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Abstract

The work is focused on the elastic properties of soft tissues, as the brain. Agar
gels are tested through a rheometer: in particular cylindrical samples of different
diameters undergo a torsion test, obtaining torque and normal force required to
twist the samples at constant rotation velocity. These constitutive parameters are
useful to determine the constitutive model for better fitting experimental data.
The gels are modelled with Mooney-Rivlin equations, highlighting the presence of
a positive Poynting effect, i.e. they expands in the direction perpendicular to the
plane of twisting. Once the Mooney-Rivlin parameters (C1 and C2) and the shear
modulus µ are figured out, they are used to implement a Finite Element simulation
in Abaqus and then experimental, theoretical and numerical data are compared.

The final goal of this research is the development of a FE model able to analyse
more complex deformations with high accuracy and improve the knowledge about
the Traumatic Brain Injury, an underestimated pathology affecting a large part of
the population.
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Introduction

The purpose of the mechanical study of biological tissues, such as the brain,
is the development of Finite Element models, able to predict the behaviour of
these tissues in different conditions, far more complicated than laboratory testing
conditions.

To accomplish this aim, the mechanical properties are investigated experi-
mentally and constitutive models are ideated in order to express the stresses
experienced by the tissues. These models are then implemented in the numerical
simulations. For example, FE models regarding the brain might simulate the
impact of the head and quantify the entity of the damage, helping in prevention
and treatment. In particular, most of FE simulations for human brain contain a
detailed geometrical description of anatomical components, but the mechanical
behaviour of the tissue is not accurately described [1].

In this study, soft tissues are simulated by agar gels and the mechanical proper-
ties are explored with torsion testing on cylindrical samples of various radius. The
goal is the realization of a robust testing protocol for torsion of brain tissue.

The experimental part of this study took place in the National University of
Ireland, Galway (NUI Galway).

A brief description of the next chapters is provided. Chapter 1 is about the Trau-
matic Brain Injury (TBI), a common pathology often underestimated. Researches
on the brain tissue might be very helpful for TBI.

In chapter 2, the main concepts of non-linear elasticity are shown, focusing on
the constitutive equations for the stresses occurring during large deformations.

Chapter 3 describes the testing methods available for soft tissues. After this
overview, the testing technique adopted is extensively explained.

Then, the obtained results are grouped in chapter 4 and chapter 5. In particular,
chapter 5 includes the theory of torsion and the estimation of mechanical param-
eters. In the final part of the chapter, a FE model in Abaqus is illustrated, along
with the comparison of experimental and numerical results.

The last chapter contains the statistical analysis of the results.
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Chapter 1

Traumatic Brain Injury

The investigation of brain mechanical properties is the key for better understand-
ing a really common type of head injury, the Traumatic Brain Injury (TBI). Ac-
cessing strain and strain rates occurring in the brain during impacts allows the
prediction of the injury relevance and gives the possibility to develop Finite Ele-
ment simulations in order to help studying the phenomenon [2].

During an impact, the brain matter undergoes compression, tension and shear
[2]. It is proved that the brain bulk modulus is much bigger than the shear
modulus, up to 5-6 orders of magnitude: the first is in the order of GPa [3], while
the second is in the order of kPa [4][5]. The consequence is that human brain is
more sensitive to shear deformations.

Figure 1.1 – Impact direction, kinematics, skull stress (maximum Von Mises stress for
skull bone) and brain strain (maximum Green-Lagrange strain) for radial (upper) and
oblique (lower) impact at same collision speed of 6.7 m/s [6].
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1 – Traumatic Brain Injury

As demonstrated by Kleiven [7], oblique impacts are more dangerous than
radial impacts, talking about Traumatic Brain Injuries: an oblique collision gen-
erates both a linear acceleration and a rotational acceleration, instead of the only
linear acceleration produced by a pure radial. A rotational kinematics will likely
produce a larger shear strain and, therefore, a more severe damage to the brain
tissue.

This is clearly visible in figure 1.1: strain in the brain tissue during an oblique
impact is much larger than in a radial one, at same collision speed [6]. These levels
of strain involve different types of injuries, starting with milder pathologies such
as contusions and concussions, up to Diffuse Axonal Injury (DAI) and Subdural
Haematoma (SDH). In particular the last two forms of injury are the most severe
and can be considered the main cause of death in TBI accidents [6].

On the other hand, figure 1.1 highlights a considerable stress in the skull bone
occurring in a radial impact. The main risk in this case is skull fracture [6].

Before going into detail with the TBI, a brief overview on the anatomy of the
brain is provided.

1.1 Notions on the brain

The central nervous system (CNS) is composed of brain and spinal cord. The CNS
tissue is organized in grey and white matter: the first is made of cell bodies,
dendrites and axon terminals, instead the white matter contains myelin axons,
mainly. Other types of cells in the CNS are the glial cells [8].

The CNS is a soft tissue and, consequently, is really delicate. For these reason,
it is protected by the cranium, the spinal column, as well as by the meninges
(dura mater, arachnoid and pia mater) and by the blood brain barrier. Besides, the
cerebrospinal fluid further shields the tissues, absorbing the impacts [8].

The brain, specifically, consists of three main parts (figure 1.2): the forebrain, or
prosencephalon, the encephalic trunk and the cerebellum. The forebrain includes
the cerebral cortex, responsible for some of the most advanced functions of the
brain, such as the control of the motion, the perception, the language, the emotions,
the learning mechanisms and the memory. The forebrain also contains thalamus
and hypothalamus, that plays an important role in the homeostasis process [8].
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1.2 – Traumatic Brain Injury

Figure 1.2 – Schematic representation of the brain anatomy [9].

1.2 Traumatic Brain Injury

In the current section, general information about Traumatic Brain Injuries is pro-
vided, focusing on the societal impact.

According to Oregon Healthcare [10], "a head injury is a broad term that
describes a vast array of injuries that occur to the scalp, skull, brain and underlying
tissue and blood vessels in the head; head injuries are also commonly referred
to as brain injury, or traumatic brain injury (TBI), depending on the extent of the
head trauma".

Approaching TBI, the first issue faced is the definition of the injury: different au-
thors adopt different ways of describing this pathology, triggering confusion and
preventing a clear understanding of the epidemiology [10]. Generally speaking,
TBI is a form of injury occurring to the brain (not related to degenerative or congen-
ital problems) and caused by an external loading, heading to non-physiological,
cognitive or behavioural dysfunction [11]. The "Centers for Disease Control and
Prevention" (CDC) defines TBI as “an occurrence of injury to the head that is docu-
mented in a medical record with one of the following conditions attributed to head
injury: (1) observed or self-reported decreased level of consciousness, (2) amnesia,
(3) skull fracture, or (4) objective neurological or neuropsychological abnormality
or diagnosed intracranial lesion” [12]. Another definition of TBI comes from the
American "Department of Veterans Affairs and Department of Defense" (VA/DoD)
[13] which states that TBI is “a traumatically induced structural injury and/or
physiological disruption of brain function as a result of an external force that is
indicated by new onset or worsening of at least one of the following clinical signs,
immediately following the event:

5



1 – Traumatic Brain Injury

- any period of loss of or decreased level of consciousness;

- any loss of memory for events immediately before or after the injury;

- any alteration in mental state at the time of the injury (confusion, disorienta-
tion, slowed thinking, etc.);

- neurological deficits (weakness, loss of balance, change in vision, praxis,
paresis/plegia, sensory loss, aphasia, etc.) that may or may not be transient;

- intracranial lesion."

The abundance of definitions is due to a non-universal method to assess TBI
because every criterion is based on the operator or examiner opinion [14].

1.2.1 Classification and symptoms

TBI involves physical, emotional and cognitive impairments, with possible loss
of consciousness (LOC) [14]. Typical symptoms, as indicated by the "Ameri-
can Academy of Neurology" (AAN) [15], are amnesia, behaviour or personality
changes, delayed verbal and motor responses, disequilibrium, disorientation,
incoherent speech and vacant stare. Nausea, vomiting, headache and sleeping
disorders are also common signs of head trauma. Duration of symptoms varies
among subjects and depending on the severity of the trauma, ranging from min-
utes to several months [14].

Based on the duration and on the entity of symptoms, numerous classification
scales have been ideated, trying to reach a uniformity of evaluation. Moreover
a correct classification of the injury allows the prediction of short and long-term
consequences [11].

The most used method to determine TBI severity is the "Glasgow Coma Scale"
(GCS): it tests the consciousness of the subject, by giving eye opening, verbal-
ization and motor response stimuli and marking his/her responsiveness with a
number from 3 (the patient does not produce an answer) to 15 (the subject is fully
responsive) [11]. Usually GCS values from 13 to 15 correspond to mild TBI, from 9
to 12 to moderate TBI and lower values represent a subject with severe TBI.

Another common classification method is based on "Post-traumatic amnesia"
(PTA), a state in which the person is conscious, but presents confusion, disorienta-
tion and poor attention [11]. One of the first classification system based on this
concept has been proposed by Russell and Smith in 1961 [16]: the patient suffers a
mild injury if PTA lasts 1 hour or less, moderate injury if PTA ranges from 1 to 24
hours and severe injury up to 7 days (Table 1.1).

6



1.2 – Traumatic Brain Injury

Mild Moderate Severe Very severe
Glasgow coma scale 13-15 9-12 6-8 3-5

Russell posttraumatic amnesia <1 h 1–24 h 1–7 days >7 days

Table 1.1 – Injury classifiers.

Presented indicators show some defects: for instance, GCS is an accurate
predictor of mortality and morbidity, but tends to overestimate the seriousness
of the injury if evaluated too close to the impact, in aphasic patients, subjects
who took alcohol or drugs or simply with facial impairments. On the other hand,
Russell PTA is reliable as long-term predictor (e.g. return to work), but not usable
immediately after the accident because the subject needs to exit the confusion
state. Moreover, these classifiers are particularly useful when facing moderate and
severe TBIs, but have some problems with mild TBI because of the great mutability
of phenomenon expressions. Therefore, subjects with the same score, derived from
GCS or PTA, might result in different long-term conditions [11].

A common term related to TBI is concussion: as established by the "Centers for
Disease Control and Prevention" (CDC) and by the "World Health Organization"
(WHO), concussion can be intended as a synonym of mild TBI [14]. The most
respected and cited definition of mild TBI has been formulated by the "American
Congress of Rehabilitation Medicine" (ACRM) in 1993 [17] and states that "a
patient with mild traumatic brain injury is a person who has had a traumatically
induced physiological disruption of brain function, as manifested by at least one
of the following: (1) any period of loss of consciousness, (2) any loss of memory
for events immediately before or after the accident, (3) any alteration in mental
state at the time of the accident (e.g. feeling dazed, disoriented, or confused), and
(4) focal neurological deficit(s) that may or may not be transient; but where the
severity of the injury does not exceed the following:

- loss of consciousness of approximately 30 minutes or less;

- after 30 minutes, an initial Glasgow Coma Scale (GCS) of 13-15;

- post-traumatic amnesia (PTA) not greater than 24 hours."

Consequently, a concussion might be thought as a neurocognitive or be-
havioural impairment caused by biomechanical forces transmitted to the brain,
with usually no structural changes visible from the outside [18]. From a biochemi-
cal point of view, these forces damage cellular membranes, promoting transient
membrane faults and ionic flux. This is the starting point of a metabolic cascade
that takes to a energy shortage and cerebral blood flow decrease, resulting in
metabolic worsening [18].

There is still a lack of knowledge about mild TBI, with lots of researchers
dealing with it in order to find thresholds suitable for most people [18].
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1 – Traumatic Brain Injury

Another type of classification can be made based on the lesion entity. Then,
the injury might be focal or diffuse [19]. Among focal lesions, primary vascular
injuries are the most important and consist in bleeding within the brain or on the
surface of the brain. Vascular injuries belong to moderate and severe category[19];
Acute Subdural Haematoma (SDH) is an example of this type of injury and is
one of the most severe TBI, responsible for a large part of deaths [6]. The main
process provoking SDH is the tearing of veins [6], and Gennarelli found that this
was produced by angular acceleration of the head and by relative motion between
skull and brain [20].

Diffuse lesions are not contained in a limited region of the brain, but in a larger
part of the organ. Among these lesions, the most common is the Diffuse Axonal
Injury (DAI), a severe TBI that is responsible, together with SDH, for more deaths
than any other TBI type [6]. The mechanism accountable for DAI is a massive
rotational acceleration of the brain, causing shear, compression and tensile strain
of the tissue. When the human brain undergoes a rapid rotation, the brain tissue
looses its elastic properties, becoming more delicate and susceptible to "break".
The axonal cytoskeleton suffers a structural harm, resulting in a disruption of the
axonal network and, therefore, in an extended injury. Because of the viscoelastic
response of the axons, the axonal injury is dependent on both the magnitude
of strain and the strain rate during a trauma [21]. Several groups investigated
threshold values for strain and strain rate, finding 10-50% of shear strain and 10-50
Hz as strain rate [2].

1.2.2 Causes, incidence on population and socio-economic im-
pact

According to a statistical survey conducted by the "Centers for Disease Control
and Prevention" (CDC) from 2002 to 2006 [22], TBI causes in the United States are
divided as follows (combining Emergency Department visits, hospitalizations and
deaths):

- falls (35.2%);

- motor vehicle-related injuries (17.3%);

- struck by/against events, which include colliding with a moving or station-
ary object (16.5%);

- assaults (10%);

- other or unknown causes (21%).
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1.2 – Traumatic Brain Injury

Figure 1.3 – Estimated percentage of TBI causes in USA from 2002 to 2006 [22].

Figure 1.4 clearly shows that falls are more common in children and elderly
people over 65, while motor vehicle accidents usually involve late adolescents or
young adults from 15 to 30.

Figure 1.4 – Annual rate of TBI related with age groups [23].

More generally, children under 4 and adolescents from 15 to 19 are the most
affected categories and are responsible for most Emergency Department visits,
while adults over 75 have the highest rates of hospitalization and death [22]. In
the same period, mild TBIs result in 75% of total cases, moderate TBIs in 22% and
severe TBIs in 3% [19].
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1 – Traumatic Brain Injury

The same CDC survey cited above [22] estimates 1,691,481 people experiencing
a form of TBI annually in the United States. This total is composed of: 1,364,797
subjects (approximately 80%) visiting Emergency Department, 275,146 hospi-
talizations and 51,538 deaths, contributing to 30.5% of all injury-related deaths.
Emergency Department visits and hospitalizations grew over the years, but this
might be due to the population increasing and to better knowledge about the in-
jury. On the other hand, deaths slightly fell, probably because of the improvement
in safety measures and treatments [11].

Another issue is the birth of new disabilities related to TBI: during the year
2003 in the Unites States, Selassie et al. conducted a research about long-term
disability among hospitalized TBI survivors and found out that 124,626 out of
288,009 subjects (43.3%) developed a form of disability [24]. A research study by
Zaloshnja et al. showed that, in 2005, 3.17 million people or 1.1% of the United
States civilian population suffered from long-term disability due to TBIs [25]. A
CDC survey stated that, in 1996, individuals with disability were even 5.3 million
[26].

Moreover, the numbers of TBI cases is certainly underestimated, mainly be-
cause of injured people who do not ask for medical care or have been treated in
outpatient settings, without ED visits, so that cannot be included in statistical
surveys [14]. This is common in sport accidents [11].

These huge numbers are responsible for the economic and societal impact of
TBI: medical costs, lost productivity and loss of quality life amount to 60 billion
dollars annually in the USA according to a study for the year 2000, or 221 billion if
compared with 2009 dollars [11]. It has been estimated that with a 25% decrease
of TBI related accidents, 25 billion dollars would be saved [6].

But the TBI burden is not over: consequences on the individual life are
widespread. Usually the injured subject, who face long-term disability, has prob-
lems with reintegration in social life, such as school, job or community activities.
Unemployment could also be challenging: researchers stated that one out of five
hospitalized TBI survivors has not returned to work after one year from the injury
[11]. Their interpersonal relationships might be influenced, especially with young
adults, tracing the path for social isolation [11].

Research on head trauma is essential in order to improve prevention systems
and consciousness of the topic. Really active fields are sports and vehicular safety.
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Chapter 2

Nonlinear Elasticity

The birth of Nonlinear Elasticity corresponds to the need of modelling the mechan-
ical behaviour of rubber undergoing large deformations. This discipline develops
in 1950s thanks to the work of Ronald Rivlin. From 1980s these concepts are ap-
plied to the modelling of biological soft tissues such as skin, arterial wall, cardiac
muscle, brain, tumours or tendons. The aim is to provide accurate simulations for
applications in mechanical engineering and bio-engineering.

Elasticity is easy to understand: if you apply external forces to an elastic body,
it deforms immediately. When the force is removed, it returns to original size and
shape instantaneously.

Elasticity can be considered an idealization of reality: it is suitable for small
deformations of many materials, such as metals or glass, but cannot model lots of
real-world applications, including several biomaterials and real tissues used in
bioengineering and biomedicine, as they undergo large deformations [27].

Figure 2.1 – Typical stress-strain response
curve in tensile tests of a metal [27].

Figure 2.2 – Typical stress-strain response
curve in tensile tests of a soft tissue [27].

11



2 – Nonlinear Elasticity

Figure 2.3 – Typical stress-strain response curve in tensile tests of a rubber [27].

Linear elasticity involves the mechanics of solids for which the stress σ is pro-
portional to the strain ε in a certain type of test.

Figure 2.1 shows a typical response curve for a metal. The point P is the limit
of proportionality and Y is the yield point, that is beyond Y the body undergoes
plastic deformation, not returning to its original shape and state once the load is
removed. Usually, P corresponds to a strain in the 0.01%–0.1% range. Therefore,
the linear theory can be employed for the stress σ with respect to the strain ε. This
is the foundation of the infinitesimal, or classical, theory of elasticity [27].

Figure 2.2 shows a typical tensile response for a biological soft tissue. The
point Y corresponds to a strain region of 10%–100%. The P–Y part of the curve
corresponds to the “strain-stiffening” effect. The regime O–P is larger than for
metals, reaching 5% strain. In this case, linearisation in terms of ε is not appropriate,
as the strains are finite [27].

Figure 2.3 shows a typical tensile response for rubber-like materials. Rubbers
and elastomers extent up to 100%–500% of their initial length. Linear elasticity can
be used only for the very first part of the curve [27].

The initial slope of the tensile tests plots gives a measure of the initial stiffness
of a given solid. For instance, the slope for steel is at least 1000 times steeper than
the initial slope for rubber, and 100 times steeper than the initial slope for tendons
(one of the stiffest biological soft tissue, made of more than 80% collagen in mass).
This is why rubbers and tissues are often called “soft” solids [27].

These different behaviours can be explained by different microscopic structures.
Thus, a typical metal has an atomic lattice structure and only short-range move-
ments are allowed. Rubber-like materials are made up of long chain molecules,
which are spread randomly and can move quite freely. Biological soft tissues are
essentially made of an elastin matrix with embedded collagen fibres. In particular,
collagen is three orders of magnitude stiffer than elastin and the contribution of
these fibres is felt in the strain-stiffening part of the curve [28].
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2.1 – Kinematics

The following sections will focus on introducing the main concepts of Contin-
uum Mechanics, necessary for modelling the behaviour of the brain under large
deformations.

2.1 Kinematics

2.1.1 Bodies, configurations and motions

A body B is a continuous set whose elements can be put into one-to-one correspon-
dence with points of a region B in a three-dimensional Euclidean point space. The
elements of B are called particles (or material points) and B is called a configuration
of B.

As the body moves, the configuration changes with time. Let t ∈ I ⊂ R denote
time, where I is an interval in R. If, with each t ∈ I, a unique configuration Bt of
B (referred as current configuration) is associated, then the family of configurations
{Bt : t ∈ I} is called a motion of B. It is assumed that as B moves continuously then
Bt changes continuously.

It is convenient to identify a reference configuration, Br, which is an arbitrarily
chosen fixed configuration. Then, any particle P of the body B may be labelled by
its position vector X in Br relative to some origin O. Let x be the position vector of
P in the configuration Bt at time t relative to an origin o (which need not coincide
with O), as shown in figure 2.4.

Figure 2.4 – Reference configuration Br and current configuration Bt with position
vectors X and x of a material point P [29].

The body B occupies the configuration Bt at time t. Besides, Br does not require
to be a configuration actually occupied by B during the motion, but it is often
chosen to be the configuration occupied by B at the initial time.
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2 – Nonlinear Elasticity

Since Br and Bt are configurations of B, there exists a bijection mapping χ : Br
→ Bt such that (as depicted in figure 2.4)

x = χ(X) for all X ∈ Br,

X = χ−1(x) for all x ∈ Bt.
(2.1)

The mapping χ is called the deformation of the body from Br to Bt. Since Bt
depends on t, the correct formulation is:

x = χ(X , t) for all X ∈ Br, t ∈ I. (2.2)

For each particle P (with label X) this describes the motion of P with t as
parameter, and hence the motion of the whole body B.

In the case of Br, the position vector X and time t serve as independent vari-
ables, and the fields are then said to be defined in terms of the referential or material
description. Alternatively, in the case of Bt, x and t are used and the description is
said to be spatial. The terminologies Lagrangian and Eulerian descriptions are also
used in respect of Br and Bt.

Rectangular Cartesian coordinate systems with basis vectors { Ei } and { ei } are
chosen for Br and Bt respectively, with material coordinates Xi and spatial coordinates
xi (i = 1, 2, 3). Thus, relative to the origins O and o respectively, we have:

X = XiEi, x = xiei. (2.3)

2.1.2 Deformation Gradient

Let Grad and grad denote the gradient operator in the reference configuration
(with respect to X) and in the current configuration (with respect to x), respectively.

Then, the deformation gradient tensor F is defined as:

F(X , t) = Gradx ≡ Gradχ(X , t). (2.4)

And reminding the definition of gradient of a vector, it is possible to write with
respect to the chosen basis vector

Fij =
∂xi

∂Xj
, (2.5)

with xi = χi(X , t).
From (2.5), results

dx = FdX , (2.6)

dX = F−1dx. (2.7)

14



2.1 – Kinematics

Equation (2.7) is true if det F /= 0, so that F has an inverse.
Using the "polar decomposition theorem" for the deformation gradient F, the

following tensor measures of deformation can be obtained:

C = FTF = U2, B = FFT = V2, (2.8)

with U and V positive definite, symmetric tensors called right and left stretch
tensors. C and B are known as the right and left Cauchy-Green deformation tensors
respectively.

2.1.3 Deformation of line, area and volume elements

Equation (2.6) describes how infinitesimal line elements dX of material at X trans-
form under the deformation into dx (which consists of the same material as dX) at
x. It shows that locally, line elements transform linearly since F depends on X (and
not on dX). Thus, at each X, F is a linear mapping (i.e. a second-order tensor).

Figure 2.5 – Infinitesimal line elements at X on the surface Sr in the reference configu-
ration Br and their images at x on the deformed surface St in the current configuration
Bt.

The change in volume is defined as follows:

dv = JdV, where J = detF. (2.9)

Equation (2.9) shows that J is a measure of the change in volume under the
deformation. If the deformation is such that there is no change in volume then the
deformation is said to be isochoric. In that case:

J = detF = 1. (2.10)

Equation (2.10) is a good approximation in many cases and is adopted as an
idealization. An ideal material for which (2.10) holds for all deformations is called
an incompressible material.
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2 – Nonlinear Elasticity

Regarding surface elements, equation (2.11), known as Nanson’s formula,
explains how elements of surface area deform:

nda = JF−T NdA, (2.11)

with dA and da surface area elements on Sr and St respectively (see figure 2.5),
and N and n unit normals at X and x respectively.

2.1.4 Measures of strain

Strain is measured locally by changes in the lengths of line elements. In other
words, "strain measures the changes in distance of two particles, one at position X,
the other at position X + dX, in the reference configuration, mapped into positions
x and x + dx in the current configuration" [27].

Several definitions of strain exist, including:

• Green strain tensor E, or Lagrangian strain tensor, measuring the change in the
squared length of a line element

E =
1
2
(FTF − I) =

1
2
(C − I) =

1
2
(U2 − I); (2.12)

• Eulerian strain tensor e, the equivalent of E with respect to the spatial line
elements

e =
1
2
(I − (F−1)TF−1) =

1
2
(I − B−1) =

1
2
(I − V−2). (2.13)

2.2 Balance laws and governing equations of motion

The mechanics of continuous media is characterised by equations which represent
the balance of mass, linear momentum, angular momentum and energy in a
moving body. These balance equations concern all bodies, solid or fluid, and each
produces field equations (differential equations for scalar, vector and tensor fields).

2.2.1 Mass conservation

Let Rt be an arbitrary material region in the current configuration Bt. Its mass can
be written as

m =
∫

Rt
ρdv. (2.14)
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2.2 – Balance laws and governing equations of motion

where ρ is the (current) mass density per unit volume. As Rt moves it always consists
of the same material, so its mass does not change and, after some calculation, the
conservation of mass equation (or continuity equation) is found:

ρ̇ + ρdivv = 0. (2.15)

Specifically, divv, where v is the deformation velocity, measures the rate at which
volume changes during the motion.

2.2.2 Balance of linear and angular momentum

Starting from the Euler’s laws of motion
dM
dt

= F,
dH
dt

= G, (2.16)

(where M and H are the linear and angular momentum respectively and F and G are
the total forces and moments respectively), it is possible to obtain the formulation
for the linear and angular momentum balance.

More precisely, the total forces acting on a body are represented as the sum of
body and contact forces:

• body forces can be expressed as ∫
Rt

ρbdv, (2.17)

where b are the body forces per unit mass;

• contact forces acting on the boundary ∂Rt of Rt can be expressed as∫
∂Rt

t(n)da, (2.18)

where t(n) is referred as the stress vector and n is the unit outward normal to
S (as depicted in figure 2.6).

Figure 2.6 – Stress vector t(n) at a point of the surface S where the unit normal is n.
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2 – Nonlinear Elasticity

On the other hand, total moments acting on a body can be described as the
sum of body and contact moments:

• body moments can be expressed as∫
Rt
[x × (ρb) + ρc]dv, (2.19)

where c are the body moments per unit mass;

• contact, or surface, moments acting on the boundary ∂Rt of Rt can be ex-
pressed as ∫

∂Rt
x × t(n)da. (2.20)

Now, setting body torques to zero (i.e. c = 0), linear and angular momentum
balance, respectively, are obtained:

dM
dt

=
d
dt

∫
Rt

ρvdv =
∫

Rt
ρbdv +

∫
∂Rt

t(n)da, (2.21)

dH
dt

=
d
dt

∫
Rt

ρx × vdv =
∫

Rt
ρx × bdv +

∫
∂Rt

x × t(n)da. (2.22)

2.2.3 Cauchy’s theorem

"Let (t(n), b) be a system of contact and body forces for B during a motion. A
necessary and sufficient condition for the momentum balance equations (2.21) and
(2.22) to be satisfied is that there exists a second-order tensor σ, called the Cauchy
stress tensor" [27], such that

(i) for each unit vector n,
t(n) = σTn, (2.23)

where σ is independent of n,

(ii)
σT = σ, (2.24)

(iii) σ satisfies the equation of motion

divσ + ρb = ρa. (2.25)

where a ≡ v̇ is the acceleration.
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2.3 – Constitutive equations

The proof of Cauchy’s theorem is omitted. Main consequences are: linearity of
the surface traction t(n) is linear in n (2.23); the equation of motion (2.25) represents
the local form of the equation of balance of linear momentum, while the symmetry
of the Cauchy’s stress tensor σ (2.24) guarantees the global and local balance of
angular momentum.

Other formulations for stress tensors commonly used are:

• the nominal stress tensor S measures the force per unit reference area (while σ
measures the force per unit deformed area) and is defined as

S = JF−1σ; (2.26)

• the first Piola-Kirchhoff stress tensor, defined as

P ≡ ST = Jσ(F−1)T. (2.27)

Normal and shear stresses

Let consider an element of area da on a surface S with unit normal n, subjected
to a contact force t(n)da. The normal component of the stress vector, denoted σ, is
defined as

σ = n · t(n) = n · (σn). (2.28)

This is called the normal stress on the surface S. It is tensile when positive and
compressive when negative.

The stress vector tangential to S, called shear stress, is denoted τ, with magni-
tude τ, and given by

τ ≡ t(n) − σn, τ = |t(n) − σn|. (2.29)

2.3 Constitutive equations

The following equations governing the motion of a continuous body have been
determined: equation of mass conservation (2.15), equation of motion (2.25) and
equation of angular momentum balance (2.24).

So, 7 out of 13 (i.e. ρ, v (3 components) and σ (9 components)) scalar fields
are found out thanks to these equations. The constitutive equations provide the
remaining 6 components of σ in terms of kinematical quantities.

The focus will be on homogeneous elastic materials, where σ depends on F only.
These types of material are also called Cauchy elastic. In particular, Green elasticity,
or hyperelasticity, will be treated, for which the stress is derived from a strain energy
function W, which depends on F only: W = W(F) [27].
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2 – Nonlinear Elasticity

Consequently the nominal and Cauchy stresses can be rewritten with respect
to the strain energy function, or elastic stored energy, W(F) per unit volume in the
reference configuration Br:

S =
∂W
∂F

, (2.30)

σ = J−1F
∂W
∂F

. (2.31)

W(F) represents the work done (per unit volume at X) by the stress in deform-
ing the material from Br to Bt (i.e. from I to F ) and is independent of the path
taken in deformation space.

2.3.1 Isotropic hyperelasticity

"A material is said to be isotropic relative to Br, when its mechanical behaviour
is unaffected by any rotation P that takes place prior to a given deformation.
Physically, this means that the response of a small specimen of material cut from Br
is independent of its orientation in Br" [27]. Mathematically, this can be expressed
with the following equation:

W(F) = W(F) = W(FPT). (2.32)

Moreover, for an isotropic hyperelastic material the strain energy function may be
written as

W(F) ≡ W(I1, I2, I3), (2.33)

highlighting its dependence on the principal invariants only.
Therefore, the nominal stress S is related to W through

S =
3

∑
i=1

∂W
∂Ii

∂Ii

F
. (2.34)

2.3.2 Incompressible elastic materials

Incompressible materials can only undergo isochoric deformations. The deformation
gradient F must satisfy the internal constraint

J ≡ detF = 1. (2.35)

Besides the third invariant is equal to 1 (I3 = 1).
In conclusion, the general stress-strain relationships for incompressible isotropic

hyperelastic materials are:
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2.3 – Constitutive equations

• Cauchy stress

σ = −pI + 2
∂W
∂I1

B − 2
∂W
∂I2

B−1, (2.36)

• nominal stress

S = −pF−1 + 2
∂W
∂I1

FT − 2
∂W
∂I2

F−1B−1, (2.37)

where p is a Lagrange multiplier, which will be eliminated/determined from the
equations of motion/equilibrium and the boundary/initial conditions, and B is
the left Cauchy-Green strain tensor.

2.3.3 Examples of strain energy functions

Many different strain energy functions are available in the literature to model the
behaviour of rubber like solids and other soft materials, including:

• neo-Hookean material
W =

µ0

2
(I1 − 3), (2.38)

where µ0 is the shear modulus of the material and substituting in (2.36)

σ = −pI + µ0B; (2.39)

• Mooney-Rivlin material

W = C1(I1 − 3) + C2(I2 − 3), (2.40)

where C1 and C2 are constants and substituting in (2.36)

σ = −pI + 2C1B − 2C2B−1; (2.41)

• Gent model
W = −µ0 Jm

2
ln(1 − I1 − 3

Jm
), (2.42)

where µ0 and Jm are positive constants and substituting in (2.36)

σ = −pI +
µ0 Jm

Jm + 3 − I1
B; (2.43)

• Fung material
W =

µ0

2b
eb(I1−3), (2.44)

where µ0 and b are positive constants and substituting in (2.36)

σ = −pI + µ0eb(I1−3)B. (2.45)
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2 – Nonlinear Elasticity

After the choice of the strain energy function, by using the formulation of σ, it
is possible to predict how a material reacts to applied forces. Then, the model is
compared to collected experimental data, in order to evaluate its goodness. The
parameters presented in the mentioned models are adjusted in order to get a closer
fit between experimental and theoretical curves.

22



Chapter 3

Materials and methods

Soft tissues and, in particular, brain matter are really difficult to test, due to their
brittleness and fragility [4]. Despite of decades of research on animal and human
brain, an accurate mechanical characterization is still unavailable [30]. The wide
choice among testing methods and the complexity of the tissue contribute to
large differences in the literature reported values of bulk and shear moduli [19],
reaching three orders of magnitude difference for bulk modulus in computational
head models of brain biomechanics [3]. The same for viscoelastic response, with
considerable variance in reported values of storage modulus (G′) and loss modulus
(G′′) [1].

The first aspect to consider is the difference in the used material: lots of studies
use animal brains, such as sheep or porcine, for the easier availability and a
minimum post-mortem time. Moreover, they turn out to be reliable substitutes
for human brains, with small differences in the mechanical properties. Testing
conditions are another important issue to deal with: in particular temperature,
glueing, anisotropy of the material and preparation of the tissue might largely
influence the stiffness [1].

3.1 Brain mechanical testing techniques

The main distinction is between in vitro and in vivo methods.
The latter is a more recent approach, conducted on healthy animal and human

subjects for the purpose of getting more realistic data. Among in vivo methods,
magnetic resonance elastography (MRE) is the most widespread, able to measure
dynamic properties of a soft tissue in a non-invasive way. The idea is to provide
a mechanical excitation and detect the wave propagation through a magnetic
resonance imaging device, as depicted in figure 3.1 [30].
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3 – Materials and methods

Figure 3.1 – MRE testing representation [31].

Moving on to in vitro methods, different techniques are adopted by various
research groups. Usually these types of tests are destructive, so the samples are used
only once. The torsion test, employed in this study, will prove to be an excellent
solution.

A common procedure is the tensile test, realised with cylindrical samples glued
to the tension plates (figure 3.2). As pointed out by Rashid et al., the fixed attach-
ment produced by the glue creates a "strongly inhomogeneous deformation field"
in the region of the sample closed to the surfaces, generating unreal stress–strain
curves [32].

Figure 3.2 – Sketch of the experimental set-up suitable for tension tests of soft tissues
[33].

Another typical procedure is the compression test: the experimental set-up is
similar to the tensile test. A homogeneous deformation is achievable through
the lubrication of the plates, but only with a small amount of strain (about 10%),
before the bulging of the tested tissue [4].

A further test is the simple shear test, in which the sample is glued between
two parallel plates, one fixed and the other mobile. The mobile plate moves
horizontally producing a homogeneous deformation, as shown in figure 3.3. As
demonstrated by Destrade et al., simple shear experiments reach up to 60% strain

24



3.1 – Brain mechanical testing techniques

with porcine brain matter, managing to model the tissue through the Mooney-
Rivlin strain energy function [34]. The 60% strain limit, additionally, enables this
type of test to be appropriate for the study of the diffuse axonal injury (DAI), often
associated with TBI [34].

Lastly, torsion tests represent a good alternative to simple shear, when talking
about soft tissues. Torsion can be implemented by glueing a cylindrical sample
between two parallel plates and then rotating one of them. The experiment is
possible by means of a particular machine, called rheometer [4].

Figure 3.3 – Standard testing protocols for soft solids applied to brain matter: (a)
tensile, (b) compression, (c) simple shear and (d) torsion tests [4].

Another advantage of simple shear and torsion tests is the possibility to visual-
ize a typical non-linear phenomenon occurring in soft solids, called the Poynting
effect. This phenomenon describes the tendency of the sample to expand (positive
Poynting effect) or contract (negative Poynting effect) in the direction normal to
the plates when the sample is sheared or twisted [4]. In other words, it is possible
to record a perpendicular force acting on the plates. The effects on the brain is not
negligible at all: as a matter of fact, Balbi et al. highlighted that these type of forces
are responsible for "high normal stresses developing during rotational impacts"
and might be cause of TBI in the subject [4].

Concerning Poynting effect, torsion tests are preferable because rheometers
allow to measure normal forces on the plates (through built-in load cells), by
contrast to current simple shear devices [4]. Therefore, torsion is an optimal
testing method, making possible the evaluation of two sets of data: the torque and
the normal force, as explained in the next section.
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3.2 Testing procedure

In this section, the testing procedure, consisting of materials, equipment, experi-
mental set-up and protocol, is illustrated.

3.2.1 Agar gels

Agar gel samples are tested in this study. Agar gels are composed of agarose, a
natural polysaccharide with great gelling capacity. Gels are massively used by
researchers in order to simulate biological soft tissues during experiments, as
they bring several benefits. Firstly, they are obviously easier to produce in large
quantities and are simple to handle. Gels might be used for the "exploration
and calibration stages of the experimental research", paving the way for future
biological tissues testing [35]. Moreover, gels are chemically and electrically stable,
exhibiting a non linear elastic behaviour, as well as biological soft tissues. In
particular, Pervin and Chen focused on the mechanical properties of agar gels,
compared with brain matter, discovering that agar gels with concentration of
0.4∼0.6% well approximate brain mechanical properties (figure 3.4) [35].

Figure 3.4 – Comparison of stress-strain curves of different gels and brain matter at
10/s strain rate deriving from uniaxial compression tests, from a study by Pervin and
Chen [35].

In this work, 2% agar gels are used because easier to manipulate and and with
the final goal of developing a reliable and robust testing protocol for torsion of
brain tissues. Cylindrical agar gel samples are created by dissolving powdered
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agarose in distilled water, heated using a hot plate and stirred until fully dissolved.
The hot gel is then poured into 3D printed moulds (figure 3.5(a)) and allowed to
cool at room temperature to create cylinders of various geometries. In particular,
four geometries are tested in order to investigate the possible presence of any
geometrical effect: 25, 20, 15 and 10 mm diameters. By using a 3D printed cutting
guide (figure 3.5(b)) and a scalpel, 10 mm height samples are obtained (figure 3.6).

(a) (b)

Figure 3.5 – (a) Example of a 3D printed mould with 20, 15 and 10 mm diameters holes
in which the hot gel is poured; (b) 3D printed cutting guide: the sample is placed inside
and is cut with a scalpel.

Experiments are conducted at room temperature (circa 23◦C); in order to
maintain the hydration, the 10 mm height samples are extracted from the mould
just before the testing.

Figure 3.6 – Cylindrical 2% agar gels of 25, 20 and 15 mm diameters ready for testing.
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3.2.2 Equipment and protocol

A modular compact rheometer Anton Paar MCR 302 with parallel plates is used,
photographed in figure 3.7. The mobile upper plate has a diameter of 25 mm,
matching the diameter of the biggest sample geometry tested. The device has a
torque resolution of 10−9 N · m, a normal force resolution of 0.01 N and a deflection
angle resolution of 0.05 × 10−6 rad [36]. The functioning of the machine is very
simple for torsion tests: after the positioning of the cylindrical sample, the upper
plate starts rotating and records the desired parameters.

Figure 3.7 – Anton Paar rheometer.

The chosen velocity rotation is 1 rpm (revolutions per minute), that means a
twist rate (angular velocity of the upper plate per unit height of the sample) of 10.5
rad/(m · s). This low velocity allows to neglect the viscoelastic effects, performing
a quasi-static deformation.
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Now, the testing protocol will be illustrated. Once the rheometer is initialized
and the 25 mm diameter plate is mounted, the "set zero gap" process starts (figure
3.8(a)): it is automatic and allows the device to measure the distance between the
plates during the test. To set the zero gap, the upper plate starts going downward
until it touches the bottom plate (the machine "reads" a value of the normal force
different from zero) and then goes back upward, ready to measure.

(a) (b)

Figure 3.8 – (a) "Set zero gap" procedure: the upper plate touches the bottom plate; (b)
the sample is glued and ready for twisting.

At this point, the cylindrical samples are placed: a high viscosity glue that works
on wet materials is used, similar to the surgical glue, used instead of stitches during
surgical operation. To enable easy removal of the tested samples and to protect
the plates from glue, masking tape is applied to both plates (figure 3.8(b)), prior to
the application of the glue. When the tape is positioned, the glue is applied to the
bottom plate, the sample is laid in the very centre of the plate, then other glue is
put on the top surface of the sample and finally the upper plate runs down. The
quantity of glue is crucial because too little would cause the sample to slip, so no
couple could be applied; too much would harden the entire sample and ruin the
test.

The upper plate is driven down manually, until the normal force measured
by the rheometer was slightly higher than 0 N: this means that the sample got
minimally compressed in order to allow the glue to set. After one minute, the
glue is set and the sample is stick to the plates. Before starting the twisting of the
sample, it is essential to set again the normal force to zero by lifting the upper
plate manually, avoiding the pre-compression of the gels during the testing.

The set-up is complete (figure 3.8(b)) and the upper plate begins rotating for
a certain period of time (usually 15-20 seconds), long enough to let the sample
break (figure 3.9). During the rotation, torque, normal force, deflection angle on
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the top surface and gap between the plates are recorded. The gap is useful for a
correct mechanical characterisation of the gels, because the height of the samples
is not exactly 10 mm, due to the manual cut of the gels (the precise dimensions are
reported in tables 4.1, 4.2, 4.3 and 4.4 in the next chapter). Each sample was tested
once and then discarded.

Figure 3.9 – Example of a broken sample after the test.

A remark about the normal force measured by the rheometer: as said before,
the force is the consequence of the so called Poynting effect. The gels exhibit
a positive Poynting effect, but the normal force is negative: this is because the
cylindrical sample tries to expand axially, but the plates prevent the expansion,
resulting in a compression of the sample and so in a negative force acting on the
sample.

3.2.3 Testing issues

Throughout the testing sessions, many issues with the samples raised. There
were lots of test with non-physical results. The main source of error was the glue:
often the glue did not set properly and the sample slipped without producing
any torque. In lots of experiments, the normal force had a strange trend, even
with positive values. The positioning of the samples in the centre of the plate was
essential (figure 3.10), as well as the cut from the mould, because the surfaces of
the gels had to be parallel, otherwise the results would have been wrong. Besides,
the gels tested at the end of the day were usually too stiff, because dehydrated
and not available for the modelling.
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Figure 3.10 – Example of a not centred sample.

Moreover, the presence of a compressor represented a relevant source of noise
during the testing. The compressor was necessary for the functioning of the
machine and was periodically active: a large number of samples were discarded
because compromised by the compressor noise.

To sum up, only about 10% of the total tested samples were actually good,
causing a big loss of time and materials.
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Chapter 4

Experimental results

4.1 Summary of the results

In this section, a recap of the actual heights of the samples, deflection angle at
the breaking point and the corresponding twist at the breaking point is proposed
for each of the tested geometries (tables 4.1, 4.2, 4.3 and 4.4). The twist ϕ is an
important parameter, very useful for the rest of the analysis and is given by

ϕ =
α

H
, (4.1)

where α is the deflection angle and H is the initial height of the sample.

Sample H [mm] αbreak [mrad] ϕbreak[rad/m]
S1 10.04 211.30 21.04
S2 10.79 205.14 19.02
S3 10.14 158.94 15.68
S4 10.89 184.91 16.99
S5 10.47 235.83 22.53
S6 10.72 219.78 20.51
S7 9.69 206.06 21.27
S8 10.09 204.17 20.23
S9 10.30 216.43 21.01

mean±STD 10.35±0.40 204.73±21.98 19.81±2.20

Table 4.1 – Actual height, deflection angle and twist at the breaking point, with relative
mean and standard deviation, for each sample of the 25 mm diameter geometry.
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Sample H [mm] αbreak [mrad] ϕbreak[rad/m]
S1 11.94 305.54 25.60
S2 9.62 307.44 31.95
S3 10.92 308.65 28.27
S4 10.40 313.92 30.17
S5 10.55 308.67 29.25
S6 10.23 260.61 25.48
S7 10.30 254.54 24.72

mean±STD 10.57±0.72 294.20±25.21 27.92±2.73

Table 4.2 – Actual height, deflection angle and twist at the breaking point, with relative
mean and standard deviation, for each sample of the 20 mm diameter geometry.

Sample H [mm] αbreak [mrad] ϕbreak[rad/m]
S1 10.02 378.72 37.82
S2 10.54 404.9 38.41
S3 9.27 349.00 37.64
S4 10.03 469.92 46.87
S5 9.94 342.96 34.50
S6 10.16 299.83 29.53

mean±STD 9.99±0.41 374.22±48.77 37.46±5.68

Table 4.3 – Actual height, deflection angle and twist at the breaking point, with relative
mean and standard deviation, for each sample of the 15 mm diameter geometry.

Sample H [mm] αbreak [mrad] ϕbreak[rad/m]
S1 9.55 526.46 55.05
S2 12.73 641.70 50.41
S3 8.44 452.45 53.64
S4 9.04 415.63 46.00
S5 9.86 410.85 41.67
S6 10.05 452.46 45.03
S7 9.74 433.60 44.50
S8 9.63 443.02 46.02

mean±STD 9.88±1.26 471.90±77.14 47.79±4.72

Table 4.4 – Actual height, deflection angle and twist at the breaking point, with relative
mean and standard deviation, for each sample of the 10 mm diameter geometry.
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4.2 Choice of the model and filtering procedure

The procedure necessary to filter the obtained data of torque and normal force
is explained. After this approach, the dataset is ready for model fitting and
parameters estimation.

First of all, it is necessary to choose a model for the strain energy function
in order to find a relationship between stress and strain of the gels and extract
the mechanical parameters from the collected data. A Mooney-Rivlin model is
chosen (equation for the Cauchy stress 2.40 on page 21). The theoretical Mooney-
Rivlin modelling of the torsion will be explained in the next chapter, in which the
analytical formulation of torque and normal force will be provided.

As shown in detail in chapter 5, the Mooney-Rivlin theory establishes that
torque τ and normal force Nz vary linearly with twist ϕ and twist squared ϕ2,
respectively. The following lines describe how to get clean data from the rheometer
output. Typical rheometer output of torque and normal force are visible in figure
4.1, plotted against twist and twist squared, respectively.

(a) (b)

Figure 4.1 – Typical output of the rheometer for (a) torque and (b) normal force, in
which it is possible to identify an initial linear region.

Both plots present a linear region up to a maximum in the case of the torque τ
in figure 4.1(a) or a minimum in the case of the normal force Nz in figure 4.1(b).
The maximum, or minimum, of the curves represent the breaking point of the
samples (figure 3.9 on page 30) and correspond with a sudden change in the
mechanical properties. Hence, the data of torque and normal force after this
values are discarded.
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4.3 Filtered data

The filtering of raw data is obtained with the open-source software RStudio.
Filtered data of torque τ and normal force Nz plotted against twist ϕ and twist

squared ϕ2, respectively, are provided in the following images. They are grouped
by sample diameter, 25 mm in figure 4.2, 20 mm in figure 4.3, 15 mm in figure 4.4
and 10 mm in figure 4.5.

(a) (b)

Figure 4.2 – (a) Filtered torque τ vs twist ϕ and (b) normal force Nz vs twist squared
ϕ2 for 25 mm diameter samples.

(a) (b)

Figure 4.3 – (a) Filtered torque τ vs twist ϕ and (b) normal force Nz vs twist squared
ϕ2 for 20 mm diameter samples.
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(a) (b)

Figure 4.4 – (a) Filtered torque τ vs twist ϕ and (b) normal force Nz vs twist squared
ϕ2 for 15 mm diameter samples.

(a) (b)

Figure 4.5 – (a) Filtered torque τ vs twist ϕ and (b) normal force Nz vs twist squared
ϕ2 for 10 mm diameter samples.

Normal force from sample 1 and 4 of the 10 mm geometry (figure 4.5(b)) are
not plotted because affected by the huge noise deriving from the compressor (as
explained in section 3.2.3 on page 30). Nevertheless, the data are not discarded,
resulting useful for the following analysis.

In figure 4.6, the mean torque 4.6(a) and normal force 4.6(b) with relative
standard deviation are represented, with all the geometries plotted together.
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(a) (b)

Figure 4.6 – (a) Mean torque and standard deviation and (b) mean normal force and
standard deviation for all geometries.

4.3.1 Comments

An initial noisy region is noticeable in the torque plots, especially when the
diameter decreases (i.e. 15 mm, figure 4.4(a) and 10 mm, figure 4.5(a)): this is due
to the initial plate velocity, smaller than the fully operational velocity of n=1 rpm
at the very beginning of the test. Therefore, the first points are discarded.

Moreover, with the decrease of the ratio between sample diameter and sample
height, a greater deformability of the gels has been observed, resulting in higher
values of both the deflection angle and the twist reached before the fracture. As a
matter of fact, 10 mm diameter samples break at a deflection angle of about 472
mrad on average (corresponding to a twist of 48 rad/m), compared to 205 mrad
(corresponding to a twist of 20 rad/m) for the 25 mm diameter geometry (data
from tables 4.4 and 4.1). Nevertheless, the mean strain at which the fracture occurs
is similar for every geometry. The strain γ for a cylinder undergoing a rotational
deformation is defined as:

γ =
α

H
r, (4.2)

where α is the deflection angle, H is the height of the sample and r is its radius.
Table 4.5 shows the mean strains at the break point for each tested geometry.

d = 25 mm d = 20 mm d = 15 mm 10 d = mm
γbreak[rad] 0.25 0.28 0.28 0.24

Table 4.5 – Mean strains in radians at the break point for each sample geometry.
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4.3 – Filtered data

As expected, the strain is in the same range for every geometry, as the gels are
made of the same material.

Last remark: the normal force gets more scattered with smaller diameter
samples, especially for 10 mm diameter. This is due to lower values of the recorded
force (close to the device sensibility), becoming more affected by surrounding
noise in the laboratory. Besides, the glue might affect more the results, because of
the reduced available surface.
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Chapter 5

Modelling

In this chapter, a quantitative estimation of the mechanical behaviour of the gels in
torsion will be provided. Firstly, the simple torsion will be modelled theoretically,
then the experimental data will be fitted and finally the tests will be reproduced
with Finite Element simulations in Abaqus.

5.1 Theory

In this section, analytical formulations of torque and normal force are obtained
for a cylinder made of an incompressible, isotropic, homogeneous, hyperelastic
material, undergoing simple torsion at very low velocity. The cylinder has initial
radius R0 and height H0 and final radius r0 and height h0. The kinematics of the
deformation is defined by x(r, θ, z) = χX(R, Θ, Z), where (r, θ, z) and (R, Θ, Z) are
the current and reference configuration in cylindrical coordinates (figure 5.1) [37].

Figure 5.1 – Schematic representation of the simple torsion of a cylinder with initial
radius R0 and height H0 and final radius r0 and height h0, in cylindrical coordinates;
torque and normal force are also displayed.
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As illustrated in chapter 3, before proceeding with the testing, the upper plate
is moved upwards in order to obtain a null normal force and, therefore, a non
precompressed cylinder. Nevertheless, variations of the force within the range of
the rheometer sensitivity (0.01 N) are not sensed by the device. So it is reasonable
to expect a tiny contraction of the sample at the beginning of the test [4]. The
consequence is the addition of an axial contraction to the torsion of the cylinder,
resulting in the following deformation, written in cylindrical coordinates:⎧⎪⎨⎪⎩

r = R/
√

λ,
θ = Θ + ϕλZ,
z = λZ,

(5.1)

where λ is the uniform stretching ratio in the axial direction, ϕ = α/(λH0) is the
twist per unit height and α is the angle of rotation in radians. In particular, the
equation for the radius in the deformed configuration (first equation of (5.1)) is
obtained by imposing the incompressibility of the cylinder.

The deformation gradient F has the following components (Fij = ∂xi/∂Xj)
then:

F =

⎛⎝1/
√

λ 0 0
0 1/

√
λ rϕλ

0 0 λ

⎞⎠ , (5.2)

so detF = 1, necessary condition for the cylinder to be incompressible (from
equation 2.35).

The left Cauchy-Green deformation tensor B = FFT and its inverse B−1 are:

B =

⎛⎝1/λ 0 0
0 1/λ + ϕ2λ2r2 ϕλ2r
0 ϕλ2r λ2

⎞⎠ , B−1 =

⎛⎝λ 0 0
0 λ −rϕλ
0 −rϕλ ϕ2λr2 + 1/λ2

⎞⎠ . (5.3)

The principal invariants of B are found to be:

I1 = tr[B] =
2
λ
+ λ2(1 + ϕ2λ2), I2 = tr[B−1] = λ(2 + ϕ2r2) +

1
λ2 . (5.4)

The principal stretches are the square roots of the eigenvalues of B. The stretch
λ1 = 1 is the intermediate stretch and corresponds with the radial direction, while
the maximum and minimum stretches λ2 and λ3 are obtained by solving the
following equations:

(λ2λ3)
2 =

1
λ

, λ2
2 + λ2

3 =
1
λ
+ λ2 + (λϕr)2. (5.5)
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5.1.1 Choice of the strain energy function

As anticipated in the previous chapter, a Mooney-Rivlin strain energy function is
chosen to model the data: this choice is motivated by the linearity of torque and
normal force with respect to twist and twist squared, highlighted in figure 4.2, 4.3,
4.4 and 4.5. Recalling equation (2.40), the strain energy function is:

W = C1(I1 − 3) + C2(I2 − 3), (5.6)

where C1 and C2 are constants and I1, I2 are the principal invariants of B. For this
model, a fundamental parameter, called shear modulus, is defined as µ = 2(C1 +C2).
The corresponding constitutive equation for the Cauchy stress σ is:

σ = −pI + 2C1B − 2C2B−1, (5.7)

where p is a Lagrange multiplier emerging from the incompressibility constraint
2.35.

Now, the Cauchy stress σ can be decomposed in its components by substituting
the left Cauchy-Green deformation tensor B and its inverse B−1 (5.4), in equation
(5.7):

σrr = 2C1λ−1 − 2C2λ − p,

σθθ = 2C1(λ
−1 + ϕ2λ2r2)− 2C2λ − p,

σzz = 2C1λ2 − 2C2(ϕ
2λr2 + λ−2)− p,

σθz = σzθ = 2C1ϕrλ2 − 2C2ϕrλ,
σrθ = σrz = σθr = σzr = 0.

(5.8)

In order to find a solution for the Lagrange multiplier p, the equation of motion
(2.25) is used, in the absence of body forces and with a negligible acceleration due
to the quasi-static deformation (a = b = 0), so it becomes:

divσ = 0. (5.9)

Since the lateral surface of the cylinder is stress-free, the next boundary condi-
tion is added:

σrr(r0) = 0. (5.10)

Considering only the non zero terms, equation (5.9) can be written as follows
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in cylindrical coordinates, along with the boundary condition (5.10):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂σrr

∂r
+

σrr − σθθ

r
= 0,

1
r

∂σθθ

∂θ
= 0,

∂σzz

∂z
= 0,

σrr(r0) = 0.

(5.11)

From (5.8) and (5.11), it is clear that the Lagrange multiplier p only depends
on radial variable r and not on θ and z, so the system (5.11) becomes:⎧⎨⎩

∂σrr(r)
∂r

+
σrr(r)− σθθ(r)

r
= 0,

σrr(r0) = 0.
(5.12)

To solve (5.12), the first equation of the system is integrated accounting for the
boundary condition (5.10), obtaining:

σrr(r) =
∫ ro

r

σrr(r)− σθθ(r)
r

dr. (5.13)

Now, substituting (5.8) in (5.13), an expression for the Lagrange multiplier p is
obtained:

p(r) =
2C1

λ
− 2C2λ +

∫ ro

r
2C1ϕ2λ2r dr

= C1

[
2
λ
+ ϕ2λ2(r2

0 − r2)

]
− 2C2λ,

(5.14)

and filling (5.14) in (5.8), the components of the Cauchy stress σ can be calculated,
depending on the radius r only:

σrr(r) = C1(r2 − r2
0)λ

2ϕ2,

σθθ(r) = C1(3r2 − r2
0)λ

2ϕ2,

σzz(r) = C1

[
2

λ3 − 1
λ

+ (r2 − r2
0)λ

2ϕ2
]
+ 2C2

(
λ3 − 1

λ2 + r2λϕ2
)

,

σθz(r) = 2(C2 + C1λ)rλϕ.

(5.15)
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5.1.2 Analytic expression of torque and normal force

Finally, it is possible to compute the torque τ and the normal force Nz required to
maintain the finite torsion and stretching deformation described in (5.1), reminding
that r0=R0/

√
λ:

τ = 2π
∫ R0/

√
λ

0
r2σθz(r) dr

= πR4
0

(
C1 +

C2

λ

)
ϕ

= Aϕ,

(5.16)

Nz = 2π
∫ R0/

√
λ

0
rσzz(r) dr

= −2πR2
0

(
C1 +

C2

λ

)(
1 − λ3

λ2

)
− πR4

0

(
C1

2
+

C2

λ

)
ϕ2

= C + Bϕ2.

(5.17)

The constants A,B and C are related to the Mooney-Rivlin parameters C1 and
C2 by

C1 = 2
A+ B
πR4

0
,

C2

λ
= −A+ 2B

πR4
0

, (5.18)

and the stretching ratio λ is the unique real and positive root of the following
cubic equation [4]:

2A(λ3 − 1)− CR2
0λ2 = 0. (5.19)

Equations 5.16 and 5.17 clearly show the linear dependence of the torque on the
twist and of the normal force on the twist squared. The coefficient B is associated
with the Poynting effect exhibited by the sample and is due almost entirely to the
twist, whereas the coefficient C is related to the precompression of the sample.
In pure torsion, when the sample is not compressed at all (i.e λ = 1), C = 0 and B
provides an effective measure of the exact Poynting effect [4].

5.2 Parameters estimation

In this section, the Mooney-Rivlin parameters C1, C2 and the shear modulus µ are
obtained for each set of data.
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The constants A,B and C, introduced in section 5.1, are calculated by fitting
the experimental data in figures 4.2, 4.3, 4.4 and 4.5. The RStudio function “lm”
has been used to perform a linear regression on the data sets {ϕ, τ} and {ϕ2,Nz}.

In particular, from the {ϕ, τ} data set, the linear regression returns A, i.e. the
angular coefficient of the fitted straight line (from equation 5.16), in red in figure
5.2(a). From {ϕ2,Nz}, the linear regression returns B and C, i.e. angular coefficient
and intercept of the fitted straight line (from equation 5.17), in red in figure 5.2(b).

In figure 5.2, an example of data fitting is proposed for a 25 mm diameter
sample.

(a) (b)

Figure 5.2 – Example of fitting for (a) torque and (b) normal force of a 25 mm diameter
sample.

In the case displayed in figure 5.2, the coefficients of determination calculated
with the linear regression are R2

τ = 0.999, for the torque, and R2
N = 0.997, for the

normal force.
Once the constants A,B and C are extracted, the Mooney-Rivlin parameters

C1, C2 and the stretching ratio λ are determined solving in MATLAB the equa-
tions (5.18) and (5.19). Consequently, the shear modulus µ = 2(C1+C2) is easily
calculated.

The elastic properties of the gels are presented in tables 5.1, 5.2, 5.3 and 5.4. The
Mooney-Rivlin constant C2 and the shear modulus µ are the most characterizing
parameters for a soft tissue. Their values for every sample geometry are included
in the tables, along with their mean and standard deviation. Besides, the stretching
ratio λ and the coefficients of determination for torque and normal force, derived
from the linear regression, are shown.
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Sample C2 [Pa] µ [Pa] λ R2
τ R2

N
S1 1618 20050 0.99 0.995 0.970
S2 3329 18680 1.00 0.994 0.987
S3 5717 20638 1.00 0.999 0.995
S4 738 10451 0.99 0.999 0.944
S5 2139 12747 1.00 0.995 0.985
S6 6744 14280 0.99 0.997 0.989
S7 8731 18625 0.98 0.996 0.986
S8 3424 14294 0.99 0.999 0.994
S9 3839 17091 0.99 0.999 0.997

mean±STD 4031±2584 16317±3527

Table 5.1 – Estimated elastic parameters for 25 mm diameter samples: Mooney-Rivlin
parameter C2, the shear modulus µ, the stretching ratio λ and the coefficients of
determination for torque R2

τ and normal force R2
N ; in the last row, mean and standard

deviation for C2 and µ are evaluated.

Sample C2 [Pa] µ [Pa] λ R2
τ R2

N
S1 277 11096 0.99 0.988 0.969
S2 5122 14037 0.98 0.986 0.983
S3 4722 10298 0.96 0.961 0.985
S4 4135 10906 0.99 0.975 0.990
S5 1354 10704 0.98 0.976 0.976
S6 3516 16594 0.97 0.988 0.860
S7 2481 16918 0.97 0.991 0.979

mean±STD 3087±1796 12936±2884

Table 5.2 – Estimated elastic parameters for 20 mm diameter samples: Mooney-Rivlin
parameter C2, the shear modulus µ, the stretching ratio λ and the coefficients of
determination for torque R2

τ and normal force R2
N ; in the last row, mean and standard

deviation for C2 and µ are evaluated.

As it can be noted from table 5.4, the coefficient of determination for the normal
force of 10 mm diameter samples is quite low generally. As pointed out in section
4.3.1, this is due to the scattered experimental data. The smaller values of recorded
force for this geometry are more affected by the environmental noise, because
close to the device sensibility. In particular, samples 1, 4 and 5 show an extremely
low coefficient of determination for the normal force: the reason is the activation
of a compressor during the testing, as explained in section 3.2.3.

The great difference in the computed values of the Mooney-Rivlin parameter
C2 might be attributed to the period of the day in which the tests have been
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performed: as a matter of fact, the gels become stiffer while waiting to be tested,
changing their mechanical properties.

Sample C2 [Pa] µ [Pa] λ R2
τ R2

N
S1 2501 13935 0.96 0.977 0.940
S2 3785 10507 0.96 0.971 0.966
S3 1745 13349 0.94 0.982 0.968
S4 402 11025 0.98 0.975 0.970
S5 1298 15392 0.99 0.991 0.961
S6 372 19939 0.97 0.991 0.906

mean±STD 1684±1311 14025±3426

Table 5.3 – Estimated elastic parameters for 15 mm diameter samples: Mooney-Rivlin
parameter C2, the shear modulus µ, the stretching ratio λ and the coefficients of
determination for torque R2

τ and normal force R2
N ; in the last row, mean and standard

deviation for C2 and µ are evaluated.

Sample C2 [Pa] µ [Pa] λ R2
τ R2

N
S1 304 11813 0.93 0.972 0.127
S2 3194 9036 0.95 0.964 0.790
S3 4101 9016 0.94 0.986 0.830
S4 5377 15846 0.91 0.991 0.535
S5 254 17213 0.95 0.984 0.640
S6 3664 17513 0.97 0.987 0.836
S7 611 15279 0.99 0.984 0.732
S8 5850 15571 0.97 0.983 0.890

mean±STD 2919±2265 13911±3472

Table 5.4 – Estimated elastic parameters for 10 mm diameter samples: Mooney-Rivlin
parameter C2, the shear modulus µ, the stretching ratio λ and the coefficients of
determination for torque R2

τ and normal force R2
N ; in the last row, mean and standard

deviation for C2 and µ are evaluated.

5.3 Computational validation

In this section, the Finite Element simulations in Abaqus are presented. First of all,
the procedure is explained, then the results of simulations are compared with the
experimental data and theory.
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5.3.1 Procedure

The torsion simulations have been performed in Abaqus 3DEXPERIENCE R2019x
Standard, using implicit analysis.

Four specimens have been chosen to be tested, one for each geometry. In
particular, sample S3 for the 25 mm diameter geometry, sample S7 for the 20 mm
diameter geometry, sample S5 for the 15 mm diameter geometry and sample S6
for the 10 mm diameter geometry.

First of all, the cylinder are created through the extrusion of a circle (figure 5.3).
The height of the samples are reported in tables 4.1, 4.2, 4.3 and 4.4.

Figure 5.3 – Creation of a cylinder on Abaqus.

Then the material properties are assigned to the cylinder, choosing a hyperelas-
tic behaviour with Mooney-Rivlin strain energy function and setting the Mooney-
Rivlin constants from tables 5.1, 5.2, 5.3 and 5.4, along with the density of the gel.
The "Nlgeom" configuration is activated, accounting for "non linear effects of large
displacements".

At this point, the time step is set. A static general procedure is selected and the
increments are summarised in table 5.5.

Initial increment Minimum increment Maximum increment
10−1 10−5 10−1

Table 5.5 – Time increments for Abaqus simulations.

To simulate the behaviour of the glue on the bottom face of the cylinder, an
"encastre" is applied, blocking every degree of freedom (DOF). To simulate the
torsion, a reference point is created, coupled with all points of the top surface
(figure 5.4). A rotation around the longitudinal axis is imposed (through a "linear
ramp"), preventing every other movement. The rotational velocity of the upper
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plate is set to n = 1 rpm, the same of the experimental testing. The chosen angle of
rotation is the deflection angle at the braking point, taken from tables 4.1, 4.2, 4.3
and 4.4.

Figure 5.4 – Coupling of the top surface of the cylinder to the reference point.

Then, the mesh is created, using a 8-node linear brick C3D8RH element type
with hybrid formulation to reproduce exact incompressibility (figure 5.5). The
details of the mesh (i.e. number of elements and nodes created) for each geometry
tested is presented in table 5.6.

Figure 5.5 – Example of mesh on Abaqus.

Sample diameter Number of elements Number of nodes
25 mm 10344 22150
20 mm 13380 28390
15 mm 17138 36100
10 mm 11814 24972

Table 5.6 – Details of the mesh for each geometry tested.
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Finally, the output variables RM3 and RF3 are chosen in order to display torque
and normal force of the samples during the simulated rotation, respectively.

5.3.2 Results

Figures 5.6, 5.7, 5.8 and 5.9 show the comparison of torque and normal force,
for each sample geometry, between experimental data, numerical simulations in
Abaqus and analytical predictions from the theory of torsion presented in section
5.1 (equations (5.16) and (5.17), specifically).

(a) (b)

Figure 5.6 – 25 mm diameter sample S3: comparison of (a) torque and (b) normal force
between experimental data (blue circles), numerical simulations (green triangles) and
"theory" (red solid line).
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(a) (b)

Figure 5.7 – 20 mm diameter sample S7: comparison of (a) torque and (b) normal force
between experimental data (blue circles), numerical simulations (green triangles) and
"theory" (red solid line).

(a) (b)

Figure 5.8 – 15 mm diameter sample S5: comparison of (a) torque and (b) normal force
between experimental data (blue circles), numerical simulations (green triangles) and
"theory" (red solid line).
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(a) (b)

Figure 5.9 – 10 mm diameter sample S6: comparison of (a) torque and (b) normal force
between experimental data (blue circles), numerical simulations (green triangles) and
"theory" (red solid line).

Numerical results are in good agreement with analytical predictions, regarding
the torque (figures 5.6(a), 5.7(a), 5.8(a) and 5.9(a)). For the normal force of the 20
mm sample diameter and the 10 mm sample diameter, a small mismatch can be
noted between Abaqus simulations and analytical predictions: this is mainly due
to the precompression of the samples. As a matter of fact, the intercept of the
red straight lines in figures 5.7(b) and 5.9(b) is not perfectly zero, but slightly less,
according to the stretching ratio λ in tables 5.1, 5.2, 5.3 and 5.4.
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Chapter 6

Conclusions

In the final chapter, a basic statistical analysis on the obtained data is performed.
The shear modulus µ and the Mooney-Rivlin parameter C2 data are represented

in the scatter plots of figures 6.1(a) and 6.1(b), respectively, divided in sample
diameter groups.

Moreover, also the box plots for the same sets of data have been created, in
figure 6.2(a) and 6.2(b). In particular, the whiskers represent the minimum and
maximum values assumed by the group, the lower and upper part of the boxes
correspond to the 25th and 75th percentile respectively, while the red lines are the
medians of each group.

First of all, a one-way analysis of variance (ANOVA) is done on MATLAB. This
analysis returns the following p-values: pµ = 0.2364 for the shear modulus µ and
pC2 = 0.2437 for the Mooney-Rivlin parameter C2. Both the p-values are much
bigger than the alpha value of 0.05, so the null hypothesis cannot be rejected and
the means of µ and C2 of every geometry group are not statistically different.

(a) (b)

Figure 6.1 – Scatter plot of (a) µ and (b) C2, for every sample diameter group.
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(a) (b)

Figure 6.2 – Box plots of (a) µ and (b) C2, for every sample diameter group.

This might be noted from the box plots in figure 6.2, but, in order to com-
pare the geometries two by two, a Post Hoc analysis is performed through the
"multcompare" command in MATLAB.

As a matter of fact, a multiple comparison test determines which pairs of
group means are significantly different. The results of this comparison, in form of
p-values, are shown in tables 6.1 and 6.2 for µ and C2, respectively.

As expected, the p-values for each pair of geometries are much larger than
0.05, confirming that there is not any statistical difference between the estimated
parameters from the four different geometries.

Group 1 Group 2 p-value
10 15 0.9999
10 20 0.9425
10 25 0.4655
15 20 0.9362
15 25 0.5730
20 25 0.2137

Table 6.1 – Obtained p-values comparing µ for every pair of sample diameter groups;
10, 15,20 and 25 indicate 10 mm, 15 mm, 20 mm and 25 mm sample diameter groups.
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Group 1 Group 2 p-value
10 15 0.7063
10 20 0.9987
10 25 0.7064
15 20 0.6401
15 25 0.1808
20 25 0.8142

Table 6.2 – Obtained p-values comparing of C2 for every pair of sample diameter
groups; 10, 15,20 and 25 indicate 10 mm, 15 mm, 20 mm and 25 mm sample diameter
groups.

In conclusion, the purpose of this thesis was the investigation on how the
geometry could affect the mechanical properties of cylindrical gels undergoing
torsion. This study demonstrates that even with small geometries, such as 10
mm diameter samples, the results are valid. It would be interesting to find out
which is the limit for the geometry, that is which is the last sample diameter able to
produce significant results. This information might be really useful during brain
matter testing because usually the available biological tissue is limited and so
more samples could be extracted from the same amount of brain tissue.
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