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Chapter 1 

1.Introduction 

Tsubaki Nakashima Co., Ltd. is one of the biggest company in the field of bearing 

manufactures. In particular it is specialized in the production of rolling contact elements 

which can be made of different shape (balls or cylinder) or material (steel or ceramic). 

Pinerolo plant, where this work was carried out, takes care of steel balls bearings 

production. 

Bearing is as a part of a machine that allows one part to rotate or move in contact with 

another part with as little friction as possible. Additional functions include the transmission 

of loads and enabling the accurate location of components. [1] 

A wide variety of bearing designs exists to allow the demands of the application to be 

correctly met for maximum efficiency, reliability, durability and performance. 

Bearings are composed of different elements: cylinders or balls as rolling elements and 

external and internal rings, which form the raceways. Also the lubrication between the parts 

is very important. 

Fatigue life performances of the rolling elements have a key role to prevent premature 

failures of the bearings during working operations. For this reason, it is important to 

understand how the microinclusions affect the life of the balls and consequently of the 

bearing. 

It is now been clearly established that fatigue resistance correlates strongly with steel 

cleanliness. However, inclusions are inevitably present in steels, they cannot be eliminated 

in the steelmaking process,[2] therefore many technical and commercial decisions by 

bearing manufacturers and end users depend on information regarding steel cleanliness 

and its effect on predicted bearing fatigue life. Historically, these information are based of 

experimental testing data. Bearing samples are ultrasonically inspected for steel cleanliness 

and then put on physical test rigs for fatigue life testing. Empirical relationships between 
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steel cleanliness and bearing life performance are obtained through the curve fitting of test 

data [3]. This has been a very costly and time-consuming practice. 

Because of this, many studies were made to better understand which characteristics of 

inclusion are more relevant for the fatigue life, and a solution to calculate fatigue limit of 

steel considering inclusions presence.  

In general, rolling contact fatigue is driven by two phenomena: surface originated pitting 

and subsurface originated spalling. These two are different, at the point that they can be 

considered separately. The first one can be prevented with better lubricants or a better 

surface finish [4], while there are not many ways to stop subsurface originated fatigue. 

Subsurface cracks mostly occur at stress concentration sites such as material defects, voids 

and non-metallic inclusions. Such inclusions act like stress risers, leading to cracks and final 

failure [5]. The inclusions are very critical since they are in a position where the shear stress 

due to the Hertzian contact is maximum. Many studies, both experimental and numerical 

ones, have been carried out to understand the most important factors that affect RCF life. 

Nowadays it is known that they are: inclusion composition, size, shape and location [2]. 

The relationship between the RCF life and the maximum inclusion size has been studied by 

Nagao et al.[6] and Seki [7], but the results are different of one order of magnitude even if 

the size of the inclusion is the same.  

Hashimoto et al. [2] made experimental tests to analyze the role of the composition using 

different deoxidation post-processes. The size and composition are evaluated thanks to an 

optical microscopy and an X-ray energy dispersive spectroscopy (XREDS). The tests showed 

that the RCF life in case of similar sized inclusions, is affected primarly by the chemical 

composition. In particular, they showed that RCF life is improved reducing the oxygen 

content as the size of the oxides. Moreover, they examined the length of the crack around 

the inclusions throughout the test, finding out that the crack length controlling RCF life is 

influenced by the interface condition between the inclusion and the matrix. Since matrix-

MnS and matrix-TiN interfaces showed no cavities, they suggested that the oxide inclusions 

play the most detrimental role in the material's RCF. Also S. M. Moghaddam et al.[5] and J. 

Guan et al.[8] studied the effect of the inclusion composition, considering the inclusion 
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elastic modulus. The maximum von Mises stress increases with the increase of the elastic 

modulus of the inclusion and it appears at the interface between inclusion and surrounding 

material. Cerullo and Tvergaard [9] compared TiN and Al2O3 inclusions using a 

micromechanical approach to estimate the locations around inclusions that will be most 

critical for the initiation of fatigue failure, and the loads at which fatigue will initiate. They 

used a multiaxial fatigue criterion to ensure that the stress cycles in the structural alloy 

around the inclusion do not exceed the fatigue limit. They conclude that for a given volume 

Vf a higher maximum damage factor is practically always reached in the matrix with an 

alumina inclusion rather than with a titanium nitride inclusion. They   expected this 

conclusion, since the alumina has a higher Eh/Em (inclusion elastic modulus/matrix elastic 

modulus) ratio than that of the titanium nitride, 

The effect of size, stiffness and depth has been shown in [5] and in [8]. The authors of [5] 

and [8] developed a model that takes advantage of the Voronoi tessellation to construct the 

FEM domain. In this way, the model is able to capture the butterfly wing formation, crack 

initiation and crack propagation. Moreover, the model was used to study the different RCF 

life varying size, stiffness and depth. Regarding the size, a comparison between a 16 μm and 

a 8 μm inclusions with the same stiffness value and depth, has been made [5]. Similar test 

were performed in [8], with a set of inclusions which is set to vary from 5 μm to 20 μm. No 

strong influence on stress concentration was found, but it is known that larger inclusions 

subject larger volumes of the material to stress concentration. Furthermore, larger inclusions 

have a higher chance of being located at the critical depth. For what concerns the inclusion 

location, the stress profile changes at the inclusion depth, while the rest of the profile 

remains pristine. Inclusions located at 0.5 times the contact half width (b) are critical [5], 

since there is the maximum von Mises stress calculated from the Hertz theory. For a certain 

value of depth, the stress rise remains below the original stress at 0.5b, so the inclusion will 

not be the controlling phenomenon of the RCF life. J.Guan et al. [8] showed that the highest 

stress concentration is located at about 0.75b but both [5] and [8] lead to the same conclusion.  

Taking into account the shape of the inclusion, Stienon et al.[10] showed that stress fields 

obtained with simplied shape are in good agreement with those obtained with real shape, 
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therefore is reasonable to use simplied shapes to simulate the stress concentration around 

the inclusion. Yutaka Neishi et al. [11] did ultrasonic fatigue tests on different specimens 

with different MnS inclusions shape and It was found that the RCF life was well correlated 

with the length of MnS, since the initiation of shear crack in the subsurface was accelerated 

as the length of MnS increased. 

Once that the effect of microinclusions on the material matrix is claried, it would be very 

useful to have a model that is capable to predict the fatigue limit considering the steel 

cleanliness.  

Y. Murakami [12] predicted the upper and the lower limits of fatigue strength relating the 

fatigue limit to the Vickers hardness of a matrix and the maximum size of inclusions defined 

by the square root of the projected area of an inclusion. He estimated the expected value of 

inclusion size in a definite numbers of specimens or machine components using the statistics 

of extreme values.  

Lamagnere et al. [4] presented a model that calculates the fatigue limit H1 of the bearing 

steel, it is the maximum Hertzian pressure that would not introduce any plastic deformation. 

They approximated the inclusion geometry to be ellipsoidal and used the Eshelby method 

to calculate the effect of aluminum oxide and molybdenum carbide inclusions on the fatigue 

limit of M50 steel as a function of temperature. The fatigue limit threshold is derived from 

the comparison between the local shear stress around the inclusion and the microyield stress 

of the matrix. The idea of a stress threshold below which a material would not be damaged 

was first introduced by Weibull [13], and then developed in bearing fatigue life models by 

several authors [14], but without considering the steel cleanliness. The local shear stress 

around the inclusion is calculated with the Eshelby method [15], while the microyield stress 

of the matrix is evaluated by means of experimental compression tests. J Courbon et al. [16] 

extended this work by examining the interaction between multiple inclusions (pairs, clu-

sters and stringers) using the Moschovidis and Mura extension [17] of the Eshelby method 

[15] They found out that the orientation of the axes according to which the inclusions are 

arranged, plays a fundamental role on the stress field. Vincent et al. [18] further extended 
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this concept by adding the effects of residual stresses and graded material properties in ca-

burized steels. However, these studies have not included many other factors which may 

affect the fatigue limit. For example, the only effect of temperature accounted for was the 

change in yield strength of the steel matrix. There are other factors that change with tempe-

rature that may contribute to the reduction in the fatigue limit e.g. thermal expansion and 

elastic modulus. 

For this reason Bryan Allison and Anup Pandkar [19] extended Lamagnere work [4] using 

a finite element simulations to determine which factors have the largest impact on the esti-

mated fatigue limit of bearing steels under rolling contact. It was found that porosity and 

debonded inclusions dominate the fatigue limit of bearing steels. When these are excluded, 

the change in mechanical properties (elastic modulus and matrix yield strength) due to tem-

perature are the next most important factors followed by the distance between inclusions. 

The geometry (size, aspect ratio, and orientation) of a single inclusion were all found to have 

a relatively small effect on the overall fatigue limit. 

Taking into account the bearing life prediction Jalalahmadi and Sadeghi [20] developed a 

two dimensional Voronoi finite element method (VFEM) using the Voronoi tessellation to 

simulate the material microstructure and its effects on rolling contact fatigue. They generate 

the microstructure of bearing using the Voronoi cells to create the semi-infinite domain and 

the circular inclusion is considered as a grain with different material properties. Then they 

did numerical simulation in order to modify Lundberg-Palmegren fatigue criterion [21] con-

sidering the effect of the inclusion. Four different characteristics of inclusions were studied, 

that is,their stiffness, size, depth, and number, they consider a baseline case for inclusion 

parameters that is common between all of simulations such that the different results can be 

compared to each other. Then they did simulations changing one charactestic at a time in 

order to found four different coefficient one for each characteristic. Employing these coeffi-

cients, a RCF life equation was developed that is able to predict the fatigue lives of the bea-

ring elements including the effects of the material inclusions. 
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The current work investigates the effect of microinclusions on fatigue life of a steel alloy 

(100Cr6) for bearing rolling elements.  

Works was divided in four main parties: 

• Fatigue test on ball bearing and raw material are made in order to get real data  

• A dedicated 3D solver implementing Eshelby model [4] was developed to estimate 

the stress distribution surrounding the microinclusion 

• Frequency with which a ball of a bearing spin was calculated in order to understand 

how often a microinclusion, present in the steel matrix of the ball, will be stressed. 

• Knowing the stress of the steel matrix, the stress at the boundary of the inclusion and 

the frequency with which the inclusioni s stressed a new equivalent load Peq is iden-

tify. Then a different L10 considering the effect of the inclusioni is calculated. 
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Chapter 2 

2 Rolling contact fatigue 

Rolling-contact fatigue is defined as a failure or material removal driven by crack 

propagation caused by the near-surface alternating stress field.  It is typically considered 

that if a bearing is properly mounted, aligned, lubricated, maintained and not overloaded, 

then the material fails due to RCF [22]. 

Two categories in which RCF may be manifested are surface-originated pitting and 

subsurface-originated spalling. Surface-originated pitting occurs due to the presence of 

surface distresses such as dents, fretting scars, etc., on the surface of the contacting bodies. 

However, if the contacting bodies are relatively smooth, then the main mode of RCF is 

subsurface-originated spalling [23]. Spalling is a catastrophic contact fatigue failure mode 

for rolling contact element typically appears near the presence of an inclusion or material 

inhomogeneity inside the material domain, it was the result of subsurface crack initiation 

and propagation for modern bearings. [24] 

 

RCF life depends on many factors like: [1]: 

• Contact pressure 

• Material properties 

• Lubricant properties 

• Surface roughness 

• Relative slip during the rotation between the elements 

• Microstructure  

• Cleanliness condition 

• Residual stress 
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Rolling contact fatigue differs from the classical fatigue due to several characteristic 

conditions [25]:  

• The state of stress in nonconformal contacts is complex and multiaxial and governed 

by the Hertzian contact theory. 

•  The loading history at a point below the surface is nonproportional, the stress 

components do not rise and fall with time in the same proportion to each other; 

•  There is a high hydrostatic stress component present in the case of nonconformal 

contacts. 

• The phenomenon of RCF occurs in a very small volume of stressed material.  

• Localized plastic deformation and development of residual stresses play crucial role 

in the fatigue damage. 

• The principal axes in nonconformal contacts constantly change in direction during a 

stress cycle due to which the planes of maximum shear stress also keep changing. 

Thus, it is difficult to identify the planes where maximum fatigue damage occurs. 

For this reason, it impossible to directly apply the results from classical fatigue to RCF. 

 

2.1 Hertz theory 

Theoretically, the contact area of two spheres is a point, and it is a line for two parallel 

cylinders. As a result, the pressure between two curved surfaces should be infinite for both 

of these two cases, which will cause immediate yielding of both surfaces. However, a small 

contact area is being created through elastic deformation in reality, limiting the stresses 

considerable. These contact stresses are called Hertz contact stresses, which was first studies 

by Hertz in 1881. 
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2.1.1 Hypothesis 

In order to solve the problem have been made the following assumptions: 

• The two surfaces in contact are continuous and they can be represented with 

polynomial 

• Elastic and isotropic material 

• The bodies are in frictionless contact 

• Each body can be considered an elastic half-space, i.e., the area of contact is much 

smaller than the characteristic radius of the body. 

 

2.1.2 Geometry around the contact area 

Consider two bodies with radii of curvature R’ and R’’.  

 

Figure 2.1 – Contact between two bodies  

Before deformation the bodies touch at O and the separation of point Z1 and Z2 is: 

h = |Z2 – Z1| = 
1

2𝑅′
 𝑋2 + 

1

2𝑅′′
 𝑌2 

Applying a normal load, the two bodies are compressed. The separation of Z1 and Z2 is now: 

h’ = h – (δ1 + δ2) + (w1 + w2) 

R’ 

 

R’’ 

 

O 
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Figure 2.2 – Hertz contact 

If points Z2 and Z1 are within the contact area h’ = 0 

                                                      w1 + w2 =  δ -  
1

2𝑅′
 𝑋2 - 

1

2𝑅′′
 𝑌2                                                         [1] 

 

• w1 + w2  = the elastic displacement 

• δ = δ1 + δ2  = displacement of bodies 

The elastic displacement at distance r is: 

W(r) = 
1−𝜈2

𝜋𝐸
 
𝑃

𝑟
 

On each area element: dA = dx’dy’ inside the contact surface at a point (x',y'), P is: 

dP = p(x’, y’)dx’dy’ 

• P =normal load 

• p = contact pressure 

The displacement due to P at any points Z(x,y) is: 

                                                      w (x,y) = 
1−𝜈2

𝜋𝐸
 ∫

𝑝 ( 𝑥′,𝑦′)

𝑟′
𝑑𝑥′𝑑𝑦′

𝑆
                                            [2] 

r’ = ((x-x’)2 + (y-y’)2) ½ 

It follows from equation 1 and 2 that an ellipsoidal distribution evolved satisfy the equation:  

p (x,y) = p0 (1 −
𝑎

𝑥2
− 

𝑏

𝑦2
)1/2 

• p0 = pmax = 
3𝑃

2𝜋𝑎𝑏
 

• a,b = semi axes of the elliptic contact surface. The values of the semi axes depend on the 

solution of an integral equation, which is normally given in numerical form. 

 

Z2 
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2.1.3 Stress on sub-surface 

Experimental evidence shows that failure starts at points below the surface. For this reason, 

it is interesting to know the 3D stress status along the z-axis, which is the one that is parallel 

to the applied force. In this way, it is possible to calculate the principal stresses and then the 

maximum tangential stress, the von Mises stress and so on. The stresses below the surface, 

for the sphere-sphere contact and for the cylinder-cylinder contact, are represented below 

(Fig.2.3, Fig.2.4) and that is similar to what happens in the sphere-ring contact inside a 

bearing. 

 

Figure 2.3 - Subsurface stresses: sphere-sphere contact 
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Figure 2.4 - Subsurface stresses: cylinder-cylinder contact 

Many researches have been conducted to study which shear stress (maximum tangential 

stress, von Mises stress, Tresca stress) is the one that has to be considered in the context of 

fatigue of contacting bodies [26]. Their roles can in principle be determined by comparing 

the respective stress distributions against the location of maximum damage in experiments. 

However, whichever shear stress is considered, the maximum occurs below the contact 

surface and this has significant consequences to the development of damage. Notice that the 

shear stress is proportional to the contact pressure p0 but the proportionality constant will 

depend on the geometry of the contact. 
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2.2 A rewiew of bearing life model 

Since fatigue is the predominant mode of failure in rolling element bearings, the life of 

bearings is governed by RCF. Over the years, several mathematical models have been 

proposed to estimate lives of bearing components under RCF. These models can be 

classified into probabilistic engineering models and deterministic research models. The 

engineering models are largely empirical in nature and include variables that are obtained 

from extensive experimental testing. They do not directly consider the details of the 

constitutive behavior of materials under contact loading, nor the residual stress and strain 

computations in the contact areas. The research models, on the other hand, are theoretical 

in nature, require complete stress-strain behavior information for the materials in contacts, 

and are used in conjunction with a material failure model. However, these models are 

usually confined to a specific aspect of the failure process, e.g., only the crack initiation part 

or only the crack propagation part. Due to the special nature of RCF and the inability to 

relate directly to classical component fatigue, most of the early work in determining lives of 

rolling bearings was based on empirical results.  

 

2.2.1 Lundberg-Palmgren model 

The first theoretical basis for the formulation of a bearing life model was provided by the 

seminal work of Lundberg and Palmgren [21]. They supposed that a crack initiates at 

subsurface due to the simultaneous occurrence at a particular depth of the maximum 

orthogonal shear stress and a weak point in the material. Such weak points were 

hypothesized to be statistically distributed in the material. The Weibull statistical strength 

theory was applied to the stressed volume in a pure Hertzian contact to obtain the 

probability of survival of the volume from subsurface initiated fatigue. Failure was assumed 

to be crack initiation dominant. 

For the first time they derived the relationship between individual component life and 

system life. A bearing is a system of multiple components, each with a different life. As a 

result, the life of the system is different from the life of an individual component in the 
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system. The L10 bearing system life, where 90 percent of the population survives, can be 

expressed as [8]: 

𝐿10 = (
𝐶𝑑

𝑃𝑒𝑞
)𝑝 

• p is the load-life exponent and is 3 for ball bearings and 
 10

3
 for roller bearings; 

• Cd is the dynamic load capacity for a rolling-element, defined by Lundberg and 

Palmgren as the load placed on a bearing that will theoretically result in a L10 life of 1 

million inner-race revolutions; 

• 𝑃𝑒𝑞 is the equivalent load, defined as the combined and variable load around the 

circumference of a ball bearing; 

 

 

2.2.2 Ioannides-Harris model 

Ioannides and Harris [14] using Weibull and Lundberg and Palmgren introduced a fatigue 

limiting shear stress τu. They modified Lundgren-Palmgren equation using the fatigue limit 

load Pu that is a function of τu: 

 

𝐿10 = (
𝐶𝑑

𝑃𝑒𝑞− 𝑃𝑢
)𝑝 

When Peq < Pu, bearing life is infinite and no failure would be expected. When Pu = 0, the 

life is the same as that for Lundberg and Palmgren. 
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2.2.3 Zaretsky model 

All models earlier described relate the critical shear stress-life exponent c to the Weibull 

slope e, in fact they derived their results starting from Weibull equation: 

 

𝜂   ̃ 
1

𝜏

𝑐/𝑒 1

𝑉

1/𝑒

 

• η is the number of stress cycles to failure. 

• V is the stressed volume 

 

The parameter c/e thus becomes the effective critical shear stress-life exponent, implying 

that the critical shear stress-life exponent depends on bearing life scatter or dispersion of the 

data. 

 From the experimental data the exponent appears to be independent of scatter or dispersion 

in the data, so Zaretsky [27] has rewritten the Weibull equation to reflect that observation 

by making the exponent c independent of the Weibull slope e: 

𝜂   ̃ 
1

𝜏

𝑐 1

𝑉

1/𝑒

 

Also, differently to Ioannides-Harris Zaretsky that used Von Mises criterium to determine 

the fatigue limiting shear stress τu, he chose the maximum shear stress. 

From these considerations he wrote the following equation: 

𝐿10 = 𝐿𝐹𝑐 ∙ (
𝐶𝑑

𝑃𝑒𝑞
)𝑝 

• p is the load-life exponent and is 3 for ball bearings and 
 10

3
 for roller bearings; 

• Cd is the dynamic load capacity for a rolling-element, defined by Lundberg and 

Palmgren as the load placed on a bearing that will theoretically result in a L10 life of 1 

million inner-race revolutions;  

• 𝑃𝑒𝑞 is the equivalent load, defined as the combined and variable load around the 

circumference of a ball bearing; 

• LFc is the bearing life factor; 

The equation of Cd and Peq are shown below: 
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Peq = X ∙ Fr + Y ∙ Fa 

Where: 

• Fr is the radial component of the load; 

• Fa is the axial component of the load; 

• X is a rotation factor, defined as the bearing capacity of the conditions of rotation = 

0,35; 

• Y is the thrust load factor of the bearing = 0,57. 

The dynamic load capacity, expressed in Newton: 

CD = fcm(i𝑐𝑜𝑠 ɸ)0,7(𝑡𝑎𝑛 ɸ)𝑍
2

3d1.8 

Where: 

• fcm is material-geometry coefficient. The material-geometry coefficient depends 

              on the bearing type, material, and the conformity between the rolling elements and 

             the races; 

• i is the number of rows of rolling elements; 

• d is the ball diameter; 

• Z is the number of rolling elements for each row i; 

• ɸ is the bearing contact angle. The contact angle is defined as the angle between the 

             line joining the points of contact of the ball and the raceways in the radial plane, 

along which the combined load is transmitted from the raceways, and the line perpendicular 

to bearing axis; 

For angular contact ball bearings, the life factor is dependent from several factors explained 

below. 

LFc = (
(𝐿𝐹𝑖)𝑒 (𝐿𝐹𝑜)𝑒(2χ𝑒𝑒

+1)

2(𝐿𝐹𝑜)𝑒 χ𝑒+(𝐿𝐹𝑖)𝑒
)

1

𝑒 

• e = tanα is the Weibull slope (α is the angle between the Weibull distribution and x-

axis). 

• LF is the ball-race conformity effects at the inner and outer races, introduced by 

Zaretsky, is normalized for ball bearings with inner-race and outer-race conformities 

of 52 percent.  
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LF = (
𝑆𝑚𝑎𝑥,0,52

𝑆𝑚𝑎𝑥
)𝑛 

• From Hertz theory Smax is the maximum contact stress. 

• n is the Hertz stress life exponent  

n= c+
2

𝑒
 

where: 

• c = 9 for ball bearings; 

• χ is the outer to inner life ratio: 

χ = (
(

2 cos ɸ

𝑑𝑒−𝑑 cos ɸ
+

4

𝑑
−

1

𝑓𝑖𝑑
)

2
3(µ𝑣)𝑜

(−
2 cos ɸ

𝑑𝑒−𝑑 cos ɸ
+

4

𝑑
−

1

𝑓0𝑑
)

2
3(µ𝑣)𝑖

)𝑛 

The bearing geometry is defined in figure 2.5, from Hertz contact theory, the dimensions for 

the pressure area is given in terms of transcendental functions μ and ν. The values of the 

product of the transcendental functions (μν) are tabulated in function of ball bearing 

envelope size (S) and they are different for the inner and outer races. 

S = 
𝑑 cos ɸ

𝑑𝑒
 

The conformity of the races (f) is defined as the ratio between the race radius (Rr) and the 

ball diameter. 

 

Figure 2.5 - Characteristic bearing dimensions. 

The evaluation of LF is dependent on the geometry of the bearing, in this case, for angular 

thrust loaded ball bearing, they have been calculated the Ball-Inner race conformity effect 

(LFi) and the Ball-Outer race conformity effect (LFo). 
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• µvi is Trascendental function of Hertzian Contact theory for inner race 

• µvo is Trascendental function of Hertzian Contact theory for outer race 

• µvi is Trascendental function of Hertzian Contact theory with a conformity of 0.52 
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Chapter 3 

3 Non metallic inclusion 

Non metallic inclusions are chemical compounds and nonmetals that are present in steel 

and other alloys. They are the product of chemical reactions, physical effects, and 

contamination that occurs during the melting and pouring process [28].  

Non-metallic inclusions play an essential role in the length of the rolling contact fatigue 

(RCF) life, as fatigue cracks start growing from subsurface located inclusions where the 

shear stress reaches its maximum. However, inclusions are inevitably present in steels, they 

cannot be eliminated in the steelmaking process. 

3.1 Type of inclusion 

Non metallic inclusions are divided in four macro-categories based on similarities in 

morphology [29]: 

• Sulfides  

• Aluminates 

• Silicates   

• Oxides  

Hard inclusions with low deformability are the most dangerous because may cause 

microcrack formation at the interface between the inclusion and the matrix during the steel-

making process, which may make it possible for a fatigue crack to initiate from these 

microcracks. 

 

Table 3.1 - Values of coefficients of thermal expansion α,Young’s modulus E, and Poisson’s ratio ν (Brooksbank, 1970) 
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Alluminates consist of a number (at least 3) of round or angular oxide particles with aspect 

ratio less than 2 that are aligned nearly parallel to the deformation axis. (fig 3.1, 3.2) Oxides 

includes any other oxide particles that have globular shape (fig 3.3, 3.4). 

 

                

Figure 3.1 – Alluminates type                                                                     Figure 3.2 – Alluminates type 

               

                

 Figure 3.3 – Oxides type                                                                               Figure 3.4 – Oxides type 
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3.2 Factors that influence the stress peak  

It is now well known that inclusions act like a stress raiser so it is important to understand 

which characteristics of the inclusion are more relevant for the increase of the stress in steel’s 

matrix.  

In the follow examples Eshelby’s model [15] was applied for different inclusion to 

understand the effect of the shape, chemical composition, depth and dimension on the 

increase of stress at the boundary of the inclusions. 

 

3.2.1 Dimension 

The inclusion size affects the stress field around the inclusion: increasing the inclusion 

dimension the area subjected to a stress perturbation increases. On the other hand, the 

Tresca stress peak value does not change significantly. Nevertheless only inclusions which 

are larger than critical size could affect fatigue life. Critical size is the minimum dimension 

since inclusions are dangerous for the component subjected to rolling fatigue limit.  

In the table are shown Tresca stress peak for different inclusion size, position and chemical 

composition are the same for the two example.  

Simulation condition are: 

• Elastic modulus of the matrix Em: 210 GPa 

• Elastic modulus of the inclusion Eh: 375 GPa 

• Depth: 200µm 

 

Tresca stress evaluated for different inclusion size 

Semiaxis of inclusion size [µm] Tresca peak increment 

0.5 x 0.5 x 0.5 +39% 

50 x 50 x 50 +39% 

                                                                   Table 3.2 – Tresca stress evaluated for different inclusion size 
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Figure 3.5 – Stress perturbation, Size 0.5x0.5x0.5 µm 

 

 

Figure 3.6 – Stress perturbation, Size 50x50x50 µm 
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3.2.2 Depth 

Location of inclusion is very important because stress caused by Hertzian contact is related 

to the depth below the surface. From the Hertz theory, it is known that the maximum 

equivalent stress is located at a certain depth below the surface. This depth can be identified, 

with a good approximation, as: 

Deptheq,max = 0.75b 

where b is the contact half width. 

In fig 3.7 it is shown the stress increment [%] due to the NMI remains the same 

independently form the depth. Since steel matrix stress changes, the absolute increase is 

maximum at critical depth. 

 

 

Figure 3.7 – Stress perturbation: effect of the depth  
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3.2.3 Shape 

Shape is an important factor which influences the stress peak at the inclusion boundary. 

Ellipsoidal shape is more dangerous than spherical one, since larger is the difference of the 

length of semiaxes, larger is the Tresca peak increment. Numerical simulation was made 

changing the ratio between the two semiaxes a and b perpendicular to the force direction 

until one order of magnitude.  

Simulation condition are: 

• Elastic modulus of the matrix Em: 210 GPa 

• Elastic modulus of the inclusion Eh: 375 GPa 

• Depth: 200µm 

The results are showed below (Table 3.3): 

 

Tresca stress evaluated for different ratio a/b 

Case aspect ratio (a/b) Tresca peak increment 

1 1 +39% 

2 2 +42% 

3 10 +49% 

Table 3.3 – Tresca stress evaluated for different ratio a/b 
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Figure 3.8 – Stress perturbation, a/b = 1 

 

 

Figure 3.9 – Stress perturbation, a/b = 2 
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Figure 3.10 – Stress perturbation, a/b = 10 

3.2.4 Chemical composition 

Most inclusions in bearing steels, are non metallic (NMI), and typically they are stiffer than 

the matrix. In fact, referring to experimental cases, few of the most common ones are 

Allumina (Al2O3), Titanium nitrides (TiN) and Titanium carbides (TiC) and each of them 

has an elastic modulus that is approximately 1.8 times or higher than the elastic modulus of 

the pure steel. Furthermore, other types of inclusions can be found in steels, typically they 

are not detrimental as the ones presented above since they are not as stiff as those. In the 

cases presented here, the peak increment remains almost the same, but this effect is due to 

a similar Young modulus. Major changes on the elastic modulus will lead to larger 

increments, since they are related to the difference between Em and Eh: if the difference from 

Eh and Em increases, the peak increases. Another parameter is the Poisson ratio of the matrix 

νm and the inclusion νh, index of the shrinkage and the expansion of the sample. Similarly 

to what seen for the Young modulus, if the difference between νh and νm increases, also the 

peak increases. 
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Simulation condition are: 

• Elastic modulus of the matrix: 210 GPa 

• Elastic modulus of the inclusion TiN: 380 GPa 

• Elastic modulus of the inclusion TiC: 375 GPa 

• Elastic modulus of the inclusion Al2O3: 375 GPa 

• Depth: 200µm 

• Aspect ratio (a/b) = 10 

Tresca stress evaluated for different chemical composition 

Case Chemical composition Tresca peak increment 

1 Al2O3 +36% 

2 TiC +36% 

3 TiN +37% 

Table 3.4 – Tresca stress evaluated for different chemical composition 
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Figure 4.1 – Rotating bending machine 

Chapter 4 

4 Experimental test 

Experimental tests have been made in order to get real data of the failure caused by 

inclusions. It is important to test both raw material and finished product (Balls, d=11.112 

mm), Balls were tested in a special bench, instead raw material on an axial fatigue testing 

machine or rotating bending machine.  

 

4.1 Rotating bending machine 

This machine demonstrates the fatigue failure of materials when subject to alternating 

stresses, it uses a motor to rotate a specimen with a load at its free end.  

In fig. 4.1 it is shown a diagram of the machine used in this work: 

 

 

 

 

 

 

 

 

 

 

 

 

The rotating bending machine rotates and bends the specimen.  

The specimen (100Cr6 or 100CrSiMn6-5-4) has a special design that creates a point of 

maximum stress at their midpoint rather than at their end. This gives a definite point of 

failure and avoids unwanted stress concentrations.  

1. Steel chassis 

2. Rotors with their auto-centring  

spindle 

3. Electric motor 

4. Specimen 

5. Stepper motor 

6. Load cell 
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Table 4.1 – Chemical composition 100Cr6 

Table 4.2 – Chemical composition 100CrSiMn6-5-4 

 

Figure 4.2-4.3 - Rotating bending specimen 

 

 

Chemical composition 100CrSiMn6-5-4 

Element C% Si% Mn% Ni% Cr% Mo% Cu% S% 

% 1.03 1.20 0.97 0.12 1.47 0.04 0.13 0.005 

Element P% Al% As% Sn% Sb% Pb% Ti% Ca% 

% 0.013 0.02 0.01 0.01 0.001 0.003 <0.001 <0.0005 

 

Bending moment applied on the central section of the specimen is constant (Fig 4.5), since 

machine also puts in rotation the sample, normal stress of a point P changes (Fig 4.6) leading  

the specimen to a fatigue failure.   

Chemical composition 100Cr6 

Element C% Si% Mn% Ni% Cr% Mo% Cu% S% 

% 0.97 0.23 0.29 0.08 1.43 0.013 0.05 0.003 

Element P% Al% As% Sn% Sb% Pb% Ti% Ca% 

% 0.014 0.025 <0.01 <0.01 0.002 0.001 0.001 <0.001 
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Figure 4.4 – Rotating bending machine scheme 

 

 

 

Figure 4.5 – Bending moment  

 

 

 

Figure 4.6 – Stress on point P as a function of time 
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Testing condition 

Method used for rotating bending test is a staircase methodology. It consists to subjecting 

the first specimen to a stress corresponding to the expected average fatigue strength. If the 

specimen survives 5*106, it is discarded and the next specimen is subjected to a stress that is 

one increment above the previous. When a specimen fails prior to reaching 5*106 cycles, the 

obtained number of cycles is noted and the next specimen is subjected to a stress that is one 

increment below the previous. The increment Δσ is fixed before starting the test campaign.  

The load applied at the minimum cross section is controlled by a PC software, as the 

rotational speed.  

 

4.2 Tension-tension testing machine 

 

 

Figure 4.7 – Direct force fatigue testing machine (Collins 1981). 
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Axial fatigue testing machine subjects a test specimen to a uniform stress or strain through 

its cross section. In this type the specimen is exposed to pure axial (tensile or compressive) 

loading. Specimen is held at two ends and loaded cyclically between two extreme values 

(maximum and minimum), therefore normal stress changes over the time leading to a 

fatigue failure the specimen. 

 

 

 

Figure 4.8 – Tension-tension test 

 

Testing condition 

Axial fatigue tests were made in Argentina thanks to a collaboration between Tsubaki 

Nakashima Co., Ltd, Politecnico di Torino and Universidad de Buenos Aires. As a result it 

was possible to compare different steels and testing method. 

Axial fatigue test was made to determine stress (S) against the number of cycles to failure 

(N) curve of two different steel composition. The data is obtained applying fixed stress 

amplitude to two or three specimens until failure. The procedure used is to test first series 

of specimens at a high peak stress where failure is expected in a fairly short number of 

cycles. The test stress is decreased for each succeeding series of samples until two specimens 

do not fail in the specified numbers of cycles, which is 3*106 cycles. The highest stress at 

which specimens do not fail is taken as the fatigue threshold. Since the amplitude of the 

cyclic loading has a major effect on the fatigue performance, the S-N relationship is 

determined for one specific loading amplitude. The amplitude is express as the R ratio 

value, which is the minimum peak stress divided by the maximum peak stress. (R=σmin/σmax).  

 

Pmax 

 

Pmin 
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Table 4.3 – Chemical composition Grade A 

Table 4.4 – Chemical composition Grade B 

 

In order to test various steels, two different specimens are used: 

 

 

Figure 4.9 – Tension-tension specimens 

 

 

• Grade A: Specimen Thickness 4,5mm; Sectional Area = 45 mm2 Rm = 623 MPa;  

Rp0,2 = 530 MPa. 

• Grade B:  Specimen Thickness 8mm; Sectional Area = 128 mm2 Rm = 679 MPa;  

Rp0,2 = 563 MPa. 

 

Chemical composition Grade A 

Element C % Mn + Si % P % S %  Mo %  Al %  N (ppm)  Nb % Ti % V % 

Max 0,1 2 0,1 0,01 0,04 0,1 100 0,1 0,5 0,1 

 

 

Chemical composition Grade B 

Element C % Mn + Si % P % S %  Mo %  Al %  N (ppm)  Nb % Ti % V % 

Max 0,1 2 0,02 0,005 0,6 0,1 100 0,05 0,05 0,1 

 

 

 

 

Grade B 

Grade A 
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4.3 Test rigs for bearing 

The fatigue test of the balls was designed in order to single out the failure cause only on the 

tested balls without damaging the other parts of the bearing, like the inner ring, outer ring 

and cage. Zaretski [27] noted that balls components were responsible for 44.4 percent of the 

failures of the bearing, inner race 44.4 percent and outer-race 11.2 percent. 

Test rigs (Fig 4.10) consist of electric motor (1), shaft (2), hydraulic piston (3), pneumatic 

piston (4), vent (5), accelerometer (6), thermocouple (7), protective shell (8) , flange (9), 

command system (10) furthermore there is a computer that control the eight test rigs thanks 

to a dedicated software (Fig 4.11).  

 

 

Figure 4.10 - Test rigs for bearing 
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The shaft is connected to the electric motor that transmit the rotation. A hydraulic piston 

driven by a pneumatic one, provides the axial load to the bearings. The loaded side of the 

shaft is the one with ϕ11.112mm balls, and the study is focused on those balls, not on the 

ϕ10.500mm ones, that have only a support function. Bearing is mounted on the shaft by 

interference fit and they are fixed to the structure thanks to the flange. The protective shell 

covers the shaft and the hydraulic piston allowing the operator to work safely on the others 

test rigs. A vent is located above the testing bearing to prevent overheating. 

 

 

 

 

Figure 4.11 – Test rigs for ball bearing 
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The test bench is able to detect: 

• Vibrations through an accelerometer 

• Temperature through to a thermocouple 

• Load level through to a load cell 

Both the accelerometer and the thermocouple are placed on tested bearings (balls with 

ϕ11.112mm). These two sensors are very important for the management of the test, indeed 

every variation of the nominal condition may have important consequences. For this reason, 

the three parameters display real time on the computer monitor connected with test rigs 

and for each minute of the test, temperature and vibrations are recorded. 

• A high level of load may produce high pressure on balls that leads to premature 

failure 

• A high temperature can arise due to excessive or limited lubricant, or a marked 

roundness of the balls and so excessive contact pressure 

• A high level of vibrations may suggest a marked roundness of the balls or a failure 

of one of the bearing components. 

The tested bearing mounts only one row of 7 balls (instead of 14 balls) to increase the contact 

pressure between the rings and the tested balls. Only one row is necessary since there's 

unidirectional load. Regarding the no-tested bearing, only one cage is assembled (as 

explained for the tested case) with a complete set of 15 balls.  
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Test procedure 

The test conditions are summarized below: 

• Ball diameter: ϕ11.112mm 

• Ball material: 100Cr6 

• Ball number in each test bearing: 7 

• Ball number in each no-test bearing: 15 

• Applied Load: 34400N 

• Grease for tested balls: Shell Gadus S3 V220 

• Grease for no tested balls: Shell Gadus S2 V100 

• Load limit: 37500N 

• Vibration limit: 15 mm/s2 

• Temperature limit: 145 0C 

• Shaft speed: 690 Rpm 

• Life target: 200h 

The test can start when the two bearings are mounted on the shaft and the bench is correctly 

assembled. During the firsts 10 minutes, the load is only the 30% of the nominal one to 

obtain a homogeneous distribution of the lubricant and the optimal centering of the shaft. 

After this short time, the load is raised until the nominal one. Each 20 hours the rigs are 

stopped and rings, lubricant, cages, and balls of the no-tested bearing are changed in order 

to prevent failures on different components of the bearing instead of the testing balls.  

It is possible to have premature stops due to: 

• High temperature  

If the temperature overcomes 145 0C, the machine stops. This temperature was 

chosen because 150 0C is the tempering temperature of the steel, over this limit there 

is the possibility of microstructural changes (hardness reduction) of the rolling 

elements and then a reduction of fatigue life. 

• Load 

In order to prevent the overload, the test is stopped if the load limit is exceeded. 
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• Vibrations 

When the vibrations level is higher than 15mm/s2, the machine stops. That level was 

chosen according to the testing developed experience: if a lower level is set, the 

machine would stop for external vibrations and if a higher level is set, a ball could be 

broken but the machine would not stop. 

 

The test is considered finished in three cases: 

• Failure of the tested balls. 

• Excessive vibrations or temperature due to a marked roundness of the balls, test is 

considered failed. 

• Life target is reached, test is considered survived. 
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4.4 Fracture inspection 

Stereomicroscope inspection  

If the test finished because a ball failed a preliminary stereomicroscope inspection is made 

in order to better understand the origin of the fracture. If a microinclusion is found in the 

fracture area, also scanning electron microscope inspection is made. 

 

 

 

Figure 4.12 - Stereomicroscope 
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Scanning electron microscope 

A scanning electron microscope (SEM) is a type of electron microscope that produces images 

of a sample by scanning the surface with a focused beam of electrons. The electrons interact with 

atoms in the sample, producing various signals that contain information about the surface 

topography and composition of the sample. Different elements produce different signals, therefore 

chemical composition of inclusion is identified.  

 

 

Figure 4.13 – Scanning electron microscope 
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Chapter 5 

5 Eshelby model 

The Eshelby model [15] allows to compute the stress field around an ellipsoidal inclusion. 

Eshelby showed that the strain field inside the ellipsoidal inclusion embedded in an infinite 

matrix is uniform when the inclusion is subject to a uniform eigenstrain. Eigenstrain refers 

to the stress-free deformation strain (of the free standing inclusion) associated with thermal 

expansion [30].  

Applying a load to a region (inclusion) in an infinite homogeneous, isotropic and elastic 

medium (matrix), the inclusion undergoes a change of shape and size. Under the constraint 

of the matrix, the inclusion has an homogeneous strain. Eshelby [15] investigated the elastic 

fields assuming to cut a generic region and removing it from the matrix. In this way the 

region can change its shape, since it is unconstrained. Then, applying forces to the region 

and so restoring it to its original shape, put it back in the matrix. The applied surface 

tractions are integrated into a layer of body force distributed on the interface between matrix 

and inclusion. To complete the solution, this layer is removed by applying an equal and 

opposite layer of body force; the additional elastic field thus introduced is found by 

integration from the expression for the elastic field of a point force.  

It results that if the inclusion is ellipsoidal and the matrix in which it is embedded is 

subjected to a homogeneous load, the stress within the inclusion is uniform. This means that 

the elastic stress and strain don't change with the position inside the inclusion.  

Mura [17] defined an inclusion as a subdomain Ω in a domain D. The eigenstrain ϵ*ij(x) is 

given in Ω and zero in D-Ω. This is the inclusion problem, as the elastic modulus is the same 

for both subdomain and domain. The displacement uj, strain ϵij, and stress σij are expressed 

by [17]: 

                                                    ui (x) = -Ckjmn∫   ϵ ∗
Ω

(𝑥′)𝐺𝑖𝑗𝑘(𝑥 − 𝑥′)𝑑𝑥′                                                                 [5.1] 

                                ϵ ij (x) = --
1

2
∫ (𝐶𝑘𝑙𝑚𝑛 ϵ ∗𝑚𝑖𝑛(𝑥′)

Ω
𝐺𝑖𝑗𝑘(𝑥 − 𝑥′) + 𝐺𝑖𝑗𝑘(𝑥 − 𝑥′) 𝑑𝑥′                                [5.2] 

                               σ(x) = -Cijkl(∫ (𝐶𝑝𝑞𝑚𝑛 ϵ ∗𝑚𝑖𝑛(𝑥′)
Ω

𝐺𝑘𝑝,𝑞𝑙(𝑥 − 𝑥′)𝑑𝑥′ +  ϵ ∗𝑘𝑙(𝑥))                                [5.3] 
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where: 

• Cijkl is the stiffness tensor  

• Gij is Green’s function  

• x is the position vector  

• x’ denotes the position of a point source. A point source is a single identifiable 

localised source of something. A point source has negligible extent, distinguishing it 

from other source geometries. Sources are called point sources because in 

mathematical modeling, these sources can usually be approximated as a 

mathematical point to simplify analysis. 

Since the strain and stress fields inside the inclusion are uniform: 

                                                        ϵ ij (x) = Sijkl 𝜖 ∗𝑘𝑙                  for x  ⋸ Ω                                                        [5.4] 

with Skl is the Eshelby tensor [16] 

Regarding the strain field outside the inclusion: 

                                                                       ϵ ij (x) = Sijkl 𝜖 ∗𝑘𝑙                                                            for x ⋸ D – Ω      [5.5] 

Given this expression of the strain for both inside and outside the inclusion, the stress can 

be obtained as follows: 

                                                                            σij = Cijklϵkl(x)                                                                      [5.6] 

 

5.1 Equivalent inclusion method 

If the elastic field that has to be evaluated is characterized by different elastic moduli, as the 

subdomain moduli is different from the one of the matrix, this makes the problem different. 

In this case the problem is called 'the inhomogeneity problem', while in the case of the same 

elastic modulus it is called 'the inclusion problem'. The correlation between the two was 

argued by Eshelby [15]: the stress perturbation due to the presence of an ellipsoidal 

inhomogeneity of an homogeneous applied stress σ∞ij, can be determined by an inclusion 

problem when the eigenstrain  ϵ ∗ is chosen correctly. This is called the equivalent inclusion 

method [31]. 

Mura [17] gives the strain and stress fields as follows: 

                                                                   ϵ ij = ϵ ∞ij + Sijmn 𝜖 ∗𝑚𝑛                                                                                                [5.7] 
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                                                        σij = σ∞ij + Cijkl(Skmln𝜖 ∗𝑚𝑛)     for x ⋸ Ω                                            [5.8]  

                                                            ϵij (x) = ϵ ∞ij + Dklmn(x)  𝜖 ∗𝑚𝑛                                                        [5.9] 

                                                      σij(x) = σ∞ij + Cijkl Dklmn(x)  𝜖 ∗𝑚𝑛        for x € D – Ω                     [5.10] 

 

Note that equations (5.7)(5.9) are similar to (5.4)(5.5) respectively, but the equations 

describing the equivalent inclusion method (5.7)(5.9) have the term ϵ ∞ij which represents a 

remote strain induced by the homogeneus stress σ∞ij. The same goes for the equations 

regarding the stress (5.8)(5.10), but here the eigenstrain is stress-free, so it has to be 

subtracted from the total strain when calculating the stress inhomogeneity. 

 

5.2 Numerical solver 

In order to evaluate the effects of various types of inclusions and matrices, a 3D numerical 

MATLAB solver that implement the Eshelby solution was used. In particular, it allowed to 

determine the stress field around the microinclusion. Healy [32] proposed a MATLAB code 

that was able to consider the Eshelby solution for an inclusion with semiaxes a1 =a2 ≠a3. The 

one that was used in this work, allows to consider a general ellipsoidal inclusion or 

inhomogeneity with three different semiaxes, and it is based on the one developed by Meng 

et al. [31]. The code has been revisited to adapt it to the particular case of inclusions in ball 

bearings. As explained by Meng et al. [31], the main script, incl prob.m handles the input 

data structure, calls the Eshelby solver, Esh sol.m, and presents the results.  

The input structure incl prob.m has attributions: 

• Em: Young's modulus of the matrix 

• νm: Poisson ratio of the matrix 

• Eh: Young modulus of the inhomogeneity 

• νh: Poisson ratio of the inhomogeneity 

• dim: the ellipsoidal dimensions ai 

• ang: rotation angles around coordinate axes 

• stressvec: remote stress σ∞ij 

• eigp: initial eigenstrain ϵ pij 
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• grid: observation grid(s) where we evaluate the solutions 

 

where the stress and strain tensors are in the form of six-component vectors because of the 

symmetry. The Esh_sol.m function reads the input data and output arguments, "disp","stress" 

and "strain". The routines called by this function in the order of appearance:  

• Ctensord.m constructs the stiffness tensors Cijkl and C*ijkl for given elastic moduli (Em, 

vm) and (Eh, vh). From the stress-strain correspondence, (4.6), it's possible to calculate 

the remote strain ϵ ∞ij for the remote stress σ∞ij. Note that if Cijkl = C*ijkl, σ∞ij = 0 and ϵ pij ≠ 

0, it is the original inclusion problem.  

• Esh_int.m constructs the Eshelby tensor Sijkl for a given vm and ellipsoid dimension ai. 

With C*ijkl, ϵ ∞ij and Sijkl it's possible to calculate the fictitious eigenstrain ϵ*ij 

• Esh_D4.m constructs the tensor Dijkl(x) for given vm, ai and coordinates xi. With Dijkl, 

it's possible to calculate the exterior strain and stress. 

• Esh disp.m constructs the displacements ui for given vm, ai, xi, and ϵ*ij 

• Esh_D4_disp.m merges the functionalities of Esh_D4 and Esh_disp. Since the objective 

is to find the stress field perturbation, only Esh_D4 routine is chosen, the 

displacement given by Esh_disp it is not considered at this stage. 
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Chapter 6 

6 Ball frequency 

In Chapter 3 it was shown that ball bearing life prediction L10 depend on four different 

parameters: 

• The load-life exponent p 

• The dynamic load capacity Cd 

• The equivalent load Peq 

• The bearing life factor LFc 

Cd, p and LFc are geometrical parameter, therefore the only parameter that depend on the 

presence of inclusion is Peq. 

Knowing how often the most critical inclusion will be stressed and the stress at the inclusion 

boundary, it is possible to define a new Peq. The new Peq is a weighted average between a 

theoretical load and the real load. 

• Theoretical load is the fictitious load that it would be applied to a steel matrix without 

any inclusion, in order to produce the stress peak at the boundary of inclusion 

compute with eshelby model. 

• Real load is the load applied to the bearing 

It is important to better understand how a ball in bearing spins, in order to estimate how 

many times the inclusion will be stressed and in that case it is like it is applied the theoretical 

load instead the real load  
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6.1 Ball spin frequency 

When a bearing spins, any defect or irregularities in the raceway surfaces or the rolling 

elements such as indentation, spalls, crack, flaking or irregularities in roundness of the 

rolling element, excites periodic frequencies called fundamental defect frequencies. A 

machine with a defective bearing can generate at least five frequencies [33]. These 

frequencies are: 

• Rotating unit frequency or speed (f): this is the frequency at which shaft on which 

bearing is mounted rotates.  

• Fundamental train frequency (FTF): it is the frequency of the cage.  

• Ball pass frequency of the outer race (BPFO): it is the rate at which the ball/roller 

contacts a defect in the outer race 

• Ball pass frequency of the inner race (BPFI): it is the rate at which a ball/roller 

contacts a defect in the inner race.  

• Ball spin frequency (BSF): it is the circular frequency of each rolling element as it 

spins. When one or more of the balls or rollers have a defect such as a spall the defect 

impacts both the inner and outer race each time one revolution of the rolling element 

is made.  

In order to determine, statistically, how often the inclusion is loaded, the inclusion is 

considered like a fault so it possible to know the frequency with which the inclusion contacts 

the same race (inner or outer) [34]: 

BSF = 
𝐷

2𝑑
(1 − (

𝑑

𝐷
cos ɸ)

2
) 

• BSF = ball spin frequency  

• D = pitch diameter 

• d = ball diameter 

• ɸ = contact angle 

BSF provides the total number of cycles that ball element does during a complete shaft cycle.  

These are however the kinematic frequency assuming no slip, and in actual fact there must 

always be some slip. 
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6.2 Transversal slip 

Since rolling without slipping is impossible, it is necessary to consider also other rotation of 

the balls; in this work only the transverse slip due to the motion of precession was 

considered [35]. 

Transverse slip could be calculated with the following geometrical consideration: 

 

 

Figure 6.1 - Contact geometry. E.P. Kingsbury. “Precessional slip in angular contact ball bearing” 

O’X’Y’Z is the fixed reference system of the bearing, (O,ξ,ɳ,ζ)n are reference systems 

centered one in each ball having (i,j,k)n unit vectors. 

 

Figure 6.2 - Precession geometry. E.P. Kingsbury. “Precessional slip in angular contact ball bearing” 
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The angular velocity vector �̇� of any ball precessing in counter-rotation has two oblique 

components: spin s and precession p. These include the precession angle α. The motion is 

specified with respect to (O,ξ,ɳ,ζ), as a function of time t by: 

�̇� n= (s∗ 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝑝𝑡)in + (s∗ 𝑠𝑖𝑛 𝛼 𝑠𝑖𝑛 𝑝𝑡)jn + (p+ s*𝑐𝑜𝑠 𝛼)kn 

For the ball with n = 1, the radius vector to the ball-outer (ball-inner) contact is: 

rb0i = -(+) 
𝑑

2
 

the surface velocities on the ball at these contacts are: 

VB0i= �̇� x rb0i = (s∗ 𝑠𝑖𝑛 𝛼 𝑠𝑖𝑛 𝑝𝑡)j1 + (p+ s*𝑐𝑜𝑠 𝛼)k1 

The radius vectors from 0’ to the ball-race contacts are: 

rOi = 
1

2
 *(D+d𝑐𝑜𝑠 ɸ)(-𝑐𝑜𝑠 ɸ 𝑖 − 𝑠𝑖𝑛 ɸ𝑘 ) 

and the surface velocities on the races are: 

VOi =𝛾𝑂(𝑖)̇ ∗ rOi = - 
1

2
𝛾𝑂(𝑖)̇ *(D+d𝑐𝑜𝑠 ɸ)j1 

𝛾�̇� =race angular velocity vector. 

The ball-race slips, defined as race minus ball surface velocity, are: 

Vs0  =  
1

2
 (d(p+ s*𝑐𝑜𝑠 𝛼)-(D+ d𝑐𝑜𝑠 ɸ) 𝛾�̇�)j1 -  

𝑑

2
(s∗ 𝑠𝑖𝑛 𝛼 𝑠𝑖𝑛(𝑝𝑡))k1 

Vsi = 
1

2
 (d(p+ s*𝑐𝑜𝑠 𝛼)-(D- d𝑐𝑜𝑠 ɸ) 𝛾�̇�)j1 + 

𝑑

2
(s∗ 𝑠𝑖𝑛 𝛼 𝑠𝑖𝑛(𝑝𝑡))k1 

First-order bearing theory assumes zero slip in the rolling direction j, at each ball-race 

contact. For that condition: 

�̇�

𝛾�̇�−𝛾�̇�
 = 

�̇�

𝑆
 = 

𝐷2−𝑑2(𝑐𝑜𝑠 ɸ)

2𝐷𝑑
 = ƿ 

 

If there is precession, the definition of basic speed ratio can be generalized to: 

Ƿp = 
𝑝+ 𝑠∗𝑐𝑜𝑠 𝛼

𝑆
 = 

𝐷2−𝑑2(𝑐𝑜𝑠 ɸ)

2𝐷𝑑
 

p, s and α are related by: 

𝑠

𝑝
 = 𝐼𝐸−𝐼𝐻

𝐼𝐸
𝑐𝑜𝑠 𝛼 

 
where IH and IE are ball inertias along and normal to the axis. 
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The ratio of transverse slip amplitude to surface velocity, so while ball did a complete cycle 

around the principal axis also did a transverse slip that is around  
1

100
  of the complete cycle. 

𝑠 sin 𝛼

𝑝+𝑠 cos 𝛼
  ˷  

1

100
 

• s = spin vector 

• p = precession vector 

• α = precession angle 

 

Bearings used are SKF BAHB-311396 B that have the following geometric parameters: 

 

D [mm] d [mm] α [°] ɸ [°] 

56,5 11,112 10 28 

 

 

It is possible to calculate how often the inclusion will be loaded: 

BSF Transversal slip/ 

shaft revolution 

Shaft revolution/ 

transversal slip 

Times when inclusion is stressed 

every 40 shaft revolution 

2,46 0,0246 40 2 

 

 

Since inclusion is loaded two times during a complete rotation (inner race and outer race), 

the frequency with which there is a stress-riser inside the inhomogeneity is around every 

20-shaft revolution. The assumption that should be taken is that the transverse slip is not 

random but always in the same direction of rotation. 

 

 

 

 

Table 6.1 – Geometrical parameters of the bearing 

Table 6.2  
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Chapter 7 

7 Statistics of extreme values method 

Stress peak at the boundary of the inclusion does not depend on inclusion size however it 

is important to define a critical dimension, since large oxide inclusions are dangerous for 

most steel properties, and much more harmful than small inclusions. A critical inclusion 

size is usually defined, above which inclusions are dangerous and can cause the failure of 

steel products.  

The purpose of the statistical theory of extreme values [36] is to mathematically and explain 

observed extremes in samples of some specified size, in our case the largest inclusion in a 

fixed volume and also the probability that in this volume an inclusion could be larger than 

critical size. This methodology has been applied in many fields relating to metals, Murakami 

and co-workers [12] were the first to apply this method to estimate the size of the maximum 

inclusion in a large volume or area of steel from data acquired on the polished surface. The 

basic concept of extreme value theory is that, when a fixed number of data points following 

a basic distribution are collected, the maximum and minimum of each of these sets also 

follow a distribution [37].  

The distribution follows the following function [37]: 

                                                          G(z) = 𝑒−𝑒
− 

𝑧−𝜆
𝛼                                                        (1) 

where G(z) is the probability that the largest inclusion is no larger than size z, and α and λ 

are the scale and location parameters. If the reduced variate, y: 

                                                          y = 
𝑧−𝜆

𝛼
                                                                               (2) 

is introduced, then from eq. (1) its distribution function is: 

                                                         H(y) = 𝑒−𝑒− 𝑦
                                                          (3) 
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7.1 Calculation procedure 

In order to find the characteristic size of the maximum inclusion in a defined volume V you 

have to follow the written procedure below: 

1) A standard inspection area S0 (mm2) is defined. The area of the maximum inclusion 

in S0 is measured, then the square root of the area of the maximum inclusion, 

(Areamax)1/2, is calculated. This is repeated for N areas S0. 

2) The values of (Areamax,i)1/2 are classified, starting from the smallest, and ranked with 

i=1,2,…N. 

3) The cumulative probability of inclusion size zi can be calculated: 

                                                                     H(yi) = i /(N+1)                                                      (4) 

 

4) From eq. (3): 

                                                         yi = -Ln(-Ln(H(yi)))                                                  (5) 

5) Define h like the mean value of (Areamax,i)1/2: 

                                                                 h = 
𝛴(𝐴𝑟𝑒𝑎𝑚𝑎𝑥,𝑖)1/2

𝑁
                                                (6) 

6) The standard inspection volume V0: 

        V0 = h*S0 (7) 

7) The return period T is defined as: 

 T = V/V0 (8) 

8) From equation 1 with G(z) = 1 - 1/T: 

               y(T) = -Ln(-Ln(( T-1 )/T)) (9) 

9) Plot (Areamax,i)1/2 in terms of yi, then draw the straight which best approximates the 

data points. 

10) Find the intersection between yi = y (T) and the straight which best approximates the 

data points. The abscissa of this point is the square root of the characteristic size of 

the maximum inclusion. 

11) From eq. (2) and the experimental straight it possible to calculate α and λ, then from 

eq. (1) the probability that the largest inclusion is no larger than critical size z. 
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7.2 Cleanliness analysis 

Cleanliness analysis consist of microscopic inspection of a polish surface in order to find all 

the inclusions in a section area of raw material. 

According to ASTM E45 [29] a microscopic method of examination is used, inclusions are 

assigned to a category based on similarities in morphology and not necessarily on their 

chemical identity.  

Inclusions are characterized by size, shape, concentration, and distribution rather than 

chemical composition. Although compositions are not identified, Microscopic methods 

place inclusions into one of several composition-related categories:  

- Sulfides  

- Aluminates  

- Silicates  

- Oxides  

Microscopic methods are used to characterize the size, distribution, number, and type of 

inclusion on a polished specimen surface. This may be done by examining the specimen 

with a light microscope and reporting the types of inclusion encountered, accompanied by 

a few representative photomicrographs. Standard reference charts depicting a series of 

typical inclusion configurations (size, type and number) were created for direct comparison 

with the microscopic field of view. 

The minimum polished area of a specimen for the microscopic determination of inclusion 

content is 170 mm2. 

Methods of specimen preparation must be such that a polished, microscopically flat section 

is achieved in order that the sizes and shapes of inclusions are accurately shown.  

To obtain satisfactory and consistent inclusion ratings, the specimen must have a polished 

surface free of artifacts such as pitting, foreign material and scratches. When polishing the 

specimen, it is very important that the inclusion not be pitted, dragged, or obscured. 

Specimens must be examined in the as-polished condition, free from the effects of any prior 

etching (if used). Inclusion retention is generally easier to accomplish in hardened steel 

specimens than in the annealed condition. If inclusion retention is inadequate in annealed 



 7 – Stetistics of extreme values method  

56 
 

specimens, they should be subjected to a standard heat treatment cycles using a relatively 

low tempering temperature. After heat treatment, the specimens must be descaled, and 

longitudinal plane must be reground and below any decarburization.  

Sample is divided in standard inspection area. Every standard inspection area are examined 

in order to found non metallic inclusions. 

 

7.3 Experimental data 

A sample of steel 100Cr6 was chosen. It was divided in standard inspection area S0  (fig 

7.1.) 

 

 

Figure 7.1 - Standard inspection area 0.5 mm2 

After inspection 36 iclusions were found. They are listed in table 6.1 

               

Figure 7.2-7.3 – Examples of inclusion found 

0.71 mm2 
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Areamax
1/2 [um] H(yi)  yi 

7,2 0,03 -1,28 

7,9 0,05 -1,07 

8,0 0,08 -0,92 

8,4 0,11 -0,80 

8,4 0,14 -0,69 

8,5 0,16 -0,60 

8,7 0,19 -0,51 

8,8 0,22 -0,43 

8,8 0,24 -0,35 

8,9 0,27 -0,27 

9,0 0,30 -0,19 

9,3 0,32 -0,12 

9,3 0,35 -0,04 

9,7 0,38 0,03 

9,7 0,41 0,10 

9,7 0,43 0,18 

11,1 0,46 0,25 

11,1 0,49 0,33 

11,7 0,51 0,41 

12,0 0,54 0,49 

12,6 0,57 0,57 

12,7 0,59 0,65 

12,8 0,62 0,74 

13,3 0,65 0,84 

13,7 0,68 0,94 

13,9 0,70 1,04 

14,2 0,73 1,15 

14,6 0,76 1,28 

15,5 0,78 1,41 

15,5 0,81 1,56 

16,7 0,84 1,73 

16,8 0,86 1,93 

19,5 0,89 2,17 

21,7 0,92 2,47 

23,0 0,95 2,89 

23,5 0,97 3,60 
Table 7.1 – Data collected after inspection 

From data collected the following parameters were calculated: 

V0 [mm3] V [mm3] h [um] N T  Y(T) 

6,2 267,79 12,4 36 42,9 3,75 
Table 7.2 – Parameters used in Sev method  
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It was chosen a volume V of annulus bounded by external diameter of steel balls (11.112mm) 

and the depth threshold (800 µm) which the stress peak of inclusion remains below the 

maximum stress of the steel matrix. 

 

 

Figure 7.4 - Schematic illustration of the estimation of the maximum inclusion size in a large volume of steel by the SEV method. 

 

• Slope of the approximates line = 
1

α
 = 0.2582 

• Intersection between vertical axis and the approximates line =  
𝜆

𝛼
  = -2,658      

• Areamax = 616 mm2 

 

In table 7.3 is interesting to see how the probability that the largest inclusion is no larger 

than a fixed Areamax1/2, changes.  

 

y (T) = 3,75 

24,82 

Y(i) 

Area
max

1/2
 [um] 
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Fixed sizes used are 5,10,15,20 and 25 µm. 

Areamax
1/2 [µm] 5 10 15 20 25 

G (Areamax
1/2) 2% 34% 74% 92% 98% 

Table7.3 – Probability that the largest inclusion is no larger than a fixed Areamax
1/2 
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Chapter 8 

8 Results 

8.1 Raw Material results 

Four different steel composition has been tested, two of them are low carbon content, the 

other two are high carbon content. Low carbon content steels have been tested with a 

tension-tension test instead the others with rotating bending test. 

Testing different steels and using various methodology has enabled us to better understand 

the effect of non metallic inclusions with different conditions.  

 

8.1.1 Rotating bending test 

Target of the test is to establish fatigue limit of the steel.  

Before testing the two materials it was expected that 100CrSiMn6-5-4 would have better 

fatigue limit, in fact a high percentage of Silicon (Si) improves fatigue resistance. Contrary 

to the expectations test results showed that the fatigue limit of 100CrSiMn6-5-4 is lower than 

that of 100Cr6. After failure analysis displayed that 100CrSiMn6-5-4 has more critical 

inclusions than 100Cr6, that is why fatigue limit is reduced. 
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Results of two different steel composition are shown below: 

Campaign 1  

The test characteristics were: 

• Material tested: 100Cr6 (AISI 52100) 

• Stress frequency: 58.3Hz (3500 rpm) 

• Life target: 5*106 cycles 

• Starting applied stress: 1100 MPa 

• Δσ = 25 MPa 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8.1 – Staircase 100Cr6 

 

Test n. 

Stress 

Applied to 

Minimum 

Cross Section 

[MPa] 

Failed / 

Survived 

Cycles 

[10^6] 

Test 

duration 

[h] 

1 1100 F 1,24 5,9 

2 1075 F 4,20 20,0 

3 1050 F 1,06 5,1 

4 1025 S 5,00 23,8 

5 1050 F 3,11 14,8 

6 1025 S 5,00 23,8 

7 1050 S 5,00 23,8 

8 1075 S 5,00 23,8 

9 1100 F 4,00 19,0 

10 1075 S 5,00 23,8 

11 1100 S 5,00 23,8 

12 1125 S 5,00 23,8 

13 1150 F 1,73 8,2 

14 1125 S 5,00 23,8 

15 1150 S 5,00 23,8 
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Figure 8.1 – Staircase 100Cr6 

Fatigue limit obtained is 1075 ± 32.2 MPa. 

 

Visual inspection has been made on failed specimens, as expected in all the test the starting 

point is an inclusion just below the surface. 

                        

   Figure 8.2 - Test n.1 – 1100 MPa – 200x                                                      Figure 8.3 - Test n.2 – 1075 MPa – 200x              

                                     

Figure 8.4 - Test n. 3 – 1050 MPa –200x                                                           Figure 8.5 - Test n.5 – 1050 MPa – 200x                                  
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Figure 8.6 - Test n.9 – 1100 MPa - 100x                                                               Figure 8.7 - Test n.13– 1150 MPa – 200x           

Campaign 2 

The test characteristics were: 

• Material tested: 100CrSiMn6-5-4 

• Stress frequency: 58.3Hz (3500 rpm) 

• Life target: 5*106 cycles 

• Starting applied stress: 1025 MPa 

• Δσ = 25 MPa 

Test n. 

Stress Applied 

to Minimum 

Cross Section 

[MPa] 

Failed / 

Survived 

Cycles 

[10^6] 

Test 

duration 

[h] 

1 1025 F 0,24 1,1 

2 1000 S 5 23,8 

3 1025 F 0,3 1,4 

4 1000 F 0,05 0,3 

5 975 S 5 23,8 

6 1000 F 1,56 7,4 

7 975 F 0,01 0,1 

8 950 F 1,48 7 

9 925 S 5 23,8 

10 950 F 1,92 9,1 

11 925 F 0,44 2,1 

12 900 S 5 23,8 

13 925 S 5 23,8 

14 950 S 5 23,8 

15 975 S 5 23,8 
Table 8.2 – Staircase 100CrSiMn6-5-4 
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Figure 8.8 – Staircase 100CrSiMn6-5-4 

 

Fatigue limit obtained is 937.5 ± 22.3 MPa. 

 

Visual inspection has been made on failed specimens, as expected in all the tests the starting 

point is an inclusion just below the surface.  

 

                        

 Figure 8.9 - Test n.1 – 1025 MPa – 200x                                                           Figure 8.10 - Test n.3 – 1025 MPa – 200x 
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  Figure 8.11 - Test n.4 – 1000 MPa – 200x                                                      Figure 8.12 - Test n.6 – 1000 MPa – 200x 

 

                         

                        

Figure 8.13 - Test n.7 – 975 MPa – 200x                                                           Figure 8.14 - Test n.8 – 950 MPa – 200x 

                

                       

Figure 8.15 - Test n.10 – 950 MPa – 200x                                                          Figure 8.16 - Test n.11 – 925 MPa – 200x 
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8.1.2 Implementation of numerical model 

Four Rotating bending specimens (two for each campaign) have been analysed with SEM 

inspection. The inclusion from which the fracture started, was composed by Al2O3 plus other 

oxides for example calcium aluminate. It has to be noticed that when Al2O3 was present, the 

Young modulus and the Poisson ratio were the ones of the Al2O3 itself, since they are the 

most critical in this case and it's very difficult to determine the factors taking into account 

every element. The inclusions were all similar also in terms of dimensions and depth, and 

basically they can be approximated as circular. 

 

100Cr6 

Test 5: failed after 3.11*106 cycles 

         

  Figure 8.21 - Test n.5 – 500x                                                                      Figure 8.22 – Test n.5 – 4000x 

       

              

  Figure 8.23 – Chemical composition of inclusion                                  Figure 8.24 – Spectrum of inclusion  
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Stress applied [Mpa] 1050 

Original Stress at the depth of inclusion [MPa] 1025 

Maximum Stress at the depth of inclusion [MPa] 1268 

Inclusion dimension [µm] 

X Y Z 

12.5 12.5 12.5 

Depth [µm] 54  
Table 8.5 – Results 

 

 

 

Figure 8.25 - Stress peak - Test n.5 
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Test 9: Failed after 4*106 

 

          

  Figure 8.26 - Test n.9 – 500x                                                                      Figure 8.27 – Test n.9 – 4000x 

 

       

  Figure 8.28 – Chemical composition of inclusion                                  Figure 8.29 – Spectrum of inclusion  

 

 

Stress applied [Mpa] 1100 

Original Stress at the depth of inclusion [MPa] 1038 

Maximum Stress at the depth of inclusion [MPa] 1284 

Inclusion dimension [µm] 

X Y Z 

9.5 9.5 9.5 

Depth [µm] 126 
Table 8.6 – Results 
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Figure 8.30 - Stress peak - Test n.9 
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100CrSiMn6-5-4 

Test 3: Failed after 0.3*106 Cycles 

                         

Figure 8.31 - Test n.3 – 200x                                                                                  Figure 8.32 – Test n.3 – 600x 

                                     

    Figure 8.33 – Chemical composition of inclusion                             Figure 8.34 – Spectrum of inclusion  

 

Stress applied [Mpa] 1025 

Original Stress at the depth of inclusion [MPa] 979 

Maximum Stress at the depth of inclusion [MPa] 1211 

Inclusion dimension [µm] 

X Y Z 

23.5 23.5 23.5 

Depth [µm] 100 
Table 8.7 – Results 
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Figure 8.35 - Stress peak - Test n.3 
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Test 11: Failed after 0.44*106 Cycles 

 

         

Figure 8.36 - Test n.11 – 200x                                                                      Figure 8.37 – Test n.11 – 600x 

             

  Figure 8.38 – Chemical composition of inclusion                                            Figure 8.39 – Spectrum of inclusion  

 

Stress applied [Mpa] 925 

Original Stress at the depth of inclusion [MPa] 832 

Maximum Stress at the depth of inclusion [MPa] 1134 

Inclusion dimension [µm] 

X Y Z 

31 31 31 

Depth [µm] 227 
Table 8.8 – Results 
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Figure 8.40 - Stress peak - Test n.11 
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8.2 Tension-tension test 

Target of the test is to establish fatigue limit of the steel. Before testing the two materials it 

was expected that Grade B would have better fatigue limit, in fact a higher percentage of 

Molybdenum (Mo) improves fatigue limit. Results obtained are in agreement with 

expectation, in fact, differently to rotating bending tests, no critical inclusions have been 

identified as starting point. 

Results of the two different steel composition are shown below: 

Campaign 1 

The test characteristics were: 

• Material tested: Grade A 

• Starting maximum applied stress: 609.7 MPa 

• R = 0.1 

• Stress frequency: 15Hz  

• Life target: 3*106 cycle 

Table 8.3 – S-N Grade A 

Test σmax [Mpa] σmin [Mpa] σa [Mpa] Cycles to Failure [106] Test duration [h] F/S 
1 609,7 60,97 274,37 0.04 0,08 F 

2 609,7 60,97 274,37 0.06 0,12 F 

3 583,2 58,32 262,44 0.4 0,74 F 

4 524,9 52,49 236,21 0.11 2,07 F 

5 524,9 52,49 236,21 0.17 3,11 F 

6 524,9 52,49 236,21 0.19 3,44 F 

7 514,3 51,43 231,44 0.25 4,67 F 

8 514,3 51,43 231,44 0.27 5,08 F 

9 514,3 51,43 231,44 0.34 6,29 F 

10 498,4 49,84 224,28 0.31 5,80 F 

11 498,4 49,84 224,28 0.36 6,61 F 

12 498,4 49,84 224,28 0.43 7,97 F 

13 498,4 49,84 224,28 3 55,56 S 

14 487,8 48,78 219,51 0.55 10,14 F 

15 487,8 48,78 219,51 0.58 10,77 F 

16 487,8 48,78 219,51 0.64 11,87 F 

17 477,2 47,72 214,74 0.48 8,84 F 

18 477,2 47,72 214,74 0.76 14,04 F 

19 477,2 47,72 214,74 2.06 38,14 F 

20 466,5 46,65 209,93 3 55,56 S 

21 466,5 46,65 209,93 3 55,56 S 

22 466,5 46,65 209,93 3 55,56 S 
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Figure 8.17 – S-N curve Grade A 

 

 

Figure 8.18 – Log S-N curve Grade A 

 

Fatigue limit obtained is 210 MPa. 
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Campaign 2 

The test characteristics were: 

• Material tested: Grade B 

• Starting maximum applied stress: 609.7 MPa 

• R = 0.1 

• Stress frequency: 15Hz  

• Life target: 3*106 cycles 

 

Test σmax [Mpa] σmin [Mpa] σa [Mpa] Cycles to Failure [106] Test duration [h] f/s 

1 608,4 60,84 273,78 0.1 1,92 F 

2 608,4 60,84 273,78 0.14 2,58 F 

3 608,4 60,84 273,78 0.21 3,93 F 

4 597,1 59,71 268,70 0.17 3,07 F 

5 597,1 59,71 268,70 0.18 3,42 F 

6 597,1 59,71 268,70 0.21 3,95 F 

7 585,9 58,59 263,66 0.2 3,75 F 

8 585,9 58,59 263,66 0.2 3,76 F 

9 585,9 58,59 263,66 0.21 3,98 F 

10 574,6 57,46 258,57 0.28 5,13 F 

11 574,6 57,46 258,57 0.31 5,78 F 

12 574,6 57,46 258,57 0.65 11,99 F 

13 563,3 56,33 253,49 0.38 6,95 F 

14 563,3 56,33 253,49 0.42 7,81 F 

15 563,3 56,33 253,49 3 55,56 S 

16 552,1 55,21 248,45 0.22 4,12 F 

17 552,1 55,21 248,45 0.48 8,91 F 

18 552,1 55,21 248,45 3 55,56 S 

19 540,8 54,08 243,36 3 55,56 S 

20 540,8 54,08 243,36 3 55,56 S 

21 540,8 54,08 243,36 3 55,56 S 
Table 8.4 – S-N Grade B 
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Figure 8.19 – S-N curve Grade B 

 

 

Figure 8.20 – Log S-N curve Grade B 

Fatigue limit obtained is 243 MPa. 
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8.2.1 Cleanliness analysis 

Sem analysis were made on test 4,9,14,17 and 19 for Grade A and on test 1,5,7,11 and 13 for 

Grade B in order to evaluate the effect of fatigue and the presence of non metallic inclusions 

for different number of cycles.  

 

Figure 8.41 – Tension-tension specimens   

No critical inclusions were found, nevertheless flakes of non metallic materials were found 

near the starting points in some specimens (Fig 7.54-7.55-7.56-7.57). It is impossible to say 

that these inhomogeneities are the cause of the failure but they may have contributed to 

increase the stress and leading to crack. 

 

        

Figure 8.42 – Test 4 – Starting point 300x                                                     Figure 8.43 - Test 4 – Starting point 1200x 

4 9 14 17 19 

1 5 7 11 13 
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Figure 8.44 – Test 9 – Starting point 250x                                                     Figure 8.45 - Test 9 – Starting point 1500x 

 

Since any inclusion were found near the starting points cleanliness analysis were made on 

a section of tension-tension specimens in order to verify the low contents of critical 

inclusions.  

An inspectional area of 14.5 cm2 were analysed both grade A and B, critical inclusions found 

are shown below. 

 

Grade A 

       

Figure 8.46 - Oxides type - grade A - 1000x                                                       Figure 8.47– Aluminates type - grade A – 1000x 
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Grade B 

          

Figure 8.48 - Oxides type - grade B - 1000x                                             Figure 8.49– Oxides type - grade B – 1000x 

          

Other inclusions were found, however they were not reported since they are very small. 

Results showed that both grade A and grade B are low contents of critical inclusions as 

expected.  

 

A numerical simulation was made evaluating the increase of stress that would cause the 

inclusion in figure 8.49 if it was present in the fracture area.  

It was decided to make the simulation with the stress of fatigue limit and Al2O3 composition. 

 

Maximum stress applied [Mpa] 540.8 

Maximum stress [MPa] 669 

Inclusion dimension [µm] 

X Y Z 

31 31 31 
Table 8.9 – Results 
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Figure 8.50 - Stress peak  

 

Maximum stress evaluated at the boundary of the inclusion is more than the maximum 

stress applied in tension-tension test.  
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8.3 Balls test results 

In order to define a new ball bearing life prediction L10 considering the effect of non metallic 

inclusion the following procedure has been applied: 

• Numerical model is used in order to determine the increased of stress at the 

boundary of the critical inclusion. 

• The frequency with which the inclusion strikes a race (inner and outer) is calculated 

(chapter 6), therefore it is known how often critical inclusion will be stressed 

compared to shaft revolutions. 

• Equivalent load Peq is found considering the inclusion presence. 

• L10 is calculated using Peq found previously. 

 

8.3.1 Implementation of numerical model 

Seven cases of different campaigns were analysed with Sem inspection, in each case fracture 

starts from a non metallic inclusion. In five cases more than one inclusion was present in the 

fractured area: for this reason the considered one was the one with the major increase of 

stress, since it was the worse from the fatigue life point of view. Probably, also in the other 

two cases the balls had few inclusions, but it could happen that they remained under the 

material that was peeling. Regarding the chemical composition, if the presence of some 

elements was negligible (evaluating the spectrum) these elements were neglected when 

considering the composition.  

Original Hertzian matrix for ball-ring contact was calculated starting from data input below: 

 

 Balls Ring 

Young modulus [GPa] 210 210 

Poisson ratio 0.35 0.35 

Radius [mm] 1x 1y 2x 2y 

5.556 5.556 22.25 -6.322 

Table 8.10 –Ball and ring characteristic 
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The force that acts on the normal direction of the contact for each ball has been calculated 

from this consideration: 

 

 

Figure 8.51 – Scheme of the ball-ring contact 

• Test load: 34400 N 

• Balls tested: 7 

• F = Axial force applied on each ball: 34400/7 N 

• Fn = Force that acts on the normal direction of the contact 

• Φ = Angular contact: 28o 

Fn = F*cos(90 - Φ)=2819N 

 In table 8.11 the values of the stress at the depth of the critical inclusion for each case are 

shown. 

 

Table 8.11 – Stress at the depth of the inclusion 

  σ11 

[Mpa] 
σ12 

[Mpa] 
σ13 

[Mpa] 
σ21 

[Mpa] 
σ22 

[Mpa] 
σ23 

[Mpa] 
σ31 

[Mpa] 
σ32 

[Mpa] 
σ33  

[Mpa] 
Tresca 
[Mpa] 

1 [-453 um] -480 0 -688 0 -45 -906 -688 -906 -1857 1432 

2 [-562 um] -340 0 -603 0 -2 -773 -603 -773 -1547 1228 

3 [-600 um] -304 0 -578 0 6 -733 -578 -733 -1459 1167 

4 [-284 um] -888 0 -848 0 -281 -1151 -848 -1151 -2583 1807 

5 [-436 um] -510 0 -704 0 -57 -930 -704 -930 -1917 1469 

6 [-326 um] -782 0 -816 0 -203 -1106 -816 -1106 -2415 1737 

7 [-450 um] -495 0 -695 0 -50 -915 -695 -915 -1880 1446 

Stress 
Test 

φ 

F 

Fn 
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Case 1: failed after 11.2h 

          

Figure 8.52 – Case 1 – Starting point 16x                                                         Figure 8.53 – Case 1 – Starting point 2000x 

 

       
   Figure 8.54 – Case 1 – Chemical composition                                     Figure 8.55 – Case 1 – Spectrum 

 

Original Stress at the depth of inclusion [MPa] 1432 

Maximum Stress at the depth of inclusion [MPa] 1994 

Chemical composition  TiC 

Inclusion dimension [µm] 

X Y Z 

1.67 4.34 1.67 

Depth [µm] 453 
Table 8.12 – Results  
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Figure 8.56 - Stress peak  
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Case 2: failed after 33.9h 

           

Figure 8.57 – Case 2 – Starting point 16x                                                     Figure 8.58 – Case 2 – Starting point 2000x 

 

               

Figure 8.59– Case 2 – Chemical composition                                               Figure 8.60 – Case 2 – Spectrum 

 

Original Stress at the depth of inclusion [MPa] 1228 

Maximum Stress at the depth of inclusion [MPa] 1682 

Chemical composition  Al2O3 

Inclusion dimension [µm] 

X Y Z 

1.67 2.67 1.67 

Depth [µm] 562 
Table 8.13 - Results 
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Figure 8.61 – Stress peak  
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Case 3: failed after 46.9h 

       

Figure 8.62 – Case 3 – Starting point 10x                                                     Figure 8.63 – Case 3 – Starting point 700x 

 

       

Figure 8.64 – Case 3 – Chemical composition                                                     Figure 8.65 – Case 3 - Spectrum 

 

Original Stress at the depth of inclusion [MPa] 1167 

Maximum Stress at the depth of inclusion [MPa] 1643 

Chemical composition  Al2O3 

Inclusion dimension [µm] 

X Y Z 

7 49 7 

Depth [µm] 600 
Table 8.14 - Results 
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Figure 8.66 – Case 3 – Stress peak  
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Case 4: failed after 21h 

        

Figure 8.67 – Case 4 – Starting point 10x                                                     Figure 8.68 - Case 4 – Starting point 1500x 

 

                    

Figure 8.69 – Case 4 – Chemical composition                                                     Figure 8.70 - Case 4 – Spectrum 

 

Original Stress at the depth of inclusion [MPa] 1807 

Maximum Stress at the depth of inclusion [MPa] 2463 

Chemical composition  Al2O3 

Inclusion dimension [µm] 

X Y Z 

12.5 12.5 12.5 

Depth [µm] 284 
Table 8.15 - Results 
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Figure 8.71 – Case 4 – Stress peak  
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Case 5: failed after 35h 

       

Figure 8.72 – Case 5 – Starting point 10x                                                     Figure 8.73 – Case 5 – Starting point 2000x 

 

         

Figure 8.74 – Case 5 – Chemical composition                         Figure 8.75 – Case 5 – Spectrum 

 

Original Stress at the depth of inclusion [MPa] 1469 

Maximum Stress at the depth of inclusion [MPa] 1777 

Chemical composition  TiC 

Inclusion dimension [µm] 

X Y Z 

4.5 4.5 4.5 

Depth [µm] 436 
Table 8.16 - Results 
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Figure 8.76 – Stress peak  
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Case 6: failed after 11.2h 

                

Figure 8.77 – Case 6 – Starting point 20x                                                     Figure 8.78 – Case 6 – Starting point 800x 

                 

Figure 8.79 – Case 6 – Chemical composition                                                  Figure 8.80 – Case 6 – Spectrum 

 

Original Stress at the depth of inclusion [MPa] 1737 

Maximum Stress at the depth of inclusion [MPa] 2334 

Chemical composition  Al2O3 

Inclusion dimension [µm] 

X Y Z 

12.34 10 10 

Depth [µm] 326 
Table 8.17 - Results 
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Figure 8.81 – Stress peak  
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Case 7: failed after 90.7h 

    

Figure 8.82 – Case 7 – Starting point 10x                                                     Figure 8.83 – Case 7 – Starting point 2000x 

 

         

Figure 8.84 – Case 7 – Chemical composition                    Figure 8.85 – Case 7 – Spectrum 

 

Original Stress at the depth of inclusion [MPa] 1446 

Maximum Stress at the depth of inclusion [MPa] 1773 

Chemical composition  Al2O3/Carbides 

Inclusion dimension [µm] 

X Y Z 

3.5 2 2 

Depth [µm] 326 
Table 8.18 - Results 

 



 8 – Results  

97 
 

 

 
Figure 8.86– Stress peak  
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8.3.2 Ball bearing life prediction (L10) 

Since it is known the Tresca stress at the boundary of the inclusion, it is possible to calculate 

the inclusion theoretical load that would produce the stress peak at the boundary of the 

inhomogeneities if it was applied to a matrix without inclusion. 

 

Case 1 2 3 4 5 6 7 

Real load 34400 34400 34400 34400 34400 34400 34400 

Theoretical 

load [N] 74552 70079 71570 84989 55168 74552 56659 

Table 8.19 – Real load and theoretical load for all 7 cases 

 

In order to calculate equivalent load that depend on inclusion presence a weighted average 

between Real Load and Theoretical load is made. 

In chapter 6 it was estimated that inclusion is stressed every 20 shaft-rotation for the test 

condition used in this work, therefore weighted average could be calculate: 

Peq = (19*Theoretical Load + Real load) 
1

20
 

Since L10 life is the time that 90 percent of a group of bearings will exceed without failing by 

rolling-element fatigue, L10 life show below are for group of balls that have the same critical 

inclusion at the same depth. 

 

Case 1 2 3 4 5 6 7 

Peq [N] 36408 36184 36258 36929 35438 36408 35513 

L10 [h] 27,4 27,4 27,4 27,4 27,4 27,4 27,4 

L10 with inclusion [h] 23,12 23,55 23,40 22,15 25,06 23,12 24,91 

Percentage decrease [%] -15,64 -14,07 -14,60 -19,16 -8,53 -15,64 -9,11 

Table 8.20 – L10 life 

Test results show that L10 life percentage decrease range is between 8.5% and 19% and 

and they are in agreement with the experimental data collected over the years in Pinerolo 

Plant of Tsubaki Nakashima Co., Ltd.  
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8.3.3 Simulation of worst cases 

Simulation of the worst cases possible has been done for different ratio of semiaxis (a;b) : 

• Larger inclusion possible (statistics of extreme values): Area 616 µm2 

• Chemical composition: Al2O3  

• Inclusion located at the depth of maximum Tresca stress: 202µm 

Case 1: a=14 µm; b=14µm 

 

Figure 8.87 – Case 1 - Stress peak  

 

Case 2: a=8.9 µm; b=22µm 
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Figure 8.88 – Case 2 - Stress peak  

Case 3: a=3 µm; b=65µm 

 
Figure 8.89 – Case 3 - Stress peak  

 

Results in table 8.21 show that L10 life percentage decrease range is between 29.5% and 

35%.  

Case 1 2 3 

Tresca stress orignal [Mpa] 1912 1912 1912 

Tresca stress inclusion [Mpa] 2605 2652 2749 

Real load [N] 34400 34400 34400 

Theoretical load [N] 119283 125247 141649 

Depth [µm] 202 202 202 

Peq [N] 38644 38942 39762 

L10 [h] 27,4 27,4 27,4 

L10 with inclusion [h] 19,30 18,89 17,74 

Percentage decrease [%] -29,57 -31,06 -35,24 

Table 8.21 - Results 
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Chapter 9 

9 Conclusion 

Aim of the project was to evaluate the effect of inclusion on ball bearing life prediction (L10).  

Different tests on different steel composition and a numerical simulation were made in 

order to better understand the influence of inclusions on the fatigue life.  Both raw material 

and finished product (balls for bearings application) were evaluated: raw material was 

tested on rotating bending machine and tension-tension machine, while balls on special test 

rigs for bearings.  

Numerical simulation of Eshelby model enabled to evaluate the increase of stress at the 

boundary of the inclusion for different shape, chemical composition, dimension. Results 

showed that shape and chemical inclusion are the most important factor, since a big 

difference between the length of the axis of inclusion or between the young’s modulus of 

the inclusion and the steel matrix produced a high stress peak, instead dimension of the 

inclusion is not relevant since the stress peak was the same for different size. However in 

real case size of inclusion is a key factor for fatigue limit, since only inhomogeneties larger 

than critical dimension could be detrimental for bearing life and also bigger is the inclusion 

bigger is the stressed area and the probability of failure. An other important factor in rolling 

contact fatigue is the depth of inclusion since if the inclusion is shallower than a certain 

value are not critical for failures, on the other point an inclusion located at the depth of 

maximum Tresca stress is more dangerous. 

Tests on raw material have been conducted on different steels composition. Results have 

shown that presence of inclusions has a primary importance on fatigue life, since, contrary 

to the expectation, the fatigue limit of the steel with more alloy elements was lower. 

Cleanliness analysis showed that higher alloy steel has a lot of critical inclusions so there 

wasn’t the positive effect on fatigue life of silicon and other alloy elements. 

A lot of test on finished products were made, in this work only seven of the failed balls are 

considered, in all the cases the starting point was a microinclusion, the chemical 

composition, shape, dimension and depth of which were determine with Sem Inspection. 
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After defining the characteristics of inclusions Eshelby model [15] was applied in order to 

calculate the stress peak at the boundary of the inhomogeneties, from the stress it is possible 

to evaluate the inclusion theoretical load that would produce the stress at the boundary of 

the inclusions if it was applied. Then the frequency with which the inclusion strikes a race, 

inner and outer, was calculated in order to evaluate the number of times that inclusion is 

stressed compared to bearing revolution. L10 life, that are for group of balls that have the 

same critical inclusion at the same depth, were determined with Zaretski model [27] using 

an equivalent load depending on inclusion presence. Equivalent load was defined as 

weighted average between Real Load and Theoretical load.  

Test results show that L10 percentage decrease range is between 8.5% and 19% and and are 

in agreement with the experimental data collected over the years in Pinerolo Plant of 

Tsubaki Nakashima Co., Ltd. 

Simulation of the worst cases possible has been done. It was chosen the largest inclusion 

possible (determined by statistics of extreme values) of Al2O3 (highest young’s modulus 

among the common inhomogeneties that are found in AISI 52100) located at the depth of 

the maximum Tresca stress. Results show that L10 percentage decrease range is 29% for 

sphere shape, that increases until 35% for big difference of the length of axis.  
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Chapter 10 

10 Future Works 

Results obtained in this works are satisfactory, however two great aspects were not 

considered in L10 life evaluation: 

• The effect of inclusions was analysed only in terms of shape, depth and chemical 

composition. From the state of art it is known that also the size has a great relevance, 

statistics of extreme values enables to identify the larger inclusion but it would be 

necessary to define a coefficient that includes the size effect. 

• It is difficult to define exactly how a ball spins, in this works a first attempt was made 

but a better model should be developed in order to calculate precisely the frequency 

with which the inclusion strikes a race, inner and outer. 

As regards the numerical model could be improved introducing Moschovidis-Mura [17] 

consideration on interaction of ellipsoidal inhomogeneties, since in this project a sequence 

of inclusions are considered as a stand-alone inclusion with an elongated semiaxes that 

covers the distance from the first to the last inclusion of the stringer. 
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