
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Addressing Domain Shift between Real
and Synthetic data for Semantic

Segmentation with GANs

Supervisors

Prof. Tatiana TOMMASI

(Ext) Antonio MASTROPIETRO

Candidate

Walter MAFFIONE

April 2020

Abstract

Autonomous driving is without a shadow of doubt the future of automotive and it
currently needs efficient solutions. Deep learning methods have shown excellent
results for object classification and detection, but the specific task needed for driving
is the more challenging semantic segmentation: each pixel of a depicted scene should
be recognized as belonging to a specific object. For this setting, it is crucial to
collect a large amount of per-pixel labeled data, which need an expensive manual
classification process. Synthetic datasets from simulators can be used in order to
reduce the amount of data required and they come with free annotation by design.
However, the big style difference between synthetic and real images does not allow
a direct knowledge transfer across the two domains and it asks for specific domain
adaptation solutions. This work starts from a review of the most recent literature
on deep learning for semantic segmentation and it proposes to boost domain
adaptation techniques based on Generative Adversarial Networks (GANs) for style
transfer by combining them with features-based adaptive strategies that take into
consideration category-level adaptation and self-supervision. The experimental
analysis considers a model learned on synthetic labeled images from the GTA V
videogame and applied on the real Cityscapes dataset collected in different cities
in Germany. The obtained results show how the proposed combination of methods
can be useful in case of limited availability of real world annotated images.

i

Acknowledgements

“The first step is to establish that something is possible; then probability will occur”
Elon Musk

In this section I want to thank all the people who helped me in these years and
who supported me, both for the studies and for the development of this work.This
part will be in Italian in order to be easily understood from everyone

Ringrazio innanzitutto tutti i miei professori, in particolare la prof. Tommasi che
si è resa disponibile ad aiutarmi in questo lavoro di tesi. Grazie alla loro saggezza
e passione mi hanno trasmesso conoscenza per gli argomenti affrontati e acceso in
me la curiosità necessaria per rimanere sempre informato sul mondo circostante e
per poter dare un contributo alla comunità.
Desidero inoltre ringraziare l’azienda AddFor e Antonio Mastropietro per l’aiuto
datomi nello svolgimento di questa tesi e nel migliorare le mie capacità comunicative,
per avermi dato accesso e disponibilità a tutte le risorse necessarie al conseguimento
di questo lavoro. Un grazie speciale va prima di tutto alla mia famiglia, per il
supporto emotivo ed economico, grazie al quale ho potuto concludere i miei studi
senza preoccupazioni. Ringrazio la mia fidanzata Marlisa che con il suo affetto e
calore mi ha accompagnato lungo questa strada, tenendomi alto il morale anche
nei momenti difficili e aiutandomi a superare ogni possibile ostacolo. Un pensiero
particolare lo dedico all’aiuto, alle risate e ai momenti di spensieratezza dei miei
amici e colleghi che hanno reso questo percorso sereno e più semplice da affrontare.

ii

Table of Contents

List of Tables vi

List of Figures vii

1 Indroduction 1
1.1 Autonomous Driving . 1
1.2 Limitations of Semantic Segmentation 2
1.3 Generalizing with Synthetic data 3

2 Generative Adversarial Networks 5
2.1 Introduction . 5
2.2 Generative Models . 7
2.3 Problems in training GANs . 8
2.4 Possible Solutions . 10
2.5 Loss Function . 10

2.5.1 Wasserstein GAN . 11
2.5.2 Least Squared GAN . 12
2.5.3 Spectral Normalization with Hinge Loss 12

2.6 GAN Architectures . 13
2.6.1 Deep Convolutional GAN 13
2.6.2 Progressing Growing GAN 15

2.7 Regularization tricks . 17
2.8 Evaluation metrics . 17
2.9 Applications of Generative Adversarial Networks 20

3 Semantic Segmentation 21
3.1 Introduction . 21
3.2 Fully Convolutional Networks . 22
3.3 DeepLab v2 . 24
3.4 Metrics . 26
3.5 Datasets . 26

iv

3.5.1 Real datasets . 27
3.5.2 Synthetic datasets . 28

4 Domain Adaptation 31
4.1 Introduction . 31

4.1.1 Settings of Domain Adaptation 32
4.2 Image to Image Translation . 34

4.2.1 Pix2Pix . 34
4.2.2 CycleGAN . 36

4.3 Domain Adaptation for Semantic Segmentation 39
4.3.1 AdaptSegNet . 39
4.3.2 CLAN . 41
4.3.3 Self-Supervision tasks . 44

5 Proposed Algorithm 47
5.1 Introduction . 47
5.2 Pixel-level Adaptation . 48
5.3 Feature-level Adaptation . 50

6 Results 55
6.1 Unsupervised Domain Adaptation 55
6.2 Semi-supervised Domain Adaptation 61
6.3 Limitations . 66
6.4 Future developments . 67

7 Conclusions 69

Bibliography 71

v

List of Tables

4.1 CLAN and AdaptSegNet results 44

6.1 Different results by changing λadv on CLAN trained with adapted
GTA as source . 58

vi

List of Figures

2.1 Architecture of a GAN for face image generation, from [12] 6
2.2 A discriminative model on the left defines a boundary in order to

distinguish dogs from cats, a generative model on the right, instead
is able to generate new samples similar to existing ones 8

2.3 Example of mode collapse. Two different GANs, in the first row a
GAN is able to create all possible modes (number 0-9), in the second
row a GAN collapses in generating one single number. [13] 9

2.4 Generator architecture of a DCGAN 13
2.5 Generator architecture of a PROGAN 16

3.1 Fully Convolutional Network model, from [1] 22
3.2 Skip connections of FCN network, from [1] 23
3.3 DeepLab architecture [9] . 25
3.4 Samples of Cityscapes dataset with corresponding semantic mask

labels. [3] . 28
3.5 Samples of GTA 5 datasets [6] . 29

4.1 Example of domain adaptation [2] 31
4.2 Overview of different settings of domain adaptation [4] 33
4.3 Possible architectures for the generator [11] 35
4.4 Some of the different applications of pix2pix [11] 36
4.5 Difference between paired and unpaired datasets [7] 36
4.6 Base model of cycleGAN [7] . 37
4.7 Some applications of cycleGAN model[7] 38
4.8 AdaptSegNet model overview [34] 40
4.9 Self-adaptive adversarial loss [8] . 41
4.10 Category-Level Adversarial Network architecture [8] 42
4.11 Framework for self-supervised domain adaptation [10] 45

5.1 Proposed Pixel-level Adaptation . 50
5.2 Proposed Network Self-CLAN based on CLAN [8] and [10] 51

vii

5.3 Examples of prediction maps rotated, input for the Self-supervised
network . 53

6.1 DeepLab v2 without Feature-level Adaptation 59
6.2 Unsupervised Domain Adaptation 60
6.3 Some samples of the predictions on the validation set of the proposed

techniques . 61
6.4 Semi-supervised DeepLab v2 using 5% target labels 62
6.5 Feature-level Domain Adaptation using 5% target labels 63
6.6 Semi-supervised DeepLab v2 using 20% target labels 63
6.7 Feature-level Domain Adaptation using 20% target labels 64
6.8 Semi-supervised DeepLab v2 using 50% target labels 64
6.9 Feature-level Domain Adaptation using 50% target labels 65
6.10 Failure images when translating from synthetic to real or vice-versa.

On left original images on right reconstructed ones. 66

viii

Chapter 1

Indroduction

1.1 Autonomous Driving
Autonomous driving is without a shadow of a doubt the future of automotive. The
advantages that derives from a self driving car are astonishing, the main important
can be less deaths on the streets and a better human experience while sitting on
the car. To get to the point when cars will guide entirely alone however a lot of
steps needs to be done and will require still some years. There is the need that
every single little detail is taken in consideration and every single model, validated
and tested, in order to ensure sufficient security and reliability. In order to obtain a
vehicle able to guide by itself there is the need to obtain semantic information about
the environment around the vehicle, and different sensors can be used in order
to achieve this task. Some of those sensors can be cameras for visual recognition
task, because it’s important to recognize the drivable area, pedestrians and car
on the street, road signs, etc; or radar at short-long range distance in order to
perceive accurate depth information. From an union and analysis of the different
information collected by the sensors of the car is possible with automatic control
techniques to create algorithm able to allow the car to drive by itself.
In this work we refer to the task of Computer Vision called Semantic Segmentation
[1], that by taking in input images of the road from the camera in front of the car,
output a prediction which contains a classification for each pixel of the image as
belonging to a series of classes that are taken in consideration in the training phase
of the model.

1

1 – Indroduction

1.2 Limitations of Semantic Segmentation

In order to train a model of Semantic Segmentation that will then insert in a vehicle
with the aim of substitute the human eye, there are many precautions to consider.
First of all, we have to think to the nature of such architectures, in fact the most
important features that a real-time scene understanding model should have, are
precision and inference speed. In order to entrust our lives to such models we need
to be sure that those systems are reliable and extremely accurate, however this
is not yet the case, this technology remains a open research field, and even Tesla,
the company with the most advanced resources for self-driving car, proposes its
auto-pilot as a beta program.
The difficulty to generalize to new data unseen by the model in the training phase
is a common problem in Deep Learning, however it represents a far more serious
problem when there are human lives that depend on it.
Encoding billions of data of world roads to a single model composed of several
convolutional layers it is not conceivable, there is too much information that needs
to be compressed in a few millions of parameters. For this reason models that will
be then used in a real scenario should be geographically scalable.

One current problem of Semantic segmentation is data collecting.
Roads and streets around the world are very different, both between different
countries, both between regions or cities of the same country, and even inside the
same city. In order to get a robust model there is the need to collect the most
possible amount of data, because we would like that our car will drive autonomously
in different scenarios. This process is very expensive for companies that needs to
collect data for all the streets that they would like their self-driving car will cover.
Moreover also weather and light conditions really matter when using CNN-based
models, for this reason the amount of data required is even greater.
As an example, if we train a Semantic segmentation model with data containing
images of some streets of the city of Turin taken in a rainy and cloudy day, when
we try to test the same model on images taken in a sunny day in Rome, the model
will absolutely have poor performance. This is due to the domain shift of the two
different cities, colours and brightness of the pixels are really different, objects and
topography of the streets are even more diverse, considering also to use the same
camera with the same shooting angle. Convolutional filters of the model overfit to
the training data and this means that they will not be able to generalize to a new
domain completely different [2].
The networks need to see data similar to those that will be used at test time,
despite the property of independent and identically distributed for training and test
data, on which machine learning is based, does not exist in the real world.

2

1 – Indroduction

Notwithstanding these problems, the biggest limitation of Semantic Segmen-
tation, is the labeling process. In order to train a model we need to provide
it in input the image and the corresponding label, on the image thanks to the
learnt parameters of the network it’s output a prediction. A loss function will
then calculate the error committed with respect to the true label, and using an
optimizer such as stochastic gradient descent the error is minimized by updating
the parameters of the network through backpropagation algorithm.
For Semantic segmentation the true label is composed of different layers, one for
each class that has to be considered. For each of them one person, needs to highlight
every single pixel of the image that contain that specific class. This process require
a lot of time, for Cityscapes dataset [3], public available most used dataset in
research, this process required about 1.5 hours for every single image. For this
reason this is currently the main bottleneck of Semantic Segmentation for urban
scene.

1.3 Generalizing with Synthetic data
Synthetic data from simulators can be used in order to train Semantic Segmentation
model providing a data augmentation to the real dataset.
One of advantages of synthetic data is that thanks to the rendering engine it is
possible to create realistic virtual environment in order to collect data as close as
possible to real ones, without requiring a physical process that does it. Moreover
from virtual environment is possible to change weather and light conditions easily,
allowing to collect more diverse data.
The biggest advantage of synthetic data is that there is no need to segment by
hand the labels, as these are created autonomously by the rendering engine that
needs to know where create 3D objects in the scene, for those reasons the amount
of time needed to collect training data is drastically cut off.

However there are still some problems when applying models trained with
synthetic data on real scenarios. In fact synthetic and real data may be very
different, even if the realism and quality of synthetic data is extremely high, there
may be some low details like textures, reflex and brightness that can reduce the
performance on the real data. This problem known as domain shift, it’s possible
to tackle with Domain Adaptation [4] that tries to learn a shared representation
between domains in order to learn from synthetic data and generalize on real ones.

In this work I decided to elaborate on Adversarial based techniques [5] of Domain
adaptation, due to their relevance in the research community in recent years.
In particular after a thorough study of the literature and state-of-the-art techniques
that try to solve the gap between synthetic and real data, I noticed that several

3

1 – Indroduction

good ideas were proposed but a follow-up to these ideas is hardly proposed.
For this reason I decided to mix some good and promising techniques in order
to reduce the gap between two datasets publicly available, which were used as
benchmark in those relative articles. My purpose is to obtain competitive results
with the one proposed in such papers. For the synthetic dataset was used GTA V
[6], data taken from the famous open-world videogame set in Los Angeles, while
for the real dataset was used Cityscapes [3].
The algorithm is based on a two-steps process, the first step is a pixel level
adaptation, trying to apply Cityscapes style to the synthetic dataset, by using an
Image to Image transition model called cycleGAN [7], in order to create an adapted
dataset that will be used in the next step. The main part of the algorithm is based
on CLAN [8], composed of a semantic segmentation model based on DeepLab v2
[9], on which is applied a Domain adaptation module on the output predictions that
thanks to a Discriminator model produce a weighted adversarial loss which has the
effect of aligning the marginal distributions of two domains, making convolutional
layers able to generalize on real data that is provided without labels during training.
To this baseline is added a Self-supervised task of Rotation on the output of the
model [10], the predictions after an up-sample layer in order to get squared shape
are randomly rotated in one of the possible outcome [0, 90, 180, 270], and an
auxiliary network is trained in order to learn which rotation has been given to the
prediction.
This last process has the effect of making convolutional filters able to learn spatial
invariant features, allowing a better generalization for the target domain.
Several experiments have been produced, firstly in an Unsupervised learning
scenario in order to obtain the most possible information from synthetic data and
to get comparable results with the ones proposed in the different articles. Then
experiments have been produced in a Semi-supervised approach, considering using
only a fraction of the training real labels in order to provide more useful results from
an industrial point of view. The results obtained outperform the ones proposed in
the original articles, by training the models only half of the time as done in the
papers due to time and computational requirements. Moreover, semi-supervised
experiments show that using only a fraction of the real label available, thanks to
domain adaptation from synthetic data it’s possible to get results better than a
model trained only on the full real labeled dataset.
I’d like to thank AddFor S.p.a. for providing me a guide and resources in order to
produce this work.

4

Chapter 2

Generative Adversarial
Networks

2.1 Introduction
Generative Adversarial Networks (GANs) belongs to the family of Generative
models. They are used in a great vastness of applications, from the generation of
new images that tries to resemble a distribution of real training data [5], to more
advanced techniques useful for different tasks, such as domain adaptation [4], style
transfer [11], text2image, adversarial examples, deep fakes and more. They are
considered as "the most interesting idea in the last 10 years of machine learning"
by Y. Le Cun, one of the fathers of Deep Learning.

GANs were first formulated in 2014 by Ian Goodfellow and his colleagues [5], in
its easier form as it was proposed, a Generative Adversarial Network it’s composed
of two neural networks that continuously try to beat each other in a so called
minimax game. The first player of the game is the Generator (G), whose objective
function is to generate new data with the same statistics of a training set, starting
from a random noise vector, in such a way that they are indistinguishable from the
real ones. The other opponent is the Discriminator (D), that instead has the task
to distinguish the real data from the ones generated by the Generator.

More formally, given two differentiable functions G and D represented by two
multi-layer perceptrons, with parameters respectively θg and θd. We can define a
latent variable z as input of G, whose task is mapping to the data space G(z; θg) in
order to learn the distribution pg over data x. On the contrary D(x; θd) outputs a
single value, that represents the probability that x came from the data rather than
pg. D is trained in order to maximize the probability of assigning the correct label
for both training examples and samples generated from G, while G is trained in

5

2 – Generative Adversarial Networks

order to minimize the probability of being guessed by D, or rather log(1−D(G(z))).
The value function corresponding to the GAN training is reported in 2.1

min
G

max
D

V (D, G) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1 − D(G(z)))]. (2.1)

Figure 2.1: Architecture of a GAN for face image generation, from [12]

Procedure of training of Generative Adversarial Networks is presented in Algo-
rithm 1.

6

2 – Generative Adversarial Networks

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial
nets. The number of steps to apply to the discriminator, k, is a hyperparameter. In the
original paper is used k = 1, as the least expensive option.

1: for number of training iterations do
2: for k steps do
3: • Sample minibatch of m noise samples {z(1), . . . ,z(m)} from noise prior

pg(z).
4: • Sample minibatch of m examples {x(1), . . . ,x(m)} from data generating

distribution pdata(x).
5: • Update the discriminator by ascending its stochastic gradient:

∇θd

1
m

mØ
i=1

è
log D

1
x(i)

2
+ log

1
1 − D

1
G

1
z(i)

222é
.

6: end for
7: • Sample minibatch of m noise samples {z(1), . . . ,z(m)} from noise prior

pg(z).
8: • Update the generator by descending its stochastic gradient:

∇θg

1
m

mØ
i=1

log
1
1 − D

1
G

1
z(i)

222
.

9: end for
10: The gradient-based updates can use any standard gradient-based learning rule

2.2 Generative Models
Generative models are able to define how a set of data is generated in terms of
probabilistic model, by sampling from this model could be possible to create new
data similar to the first one.
Given a set of data instances X and a set of labels Y , a Generative model captures
the joint probability p(X, Y), or just the distribution of X, p(X) if there are no
labels. In other words, these models learn to create data similar to that given in
input to them. A Discriminative model instead is able to capture the conditional
probability p(Y |X) so assigning a label class to a specific sample.
All types of generative models try to learn the true data distribution of a training
set, so as to generate new data points with same statistics. But it is not always
possible to learn the exact distribution of our data either implicitly or explicitly
and so we try to model a distribution which is as similar as possible to the true data
distribution. For this reason, we can exploit the power of neural networks to learn

7

2 – Generative Adversarial Networks

a function which can approximate the model distribution to the true distribution,
and Generative Adversarial Networks are one the possible techniques to do that.

Figure 2.2: A discriminative model on the left defines a boundary in order to
distinguish dogs from cats, a generative model on the right, instead is able to
generate new samples similar to existing ones

2.3 Problems in training GANs
Generative Adversarial Networks are obtaining impressive results nowadays, gen-
erating images that could be very difficult even for an human eye to distinguish
that are fakes. However the training process of a GAN is very hard and reach an
equilibrium in the mini-max game between the two component is complex.
GAN models suffer of different problems, which can be categorized into three
different categories, vanishing gradients, mode collapse and non convergence.
Generative Adversarial Networks are based on a zero-sum non-cooperative game,
also called mini-max. In short, if one of the player wins the other loses.
Generator and discriminator try to beat each other, like in the game guards and
thieves, in which one opponent wants to maximise an objective function while the
other one wants to minimize it (equation 2.1). In game theory, the GAN model
converges when discriminator and generator reach an equilibrium, optimal point
for the mini-max game, called Nash equilibrium. This in an unstable equilibrium
point, thinkable as a saddle point in a 3D dimensional space. A Nash equilibrium
happens when one player will not change its action regardless of what the opponent
may do.
So due to the adversarial game, each player of the game may undo the progress
achieved during training, making convergence very difficult to achieve.

8

2 – Generative Adversarial Networks

Equation 2.1 in practise, doesn’t provide enough gradient to the Generator, that will
not learn well the training distribution. In the first iterations of the training loop,
when G is poor, it’s too easy for D to reject samples generated because they are
clearly different from training data. This is due the saturation of log(1 −D(G(z))) ,
and this problem is known as vanishing gradient. A possible solution to this problem
can arise by instead of minimizing log(1 − D(G(z))) , by maximize log(D(G(z)))
for D, this provides much stronger gradients for G in early stage of training and
results in the same fixed point of the dynamics of the training. In practise this is
achieved during training by changing label values for real and fake data.
Another solution to provide better gradients to G during training is the usage of
different loss functions, in order to achieve more stable training and better results.
Another hard problem to solve that appears when training GANs is mode collapse.
Mode collapse appear when the generator collapses, generating always a limited
variety of samples, . It’s possible to see an example in figure 2.3. This happens
because during training the generator may find some optimal parameters that
generate images that always fool the discriminator, leading to a collapse of the
modes and becoming unable to generate more varied samples. Mode collapse can
be seen as a overfitting of the generator.

Figure 2.3: Example of mode collapse. Two different GANs, in the first row a
GAN is able to create all possible modes (number 0-9), in the second row a GAN
collapses in generating one single number. [13]

GANs are highly sensible to hyperparameters, tuning parameters in order to
find values that bring the best results takes time and patience. It’s very easy to
fall in a unstable training and non convergence due to a wrong choice of initial

9

2 – Generative Adversarial Networks

parameters that generate low quality results.
Moreover another big problem in the GAN training is that differently from dis-
criminative models and CNN, loss functions did not tell anything about the trend
of the learning process. For this reason we need to examine the generated images
manually to verify the learning process. This makes model comparison harder
leading to difficulties in picking the best model in a single run.

2.4 Possible Solutions
Different solutions are proposed in literature trying to solve the problems of GANs.
Some of them are based on regularization tricks, which are not based on mathe-
matical evidence but rather on heuristic evidence based on experiment made by
the research community.
Others instead are based on a more theoretical assumption such as a change of
the loss function that can provide more meaningful information for the generation
of images, trying to eliminate vanishing gradients problems. Even architecture
changes provide boost in performance in the generation of high quality images, more
diverse generated samples and a fairer game between generator and discriminator
that provides a general higher stability of the training process of the model.

2.5 Loss Function
The choice of the loss function is a design decision that significantly impacts
performance in GANs. In the original paper has been proved global optimally and
convergence of GANs but it was also highlighted the instability problem which can
arise in the training phase. The loss function of a GAN, when the discriminator is
optimized, is related to two probability measurement metrics, Kullback-Leibler (KL)
divergence and Jensen-Shannon (JS) divergence. Minimizing JS divergence between
real and generated distribution is possible to optimize the generator considering an
optimal D. However, it has been proved that using original loss function will result
in the vanishing gradient for G, in the early steps real and generated distribution
differ too much and the JS divergence has a low gradient that will allow D to
prevail and G not to learn. While using the alternative loss function proposed
(minimizing -log(D(G(z)) instead of log(1-D(G(z))) will incur the mode collapse
problem (same G(z) for different z) and fluctuating gradients that cause instability
to the models.
These problems cannot be solved changing the architecture, but only changing the
loss function, the aim is to find a cost function with smoother and non-vanishing
gradients, which is intensively researched in order to improve learning stability and
ability of the model.

10

2 – Generative Adversarial Networks

Some of the loss functions that have been seen to work well with GANs are:

• Wasserstein GAN (with gradient penalty)

• Least Squared GAN

• Spectral Normalization with Hinge Loss

2.5.1 Wasserstein GAN
WGAN [14] proposes the Wasserstein distance to measure the difference between
the data distributions of real and generated images. Intuitively, it measures the
effort to transform one data distribution to another.
Wasserstein distance (or Earth mover) is able to reflect distance also when two
distributions are far, for example in the early iterations of a GAN training, when
for the discriminator is easier to distinguish if a generated image is fake or not.
This provides much meaningful and smooth gradients during training, remedying
to the problem of vanishing gradient. Mathematically, Wasserstein distance looks
more desirable as a cost function with respect to the one proposed in the original
paper.
The Wasserstein distance is defined as:

W (pr, pg) = inf
γ∈

r
(pr,pg)

E(x,y)∼γëx − yë, (2.2)

where r(pr, pg) is the set of all possible joint distributions and γ(x, y) whose
marginals are pr and pg. However, this equation for the Wasserstein distance is
highly intractable, for this reason authors demonstrate that the distance can also
be estimated as:

max
w∼W

Expr
[fw(x)] − Ez∼pz [fw(G(z))], (2.3)

where fw takes the role of the critic D with some constraints that requires to be
a 1-Lipschitz function, z is the input noise for G. So w are the parameters of D
and D aims to maximize equation (2.3) in order to make the optimization distance
equivalent to Wasserstein distance. When D is optimized, the task of G will be to
minimize the Wasserstein distance, or rather

− min
G

Ez∼pz [fw(G(z))] (2.4)

The discriminator in the original work is used as a binary classifier but D used in
WGAN needs fit the Wasserstein distance, which is a regression task. Thus, the
sigmoid in the last layer of D is removed in the WGAN.
The benefits of WGAN are that the training process is more stable and less sensitive
to the choice of hyperparameters and network architecture. Moreover, the loss of

11

2 – Generative Adversarial Networks

the discriminator appears to relate to the quality of images created by the generator.
Finally, by adding a gradient penalty to D is possible to obtain much a much stable
network.

2.5.2 Least Squared GAN
Authors of Least Squared GAN (LSGAN) [15] propose a new approach to remedy
the vanishing gradient problem, by proposing a new cost function based on least
square loss for the discriminator instead of sigmoid cross entropy loss.
We can define the proposed loss function for G and D as:

min
D

LD = 1
2Ex∼pr [(D(x) − b)2] + 1

2Ez∼pz [(D(G(z)) − a)2],

min
G

LG = 1
2Ez∼pz [(D(G(z)) − c)2],

(2.5)

where a is the generated sample label, b is the real sample label and c is a hyperpa-
rameter that G wants D to recognize the generated samples as the real samples by
mistake.
The new decision boundary that arises by minimizing the loss for D, penalizes
large error arising from those generated samples that are far away from the deci-
sion boundary, which pushes towards the decision boundary those bad generated
samples. This allows to get better image quality in generating images.
Moreover, by penalizing the generated samples that are far away from the decision
boundary, it is possible to provide better gradients when updating the generator,
remedying the vanishing gradient problems for training G.

2.5.3 Spectral Normalization with Hinge Loss
In order to further stabilize the training of GANs, authors of Spectral Normalization
GAN (SN-GAN) propose the usage of weight normalization. This technique does
require a light computational effort and it’s easily applicable to existing GANs.
Spectral normalization is calculated as:

W̄SN(W) = W
σ(W) , (2.6)

where W represents weights on each layer of the discriminator D and σ(W) is the
L2 matrix norm of W. The paper proves this will make ëfë ≤ 1, requirement that
allows a better stability of the network. Spectral Normalization has been found to
work in the best way with Hinge loss.

12

2 – Generative Adversarial Networks

2.6 GAN Architectures
Several approaches have been tried in order to overcome the several issues of
adversarial training, such as the usage of a different loss function, as we saw before.
Although some of them improve stability and vanishing gradient problems, none of
them eliminated the issue of mode collapse entirely and theoretical reason remains
an area of active research.
Moreover the traditional architecture of GAN produces very low quality images
due to the well known problems of fully connected layers, that are not suited for
learning hierarchical structure like the ones present inside the images.
For this reason, it is necessary not only to change the optimization functions but
also the entire architecture and structure of the networks.

2.6.1 Deep Convolutional GAN

Deep Convolutional GANs (DCGAN) [16] is a popular architecture of GAN which
replaced the original fully connected network as baseline model for GANs. It
mainly removes all max pooling and fully connected layers, replacing them with
convolutional layers.
For the generator that has the task of starting from a latent vector to create an
image similar to the one present in a training set, the upsampling task is performed
with the usage of transposed convolutional layers. We can see an example in the
figure 2.4 below.
The discriminator instead is composed of downsampling task performed by convo-
lutional layers.

Figure 2.4: Generator architecture of a DCGAN

13

2 – Generative Adversarial Networks

Authors propose the usage of batch normalization for all the layers except for
the output layer of the generator and the input layer of the discriminator. The
activation functions used are ReLu for generator, except for the output which uses
tanh, and Leaky-ReLu for discriminator.
It’s a very simple architecture that is possible to combine with different loss
functions and regularization tricks in order to produce good quality images.

14

2 – Generative Adversarial Networks

2.6.2 Progressing Growing GAN
The generation of images in high resolution was a big problem in early ages of GANs.
The higher the resolution of an image is, the easier it becomes for the discriminator
to distinguish real images from the fakes. This makes also mode collapse more
likely. For those reasons researchers at NVIDIA studied a method to overcome
those issues, developing the PROGAN [17]. The main feature of the PROGAN
is the Progressing Growing mechanism of the network. Instead of attempting to
train all layers of the generator and discriminator at once, as it’s done normally,
the network starts with low-resolution images (4x4) and the progressively grows in
order to handle higher resolution, by adding iteratively layers to the network. This
incremental nature allows the training to first discover large-scale structure of the
image distribution and then shift the attention to an increasingly finer scale detail,
instead of having to learn all scales simultaneously.
By increasing the resolution gradually, we are asking the network to learn much
simpler a piece of the overall problem, this, in combination with some other train-
ing details, reduces the chance for mode collapse and stabilizes training. Another
improvement of the progressing growing is the faster training process, this because
fewer layers have simply less parameters in them, and only the final set of training
iterations are done with the right resolution. Authors found that their PROGAN
generally trained twice to 6 times faster than a corresponding traditional GAN,
depending on output resolution.
Differently from DCGAN, Progressing growing GAN uses the nearest neighbors for
upsampling and average pooling for down-sampling. These are simple operations
with no learnable parameters, both then followed by two convolutional layers.
When new layers are added, the parameters in the previous layers remain trainable.
In order to prevent shocks in pre-existing lower layers when adding a new top one,
the new layer is linearly “faded in” like a residual block, controlled by a parameter
α depending on the number of iterations passed. In this way, the network can
adapt itself to the new layer (Figure 2.5).
Moreover authors introduced some training details that stabilize the training

process and could be taken in consideration in order to improve existing or different
GAN architectures.
Instead of worrying about covariance shift and so using BatchNormalization layers,
authors have found that this is not an issue in GANs, while the real problem is to
guarantee a fair game between G and D in order to prevent vanishing or exploding
gradients. For those reasons they used two different approaches, neither of which
include learnable parameters.

• PIXEL NORMALIZATION: using pixel normalization instead of batch nor-
malization as it’s normally done, it has the benefit of not requiring trainable

15

2 – Generative Adversarial Networks

Figure 2.5: Generator architecture of a PROGAN

parameters. In order to prevent the escalation of signal magnitudes (gradients)
as result of competition between D and G, the feature vector in each pixel is
normalized to unit length in the generator after each convolutional layer.

• EQUALIZED LEARNING RATE: Instead of using weight initialization, au-
thors have found that scaling weights at run-time produce better results.
Commonly used network optimizers like RMSProp or Adam, normalize a
gradient update by its estimated standard deviation, thus making the update
independent of the scale of the parameter. As a result, if some parameters
have a larger dynamic range than others, they will take longer to adjust. So
it is necessary that layers learn at a similar speed. To achieve this equalized
learning rate, they scale the weights of a layer according to how many weights
that the layer has. They do this using the same formula as is used in He
initialization [18], except that they do it in every forward pass during training,
rather than just at initialization. By doing this, no fancy initialization is
needed despite a standard normal distribution.

• MINI-BATCH STANDARD DEVIATION: One of the many problems of GANs
is the difficulty of producing samples with a wide variation such as in the
training data, problem also known as mode diversity. In order to combat this
issue, it is possible to allow the discriminator to compute statistics across the
batch and use this information as help to distinguish between real and fake
images. This encourages the generator to produce more diverse images, trying
to ensemble real data. In PROGAN this is done with a Minibatch Standard

16

2 – Generative Adversarial Networks

Deviation layer, inserting near the end of the discriminator, it computes
the standard deviations of the feature map pixels across the batch and it
appends them as an extra channel, with no trainable parameters nor new
hyperparameters.

PROGAN is independent from the loss function used, but WGAN-GP is the one
that produced better results.
The speedup from progressing growing increases as the output resolution grows, and
it produced stunning results in high resolution images (1024x1024) for CelebaHQ
dataset.
Even if the results are generally high compared to earlier work on GANs and the
training is stable in large resolution, there is yet a long way to true photo-realism.
Semantic sensibility and understanding dataset-dependent constraints, such as
certain objects being straight rather than curved, leaves a lot to be desired. There
is also room for improvement in the micro-structure of the images.

2.7 Regularization tricks
In order to obtain better stability of the GAN models, researchers found different
tricks that are not based on mathematical assumptions rather on heuristic and the
so called "learn by doing".
In GAN papers, the loss function to optimize for G is min(log(1 − D(G(z)))),
minimizing the probability that the generated sample will be classified as fake
from D, but in practice it is better to max(logD(G(z))), or rather maximizing the
probability for D to make an error when classifying the generated sample. This
provides better stability to the network and meaningful gradients to G during
training, the easiest way to do that is to flip labels while training the generator.
In order to generate better quality images, it was found that it is better to sample
the latent vector z from a Gaussian distribution than a Uniform.
When training is better to construct different mini-batches for real and fake, so not
using batches with both real and fake images to give in input to the discriminator.
Stochastic Gradient Descent optimizer works better for the discriminator, while
Adam for the generator.
Moreover, conditioning the training with labels, if present, allows to get better
quality images. Finally it has been found that sometimes training D more than G
provides more stable training.

2.8 Evaluation metrics
There is still no clear consensus on which GAN algorithm perform objectively
better than others. This is partially due to the lack of robust and consistent

17

2 – Generative Adversarial Networks

metric, as well as limited comparisons which put all algorithms on equal footage,
including the computational budget to search over all hyperparameters. Many
researchers focused on qualitative comparison, such as comparing the visual quality
of samples. Unfortunately, such approaches are subjective and possibly misleading,
for this reason computing a fair comparison between methods implies access to
some metrics. The most used nowadays are IS (Inception Score) and FID (Fréchet
Inception Distance), both assume access to a pre-trained classifier, Inception Net
trained on ImageNet.

• INCEPTION SCORE (IS): it offers a way to quantitatively evaluate the
quality of generated samples. It is based on the fact that a good model
should generate samples for which, when evaluated by the classifier, the class
distribution has low entropy. At the same time, it should produce diverse
samples covering all classes.

• FRÉCHET INCEPTION DISTANCE (FID): it is computed by considering
the difference in embedding of true and fake data given by (a specific layer) of
Inception Net. Assuming that the coding layer follows a multivariate Gaussian
distribution, the distance between the distributions is reduced to the Frèchet
distance between the corresponding Gaussians. Unlike IS, FID can detect
intra-class mode dropping, i.e. a model that generates only one image per
class can score a perfect IS but will have a bad FID.

Both measures however are unable to detect overfitting, a “memory GAN” which
stores all training samples and generates replicating them would score perfectly.
Even when the metric is fixed, a given algorithm can achieve very different scores,
when varying the architecture, hyperparameters, random initialization (i.e. random
seed for initial network weights), or the dataset.
In the paper “Are GAN Created Equal? A Large-Scale Study” M.Lulic, K.Kurach
[19] – authors computed a large scale experimental evaluation, performing a huge
hyperparameters optimization for each model (architecture was always the same
but objective function changed) and dataset (CIFAR10).
Important observations come from that work, firstly it results that there is no
algorithm which clearly dominates others. Secondly, for an interesting range of FID
scores, a “bad” model trained on a large budget can outperform a “good” model
trained on a small budget. Finally, when the budget is limited, any statistically
significant comparison of the models is unattainable.
Authors also suggest that differences between different methods may occur during
testing of bigger networks (more params) on higher resolution and higher complex
datasets, after the choice of the optimization method, the number of training steps,
and possibly other optimization hyperparameters.
Authors observed that the performance of each model heavily depends on the

18

2 – Generative Adversarial Networks

dataset in which it was trained and no model strictly dominates the others.
In my personal opinion this means two things, firstly that current metrics are
ineffective since they should define more difference even for simple dataset and
secondly that a GAN less sensible to hyperparameters optimization is needed in
order to perform well on a vast amount of dataset and to be considered better than
others. Despite these problems, however, it is suggested using a loss function that
at least in theory and mathematically resolves the problems of vanishing gradient,
mode collapse and unstable training, despite they produce similar results on easy
dataset according to FID, it does not mean that they are all comparable in terms
of stability and mode diversity. For this reason, it is highly recommended to use
loss function such as Least Squared or WGAN-GP instead of standard GAN loss
function.
All GANs problems must be incorporated into a good hypothetical metric in order
to ensure a fairer comparison between different models.
Nowadays in case of using GANs in a different application from the standard Image
Generation, the best way to understand how network learning proceeds is still a
plot of intermediate results.

19

2 – Generative Adversarial Networks

2.9 Applications
Image generation is only one of the possible applications of Generative Adversarial
Networks. GANs have become more and more mainstream in the last years, recently
they have become known to the public for the deep fake application.
Another very interesting application of GANs is the image-to-image process, in
which images can be manipulated by translating from a domain to another. Due
to the ability of adversarial networks of reducing gap between distributions, GANs
are widely used in Domain Adaptation techniques.
Video manipulation is one of the most critical aspects and applications of GANs.
Today there are already cases of manipulation of videos for political or defamatory
purposes thanks to Generative Adversarial Examples. Ethical and social aspects of
these applications should make us reflect on the power of this tool, for this reason,
applications of fake image or video detection need to be developed in parallel or
rather in a priority mode. Through the advancement of these technologies will be
more and more difficult for the human eye to distinguish real from fake content,
such that super-human classification task as yet be proved.
Computer vision is not the only application field of GANs, researchers of Open AI
developed a tool for generating text, as natural language processing application.
Scott Reed, et al. in their 2016 paper entitled “Generative Adversarial Text to
Image Synthesis” also provides an early example of text to image generation of
small objects and scenes including birds, flowers, and more.
Image in-painting allows to reconstruct portion of image that are missing, always
using GANs.
Others interesting application are super-resolution, 3D object generation and video
prediction.

20

Chapter 3

Semantic Segmentation

3.1 Introduction
Semantic segmentation is a key component in many visual understanding systems.
Its main applications are medical image analysis, autonomous vehicles, video
surveillance, authentication systems and robotic perception [20].
Before the Deep Learning age there were different techniques to perform semantic
segmentation, such as Markov random fields [21] or sparsity based methods. Then
with the rise of Artificial and Convolutional Neural Networks, Deep Learning
models outperform previous methods and became standard approach for this kind
of tasks.
Semantic segmentation is used when there is the need of obtaining fine semantic
object information, for example for understand where precisely appear a road sign
on a street. It’s a more complex task than image classification or object detection.
In semantic segmentation the objective is to classify every single pixel of an image
as belonging to a set of specific classes [1]. Deep learning methods for semantic
segmentation can be grouped in different categories, where the most important and
used today are:

• Fully Convolutional Networks

• Encoder-Decoder based models

• Dilated Convolutional model and DeepLab family
The most used loss function that needs to be minimized in order to update the

weights of the network is the multi-class cross entropy loss.
Given a set of images X with corresponding ground truth labels Y of resolution
hxw, and C classes, we can define the segmentation loss as:

Lseg(X, Y) = −
Ø
h,w

Ø
c∈C

Y (h,w,c) log(P (X)(h,w,c)), (3.1)

21

3 – Semantic Segmentation

where P (X) is the prediction of the network for an image of X.

As it has been discussed in the introduction, the main problem of Semantic
segmentation is the collection of ground truth labels. In fact in order to provide
labels for semantic segmentation there is the need that a human, for each class
that need to be considered, has to evidence each pixel of an image that belongs to
that specific class. This process is extremely expensive and in the worst cases may
require a few hours for single picture [3]. This is the current main bottleneck of
semantic segmentation, and in this work we try to overcome this issue by using
domain adaptation techniques exploiting synthetic labeled images.

3.2 Fully Convolutional Networks
Long et al. [1] proposed one of the first deep learning works for semantic image
segmentation, by using a fully convolutional network (FCN).
A fully convolutional network, as the name may let guess (Figure 3.1), is composed
only of convolutional layers, which enables to take an image of arbitrary size and
produce a segmentation map of the same size. The authors modified existing CNN
architecture, an AlexNet [22], to manage non-fixed sized input and output, by
replacing all fully-connected layers with the fully-convolutional layers. As a result,
the model outputs a spatial segmentation map instead of classification scores.

96

38
4

25
6 40

96
40
96 21

21

backward/learning

forward/inference

pi
xe

lw
ise

 p
re

di
ct

ion

se
gm

en
ta

tio
n

g.t
.

25
6

38
4

Figure 3.1: Fully Convolutional Network model, from [1]

A convolutional layer is composed of several three-dimensional arrays also known
as filters or kernels, of size h × w × d, where h and w are spatial dimensions of

22

3 – Semantic Segmentation

the filter, and d is the feature or channel dimension.
In order to extract features is performed a convolution between an input feature
map (initially is the input image with size h x w x 3 (rgb)) and the relative filter.
Parameters of the filters are learned during training by minimizing the pixel-wise
segmentation loss. Stride of convolution, kernel size, number of filters and padding
are hyperparameters of the convolutional layer.
After that convolutional layers extract the features map, are added pooling layers
that have the task of reducing the number of parameters and dimensionality but
maintaining spatial and semantic information. Finally activation functions allow
to provide non linearity inside the network.
On top of the encoder network is appended a decoder module with transposed
convolutional layers to upsample the coarse feature maps into a full-resolution
segmentation map.
In a convolutional network, earlier layers tend to learn low-level concepts while
later layers develop more high-level and defined feature maps. In order to maintain
expressiveness, is typically increased the number of feature maps as we get in deep
trough the network.
A convolutional layer has the task of extracting features from an input image,
but differently from a classification task where we just want to know what object
is present in an image, in semantic segmentation we also want to know where
this object is located. For this reason we need to reconstruct the original image
resolution by performing upsample operations on top of the final feature maps.
However, because the encoder module reduces the resolution of the input by a
factor of 32, the decoder module struggles to produce fine-grained segmentations.
For this reason authors decide to adding skip connections between layers of the
network, in order to provide the necessary details to reconstruct accurate shapes for
segmentation boundaries. A skip connection connects the output of one layer with
the input of an earlier layer. They are able to recover more fine-grain details, lost
due too many convolutions. We can see an example of skip connections in figure 3.2.

image pool4 pool5pool1 pool2 pool3

32x upsampled

prediction (FCN-32s)

2x upsampled

prediction

16x upsampled

prediction (FCN-16s)

8x upsampled

prediction (FCN-8s)

pool4

prediction

2x upsampled

prediction

pool3

prediction

P P

Figure 3.2: Skip connections of FCN network, from [1]

23

3 – Semantic Segmentation

3.3 DeepLab v2
Authors of DeepLab v2 [9] propose three different solutions in order to further
enhance performance of semantic segmentation models based on convolutional
neural networks.
The network architecture is based on a ResNet101 [23], a deep residual convolutional
neural network that with the help of skip and residual connection, is able to use
more layers and exploits deeper extracted information to enhance performance of
the model.
The first proposed solution introduced is the usage of a new type of convolution
called, ‘atrous convolution’. It highlights convolution with upsampled filters, a
powerful tool in order to obtain dense predictions. Atrous convolutions allow to
explicitly control the resolution of the output feature maps. The field of view of
the filters is enlarged in order to incorporate larger context without increasing the
number of parameters or the amount of computation. It find the best trade-off
between context assimilation (large field-of-view) and accurate localization (small
field-of-view).
The equation of atrous convolution is reported below:

y[i] =
KØ
k=1

x[i + r · k]w[k]. (3.2)

The rate parameter r corresponds to the stride with which we sample the input
signal. Standard convolution is a special case for rate r = 1, while for r > 1 we
have the atrous convolution. Thanks to a larger receptive field is possible to use
a simpler upsample process with respect to a FCN network, when we need to
reconstruct the prediction resolution.

The second introduced solution is the atrous spatial pyramid pooling (ASPP). It
robustly segment objects at multiple scales, by probing an incoming convolutional
feature layer with filters at multiple sampling rates and effective fields-of-views,
thus allow to capture objects as well as image context at multiple scales.

Finally, the last improvement is the usage of a fully connected Conditional
Random Field (CRF) in order enhance prediction results. This solution improve
the localization of object boundaries by combining methods from DCNNs and
probabilistic graphical models, by exploiting two kernels. The first one depends
on pixel value difference and pixel position difference, which is a kind of bilateral
filter. Bilateral filter has the property of preserving edges. The second kernel only
depends on pixel position difference, which is a Gaussian filter.
The commonly deployed combination of max-pooling and downsampling in DCNNs
achieves invariance but has a toll on localization accuracy that is overcame with a

24

3 – Semantic Segmentation

Atrous Convolution

Input Aeroplane Coarse
Score map

Bi-linear InterpolationFully Connected CRFFinal Output

DCNN

Figure 3.3: DeepLab architecture [9]

fully connected Conditional Random Field (CRF). It shows both quantitatively
and qualitatively to improve localization performance.
DeepLab v2 has achieved very competitive results compared with current state-of-
the-art approaches.

25

3 – Semantic Segmentation

3.4 Metrics
A good model of Semantic Segmentation should be evaluated with different metrics.
Model accuracy is probably the most important, but in real-time applications also
the speed (inference-time) of the model is an important factor. However it is a
more tricky evaluation because it depends on the hardware and on the experiment
conditions.
Another interesting measurement is the memory requirements of the model. In
fact a good model can even obtain a high level of accuracy, but if that requires too
much memory usage, it can hardly be used in a real world scenario, where small
devices with limited hardware are increasingly in demand.
Looking in more detail some accuracy metrics, the most used are:

• Pixel Accuracy (PA):
Defined as the ratio of the pixels correctly classified divided the total number
of pixels

• Mean Pixel Accuracy (MPA)
Per-class mean of pixel accuracy

• Intersection over Union (IoU)
Defined as the area of intersection between the predicted segmentation map
and the original ground truth divided bu the union of both

• Mean-IoU
Currently the most used metrics in semantic segmentation, mean of IoU over
all classes

• Dice coefficient
Defined as twice the intersection of predicted and real label map, divided by
the total number of pixels in both images.

3.5 Datasets
Looking in more detail the most used dataset for semantic segmentation, the
majority of them are composed of set of 2D images.
In this work the focus is on autonomous driving, for this reason we will see in
more detail such datasets, but it is good to mention also other datasets that are
commonly used in order to measure performance of Semantic segmentation models.
These datasets are PASCAL Visual Object Classes (VOC) [24] and Microsoft
Common Objects in Context (MS COCO) [25]. They are some of the most used
datasets in computer vision, not just for semantic segmentation but also for object

26

3 – Semantic Segmentation

detection and classification.
Let’s see now in more detail the most used dataset for semantic segmentation
oriented to autonomous driving research. The category has been divided in real or
synthetic datasets.

3.5.1 Real datasets
Considering real datasets for semantic segmentation and autonomous driving, the
most used in research is Cityscapes [3].
Cityscapes is a dataset that contains diverse set of stereo video sequences recorded
in different cities, mainly in Germany.
It’s composed of 5000 images, divided in 3000 for training, 500 for validation and
1500 for testing. Every image it’s high quality pixel annotated with a set of 30
classes. The labeling process required 1.5 hours in average for person for single
image.
This is also the dataset that has been used during my different experiments in this
work.
Others dataset used by researchers are KITTY [26], dataset of 400 images released
in 2012, CamVid [27] and Mapillary.
In order to not introduce bias in the models, there is the needs to obtain more
sparse and diverse datasets. Cityscapes it’s a good dataset because contains images
of different cities and not a single one, however the majority of them are taken in
cloudy-day environment. It would be more useful if there were multiple images
containing different light conditions, for example also night images.
In my opinion, there is the needs to obtain a community image database for
autonomous driving, with queries for light and weather conditions, geographical
location, images resolution. Although the human segmentation process in order to
obtain such labeled data it’s extremely expensive, the benefits that would come
from an international shared job could be incredible.
An idea that came to my mind, is the possibility of using Google Street View images,
removing the need of moving a sensors equipped car around different cities. Using
a good scraping and pre-processing process could be possible to obtain different
street images around the world relatively for free, requiring just a labeling process.

27

3 – Semantic Segmentation

(a) Image 1 (b) Label 1

(c) Image 2 (d) Label 2

Figure 3.4: Samples of Cityscapes dataset with corresponding semantic mask
labels. [3]

3.5.2 Synthetic datasets
One of the biggest problem of real dataset is that in order to collect big and diverse
data there is the need to get psychically a car, add some cameras on it, and drive
the car in the streets in order to obtain some data. Moreover, the biggest problem
of such approach is that such collected data needs to be fine annotated pixel per
pixel. This process is very expensive for companies because it requires hours for
every single image, and it’s the current bottleneck of Semantic segmentation.
One possible solution could be the usage of synthetic data from simulators, where
from such engine could be easily possible to change light and environment of the
scene. The biggest advantage of synthetic data is that there is no more the needs
to segment by hand the images, because the corresponding ground truth of an
image will be created automatically by the system due the fact that the rendering
engine needs to know where to draw each object on the scene.
However using virtual-world data to generalize on real world perception tasks it’s
not an easy task, due to the big difference that can exist between the two domains.
Domain adaptation that we’ll see in more detail in the next chapter, try to solve
this domain shift problem.
In literature there are present different public available datasets that are used for
this kind of tasks.
The most used synthetic dataset for semantic segmentation in urban scene is the

28

3 – Semantic Segmentation

one proposed in [6]. In such dataset about 25000 images with corresponding labels
has been collected from the famous realistic open-world video game Grand Theft
Auto V, video game set in a virtual city of Los Angeles.
The class labels of the dataset are compatible with CamVid and Cityscapes real
datasets.
Pixel-wise accurate labels are collected with a technique known as detouring, where
a wrapper is injected between the game and the operating system allowing to
record, modify and reproduce rendering commands, so without the need of trace
boundaries of the classes by hand.
In the proposed paper, authors show that a model trained with the game data
and just 1/3 of CamVid dataset outperform models trained on complete CamVid
training set.
This dataset it’s also the one used in my experiments of Domain Adaptation.
Another famous dataset used is SYNTHIA [28], which consists of a collection

Figure 3.5: Samples of GTA 5 datasets [6]

of photo-realistic frames rendered from a virtual city, and it comes with precise
pixel-level semantic annotations for 13 different classes: misc, sky, building, road,

29

3 – Semantic Segmentation

sidewalk, fence, vegetation, etc.
Other synthetic dataset used, especially in the industrial sector, are those based
on virtual simulators, similar to those used for videogame environment generation.
The majority of these are based on Unreal Engine, an advanced framework and
platform used in order to develop 3D dynamic scene environment.
CARLA [29] is a famous open-source simulator based on Unreal from which is
possible to collect realistic synthetic data that can be then used in order to train
semantic segmentation networks.
The realism of simulators is progressively growing but we are still far from the
ability to create images indistinguishable from real world. The real world is to much
complex that with today knowledge and techniques cannot be totally simulated.
For these reason, today, some techniques that allow a generalization and the ability
to transfer knowledge from the virtual world data to the real world are required.

30

Chapter 4

Domain Adaptation

4.1 Introduction

In order to take advantage of synthetic data for training a model that will then
used in a real scenario, there is the need to make the model able to generalize on
real images. These types of problems are called Domain Adaptation problems.

Domain Adaptation (DA) is a sub-discipline of machine learning which deals in
a scenario where a model trained on a source domain, is used in a different but
related target domain. From Figure 4.1 it’s possible to see a better understanding

Figure 4.1: Example of domain adaptation [2]

31

4 – Domain Adaptation

of what does it mean Domain Adaptation.
Given for example a binary classification problem and two distributions representing
respectively source and target domains, the objective function is to obtain a cross
domain classifier that fits well for both domains.
The source domain classifier fits well for the source domain, the two classes are well
separated, but when it is applied to the target domain some samples are misclassi-
fied, due to domain shift. This means that the distributions of the two domains
are not aligned, there are some difference in the samples of the two domains, that
cause inability for the source classifier to generalize on the target domain.
The goal of Domain Adaptation is to learn a Cross-Domain classifier that is able
to classify well in both source and target domains.

From a mathematical point of view, using notation of [4], a domain D consists
of a feature space X and a marginal probability distribution P (X), where X =
{x1, ..., xn} ∈ X . Given a specific domain D = {X , P (X)}, a task T consists of a
feature space Y and an objective predictive function f(·), which from a probabilistic
perspective can also be seen as a conditional probability distribution P (Y |X) .
Normally the learning of P (Y |X) is achieved in a supervised manner from the
labeled data {xi, yi}, where xi ∈ X and yi ∈ Y .
Assuming two domains: the source domain Ds = {X s, P (X)s}, is used as training
set with labeled data, and the target domain Dt = {X t, P (X)t} which may be
used with or without labels can be used both for training and test set. Each
domain is together with its task: the former is T s = {Ys, P (Y s|Xs)}, and the
latter is T t = {Y t, P (Y t|X t)}. Similarly, P (Y s|Xs) can be learned from the source
labeled data {xsi , ysi }, while P (Y t|X t) can be learned from labeled target data and
unlabeled data.

4.1.1 Settings of Domain Adaptation
Domain adaptation may be applied with different settings and scenarios, and it
can be further divided in different categories [4].
For the case of traditional machine learning, the domains are the same Ds = Dt

and likewise the tasks T s = T t.
Domain Adaptation is based on the assumption that the tasks are the same, i.e.,
T s = T t, and the differences are only caused by domain divergence, Ds /= Dt.

Based on the different domain divergences that may exist between domains, DA
can be split in two main categories: homogeneous and heterogeneous DA.
In homogeneous DA the feature spaces and their dimensionality are the same,(X s =
X t), (ds = dt), and the difference are only on the data distributions (P (X)s /=
P (X)t).

32

4 – Domain Adaptation

In heterogeneous DA instead, the feature spaces and their dimensionality may
change between source and target domains, (X s /= X t), (ds /= dt).
Based on the amount of target label available we can further categorize Domain
Adaptation in:

• Supervised DA, target labels available for training

• Semi-supervised DA, both labeled and unlabeled target data

• Unsupervised DA, no target labels available for training

Domain adaptation may also be applied in One-Step, when source and target
domains are directly related, or through Multi-step DA, using multiple processes
and crossing intermediate domains in order to achieve the goal.
We can see a representative scheme of the different settings in 4.2

Figure 4.2: Overview of different settings of domain adaptation [4]

Finally there are three main techniques for one-step Domain Adaptation:

• Discrepancy-based

• Adversarial-based

• Reconstruction-based

Discrepancy-based DA assumes that fine-tuning the deep network model with
labeled or unlabeled data can diminish the shift between the domains. It’s mainly
based on statistic criterion, distribution shift can be reduced through different
techniques, the most used are: maximum mean discrepancy (MMD), correlation
alignment (CORAL), Kullback-Leibler (KL) divergence. These techniques will not
be studied in detail as they are outside the scope of this work.

Adversarial-based DA approach instead is based on the Adversarial loss of the
GAN [5]. A domain discriminator tries to classify whether a data point is from the
source or target domain, while the generator tries to fool the discriminator giving

33

4 – Domain Adaptation

it in input samples of the target domain as source ones.

Lastly Reconstruction-based DA assumes that a data reconstruction of source
or target domain may improve performance of domain adaptation. Fall in this
categories applications of image-to-image translation, whose become famous in the
last years thanks to Generative Adversarial Networks.

4.2 Image to Image Translation
The most interesting application of Reconstruction-based Domain Adaptation is
Image to Image translation. A model tries to create a shared representation between
source and target domain, mapping from a domain to another.
In this section we refer on applications based only on Generative Adversarial
Networks, as they’re the main focus of this work, however it is good to mention
that even others generative methods, such as stacked auto-encoders, or variational
auto-encoders, can perform the same task, still with lower performance than GAN’s.

4.2.1 Pix2Pix
Pix2Pix was introduced in 2016 by researchers at Berkeley University [11], it’s the
first work that produces relevant results using conditional adversarial networks as
general-purpose solution to image-to-image translation problem.
Differently from traditional GAN that maps from a random noise vector z to an
output image y, G : z → y, conditional GANs learn a mapping from an observed
image x and random noise vector z, to y, G : {x, z} → y. In order to learn a
mapping between an input image and an output image it uses a training set of
aligned images pairs between the two domains.
The generator is trained in order to fool the discriminator producing images that
are indistinguishable from the real ones. The discriminator instead, is trained in
order to distinguish if input images are real or fake.
Therefore, it is possible to express the objective function of a conditional GAN as:

LcGAN(G, D) =Ex,y[log D(x, y)]+
Ex,z[log(1 − D(x, G(x, z))], (4.1)

where G tries to minimize this loss against an adversarial D that tries to maximize
it, i.e. G∗ = arg minG maxD LcGAN(G, D). Authors propose also the use of a L1
distance loss for the generator, that provides better quality images, generating less
blurring images.

LL1(G) = Ex,y,z[ëy − G(x, z)ë1]. (4.2)

34

4 – Domain Adaptation

The final objective function so is:

G∗ = arg min
G

max
D

LcGAN(G, D) + λLL1(G). (4.3)

The generator architecture is based on an encoder-decoder network [30], in
particular a U-Net model [31].

Encoder-decoder U-Net

x y x y

Figure 4.3: Possible architectures for the generator [11]

In this kind of network, the input is passed through a series of convolutional and
pooling layers, that progressively downsample the input until a bottleneck, then the
process is reversed through upsampling layers 4.3 in order to reconstruct the new
image with the same dimension of the input. In the U-Net architecture are also
added skip connections between layers, that provide more meaningful information
in the reconstruction task of the image. Specifically, skip connections are added
between each layer i and layer n − i, where n is the total number of layers. Each
skip connection simply concatenates all channels at layer i with those at layer n− i.
The discriminator is based on a PatchGAN architecture [32], which tries to classify
different patches of NxN of the input image of D as real or fake, and then average
all response to provide the output loss.

Pix2Pix may be used on a variety of tasks and datasets, even of small dimension
(about hundreds), including colorization, style transfer, sketch to photo, etc. In
Figure 4.4 we can see some of those applications.

Pix2Pix may also be used in a semantic segmentation task by mapping between
the domain of road images to the domain of the semantic label. However the results
are poor in terms of mIoU due to the fact that is minimized a reconstruction loss
instead of a segmentation one.

35

4 – Domain Adaptation

Figure 4.4: Some of the different applications of pix2pix [11]

4.2.2 CycleGAN
CycleGAN is an unsupervised method of image-to-image translation model [7], able
to map between domains without the needs of a paired training set, thus allowing
a more practical application. This because building aligned datasets is not an easy
and fast task. Example in Figure 4.5.

⋯ ⋯⋯

Paired Unpaired

Figure 4.5: Difference between paired and unpaired datasets [7]

The model is based on two GANs, each of which deals with a specific domain.
Given a set of training images in domain X and a different set in domain Y , two
mapping function are learned, G : X → Y which is adversarially trained with
discriminator DY and F : Y → X using discriminator DX .
DY helps G to translate X into outputs indistinguishable from domain Y , and vice
versa for DX and F .
Moreover is added a cycle consistency loss for both generators in order to further
enhance the translation process. Cycle consistency born from the assumption that

36

4 – Domain Adaptation

when, e.g. we want to translate a sentence from Italian to English and the translate
it back from English to Italian, we would like to arrive to the original sentence.
In the same way we would like that x → G(x) → F (G(x)) ≈ x and vice-versa for
F and domain Y .

X Y

G

F

DYDX

G

F
Ŷ

X Y(X Y
(

G

F
X̂

(a) (b) (c)

cycle-consistency
loss

cycle-consistency
loss

DY DX

ŷx̂x y

Figure 4.6: Base model of cycleGAN [7]

Therefore we can see the objective functions from a more formal point of view.
For the mapping function G : X → Y and its discriminator DY , we can express
the objective adversarial function as:

LGAN(G, DY , X, Y) = Ey∼pdata(y)[log DY (y)]
+ Ex∼pdata(x)[log(1 − DY (G(x))] (4.4)

where the task of G is to generate images from domain X to domain Y such that
DY cannot be able to distinguish those from the real images of Y . Same adversarial
loss for the opposite GAN. For the cycle-consistency loss it’s used a L1 loss distance
in order to enhance x → G(x) → F (G(x)) ≈ x and vice-versa.

Lcyc(G, F) = Ex∼pdata(x)[ëF (G(x)) − xë1]
+ Ey∼pdata(y)[ëG(F (y)) − yë1]. (4.5)

Therefore the full objective is:

L(G, F, DX , DY) =LGAN(G, DY , X, Y)
+ LGAN(F, DX , Y, X)
+ λLcyc(G, F) (4.6)

where λ controls the relative importance of the two objectives.
Finally, the task to solve is:

G∗, F ∗ = arg min
G,F

max
Dx,DY

L(G, F, DX , DY). (4.7)

Networks architecture of the model are the same used in pix2pix [11].
Results of cycleGAN are very promising, the possibility of not requiring paired

37

4 – Domain Adaptation

datasets, guarantees more practical application than pix2pix. However the method
succeed only on translation tasks that involve texture and color changes, but have
poor results on tasks that require geometric translations. For this reason the two
datasets of the two domains needs to be consistent and not too different in terms
of geometries.

Zebras Horses

horse zebra

zebra horse

Summer Winter

summer winter

winter summer

Photograph Van Gogh CezanneMonet Ukiyo-e

Monet Photos

Monet photo

photo Monet

Figure 4.7: Some applications of cycleGAN model[7]

Results of cycleGAN can be further enhanced by adding a perceptual loss as
done in Perceptual Adversarial Networks [33].

38

4 – Domain Adaptation

4.3 Domain Adaptation for Semantic Segmenta-
tion

In the context of Self-Driving car there is the needs to collect enough data in
order to perform visual pattern recognition and understanding of the world around
the vehicle. In previous chapters we’ve seen how this process is complicated and
requires Semantic Segmentation algorithms in order to predict which pixel of the
image frame corresponds to that specific class. Synthetic data may help in the
collection of labeled data but they have the downside of not representing enough
the real world.
For this reason Domain Adaptation algorithms may help the task when the amount
of real labeled data is not enough to guarantees sufficient consciousness on the
environment.
Therefore, synthetic labeled data may help by generalizing on a real unlabeled or
semi-labeled dataset. In the literature there are different techniques that involve
domain adaptation both at a pixel or a feature level.
In this section we’ll see in more detail some of the techniques I’ve studied that
have been used as a baseline in order to provide my different experiments. Every
methods is used in a Unsupervised Domain Adaptation settings, so no labeled
target data is used during the training of the models.

4.3.1 AdaptSegNet
This model is based on the assumption that the outputs of a segmentation model
are structured and share more spatial and layout similarities between source and
target domains than the input images. For this reason it will be more difficult for
an adversarial discriminator to distinguish if the input given comes from source or
target distribution and this will bring more meaningful gradients to the features
of the generator model (encoder network) bringing a better adaptation between
domains.
Therefore AdaptSegNet [34] address the pixel level adaptation problem in the
output prediction space by adding a domain adaptation module in the last or
middle layer of a segmentation model.

The model is composed of two parts: a segmentation network G and one or
more domain adaptation module that contains the discriminators Di with i that
refer to the level. Given two domains: the source domain Xs with corresponding
semantic label Ys and the target domain Xt with no labels, the task of the domain
adaptation module is to provide gradients to G in order to make it generate similar
segmentation distribution for the target domain to the source domain. This is done
by adversarially training discriminator and generator (segmentation network) and

39

4 – Domain Adaptation

Figure 4.8: AdaptSegNet model overview [34]

by minimizing a segmentation loss for the source domain.
More formally given Is the set of source images and It the set of target images, the
objective function to solve will be:

L(Is, It) = Lseg(Is) + λadvLadv(It). (4.8)
We can define Lseg as the cross-entropy loss for the source images,

Lseg(Is) = −
Ø
h,w

Ø
c∈C

Y (h,w,c)
s log(P (h,w,c)

s), (4.9)

where Ys is the ground truth for source images and Ps = G(Is) is the segmenta-
tion output.

Ladv instead is the adversarial loss that adapts predicted segmentations of target
images to the distribution of source predictions.
The target images are given in input to G that output the prediction Pt = G(It).
By maximizing the probability of the target prediction being considered as source
by the discriminator, it is possible to adapt the two domains.

Ladv(It) = −
Ø
h,w

log(D(Pt)(h,w,1)). (4.10)

In order to further adapt the domains can also be possible to add additional
adversarial modules that produce better results by enhancing adaptation in a
lower-level feature space.

Based on (4.8), we need to optimize the following min-max criterion:

max
D

min
G

L(Is, It), (4.11)

40

4 – Domain Adaptation

where the final goal is to minimize segmentation loss for source domain while
maximizing the probability of making target predictions recognized as source.

4.3.2 CLAN
One of big disadvantage in using adversarial loss for domain adaptation is that:

"When the generator network can perfectly fool the discriminator, it
merely aligns the global marginal distribution of the features in the two
domains (i.e., P (Fs) ≈ P (Ft), where Fs and Ft denote the features of
source and target domain in latent space) while ignores the local joint
distribution shift, which is closely related to the semantic consistency of
each category (i.e., P (Fs, Ys) /= P (Ft, Yt), where Ys and Yt denote the
categories of the features)."

This as the effect that can provide a negative transfer if the features are already
aligned before the adaptation.
Category-Level Adversarial Network (CLAN) [8] uses a weighted-adversarial loss
which is used to weight more the adversarial loss if the features of a specific class
are distributed differently between source and target domains, and weight less the
loss if the features are already well aligned between the two domains, leading to a
category-level joint distribution alignment.
In Figure 4.9 we can see in more detail this problem of domain adaptation based
on adversarial training.

Source sample, class A

Target sample, class A

Source sample, class B

Target sample, class B

(a) Classical adversarial loss

(b) Self-adaptive adversarial loss

Classifier boundary

Adversarial loss

Source Source

Source

Source

Target

Target

Target

Target

C C

C1

C2

C1

C2

Figure 4.9: Self-adaptive adversarial loss [8]

This is achieved by using the co-training approach [35], that consist in using two
classifiers to predict how well each feature is semantically aligned between source

41

4 – Domain Adaptation

and target domains.
More formally, the semantic segmentation network that represents the generator G
of the adversarial game, is divided into a feature extractor E and two classifiers C1
and C2.
The task of E is to extract features from the input images, while the tasks of C1
and C2 are to predict the features extracted by E into one of the defined classes.
In order to provide different views of the classifiers we need to enforce the weights
of C1 and C2 to be consistent but diverse through a cosine similarity distance.
The final prediction will be an ensemble prediction by the sum of the predictions
of each classifier.

CLAN model follows the work of AdaptSegNet [34] by adapting output predic-
tions, adding the contribute of a weighted adversarial loss that allow a category-level
feature alignment between source and target domain.
For this reason, given source domain images with ground truth labels Xs, Ys and a
set of target data Xt without labels, the goal is to allow the segmentation network
to correctly predict semantic segmentations for target images.
The network training is based on three loss functions, segmentation loss, weight
discrepancy loss and self-adaptive adversarial loss.

Feature extractor

Classifiers

Discriminator

Target image

Source image

Local alignment score map

Segmentation result

Segmentation loss

Category-level
adversarial loss

Source flow Target flow Tensor sum Distance metric Element-wise productWeight discrepancy

Weight
discrepancy loss

M

𝜮

𝜮 M

Figure 4.10: Category-Level Adversarial Network architecture [8]

On the source images is calculated a segmentation loss as in equation 4.9, that
represents a multi-class cross-entropy loss between the sum of the predictions of C1
and C2, with the ground truth Ys.
In order to allow the two classifier C1 and C2 to provide different views on a feature
we need to minimize the cosine similarity of the weights of the convolutional filters
of each classifier. The weight discrepancy loss is defined as:

Lweight(G) = þw1 þw2

ë þw1ëë þw2ë
(4.12)

42

4 – Domain Adaptation

where þw1 and þw2 are weights of the convolution filters of C1 and C2 flattened and
concatenated.
Finally, in order to provide a weighted adversarial loss we can use the discrepancy
between the prediction of C1 and C2 as reference p(1) and p(2).
For each target images xt is calculated a discrepancy map M(p(1), p(2)) with the
cosine distance element-wise out of p(1) and p(2).
The final adversarial adapted loss function will be:

Ladv(G, D) = −E[log(D(G(XS)))]−
E[(λlocalM(p(1), p(2)) + Ô) log(1 − D(G(XT)))],

(4.13)

When M(p(1), p(2)) is small it means that there is an overlap across the joint
distribution of the domains, this means that we don’t need to weight much the
loss. Otherwise if M(p(1), p(2)) is large, it means that the feature maps of a class
are not aligned, so there are difference in the joint distribution of the two domains
and we need to give a higher weight to the loss.
The local alignment score map will be multiplied element-wise with the adversarial
loss map for target samples in order to provide an adaptive loss.

The final objective function that needs to converge by optimizing G and D will
be:

LCLAN(G, D) =Lseg(G) + λweightLweight(G) +
λadvLadv(G, D) ,

(4.14)

where λweight and λadv are the hyperparameters that control the weight of each
loss.

The network and the code of CLAN, as said before, are based on AdaptSegNet,
for this reason they used the same model and parameters.
In table 4.1 it’s possible to see in more detail some results of this method compared
to the AdaptSegNet and a model trained only on source data without domain adap-
tation. Results presented is the mean IoU obtained using DeepLab v2 (ResNet101)
as a backbone trained on the dataset of GTA 5 as source and tested on Cityscapes
dataset as target one.

43

4 – Domain Adaptation

Table 4.1: CLAN and AdaptSegNet results

GTA5 → Cityscapes

mIoU gain

Source only 36.6 —
AdaptSegNet [34] 41.4 4.8
CLAN [8] 43.2 6.6

4.3.3 Self-Supervision tasks

I explained earlier that computer vision tasks require to associate to raw data some
labels in order to train models that perform task like classification or semantic
segmentation. Considering in more detail the task of semantic segmentation, in
order to train a CNN to perform this task will require a complex labeling task, due
to the fact that for each class that we want to consider (e.g. cars, road, peoples,
...) a human needs to delineate the border pixels of each of them in the image.
This process is extremely tedious and labour intensive and research topics that try
to reduce or completely remove this human labeling process are fully active and
hot nowadays.

Self-supervised learning consist in using simple auxiliary tasks also knows as
pretext task in order to avoid the needs of a manual labeling process by learning
some visual models [36].
This process could be particularly interesting when applied to semantic segmenta-
tion, where the labeling task required is extremely expensive.
Some Convolutional Neural Networks are trained in order to learn specific transfor-
mation applied to original data such as image rotations or jig-saw puzzle [37]. By
leveraging on the features extracted by a task specific model, a pretext CNN can
produce new features that will be useful for the generalization of the main task.
[36]
Even if the labels of the main task are very low, by using a Self-Supervised task
it’s possible to use all the labels that we want, for this reason could be possible to
use extract all the information contained in the original data.

In the paper [10] has been explored how Self-Supervision techniques may be
applied to Domain adaptation, of particular interest for this work is its application
to Semantic Segmentation.
They designed a framework in order to jointly train a pretext and main task in
order to perform Unsupervised Domain Adaptation.

44

4 – Domain Adaptation

The main task will be trained only with the labels of the source domain and the
pretext task with self target labels will learn domain invariant features that will
make the main task able to generalize on the target domain.

Figure 4.11: Framework for self-supervised domain adaptation [10]

Considering semantic segmentation as main task and a general pretext task let’s
see in more detail how Self-supervision may help the generalization of the main
task.
Given a set of training data from the source domain Xs, Ys, we can train a CNN
composed of a feature extractor E and a decoder network D, in order to predict
segmentation outcomes. The encoder network E is shared with a network P added
in order to solve the pretext task, which is trained with Xt target data and Yt self
labels.
Both source and target domain samples are forwarded through E, then source
extracted features are used in order to perform a Segmentation loss Lseg with
ground truth Ys, while target extracted features are passed to P with self labels
in order to calculate the task loss Lp. By minimizing both losses the weights of
the shared encoder E are updated so that it can learn domain invariant feature
representations from both domains.
During test phase the target domain images are forwarded to E and D in order
to exploit invariant features learned and obtain a semantic segmentation outcome,
hopefully similar to its hypothetical real label.

A pretext task that has been studied in [10] is a rotation algorithm inspired by
[36].
Given a set of images from target domain Xt and a set of geometric transformations,
in particular image rotations of [0, 90, 180, 270] degrees. Samples of Xt are
forwarded to the encoder E, and then the feature maps extracted are given in input
to P after having been rotated into one of the possible outcome rotations.
The task of P is to predict the rotation that has been applied to the feature
map in input, by giving in output a probability distribution over all the possible

45

4 – Domain Adaptation

transformations. The loss function that needs to be minimized is:

Lp = −1
4

3Ø
r=0

log(P (E(g(xt, r),θe),θp)). (4.15)

where E(g(xt, r), θe) is the feature map extracted by E of parameters θe from input
image xt and rotated by function g by r*90 degrees, where r ∈ [0, 3].
The CNN by learning image orientation is able to localize salient objects in the
image and their orientations. This can provide a semantic information to the en-
coder about the target images, improving its cross-domain features representations
power and enhancing domain adaptation.

Self-supervised learning can even be used together with adversarial based domain
adaptation as done in AdaptSegNet [34].
This adds complexity to the full network because there will be three networks to
train: a semantic-segmentation network as the main task, a discriminator in order
to distinguish real from synthetic feature maps that will allow to align the domains,
and finally a pretext network to solve a self-supervision task.
Authors of [10] provide several results based on different experiments done on this
context.
Results of the paper shows that using adversarial loss together with rotation task
and batch normalization provide the best results of 43.3 of mIoU by using as source
domain GTA 5 dataset and Cityscapes as target domain.

46

Chapter 5

Proposed Algorithm

In this section, I will explain the algorithm proposed, the design decisions made
and the different possible experiments that could be interesting to investigate in
the future to further improve domain adaptation results between synthetic and
real data.

5.1 Introduction

As we seen in the previous chapter, collecting and manually annotating large
datasets with dense pixel-level labels is extremely costly for companies due to the
large amount of human effort that is required. One possible solution is the usage
of synthetic datasets where data and labels comes relatively from free. However,
due to the big difference that may exist between real and virtual domain, a model
trained only on synthetic data may not generalize on the real domain.
Domain adaptation tries to address this domain shift, initially by placing itself in
the worst case, where target labels are not available during training. Problem that
refers as Unsupervised Domain Adaptation.
After a deep study of the literature, I decided to come up with a solution that
provides a mix of the techniques that I consider really promising and interesting, in
order to try to further reduce the gap between synthetic and real data for semantic
segmentation, so trying to achieve competitive results with the relative papers in
terms of mean intersection-over-union on target data.
In the literature the most part of the benchmarks is based on the dataset of GTA
5, that is used as synthetic dataset (source domain) [6] and Cityscapes dataset
used as real dataset (target domain) [3], both were deeply explained Section 3.5.
Therefore I decided to use the same datasets as baseline for my experiments.

47

5 – Proposed Algorithm

The proposed method is based on a two-steps Domain adaptation process, like-
wise to what was done in [38].
The first step is a pixel-level adaptation method based on a style-transfer. The
idea is based on the assumption that synthetic dataset and real dataset are very
different at first, on colors, textures and brightness.
For this reason, in order to train a segmentation network on synthetic data that
will be able to generalize on target data providing a feature level adaptation, a
good idea is to make firstly synthetic images look like to real images, such as a
preprocessing step, by applying a sort of filter that makes the distribution of the
pixels of the synthetic domain close to the distribution of the pixels of the target
domain.
The style transfer is made by using an unsupervised image-to-image translation
model, in order to map from the domain of synthetic data to the domain of real
data, producing a new adapted dataset similar to the real one, that will be used
for the next step of domain adaptation with the original synthetic label.
Using such adapted dataset together with unlabeled target images, it could be
possible to further reduce the domain shift by applying a feature-level adaptation
technique by training the segmentation network such as [34], [8] or [10], which by
applying a discriminator or an auxiliary task of the top of the features extracted
may help the generalization.
Different experiments have been produced, both in an Unsupervised Domain Adap-
tation scenario and in a Semi-supervised scenario. In a first moment, it was decided
to use a subset of GTA 5 dataset, for example 2000 or 10000 images. However, by
sampling randomly such subset, it is possible to introduce bias in the data, because
the class distributions inside the dataset may change.

5.2 Pixel-level Adaptation

The first step of the proposed method is based on a pixel-level adaptation technique.
Looking into more detail to synthetic and real images, it is possible to notice that
the two domains are very different in principle.
Images of GTA 5 datasets [6] are bright and have light colors. Even if the game has
a high level of realism, textures of the objects make it easily recognizable to human
eye that they are from the synthetic domain. Real images of Cityscapes instead are
darker and contain cold colors, with different textures from the synthetic dataset.
Therefore, before training a semantic segmentation network with a domain adapta-
tion module at a feature-level that will tries to adapt the features of source and
target, in order to reduce the domain shift, it is possible to create an adapted
source dataset, based on the synthetic domain but similar to the real one, which

48

5 – Proposed Algorithm

has already the advantage of having the domain shift highly reduced.
In this way, it is possible to exploit in a second step, a feature-level adaptation
technique to further enhance the adaptation, producing at the end better results.
The pixel level adaptation technique is based on an unpaired Image-to-Image
translation model (Chapter 4.2).
The idea is to learn a mapping from the domain of synthetic data to the domain of
real data, in order to produce a new adapted dataset in which the basic structure
of the single image does not change, but brightness and colors change to look like
real data style.
In order to achieve this task, it is possible to use a Style transfer model based on
Generative Adversarial Networks, such as cycleGAN [7], considering that in recent
years it has been demonstrated that these methods allow to get the best results.
A discriminator is trained in order to distinguish if the image that is given in input
to it, it is from source or target domain, while a generator is trained in order to
fool the discriminator by giving it in input an image of the source domain marking
it as a target one. In this way, after a training phase, the generator will be able to
generate starting from a synthetic image, an adapted image indistinguishable from
a real one for the discriminator.
If the model used is a cycleGAN, there is an opposite GAN that maps in the other
side, or rather from target to real, in order to further enhance the results, as we
saw in the previous chapter.
A trained generator will then be used in order to create an adapted dataset from
GTA to Cityscapes.
In order to train a cycleGAN model, there is the need to resize the datasets, because
such networks need images of squared resolution, while GTA V and Cityscapes
are not. In [38] authors propose a solution that is similar to the one proposed
here, but they used a joint training of both pixel and features adaptation phases,
in the paper they chose to take a random crop of 452x452 from original datasets
in order to train GAN’s models. The network is trained for 20 epochs and the
parameters are the ones proposed in the original paper of cycleGAN [7]. Where for
the generator, that is a U-Net with 9 blocks, and the discriminator, which is the
standard 70x70 PatchGAN of the cycleGAN, a learning rate of 0.0002 is used with
Adam optimizer and a batch size always set to 1.
Moreover, authors decide to enhance the performance of the translation model by
adding a perceptual loss, as done in [33].
During my experiments, I decided to use the adapted dataset that was provided on
the github link of [38], because they achieved visibly better results than me.
In figure 5.1 it is possible to understand better the idea behind this pixel-level
adaptation process.

49

5 – Proposed Algorithm

Figure 5.1: Proposed Pixel-level Adaptation

5.3 Feature-level Adaptation
In order to transfer knowledge from synthetic to real data, there is the need to train
a semantic segmentation network, that without any domain adaptation techniques,
does not allow a good generalization on real data due to domain shift. In literature
it has been demonstrated that, training segmentation networks together with a
Discriminator or an Auxiliary task, provide benefits in terms of domain adaptation
[34] [10], allowing a features generalization from source to target domain.
After a deep study of the literature, I decided to use a Category-Level Adversarial
Network (CLAN) as base model for my different experiments. I chose to use this
network because it is an evolution of AdaptSegNet, which is one of the first network
proposing feature-level adaptation and on which the majority of the new techniques
of domain adaptation for semantic segmentation are based.
This model, as we saw in Section 4.3.2, is based on co-training approach, that
exploiting the usage of two classifiers at the end of the encoder network together
with a discriminator, can obtain a class level joint distribution alignment between
source and target domain. Summing the two predictions, it is possible to get an
ensemble prediction, that at least in theory could be more accurate than the case
of using only a single classifier. Otherwise calculating a distance metric between
the two predictions, a local alignment scope map is obtained, that will be used in
order to weight the adversarial loss.
Moreover, also self-supervised learning as we saw in the previous chapter, can help
features generalization, by adding an auxiliary net on the top of the output of the
segmentation network with the objective of solving some specific task, such as guess
an impressed rotation [10], leading to a spatial invariant features representation
on the encoder network. Since the work proposed from authors of the paper is

50

5 – Proposed Algorithm

based on AdaptSegNet, it could be interesting to see the effect of a self-supervised
learning task on top of a model based on co-training approach.
Both CLAN and Self-supervised task for Semantic Segmentation provide their
experiments using standard GTA V datasets as source domain. However, it has
not been tried to use such networks using an adapted source dataset, which may
further enhance the domain adaptation performance.
For these reasons, I decided to implement a model based on CLAN on which
an auxiliary net for self-supervised task has been added, calling it Self-CLAN.
The final objective is to understand in more detail the effect of each module and
the advantage that comes from using a source domain that has been styled with
unsupervised target images.
In figure 5.2, it is possible to see a scheme of the model proposed. Orange arrow
points the flow of source data, violet stands for target and green for both sources
and targets.

Figure 5.2: Proposed Network Self-CLAN based on CLAN [8] and [10]

In case of using standard CLAN in an unsupervised setting, recapping the
objective function, given source domain images with corresponding pixel annotated
labels, and given target domain unlabeled images:

LCLAN(G, D) =Lseg(G) + λweightLweight(G) +
λadvLadv(G, D) ,

(5.1)

where G is the generator (DeepLab network), D the discriminator, Lseg is the
segmentation loss on source data, Lweight equation 4.12 and Ladv the weighted
adversarial loss presented at 4.13.

51

5 – Proposed Algorithm

In case of using the auxiliary task alone, the objective function will change in:

LSELF (G, A) =Lseg(G) + λweightLweight(G) +
λrotLrot(A) ,

(5.2)

where in this case A is the auxiliary network and Lrot is a multi-class cross entropy
loss referred to 4.15 for the self-supervised task of rotation on the output target
prediction of the segmentation network. During different experiments has been
tried to perform the self-supervised task of rotation not only on target predictions
as presented in [10] but also on source one. The results obtained are substantially
identical.

Finally in the case of using both adversarial losses and self-supervised tasks, the
final objective function will be:

LSELF−CLAN(G, D, A) =Lseg(G) + λweightLweight(G) +
λadvLadv(G, D) + λrotLrot(A) .

(5.3)

Experiments have also been proposed in a semi-supervised scenario, in which
a segmentation loss is calculated also for a fraction of target data. In such case,
the objective function changes by adding another segmentation loss LsegT (G), but
referred to target data. In this case, a lambda multiplier for the different segmen-
tations loss has not been used (both equal to 1), even if probably using a higher
multiplier for target segmentation loss than the source one, may lead to better
results.

Looking in more detail the network architectures, the segmentation model (G)
is based on DeepLab v2, which in turn is based on a ResNet101. During all the
experiments, a version of DeepLab pre-trained on ImageNet has been used.
The discriminator (D) is a binary classifier CNN-based with a fully-convolutional
output, composed of five convolutional layers (filter size: 4, stride: 2, padding: 1),
each of one is followed by a leaky-ReLu activation function with 0.2 slope, except
for the last layer.
The auxiliary network (A) instead is based on a standard ResNet18, but experiments
have been tried also with AlexNet. Input tensors to the auxiliary network are
resized to a resolution of 256x256.
Optimizer used by the networks in order to update weights during training are:
Stochastic Gradient Descent for generator (learning rate: 2.5e-4, weight decay:
0.0005, momentum: 0.9) and auxiliary network (learning rate: 0.001, weight decay:
0.0005, momentum: 0.9), while for the discriminator Adam optimizer was used
(learning rate: 0.0001, weight decay: 0.0005). Learning rates are polynomially
decreased during training.

52

5 – Proposed Algorithm

Standard values for lambda loss multiplier, as proposed in relative papers, have
been set to: λweight = 0.01, λadv = 0.001, λrot = 1, λseg=λsegT = 1. Training
iterations have been set to 48’000 and batch size equal to 1 due to computational
requirements.
Resolution of images of the GTA V dataset is 1280x720 while for Cityscapes
1024x512.
Different experiments have been performed in order to establish the relevance of
each module, based on different settings and parameters.

(a) Original (b) Rotated 90

(c) Rotated 180 (d) Rotated 270

Figure 5.3: Examples of prediction maps rotated, input for the Self-supervised
network

53

Chapter 6

Results

In this section I will present the results obtained from the different experiments
with the proposed algorithm.
All the different results proposed are based on the best value of mean intersection-
over-union performed on the validation set of Cityscapes (target domain) calculated
every 2000 or 4000 iterations of training. Two different settings have been defined,
firstly an unsupervised domain adaptation approach, in which the objective is to
obtain the maximum value of mIoU on the target validation set of the real data
without using any real label. Finally, some experiments have been performed in
a Semi-supervised setting, in which a fraction of real data has been used. The
aim was to understand if could be possible to achieve competitive results using a
less amount of real data annotations and synthetic data, with respect to a model
trained only on real data.
Due to computational requirements and the huge amount of different parameters
setting, every experiment has been validated only one single time, although for
more truthful results there is the need to perform more runs proving mean and
standard deviation on the results obtained.
The deep learning framework used was pytorch, using python as programming
language.

6.1 Unsupervised Domain Adaptation
In order to provide comparison metrics, are required some baseline values. The first
baseline is the best value of mIoU calculated on the validation set of Cityscapes by
training the base segmentation model (DeepLab v2) with standard parameters, on
the source dataset without any techniques of domain adaptation. During training
has been minimized the multi-class cross entropy loss for the segmentation loss on
GTA V images and the weight discrepancy loss in order to exploit the co-training

55

6 – Results

approach. Has been obtained a value of 37.96 mIoU.
The second baseline is obtained by training the segmentation model only on target
data, so on the training set of Cityscapes. Has been reached a value of 64,78
mIoU.

Baselines

mIoU

Source 37.96
Target 64,78

From those two base results it’s possible to easily understand the problem of
domain shift. If we train the same model on two different but related dataset get
very different results when then it is tested on the validation set of the real domain.
This happens because the two domains are different, contains different object in
different locations and the colours and light of the datasets is different.
For this reason domain adaptation techniques try to reduce this gap, with the aim
to get as close as possible to the target result, using the less amount as possible of
target labels, due to their expensive labeling cost.

The first relevant experiment is about using as source training data, a dataset
of GTA 5 adapted with a CycleGAN trained in order to apply style of Cityscapes,
as proposed in Pixel-level adaptation paragraph.
Training DeepLab v2 with such adapted dataset, get very interisting and competi-
tive results, achieving a mean intersection-over-union of 45,57. Adapting images
with a style transfer technique lead to obtain a gain of 20% in performance with
respect to results on the original dataset of GTA. This result shows how relevant
are the pixels of the images in input to the model. Even if the labels used are
the same, a great result is obtained by only changing colors and brightness of the
images so that they could look like to the real world data style.
Has also been proposed an additional experiment using a limited set of Cityscapes
images in order to create a new adapted dataset. A cycleGAN was trained using as
source dataset the GTA 5 original dataset and as target dataset only 150 samples
(5%) of Cityscapes. The subset of 150 images has been sampled randomly, however
I realized later that this is not the best way to do that. Inside of the 150 images in
fact is present many vegetation, especially in the upper parts of the images, however
this is not the same for GTA samples. So, what happens is that by mapping from
the real to the virtual domain, trees are created in the upper part of the image
where there should be only sky. Furthermore, the images do not have a good
quality compared to those that were used in other experiments.
A better idea that was recommended later to me from my company tutor, was to

56

6 – Results

sample these 150 images uniformly from the various clusters that can be formed by
reducing the dimensionality of the dataset using a non-linear algorithm, so as to try
to obtain a subset of samples which is quite representative of the entire Cityscapes
distribution.
An other problem may be that the cycleGAN is unable to converge with such un-
balanced domains (25000 vs 150) or that there is a need for better hyperparameters
tuning.
The cycleGAN training took about 4 days so was difficult to carry out further
experiments due to deadlines.
Surprisingly, by training DeepLab v2 on this so adapted dataset without further
target images, has been obtained relatively good results when then the model was
tested on Cityscapes, although the images were visibly problematic. It is possible
to see some failure cases in Figure 6.10. The maximum value of mIoU reached was
42.6. Showing that with even a limited set of target images is possible to increase
the level of generalization, demonstrating effectiveness of pixel level adaptation
methods.

Moving to feature-level adaptation is followed the architecture proposed in
CLAN [8]. Several experiments have been performed by adding a discriminator
on top of the predictions of the segmentation model, exploiting the category level
adversarial training in order to make filters of the encoder network able to generalize
on target data.
First of all, was used the original dataset of GTA V in order to achieve comparative
results to those published in the reference paper [8]. Using parameters proposed
by the authors has been reached a value of mIoU of 41,82. This value is less than
the one proposed in the paper (43.2) because the training time has been reduced
to 48’000 steps instead of 100’000 as done in the paper, due to computational
requirement, as told before.
In others test has been tried different parameters, for example changing the λadv
multiplier to 0.01 or using a higher learning rate, but results obtained were too low
and the training were stopped in order to give space to more significant trials.
Training the Category-level Adversarial Network with the adapted dataset of GTA
instead leads to much more interesting results. In table 6.1 are reported the values
of mIoU reached by trying different values of λadv. Best score is obtained with
λadv=0.001, leading to 46.17 of mIoU. λadv controls the relevance of the adversarial
loss in the total objective function.

Let’s now dive in Self-supervised experiments. In the paper that proposes using
a rotation algorithm on the top of the prediction of the encoder as auxiliary task,
authors reached a mIoU value of 41.2 [36]. During my trials instead, using the
original GTA V dataset I reached a value of 42.63, leading to a 12.30% gain with

57

6 – Results

Table 6.1: Different results by changing λadv on CLAN trained with adapted GTA
as source

Adversarial loss multiplier

mIoU

λadv = 0.001 46.17
λadv = 0.01 45.13
λadv = 0.1 45.53
λadv = 1 45.68

respect to train the semantic segmentation network without domain adaptation.
This difference in the results may exist due to the difference base model used. In
fact in the paper is used a standard DeepLab v2, while in my trial is used a version
of the same model based on co-training approach, so using two prediction of two
classifier as an ensemble prediction. Moreover, authors did not provide code for
the self-supervised task for semantic segmentation so the implementation of the
algorithm may be different from the one used here.
One of the problem of this solution is that during training the auxiliary model, it
learns very quickly to distinguish the rotation impressed to the prediction map.
For this reason the self-supervision loss provide meaningful gradients only in the
early iteration steps, converging to zero after a short period of time.
Some possible solutions to this problem may be to make auxiliary task more difficult
or using an easier auxiliary model. In order to make a more difficult task for the
auxiliary network, has been tried to change the size of the feature map in input.
Standard values were (256,256,19) where the first two values are width and height
of the map and the last value indicates the classes present in the prediction. So
have been tried to resize the feature maps to a size of 400x400 and 512x512, but
results did not change too much.
Using on the contrary a different network, an AlexNet instead of a ResNet18,
performance degraded not leading to better results, obtaining a mIoU of 40.86 .
Also in this case has been tried to change network parameters such as learning
rate and lambda loss multiplier, but performance were to low and also in this case
training were stopped.
Training the self-supervised model with the cycleGAN adapted dataset as before,
leads to better results and boost in performance. Using standard parameters with
such source dataset, as proposed in the previous chapter, is obtained a value of
45.49 of mIoU. In this case, employing a resize on the input feature map of the
auxiliary network to 400x400 resolution, is reached a score of 45.51 mIoU.
Using both an AlexNet and a higher input resolution however results are lower,

58

6 – Results

with only a score of 44.72. This shows that using a ResNet18 as auxiliary network
is a better option than using an AlexNet for this self-supervised trial.

Finally has been tried experiments using both discriminator and auxiliary net-
work. In the paper of Self-supervision task for semantic segmentation [10] has been
tried also this combination. They obtained a boost of performance leading to a
score of 42.3, however I did not obtained the same results.
In fact by training the segmentation network with both weighted adversarial loss
and self-supervision loss I reached a value of 39.64 mIoU, using standard GTA 5
dataset.
By using the adapted dataset results did not change too much, obtaining a score
of 45.32 .
This discrepancy in the results could be due to different implementation of the
algorithm or different hyperparameters used during training. Training 3 different
networks for the same model is a very heavy computational task, for this reason
the number of iterations that needs to be done may be higher.
Looking in more detail the graphics below is possible to see a recap of the just
exposed results. In figure 6.1 we can see the different reference results obtained
without feature-level domain adaptation.

Figure 6.1: DeepLab v2 without Feature-level Adaptation

In figure 6.2 instead we can see better the different results obtained with feature-
level domain adaptation.

Some conclusions can be drawn from an analysis of the results obtained.
Feature-level domain adaptation performs very when the initial distribution of
source and target are far. Adversarial learning with CLAN performs a +10% gain
and Self-supervision with the rotation algorithm a +12% with respect to a model
trained only on source data without any technique of domain adaptation. While
the combination of both methods did not produce improvements during my trials

59

6 – Results

Figure 6.2: Unsupervised Domain Adaptation

(only 4% gained).
However when source and target domain are already very similar, the effect of
feature-level adaptation is less evident.
Training the semantic segmentation model using as source domain an adapted
dataset, with source images very similar in terms of pixel statistics to the target
ones, by adapting them with image-to-image translation model, provide a huge
improvement with respect to the source baseline, leading to a gain of 20% in
performance.
However trying to further enhance domain adaptation by using the adapted dataset
as source and a technique of feature level adaptation does not provide competitive
results as before, only +1.2% with CLAN and zero gain with self-supervision with
respect to adapted baseline.
For this reason is possible to conclude that pixel-level domain adaptation is more
powerful than feature-level domain adaptation to align source to target domain.
A combination of both techniques may lead to more competitive and interesting
results, however there is the needs of datasets more similar a priori in terms of
class distribution, for example applying a data cleaning process in order to reduce
the big amount of bias present in GTA V dataset and Cityscapes, explained better
in the limitation section.

60

6 – Results

(a) Image (b) Ground Truth

(c) CLAN (d) Self

(e) Self+CLAN (f) Target

Figure 6.3: Some samples of the predictions on the validation set of the proposed
techniques

6.2 Semi-supervised Domain Adaptation
In a real case scenario could be possible that a company that would like to create a
perception algorithm for a possible self-driving car based on semantic segmentation
solution, has available a small amount of labeled target data, due to their expensive
labeling cost. In this scenario the relevance of using synthetic data is more evident.
The outcome that we would like to obtain is to get further knowledge from synthetic
data in addition to the one already present in real data.
For this reason I decided to perform some experiments in semi-supervised setting
scenario, in which during training over synthetic data are used even labeled and
unlabeled target data.
In literature is difficult to find papers that provide experiments using also target
labeled data, as the authors prefer to concentrate on unsupervised domain adapta-
tion, but in the industrial sector it can be more interesting.

61

6 – Results

I provide different experiments with the proposed algorithm, using three different
settings, 5% - 20% - 50% of target labeled data in addition to source labeled data
and target unlabeled data.
Practically has been added a segmentation loss also on target data every a fixed
number of iterations.
For each of the different setting has been performed the same experiment as in the
unsupervised domain adaptation case. Networks and parameters are the same used
as before, so DeepLab v2 for Semantic Segmentation network trained for 48’000
iterations using a batch size of 1.

In case of using only 5% of target labels, so calculating a segmentation loss only
for about 150 real images, is obtained a best value of mIoU over the validation set
of Cityscapes of 54.7. Using data augmentation and so performing learning also on
the synthetic datasets results change.
When is calculated a segmentation loss also for the original dataset of GTA V is
obtained a value of 54.63 mIoU. Instead when it’s used as source dataset the one
adapted with image-to-image translation, the result obtained is very promising.
In fact is obtained a score of 55.25, that outperform the case of not using any
synthetic data.
This result prove that synthetic data help in generalizing a model that will be
tested on real data when the amount of real label available is limited (Figure 6.4).
When applying feature-level adaptation using the adapted dataset as source and

Figure 6.4: Semi-supervised DeepLab v2 using 5% target labels

5% of target annotations is possible to further enhance the results obtained.
Self-supervision helps to further generalize the encoder of the segmentation network,
obtaining a score of 55.52 mIoU. However, this is not the case when it’s applied
adversarial loss with CLAN, leading to a result of 54.69 mIoU and to a best score
of 54.54 when combining rotation algorithm and adversarial loss.

62

6 – Results

Figure 6.5: Feature-level Domain Adaptation using 5% target labels

In a subsequent trial was trained a DeebLab v2 network using only 20% of target
labels, obtaining a base value of 62.04 of mIoU.
Unfortunately in this case the usage of synthetic data did not improve the results
obtained considering only real data. Performance degraded both in the case of
using original or adapted GTA V images with 20% of target, figure 6.6.
Trying to further enhance domain adaptation with the feature level techniques

Figure 6.6: Semi-supervised DeepLab v2 using 20% target labels

63

6 – Results

did not provide any further benefit. Results are shown in figure 6.7.
Finally by performing a training of the segmentation network on the 50% of the

Figure 6.7: Feature-level Domain Adaptation using 20% target labels

Cityscapes label available is obtained a score of 63.67 mIoU.
However also in this case the usage of synthetic data did not provide any benefit
to generalization of the semantic segmentation model over real data (Figure 6.8).
Unfortunately feature level adaptation as we might expect also in this case did not

Figure 6.8: Semi-supervised DeepLab v2 using 50% target labels

improve the results obtained using only real data. Showing that synthetic data

64

6 – Results

did not help when the amount of target label is relatively high to allow a good
generalization of the network.

Figure 6.9: Feature-level Domain Adaptation using 50% target labels

However a better hyperparameters optimization is needed in order to have total
confirmation of the results proposed here.

65

6 – Results

6.3 Limitations
One of the biggest problem in adapting GTA to Cityscapes is the very different
topography environment of the two domain. Class distributions are not distributed
in the same way, how it should be. This problem is mainly due the different setting
of the two datasets. GTA is set in Los Angeles, for this reason, leaving aside the
realism of the simulation, which anyhow is still satisfactory, there will be many
skyscrapers in the background, the traffic lights will be beyond street intersections,
buildings are not to high and so on with the details of a typical American city.
Contrariwise Cityscapes is collected in German cities, in which there are many
bicycles, vegetation and different road signs.
These big difference between the two domains are not solvable with domain adap-
tation, it is an intrinsic problem in the data, which automatically leads to the
introduction of bias inside the models.
For example when training a cycleGAN to map from Cityscapes to GTA, it will
learn that due to big amount of trees in the German dataset, in order to change the
GTA sample to look like a Cityscapes one, it needs to insert a lot of vegetation in
the reconstructed image, making trees appear in the sky where they shouldn’t be.
Some failure case images can be seen in the following figures (fig 6.10).
A different amount of class specific objects in the two domains may also lead to
overfitting when training. For example a model trained on GTA may understand
from the different seen images that in the high regions of the images there are
always buildings, but that is not the case on Cityscapes, so leading to wrong
predictions.

(a) Failure 1 (b) Failure 2

Figure 6.10: Failure images when translating from synthetic to real or vice-versa.
On left original images on right reconstructed ones.

For these reason it is necessary to use domains that though different in pixels

66

6 – Results

colors, brightness, textures, they come from domains with a not too different class
distribution, for examples different streets of cities of the same countries or regions.

6.4 Future developments

Despite as described above, there is the need of better datasets, there are different
improvements that could be done in order to further enhance domain adaptation
results in this scenario.
First of all a better hyperparameters optimization for the proposed method may
lead to different and more competitive results.
New self-supervision algorithm may further help generalization of the segmentation
network. Self-supervision has been deepened by researchers mainly for standard
classification, but application to semantic segmentation are relatively new, [10] was
released in December of 2019. New ideas related to self-supervision may born in
the next years, in particular referring to autonomous driving and applications of
semantic segmentation.
As we seen in the chapter of Generative Adversarial Networks have different
problems in order to achieve a stable training, one of the proposed solution was
the usage of a different loss function that provide better gradients to the generator
during training. In literature has not yet been investigate the usage of different
loss except for LSGAN for techniques of domain adaptation. For this reason it
could be interesting to try to apply them also for domain adaptation.
In the same way, self-attention mechanism and progressing growing training lead
to very competitive and stunning results when applied to image generation, in the
same way their usage for domain adaptation is not yen been studied, but their
application should be considered.
One possible future development should be the application of the proposed methods
or similar by using a multi-source dataset. For example in addition to the synthetic
dataset of GTA may be used a different dataset such as SYNTHIA, in order
to increase the amount of source data available trying to enhance the domain
adaptation.
In this work have not been proposed solutions to domain generalization, however
in autonomous driving this context is extremely important because it’s very easy
to imagine a situation in which a model trained for scene understanding needs to
work in a completely different domain, unseen during the training process. So in
order to propose robust systems such problems need to be considered.
One experiment that due to restricted time I was unable to try was the possibility
to join discriminator and auxiliary network in one single network. The task for such
joined network would have become much more difficult and the network parameters

67

6 – Results

would probably have changed, for example the number of iterations might be higher
in order to allow a such complex network the possibility to converge.
Finally could be interesting to consider new loss functions during training of both
pixel and feature level domain adaptation that take in consideration spatial and
geometrical layout of the images. For example in a standard image of Cityscapes
used for train semantic segmentation algorithm oriented to autonomous driving, in
the bottom of the image there is always the street, in center high probably there is
the sky and so on. Objects also have different shapes, pedestrians are tall and thin
objects and building are very different from trees. These informations should be
insert as priors inside models, and could probably generate models that outperform
today’s state-of-the-art.
Research in this field is fully active and the most part of the networks proposed
in this work are relatively new. For this reason a lot of work could and should be
done in order to obtain robust and reliable systems of semantic segmentation in an
urban scenario.

68

Chapter 7

Conclusions

After a deep study of the literature and from the different experiments performed
with the proposed algorithm, we can come to some conclusions.
Today, in order to obtain a detailed scene understanding of a driving environment
that could be used later for algorithms of autonomous driving, we can use deep
convolutional neural networks, that try to solve the task of semantic segmentation.
In such task, the aim is to assign a prediction for each pixel of a frame image to a
specific class. However, the biggest problem of this approach is the high cost of the
per-pixel annotations needed.
Synthetic dataset can be used in order to help generalize such networks thanks to
the main advantage that they come with free annotations from design. However,
due to the big difference that may exist between real and synthetic data, networks
may not be able to generalize easily from such different data and for this reason,
domain adaptation techniques are required.
In recent years applications of Generative Adversarial Networks increased, nowadays
a great part of algorithms of domain adaptation is based on adversarial training,
due to the ability of GANs of reducing divergence in probability distributions.
From different experiments performed by training a semantic segmentation net-
work adversarially with a discriminator network or jointly with an auxiliary task
performing a self-supervised algorithm, has been shown that is possible to reduce
the domain shift of the two domains leading to a feature-level adaptation.
Image to image translation models instead, allow a direct transfer of the style of
real data on the synthetic data. By using style transfer models based on GANs, it
is possible to create fine adapted datasets, that can be used as source domain in
order to train semantic segmentation networks with or without further adaptation
techniques. Such approach has been shown to lead to very competitive results
when tested on real data, achieving a generalization of the segmentation model.
From the different experiments conducted, it is possible to conclude that feature-
level domain adaptation techniques perform very well when source and target

69

7 – Conclusions

distribution are far. However, when the two domains are already similar and close,
the effect of adaptation is lower.
Pixel-level domain adaptation instead has been shown to be more powerful and
leads to a better performance and results in terms of adaptation.
By a joint combination of both techniques, it is possible to achieve state-of-the-art
results for the task of unsupervised domain adaptation for semantic segmentation
[38].
Results obtained also underline that, when the amount of real annotation is lim-
ited, by training a semantic segmentation network in a semi-supervised setting
using the algorithms proposed, it is possible to transfer knowledge from synthetic
data, obtaning a better result than the case of not using any domain adaptation
techniques.
For this reason, it is possible to ascertain that synthetic data help to generalize
vision understanding models on the real world when the amount of labels available
is limited.
However there is the need to do more studies and this topic will be increasingly at
the center of the research in the coming years.

Finally, to conclude, this work has the purpose of trying to exploit as mush as
possible the information contained inside data generated from a computer, in order
to enhance performance of models that will be tested with real world data. However,
the real world is much more complex, random and weird, that is impossible to
simulate it totally. For this reason, it is really important to have the knowledge
about the type of data on which the model is trained, in order to not introduce any
kind of bias, since these models will then be used in a real scenario with real lives.
Making algorithms that can allow autonomous vehicles, it means that the respon-
sibility on the lives that depends on such algorithms, falls on the engineers and
developers that such systems have developed.
Being fully aware of this and the ethics that it represents, it is essential for future
developments of artificial intelligence.

70

Bibliography

[1] Jonathan Long, Evan Shelhamer, and Trevor Darrell. «Fully Convolutional
Networks for Semantic Segmentation». In: The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). June 2015 (cit. on pp. 1, 21–23).

[2] Xiang Li, Wei Zhang, Qian Ding, and Jian-Qiao Sun. «Multi-layer domain
adaptation method for rolling bearing fault diagnosis». In: Signal Processing
157 (2019), pp. 180–197 (cit. on pp. 2, 31).

[3] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus
Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele.
«The cityscapes dataset for semantic urban scene understanding». In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition.
2016, pp. 3213–3223 (cit. on pp. 3, 4, 22, 27, 28, 47).

[4] Mei Wang and Weihong Deng. «Deep visual domain adaptation: A survey».
In: Neurocomputing 312 (2018), pp. 135–153 (cit. on pp. 3, 5, 32, 33).

[5] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. «Generative
adversarial nets». In: Advances in neural information processing systems.
2014, pp. 2672–2680 (cit. on pp. 3, 5, 33).

[6] Stephan R. Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. «Play-
ing for Data: Ground Truth from Computer Games». In: European Conference
on Computer Vision (ECCV). Ed. by Bastian Leibe, Jiri Matas, Nicu Sebe,
and Max Welling. Vol. 9906. LNCS. Springer International Publishing, 2016,
pp. 102–118 (cit. on pp. 4, 29, 47, 48).

[7] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. «Unpaired
image-to-image translation using cycle-consistent adversarial networks». In:
Proceedings of the IEEE international conference on computer vision. 2017,
pp. 2223–2232 (cit. on pp. 4, 36–38, 49).

71

BIBLIOGRAPHY

[8] Yawei Luo, Liang Zheng, Tao Guan, Junqing Yu, and Yi Yang. «Taking a
closer look at domain shift: Category-level adversaries for semantics consistent
domain adaptation». In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2019, pp. 2507–2516 (cit. on pp. 4, 41, 42, 44,
48, 51, 57).

[9] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy,
and Alan L Yuille. «Deeplab: Semantic image segmentation with deep convo-
lutional nets, atrous convolution, and fully connected crfs». In: IEEE trans-
actions on pattern analysis and machine intelligence 40.4 (2017), pp. 834–848
(cit. on pp. 4, 24, 25).

[10] Jiaolong Xu, Liang Xiao, and Antonio M. Lopez. «Self-Supervised Domain
Adaptation for Computer Vision Tasks». In: IEEE Access 7 (2019), pp. 156694–
156706. issn: 2169-3536. doi: 10.1109/access.2019.2949697. url: http:
//dx.doi.org/10.1109/ACCESS.2019.2949697 (cit. on pp. 4, 44–46, 48,
50–52, 59, 67).

[11] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. «Image-to-
image translation with conditional adversarial networks». In: Proceedings
of the IEEE conference on computer vision and pattern recognition. 2017,
pp. 1125–1134 (cit. on pp. 5, 34–37).

[12] Zhengwei Wang, Qi She, and Tomas EWard. «Generative adversarial networks:
A survey and taxonomy». In: arXiv preprint arXiv:1906.01529 (2019) (cit. on
p. 6).

[13] Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. «Unrolled
generative adversarial networks». In: arXiv preprint arXiv:1611.02163 (2016)
(cit. on p. 9).

[14] Martin Arjovsky, Soumith Chintala, and Léon Bottou. «Wasserstein gan».
In: arXiv preprint arXiv:1701.07875 (2017) (cit. on p. 11).

[15] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and
Stephen Paul Smolley. «Least squares generative adversarial networks». In:
Proceedings of the IEEE International Conference on Computer Vision. 2017,
pp. 2794–2802 (cit. on p. 12).

[16] Alec Radford, Luke Metz, and Soumith Chintala. «Unsupervised representa-
tion learning with deep convolutional generative adversarial networks». In:
arXiv preprint arXiv:1511.06434 (2015) (cit. on p. 13).

[17] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. «Progressive
growing of gans for improved quality, stability, and variation». In: arXiv
preprint arXiv:1710.10196 (2017) (cit. on p. 15).

72

https://doi.org/10.1109/access.2019.2949697
http://dx.doi.org/10.1109/ACCESS.2019.2949697
http://dx.doi.org/10.1109/ACCESS.2019.2949697

BIBLIOGRAPHY

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving Deep into
Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.
2015. arXiv: 1502.01852 [cs.CV] (cit. on p. 16).

[19] Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, and Olivier
Bousquet. «Are gans created equal? a large-scale study». In: Advances in
neural information processing systems. 2018, pp. 700–709 (cit. on p. 18).

[20] Shervin Minaee, Yuri Boykov, Fatih Porikli, Antonio Plaza, Nasser Kehtar-
navaz, and Demetri Terzopoulos. «Image Segmentation Using Deep Learning:
A Survey». In: arXiv preprint arXiv:2001.05566 (2020) (cit. on p. 21).

[21] Nils Plath, Marc Toussaint, and Shinichi Nakajima. «Multi-Class Image
Segmentation Using Conditional Random Fields and Global Classification».
In: Proceedings of the 26th Annual International Conference on Machine
Learning, pp. 817–824. doi: 10.1145/1553374.1553479 (cit. on p. 21).

[22] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. «Imagenet classi-
fication with deep convolutional neural networks». In: Advances in neural
information processing systems. 2012, pp. 1097–1105 (cit. on p. 22).

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. «Deep residual
learning for image recognition». In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2016, pp. 770–778 (cit. on p. 24).

[24] Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John M. Winn,
and Andrew Zisserman. «The Pascal Visual Object Classes (VOC) Challenge».
In: International Journal of Computer Vision 88 (2009), pp. 303–338 (cit. on
p. 26).

[25] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona,
Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. «Microsoft coco:
Common objects in context». In: European conference on computer vision.
Springer. 2014, pp. 740–755 (cit. on p. 26).

[26] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. «Vision
meets robotics: The kitti dataset». In: The International Journal of Robotics
Research 32.11 (2013), pp. 1231–1237 (cit. on p. 27).

[27] Gabriel J Brostow, Julien Fauqueur, and Roberto Cipolla. «Semantic ob-
ject classes in video: A high-definition ground truth database». In: Pattern
Recognition Letters 30.2 (2009), pp. 88–97 (cit. on p. 27).

[28] German Ros, Laura Sellart, Joanna Materzynska, David Vazquez, and Antonio
Lopez. «The SYNTHIA Dataset: A Large Collection of Synthetic Images for
Semantic Segmentation of Urban Scenes». In: 2016 (cit. on p. 29).

73

https://arxiv.org/abs/1502.01852
https://doi.org/10.1145/1553374.1553479

BIBLIOGRAPHY

[29] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and
Vladlen Koltun. «CARLA: An open urban driving simulator». In: arXiv
preprint arXiv:1711.03938 (2017) (cit. on p. 30).

[30] G E Hinton and R R Salakhutdinov. «Reducing the dimensionality of data
with neural networks». In: 313 (2006). url: http://www.ncbi.nlm.nih.gov/
sites/entrez?db=pubmed&uid=16873662&cmd=showdetailview&indexed=
google (cit. on p. 35).

[31] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. «U-net: Convolutional
networks for biomedical image segmentation». In: International Conference
on Medical image computing and computer-assisted intervention. Springer.
2015, pp. 234–241 (cit. on p. 35).

[32] Chuan Li and Michael Wand. «Precomputed real-time texture synthesis
with markovian generative adversarial networks». In: European conference on
computer vision. Springer. 2016, pp. 702–716 (cit. on p. 35).

[33] Chaoyue Wang, Chang Xu, Chaohui Wang, and Dacheng Tao. «Perceptual
Adversarial Networks for Image-to-Image Transformation». In: IEEE Trans-
actions on Image Processing 27.8 (Aug. 2018), pp. 4066–4079. issn: 1941-0042.
doi: 10.1109/tip.2018.2836316. url: http://dx.doi.org/10.1109/TIP.
2018.2836316 (cit. on pp. 38, 49).

[34] Swami Sankaranarayanan, Yogesh Balaji, Arpit Jain, Ser Nam Lim, and
Rama Chellappa. «Learning from synthetic data: Addressing domain shift for
semantic segmentation». In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2018, pp. 3752–3761 (cit. on pp. 39, 40, 42,
44, 46, 48, 50).

[35] Zhi-Hua Zhou and Ming Li. «Tri-training: Exploiting unlabeled data using
three classifiers». In: Knowledge and Data Engineering, IEEE Transactions
on (2005). doi: 10.1109/TKDE.2005.186 (cit. on p. 41).

[36] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. «Unsupervised represen-
tation learning by predicting image rotations». In: arXiv preprint arXiv:1803.07728
(2018) (cit. on pp. 44, 45, 57).

[37] Fabio M Carlucci, Antonio D’Innocente, Silvia Bucci, Barbara Caputo, and
Tatiana Tommasi. «Domain generalization by solving jigsaw puzzles». In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2019, pp. 2229–2238 (cit. on p. 44).

[38] Yunsheng Li, Lu Yuan, and Nuno Vasconcelos. «Bidirectional learning for
domain adaptation of semantic segmentation». In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2019, pp. 6936–6945
(cit. on pp. 48, 49, 70).

74

http://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmed&uid=16873662&cmd=showdetailview&indexed=google
http://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmed&uid=16873662&cmd=showdetailview&indexed=google
http://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmed&uid=16873662&cmd=showdetailview&indexed=google
https://doi.org/10.1109/tip.2018.2836316
http://dx.doi.org/10.1109/TIP.2018.2836316
http://dx.doi.org/10.1109/TIP.2018.2836316
https://doi.org/10.1109/TKDE.2005.186

	List of Tables
	List of Figures
	Indroduction
	Autonomous Driving
	Limitations of Semantic Segmentation
	Generalizing with Synthetic data

	Generative Adversarial Networks
	Introduction
	Generative Models
	Problems in training GANs
	Possible Solutions
	Loss Function
	Wasserstein GAN
	Least Squared GAN
	Spectral Normalization with Hinge Loss

	GAN Architectures
	Deep Convolutional GAN
	Progressing Growing GAN

	Regularization tricks
	Evaluation metrics
	Applications of Generative Adversarial Networks

	Semantic Segmentation
	Introduction
	Fully Convolutional Networks
	DeepLab v2
	Metrics
	Datasets
	Real datasets
	Synthetic datasets

	Domain Adaptation
	Introduction
	Settings of Domain Adaptation

	Image to Image Translation
	Pix2Pix
	CycleGAN

	Domain Adaptation for Semantic Segmentation
	AdaptSegNet
	CLAN
	Self-Supervision tasks

	Proposed Algorithm
	Introduction
	Pixel-level Adaptation
	Feature-level Adaptation

	Results
	Unsupervised Domain Adaptation
	Semi-supervised Domain Adaptation
	Limitations
	Future developments

	Conclusions
	Bibliography

