presents an overview of the physics of both friction coefficient and contact

stiffness and the numerical approaches used to predict the fretting dynamics.

Chapter 3 describes the friction rig of Imperial College, which provided the benchmark
experiments used for the comparison, and has been modelled to be used in the numerical

methods.

Chapter 4 contains the description of the quasi-static numerical method developed in
Politecnico di Torino [3] and the numerical results. The latter has been compared with

the experimental results

Chapter 5 includes an overvew of the numerical method used to simulate the dynamics
of the test rig. The numerical method, called FORSE, has been developed in Imperial
College of London [7]. In chapter 5 the numerical results are presented and compared

with the numerical ones.

In Chapter 6 the main conclusions about the two type of numerical methods are pre-

sented with a short summary about the results.



2 Literature Review

This chapter provides a physical description of the main frictional parameters analysed and
an overview of the numerical method used in this thesis. The research goal is to predict fric-
tion forces and energy dissipation at the contact interfaces because they strongly affect the
dynamic behaviour of a system. In addition the energy dissipation in the contact interfaces
produces wear and fretting fatigue phenomena that could lead to catastrophic failures of the
jointed structures. The prediction of the dynamic response of jointed structures is not an easy
problem to solve due to the poor understanding of the physics of friction.

Friction is the resistance that one surface or object encounters when moving over another. It
occurs whenever relative sliding motion takes place between two surfaces and causes energy
dissipation due to the force transmitted at the contact. The contact is a state of physical touch-
ing and it occurs when two bodies get in touch. Contact could happen in normal or tangential
direction. Normal contact problems are well known and described in literature [12]. Tangen-
tial contact problems are more complicated due to the non linearity due to the presence of
the friction . In order to get information about friction and consequently energy dissipation
the major parameter used is the hysteresis loop. Hysteresis loop provide information on the
macroscopic behaviour of two surfaces in contact. The information about the total amount
of energy dissipated can be evaluated looking at the area limited by the loop. In a typical
hysteresis loop shown in fig. |1} three contact regimes may occur, namely stick, microslip and
full sliding conditions. The stick regime occurs when the friction force is less then the friction
limit stated by the Amonton-Coulomb friction’ s law 7" < u/N where T is the friction force,
1 is the friction coefficient and N is the normal load. When the contact interfaces are in stick
regime the relation between sliding distance and tangential force is linear and the slope is k;
the tangential contact stiffness. The contact stiffness is a property of the contact interfaces
and it is due to the elastic deformations of the asperities on the two surfaces in touching. The
micro slip regime is due to the fact that some regions of the contact area are still in stick regime
instead other regions are in sliding conditions hence when the tangential force overtake the
friction limits. The full sliding regime is reached when in all the point of the contact area the

sliding condition is reached. In order to predict all the main features of the contact interface



analytical and numerical methods has been used. Analytical methods are the fastest way to
solve normal and tangential problems due to assumptions that simplified the two problems.
The heavy simplification of the normal and tangential problems make the analytical method
applicable only for few real simple cases. At the base of the analytical methods there is the
Hertzian theory [10]. The Hertzian theory is referred to the frictionless contact between two
elastic bodies under imposed normal loads .The numerical methods are able to solve normal
and tangential problems of two contacting interfaces subjected to external forces. These meth-
ods are applicable to more general contact situations but due to the increasing complexity of
the problem the numerical methods have some drawbacks linked to the numerical conver-
gence of the solution and to high computational efforts. Numerical methods are divided into
three major classes: Boundary Element Methods (BEM), Molecular Dynamics (MD) and Finite
Element Methods (FEM). The latter has been used in this thesis in order to model the contact

interface.

2.1 Finite Element Modelling

The FEM is a general discretization method for the solution of the partial derivative differential
equations [9]. The finite element method consist on the subdivision of the volumes of a certain
structure into finite elements and so into parts whose dimensions are not vanishingly small.
Depending on the shape of the structure many type of elements have been formulated such
as beam elements, shell elements, plate elements, solid elements. All these elements can be
used to build the entire structure. The FEM is usually developed using matrix notation to
obtain mathematical expressions easily readable by the computer codes. Each elements is
characterized by specific points called nodes. Each nodes has a certain number of degrees
of freedom (DOFs), in particular in the tridimensional space the number of DOfs for each
node is usually three if the rotations are not considered. The DOFs of each elements are the

displacement at given nodes. The displacement equation of the nodes inside each element is:

Where q is a vector where the n generalized coordinates of the element are listed and N is

the matrix containing the shape functions. The shape functions are arbitrary but usually a set



of polynomials in the space coordinates are usually assumed [9]. In order to get the equation
of motion of each element the stiffness and mass matrices must be stated. In order to get the
stiffness and mass matrix a energy evaluation is used, in particular to get the stiffness matrix
K the potential energy is evaluated instead the mass matrix M is evaluated starting from the

kinetic energy:

U= E / Toav = qu( / B"EB"dV)q. (2)
2 )y 2 v
K = / BTEBAV (3)
14

Where B is a matrix containing appropriate derivatives of the shape functions N and E
is the Young modulus, this could varied along the x, y and z direction if the material is not
isotropic. The recalling that u is the displacement vector the expression of the kinetic energy
is:

1
T = / piladV = —q'T( / pNTNdv)q', 4)
1% 2 |4

N | —

M = / pNTNdV (5)
|4

The equation of motion of the element is then the same of the descrete systems:

M+ Kq= f(t) (6)

Since a complex structure could be composed by thousands of elements with relative nodes,
the matrices could be very large inducing high computational efforts. In order to reduce the
computational time to reach the solutions some reduction techniques has been developed.
The reduction techniques are used to reduce the number of the degree of freedoms without
loosing important information on the behaviour of the system reducing in this way the size of
the model. For the reduction technique is necessary to chose slave degrees of freedom, dofs,
to be linked to the master nodes solving the linear system finding out the expression of the
slave dofs in function of the master ones. The reduction technique used in this thesis is the

component-mode synthesis or Craig-Bampton Component Mode Synthesis (CB-CMS).
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2.2 Component-Mode Synthesis - CB-CMS

The component-mode synthesis considers the slave dofs as constrained in this way neglecting
their inertia contribution. The displacement vector of the constrained dofs x5 is assumed to
be equal to the sum of constrained modes z,, hence the deformation pattern due to the dis-
placement z; of the master dofs when no force is acting on them, plus the constrained natural
modes 2,  when the displacements of the master dofs x; are equal to zero. The expression of

the constrained modes can be expressed in eq.[7]:

Ty = —K2_21K21$1 (7)

The constrained normal modes can easily be computed by solving the eigenproblem stated

in eq.[§:

(—W2M22 + Kop)xy =0 (®)

Once the eigenproblem has been solved, the eigenvectors matrix ¢ can be built:

vy = P ©)

So that the generalized coordinates of the system can be written as:

x I 0 | x
il _ H_glh (10)
T —Kyp' Ky ®| |1 N2
Even thou the number of modes is equal to the slave degrees of freedom the computational
advantages grow together with the number of modes that can be neglected. From the eq.

is possible to get the transformation matrix U that can be used to compute the new mass,

stiffness, damping matrix and force vector [9].
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2.3 Harmonic Balance Method

In order to solve the non linear dynamic behaviour of the test rig the harmonic balance method
[4] has been used. Since in the case of study in this thesis is subjected to linear and non linear

external forces its balance equation is:

MQ+CQ+KQ=F,+ Fni(Q,Q) (11)

Where M,C and K are the mass, damping and stiffness matrices of the system, Q is the
degrees of freedom displacement vector, £, is the external periodic forces vector and Fiy L is
the non linear forces vector. The harmonic balance method is used to evaluate the steady state
response of the system subjected to non linear external forces. In particular since the external
excitation is periodic also the displacements Q and the non linear forces would be periodic at
steady-state. Hence they can be expressed as truncated of harmonic terms

Ng

Q=00 + §R< Z Qnemwt> (12)
n=1
Ny

po— 10+ m( 3% ) o
n=1
Ny

Fyp=F9 + §R( 3 F]’\}Eem“t) (14)
n=1

Where Ny is the maximum number of harmonics chosen and w is the fundamental fre-
quency of the excitation forces acting on the system. If the equations from([12|to[14are replaced

in the balance equation |11} a sets of complex algebraic equations are stated:
D"Q" = Fy+ Fy, (15)
where D" is the n'* dynamic stiffness matrix of the system and its expression is:
D" = —(nw)*M + inwC + K (16)

The 0Oth order represents the static balance equation.
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3 Description of the Test Case

The friction rig of Imperial College London has been chosen as a test case to apply the
numerical techniques for predicting the contact behaviour and the dynamic behaviour. Nu-
merical results have then been compared with existing experimental measurements .
The aim of the experimental measurements is to get the main dynamic fretting parameters
from the hysteresis loop such as: the friction coefficient i, and the tangential contact stiffness
K;.

The principle of the friction contact parameter measurement is to provide a unidirectional

relative sliding motion between two contact surfaces of two cylindrical specimens shown in

fig[2l

sliding direction

moving specimen -

e

contact area

static specimen

|

X

Figure 2: Cylindrical specimens

The specimen on the bottom is clamped to a static block instead the specimen on the top is
clamped to a moving harm linked to a larger moving mass by several springs.The continuous
contact between the specimens interfaces during the tests is ensured by applying a normal load
Ny by means of a pneumatic actuator placed on the top of the moving block (moving mass plus

moving harm). The moving mass is exited by a shaker [14]. The benchmark experiments used

13



in this thesis were performed at 100 Hz harmonic excitation frequency instead the amplitude
of the harmonic force produced F, has been changed for each test in order to evaluate how
it could affect the system. In particular the F,, amplitude, for a given normal load leads to

different forced response functions (FRF) due to different contact area conditions:
« stick condition,
« stick/slip condition,
« full slip condition.

All these conditions are reflected on the relative displacement between the sliding specimens.
This is measured slightly above and below the contact interfaces, less than 1mm far from the
contact, by means of two Laser Doppler vibrometers (LDVs) fig[3] This accurate measurement
method leads to a negligible effect of the bulk elastic deformation of the specimens, making the
measurement of the tangential contact stiffness more reliable. The friction force is measured

with dynamic load cells attached to the static block [[1].

Static mas:

Pneumatic actuator

Moving arm

Static arm
Laser guide

Figure 3: Test rig



Measuring the relative displacement and the tangential force the hysteresis loop in fig.
can be depicted. The K, is measured looking at the slope of the stick portion instead the
friction coeflicient from the limit value of the sliding condition. The limit value is given by a

simple relation between the tangential F; and normal force Ny shown in eq.

F, = uNy (17)

In order to get numerically what experimentally can be observed two type of numerical

simulations have been performed:

« static simulations (needed to model fretting wear and hysteresis loops),

+ dynamic simulations (needed to model FRFs and hysteresis loops).
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4 Static Simulations - Finite Element Modelling of Fret-
ting Wear

The goal of this chapter is to describe the numerical code developed at Politecnico di Torino
to model the fretting wear [3]]. The code simulates the fretting wear between two oscillating
bodies in contact, and it evaluates pressure distribution, slip distribution, worn area and tan-
gential force. From the tangential force distribution the code evaluates the total tangential
force, and in relation with the tangential displacement, imposed by the user, the hysteresis
loop is obtained for every wear cycle step. From hysteresis loops the tangential stiffness %; is
analysed in order to get its evolution versus cycles. The values of kt are compared with the

experimental results.

4.1 Description of the Numerical Code

This section describes the numerical code developed in [3]. In order to solve the contact prob-
lem, which is very complex in nature, the following assumptions are made to simplify the

analysis :

« the material of the contact bodies (in this case the specimens) is linearly elastic, and the

deformations are small,
« the roughness is neglected, and the contact surfaces are assumed perfectly smooth,

« An Amonton-Coulomb model of friction is used , this introduces three ideas: the force
of friction is directly proportional to the applied normal load, the force of friction is
independent of the apparent area of contact, Kinetic friction is independent of the sliding

velocity. Moreover, the friction coefficient is constant.

+ The normal and tangential contact problems are assumed uncoupled.

4.1.1 Normal Contact Problem

The normal contact problem refers to the computation of the contact area and the normal

stress, or pressure distribution on two contacting interfaces subjected to a normal load. The

16



pressure distribution is replaced with discrete forces applied to the points of contact and the
contact area is approximated with a set of points. At each iteration the true contact area must
be evaluated because due to the wear it changes. According to this idea also the other param-
eters, like the pressure distribution, change. Numerically speaking the problem is to find out
how many points are in or out the true contact area. At any of this points the first fundamental
condition is that the sum of the separation between the bodies, the elastic displacement and

the rigid body approach must be equal or greater than zero as stated in the eq. [18|[3]:

h<x> y) + (ulz - u2z) + 6(51n - 52n) >0 (18)
« ¢ = ( inside the contact area

« ¢ > ( outside the contact area

Where h(x,y) = z; — 2 is the separation of the profiles in the undeformed state, u, the
elastic displacement along the vertical direction, and ¢ the rigid-body approach. The displace-

ment along z in static can be related with the applied force according to eq.[19:
Ku=f (19)

Where K is the reduced stiffness matrix of the FE model of the specimen. The reduction
can be performed with the Craig-Bampton method where the master nodes are those are lying
on the contact surface and go under elastic deformation, and a set of distant nodes that define
the normal rigid body approach. The distant nodes are used as a reference to determine the
contact stiffness looking at their displacement on the tangential direction.

Until now only the normal contact problem is taken into account the tangential degree of

freedom must be eliminated making it dependent of the normal dof as in eq. [20]:

Kzz sz Uz fz
= (20)
Uy = Kmmil(fm - szuz) (21)
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Kz = Kzz - KzzKag_lexz (23)

According to the assumption that the normal contact is uncoupled form the tangential one
the tangential force f, is neglected, generally speaking the contact is friction less. Under this

assumption the eq. [22| becomes:

Ku, = f, (24)
Static (Guyan) L W& Full FE Contact area: A,
reduction M Model Contact force: F,

Guess of the

e e Else of all £,= 0

Reduction of vertical

dofs, partitioning into L New guess of || If £.,< 0 move node

inside/outside contact contact area outside contact area
area, distant nodes | t

Contact force

A - T
Reduction of dofs Solution in terms of

outside contact area .
displacements u;_;

. Input data: d,., d,. i f -
Equation of Compatibility of

equilibrium displacements

Figure 4: Flow chart of the procedure to solve the normal contact problem [3]

4.1.2 Tangential Contact Problem

Once the contact area has been determined the tangential contact problem is formulated as-

suming Coulomb’s friction law.

= (25)
Kz:c Kzz Uz fz
U, = Kzz_l(fz - Kzzu:p) (26)
K:cua: = fx - Kzsz_zlfz (27)
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Under the assumption that the normal and the tangential forces are uncoupled the force

so that f, = 0, the eq.
Kou. = fo (29)
Solving the tangential contact problem the true contact area is split in different regions,
namely adhesion region the one in which the nodal tangential force is less or equal of the nodal
normal force times the friction coefficient f; < puf,, instead slip region where the tangential

force is higher than the friction limit.

Solution of the normal contact >-< Guyan | Pi‘ Full FE

roblem (contact area and | i
1t reduction | | I Model

normal nodal forces)

Slip area: A,

Stick area: 4,

Friction force: F,
.

New guess of Jra ™ 4f,, move
contact area node to slip zone

.
Reduction of vertical dofs and
nodes outside contact area

All nodes in contact
area assumed in

stick mode
!

Reduction of dofs in

‘ Tang. contact forces |
¥

slip condition where Solution in terms of
Je= displacements u,
: [ESERENN :
Equation of Compatibility of
equilibrium displacements

Figure 5: Flow chart of the procedure to solve the tangential contact problem [3]

4.1.3 Masing Rule

At this point the total tangential force can be evaluated summing all the nodal contributions.
The relation between the tangential force and the rigid tangential displacement of the distant
nodes gives the hysteresis loop. The latter is obtained by applying the Masing rule. In order
to get the evolution of F} in the micro slip regime, when the total tangential force is less than
the friction limit, the so-called virgin-curve has been used.The virgin curve is the monotonic
curve obtained increasing the tangential displacement up to the limit value p F,,, starting from
the rest. The monotonic friction force f,, is a function of the virgin curve [3] [5]. The Masing

assumption states that the unloading friction force is given by the friction force at the reversal

_§,MAX
FtMAX t 152 )

plus twice the monotonic force fm evaluated for ® , namely [3]]:

5, — 6MAX
F = RN 1of, (20— (30)
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Figure 6: Example of virgin curve [3]]

In order to get all the frictional parameters from the code, it needs of FE models where the
contact areas are well defined. From the FE models the reduced stiffness and mass matrix of
the two specimens are obtained in order to simulate the normal and the tangential behaviour.
From the simulations the virgin curves for each cycle step are evaluated and applying the
Masing rule also the hysteresis loops. From the hysteresis loops the tangential stiffness is

calculated.

4.2 Model used for the Static Simulations

The goal of the numerical method is to simulate the evolution of the friction contact parameters
by modelling the couple specimens used for the experiments on the friction rig of Imperial
College. In order to analyse them in a numerical way the reduced stiffness and mass matrices of
the body involved in the experimental test must be extrapolated. The method in which the two
matrices were obtained is the FEM, using a software of finite element modelling such as Ansys.
The idea is to model in the optimal way the contact interfaces between the two cylindrical
specimens looking at their real features and then model them with the finite elements. The rig
uses two cylindrical specimens, each of them has 8 mm diameter and it is 33 mm long. They
have 1mm-wide rectangular surface. The specimens are rotated about their axis in order to

2 nominal contact area,

make orthogonal the two flat rectangular surfaces generating a 1mm
as shown in fig. [2]. The contact area has been analysed with an electronic microscope finding

out that, due to manufacturing, it has a curvature of: 1000 mm radius on the xz plane, 50

20



mm radius on the yz plane. These curvatures might have a strong effect on the numerical
simulations, and for this reasons two FE models have been created one fully flat and one with

curvature. The main sizes of the two specimens are reported in fig.

@

33

Figure 7: main dimensions of the specimen in mm

Starting from the main dimensions of the specimen a 3D model has been made using a
commercial software : SolidWorks. In the 3D model the 1 mm? contact area was isolated
making it such a stand alone volume for each specimen ,fig[8alin order to be able to make a
more precise element subdivision for the FEM. . In the end the assembly, as shown in fig.

of the two bodies has been made and it has been exported as a parasolid file in Ansys.
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Isolated volume

(a) isolated volume zoom

(b) specimens assembly
Figure 8: specimens 3D models

For the finite element modelling it is fundamental to declare the main characteristic of the

material at first. The two specimen are made of steel with the following mechanical properties:

« Young modulus E = 200000 x 10° [,
« density p = 7800 [%]

« Poisson coefficient v = 0.3

Since ANSYS APDL haven’ t got any unit of measure all the main physics dimensions
must be consistent with the fundamental ones. Since the model was imported in mm and
then scaled in pm all the mechanical properties have been converted according to the unit of

measure adopted.

+ Young modulus E = 200000 x 10~° [-15],
« density p = 7800 x 1024 [21g]

um

« Poisson coeflicient v = 0.3

22



After the material properties have been declared the element type must be chosen de-
pending on the precision that the user wants for his analysis, but more precision means more
computational time. For this study a simple brick element has been chosen with 8 nodes cor-

responding to the eight vertices of the cube ( solid 185), fig[9].

Figure 9: brick element with relative nodes

The mesh has been made differently according to the complexity of the volumes as shown
in fig. 10 in particular the contact area has been subdivided in 10 by 10 elements (121 nodes).
VAVA»I:

T AVLY,) | =
R v e,

v Wy
D i
SR

(a) real specimen (b) meshed model

Figure 10: comparison between modelled and real specimen

The same procedure has been made for the double curvature case but they are still difficult
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to see also with a very high zoom on the interested area so ,after the mesh, the coordinates

of the nodes that lie on it have been obtained and thanks to Matlab a better view has been

realised, fig

L e [/

Figure 11: double curvature highlight
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From the FE model it is possible to extract the stiffness, K, and mass ,M, matrices of the
two specimens, but since there are too many nodes the matrices would be very prohibitively
needing large the computational time. In order to solve this problem a CB reduction method
has been performed in order to get the reduced stiffness and mass matrices. The CB reduction
method also known as component mode synthesis, it works partially with physical coordi-
nates and partially with modal coordinates. The physical coordinates are related to the master
nodes instead the modal coordinates are related to the slave nodes. It is very effective be-
cause not all the modes are necessary to the analysis introducing a further reduction in the
computation. According to this concept 20 modes ranging beyond the operating frequencies
have been chosen for the analysis. The master nodes, as stated in the section 4.1.1, have been
divided into two sets: contact and distant nodes. The contact nodes lie on the contact area of
1 mm? instead the distant nodes lie on the circumference at the end of the specimen holders

at 31 mm from the bottom as shown in fig. [12h|:

SPECIMEN HOLDERS

LINE O E DISTANT *)DES

SPECIMEN

(a) Specimen holders (b) Distant nodes positioning

Figure 12: Specimen clamping

To have a better idea about the reduction a comparison between the specimens with all

the relative nodes and the reduced model is shown in fig[13|:
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DISTANT NODES

CONTACT NODES

(a) All nodes (b) Reduced nodes

Figure 13: Comparison between the full model and the reduced one

The system passed from thousands of nodes to 121 contact nodes plus 16 distant nodes.

Since each no