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Abstract

Autonomous driving is without a shadow of doubt the future of automotive and it
currently needs efficient solutions. Deep learning methods have shown excellent
results for object classification and detection, but the specific task needed for driving
is the more challenging semantic segmentation: each pixel of a depicted scene should
be recognized as belonging to a specific object. For this setting, it is crucial to
collect a large amount of per-pixel labeled data, which need an expensive manual
classification process. Synthetic datasets from simulators can be used in order to
reduce the amount of data required and they come with free annotation by design.
However, the big style difference between synthetic and real images does not allow
a direct knowledge transfer across the two domains and it asks for specific domain
adaptation solutions. This work starts from a review of the most recent literature
on deep learning for semantic segmentation and it proposes to boost domain
adaptation techniques based on Generative Adversarial Networks (GANs) for style
transfer by combining them with features-based adaptive strategies that take into
consideration category-level adaptation and self-supervision. The experimental
analysis considers a model learned on synthetic labeled images from the GTA V
videogame and applied on the real Cityscapes dataset collected in different cities
in Germany. The obtained results show how the proposed combination of methods
can be useful in case of limited availability of real world annotated images.
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Chapter 1

Indroduction

1.1 Autonomous Driving

Autonomous driving is without a shadow of a doubt the future of automotive. The
advantages that derives from a self driving car are astonishing, the main important
can be less deaths on the streets and a better human experience while sitting on
the car. To get to the point when cars will guide entirely alone however a lot of
steps needs to be done and will require still some years. There is the need that
every single little detail is taken in consideration and every single model, validated
and tested, in order to ensure sufficient security and reliability. In order to obtain a
vehicle able to guide by itself there is the need to obtain semantic information about
the environment around the vehicle, and different sensors can be used in order
to achieve this task. Some of those sensors can be cameras for visual recognition
task, because it’s important to recognize the drivable area, pedestrians and car
on the street, road signs, etc; or radar at short-long range distance in order to
perceive accurate depth information. From an union and analysis of the different
information collected by the sensors of the car is possible with automatic control
techniques to create algorithm able to allow the car to drive by itself.

In this work we refer to the task of Computer Vision called Semantic Segmentation
[1], that by taking in input images of the road from the camera in front of the car,
output a prediction which contains a classification for each pixel of the image as
belonging to a series of classes that are taken in consideration in the training phase
of the model.
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1.2 Limitations of Semantic Segmentation

In order to train a model of Semantic Segmentation that will then insert in a vehicle
with the aim of substitute the human eye, there are many precautions to consider.
First of all, we have to think to the nature of such architectures, in fact the most
important features that a real-time scene understanding model should have, are
precision and inference speed. In order to entrust our lives to such models we need
to be sure that those systems are reliable and extremely accurate, however this
is not yet the case, this technology remains a open research field, and even Tesla,
the company with the most advanced resources for self-driving car, proposes its
auto-pilot as a beta program.

The difficulty to generalize to new data unseen by the model in the training phase
is a common problem in Deep Learning, however it represents a far more serious
problem when there are human lives that depend on it.

Encoding billions of data of world roads to a single model composed of several
convolutional layers it is not conceivable, there is too much information that needs
to be compressed in a few millions of parameters. For this reason models that will
be then used in a real scenario should be geographically scalable.

One current problem of Semantic segmentation is data collecting.
Roads and streets around the world are very different, both between different
countries, both between regions or cities of the same country, and even inside the
same city. In order to get a robust model there is the need to collect the most
possible amount of data, because we would like that our car will drive autonomously
in different scenarios. This process is very expensive for companies that needs to
collect data for all the streets that they would like their self-driving car will cover.
Moreover also weather and light conditions really matter when using CNN-based
models, for this reason the amount of data required is even greater.
As an example, if we train a Semantic segmentation model with data containing
images of some streets of the city of Turin taken in a rainy and cloudy day, when
we try to test the same model on images taken in a sunny day in Rome, the model
will absolutely have poor performance. This is due to the domain shift of the two
different cities, colours and brightness of the pixels are really different, objects and
topography of the streets are even more diverse, considering also to use the same
camera with the same shooting angle. Convolutional filters of the model overfit to
the training data and this means that they will not be able to generalize to a new
domain completely different [2].
The networks need to see data similar to those that will be used at test time,
despite the property of independent and identically distributed for training and test
data, on which machine learning is based, does not exist in the real world.
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Notwithstanding these problems, the biggest limitation of Semantic Segmen-

tation, is the labeling process. In order to train a model we need to provide
it in input the image and the corresponding label, on the image thanks to the
learnt parameters of the network it’s output a prediction. A loss function will
then calculate the error committed with respect to the true label, and using an
optimizer such as stochastic gradient descent the error is minimized by updating
the parameters of the network through backpropagation algorithm.
For Semantic segmentation the true label is composed of different layers, one for
each class that has to be considered. For each of them one person, needs to highlight
every single pixel of the image that contain that specific class. This process require
a lot of time, for Cityscapes dataset [3], public available most used dataset in
research, this process required about 1.5 hours for every single image. For this
reason this is currently the main bottleneck of Semantic Segmentation for urban
scene.

1.3 Generalizing with Synthetic data

Synthetic data from simulators can be used in order to train Semantic Segmentation
model providing a data augmentation to the real dataset.

One of advantages of synthetic data is that thanks to the rendering engine it is
possible to create realistic virtual environment in order to collect data as close as
possible to real ones, without requiring a physical process that does it. Moreover
from virtual environment is possible to change weather and light conditions easily,
allowing to collect more diverse data.

The biggest advantage of synthetic data is that there is no need to segment by
hand the labels, as these are created autonomously by the rendering engine that
needs to know where create 3D objects in the scene, for those reasons the amount
of time needed to collect training data is drastically cut off.

However there are still some problems when applying models trained with
synthetic data on real scenarios. In fact synthetic and real data may be very
different, even if the realism and quality of synthetic data is extremely high, there
may be some low details like textures, reflex and brightness that can reduce the
performance on the real data. This problem known as domain shift, it’s possible
to tackle with Domain Adaptation [4] that tries to learn a shared representation
between domains in order to learn from synthetic data and generalize on real ones.

In this work I decided to elaborate on Adversarial based techniques [5] of Domain
adaptation, due to their relevance in the research community in recent years.
In particular after a thorough study of the literature and state-of-the-art techniques
that try to solve the gap between synthetic and real data, I noticed that several

3
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good ideas were proposed but a follow-up to these ideas is hardly proposed.

For this reason I decided to mix some good and promising techniques in order
to reduce the gap between two datasets publicly available, which were used as
benchmark in those relative articles. My purpose is to obtain competitive results
with the one proposed in such papers. For the synthetic dataset was used GTA V
6], data taken from the famous open-world videogame set in Los Angeles, while
for the real dataset was used Cityscapes [3].

The algorithm is based on a two-steps process, the first step is a pixel level
adaptation, trying to apply Cityscapes style to the synthetic dataset, by using an
Image to Image transition model called cycleGAN [7], in order to create an adapted
dataset that will be used in the next step. The main part of the algorithm is based
on CLAN [8], composed of a semantic segmentation model based on DeepLab v2
[9], on which is applied a Domain adaptation module on the output predictions that
thanks to a Discriminator model produce a weighted adversarial loss which has the
effect of aligning the marginal distributions of two domains, making convolutional
layers able to generalize on real data that is provided without labels during training.
To this baseline is added a Self-supervised task of Rotation on the output of the
model [10], the predictions after an up-sample layer in order to get squared shape
are randomly rotated in one of the possible outcome [0, 90, 180, 270], and an
auxiliary network is trained in order to learn which rotation has been given to the
prediction.

This last process has the effect of making convolutional filters able to learn spatial
invariant features, allowing a better generalization for the target domain.

Several experiments have been produced, firstly in an Unsupervised learning
scenario in order to obtain the most possible information from synthetic data and
to get comparable results with the ones proposed in the different articles. Then
experiments have been produced in a Semi-supervised approach, considering using
only a fraction of the training real labels in order to provide more useful results from
an industrial point of view. The results obtained outperform the ones proposed in
the original articles, by training the models only half of the time as done in the
papers due to time and computational requirements. Moreover, semi-supervised
experiments show that using only a fraction of the real label available, thanks to
domain adaptation from synthetic data it’s possible to get results better than a
model trained only on the full real labeled dataset.

I’d like to thank AddFor S.p.a. for providing me a guide and resources in order to
produce this work.



Chapter 2

Generative Adversarial
Networks

2.1 Introduction

Generative Adversarial Networks (GANs) belongs to the family of Generative
models. They are used in a great vastness of applications, from the generation of
new images that tries to resemble a distribution of real training data [5], to more
advanced techniques useful for different tasks, such as domain adaptation [4], style
transfer [11], text2image, adversarial examples, deep fakes and more. They are
considered as "the most interesting idea in the last 10 years of machine learning"
by Y. Le Cun, one of the fathers of Deep Learning.

GANSs were first formulated in 2014 by lan Goodfellow and his colleagues [5], in
its easier form as it was proposed, a Generative Adversarial Network it’s composed
of two neural networks that continuously try to beat each other in a so called
minimax game. The first player of the game is the Generator (G), whose objective
function is to generate new data with the same statistics of a training set, starting
from a random noise vector, in such a way that they are indistinguishable from the
real ones. The other opponent is the Discriminator (D), that instead has the task
to distinguish the real data from the ones generated by the Generator.

More formally, given two differentiable functions G and D represented by two
multi-layer perceptrons, with parameters respectively 0, and 64. We can define a
latent variable z as input of G, whose task is mapping to the data space G(z;6,) in
order to learn the distribution p, over data . On the contrary D(x;6,) outputs a
single value, that represents the probability that & came from the data rather than
Dg- D is trained in order to maximize the probability of assigning the correct label
for both training examples and samples generated from G, while G is trained in

5
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order to minimize the probability of being guessed by D, or rather log(1— D(G(2))).
The value function corresponding to the GAN training is reported in 2.1

minmax V(D, G) = Eppypunllog D(@)] + Eavy s log(1 — DG(2)]. (21)
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Figure 2.1: Architecture of a GAN for face image generation, from [12]

Procedure of training of Generative Adversarial Networks is presented in Algo-
rithm 1.
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Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial
nets. The number of steps to apply to the discriminator, k, is a hyperparameter. In the
original paper is used k£ = 1, as the least expensive option.

1: for number of training iterations do

2: for k steps do

3: e Sample minibatch of m noise samples {z(!), ..., 2(™} from noise prior
py(2).

4: e Sample minibatch of m examples {z, ..., (™} from data generating
distribution pgat. ().

5: e Update the discriminator by ascending its stochastic gradient:

v;i log D () +1og (1 - D (G ()]

6: end for
e Sample minibatch of m noise samples {z), ..., 2™} from noise prior

py(2).
8: e Update the generator by descending its stochastic gradient:

Vo, > log (1D (€ ().

9: end for
10: The gradient-based updates can use any standard gradient-based learning rule

2.2 Generative Models

Generative models are able to define how a set of data is generated in terms of
probabilistic model, by sampling from this model could be possible to create new
data similar to the first one.

Given a set of data instances X and a set of labels Y, a Generative model captures
the joint probability p(X,Y), or just the distribution of X, p(X) if there are no
labels. In other words, these models learn to create data similar to that given in
input to them. A Discriminative model instead is able to capture the conditional
probability p(Y|X) so assigning a label class to a specific sample.

All types of generative models try to learn the true data distribution of a training
set, so as to generate new data points with same statistics. But it is not always
possible to learn the exact distribution of our data either implicitly or explicitly
and so we try to model a distribution which is as similar as possible to the true data
distribution. For this reason, we can exploit the power of neural networks to learn

7
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a function which can approximate the model distribution to the true distribution,
and Generative Adversarial Networks are one the possible techniques to do that.

Generative Model

Discriminant Model

Figure 2.2: A discriminative model on the left defines a boundary in order to
distinguish dogs from cats, a generative model on the right, instead is able to
generate new samples similar to existing ones

2.3 Problems in training GANs

Generative Adversarial Networks are obtaining impressive results nowadays, gen-
erating images that could be very difficult even for an human eye to distinguish
that are fakes. However the training process of a GAN is very hard and reach an
equilibrium in the mini-max game between the two component is complex.

GAN models suffer of different problems, which can be categorized into three
different categories, vanishing gradients, mode collapse and non convergence.
Generative Adversarial Networks are based on a zero-sum non-cooperative game,
also called mini-max. In short, if one of the player wins the other loses.
Generator and discriminator try to beat each other, like in the game guards and
thieves, in which one opponent wants to maximise an objective function while the
other one wants to minimize it (equation 2.1). In game theory, the GAN model
converges when discriminator and generator reach an equilibrium, optimal point
for the mini-max game, called Nash equilibrium. This in an unstable equilibrium
point, thinkable as a saddle point in a 3D dimensional space. A Nash equilibrium
happens when one player will not change its action regardless of what the opponent
may do.

So due to the adversarial game, each player of the game may undo the progress
achieved during training, making convergence very difficult to achieve.

8
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Equation 2.1 in practise, doesn’t provide enough gradient to the Generator, that will
not learn well the training distribution. In the first iterations of the training loop,
when G is poor, it’s too easy for D to reject samples generated because they are
clearly different from training data. This is due the saturation of log(1 — D(G(z))) ,
and this problem is known as vanishing gradient. A possible solution to this problem
can arise by instead of minimizing log(1 — D(G(z))) , by maximize log(D(G(z)))
for D, this provides much stronger gradients for GG in early stage of training and
results in the same fixed point of the dynamics of the training. In practise this is
achieved during training by changing label values for real and fake data.

Another solution to provide better gradients to GG during training is the usage of
different loss functions, in order to achieve more stable training and better results.
Another hard problem to solve that appears when training GANs is mode collapse.
Mode collapse appear when the generator collapses, generating always a limited
variety of samples, . It’s possible to see an example in figure 2.3. This happens
because during training the generator may find some optimal parameters that
generate images that always fool the discriminator, leading to a collapse of the
modes and becoming unable to generate more varied samples. Mode collapse can
be seen as a overfitting of the generator.
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Figure 2.3: Example of mode collapse. Two different GANs, in the first row a
GAN is able to create all possible modes (number 0-9), in the second row a GAN
collapses in generating one single number. [13]

GANSs are highly sensible to hyperparameters, tuning parameters in order to
find values that bring the best results takes time and patience. It’s very easy to
fall in a unstable training and non convergence due to a wrong choice of initial

9
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parameters that generate low quality results.

Moreover another big problem in the GAN training is that differently from dis-
criminative models and CNN, loss functions did not tell anything about the trend
of the learning process. For this reason we need to examine the generated images
manually to verify the learning process. This makes model comparison harder
leading to difficulties in picking the best model in a single run.

2.4 Possible Solutions

Different solutions are proposed in literature trying to solve the problems of GANs.
Some of them are based on regularization tricks, which are not based on mathe-
matical evidence but rather on heuristic evidence based on experiment made by
the research community.

Others instead are based on a more theoretical assumption such as a change of
the loss function that can provide more meaningful information for the generation
of images, trying to eliminate vanishing gradients problems. Even architecture
changes provide boost in performance in the generation of high quality images, more
diverse generated samples and a fairer game between generator and discriminator
that provides a general higher stability of the training process of the model.

2.5 Loss Function

The choice of the loss function is a design decision that significantly impacts
performance in GANs. In the original paper has been proved global optimally and
convergence of GANs but it was also highlighted the instability problem which can
arise in the training phase. The loss function of a GAN, when the discriminator is
optimized, is related to two probability measurement metrics, Kullback-Leibler (KL)
divergence and Jensen-Shannon (JS) divergence. Minimizing JS divergence between
real and generated distribution is possible to optimize the generator considering an
optimal D. However, it has been proved that using original loss function will result
in the vanishing gradient for G, in the early steps real and generated distribution
differ too much and the JS divergence has a low gradient that will allow D to
prevail and G not to learn. While using the alternative loss function proposed
(minimizing -log(D(G(z)) instead of log(1-D(G(z))) will incur the mode collapse
problem (same G(z) for different z) and fluctuating gradients that cause instability
to the models.

These problems cannot be solved changing the architecture, but only changing the
loss function, the aim is to find a cost function with smoother and non-vanishing
gradients, which is intensively researched in order to improve learning stability and
ability of the model.

10
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Some of the loss functions that have been seen to work well with GANs are:
o Wasserstein GAN (with gradient penalty)
o Least Squared GAN

o Spectral Normalization with Hinge Loss

2.5.1 Wasserstein GAN

WGAN [14] proposes the Wasserstein distance to measure the difference between
the data distributions of real and generated images. Intuitively, it measures the
effort to transform one data distribution to another.

Wasserstein distance (or Earth mover) is able to reflect distance also when two
distributions are far, for example in the early iterations of a GAN training, when
for the discriminator is easier to distinguish if a generated image is fake or not.
This provides much meaningful and smooth gradients during training, remedying
to the problem of vanishing gradient. Mathematically, Wasserstein distance looks
more desirable as a cost function with respect to the one proposed in the original
paper.

The Wasserstein distance is defined as:

W(prapg) = inf IE(X,y)N“/HX -yl (2.2)
e[ 1(prpg)

where [](p;,p,) is the set of all possible joint distributions and v(x,y) whose
marginals are p, and p,. However, this equation for the Wasserstein distance is
highly intractable, for this reason authors demonstrate that the distance can also
be estimated as:

wnv

max B, [fu(X)] = Eonp. [fu(G(2))]; (2.3)

where f,, takes the role of the critic D with some constraints that requires to be
a 1-Lipschitz function, z is the input noise for G. So w are the parameters of D
and D aims to maximize equation (2.3) in order to make the optimization distance
equivalent to Wasserstein distance. When D is optimized, the task of G will be to
minimize the Wasserstein distance, or rather

— i B, [fu(G(2))] (24)

The discriminator in the original work is used as a binary classifier but D used in
WGAN needs fit the Wasserstein distance, which is a regression task. Thus, the
sigmoid in the last layer of D is removed in the WGAN.

The benefits of WGAN are that the training process is more stable and less sensitive
to the choice of hyperparameters and network architecture. Moreover, the loss of
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the discriminator appears to relate to the quality of images created by the generator.
Finally, by adding a gradient penalty to D is possible to obtain much a much stable
network.

2.5.2 Least Squared GAN

Authors of Least Squared GAN (LSGAN) [15] propose a new approach to remedy
the vanishing gradient problem, by proposing a new cost function based on least
square loss for the discriminator instead of sigmoid cross entropy loss.

We can define the proposed loss function for G and D as:

min L = S B [(D() = ]+ JEany. [(D(G(2)) — )],
- (2.5)
min £ = 5B, [(D(G(2)) — )],

where a is the generated sample label, b is the real sample label and ¢ is a hyperpa-
rameter that G wants D to recognize the generated samples as the real samples by
mistake.

The new decision boundary that arises by minimizing the loss for D, penalizes
large error arising from those generated samples that are far away from the deci-
sion boundary, which pushes towards the decision boundary those bad generated
samples. This allows to get better image quality in generating images.

Moreover, by penalizing the generated samples that are far away from the decision
boundary, it is possible to provide better gradients when updating the generator,
remedying the vanishing gradient problems for training G.

2.5.3 Spectral Normalization with Hinge Loss

In order to further stabilize the training of GANs, authors of Spectral Normalization
GAN (SN-GAN) propose the usage of weight normalization. This technique does
require a light computational effort and it’s easily applicable to existing GANSs.
Spectral normalization is calculated as:

W

Wian(W) = (W)’

(2.6)
where W represents weights on each layer of the discriminator D and o(W) is the
Ly matrix norm of W. The paper proves this will make || f]| < 1, requirement that
allows a better stability of the network. Spectral Normalization has been found to
work in the best way with Hinge loss.

12
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2.6 GAN Architectures

Several approaches have been tried in order to overcome the several issues of
adversarial training, such as the usage of a different loss function, as we saw before.
Although some of them improve stability and vanishing gradient problems, none of
them eliminated the issue of mode collapse entirely and theoretical reason remains
an area of active research.

Moreover the traditional architecture of GAN produces very low quality images
due to the well known problems of fully connected layers, that are not suited for
learning hierarchical structure like the ones present inside the images.

For this reason, it is necessary not only to change the optimization functions but
also the entire architecture and structure of the networks.

2.6.1 Deep Convolutional GAN

Deep Convolutional GANs (DCGAN) [16] is a popular architecture of GAN which
replaced the original fully connected network as baseline model for GANs. It
mainly removes all max pooling and fully connected layers, replacing them with
convolutional layers.

For the generator that has the task of starting from a latent vector to create an
image similar to the one present in a training set, the upsampling task is performed
with the usage of transposed convolutional layers. We can see an example in the
figure 2.4 below.

The discriminator instead is composed of downsampling task performed by convo-
lutional layers.

128
26 ' \\

Project and reshape

Figure 2.4: Generator architecture of a DCGAN
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Authors propose the usage of batch normalization for all the layers except for
the output layer of the generator and the input layer of the discriminator. The
activation functions used are ReLu for generator, except for the output which uses
tanh, and Leaky-ReLu for discriminator.

It’s a very simple architecture that is possible to combine with different loss
functions and regularization tricks in order to produce good quality images.

14



2 — Generative Adversarial Networks

2.6.2 Progressing Growing GAN

The generation of images in high resolution was a big problem in early ages of GANs.
The higher the resolution of an image is, the easier it becomes for the discriminator
to distinguish real images from the fakes. This makes also mode collapse more
likely. For those reasons researchers at NVIDIA studied a method to overcome
those issues, developing the PROGAN [17]. The main feature of the PROGAN
is the Progressing Growing mechanism of the network. Instead of attempting to
train all layers of the generator and discriminator at once, as it’s done normally,
the network starts with low-resolution images (4x4) and the progressively grows in
order to handle higher resolution, by adding iteratively layers to the network. This
incremental nature allows the training to first discover large-scale structure of the
image distribution and then shift the attention to an increasingly finer scale detail,
instead of having to learn all scales simultaneously.

By increasing the resolution gradually, we are asking the network to learn much
simpler a piece of the overall problem, this, in combination with some other train-
ing details, reduces the chance for mode collapse and stabilizes training. Another
improvement of the progressing growing is the faster training process, this because
fewer layers have simply less parameters in them, and only the final set of training
iterations are done with the right resolution. Authors found that their PROGAN
generally trained twice to 6 times faster than a corresponding traditional GAN,
depending on output resolution.

Differently from DCGAN, Progressing growing GAN uses the nearest neighbors for
upsampling and average pooling for down-sampling. These are simple operations
with no learnable parameters, both then followed by two convolutional layers.
When new layers are added, the parameters in the previous layers remain trainable.
In order to prevent shocks in pre-existing lower layers when adding a new top one,
the new layer is linearly “faded in” like a residual block, controlled by a parameter
« depending on the number of iterations passed. In this way, the network can
adapt itself to the new layer (Figure 2.5).

Moreover authors introduced some training details that stabilize the training

process and could be taken in consideration in order to improve existing or different
GAN architectures.
Instead of worrying about covariance shift and so using BatchNormalization layers,
authors have found that this is not an issue in GANSs, while the real problem is to
guarantee a fair game between G and D in order to prevent vanishing or exploding
gradients. For those reasons they used two different approaches, neither of which
include learnable parameters.

o PIXEL NORMALIZATION: using pixel normalization instead of batch nor-
malization as it’s normally done, it has the benefit of not requiring trainable
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Figure 2.5: Generator architecture of a PROGAN

parameters. In order to prevent the escalation of signal magnitudes (gradients)
as result of competition between D and G, the feature vector in each pixel is
normalized to unit length in the generator after each convolutional layer.

« EQUALIZED LEARNING RATE: Instead of using weight initialization, au-
thors have found that scaling weights at run-time produce better results.
Commonly used network optimizers like RMSProp or Adam, normalize a
gradient update by its estimated standard deviation, thus making the update
independent of the scale of the parameter. As a result, if some parameters
have a larger dynamic range than others, they will take longer to adjust. So
it is necessary that layers learn at a similar speed. To achieve this equalized
learning rate, they scale the weights of a layer according to how many weights
that the layer has. They do this using the same formula as is used in He
initialization [18], except that they do it in every forward pass during training,
rather than just at initialization. By doing this, no fancy initialization is
needed despite a standard normal distribution.

o MINI-BATCH STANDARD DEVIATION: One of the many problems of GANs
is the difficulty of producing samples with a wide variation such as in the
training data, problem also known as mode diversity. In order to combat this
issue, it is possible to allow the discriminator to compute statistics across the
batch and use this information as help to distinguish between real and fake

images. This encourages the generator to produce more diverse images, trying
to ensemble real data. In PROGAN this is done with a Minibatch Standard
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Deviation layer, inserting near the end of the discriminator, it computes
the standard deviations of the feature map pixels across the batch and it
appends them as an extra channel, with no trainable parameters nor new
hyperparameters.

PROGAN is independent from the loss function used, but WGAN-GP is the one
that produced better results.

The speedup from progressing growing increases as the output resolution grows, and
it produced stunning results in high resolution images (1024x1024) for CelebaHQ
dataset.

Even if the results are generally high compared to earlier work on GANs and the
training is stable in large resolution, there is yet a long way to true photo-realism.
Semantic sensibility and understanding dataset-dependent constraints, such as
certain objects being straight rather than curved, leaves a lot to be desired. There
is also room for improvement in the micro-structure of the images.

2.7 Regularization tricks

In order to obtain better stability of the GAN models, researchers found different
tricks that are not based on mathematical assumptions rather on heuristic and the
so called "learn by doing".

In GAN papers, the loss function to optimize for G is min(log(1 — D(G(z)))),
minimizing the probability that the generated sample will be classified as fake
from D, but in practice it is better to max(logD(G(2))), or rather maximizing the
probability for D to make an error when classifying the generated sample. This
provides better stability to the network and meaningful gradients to G' during
training, the easiest way to do that is to flip labels while training the generator.
In order to generate better quality images, it was found that it is better to sample
the latent vector z from a Gaussian distribution than a Uniform.

When training is better to construct different mini-batches for real and fake, so not
using batches with both real and fake images to give in input to the discriminator.
Stochastic Gradient Descent optimizer works better for the discriminator, while
Adam for the generator.

Moreover, conditioning the training with labels, if present, allows to get better
quality images. Finally it has been found that sometimes training D more than G
provides more stable training.

2.8 Evaluation metrics

There is still no clear consensus on which GAN algorithm perform objectively
better than others. This is partially due to the lack of robust and consistent
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metric, as well as limited comparisons which put all algorithms on equal footage,
including the computational budget to search over all hyperparameters. Many
researchers focused on qualitative comparison, such as comparing the visual quality
of samples. Unfortunately, such approaches are subjective and possibly misleading,
for this reason computing a fair comparison between methods implies access to
some metrics. The most used nowadays are IS (Inception Score) and FID (Fréchet
Inception Distance), both assume access to a pre-trained classifier, Inception Net
trained on ImageNet.

« INCEPTION SCORE (IS): it offers a way to quantitatively evaluate the
quality of generated samples. It is based on the fact that a good model
should generate samples for which, when evaluated by the classifier, the class
distribution has low entropy. At the same time, it should produce diverse
samples covering all classes.

« FRECHET INCEPTION DISTANCE (FID): it is computed by considering
the difference in embedding of true and fake data given by (a specific layer) of
Inception Net. Assuming that the coding layer follows a multivariate Gaussian
distribution, the distance between the distributions is reduced to the Frechet
distance between the corresponding Gaussians. Unlike IS, FID can detect
intra-class mode dropping, i.e. a model that generates only one image per
class can score a perfect IS but will have a bad FID.

Both measures however are unable to detect overfitting, a “memory GAN” which
stores all training samples and generates replicating them would score perfectly.
Even when the metric is fixed, a given algorithm can achieve very different scores,
when varying the architecture, hyperparameters, random initialization (i.e. random
seed for initial network weights), or the dataset.

In the paper “Are GAN Created Equal? A Large-Scale Study” M.Lulic, K.Kurach
[19] — authors computed a large scale experimental evaluation, performing a huge
hyperparameters optimization for each model (architecture was always the same
but objective function changed) and dataset (CIFAR10).

Important observations come from that work, firstly it results that there is no
algorithm which clearly dominates others. Secondly, for an interesting range of FID
scores, a “bad” model trained on a large budget can outperform a “good” model
trained on a small budget. Finally, when the budget is limited, any statistically
significant comparison of the models is unattainable.

Authors also suggest that differences between different methods may occur during
testing of bigger networks (more params) on higher resolution and higher complex
datasets, after the choice of the optimization method, the number of training steps,
and possibly other optimization hyperparameters.

Authors observed that the performance of each model heavily depends on the
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dataset in which it was trained and no model strictly dominates the others.

In my personal opinion this means two things, firstly that current metrics are
ineffective since they should define more difference even for simple dataset and
secondly that a GAN less sensible to hyperparameters optimization is needed in
order to perform well on a vast amount of dataset and to be considered better than
others. Despite these problems, however, it is suggested using a loss function that
at least in theory and mathematically resolves the problems of vanishing gradient,
mode collapse and unstable training, despite they produce similar results on easy
dataset according to FID, it does not mean that they are all comparable in terms
of stability and mode diversity. For this reason, it is highly recommended to use
loss function such as Least Squared or WGAN-GP instead of standard GAN loss
function.

All GANs problems must be incorporated into a good hypothetical metric in order
to ensure a fairer comparison between different models.

Nowadays in case of using GANs in a different application from the standard Image
Generation, the best way to understand how network learning proceeds is still a
plot of intermediate results.
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2.9 Applications

Image generation is only one of the possible applications of Generative Adversarial
Networks. GANs have become more and more mainstream in the last years, recently
they have become known to the public for the deep fake application.

Another very interesting application of GANs is the image-to-image process, in
which images can be manipulated by translating from a domain to another. Due
to the ability of adversarial networks of reducing gap between distributions, GANs
are widely used in Domain Adaptation techniques.

Video manipulation is one of the most critical aspects and applications of GANs.
Today there are already cases of manipulation of videos for political or defamatory
purposes thanks to Generative Adversarial Examples. Ethical and social aspects of
these applications should make us reflect on the power of this tool, for this reason,
applications of fake image or video detection need to be developed in parallel or
rather in a priority mode. Through the advancement of these technologies will be
more and more difficult for the human eye to distinguish real from fake content,
such that super-human classification task as yet be proved.

Computer vision is not the only application field of GANSs, researchers of Open Al
developed a tool for generating text, as natural language processing application.
Scott Reed, et al. in their 2016 paper entitled “Generative Adversarial Text to
Image Synthesis” also provides an early example of text to image generation of
small objects and scenes including birds, flowers, and more.

Image in-painting allows to reconstruct portion of image that are missing, always
using GANSs.

Others interesting application are super-resolution, 3D object generation and video
prediction.
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Chapter 3

Semantic Segmentation

3.1 Introduction

Semantic segmentation is a key component in many visual understanding systems.
Its main applications are medical image analysis, autonomous vehicles, video
surveillance, authentication systems and robotic perception [20].

Before the Deep Learning age there were different techniques to perform semantic
segmentation, such as Markov random fields [21] or sparsity based methods. Then
with the rise of Artificial and Convolutional Neural Networks, Deep Learning
models outperform previous methods and became standard approach for this kind
of tasks.

Semantic segmentation is used when there is the need of obtaining fine semantic
object information, for example for understand where precisely appear a road sign
on a street. It’s a more complex task than image classification or object detection.
In semantic segmentation the objective is to classify every single pixel of an image
as belonging to a set of specific classes [1]. Deep learning methods for semantic
segmentation can be grouped in different categories, where the most important and
used today are:

o Fully Convolutional Networks
e Encoder-Decoder based models
» Dilated Convolutional model and DeepLab family

The most used loss function that needs to be minimized in order to update the
weights of the network is the multi-class cross entropy loss.
Given a set of images X with corresponding ground truth labels Y of resolution
hxw, and C' classes, we can define the segmentation loss as:
Log(X,Y) == 3 vhwed og(P(X) R, (3.1)

haw ceC
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where P(X) is the prediction of the network for an image of X.

As it has been discussed in the introduction, the main problem of Semantic
segmentation is the collection of ground truth labels. In fact in order to provide
labels for semantic segmentation there is the need that a human, for each class
that need to be considered, has to evidence each pixel of an image that belongs to
that specific class. This process is extremely expensive and in the worst cases may
require a few hours for single picture [3]. This is the current main bottleneck of
semantic segmentation, and in this work we try to overcome this issue by using
domain adaptation techniques exploiting synthetic labeled images.

3.2 Fully Convolutional Networks

Long et al. [1] proposed one of the first deep learning works for semantic image
segmentation, by using a fully convolutional network (FCN).

A fully convolutional network, as the name may let guess (Figure 3.1), is composed
only of convolutional layers, which enables to take an image of arbitrary size and
produce a segmentation map of the same size. The authors modified existing CNN
architecture, an AlexNet [22], to manage non-fixed sized input and output, by
replacing all fully-connected layers with the fully-convolutional layers. As a result,
the model outputs a spatial segmentation map instead of classification scores.

forward /inference

backward /learning

21
Figure 3.1: Fully Convolutional Network model, from [1]
A convolutional layer is composed of several three-dimensional arrays also known
as filters or kernels, of size h x w x d, where h and w are spatial dimensions of
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the filter, and d is the feature or channel dimension.

In order to extract features is performed a convolution between an input feature
map (initially is the input image with size h x w x 3 (rgb) ) and the relative filter.
Parameters of the filters are learned during training by minimizing the pixel-wise
segmentation loss. Stride of convolution, kernel size, number of filters and padding
are hyperparameters of the convolutional layer.

After that convolutional layers extract the features map, are added pooling layers
that have the task of reducing the number of parameters and dimensionality but
maintaining spatial and semantic information. Finally activation functions allow
to provide non linearity inside the network.

On top of the encoder network is appended a decoder module with transposed
convolutional layers to upsample the coarse feature maps into a full-resolution
segmentation map.

In a convolutional network, earlier layers tend to learn low-level concepts while
later layers develop more high-level and defined feature maps. In order to maintain
expressiveness, is typically increased the number of feature maps as we get in deep
trough the network.

A convolutional layer has the task of extracting features from an input image,
but differently from a classification task where we just want to know what object
is present in an image, in semantic segmentation we also want to know where
this object is located. For this reason we need to reconstruct the original image
resolution by performing upsample operations on top of the final feature maps.
However, because the encoder module reduces the resolution of the input by a
factor of 32, the decoder module struggles to produce fine-grained segmentations.
For this reason authors decide to adding skip connections between layers of the
network, in order to provide the necessary details to reconstruct accurate shapes for
segmentation boundaries. A skip connection connects the output of one layer with
the input of an earlier layer. They are able to recover more fine-grain details, lost
due too many convolutions. We can see an example of skip connections in figure 3.2.

32x upsampled 2x upsampled 16x upsampled 2x upsampled 8x upsampled
predicti FCN-32s)  prediction  predicti FCN-16s) prediction predicti

pooll pool2 pool3 pool4 pool5 pool4 pool3

prediction prediction
/74 4

Figure 3.2: Skip connections of FCN network, from [1]
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3.3 DeepLab v2

Authors of DeepLab v2 [9] propose three different solutions in order to further
enhance performance of semantic segmentation models based on convolutional
neural networks.

The network architecture is based on a ResNet101 [23], a deep residual convolutional
neural network that with the help of skip and residual connection, is able to use
more layers and exploits deeper extracted information to enhance performance of
the model.

The first proposed solution introduced is the usage of a new type of convolution
called, ‘atrous convolution’ It highlights convolution with upsampled filters, a
powerful tool in order to obtain dense predictions. Atrous convolutions allow to
explicitly control the resolution of the output feature maps. The field of view of
the filters is enlarged in order to incorporate larger context without increasing the
number of parameters or the amount of computation. It find the best trade-off
between context assimilation (large field-of-view) and accurate localization (small
field-of-view).

The equation of atrous convolution is reported below:

yli] = Z xli + 1 - klwlk]. (3.2)

The rate parameter r corresponds to the stride with which we sample the input
signal. Standard convolution is a special case for rate r = 1, while for r > 1 we
have the atrous convolution. Thanks to a larger receptive field is possible to use
a simpler upsample process with respect to a FCN network, when we need to
reconstruct the prediction resolution.

The second introduced solution is the atrous spatial pyramid pooling (ASPP). It
robustly segment objects at multiple scales, by probing an incoming convolutional
feature layer with filters at multiple sampling rates and effective fields-of-views,
thus allow to capture objects as well as image context at multiple scales.

Finally, the last improvement is the usage of a fully connected Conditional
Random Field (CRF) in order enhance prediction results. This solution improve
the localization of object boundaries by combining methods from DCNNs and
probabilistic graphical models, by exploiting two kernels. The first one depends
on pixel value difference and pixel position difference, which is a kind of bilateral
filter. Bilateral filter has the property of preserving edges. The second kernel only
depends on pixel position difference, which is a Gaussian filter.

The commonly deployed combination of max-pooling and downsampling in DCNNs
achieves invariance but has a toll on localization accuracy that is overcame with a
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Figure 3.3: DeepLab architecture [9]

fully connected Conditional Random Field (CRF). It shows both quantitatively
and qualitatively to improve localization performance.

DeepLab v2 has achieved very competitive results compared with current state-of-
the-art approaches.
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3.4 Metrics

A good model of Semantic Segmentation should be evaluated with different metrics.
Model accuracy is probably the most important, but in real-time applications also
the speed (inference-time) of the model is an important factor. However it is a
more tricky evaluation because it depends on the hardware and on the experiment
conditions.

Another interesting measurement is the memory requirements of the model. In
fact a good model can even obtain a high level of accuracy, but if that requires too
much memory usage, it can hardly be used in a real world scenario, where small
devices with limited hardware are increasingly in demand.

Looking in more detail some accuracy metrics, the most used are:

« Pixel Accuracy (PA):
Defined as the ratio of the pixels correctly classified divided the total number
of pixels

» Mean Pixel Accuracy (MPA)
Per-class mean of pixel accuracy

« Intersection over Union (IoU)
Defined as the area of intersection between the predicted segmentation map
and the original ground truth divided bu the union of both

o Mean-IoU
Currently the most used metrics in semantic segmentation, mean of IoU over
all classes

o Dice coefficient
Defined as twice the intersection of predicted and real label map, divided by
the total number of pixels in both images.

3.5 Datasets

Looking in more detail the most used dataset for semantic segmentation, the
majority of them are composed of set of 2D images.

In this work the focus is on autonomous driving, for this reason we will see in
more detail such datasets, but it is good to mention also other datasets that are
commonly used in order to measure performance of Semantic segmentation models.
These datasets are PASCAL Visual Object Classes (VOC) [24] and Microsoft
Common Objects in Context (MS COCO) [25]. They are some of the most used
datasets in computer vision, not just for semantic segmentation but also for object
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detection and classification.

Let’s see now in more detail the most used dataset for semantic segmentation
oriented to autonomous driving research. The category has been divided in real or
synthetic datasets.

3.5.1 Real datasets

Considering real datasets for semantic segmentation and autonomous driving, the
most used in research is Cityscapes [3].

Cityscapes is a dataset that contains diverse set of stereo video sequences recorded
in different cities, mainly in Germany.

It’s composed of 5000 images, divided in 3000 for training, 500 for validation and
1500 for testing. Every image it’s high quality pixel annotated with a set of 30
classes. The labeling process required 1.5 hours in average for person for single
image.

This is also the dataset that has been used during my different experiments in this
work.

Others dataset used by researchers are KITTY [26], dataset of 400 images released
in 2012, CamVid [27] and Mapillary.

In order to not introduce bias in the models, there is the needs to obtain more
sparse and diverse datasets. Cityscapes it’s a good dataset because contains images
of different cities and not a single one, however the majority of them are taken in
cloudy-day environment. It would be more useful if there were multiple images
containing different light conditions, for example also night images.

In my opinion, there is the needs to obtain a community image database for
autonomous driving, with queries for light and weather conditions, geographical
location, images resolution. Although the human segmentation process in order to
obtain such labeled data it’s extremely expensive, the benefits that would come
from an international shared job could be incredible.

An idea that came to my mind, is the possibility of using Google Street View images,
removing the need of moving a sensors equipped car around different cities. Using
a good scraping and pre-processing process could be possible to obtain different
street images around the world relatively for free, requiring just a labeling process.
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(a) Image 1 (b) Label 1

(c) Image 2 (d) Label 2

Figure 3.4: Samples of Cityscapes dataset with corresponding semantic mask
labels. [3]

3.5.2 Synthetic datasets

One of the biggest problem of real dataset is that in order to collect big and diverse
data there is the need to get psychically a car, add some cameras on it, and drive
the car in the streets in order to obtain some data. Moreover, the biggest problem
of such approach is that such collected data needs to be fine annotated pixel per
pixel. This process is very expensive for companies because it requires hours for
every single image, and it’s the current bottleneck of Semantic segmentation.
One possible solution could be the usage of synthetic data from simulators, where
from such engine could be easily possible to change light and environment of the
scene. The biggest advantage of synthetic data is that there is no more the needs
to segment by hand the images, because the corresponding ground truth of an
image will be created automatically by the system due the fact that the rendering
engine needs to know where to draw each object on the scene.

However using virtual-world data to generalize on real world perception tasks it’s
not an easy task, due to the big difference that can exist between the two domains.
Domain adaptation that we’ll see in more detail in the next chapter, try to solve
this domain shift problem.

In literature there are present different public available datasets that are used for
this kind of tasks.

The most used synthetic dataset for semantic segmentation in urban scene is the
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one proposed in [6]. In such dataset about 25000 images with corresponding labels

has been collected from the famous realistic open-world video game Grand Theft

Auto V, video game set in a virtual city of Los Angeles.

The class labels of the dataset are compatible with CamVid and Cityscapes real

datasets.

Pixel-wise accurate labels are collected with a technique known as detouring, where

a wrapper is injected between the game and the operating system allowing to

record, modify and reproduce rendering commands, so without the need of trace

boundaries of the classes by hand.

In the proposed paper, authors show that a model trained with the game data

and just 1/3 of CamVid dataset outperform models trained on complete CamVid

training set.

This dataset it’s also the one used in my experiments of Domain Adaptation.
Another famous dataset used is SYNTHIA [28], which consists of a collection

Figure 3.5: Samples of GTA 5 datasets [6]

of photo-realistic frames rendered from a virtual city, and it comes with precise
pixel-level semantic annotations for 13 different classes: misc, sky, building, road,
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sidewalk, fence, vegetation, etc.

Other synthetic dataset used, especially in the industrial sector, are those based
on virtual simulators, similar to those used for videogame environment generation.
The majority of these are based on Unreal Engine, an advanced framework and
platform used in order to develop 3D dynamic scene environment.

CARLA [29] is a famous open-source simulator based on Unreal from which is
possible to collect realistic synthetic data that can be then used in order to train
semantic segmentation networks.

The realism of simulators is progressively growing but we are still far from the
ability to create images indistinguishable from real world. The real world is to much
complex that with today knowledge and techniques cannot be totally simulated.
For these reason, today, some techniques that allow a generalization and the ability
to transfer knowledge from the virtual world data to the real world are required.
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Chapter 4

Domain Adaptation

4.1 Introduction

In order to take advantage of synthetic data for training a model that will then
used in a real scenario, there is the need to make the model able to generalize on
real images. These types of problems are called Domain Adaptation problems.
Domain Adaptation (DA) is a sub-discipline of machine learning which deals in
a scenario where a model trained on a source domain, is used in a different but
related target domain. From Figure 4.1 it’s possible to see a better understanding

Source Target
Domain Domain
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FAY &f_\' _,,_,--""";‘ D «— Misclassify
A Ty A .
Source Domain ____---""" O O » : 1o
Classifier -~ o] O ;:'::tm :
o O
Y
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a& &{_\ﬁ'_g-
- )
Cross-Domain ety O O OO
Classifier OO o

Figure 4.1: Example of domain adaptation [2]

31



4 — Domain Adaptation

of what does it mean Domain Adaptation.

Given for example a binary classification problem and two distributions representing
respectively source and target domains, the objective function is to obtain a cross
domain classifier that fits well for both domains.

The source domain classifier fits well for the source domain, the two classes are well
separated, but when it is applied to the target domain some samples are misclassi-
fied, due to domain shift. This means that the distributions of the two domains
are not aligned, there are some difference in the samples of the two domains, that
cause inability for the source classifier to generalize on the target domain.

The goal of Domain Adaptation is to learn a Cross-Domain classifier that is able
to classify well in both source and target domains.

From a mathematical point of view, using notation of [4], a domain D consists

of a feature space X and a marginal probability distribution P(X), where X =
{z1,...,x,} € X. Given a specific domain D = {X, P(X)}, a task T consists of a
feature space ) and an objective predictive function f(-), which from a probabilistic
perspective can also be seen as a conditional probability distribution P(Y|X) .
Normally the learning of P(Y]X) is achieved in a supervised manner from the
labeled data {z;,y;}, where x; € X and y; € ).
Assuming two domains: the source domain D* = {X°, P(X)°}, is used as training
set with labeled data, and the target domain D' = {X*, P(X)'} which may be
used with or without labels can be used both for training and test set. Each
domain is together with its task: the former is 7° = {Y*, P(Y*|X*)}, and the
latter is 7¢ = {Y*, P(Y*|X")}. Similarly, P(Y*|X*®) can be learned from the source
labeled data {zf,ys}, while P(Y*|X") can be learned from labeled target data and
unlabeled data.

4.1.1 Settings of Domain Adaptation

Domain adaptation may be applied with different settings and scenarios, and it
can be further divided in different categories [4].

For the case of traditional machine learning, the domains are the same D* = D!
and likewise the tasks 7° = T*.

Domain Adaptation is based on the assumption that the tasks are the same, i.e.,
T%=T" and the differences are only caused by domain divergence, D* #+ D"

Based on the different domain divergences that may exist between domains, DA
can be split in two main categories: homogeneous and heterogeneous DA.
In homogeneous DA the feature spaces and their dimensionality are the same,(X* =
X1, (d° = d'), and the difference are only on the data distributions (P(X)* #
P(X)").
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In heterogeneous DA instead, the feature spaces and their dimensionality may
change between source and target domains, (X # X*), (d° #+ d*).

Based on the amount of target label available we can further categorize Domain
Adaptation in:

o Supervised DA, target labels available for training
o Semi-supervised DA, both labeled and unlabeled target data
« Unsupervised DA, no target labels available for training

Domain adaptation may also be applied in One-Step, when source and target
domains are directly related, or through Multi-step DA, using multiple processes
and crossing intermediate domains in order to achieve the goal.

We can see a representative scheme of the different settings in 4.2

One-step
Domain adaptation

Domain
adaptation

Multi-step

Domain adaptation

Figure 4.2: Overview of different settings of domain adaptation [4]

Finally there are three main techniques for one-step Domain Adaptation:
o Discrepancy-based

o Adversarial-based

» Reconstruction-based

Discrepancy-based DA assumes that fine-tuning the deep network model with
labeled or unlabeled data can diminish the shift between the domains. It’s mainly
based on statistic criterion, distribution shift can be reduced through different
techniques, the most used are: maximum mean discrepancy (MMD), correlation
alignment (CORAL), Kullback-Leibler (KL) divergence. These techniques will not
be studied in detail as they are outside the scope of this work.

Adversarial-based DA approach instead is based on the Adversarial loss of the
GAN [5]. A domain discriminator tries to classify whether a data point is from the
source or target domain, while the generator tries to fool the discriminator giving
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it in input samples of the target domain as source ones.

Lastly Reconstruction-based DA assumes that a data reconstruction of source
or target domain may improve performance of domain adaptation. Fall in this
categories applications of image-to-image translation, whose become famous in the
last years thanks to Generative Adversarial Networks.

4.2 Image to Image Translation

The most interesting application of Reconstruction-based Domain Adaptation is
Image to Image translation. A model tries to create a shared representation between
source and target domain, mapping from a domain to another.

In this section we refer on applications based only on Generative Adversarial
Networks, as they’re the main focus of this work, however it is good to mention
that even others generative methods, such as stacked auto-encoders, or variational
auto-encoders, can perform the same task, still with lower performance than GAN'’s.

4.2.1 Pix2Pix

Pix2Pix was introduced in 2016 by researchers at Berkeley University [11], it’s the
first work that produces relevant results using conditional adversarial networks as
general-purpose solution to image-to-image translation problem.

Differently from traditional GAN that maps from a random noise vector z to an
output image y, G : z — y, conditional GANs learn a mapping from an observed
image = and random noise vector z, to y, G : {z,z} — y. In order to learn a
mapping between an input image and an output image it uses a training set of
aligned images pairs between the two domains.

The generator is trained in order to fool the discriminator producing images that
are indistinguishable from the real ones. The discriminator instead, is trained in
order to distinguish if input images are real or fake.

Therefore, it is possible to express the objective function of a conditional GAN as:

ECGAN(GJ D) :Em,y[log D(l’, y)]+
where G tries to minimize this loss against an adversarial D that tries to maximize
it, i.e. G* = argming maxp L.gan(G, D). Authors propose also the use of a L1

distance loss for the generator, that provides better quality images, generating less
blurring images.

Lia(G) = By :[lly = G, )|, (4.2)
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The final objective fun