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Resumò 
Para o amplo sucesso comercial dos veículos eléctricos (VE), é crucial uma compreensão 
profunda de como as baterias estão a actuar nesta aplicação desafiante. A idéia de colocar 
células fotovoltaicas na versão mais recente dos carros elétricos como a energia gerada por 
eles poderia tomar alguma pressão da bateria principal e alimentar algumas funções 
elétricas interiores do carro ou recarregar a bateria. Esta tese foi, portanto, focada no estado 
de carga da bateria e na estimativa do estado de saúde como uma aplicação de um sistema 
fotovoltaico fora da rede. Em sistemas fotovoltaicos isolados, a bateria de chumbo-ácido 
ainda é a tecnologia mais utilizada para o armazenamento de energia e é o componente que 
tem a menor vida útil do sistema, em torno de 2 a 3 anos, portanto, é um dispositivo que 
requer atenção especial para que não ocorram, durante sua utilização, situações que 
reduzem a sua vida útil. Diante dessa criticidade que envolve a bateria, o objetivo desse 
trabalho foi utilizar a técnica de filtro de Kalman para estimar o estado de carga (SOC) de 
baterias de chumbo-ácido e embarcar o algoritmo em um microcontrolador Arduino para 
uso em sistemas fotovoltaicos isolados. O algoritmo requer pouca memória e reduzida 
capacidade computacional para funcionar, sendo ideal para utilização em um 
microcontrolador de baixo custo. Para o circuito de monitoramento da bateria, que permite 
consulta remota aos dados via rede de telefonia celular, foram utilizados um Arduino 
modelo Mega2560, sensores de corrente e temperatura; e um rádio GSM/GPRS. A bateria 
utilizada foi uma bateria estacionária ventilada de chumbo-ácido, 12V e capacidade 
nominal de 200Ah em regime de 10 horas, que equipa um poste solar composto também 
por módulo fotovoltaico, controlador de carga e luminária. Para os cálculos de 
parametrização da bateria foi utilizado o software Matlab. Os resultados simulados do 
estado de carga apresentaram um erro máximo de 2% para a região de 100%SOC a 
50%SOC, sendo um valor aceitável uma vez que, apesar do erro, é possível identificar se 
a bateria está experimentando descargas profundas, isto é, abaixo de 50% da sua 
capacidade nominal, e/ou recargas ineficientes. Em campo, observou-se que a bateria do 
poste solar estava sendo descarregada apenas 7,4% da sua capacidade nominal, regime de 
10 horas. O circuito de monitoramento remoto apresentou um erro máximo na estimativa 
do SOC de 1,7%, quando comparado ao método de integração de corrente, na região entre 
100%SOC e 92,6%SOC. Por fim, constatou-se a confiabilidade do filtro de Kalman para 
estimativa do estado de carga de baterias de chumbo-ácido ventiladas bem como a robustez 
do Arduino para se trabalhar com o algoritmo do filtro. 

Palavras-chaves: Sistema fotovoltaico; Bateria de chumbo-ácido; Filtro de Kalman; 
Estado de carga (SOC). 

 

 



Abstract 
A deep understanding of how batteries are operating in this demanding application 
is critical for the widespread commercial success of electric vehicles (EVs).The idea 
to put photovoltaic cells to the latest version of the electric cars as the power 
generated by them could take some pressure of the main battery pack and power 
some interior electric functions of the car or recharge the battery. This thesis has 
therefore been focused on battery state of charge and state of health estimation as an 
application of an off-grid photovoltaic system. In off-grid photovoltaic systems, the 
lead-acid battery is still the most used technology for energy storage and is the 
component that has the shortest life of the system, around 2 to 3 years, so it is a 
device that requires special attention to ensure that situations do not occur during 
their use which reduce their lifespan. In view of this battery-critical nature, the 
objective of this work was to use the Kalman filter technique to estimate the state of 
charge of lead-acid batteries and to load the algorithm into an Arduino 
microcontroller for use in off-grid photovoltaic systems. The algorithm requires little 
memory and reduced computational capacity to function, being ideal for use in a 
low-cost microcontroller. For the battery monitoring circuit, which allows remote 
consultation of the data via cellular telephone network, was used an Arduino model 
Mega2560, current and temperature sensors; and a GSM / GPRS radio. The battery 
used was a flooded stationary lead-acid battery, 12V and nominal capacity of 200Ah 
in 10 hours, which equips a solar pole composed also by photovoltaic panel, charge 
controller and luminaire. The MATLAB software was used for the battery 
parameterization calculations. The simulated results of state of charge presented a 
maximum error of 2% for the region of 100% SOC to 50% SOC, being an acceptable 
value since, despite the error, it is possible to identify if the battery is experiencing 
deep discharges, this is below 50% of its rated capacity, and / or inefficient 
recharges. In the field, it was observed that the battery of the solar pole was being 
discharged only 7.4% of its nominal capacity, regime of 10 hours. The remote 
monitoring system presented a maximum error in the SOC estimation of 1.7% when 
compared to the current integration method, in the region between 100% SOC and 
92.6% SOC. Finally, it was verified the reliability of the Kalman filter to estimate 
the state of charge of flooded lead-acid batteries as well as the robustness of the 
Arduino to work with the filter algorithm. 

 

Keywords: Photovoltaic system; Lead-acid battery; Kalman filtering; 
State of charge (SOC) 
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1. Introduction 
        Mobility used to be synonymous with equality a decade ago, today's mobility is the norm. 
With versatility being an electronic device necessity, another falls in - a need for efficient mobile 
energy storage-a Battery. The battery for an electric vehicle is similar to the fuel tank for a 
conventional gasoline vehicle. Imagine a vehicle without a fuel level display on the dashboard. 
Note how difficult it would be for the driver not to have a clear indication of how many miles the 
car would still travel.  

        With the popularization of Electric Vehicles and Hybrid-Powered Vehicles, such as buses, 
forklifts and wheelchairs, there is a increasing need for a Battery Charge Condition predictor, a 
device or hardware designed to measure the remaining effective power of the battery with only a 
small number of variables.       

        Lead acid batteries are common and are used in automobiles for starting the engine and 
running lights and other electronics. They are also used in certain electric cars, such as golf carts 
and boats. These are used for security systems, computers, and telephones in addition to mobile 
apps in battery backup systems. 

       Battery stacks of lead acid and lithium ion are used in many applications of hybrid electric 
vehicles (HEV), electric vehicles (EV) and renewable energy storage units for later use. Most 
traditional cars run on batteries made from lead acid. Lead-acid batteries are fairly cheap, perform 
well in cold temperatures, and do not put drivers at risk unless they are properly charged. In all 
these applications, it is necessary to calculate the charging status (SOC) which is the capacity 
available (for Ah) and expressed as a percentage of the rated capacity. It is also important to 
measure the state of health of the battery (SOH) which is a measure of the ability of the battery to 
store and deliver the electrical energy as compared to new battery. Since it is a complex task 
depending on the type of battery and the application for which it is used. Accurate estimation of 
SOC helps improving the system performance, lengthen lifespan of the battery and it is one of the 
main tasks of battery management system. (MARTIN;ADEL) 

        Lead-acid batteries share in installed batteries is still the highest of all the battery 
technologies. However, in mobile applications with the replacement of the combustion engine by 
electric motors, the attention paid to lead-acid batteries will abate. If the costs stay competitive 
with respect to lithium-ion batteries, stationary installations lead-acid batteries will remain 
attractive. A typical stationary application is Photovoltaics system (PV), in which the batteries are 
float-charged until their stored energy is required. (JAVIER, 2014) 
 
        The system developed in this work presented a total cost of R$550.00. Despite the low cost, 
the system is capable of to estimate in real time the state of charge of the batteries monitored by 
him, besides to allow expansion for current and voltage monitoring of up to 8 batteries 
simultaneously, plus the ambient temperature. For this expansion, an extra cost average of R$50.00 
would be necessary. In addition, the system is equipped with a GSM/GPRS module that allows 
remote monitoring via the Internet or via GSM mobile phone network, dispensing with the 
technician's frequent visit to data collection and subsequent analysis. 



        Having as justification the questions presented here and as motivation the great growth 
potential of photovoltaic solar energy in Brazil, according to the data presented, this work has the 
objectives: 
 
 
 
 
1) General Objectives 
        Use the Kalman filter technique to estimate the state of charge of 12V lead-acid vented 
stationary batteries and ship the algorithm in a low-cost microcontroller for use in isolated 
photovoltaic systems. 

i) Structure the electronic circuit for remote monitoring of the state of charge of lead-
acid ventilated batteries; 

ii) Perform the modeling of lead-acid batteries ventilated for use in computer 
simulations; 

iii) To evaluate the behavior of a lead-acid battery in the field, installed in a solar pole, 
through the instrumentation of this photovoltaic solar system. 

        To verify the operation and efficiency of the device, all data in this research was created from 
this prototype of engineering. The results show that this setup is a promising design for a cost-
effective, high efficiency. 

 

2) Thesis Structure and Methodology 
        Thesis is divided into two parts- theoretical and practical, where secondary research, 
qualitative and quantitative methods are used.  
        To present the relevant data by the end of the work, the thesis will comprise of a 
comprehensive review of books, journals, scientific articles, surveys and various companies’ 

reports published online. With the help of the secondary data analysis, I will research existing 
theoretical information to better understand the concept and be able to give recommendations on 
how to apply it in practice. 
        Briefly, quantitative research refers to the explanation of a concept by means of numerical 
data, graphs and charts, different setup figures while qualitative is based on people’s subjective 

thinking, their opinions and perceptions of certain issues. 
        In the first part, an off-grid photovoltaic system is installed in the lab. The setup consists of 
solar panels which are connected with batteries and microcontrollers are connected respectively 
along with other components such as current, voltage, temperature sensors and inverter. The 
batteries charging and discharging data is recorded at different time intervals of the day.  
        In the second place, the data collected is analyzed through experimental method in order to 
estimate the state of charge (SOC) of the battery. It is supported with theoretical background of 
each component used to install the system and qualitative approach to select the components.   
 



2 Theoretical Background 

     2.1 Photovoltaic Systems 
        Simply put, PV systems, like any other electrical generating system, are distinct from the 
devices used for traditional electromechanical generating systems. The working and interfacing 
rules with other electrical systems, however, remain the same and are controlled by a well-
established set of electrical codes and standards. Although, when exposed to sunlight, a PV array 
produces power. To properly conduct, control, convert, distribute and store the energy produced 
by array, several other components. 
        The particular components required for the system, based on the functional and operational 
specifications, may include a DC-AC power inverter, battery bank, system and battery controller, 
auxiliary power sources and sometimes the electrical load (appliances) specified. Furthermore, a 
range of system balance (BOS) hardware, including cable, overcurrent, surge protection and 
disconnect systems, and other energy processing equipment. Figure 2.1 shows a basic photovoltaic 
system diagram and the component relationship. (JAVIER, 2014) 
 
(Fig 2.1 – Major Photovoltaic System Components) 

 

 

Source: (JAVIER, 2014) 

        A recent report by Solar Power Europe and Global Solar Council, in 2018 solar broke the 
100 GW threshold of annual installations, and it will be recalled as the year solar in total reached 
a cumulative operational capacity of over 500 GW or 0.5 TW. The net power generating capacity 
added in 2018 by main technology is illustrated in (Figure 2.2- European Council of Solar 
Energy). (Walburga & Micheal, 2019) 

(Fig.2.2-Added Power Generating Capacity in 2018) 



 

Source: (Walburga & Micheal, 2019) 

        A total of 102.4 GW went on the grid around the world in 2018 (Fig.2.2). That’s still 4% 

more than the 98.5 GW installed in 2017 but compares to two years with very high growth rates – 
around 30% in 2017 and 50% in 2016 shown in (Figure 2.3) 

(Fig2.3- Evolution of Global Annual PV Installed Capacity 2000-2018) 

 

Source: (Walburga & Micheal, 2019) 
        According to the Synthesis Report of the 2018 National Energy Balance (Base Year 2017) of 
the Energy Research Company - EPE, the electric power generation by photovoltaic solar source 
was 359.1 GWh, which represented a participation of 0.4% in the total power generation 
considering all sources. Compared to the generation of energy by solar photovoltaic source in 
2016, there was a significant increase of 875.6%. Much of this increase is due to recent regulatory 
actions that made it possible to offset the surplus energy produced by smaller systems. The states 
that lead the national ranking in distributed generation are Minas Gerais, with an installed capacity 
of 109.5 MW, Rio Grande do Sul, with an installed capacity of 78.8 MW and São Paulo, with an 



installed capacity of 61.2 MW. Together, these three states account for approximately 50% of the 
total installed power in Brazil of distributed generation. (EPE BRASIL, 2018) 

        The I-V characteristic curve is one of the main parameters of a module photovoltaic. The 
curve consists of pairs of voltage and current data that describe the current response of the 
photovoltaic module when subjected to a variable voltage (PINHO; GALDINO, 2014). 

        Figure 2.4 shows the I-V characteristic curve of a solar cell of silicon, where Isc is the 
electrical short-circuit current, you are the open circuit voltage, PMP is the maximum or peak power 
and IMP and VMP are the maximum current and voltage power, respectively. 

(Fig.2.4 I-V characteristic curve of a silicon solar cell. Electrical current as a function of the power 
difference applied to a silicon solar cell.) 

 

 

2.2 Photovoltaic Solar Energy  
        Photovoltaic solar energy is electrical power generation measured in watts (W) or kilowatts 
(kW) using direct electrical current (DC) generated by semiconductors when illuminated by 
photons. The solar cell, the name given to the photovoltaic element, converts light energy into 
electrical energy while light illuminates it. When there is no light generation ends. 

        Photovoltaic solar power equipment generates electricity without producing greenhouse gas 
or other gas emissions and works in a silent manner. Solar photovoltaic systems main disadvantage 
is the high value of the initial investment. (JAVIER, 2014) 

        There are two main categories of photovoltaic systems:  

• Grid Connected 
• Isolated (Off-grid) 



 

        Isolated systems can be purely photovoltaic, operating only from a photovoltaic source; or 
hybrid, combining photovoltaic generation with one or more sources of energy (for example, diesel 
generator or wind turbine). Both of them require some type of storage. If you want to use electrical 
appliances during periods when there is no photovoltaic generation, storage can be in batteries. 
(PINHO & GALDINO, 2014) 

 A scheme of the isolated photovoltaic system is shown in Figure 2.5. 

 
 
Source: Writer 

2.3 Solar Cells 
Solar cells are generally made of silicon, the same material that is used for transistors and 
integrated circuits. The silicon is treated or "doped" to release electrons when light strikes so that 
an electrical current is produced. There are three basic solar cell types. Monocrystalline cells are 
cut from a silicon ingot from a single large silicon crystal, while polycrystalline cells are cut from 
an ingot consisting of many smaller crystals. The third type is the solar cell that is amorphous or 
thin film. (JAVIER, 2014) 
 
(Fig2.6 – Cross -Section of Solar Cell) 



 

a) Amorphous Solar Cells 
        Amorphous technology is most commonly seen in small solar panels, such as calculators or 
garden lamps, despite the increasing use of amorphous panels in larger applications. These are 
made by putting a thin silicon film on a surface of other material like metal. The panel is shaped 
as one piece, and not as visible as in other forms are the individual cells. The performance of 
amorphous solar panels is not as high as those produced from individual solar cells, although in 
recent years this has increased to the point where they can be seen as a practical alternative to 
crystalline cell panels. Their great advantage is that they generate relatively low power cost per 
W. However, this can be offset by their lower power density; for the same power output, more 
panels are needed, and more space is therefore taken up. 
 
b) Crystalline Solar Cells 
       To produce solar panels, crystalline solar cells are wired in series. Since each cell produces a 
voltage between 0.5 and 0.6 Volts, an open circuit voltage of about 20 Volts requires 36 cells. This 
is enough for most conditions to charge a 12 Volt battery. 
        While the theoretical efficiency of mono-crystalline cells is slightly higher than that of poly-
crystalline cells, there is little practical quality difference. Generally, crystalline cells have a longer 
life than the amorphous form. 
 
 

2.4 Photovoltaic Systems in Automotive Industry 
        The first solar car that had been invented was a tiny 15-inch vehicle made by General Motors 
William G. Cobb. Called the Sun mobile, on 31 August 1955 Cobb displayed the first solar car at 
the Chicago Powerama convention. The solar car consisted of 12 photovoltaic selenium cells and 
a small Pooley electric motor turning a pulley which turned the rear wheel shaft rotating in turn. 



 

       There are significant differences between use of solar energy and all other types of powering 
the cars. Unlike solar-powered houses, solar cars harvest energy from the sun, turning it into 
electricity. That electricity then fuels the car's motor-driven battery. Many solar cars channel the 
power directly to an electric motor, rather than using a battery. This can be achieved in solar cars 
through Photovoltaic Cells (PVC). (CRISTEN CONGER) 

2.4.1 Energy Flow Scheme in Solar Cars 

 

Source: Solar Cars Seminar 



3 Batteries 
 

3.1 Lead-Acid Battery 
        Battery is a chemical device for electricity storage (DELL; RAND, 2011) that converts the 
chemical energy contained in its active material directly into electrical energy through 
electrochemical oxidization reactions (redox). The battery device can be classified in several ways 
depending on, for example, the chemical elements in the active material of the positive and 
negative electrodes; and whether or not it can be recharged (LINDEN, 2011). 

        The battery is formed by basic electrochemical units, called cells, which directly convert 
chemical energy into electrical energy. The cell consists of a set formed by positive and negative 
electrodes, separators, electrolyte, case and terminal (LINDEN, 2011). The positive electrode or 
cathode accepts electrons from the external circuit and reduces during electrochemical reactions. 
The electrode or anode provides electrons to the external circuit and is oxidized during the 
electrochemical reactions. The electrolyte, the ionic conductor, is the means of transfer of load 
through ions, inside the cell between the anode and the cathode. Typically, the electrolyte is a 
liquid, such as water or other solvent, with dissolved salt, acid or alkali to make ionic conductivity 
possible (LINDEN, 2011). 

The lead-acid battery uses lead dioxide (PbO2) as the active material in the positive electrode and 
metallic lead (Pb), with a high porous structure area surface, as negative active material. The 
electrolyte is a solution of sulfuric acid (LINDEN, 2011). Figure 3.1 summarizes the chemical 
reactions that take place in the electrodes and presents the general equation of the process. 

 

Source: Writer 

        In Figure 3.1 it is observed that, during the discharge, the chemical reaction happens from left 
to right. Conversely, during the recharge, the reaction happens in the opposite direction. During 
the discharge, both electrodes are chemically matched and transformed into lead sulphate (PbSO4). 



        The battery consists of one or more connected electrochemical cells electrically in appropriate 
arrangement, or in series or in parallel, so as to provide the required voltage and current (LINDEN, 
2011). The association of parallel cells provides the increase of the current provided by the set; the 
serial cell association increases the nominal voltage of the battery. 

        Figure 3.1 presents a cutting view of a lead-acid battery that shows some of its main internal 
and external components, namely, 1) the grid, component responsible for conducting electric 
current as well as for sustaining the active material of the positive and negative electrodes; 2) 
positive and negative plates, formed by joining the positive active material (positive mass) and the 
positive grid; and the union of the negative active material (negative mass) and the negative grid, 
respectively; 3) separator, responsible for the electrical isolation between the plates negative and 
positive allowing ionic conduction through the electrolyte; 4) strap, which connects the plates of 
the same electrode in parallel, that is, positive plates of the same electrode cell connected to each 
other and negative plates of the same cell also connected between them. The strap is also the device 
that connects adjacent cells in series. 

        The end post, named after the straps on the ends of the assembly, is welded with the terminal 
to form the positive and negative poles of the battery. The terminal pole connects the inside of the 
battery to its outside, making it possible to connect the loads that are powered by the accumulator 
through the terminal block. The external items as labels, fixing stops and densimeter vary with the 
manufacturer and has functions of product identification, fixing and storage; and conditions of 
battery use, respectively. 

(Fig.3.2 Sectional view of Battery) 

 

Source: Moura, 2017 



3.2 Types of Lead-Acid Batteries 
    Lead-acid batteries can be classified according to their intended application, as well as whether 
or not they require maintenance. Batteries are classified according to the application as (PAVLOV, 
2017): 

a) SLI Batteries, from Start, Lighting, Ignition; used in cars. Its main function is to put the 
internal combustion engine in operation through fast high current discharge. 

b) Stationary batteries, commonly used as energy sources backup, i.e. provide and store 
electrical power for use, on demand, in telecommunications systems, power plants, 
computer systems etc. Batteries for photovoltaic systems isolated are in that category. 

c) Traction batteries are industrial batteries for traction vehicles of handling in indoor 
environments such as forklifts, cars electrical, mining equipment etc. 

d) Special-purpose batteries for use in aircraft, submarines and special military equipment. 
 
Regarding maintenance, lead-acid batteries are classified as (PAVLOV, 2017): 

a) Flooded, English flooded batteries, with high antimony content in the alloy of the bars. 
These batteries require regular maintenance. Maintenance mostly consists of adding 
demineralized water to the battery cells. 

b) Maintenance-free or ventilated batteries, with positive lead-calcium tin alloy plates and, 
for the negative plate, lead-calcium alloy grids. This has been the type of battery that has 
been most used in isolated photovoltaic systems in Brazil (PINHO; GALDINO, 2014). 

c) Valve Regulated Lead-Acid Battery (VRLA). This type of battery, unlike the others that 
have the electrolyte in liquid state, has the electrolyte absorbed in the fiberglass blanket 
separator, the Absorptive Glass Mat (AGM); or has the electrolyte in gel form, also known 
as gel batteries. Both types are equipped with exhaust valves which, when the pressure 
rises, the valve opens in a predetermined value, releasing the gases. VRLA technology 
reduces the emission of gases by up to 95% when compared with batteries of liquid 
electrolyte (LINDEN, 2011). 
 

        A lead-acid battery of VRLA technology, according to authors as Pine and Galdino (2014) 
and Pavlov (2017); and manufacturers as Enersys (2017), Sacred-Sun (2018) and Moura (2018), 
must respect the temperature limit of operation between 20°C and 30°C. Also, according to the 
manufacturers, a VRLA battery has its service life reduced by half when operated at a temperature 
of 10°C above the recommended operating temperature of 25ºC. Hariprakash et al. (2008) 
concluded that the VRLA battery is the most suitable for use in isolated photovoltaic systems for 
lighting. 
        For our case, it was observed that the scenario in which the ventilated battery object of this 
study was inserted had adverse temperature characteristics to the technology VRLA. This 
reinforces the relevance of this work to implement the monitoring system for stationary lead acid 
batteries ventilated in view of the lack of published works with this scope specific. 
        Data from the company Acumuladores Moura S/A indicate that, in Brazil, stationary VRLA 
batteries are mainly used in back-up systems of energy for the telecommunications and data center 
market. Virtually 100% of VRLA stationary batteries are imported products. In 2016, around 140 



thousand 12V VRLA stationary batteries were imported for use in applications quoted. Generally, 
the places where VRLA stationary batteries are installed are equipped with air conditioning 
systems for temperature control of the environment, configuration that, for an isolated photovoltaic 
system, deserves a study feasibility and analysis of the impact of air conditioning load on 
consumption total of the main loads of the facility. 

3.3 Characteristics of Lead-Acid Batteries 
        The popularity of lead-acid batteries is partly due to their high open circuit voltage 
(approximately 2.1V per cell) among other factors positive as low cost, versatility and excellent 
reversibility of the electrochemical pair (DELL; RAND, 2001). Besides being able to offer high 
power, lead-acid batteries are reliable and easy to produce. The resources for its manufacture are 
practically unlimited. Around 95% of the materials used in a lead-acid battery are recyclable. 
Finally, a lead-acid battery can keep your energy stored for a long period of time (PAVLOV,2017). 

3.3.1 Capacity 

        The amount of charge stored in a battery is defined as Capacity, expressed in ampere-hour 
(Ah), represented mathematically as the integral of the discharge current in time, as follows 

𝐶𝑎𝑝𝑎𝑐𝑖𝑑𝑎𝑑𝑒 (𝐴ℎ) = ∫ 𝐼 𝑑𝑡 

where I is the battery discharge current in ampere; and t the duration of the discharge in hours 
(DELL; RAND, 2001). Cutoff voltage is defined as the value of the voltage at which the battery 
discharge is interrupted (PINHO; GALDINO, 2014). 

        One of the main parameters of the battery is the Nominal Capacity, defined as a conservative 
estimate by the manufacturer, of the total number of ampere hours that can be taken from a new 
cell or battery, for the specified values (according to certain standards or norms, or by the 
manufacturer itself) of discharge current, temperature and cut-off voltage (PINHO; GALDINO, 
2014). In Brazil, from in accordance with Inmetro Ordinance No. 004 (2011) establishing the 
criteria for the Conformity Assessment Program for Energy Systems and Equipment photovoltaic, 
the manufacturer of lead-acid batteries for photovoltaic systems shall specify the nominal capacity 
for a 10-hour scheme at a 25°C temperature and 10.5 volts cut-off voltage. 

        A widely used concept is the charging/discharge rate concept which indicates the charging or 
discharging current used to charge or discharge the battery, respectively. For example, a battery 
that has a C10 of 200Ah, means that this battery provides in 10 hours (discharge rate C10), a total 
capacity of 200Ah, when discharged with a constant current of 20A. 

        The relationship between the current with which the battery is discharged (discharge rate) and 
the time to reach the cut-off voltage is established as, the higher the discharge current, the shorter 
the time to reach the cut-off voltage, and therefore the lower battery capacity (LINDEN, 2011 and 
PINHO; GALDINO, 2014). Figure 3.3a) presents this relationship graphically through discharge 
curves with distinct currents. With extremely low discharge current (Curve 2) the discharge 
approaches the theoretical voltage and capacity (Curve 1). As the current increases (Curve 3 to 5), 
the voltage at the discharge decreases, the slope of the curve if shows more pronounced, and 



available capacity in ampere-hours is reduced. At Figure 3.3b) it is observed that, if the battery 
reaches a certain voltage, by example, the cutting voltage, when discharged with a given current 
and the discharge continue with a lower current, its voltage will rise and a capacity will be obtained 
until the cutting voltage is reached again. 

(Fig.3.3 Characteristic of battery voltage during discharges with different currents) 

 

Source: Linden, 2011. 

3.3.2 Energy Efficiency 

        The amount of power taken from a battery, measured in watt-hours, is always less than the 
power used to recharge the battery. The ratio of energy withdrawn (discharge) to energy input 
(recharge) is defined as the energy efficiency of charging and discharging the battery (DELL; 
RAND, 2001) and is made up of the coulombic efficiency and voltage efficiency, defined below 
(PINHO; GALDINO, 2014): 

a) Coulombic or ampere-hour efficiency (Ah): is the ratio between the amount of electrical 
charge (Ah) that a cell provides at discharge and the amount of electrical charge needed at 
recharging to restore the initial state of charge, calculated by the ratio between the integrals 
of the current over the time of discharge and charge. A lead-acid battery has a typical 95% 
coulombic efficiency. 

b) Voltage or voltage efficiency (V): is the ratio of the average voltage at the discharge of a 
cell or battery to the average voltage at the load necessary to restore the initial capacity. In 
a typical photovoltaic system, the 12V lead-acid battery is charged at an average voltage 
of 13.8V and discharged at an average voltage of 12.5V, thus the voltaic efficiency 
approaches 90.5%. 

c) Energy efficiency or watt-hour efficiency (Wh): also known as overall efficiency, it is the 
product of the coulombic and voltaic efficiencies. According to the above values, for a 
lead-acid battery, it is established that the energy efficiency is approximately 86%. 

        For many user’s energy efficiency is irrelevant due to the low cost of electricity and why 

other factors are more relevant in choosing a battery. In isolated photovoltaic systems where the 
battery should be the most efficient possible to avoid wasting energy generated by the solar panel 
array energy efficiency becomes a parameter of relevance (DELL; RAND, 2001). For the case of 



coulombic efficiency, specifically, keeping its value the highest possible is a challenge for the 
battery design mainly when intended to applications involving many loading and unloading cycles, 
such as a system photovoltaic, because every cycle there is a loss of available battery capacity, as 
can be seen in Figure 3.4 (HUGGINS, 2009). In Figure 3.4 it can be seen that even efficiencies 
close to the unit can be important consequences every cycle. For example, a loss of 0.5% of 
capacity available per cycle provides an available capacity of 78% of the capacity original after 50 
loading and unloading cycles. After 100 cycles, only 61% of original capacity remains. This 
situation worsens if the coulombic efficiency is minor. 
 
(Fig.3.4 - Influence of the coulombic efficiency on the available capacity during loading and 
unloading cycles.) 

 
Source: Huggins (2009) 

3.3.3 Specific Energy 

        Specific Energy is the energy stored per unit mass, expressed in watt-hours per kilogram of 
mass (Wh.kg-1). 

        The lead-acid battery shows the lowest specific energy among the major battery technologies, 
in order from 30 to 40Wh.kg-1 while a lithium-based battery has between 80 and 200 Wh.kg-1 of 
specific energy. This is due to the high atomic mass of lead which results in an excessive total 
weight of the battery, configuring the biggest disadvantage of the batteries of lead-acid (PAVLOV, 
2017 and DELL; RAND, 2001). 

(Table 3. Main features of various battery technologies) 



 

Source: Pavlov (2017) 

 

3.3.4 Operating Voltage 

        The nominal voltage of a lead-acid cell is 2 V. The voltage of open circuit is a direct function 
of electrolyte concentration. The lead acid cell operates with a sulphuric acid solution (H2SO4) 
with a concentration of up to 1. 28g.cm-3 at 25°C. 

        For a moderate discharge, the cut-off voltage is 1.75V per cell, while for high discharge rates 
at low temperatures, the cut-off voltage can be as low as 1V per cell (LINDEN, 2011). 

        As shown in Item 2.2.2, the higher the discharge current of a battery, the shorter the time to 
reach the cut-off voltage, and therefore the lower the battery capacity (LINDEN, 2011; DELL; 
RAND, 2001 and PINHO; GALDINO, 2014). Figure 3.5 shows this typical ratio for a lead acid 
battery. In the 104A current curve, it is observed that the battery reaches a voltage per cell of 
approximately 1.5V in 30 minutes, resulting in a capacity of 52Ah (104A x 0.5h), observed in the 
abscissa axis. With a current of 65A, the battery reaches a voltage per cell of 1.6V in 1-hour time, 
resulting in a capacity of 65Ah (65A x 1h), i.e. a capacity greater than the first case. 

        Finally, with a current of 11.3A, the battery takes 10 hours to reach a voltage per cell of 
approximately 1.75V, resulting in a capacity of 113Ah. 

(Fig.3.5 Discharge curves of a lead-acid battery with nominal capacity in 5h, C5, 100Ah.) 



 

        According to the literature, there are several methods for charging a lead-acid battery. There 
are four basic charging methods, namely constant current method, constant voltage method, 
constant current and constant voltage method and finally taper method, detailed below and 
graphically illustrated in Figure 3.6 (DELL; RAND, 2001): 

a. constant current charging consists of using a constant current during the entire 
loading process. The value of the current must be chosen carefully since if the 
current is too low, the charging process is very slow if the current is too high, there 
will be excessive gasification. Ideally, a high current is employed during the first 
half of the loading process, then by a smaller current in the subsequent stages (load 
with two stages). According to Linden (2011), this process is not largely used for 
lead-acid battery charging. 

b. constant voltage load: when under constant voltage load, the value of the current 
supplied is determined by the difference in voltage between the charger and the 
battery. The current starts at a high value and decreases approximately 
exponentially as the load proceeds. This method of loading is employed in a use of 
the battery known as fluctuation which is characterized by keep the battery fully 
charged through continuous application of a specified voltage, known as fluctuation 
stress. A voltage should be carefully limited to avoid a current which would result 
in an overload and increase in the rate of loss of water (LINDEN, 2011). The 
fluctuation regime is mainly applied on stationary batteries. The fluctuation voltage 
for a lead-acid is between 2.17 and 2.25V. 

c. Constant current and constant voltage charging: at this charging rate the current 
remains constant until the battery reaches a predetermined voltage value where 
gasification probably starts. At this point, the voltage remains constant and the 
current decreases exponentially, following the example of the constant voltage 
charging method. 



d. Taper load: the current starts at a high value and decreases as the battery voltage 
increases. Generally, the end of the charge is controlled by a fixed voltage. 
Domestic chargers for use in automotive batteries generally use this type of charge. 
 

(Fig.3.6 Charging methods a) constant current charging - single stage; b) constant current charging 
- two stages; c) constant voltage charging; d) taper charging - single stage; e) constant current and 
constant voltage charging.) 

 

 

 

3.3.5 Operating Temperature  

        The temperature at which the battery is discharged has a pronounced effect on its capacity 
and voltage characteristics (LINDEN & REDDY, 2011). According to the standard document 
ABNT NBR 14199 (2018), for a lead-acid battery, the capacity value obtained at any temperature 
must be corrected to the reference temperature of 25°C according to 



 
Where; 

• C25: is the corrected capacity for 25°C; 
• CT: is the capacity at temperature T;  
•  λ: is the temperature coefficient for the capacity (0.006 for regimes 1h and 0.01 for 

regimes ≤ 1h); 
• T: is the temperature of the electrolyte or battery, expressed in degrees Celsius (°C).  
•  k is the capacity correction factor at temperature T. 

 Figure shows, for a commercial lead-acid battery, the k-factor curve for capacity correction     
obtained by temperature T. 

(Fig.3.7- Correction Factor of Capacity) 

 

Source: Moura, 2019 

 

3.3.6 Cyclic Life  

        Cyclic life is defined as the number of times the battery can be effectively recharged before 
its stored capacity is below 80% of its maximum capacity (HADDAD; SHAHAT; KALAANI, 
2015). High cyclic life is a desired feature for applications such as isolated photovoltaic systems, 
where the battery experiences daily charge cycles and download (PINHO; GALDINO, 2014). 
Applications involving many cycles require the battery to be built in such a way that it has an 
extremely low loss of capacity per cycle, i.e. have a coulombic efficiency as high as possible 
(HUGGINS, 2009). 



        The cyclic life of a battery is critically dependent on the cyclic regime to which she is 
submitted, that is, her cycling history. Cycles with discharge Depth of Discharge (DOD) depth, 
reduce life battery cyclic due to the appearance of sulphation, a phenomenon that typically occurs 
during battery discharge and is characterized by the lead (PbSO4) in the electrode plates. Although 
it is a natural product of process of energy conversion in the battery, lead sulphate crystals can 
become larger and larger if the battery remains flat for a long time, making it difficult to convert 
lead sulphate back into active material, which results in loss of battery capacity and cyclic life 
(PINHO; GALDINO, 2014). Still, batteries are usually designed to withstand a high number of 
cycles (>300 cycles) with depth of discharge around 25% of your nominal capacity (DELL; 
RAND, 2001). 

        In addition to the depth of discharge, when the battery's operating temperature increases, its 
capacity rapidly deteriorates (PINHO; GALDINO, 2014). Figure 3.8 shows the cycling resistance 
behavior of a lead-acid battery as a function of the depth of discharge to which it is subjected. 
Figure 3.9 shows typical curves of the effect of discharge depth and temperature on battery life. 

        In Brazil, according to Inmetro Ordinance No. 004 (2011) which establishes the criteria for 
the Conformity Assessment Program for systems and equipment for photovoltaic energy, for lead-
acid batteries, shallow cycle represents a depth of discharge (DOD) of 25% of the nominal capacity 
(C10) of the battery, while in deep cycle, the battery suffers a depth of discharge of 75% of its 
nominal capacity (C10). To comply with the ordinance, the lead-acid battery should have a 
capacity above 80% of its C10 nominal after at least 150 cycles divided into 50 deep cycles (Phase 
A) followed by 100 shallow cycles (Phase B). During the cycles, the battery must be at 
environment with a temperature of 40°C. The capacity test is performed at a temperature of 25°C. 
Generally, the final amount of cycles that the battery supports will be reported by the manufacturer 
in multiples of 150, i.e. 150 cycles, 300 cycles, 450 cycles, etc. 

        In practice, in isolated photovoltaic systems, deep cycles occur when recharging the battery 
is not sufficient to replenish the amount of charge taken to power the devices throughout the day. 
Therefore, the state of charge of the battery is slightly reduced with each daily cycle and, if it 
happens for a period of several days, the result will be a deep cycle (PINHO; GALDINO, 2014). 
During normal battery operation, the maximum discharge depth should be limited. For 
photovoltaic system batteries, the maximum discharge depth should be 50% of the nominal 
capacity in a 10-hour regime (ZHAO, 2013), i.e. a battery of nominal capacity of 200Ah should 
not exceed a discharge of 100Ah during its use. 

        Operational experiences reveal that the lifetime of batteries used in photovoltaic systems is 
generally unsatisfactory compared to the lifetime in other traditional applications. Data from 
battery manufacturer Acumuladores Moura S/A (2017) show that in isolated solar systems, 
batteries have an average life of 2 to 3 years. 

(Fig.3.8 Number of cycles depending on the depth of discharge of a lead-acid battery) 



 

Source: Moura,2016 

(Fig.3.9 Typical curves of the effect of discharge depth and temperature on battery life) 

 

Source: Pinho e Galdino (2014) 
 

3.3.7 Advantages and Disadvantages  

        The main advantage of lead-acid battery is its low cost compared to other rechargeable battery 
technologies. On the other hand, lead-acid technology has its biggest villain in weight. The 



following are the main advantages and disadvantages of lead-acid batteries available in various 
literature: 

Advantages: 

a) Low cost and ease of production. 
b) Available in a wide range of sizes and capacities (from 2Ah to 3000Ah). 
c) Good performance for high discharge rates (>1000A). 
d) Moderate performance at low (<0°C) and high temperatures (>45°C). 
e) Electrically efficient (coulombic efficiency higher than 95%). 
f) High voltage cell (open circuit voltage greater than 2V). 
g) Good performance when on a float. 
h) Available in maintenance-free versions (without water replacement). 
i) Components are easily recycled (approximately 95% of materials are 

recyclable). 
Disadvantages: 

a) Relatively low cyclical life, however, up to 2000 cycles can be obtained with 
special projects. 

b) Limited specific energy of the order of 30 to 40 Wh.kg-1 
c) Long-term storage (over 3 months) with the battery discharged can lead to 

irreversible phenomena such as sulphation, a phenomenon characterized by the 
formation of lead sulfate crystals in the active material of the plates of a lead-
acid battery. 

d) Difficulty in manufacturing in very small sizes. 
e) The evolution of hydrogen in some projects results in explosion risk. 

 

4 Charge Controllers 
        Charge controllers regulate the power coming from the photovoltaic modules to prevent the 
battery from reaching the overload state. Disconnecting the battery to prevent it from reaching a 
very low voltage is also a crucial function of the charge controller (KALOGIROU, 2013). Charge 
controllers are critical components in isolated photovoltaic systems, because if they fail, the battery 
may suffer irreversible damage (PINHO; GALDINO, 2014). 

        The charge controller is the link between the photovoltaic module, the battery and the charge. 
Some of its main requirements are: low internal consumption (<5mA), high efficiency (96 to 98%) 
and disconnection of charge in case of deep battery discharge (LUQUE; HEGEDUS, 2011). 
Among the main desirable features are: three stage charging and maximum power point tracking, 
MPPT (PINHO; GALDINO, 2014). 

        Modern controllers for isolated photovoltaic systems are microprocessor-based power 
electronics that operate in Pulse Width Modulation (PWM) and charge the batteries in the 
following stages: coarse, adsorption and fluctuation, which may include a fourth phase, 
equalization, as illustrated in Figure 4.1. 



        In the Coarse phase, which characterizes the start of charging, when the battery is discharged, 
the controller applies to the batteries the maximum current that the photovoltaic module can 
provide, until they reach a pre-established end of charge voltage. In the thick phase, 80-90% of the 
capacity is restored. 

        In the Absorption phase the battery voltage is kept constant at the end of charge voltage for a 
certain period of time until the battery is considered fully charged. The current supplied by the 
photovoltaic module is controlled in PWM and is gradually reduced. 

        In the Float phase the battery voltage is also kept constant with the current controlled in PWM, 
however, at a level that is much lower than the voltage of end of charge. This phase is maintained 
indefinitely until the battery discharges and its voltage stays below the fluctuation voltage for a 
certain period of time, when then a new cycle of coarse charge will be fired. 

        Equalization is a phase in which the controller applies a higher voltage to cause a controlled 
overload in the battery and obtain a bubbling in its electrolyte, a result of the gasification generated 
inside the battery. It is recommended by the manufacturers of both the battery and the charge 
controller that this charge occurs every 28 days to homogenize the electrolyte and prolong the life 
of the battery. 

(Fig.4.1 Charge algorithm of a commercial charge controller. Thick phase, absorption, fluctuation 
and equalization) 

 

Source: Morningstar, 2018. 

 



4.1 Inverter 
        An inverter is an electronic device that supplies alternating current (AC) power from a direct 
current (DC) power source (PINHO; GALDINO, 2014). The inverters can be connected to the 
concessionaire's power grid or isolated. 

        Inverters for isolated photovoltaic systems must meet important requirements such as: input 
voltage between 12V and 48V, output voltage as close as possible to sinusoidal standard, low 
fluctuation in output voltage and frequency, high efficiency in case of partial load, withstand 
overload for equipment start-up conditions (e.g. refrigerator) and withstand short circuits 
(LUQUE; HEGEDUS, 2011). 

        Inverters of the type connected to the grid must additionally have their parameters 
synchronized with those of the power utility network (voltage, frequency, etc.) (PINHO; 
GALDINO, 2014). 

 

 

5 State of Charge (SOC) 
        The State-Of-Charge (SOC) charge state of a battery is defined as the ratio between the 
difference in the nominal capacity and the amount of charge taken from the battery since its full 
charge state, at the nominal capacity, as follows 

                     (5.1) 

in which Cnominal is the nominal capacity and Cremoved is the quantity of load withdrawn in the 
discharge.  

        Estimating the state of charge is one of the most important issues in battery applications. 
Accurate SOC estimation provides efficient battery utilization and stable battery management, 
preventing the system from an unexpected interruption as well as extending battery life. Many 
systems are sensitive to deep discharge or overcharging conditions because an excessively high 
or low SOC can cause irreversible damage to the battery. (PILLER, 2001) 

        The battery object of this work is lead-acid technology, a technology that has reached the 
stage of maturity and has been used in several engineering applications. Lead-acid batteries 
continue to be the main energy storage unit for applications in hybrid electric vehicles and 
photovoltaic systems. Ideally, lead-acid batteries commonly used in microgeneration systems 
should never be discharged below 50% of their nominal capacity.  However, after a discharge close 
to 50% of their nominal capacity, the batteries should be fully recharged before the next discharge 
cycle. Usually, it is assumed that batteries are best operated in high SOCs to optimize their service 
life. To protect the battery from deep discharges, manufacturers recommend a limit of 80% SOC, 
which when reached should be fully recharged before the next discharge. Deep discharges reduce 



the cyclic life of the battery by approximately 75% over the life of a battery that experiences a 
minimum state of charge of 80% during the cycles. (MOURA,2017) 

5.1 SOC monitoring methods for lead acid batteries 
        Lead acid batteries are used in a number of applications requiring high reliability, robustness 
and predictability. A reliable state-of-the-art estimation strategy is necessary for uses such as 
hybrid vehicles, electric vehicles and telecommunications power supplies, and therefore several 
ways of estimating SOCs are widely known in the industry. Accurate SOC estimation methods 
may prevent the battery from being deeply discharged or often overcharged, both of which 
significantly reduce the battery life remaining. Before the methods are presented, it is important to 
state the accuracy of the SOC estimation required for the different battery applications. 

        The battery serves as a starter for the motor in Hybrid Electric Vehicles (HEV) and any SOC 
readings which are not precise with an error of more than 5 percent will seriously affect the fuel 
output of the engine and the motor operations. For this reason, the SOC estimation in HEV 
applications must be as accurate as possible, with an error value never exceeding 5% of the 
measurement capacity. 

        However, the battery SOC determines the distance the vehicle can travel in (EV). The SOC 
battery in electric vehicles resembles the conventional vehicle fuel tank, which is notoriously 
imprecise (usually about 5 percent measurement error) so that the borderline of 5 percent -7 percent 
errors in EV applications may be appropriate. It is important not to misunderstand the battery 
capacity with SOC while designing the state of charge estimation method. SOC estimation depends 
on the battery aging process and after a certain number of charging / discharging cycles 20 percent 
or greater error will occur. For the following reason, the estimation of battery’s state of charge 
should be battery’s energy content and power capability. 

       The estimation of the SOC of the battery has more or less complexity depending on the type 
of battery and the application in which the battery is being used (PILLER; PERRIN; JOSSEN, 
2001). The various mathematical methods for estimating SOC are classified according to the 
methodology. The estimation methods are divided into four categories (WATRIN; BLUNIER; 
MIRAOUI, 2012; PRAJAPATI et al., 2011): 

(i) Direct Measurement: Physical properties such as voltage, and impedance of the 
battery is used in this method. 

(ii) Book-keeping Estimation: Discharging current as input and to calculate SOC 
integrates the discharging current over time.  

(iii) Adaptive Systems: Various new adaptive systems are used for the calculation of SOC 
now a days. These are the self-designing and can automatically adjust the SOC for 
different discharging conditions. 

(iv) Hybrid Methods: The hybrid methods produce good estimation of SOC as compared 
to other methods used individually. These methods allow a globally optimal estimation 
performance.  

(Table 5 presents the specific mathematical methods for estimating SOC by category) 



 

Source: Chang (2013) 

5.2 Kalman Filter 
        In 1960, Rudolf Kalman published an article in which he proposed a solution recursive to the 
problem of discrete linear signal filtering that remained widely known as the Kalman filter 
(BISHOP et al., 2001). The Kalman consists of a set of mathematical equations which provide a 
efficient computational means to estimate the state of a process in a way recursive. The purpose 
of the filter is to extract information from data that contain noise, uncertainty or error (RHUDY; 
SALGUERO; HOLAPPA, 2017). 

        The Kalman filter was designed to operate in systems represented in the discrete linear state 
space format, i.e. systems of the form 

 

 

where A is the system matrix, B is the input matrix, u is the vector representing the system input, 
x is the system state vector, H is the state measurement matrix, and y represents the system output 
vector. The variables wk-1 and vk are random and represent the process and measurement noise, 
respectively. They are assumed to be independent variables.  The dynamics of the system states 
are described by (5.2) while (5.3) describes the system output (BISHOP et al., 2001). 

        The state vector, x, is composed of the state values estimated by the filter. An important 
distinction between vector x and vector y (output) is that, commonly, the system output is the result 
of interest, however, for state estimation problems using Kalman filters, the states, i.e., vector x, 
are the desired results. The output vector, y, is composed of measurements physically made in the 
system that are transformed for later comparison with the estimated filter states. This comparison 



is the parameter that the filter uses to correct its state estimation (RHUDY; SALGUERO; 
HOLAPPA, 2017). 

        The input vector, u, contains the input information that defines system dynamics. Its value 
can be derived from sensor measurements. Matrices A, B and H vary according to the problem 
and are used in the equations of a linear system depending on their states and inputs. Generally, 
these matrices are composed of constant values (RHUDY; SALGUERO; HOLAPPA, 2017). 

 

5.3 Algorithm of Kalman Filter 
        The Kalman filter performs a prediction followed by a correction based on measurements 
(with noise) to estimate the system states, i.e. the filter estimates the process using a form of 
feedback control (BISHOP et al., 2001). 

        The Kalman filter equations are divided into two groups: time update equations and 
measurement update equations. The update time equations are responsible for projecting the 
estimates of the current state and covariance over time to obtain the so-called a priori estimate. 
The update equations of the measurement are responsible for feedback, i.e., for incorporating a 
new measurement into the a priori estimate to obtain an improved a posteriori estimate. The update 
equations in time are also defined as prediction equations, while the update equations of the 
measurement are defined as correction equations (BISHOP et al., 2001). The equations that make 
up the filter algorithm, illustrated in Figure 5.1, are presented below. 

        In general, the Kalman filter estimates the state 𝑥 ∈ ℜ𝑛 of a discrete process that is governed 
by (5.2), with measurement z ∈ ℜ𝑚, given by 

 

(Fig. 5.1 Kalman filter recursive algorithm) 

 



Source: Bishop et al., 2001 
         

        In the algorithm equations illustrated in Figure 5.3, the minus sign in the variable indicates 
that it is an a priori estimate, that is, before the correction. The circumflex accent above the variable 
indicates that it is a vector. As an example, the variable 𝑥 ̂ - 𝑘 represents the vector of estimated 
states at instant k. 

        In the algorithm in Figure 5.3, the first step is to estimate the state vector by 

 

from initial estimates for the vector �̂�- 𝑘. 

       Then the covariance matrix of the estimate error, P, is estimated by 

 

from initial estimates of P, in which Q is the covariance matrix of process noise. 

       Once the estimates have been defined, the Kalman (K) filter gain matrix is calculated by 

 

where R is the covariance matrix of the measurement noise, P is the covariance matrix of the 
estimate error and H is the state measurement matrix of the system. 

        The state vector is then corrected by weighting the term (𝑧𝑘 - 𝐻�̂�- 𝑘) by the filter gain matrix, 
as per 

 

        The term (𝑧𝑘 - 𝐻�̂�- 𝑘) is defined as the measured or residual innovation, where zk is the 
obtained measurement and 𝐻�̂�- 𝑘, the estimated measurement, being �̂�- 𝑘 determined by (5.5).  

        Similarly, the covariance matrix of the estimate error, P, is corrected according to 

 

        After executing an algorithm cycle, an estimate of the system states is obtained, represented 
by the vector �̂�𝑘, which is the result of interest; and the covariance matrix of the estimate error, 
represented by 𝑃𝑘. The algorithm is then run again, taking as input the estimated values. 

 



5.4 State of the Art 
        As presented earlier in this chapter, Kalman filter is an algorithm for estimating the internal 
states of a dynamic system. In our case, the battery is the dynamic system and the internal state is 
the SOC (PILLER; PERRIN; JOSSEN, 2001). Gregory L. Plett was the pioneer in the use of 
Kalman filter for battery equivalent circuits (RAHN; WANG, 2013). 

        Bhangu et al. (2005) used the Kalman filter technique to estimate the SOC of a 2V lead-acid 
battery and 6Ah capacity in 8 hours, of AGM technology, subjecting it to standard loading and 
unloading cycles taken from Hybrid Electric Vehicles (HEV) use profiles. The results showed an 
approximate 2% error for SOC when estimated by Kalman filter; in contrast, for the coulomb-
counting technique, the error shown was of the order of approximately 15% for the same cycles 
loading and unloading patterns. 

       Generally, the kalman filter is limited to linear processes, thus being, Vasebi et al. (2007) and 
Benila, Vasantharathna and Geetha (2014) used the Extended Kalman Filter based technique 
(EKF), which consists of the linearization of a nonlinear state space model, as is the case with the 
battery. Vasebi et al. (2007) submitted the lead-acid battery of 2V and 6Ah capacity to standardized 
load and unload cycles and the estimation of the SOC by the dynamic method (EKF) showed a 
difference of 3% when compared to the static method of measuring internal resistance to estimate 
the SOC, the method used by the vehicle system used in the study. Benila, Vasantharathna and 
Geetha (2014) report errors of the order of 2% in the simulation of the SOC estimation of lead-
acid batteries using the EKF technique. 

        Piao et al. (2010) used the Kalman unscented filter technique (UKF) which also uses a 
nonlinear transformation algorithm. The lead-acid battery was subjected to three usage profiles, 
namely constant current, constant voltage (large scale current variations) and loading and 
unloading pulses. For the profile of constant current, the average error of the SOC estimate was 
less than 1%. The profile of constant tension showed an average error of 5% up and down. Finally, 
the loading and unloading pulse profile showed a maximum error of 10%. 

        Marchildon, Doumbia and Agbossou (2015) implemented a method called the Two-Pulse 
Charge Test in a laboratory and validated it on a 180Ah (C20) lead-acid ventilated battery. The 
method requires about 5 minutes for SOC estimation. 

        Loukil, Masmoudi and Derbel (2017) implemented the SOC estimator in an Arduino 
microcontroller and conducted experimental laboratory tests with a 7Ah capacity VRLA 12V 
battery. The work of Loukil, Masmoudi and Derbel (2017) is quite similar to this work, however, 
the battery used is of low capacity VRLA technology and the tests were conducted in laboratory 
and not in the field. 

        Costa, Araujo e Carvalho (2016), Ting et al. (2014) and Benila, Vasantharathna and Geetha 
(2014) estimated the SOC through the technique of filters of Kalman for batteries of different 
technologies in simulation environment. Bhangu et al. (2005), Vasebi et al. (2007) and Loukil, 
Masmoudi and Derbel (2017) obtained satisfactory experimental results in the laboratory using the 
same technique applied to lead-acid batteries of the VRLA type for automotive applications, in the 
cases of Bhangu et al. (2005) and Vasebi et al. (2007), specifically. 



6 MATERIALS AND METHODS 
       This chapter presents the materials used in the study as well as the methods applied to estimate 
the state of charge of the lead-acid battery. 

6.1 Material 
 

6.1.1 Studied Photovoltaic System 

        The isolated photovoltaic solar system studied was a solar pole located in the parking lot of 
the Distribution Center of the company Acumuladores Moura S/A, located in the city of Belo 
Jardim, interior of the state of Pernambuco, whose average annual temperature is 30°C. 

        Besides batteries, the system consisted of photovoltaic modules, luminaries and charge 
controllers whose main technical information is presented in Annex A. Figure 6.1 presents an 
image of the photovoltaic pole used in the study. 

        According to the project, which was not part of the scope of this work, each pole consists of 
two independent solar systems. Each solar system consists of 01 panel, 01 charge controller, 01 
battery and 01 luminaire. To this job, only one of the solar pole systems had its battery 
instrumented for the state of charge estimation study. The battery was lead-acid, stationary and 
ventilated type. Figure 6.2 shows the diagram of blocks of the solar pole studied. 

(Fig.6.1 Solar pole used for battery study) 

 



(Fig.6.2 Solar pole block diagram studied) 

 

6.1.2 Electronic Circuit 

        The electronic remote monitoring circuit responsible for estimating the state of charge of the 
battery was developed on the Arduino platform with the model MEGA2560. One premise for this 
circuit, since it was powered by the battery of the isolated photovoltaic system itself, was that its 
energy consumption should be minimal so as not to represent a considerable load for the system. 
The impact of the circuit consumption on the system was evaluated in relation to the state of charge 
experienced by the battery at the end of daily discharges with and without the circuit installed in 
the system. 

        The circuit was installed on the solar pole and, as will be seen below, through specific sensors 
measured system quantities such as voltage, current and ambient temperature. In addition to the 
sensors, the circuit was equipped with some peripheral devices as illustrated in the block diagram 
in Figure 6.3. 

(Fig6.3. Electronic circuit block diagram) 

 



        Figure 6.4 shows the electrical schematic of the signal conditioning circuit in addition to the 
peripherals of the microcontroller, such as the liquid crystal display of the Liquid Crystal Display 
(LCD), the Secure Digital Card SDcard, and the Real Time Clock (RTC). The circuitry in Figure 
6.4 is repeated in Appendix E in a larger manner for better viewing. 

        The sensors used are to measure the constant electrical current (C.C.) and temperature 
quantities. The current sensor is the integrated circuit ACS712 that uses the hall effect and allows 
to measure electrical current in both directions, having its maximum nominal values of ±20A. The 
temperature is monitored through the LM35 sensor, a precision integrated circuit whose output 
voltage is linearly proportional to the temperature in degrees (°C). For the signal conditioning 
circuit the LM324 integrated circuit from the manufacturer Texas Instruments was used, which is 
composed of four operational amplifiers that have the characteristic of no generate polarizing 
voltage at their outputs when their inputs are zero (TEXAS, 2015), allowing the entire 10-bit 
resolution of Arduino's analog-to-digital converter to be used for the range of interest values of the 
magnitude sampled in question. To ensure the maximum possible resolution, the following were 
configured gains in the operational amplifiers suitable for each greatness. 

        Figure 6.5 presents the structured circuit for monitoring voltage, current and battery SOC 
estimate as well as ambient temperature monitoring, with data storage on memory card. 

        The communication system for remote monitoring was implemented with the aid of the 
GSM/GPRS SIM900 module. The module allows the exchange of data using the GSM cellular 
network of the English Global System for Mobile communication, i.e. through specific commands 
it is possible to send text messages to any mobile phone number as well as providing data to the 
Internet through the GPRS service of General Packet Radio Service. For the module to work 
properly it is necessary to equip it with a card valid SIM, from Subscriber Identify Module, with 
a mobile phone account active. At your installation site, telephone service must be available 
mobile. Figure 6.6 presents in detail the GSM/GPRS SIM900 module. 

        Figure 6.7 and Figure 6.8 present, respectively, the complete circuit for remote monitoring of 
the batteries and the internal view of the battery compartment on the solar pole, detailing its 
components and connections. 

         The MATLAB mathematical software was used for data treatment and battery parameter 
calculations, as well as simulations to validate the Kalman filter method to estimate the state of 
charge. 

(Fig.6.4 Electrical schematic of the structured circuit for battery monitoring) 



 

 

 

(Fig.6.5 Battery monitoring circuit) 

 

 



 

(Fig.6.6 SIM900 GSM/GPRS communication module) 

 

(Fig. 6.7 Electronic circuit implemented for remote monitoring of battery charge status) 

 



(Fig.6.8 Internal view of the battery compartment (components and connections)) 

 

 

6.2 Methods 
        The method chosen for estimating the state of charge (SOC) of the lead-acid ventilated 
stationary battery was the Kalman filter method due to its low memory and computational capacity 
requirements (PEI et al., 2017), since the algorithm is embedded in a low-cost microcontroller; 
besides being quite appropriate for batteries of photovoltaic systems and calculating in real time 
the state of charge of the battery (CHANG, 2013). 

        As seen in Section 3.2, the Kalman filter was designed to operate in systems represented in 
the discrete linear state space format, thus, to estimate the SOC per Kalman filter a dynamic model 
of the battery is required, in the form of state variable equations (BHANGU et al., 2005). The 
Kalman filter estimates internal states of the battery model that can be gauged only through 
complex techniques such as impedance spectroscopy (CHANG, 2013). These internal states, as 
presented in Item 4.2.1, have correlation with the state of charge of the battery. 

 

6.2.1 Battery Model 

        Figure 6.9 shows the generic CR model of the battery proposed by Johnson, Pesaran and Sack 
(2000). In the RC model of the battery the capacitor Cb (Cbulk) characterizes the battery's ability to 
store charge, while Cs (Cs Surface), models the surface capacitance and diffusion effects within the 
cell. The voltage of the capacitances Cb and Cs is Vcb and Vcs, respectively. Vt or V0 is the voltage 



in battery terminals or output voltage. In this model, the charging current is positive, and the 
discharge current is negative. 

(Fig.6.9 Battery RC model) 

 

Source: Vasebi et al., 2007 

        The calculation of the parameters is initially carried out from data experiments from actual 
battery capacity tests in regime nominal (C10) and the relationship between the SOC and the open 
circuit voltage (OCV).  

(Fig.6.10 Batteries under test in the thermostatic bath) 

 

 

 



(Fig. 6.11 Simplified connection diagram between battery cycling equipment, computer and test 
batteries) 

 

 

 

 

7. Results 
        This chapter presents the experimental results of the method for battery modeling as well as 
the results of simulations and field tests performed using the Kalman filter to estimate the state of 
charge of vented lead-acid stationary batteries. 

7.1 Battery Design 
7.1.1 Pre-treatment Test 

        For the pre-treatment test, the battery capacity of 200Ah in 10-hour regime was subjected to 
04 discharges with constant current, equal to 20A (200Ah/10) until the battery reaches 10.5V. 
Figure 7.1 shows the graph complete loading and unloading of the previous treatment. It is noted 
that during the two-hour break after 24 hours of recharging, the battery voltage tends to to stabilize 
at the open circuit voltage value for the 100% state of charge, around 13V. After each recharge, 
the open circuit voltage increases. This behavior justifies the need for prior treatment aimed at 
stabilizing the battery capacity. Figure 7.3 shows the battery voltage curves overlapping for each 
of the discharges made into the sample. The results of the C10 capacities obtained are presented 
in Table 7. In Table 7 it is an increase in battery capacity can be observed with each discharge. 
This is if justifies the fact that the active battery material has not been completely transformed in 
PbO2, for the positive plate, or Pb, for the negative plate, during the training in its manufacture, 
with this transformation taking place during the consecutive pre-treatment reloads (PINHO; 
GALDINO, 2014), already that it was a newly manufactured battery. 

 (Table. 7. Results of capacity tests (C10) during pre-treatment of sample) 



 

 

7.1.2 Obtained Capacity Test  

         After the previous treatment, for the determination of the obtained capacity, it was discharge 
with current of C10, 20A, until the battery reaches the voltage of 10,5V. The capacity obtained is 
shown in Table 7.1.2 while Figure 7.2 shows the battery voltage curve together with the state of 
charge curve (SOC) during the discharge which was obtained through the Coulomb-counting 
technique or integration of current in time, from the discharge current data collected by the 
automatic loading and unloading equipment, Digatron. 

(Table.7.1 Capacity test result (C10) after pre-treatment) 

 

 

(Fig. 7.1 Pre-treatment. Consecutive discharges for battery stabilization) 

 



(Fig.7.2 Overlapping discharge curves of the pre-treatment sample) 

 

(Fig.7.3 C10 discharge curve overlapping battery state of charge (SOC) curve) 

 

 

 

 



7.1.3 Test of Determination of VOC x SOC ratio  

        For the determination of the relation OCV x SOC a previous study was carried out to 
determine the average time needed for the battery to reach and stabilize the open circuit voltage at 
equilibrium value, OCV. Figure 7.4 shows the curve of battery response from the moment the 
charge is disconnected, i.e. when the current is equal to 0A, until stabilization at the open circuit 
voltage value. An open circuit rest was performed in different states of charge, 70%, 60% and 50% 
of nominal capacity. It was observed that the battery took around of two hours until it stabilized 
its tension, as could be seen by the times in highlighted in the chart. This two-hour time was used 
for the rest of the battery between discharges interspersed in the curve determination procedure 
OCV x SOC, as shown below. 

(Fig. 7.4 Response time until battery reaches open circuit voltage (OCV)) 

 

 

        According to the method presented in Item 4.2.2.3, the battery was submitted to partial 
discharges of 1h with current of C10, interspersed with periods of 2-hour rest in open circuit, 
previously determined, for voltage stabilization in continuous state. Table 7.1.3.1 shows the values 
of OCV and SOC. Figure 7.5 shows the voltage and SOC curves of the battery as a function of of 
time. The SOC was calculated using the Coulomb-counting technique or integration of current in 
time. In Figure 5.5 it is possible to observe the degree of linearity the relationship between the 
CMO and the SOC, as observed in the literature. The behavior change observed in the 10% SOC 
region is justified by the lack of acid in the solution to react with the active material of the plates 
since, during discharge, as seen in Figure 2.7, the acid migrates to the plates and the solution, at 



the end of the discharge, consists practically of water (LINDEN, 2011). The discharge was not 
performed until the 0%SOC state to avoid discharge the battery deeply. 

(Fig.7.5 Partial discharges to determine the OCVxSOC relationship) 

 

(Table. 7.2 OCV x SOC Relation) 

 

 

 



 

 

7.1.4 Determination of battery model parameters  

(Fig. RC Battery Model) 

 

         The Cbulk (Cb) capacitance, where the capacity used was the capacity obtained, according to 
Table 7.3, converted from Ah to unit A.s (amper-second). The capacitance value of Csuperface (Cs) 
was determined through the battery response to high-frequency excitement. The current of 22A 
(C20 current) in pulses of 500ms duration (Δt). The voltage response of the battery to the excitation 

profile can be seen in Figure 7.6. According to presented in the method, by observing the voltage 
response curve of the battery, the voltages defined as V1, V2, V3 and V4 are determined, whose 
values found are shown in Table 7.1.4.2 and shown in Figure 7.6. 

(Table. 7.3 Voltages taken from the battery's response curve to the high-frequency excitement) 

 

         Battery resistance (Rm) was measured with internal battery resistance measuring equipment 
from the manufacturer Fluke, model BT521. The internal resistance measurement with this 
equipment is performed directly, that is, its terminals, positive and negative, are connected in the 
positive and negative poles of the battery, respecting the polarity, and in a few seconds the value 
of the internal resistance, in mΩ, is presented in the screen of the equipment. To check the internal 
resistance of the battery, the equipment injects an alternating sine current signal with amplitude of 
100mV and frequency of 1kHz (FLUKE, 2014). The measured resistance value of the battery (Rm) 
was 0.003Ω. 



(Fig.7.6 Battery voltage when excited by a 500ms long current pulse) 

 

Table 7.4 shows the values found for all RC battery model parameters, namely Cb, Cs, Re, Rs 
and Rt. 

(Table.7.4 Battery RC model parameter values) 

 

 

7.2 Estimation of SOC of the Battery 
        To check the Kalman filter algorithm using the calculated battery parameters, the simulation 
was performed in MATLAB software. Then, checking the validity of the parameters and the 
functionality of the algorithm, the tests were performed in the field, with the Kalman filter 
algorithm embedded in the developed remote monitoring circuit Arduino. 

7.2.1 Simulation for SOC estimation 

        For the simulations, the Kalman filter algorithm was implemented in MATLAB whose lines 
of code are presented in Annex C. The simulations were performed with the discharge data from 
a C20 test and the OCV x SOC verification test. The results are presented from Figure 7.7 to Figure 
7.12. 



        First, to validate the Kalman filter method as well as the battery model parameter values 
previously determined, the filter algorithm was subjected to input values equivalent to the voltages 
measured in the battery during the test performed to determine the OCV x SOC ratio. In Figure 
7.7, it was observed that the filter followed quite faithfully the open circuit voltage values observed 
at the end of the battery rest period when the load was removed (I = 0A). In order to achieve this 
satisfactory result, it was necessary to test several random values for the covariances of process 
noise, Q, and measurement noise, R. The optimal values found are shown in Table 7.5. A high R-
value means that the filter "relies" little on the measurement, which effectively means that the filter 
should correct less with each measurement update. The low Q value means that the system state 
equations have good accuracy (RHUDY; SALGUERO; HOLAPPA, 2017). 

(Table.7.5 Optimum values of Kalman Q filter parameters and R) 

 

        To validate the SOC results estimated in the simulation, a comparison was made with the 
SOC estimated by the current integration technique or Coulomb counting, which is a very reliable 
method when the initial load state condition is correctly established (PILLER; PERRIN; JOSSEN, 
2001). Since the data used in the simulation came from a discharge test carried out on a fully 
charged battery, the initial charge state was considered 100%. In Figure 7.9 it was possible to 
observe the SOC fidelity estimated by the Kalman filter against the SOC estimated by current 
integration. A behavior changes in the region close to 10%SOC is observed due to acid deficiency 
in the battery solution when its state of charge approaches 0% (PINHO; GALDINO, 2014). 

        Observed the satisfactory result of the SOC estimate in the profile of interleaving discharges, 
the filter was tested using discharge data of a capacity test in 20 hours, or C20. Figure 7.10 shows 
the curves the battery voltage measured during the discharge of C20 and the open circuit voltage 
(OCV) estimated. The satisfactory response of the filter to the discharge of C20 is observed in 
Figure 7.11, where after stabilization of the filter, between the 95%SOC region and 50%SOC, the 
average absolute error has a maximum value around 2%. Errors above 5% are observed in the 
region of state of charge below 40%SOC. Figure 5.13 presents an enlarged view of the graph in 
Figure 7.11 in the stabilization region from the filter. It can be seen that the filter takes around 
1672 seconds, or 28 minutes, to have SOC errors estimated below 5% when compared to the SOC 
estimated by current integration. 

        Despite the average absolute error of 2% observed in the simulation of the estimation of the 
SOC in the region of the curve between 93%SOC and 50%SOC, it was realized that the Kalman 
filter was able to estimate the SOC in a way to provide an analysis reliable usage profile to which 
the battery is being submitted, i.e., although of the average error, it is possible to identify whether 
the battery is experiencing scenarios that contribute to the reduction of their useful life, such as 



cycling in low state of charge (SOC < 50% of nominal capacity) and rarely experience full load 
(ZHAO, 2013). This strengthens the applicability of the Kalman filter for estimating SOC of 
photovoltaic system batteries in view of the fact that, in this type of system, the Battery discharge 
depth should not exceed 50% (ZHAO, 2013), causing the filter to work in the lowest error region. 

(Fig.7.7 Estimated OCV compared to the voltage measured in the test to determine the relationship 
between OCV and SOC) 

 

(Fig.7.8 Extended view of Kalman filter behavior when estimating OCV) 

 

 



 

(Fig.7.9 Comparison between estimated SOC and SOC by current integration for the curve of the 
OCV x SOC ratio test) 

 

 

(Fig.7.10 Battery voltage curve measured during C20 discharge and circuit voltage curve open 
(OCV) estimated) 

 



 

(Fig.7.11 Result of SOC estimation simulation per Kalman filter with data from a C20 discharge) 

 

 

(Fig.7.12 Detail of filter stabilization time) 

 

7.2.2 Field Results  

        The remote monitoring electronic circuit was used to record the battery's electrical data, such 
as voltage and current, and ambient temperature data in the isolated photovoltaic system. From 



this data, the circuit estimates the battery's SOC, stores it in memory and presents it in time. The 
actual in a liquid crystal display together with relevant set information such as battery voltage and 
current, ambient temperature, date and time. 

        Before being installed on the solar pole, the monitoring system was evaluated for its energy 
consumption to check the impact of its insertion in the photovoltaic system. The circuit had an 
average consumption of 200mA. This consumption was recorded with the liquid crystal display 
on and with its retro lighting activated. The display was only necessary when some query in time 
real needed to be performed on the spot, which was not a routine situation after the installation of 
the system on the pole. In this way, a key was installed for activation of the display only when 
necessary. With the display off, the consumption of the device has been reduced to 140mA. This 
is the average total system consumption when the GSM/GPRS module is in standby mode. At the 
time of communication, peaks of up to 300mA could be observed only in the consumption of the 
GSM/GPRS module, however, the peaks last only 2 seconds and represent an impact not very 
significant for the average total consumption of the system. 

        The records of battery voltage and current during a given periods of October and November 
of 2018 are presented, respectively, in Figure 7.13 and Figure 7.14. In Figure 7.13 the battery 
voltage is presented. In it, two periods of the day where fundamental situations for the longevity 
of the battery in the isolated photovoltaic system occur stand out, namely, the end of discharge 
voltage, approximately 12.47V, that is, the battery voltage in the end of the night; and the 
fluctuation voltage, for which the charge controller lowers the voltage after the battery reaches 
approximately 14.2V, as a way to avoid overcharging and consequent loss of water in the battery, 
thus extending its useful life (PINHO; GALDINO, 2014). 

        It is observed that, for the period evaluated, the tension at the end of the night was repeating 
itself around the value of 12.47V, arising the hypothesis that the battery was being fully recharged 
daily, avoiding deep discharge at each daily cycle. To validate this hypothesis, battery recharge 
data in the laboratory were evaluated and confronted with the field data. 

        Figure 7.15 shows the current curve and the curve of the ratio between the amount of charge 
available at recharging and the amount of charge removed at previous discharge. The data are from 
a laboratory recharging with duration of 24 hours, current limited to 25A and voltage limited to 
14.4V. It was observed that approximately the twenty-second hour of recharging the current 
stabilized in the value of 2A. According to the battery manufacturer, when the current is stabilized 
for a period of two hours or longer, during recharging, the battery is fully charged. This battery 
status could be confirmed by curve of the percentage load available during recharging, where a 
surplus of about 12% was observed in relation to the amount of cargo removed from the battery at 
the discharge that preceded it. The theoretical Coulombic efficiency of a lead-acid battery is 
approximately 95% (PINHO; GALDINO, 2014), Therefore, it was perceived that the 12% 
available percentage load surplus charging was enough to bring the battery to full state load. 

        Confronting the above conclusions with the field current data, shown in Figure 7.14 and 
Figure 7.16, it was observed that the battery stabilized the current of 0,3A for a period of more 



than two hours, which confirmed the hypothesis that the battery was, daily, experiencing full 
recharging. 

        Figure 7.16 shows the current of the battery during the period chosen from the field collection. 
The moments of loading and unloading of the battery. During the discharge, the drained battery 
current was 1.4A, which was used to power the LED fixture during the night. During the day, the 
variation of the battery charging current occurring according to the variation of the radiation solar 
module that reached the photovoltaic module on the respective day. The current reached values of 
peak of the order of 7A. Figure 7.2.2.4 helped to note that at the time the battery reached maximum 
voltage, between 14V and 14.4V, and was submitted to voltage of fluctuation, around 13.6V, the 
current was reduced considerably; from that the natural gasification process inside the battery was 
intensified (PINE; GALDINO, 2014). 

        Again, comparing the field data with the laboratory data, Figure 7.15 made it easier to see 
when gasification was intensifying. It was observed that, at the beginning of the recharging, the 
current remained constant at the maximum value established in the test, in this case, 25A. The 
linear curve of the available percentage charge amount (current integration) indicated that 
practically all the current supplied to the battery was being consumed to restore its capacity. In this 
phase of constant current between 80% and 90% of battery capacity (PINHO; GALDINO, 2014). 

(Fig. 7.13 Tension data collected between October and November 2018) 

 

 

 

 



 

(Fig. 14 Current data collected in the same period) 

 

(Fig.7.15 Current Curve and Percentage Charge Amount available for the battery during 
laboratory recharging) 

 



(Fig.7.16 Extended view of two-day current data collection) 

 

From the point of view of battery charge balance, from the data of the electric current, it was found 
that the average daily load quantity taken from the battery was 14.80Ah, which represented an 
average daily minimum SOC of 92.6%, for the period evaluated. For the reload, the available 
average daily load quantity was 18.42Ah, i.e. approximately 24.5% more of the load consumed 
was made available to the battery during the period of the day, corroborating with the veracity of 
the hypothesis that the battery was daily being fully loaded. 

Evaluating the battery charge balance data, it was realized that there was an over dimensioning in 
the solar pole design since it's recommended by the manufacturer to discharge the battery daily 
until a state of load of 80% of its nominal capacity. For better visualization, Figure 7.17 illustrates 
the behavior of the cumulative load quantity for one of the days of the collection period. During 
the battery discharge, i.e. at night, the amount of accumulated charge becomes each more negative 
due to the direction of the current, coming out of the battery. The opposite happens during the day 
when the battery is recharged. 

The information taken from the data collected in the field, discussed above, served as a reference 
for the validation of the Kalman filter algorithm which was embedded in the platform-developed 
remote monitoring system Arduino, whose code is given in Annex D. To facilitate the analysis and 
visualization, one of the days of the collection period was chosen to present the results. Figure 7.18 
presents the result of the SOC estimated by Arduino in real time, compared with the integration 
method of the chain or Coulomb counting. It was observed that after the stabilization time, the 
filter started to follow the SOC curve estimated by current integration. A Figure 7.20 shows the 
absolute SOC error estimated by Arduino when compared to the SOC estimated by the current 



integration method. It was observed that the error started at a very high value, over 10%. This was 
justified for the time needed for the filter to stabilize. After stabilization of the filter, the error had 
a maximum value of 1.7%, as highlighted in the graph. In Figure 7.18 it was it is possible to 
observe that the filter has tended to follow the SOC curve more and more by current integration, 
generating fewer and fewer errors. At the end of the discharge, that is, at the end of the night, the 
error was around 0.5%, as highlighted in the graph. 

(Fig. 7.17 Behavior of the amount of charge available by the panel during the day and by the 
battery at night in relation to the nominal capacity of the battery, on one of the days of the collection 
period) 

 

         The message configured for automatic sending via SMS during the download period is 
simple, however, several other relevant data can be included in the message content, as well as the 
frequency of sending messages can also be changed to the liking of the receiver, however, one 
must take into account the peak consumption of the GSM/GPRS module observed when in active 
communication mode. 

The information received makes up a local database on the mobile phone for future queries and 
assessments of battery and system behavior photovoltaic monitored as a whole. The sending 
frequency has been set to two-hour intervals in order to mitigate the impact of the consumption of 
the GSM/GPRS module during the sending of messages. 



(Fig.7.18 Comparison between the SOC estimated by Arduino's Kalman filter algorithm and the 
SOC of the current integration method) 

 

(Fig. 7.19 Kalman filter stabilization time implemented in Arduino) 

 



(Fig. 7.20 SOC error by Kalman filter compared to SOC by current integration) 

 

 

(Fig.7.21 Ambient temperature recorded in the battery compartment during the collection period 
data) 

 



8 Conclusions 
        In this work a system for remote monitoring of the state of charge (SOC) of lead-acid 
ventilated stationary batteries was developed using the Kalman filter technique, for use in isolated 
photovoltaic systems. 

       The electronic circuitry developed for battery SOC monitoring has proved to be very stable 
and reliable. It met the premise of low consumption (140mA) minimizing the impact of its insertion 
in the photovoltaic system, since its power came from the instrumented battery. 

        The Kalman filter algorithm implemented in Arduino, when estimating the battery SOC of 
the isolated photovoltaic system, showed a maximum absolute error of 1.7% between the regions 
of 100%SOC and 92%SOC, an error that is considerably irrelevant since, even so, it is possible to 
identify with relative precision the charging and discharging profile to which the battery is being 
submitted. 

        The cost benefit of the system developed was quite satisfactory given the R$550.00 cost of 
the circuit. This value represents approximately 14% of the value of a commercial datalogger that 
does not have the battery's SOC estimation function. Currently, this datalogger is used by the 
battery manufacturer Acumuladores Moura S/A to monitor, locally, its batteries installed in the 
field. 

        Finally, considering the satisfactory results with the circuit implemented using the Kalman 
filter technique for battery SOC estimation, the activities presented below will be developed in the 
future, continuing this work. 

        In order to further improve the cost benefit system of remote monitoring, the poles will be 
equipped with radio communicators from Zigbee technology, which enables the creation of a large 
communication network between devices in mesh topology, i.e. all devices can exchange data 
between them (DIGI, 2018). This way, only one pole will be equipped with the device complete 
which is composed by Arduino and the remote communication module GSM/GPRS. Tests will 
need to be conducted to verify that the distances between the poles are in accordance with the 
maximum distance limits between the radiocommunications. 

        Figure 8.1 presents an overview of the battery monitoring system in developing isolated 
photovoltaic systems. Figure 8.2 presents an outline of the website layout that will be developed 
to present the information of each pole through online consultations and will be embedded in the 
circuitry of the developed device. 

        In addition to estimating battery SOC, a State-of-Health (SOH) battery health estimation 
algorithm will be implemented in the circuit, also using the Kalman filter method. 

(Fig.8.1 Overview of the system under development for remote monitoring of batteries in isolated 
photovoltaic systems) 



 

Source: Writer 

 

(Fig.8.2 Website layout to be developed for remote monitoring of the batteries of isolated 
photovoltaic systems) 

 

Source: Writer 

 

 



        The following points are suggested for future work: 

• Implement SOC estimation by Kalman filter in conjunction with the current integration 
method or Coulomb counting. 

• Battery State of Health measurement using the developed prototype. 
• Structure a system similar to the one implemented in this work for systems with voltages 

above 12V, such as 24V and 48V. 
• Study the use of the system implemented in other types of isolated solar photovoltaic 

systems, such as domestic systems. 
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Annex A: Technical specifications of the solar pole components 
 

 

 



 



 
 

Annex B: Technical specification of cycling equipment 

 



Annex C: Kalman Filter MATLAB Algorithm 
%%%%%%%%%%%%%%%%%%%%% FILTRO DE KALMAN %%%%%%%%%%%%%%%%%%  

Q = [10e-8, 0, 0;  

     0, 10e-8, 0;   

0, 0, 10e-8];  

R = 12e3;  

%%%%% Valores estimados iniciais %%%%% 

x_est = (13.1; 13.1; 13.1); 

p_est = (1, 0, 0; 0, 1, 0;  

         0, 0, 1);  

%%%%% Inicializando vetores %%%%% 

Vbulk = zeros (1, length(tensao)); 

y = zeros (1, length(tensao)); 

soc_est = zeros (1, length(tensao)); 

Vterminal = zeros (1, length(tensao)); 

erro = zeros(1, length(tensao));   

%%%%% Valores preditos %%%%% 

for i = 1: length(tensao);   

x_prd = Ad * x_est + Bd * u;     

p_prd = Ad * p_est * Ad' + Q;     

%%%%% Valores estimados %%%%%     

num = p_prd * H';     

den = H * p_prd * H' + R;     

kalman_gain = num/den;  

x_est = x_prd + kalman_gain * (tensao(i) - H * x_prd);  

p_est = p_prd - p_prd * kalman_gain * H;  

Vbulk(i) = x_est(1,1); % OCV     

Vterminal(i) = x_est(3,1);     

end  

 

 

 

 

 

 



Annex D: Kalman Filter Arduino Algorithm 

 

 



 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Annex E: Electronic Circuit Scheme to Monitor the Battery 

  


