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Abstract

In this work, the information embedded in widely used financial stochastic processes
(such as GARCH, ARFIMA) is studied by means of the cluster entropy approach. This
study is motivated by a previous analysis conducted on real worlds financial series
(such as DAX, Nasdaq) (Carbone, 2013), (Ponta and Carbone, 2018). Specifically, the
ability of artificial market series of replicating real-world phenomena is investigated,
from the information theory point of view. Data have been generated using different
processes such as Autoregressive Fractionally Integrated Moving Average and General
Autoregressive Conditional Heteroscedastic. The DMA cluster entropy method consists
in partitioning a time series with its moving average to obtain a set of clusters of variable
lengths and the corresponding frequencies. Then, a probability distribution is drawn
and the Shannon entropy (Shannon, 1948) is used to quantify the embedded amount of
information. The results over the artificial series is proved to be consistent with data
from financial markets. A power-law correlation for clusters of shorter length than the
moving average window and an exponential correlation for clusters of longer lengths
are observed. Finally, these information are summarized by the Market Dynamic Index
presented in Ponta and Carbone (2019) integrating over clusters length and different
moving average windows.
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1 Introduction

In this work time series generated by several financial and mathematical models are in-
vestigated by means of a cluster entropy approach. The approach to be applied to series
requires first a partition of the series itself into disjoint sets. The partition method used
here divides a sequence into segments of variable length according to the intersections with
its moving average. These segments are called clusters. These clusters are ranked according
to their length to obtain a probability distribution. The amount of information contained
in the cluster length probability distribution is then evaluated with the Shannon entropy.
The cluster entropy dynamics is summarized in terms of the Market Dynamic Index to
provide a comparable figure.

In general, the Shannon entropy is a way to compress a signal in its elementary parts
and transmit them to the receiver without loss of relevant information (Shannon, 1948).
The Shannon entropy as a measure to quantify the expected information in a message is
introduced. Originally used in statistical mechanics, entropy is a measure of the probability
that a thermodynamic system would be in such a configuration. Similarly, in information
theory entropy is used to study the expected configuration of a message in probabilistic
terms. An idea closely linked to Kolmogorov complexity of an object, which defines the
minimum length of a program that produces the object as output.

The cluster entropy method used in this work was first applied to study the information
content of the 24 chromosome sequences of human genome. Nucleotide composition of
each chromosome was the variable under consideration. The nucleotide sequences were
mapped to a one-dimensional numerical series. It was found that the cluster entropy
of nucleotide sequences could be written as a sum of three components, a constant, a
logarithmic term and a linear term. Clusters with logarithmic behavior were found to be
power-law correlated and said to be ordered, while clusters with linear behavior were found
to be exponentially correlated and said to be disordered. Ordered clusters were able to
transmit - on average - the same amount of information about nucleotide composition of
the whole series, while disordered ones provided fluctuating information Carbone (2013).

The same approach can then be applied to any one-dimensional correlated series, as is
the case of financial time series which are the relevant case in this work.

As stated before, to find a probability distribution for the Shannon functional it is
first necessary to partition the continuous phase-space, a continuous set of all the possible
configuration that the system can assume, into disjoint sets. The financial series y(t) is
partitioned in clusters by the intersection with its moving average ỹn(t), with n the moving
average window. A cluster is defined as the region bounded by two consecutive crossing
points of y(t) and ỹn(t). The intersections between the two series yield a set of clusters that
can be ranked according to their lengths and frequencies to obtain a probability distribution
P (τ, n) for each n.

A fundamental feature of this method consists in the way used to partition the sequence.
The probability distribution allows to distinguish between power-law and exponentially
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correlated clusters, retaining determinism out of randomness by varying n and vice versa.
It is therefore possible to separate information-bearing clusters from random ones. Last
but not least, being the moving average a heavily used tool in technical trading, clusters
defined by this partitioning method have a direct connection with the trader perspective.

Also in the case of financial time series the Shannon entropy can be described by a
constant, a logarithmic term and a linear term, as anticipated in Carbone (2013) in the
case of chromosomes.

To clarify the meaning of these terms reference is made to thermodynamics. In an
isolated system, entropy increase dS is related to the irreversible processes occurring in the
system spontaneously. As the state of maximum entropy is reached, entropy tends to an
asymptotic value of the form of the Boltzmann entropy S = log Ω, with Ω the volume of
the isolated system. When the system is free to interact with the external environment,
in which case it is said an open system, a further increase of entropy dSext occurs due to
the irreversible spontaneous processes arising from the interaction. Therefore, an excess
of entropy is generated and the asymptotic limit of the isolated system, expressed by a
logarithmic curve, is exceeded.

In the framework of information theory an analogous interpretation of the cluster en-
tropy can be outlined. Clusters whose τ < n are power-law distributed and their behavior
is described by the logarithmic term expressed as a function of τ . These are the ordered
clusters that were found able to transmit the whole nucleotide information in the case of
chromosomes. Power-law correlated clusters does depend only on the size of the clusters
themselves and their entropy tends to an asymptotic value, so their behavior can be com-
pared to the one of entropy for a thermodynamic isolated system. On the other hand,
clusters whose τ ≥ n are exponentially correlated and their behavior is described by a
linear term expressed as a function of τ and n. These clusters are said to be disordered
and represent the excess entropy introduced by the interaction with the external system.
The excess entropy component accounts for the additional heterogeneity introduced by the
partitioning process and is in fact a function of the moving average window n.

The cluster entropy method was applied to several major European stock indexes to
study market dependence of prices and volatilities in Ponta and Carbone (2018). Entropy
of price series were found to be practically market invariant while volatility series showed
significance market dependence. Cross market homogeneity of price series is the reason
behind the choice of further investigating price series of artificial financial models.

In the same work a cumulative information measure was developed to obtain the weights
of an efficient portfolio. In Ponta and Carbone (2018) a method based on a cluster entropy
approach was proposed to estimate weights of the efficient portfolio. The portfolio weights
for each asset were calculated integrating the cluster entropy curves of the volatility series
first over the cluster length τ and then over the moving average window n to summarize
all the information into a single figure. Values obtained in this fashion for each asset
were then normalized and compared with the ones obtained by means of the Markowitz
approach. Research has shown that returns are not normally distributed as assumed in the
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traditional Markowitz optimal portfolio method. Moreover, it was also shown that financial
variables are not only influenced by the immediate past but also by shocks occurred further
in time. In other words, financial series present some degrees of persistence. This features
compromise Markowitz assumption of normal distributed returns and lead to important
implication in portfolio allocation, option and asset pricing and risk management (Franke,
Härdle, and Hafner, 2015).

The idea was further developed to study the dynamics of price series in Ponta and
Carbone (2019). Here the Market Dynamic Index was defined as the integral of the cluster
entropy over τ and was used to quantify the dynamics of consecutive time periods of some
American assets’ prices. The study revealed a systematic dependence of clusters over time.

In this work the analysis by means of the cluster entropy is carried further. Several
financial and mathematical models are investigated to understand their ability to embed
information and to study their dynamics.

The study developed in this thesis is an application of concepts traditionally developed
in statistical physics to economics. After decades where fields of study have focused on
different topics and developed their own tools, an interest in interdisciplinary applications
has emerged. The introduction of approaches and methods developed in other fields have
often proved useful in solving problems and answering new questions (Carbone, Kaniadakis,
and Scarfone, 2007).

In recent years mass communications and new technologies, especially the internet, have
evolved rapidly, increasing the amount of information exchanged and recorded accurately.
A key year for modern finance was 1973, when, as a consequence of the collapse of the
Bretton Woods’ agreements, currencies value become fluctuating and determined by the
market, currencies begun to be traded on dedicated foreign exchange markets 24h a day,
and Black and Scholes published their first work about a closed form to evaluate an option.

Since that time, volume of trading increased enormously. Additionally, a second rev-
olution began in the 1980s, when electronic trading and computers become a standard in
financial markets. One result is that there is a huge availability of financial data char-
acterized by the properties of being highly reliable and high-frequency, which for liquid
markets means that the delay between two records can be of few seconds (Franke, Härdle,
and Hafner, 2015).

The immense availability of such data have led scientists to apply methods traditionally
belonging to other fields, such as statistical physics and complexity, to investigate social
phenomena. In fact, elementary social components interact giving rise to phenomena that
cannot be studied linearly but that often require methods able to account for larger number
of heterogeneous interaction. Financial markets resemble complex systems, where agents
interact between themselves in the presence of feedback from previous interactions.

This thesis is organized as follows. In particular, before presenting the study devel-
oped on financial series models, a thermodynamic framework for modern economics is
exposed. First, some notions about thermodynamics and power-law distributions will be
introduced. Then, a thermodynamic theory of economics is presented. Topics such as in-
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come and wealth, elasticity and utility theory, production and consumption, and money are
investigated. Ideas are illustrated along with their differences from traditional economics
and their limits, to offer an alternative perspective of the economic system (Bryant, 2015).
Such thermodynamic perspective of the economic system can be found in Chapter 2. Then,
in Chapter 3, the data used in this work are described breaking down the models used to
generate artificial time series and the main characteristics of financial series for major US
markets used as a benchmark. In Chapter 4 the method used in this analysis and the ideas
behind it are outlined, moreover some preliminary results from other works are recalled
for the sake of comparison. In Chapter 5 results for Fractional and Geometric Brownian
Motion, Autoregressive Fractionally Integrated Moving Average and other processes are
presented. Finally, in Chapter 6 an overview and a discussion of the results is presented
and a path for future work is suggested. Furthermore, an Appendix containing results for
other sets of parameters and MATLAB scripts is available for further insight.
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2 A Socioeconomic Perspective of Thermodynamics

In recent years, the continuous growth of human population and economy, the possible
advent of resources’ shortages, climate and environmental issues, has spawned researchers
across the globe to wonder what might occur to the future of the world, to the sustainability
of our economic models and the time scales involved in these changes.

Today, economics has to deal with an additional theme: the environment. Additional
not in the sense that economics has never considered the environment, but rather in the
way economics looks at the environment. Until today human beings has been looking at the
surrounding nature as a source of resources to foster their development, or as constraint.
Nowadays the climatic changes are forcing us to integrate the environment into the scopes
of economics. Societies must find a sustainable way of fostering their development because
nature is turning its back against them.

Moreover, after the 2008 financial crisis, economists’ reputation was shaken. It is also
in this context that Econophysics developed. Econophysics is a recent and rapidly evolv-
ing field of study that arose because of the methods and the origin/background of its
researchers. In reality, the field was born in the ’80s, but its attention was primarily con-
cerned with financial markets. It is no surprise that Fisher Black, the driving force behind
the Black-Scholes-Merton model, the model used in finance to price option derivatives,
was trained as a physicist. In more recent times, econophysics has moved closer to eco-
nomics, developing models on the probability distributions of money, wealth and income
in societies.

Econophysics uses mathematical methods developed in statistical physics to study stat-
ical properties of complex systems, such as those where a large number of humans gather
in an economic system interacting between each other.

Econophysics emphasizes quantitative analysis of large amount of economic and, es-
pecially, financial data. The latter being easier to obtain and more precise since the in-
troduction of computers and internet. Studying mathematical models of large number of
interacting agents has to do with agent-based modeling and simulation, which distance it-
self from the representative-agent approach used in economics, which by definition ignores
statistical and heterogeneous aspects of the economy.

Historically, statistical mechanics was developed in the second half of the nineteenth
century by James Clerk Maxwell, Ludwig Boltzmann and Josiah Willard Gibbs. These
physicist believed in the existence of atoms and developed mathematical methods to de-
scribe their properties. Before the 1850s, statistics was considered a tool of political econ-
omy, in fact, the term statistics origin from its practitioners, statists. Then the subject
developed into a more general quantitative discipline and encouraged physicist in develop-
ing statistical mechanics.

Rudolf Clausius started the development of the kinetic theory of gases, but it was
James Clerk Maxwell who, inspired by the popularity of social statistics at the time, made
decisive steps in deriving the probability distribution of velocities of molecules in gases.
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This approach was further developed by Ludwig Boltzmann, who said: ”The molecules are
like individuals, [...] and the properties of gases remain unaltered because the number of
these molecules, which on the average have a given state, is constant”. Then, Boltzmann
added: ”This opens a broad perspective, if we do not only think of mechanical objects.
Let’s consider to apply the method to the statistics of living beings, society, sociology and
so forth”.

However, not only physicist pay attention to the applications of statistical mechanics
to gasses or engineering systems, but also to social and economic systems, as they consider
it a risky practice. Few remember that the process originated in exactly the opposite
way, when it was not absurd to recall human habits to explain the behavior of inanimate
particles.

Before entering the core of this work, we want to lay down a theory of human and
economic development from an econophysicist point of view. It shall take into account
classic thermodynamics to show not only human development through an anthropocentric
point of view, but the whole system of earth and universe in a comprehensive manner. The
objective of this chapter is to illustrate that the laws of thermodynamics might be used to
build an alternative framework to interpret the economic system.

2.1 The Laws of Thermodynamics and Maxwell-Boltzmann Distribution

The concept of entropy, that is the core of this work, was developed during the XIXth

century by some of the most important scientist of all time, such as Sadi Carnot, Rudolf
Clausius, Willard Gibbs, James Maxwell and Ludwig Boltzmann.

Before introducing the econophysics perspective of economics, some notions of thermo-
dynamics such the ideal equation of gasses, the First and Second Laws of Thermodynamics
will be introduced.

In an ideal gas, a number N of molecules are free to move, colliding and exchanging ki-
netic energy with each other, inside an enclosure of volume V, exerting a pressure P against
its walls. Through the application of heat from outside, the molecules are stimulated to
move faster, collide more frequently, exchange more energy and so accumulate internal
energy; thus the temperature T is raised, and potentially also V and P can increase. The
relationship between this factors is the ideal gas equation:

PV = NkT, (1)

where the Boltzmann Constant k is a measure of the average kinetic energy of a gas per
degree of temperature, and thus T is a measure of relative kinetic energy of a molecule.
The second member of (1) is then a measure of total energy.

For a non-flowing system, N is constant, while V and P vary as a function of T. On
the other hand, for a flow system, such as a pipeline, N is a flow of molecules per period
of time, with a corresponding flow of gas volume V per unit of time and variable P and T.
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The First Law of Thermodynamics says is that when a closed and isolated system is
taken through a cycle, the net work delivered to the surroundings is proportional to the
net heat taken from the surroundings, and vice versa.

The First Law is about the conservation of energy. Three kinds of energy act on a gas
that is closed in a piston. A mechanical force from the piston applied through a work G,
some heat Q that can be transferred across the piston’s wall, and the internal energy U,
measured as a function of temperature T. The First Law states that these energy always
have to balance each other out:

dQ = dG+ dU. (2)

According to the Second Law of Thermodynamics in a closed system, one cannot on its
own transfer energy from one body at a low temperature to another body having a higher
temperature; only the other way. It’s the relative temperature difference - or gradient -
between the two bodies that determines the direction of heat flow. There is no actual loss
of overall energy content of the two bodies combined, but there is a reduction in the higher
grade energy potential held by the hotter body which cannot be retrieved. This loss of
potential constitutes an increase in entropy.

The Second Law of Thermodynamics is concerned with the direction in which reactions
occur. In fact, every process in nature proceeds spontaneously in one direction only, never
in the opposite. These processes are said to be irreversible. For irreversible processes,
happening in a closed system, the entropy of the system always increases.

There are two ways of describing entropy, one is macroscopic and the other microscopic.
Starting with the macroscopic description, entropy variation for a reversible process is
defined as,

∆Srev =

∫ f

i

dQ

T
, (3)

where dQ represents the amount of heat exchanged and T the fixed temperature at which
the transformation occurs between an initial and a final state, respectively, i and f . Entropy
is measured in Joule/Kelvin.

Entropy is a state function. Its final value does not depend on the path followed by
the transformation from the initial to the final state, but only on the actual state of the
system.

Let us imagine a thermal insulator of volume V into which there is an amount of gas n
at a temperature T maintained constant during the process by an external thermal source.
The gas is initially pressed down on the top by a box of lead balls. The balls are then
gradually removed. During this process the gas expands at constant temperature.

The First Law of Thermodynamics states that,

dQ+ dL = dEint. (4)

Since internal energy of a gas depends only on its temperature, in this isothermal trans-
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formation ∆Eint = 0. Substituting dL with −pdV and p with nRT/V ,

dQ = −dL = pdV = nRT
dV

V
, (5)

resulting in,

Q =

∫
dQ = nRT

∫ Vf

Vi

dV

V
= nRT ln

Vf
Vi
. (6)

Thus the entropy change is equal to,

∆S =
Q

T
= nR ln

Vf
Vi
. (7)

So, the entropy variation depends only on the initial and final state of system. After the
expansion, the final volume is larger than the initial one, therefore the entropy change is
positive.

However, the entropy postulate applies to irreversible and isolated transformation only.
In this example the transformation is not irreversible and the system is not isolated. to
consider the system isolated, the thermal source that maintains the temperature constant
must be considered in the system with the enclosure. So, the entropy variation of the gas,
∆Sgas = −|Q|/T is equal but opposite in sign to the entropy variation of the thermal source
∆Sres = +|Q|/T , resulting in an overall null entropy variation. The entropy postulate must
then be slightly changed. In a closed system, the entropy always increases for irreversible
processes or remain constant for reversible ones,

∆S ≥ 0. (8)

In any case it never decreases. This implies that if somewhere in a closed system entropy
decreases, somewhere else it must increase, at least of the same amount.

As it is known, unluckily in nature it is not possible to build a perfectly reversible
process, so in reality the equal sign in Equation (8) must be removed.

2.1.1 Statistical Thermodynamics

There is also another method to estimate the entropy of a system. This is a problem of
statistical mechanics and deals with the possible states in which atoms and molecules can
be found inside a closed box.

Let us distribute 8 molecules, identical to each other, inside a box divided ideally in
two halves. When the box is empty, there are 8 different possibilities to distribute the
molecules. Once the first is placed, there are 7 left possibilities to distribute the remaining
molecules, and so on. The total number of possible arrangements is,

8! = 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 = 40320. (9)
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However, since the molecules are identical, not all these possibilities are independent. If in
one half of the box there are 5 molecules and in the other half there are 3, then the total
number of independent possible arrangements is,

w =
N !

N1!N2!
=

8!

5!3!
= 56, (10)

Every possible independent arrangement that the molecules can assume inside the box is
called a micro-state, and the multiplicity w the number of micro-states for each configura-
tion. The total number of possible micro-states, that is equal to the sum of multiplicities
over every configuration, is 28 = 256.

The fundamental assumption in mechanical statistics is that a system has equal prob-
ability to be in any micro-state. So, while moving around, the molecules will spend the
same amount of time in each configuration. But each configuration is not equally probable.
Configurations with higher multiplicity are more likely to be found.

Calculating the multiplicity for each possible configuration, it is clear that the most
likely configuration are those where molecules are evenly distributed. For example, the
system will spend 70 times more time in the configuration where 4 molecules occupy each
half than the one where all 8 molecules occupy one half and none occupies the other.

In real cases, the number of molecules is much higher. When the number of molecules is
of the order of 1022, that is the number of molecules or atoms in a mole of any substance, the
major part of micro-states correspond to those of almost equal distribution of the molecules
in the two sides of the box. It exist, theoretically, the chance that all the molecules are in
one half of the box only, but the probability is so infinitesimally small that is practically
impossible.

Therefore, thermodynamic systems on their own tend to assume the most likely config-
uration, which coincide with the state of maximum entropy. The Austrian physicist Ludwig
Boltzmann was the first scientist to merge the multiplicative characteristic of probability,
with the additive one of entropy. From here the hypothesis that the relationship between
probability and entropy has to include the logarithm, which allows the following operation,

ln(ab) = ln a+ ln b. (11)

The probabilistic entropy relationship found by Boltzmann, which in his honor takes
his name, is the Boltzmann entropy equation,

S = k lnw, (12)

with k the Boltzmann constant and w the multiplicity associated with the configuration
under consideration.

Finally, let us imagine to apply the concept of statistical entropy to a cup of coffe that
is being mixed by a spoon. In this case the focus will be on molecules speed rather than
position.
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The final state, where the molecules are in resting state and moving randomly, has
more micro-states than the case where the molecules are moving orientated in the same
direction because of the spoon movement. So,

wrest > wrot, (13)

then, Equation (12) implies that,
Srest > Srot. (14)

Accordingly to the Second Law of Thermodynamics, coffee, once that is left alone, tends to
the state of largest entropy. It never happens the opposite. So coffee tends to move from
a rotatory motion to a resting one. No one has ever witnessed a cup of coffee that started
rotating by itself.

In conclusion, the concept of entropy is often associated to the one of disorder. When
coffee is moving in rotatory motion, the movements of the molecules is ordered and entropy
is low, while in the final steady state with high entropy, molecules motion is random and
therefore more disordered. Therefore, the Second Law states that a closed system tends to
the state of maximum entropy, which coincides with the most disordered one. This concept
extends when the surrounding are taken into consideration. As it will be discussed further,
also in the limit case where the system coincides with the whole Universe, the Second Law
is satisfied.

Following the idea that velocity of molecules is directly connected to entropy, Maxwell
distribution can be used to calculate the entropy. The Scottish physicist James Clerk
Maxwell 1831 - 1879 first found a relationship that described the velocity of circulation of
molecules in a gas containing a high number of molecules.

It is in fact possible to calculate the root-mean-squared speed vrms of molecules in a
isolated gas relying on the concept of pressure towards the enclosure walls and the density of
the gas. However, this does not provide any information on the distribution of the speeds.
It is not likely that all molecules will have the same speed as collisions are continuously
happening. Nor it is more likely that all particles have speed equal to zero or much greater
than vrms. So the Maxwell-Boltzmann distribution for a sample of gas at thermodynamic
equilibrium, with temperature T and N molecules of mass m is,

N(v) = 4πN

(
m

2πkT

)3/2

v2e−mv
2/2kT , (15)

with the product N(v)dv equal to the number of molecules having speed in the range v
and v + dv. Thus,

N =

∫ ∞
0

N(v)dv, (16)

is equal to the total number of particles. Choosing appropriately v1 and v2 it is possible
to find the number of molecules with the velocity in that range as the area under the
distribution between the two limits.
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Let us imagine some water in an isolated enclosure. The Maxwell-Boltzmann distri-
bution says that only few molecules will have enough speed to escape from water surface
and evaporate; the tail is in fact small. When evaporating, the kinetic energy inside the
water decreases, with a consequent decrease of molecules’ speed and thus a decrease of
temperature. This is why evaporation is a cooling process. However, if the enclosure is
removed, the energy outflow will be compensated by inflow of heat, and the evaporation
process will take place at constant temperature T until there will be no water left.

The Maxwell-Boltzmann distribution can therefore be used to estimate the velocity of
particles in a gas. Then this information can be used to evaluate the entropy through
relation (12).

2.2 Power-Laws or Pareto distributions

Power-law distributions are used to described phenomena where a large portion of the
effects can be linked to a small portion of causes and the remaining portion of effects to
a large portion of the causes. Such a behavior is is very common in nature. Examples
of phenomena distributed as power-laws are the following: word frequency in natural lan-
guage, citations of scientific papers, magnitude of earthquakes, diameters of moon craters,
wealth of richest people, populations of cities and many more. However, scientists cannot
still define if there is a single underlying mechanism that origins such behavior.

Power-law distribution are sometimes called Pareto distributions, in honor of Vilfredo
Pareto 1848 - 1923, an Italian engineer-economist who first made use of the relationship to
explain income distribution, or Zipf’s law, an American linguist and philologist who studied
statistical behavior of different languages. Two example are now presented to introduce
the reader to an illustration of power-law distributions.

The average human being is around 180cm tall, which means that some people are
higher and other are shorter. We never see people whose height is very far from the mean,
for example we never see people 10cm or 500cm tall. According to the Guinness Book of
Records, the shortest and tallest man were respectively 57cm and 272cm, with a ratio of
4.8.

However, as it is well known, many other phenomena are distributed differently. For
example sizes of towns and cities vary much more significantly. There are few huge cities
with populations above millions, while many more have smaller numbers, in the order of
thousands. In the US, the largest city is New York City, with around 8 million people; the
smallest, according to the Book of Records, is Duffield in Virginia, with a population of 52
people. In this case, the ratio is 150000.

So, in the former case, it is likely to find the major part of peoples’ heights to be centered
around the mean with few outliers. In the latter case instead there will be few cities that
accounts for a big fraction of the population and many more small cities that accounts
for the rest. Heights distribution can be well approximated by a normal distribution. On
the other hand, the distribution of cities’ dimensions is significantly skewed, so a different
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distribution is needed.
Let p(x)dx be the fraction of cities with population between x and x + dx. If the

histogram on a log-log scale of the data is a straight line with negative slope, then the
logarithmic transformation would look like ln p(x) = −α lnx+c, with α and c two constants.
Taking the exponential of both sides:

p(x) = Cx−α. (17)

Distributions of the form (17) are said to be following a power-law distribution, with α the
exponent of the power law and C = ec.

Power-laws phenomena can be represented in many ways. The most efficient consists
in using a cumulative distribution function,

P (x) =

∫ ∞
x

p(x)dx = C

∫ ∞
x

x−αdx =
C

α− 1
x−α+1. (18)

The cumulative distribution function follows a power-law as well, but with exponent α−1.
The plot of P (x) on logarithmic scales is again a straight line, but with a slightly shallower
slope.

One should also note that few real-world distributions follow a power-law behavior over
their entire range. When x → 0 the function p(x) = Cx−α diverges, so the power-law
behavior must deviate to another behavior for some x < xmin. This is why often it is said
that a certain phenomenon has a power-law tail.

Now, the principal properties of power-law distributions are derived. Equation 17 says
that a continuous real variable x has probability p(x) to assume value between x and x+dx
equal to Cx−α, with α > 0. Thus, the constant C is found imposing the normalization
requirement on 18:

1 =

∫ ∞
x

p(x)dx = C

∫ ∞
x

x−αdx =
C

1− α

[
x−α+1

]∞
xmin

. (19)

As we have just said, there must be a lower value xmin that act as a limit for the power-law
to converge.

For the right-hand side of the equation to converge, it must be α > 1. Otherwise the
equation diverges and cannot be normalized. Solving (19),

C = (α− 1)xα−1min , (20)

and thus,

p(x) =
α− 1

xmin

(
x

xmin

)−α
. (21)

Distributions that do not follow a power-law over their entire range might still be
normalized independently of the value of α. However, power-law distribution with α ≤ 1
do not occur normally in nature, if ever.
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The first two moments will be derived now and it will be clear that all moments can be
derived with a simple generalization. Let X be a power-law distributed random variable
∈ (xmin,∞). The mean is then given by,

E[X] =

∫ ∞
xmin

xp(x)dx = C

∫ ∞
xmin

x−α+1dx =
C

2− α

[
x−α+2

]∞
xmin

. (22)

Note that if α < 2 the mean does not have a finite value. Indeed, if we calculate the mean
of all the observation we will always get a finite value. But in case the sample is infinite,
then the mean would diverge. The actual meaning of the divergence of the mean consists
in the extreme volatility of the variable distributed as a power-law. The mean is not well
defined as the values can vary enormously from one measurement to another. For α > 2
the mean is however well defined and equal to,

E[X] =
α− 1

α− 2
xmin. (23)

The second moment is,

E[X2] =
C

3− α

[
x−α+3

]∞
xmin

, (24)

and diverges for α < 3, meaning that no finite mean square nor variance exist. So, the
same argument for the divergence of the mean holds. Otherwise, the second moment is
well defined and is equal to,

E[X2] =
α− 1

α− 3
x2min. (25)

The result can be generalized as follows,

E[Xm] =
α− 1

α− 1−m
xmmin. (26)

Last, the Pareto principle will be presented, also referred as 80/20 rule. The principle
states that 80% of the effects are caused by 20% of the causes. The principle was named in
Pareto’s honor who, during the investigation of wealth distribution in Italy, was the first
to state that 80% of the wealth in Italy belonged to 20% of the people. For this reason, in
this paragraph, p(x) will be referred to as the wealth distribution.

The principle will now be generalized. First the fraction of wealth belonging to the
two halves of the population is found. For any power-law with α > 1 the median is well
defined. There is then a point that divides the distribution in two equal parts. The point
is given by, ∫ ∞

x1/2

p(x)dx =
1

2

∫ ∞
xmin

p(x)dx, (27)
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which leads to,
x1/2 = 21/(α−1)xmin. (28)

The richest half posses a fraction of wealth equal to,∫∞
x1/2

xp(x)dx∫∞
xmin

xp(x)dx
=

(
x1/2

xmin

)−α+2

= 2−
(
α−2
α−1

)
, (29)

which converges provided that α > 2.
Thus, the amount of wealth detained by the richest half depends only on the exponent

α that characterizes the power-law distribution. If α = 2.1 the richest 50% detains ' 94%
of the wealth.

More generally, the fraction of the population whose wealth exceeds x is given by the
combining (18) and (20),

P (x) =

∫ ∞
x

p(x)dx =
C

α− 1
x−α+1 =

(
x

xmin

)−α+1

, (30)

then, the portion of wealth belonging to those people is,

W =

∫∞
x p(x)dx∫∞
xmin

p(x)dx
=

(
x

xmin

)−α+2

. (31)

Assuming α > 2 and substituting (30) into (31), the wealth in the richest P of the popu-
lation is,

W = P (α−2)/(α−1). (32)

2.3 Thermodynamic Quantifiers for Socioeconomic Phenomena

We now want to have a look at how humans have built, and keep building, their economic
system. That is, how societies have been using the resources from earth, with high potential
energy, to build an ordered state for themselves, resulting in a reduction of potential energy
and an increase of entropy in the system.

Let us first give a look at how population has been growing and evolving around the
world. Data from Angus Maddison researches and from the Maddison Project are referred
to, and are considered as one of the most reliable sources of historic data about economic
statistics.

Around 0 A. D. the average life expectancy was about 24 years, and still in 1820 A.D.
it did not increase significantly, as it was about 26 years. However, from the nineteenth
century until today, life expectancy has grown significantly, and is now an average of 66
years world wide, with a maximum average of 77-81 years in developed countries and a
minimum average of 52 years in Africa. Even if in the mid-nineteenth century life had
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already extended significantly, half of the population was estimated to die before the 45th
year of age.

The increase in life expectancy has not only let humans to live longer, but also allowed
populations to grow significantly. From 0 A.D., population on earth has grown from 231
million people to 603 millions at the beginning of the eighteen century. Then, the total
population grew significantly to 1040 millions in 1820 A.D., 2527 millions in 1950 A.D.,
7162 millions in 2013 A.D., and is forecasted to become 9551 by 2050 A.D.

The first large growth in population happened in Europe, followed by the Americas
and Oceania. Then, growth moved to Asia and Latin America. And finally, future growth
is predicted to be driven by Africa. These changes are driven by economic features. Pop-
ulations grow significantly during industrial transformations, then stabilizes when their
economies become service oriented and manufacturing is moved in less developed countries
that demand lower wages.

During the agricultural and industrial revolution in the eighteen century, man learned to
use wind and water for agriculture; animals and boats for longer movements and transporta-
tions. Physical work by humans was still heavy and inevitable, and time for non-essential
pursuits was scarce.

In the nineteenth century, scientific advances led to innovative agricultural techniques
and a mechanization of work. But most importantly, carbon started being employed as
a powerful energy source for the production of trains and boats and for their functioning
through steam engines.

The eighteen and the nineteen centuries are marked by inventions that change the
way humans live. Means of transportation and communication, electricity, vaccines and
medicinals are some of discoveries that happened in this period and that contributed to
not only the survival of human beings, but to enhance their ability to live their lives.
Life expectancy grew and time for non-essential pursuits arose. People became able to
accumulate surplus for savings or reinvestments to stimulate the growth process.

The twentieth century, even if it sees two devastating global wars, is characterized by an
even further growth and technological advancement. Oil and gas are the new, and higher in
potential energy, sources of energy employed on massive scale. Internet, superconductors
and artificial hearts are some of the type of inventions that characterize this period.

Now western countries are considered developed and they moved to a service oriented
economy, moving large parts of the manufacturing chain in countries that are still in devel-
opment, where wage cost supported by the industry for the same output is lower. Recently
this process has accelerated. Korea and BRICS countries (Brazil, Russia, India, China,
South Africa) have acquired the same knowledge of western countries and are moving their
manufacturing centers abroad. According to estimates, global GDP has grown by a factor
of 73 from 1820 to 2008.

Of course, this growth has been sustained by a continuous growth in energy consump-
tion, almost everything we rely on in our daily life needs energy to work. This energy is
mainly originated from fossil fuels’ consumption, resulting in emission of CO2 and other
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greenhouse gasses.
An econophysicist might see in this picture of human development a strikingly similar

concept with the one of entropy. As humans build a more ordered state for themselves with
a negative change of entropy, a more disordered state is delivered to the system, resulting
in an overall net positive entropy variation.

We now want to set the roots for the mathematics behind a thermodynamic framework
of economics. Economics is about the circulation of goods and money and the flow of value.
However, the process through which economics associates value to each object might not
be obvious. This is why we present here the properties of value and show an ideal economic
cycle.

We first need to define the difference between productive content k and economic value.
The productive content of an abject is given by the characteristics that an object possesses,
such as color, weight and shape; it allows the object itself to be defined univocally and
to be different from all other objects. The economic value is instead the price agreed by
economic agents to make an exchange; for the same object it can be different depending on
the circumstances of the exchange, such as geographic region or levels in market demand.
But for the same object, the productive content does not vary, unless the object is consumed
or used up during an industrial process. In fact, the productive content does vary at each
stage of production with a corresponding reduction in potential energy and release of
entropy in the system.

The productive content k is similar to the Boltzmann constant: it is just something
that exist, it is impossible to define it. Economists argue that in economics it is impossible
to assert the value of an object univocally, as it depends on people; it is not deterministic
as in the sciences. It is also impossible to associate an economic value to each object with
a productive content comparing it to a fixed body of reference: this body of reference does
not exist, and even if there was one, it would be impossible to fix values as they vary with
respect to each other.

In the past, exchange values were determined by barter, that is by equating values
between different objects. Then, money was introduced, coupled with a physical stan-
dard such as gold for the dollar. Nowadays, following the collapse of the Bretton Woods’
agreements, currencies’ values are free to fluctuate on the markets and are regulated by
institutions that determine interest rates and supply of money. So, given the stability of
value granted by these institutions, economists define both the productive content k of
money and its exchange value to be 1, of any currency (1 dollar, 1 pound, 1 euro, ...), while
the market determines what you can buy with it.

A second problem concern the evaluation of the productive content of human labour. It
is determined by many factors: age, skills, motivation. Economists get around the problem
defining, also in this case, the productive content of human labour as one person. The cost
of labour is then associated with the wage rate per unit of time per person. Thus, cost of
labour is again defined subjectively by other humans, relatively to purchase power and as
variation in productive content, brought to an object, by the work engaged by the worker.
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In general, economics associates any object with a productive content k of 1 unit; then
the markets determines the exchange value. However the real source of the economic value
derives from the productive content itself and the processes through which it is made and
consumed, both in terms of inanimate and living resources.

Economic accounting measures economic value in terms of: net value added, type of
expenditure it represents, income to humans. Resource consumption is defined by humans
as money exchanged. At each stage of production, input is used to produce output, from
raw materials to the final product; at each step productive content is constantly refined
and waste discarded, but humans are paid and economic value grows. Therefore, we can
say that humans make a profit out of building a more ordered state for themselves at the
expense, in term of entropy gain, of the universe system which increasingly become more
disordered. One of the reasons because this happens is that humans assume ownership
over resources and do not have to respond for losses of value or entropy increase to Nature.

An economic-thermodynamic cycle can be represented as follows. Resources are taken
from the environment with high potential energy and low entropy and are combined with
human labour and capital stock to produce output. Each time some input go through
the economic engine, in addition to production of output, waste is discarded into the
environment. Now, the output produced, can be exchanged for money. This money are
under the form of profit and wages on the producer side and expenditures and consumptions
on the buyer side. The output produced can then be ready for consumers’ consumption or
can become new input for further production.

At each stage the input produced is characterized by low entropy and high potential
energy, and can be used for consumption or become further input, though for a limited
number of cycles before being consumed; on the other hand, waste is characterized by
low potential energy and high entropy, so even if discarded back into the environment, it
cannot be used as input.

Paul Samuelson noted, during his Nobel lecture, that in the physical world the pressure
of a gas can be raised by compressing its volume or by absorbing some energy from a
source at a higher temperature, likewise in economics price of a unit of volume output can
increase or decrease according to supply and demand.

As between economics and thermodynamics there are many similarities, it is also funda-
mental to outline the differences. First, volume in science indicates a collection of molecules
of a gas in a closed space, flowing or non flowing, such as a balloon or a pipeline. In eco-
nomics, volume stands for the amount of product per unit of time that flow into or out of
a stock.

We can set an economic exchange whose functioning can be described by the same
relation (1) used for ideal gasses. N is the number of units or carriers of value with an
associated and independent productive content k. Given V the volume that goes through
the stock per unit of time, two humans can exchange different carriers of value at a chosen
price P according to an Index of trading value T. However, as already stated, economics
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define k to be 1. So the relationship (1) simplifies to:

PV = NT, (33)

with N being the number of stock units being turned over by index T to become input
(or output) value flow PV. Note that, even if T is equated to the velocity of circulation of
a currency, it can also be referred to any item of exchange.

We should not forget that, the notion of price is associated to a stock of money, which
has productive content equal to its price, equal to 1.

If value flow PV varies on one side, then it must be able to vary also on the other side
of Equation (33). Especially when the stock number N is fixed, then T must be able to
embody both changes in P and V.

Two differences between economics and sciences should be emphasized. First, in sci-
ences, volume flow of gasses is said to act in a tridimensional manner. In economics, volume
flow is defined as item flow, without a spatial volume, and is said to act at a point. The
second is that, for flow systems, V and N are bonded by the throughput flow per unit
of time: both sides of equation must be balanced. For non-flow systems, V refers to the
volume which contains the gas that can expand or contract while N is the fixed number of
molecules enclosed in the volume.

Economics however has both characteristics of flow and non-flow systems. In this case,
V on one side is associated with volume flow; on the other side N does not change, but the
concept of flow is transferred to the index of trading value T, which describes the velocity
of circulation of the relative item and is also related to the price P.

We can make a comparison between the unit of measure, respectively, in thermody-
namics and in economics: P can indicate pressure or price per unit, V volume or units of
output per unit of time, N number of molecules or number of carriers of value in a stock, T
temperature or index of trading value and k the Boltzmann constant or productive content.
Time is balanced out in both cases.

Furthermore, while productive content flowing through a stock does not change, the
productive content that goes through a process of production/consumption does change,
with an additional undefined efficiency loss.

2.3.1 The First Law of Thermodynamics: An Economic Perspective

Shifting to an economic perspective, we cannot say that energy and value are the same,
they are different concepts, but it seems that they obey to similar principles. Recalling
the First Law of Thermodynamics exposed in Section 2.2, let us now imagine a stock, with
internal energy U, consisting in N units of a good with productive content k equal to 1.
At one end, an input work value flow G feeds the stock per unit of time of the good. At
the other end, a similar output work value flow G of the good comes out. Additionally, to
let the system work, an entropic value Q must feed the stock.
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Three events can impact on the stock. The first concerns a variation in Work Value G
per unit of time, defined as a change in volume flow V,

dG = PdV. (34)

The second, occurs when the amount of Q feeding the system changes. Q represents
an external factor such as consumer preferences or abundance of a particular good, that
can affect the way the work value flow G act on the system.

The third, can occur when there is a change in the economic value U of the stock,
which we call Internal Value. The internal value is different from the stock productive
content. The internal value varies according to the trading index T, that is the amount of
units entering and leaving the stock per unit of time. On the other hand, since k is set to
1, the stock productive content is fixed by N.

Moreover, U will also be a function of the relative time spent in stock, compared to
the flow of economic activity. This proportion will be called value capacity or lifetime
coefficient ω. Industrial stocks have high ω, as their volume throughput is high compared
to their size. Other stocks have lower ω, e.g. money are turned over several times a year
while bonds or human capital usually last longer. An alternative measure of the lifetime
coefficient is the rate of return,

r =
1

ω
. (35)

For example, a stock having 10 units, of which 1 joins every year and 1 leaves every year,
has a rate of return of 10% and value capacity of 10, which is also equal equal to the ratio
of time spent in stock, i.e. ten years, and the time base of economic activity, i. e. one year.
The change in stock internal value is therefore,

dU = NωdT. (36)

The equivalent of the value capacity in thermodynamics is the specific heat capacity, that
is the amount of energy that one unit of mass of an element needs to raise its temperature
by one degree K. The specific heat capacity varies significantly upon the element.

The economic concept of internal energy deals with the changes in volume flow of
productive content and entropic valued added or taken away. This concept is explained
with the help of the following example. A trader dealing with a stock with productive
content k = 1, trades with a work value G a volume V at a price P, giving a turnover G
= PV, which satisfies also the relationship involving the trading index: PV = NT. In a
good year, an increase of entropic value Q due to an increase in demand might allow the
trader to charge higher prices and increase his work value flow G. In such case, the internal
energy U is perceived to increase as well, along with T, even if the item has not changed.
The opposite for Q decreasing holds. So, the internal value U is a function of the index
of trading value T, and T is a measure of both the volume speed and the price at which
economic stocks are being turned over.
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An economic definition for the First Law of Thermodynamics in (2) might be the
following: ”Entropic Value introduced (or taken away) is equal to the change in work value
flow rate, plus any change in the internal value of the stock”.

The First Law of Thermodynamics says nothing about the efficiency of a cycle. It just
states that work cannot be done without a source of heat, and so that a perpetual machine
cannot exist. Similarly in our economic system, it is impossible to have an increase in
work output without an increase in supply from additional resources. So it seems possible
that an economic system obeys to the First Law, as it works in cycles, recalling the idea of
conservation of energy. What the First Law does not mention is the irreversibility of the
process, where an input, to be converted in output, always discards some waste in system,
which cannot be reused, undermining the reversibility of the cycle.

2.3.2 The Second Law of Thermodynamics: An Economic Perspective

The Second Law of Thermodynamics states that an amount of heat must always be rejected
during a thermodynamic cycle: It is impossible to construct a system that will operate
in a cycle, extract heat from a reservoir, and do an equivalent amount of work on the
surroundings.

The easiest example is that of a fossil-fired power station. The temperature of the flue
gas is much higher than the temperature released to the surroundings, entailing a loss of
energy in the system. Another example is the loss of energy along the power lines used
to transport electricity. At each stage of production/transportation, bits of energy Q and
work value G are passed along and some heat Q is discarded and lost in the process. We
can say that the electricity that we use daily is highly ordered.

As already noted in Section 2.2, in thermodynamics, entropy regards the amount of
energy in a cycle that cannot be used to do work. In statistical mechanics, it is a measure
of the probability that a system would be in a certain state; which is usually referred to as
a measure of disorder.

In economics terms, we can say that it is impossible to construct an economic system
which will operate in a cycle, extract productive content from a resource reservoir and do
an equivalent amount of work, in terms of manufacture and productive content. Economic
systems are highly inefficient as they involve large production of waste and a significant
level of irreversibility.

However, it seems like economics does not obey to the Second Law since no subtraction
in financial accounts is made to take into account losses in efficiency and productive content.
Any individual pays for what he or she consumes, with no concern about the energy lost
in the process, that is, for the increase of entropy. We can then say that in economics an
idea of reversibility is assumed and Equation (3) can be written,

dS = dQ/Trev (37)

By combining Equation (37) with the relationships for the First Law for a polytropic
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system with a single unit of stock, we obtain

dS = (ω − ωn+ 1)
dV

Vrev
(38)

which describes the entropy variation as change in volume throughput per unit of time and
as a function of the lifetime coefficient and of the elastic index.

When integrated Equation (38) looks similar to Equation (12):

S = (ω − ωn+ 1) lnV + C, (39)

with C a constant of integration, and the factor (ω − ωn+ 1) is called Marginal Entropic
Index.

recalling (35), we can substitute and obtain,

S =

(
1 +

1− n
r

)
lnV + C (40)

Two things can be noted. When the Marginal Entropic Index is zero, then the entropy
generation is zero, which means that the equilibrium is maintained. Then, even if the
volume flow rate V does not change, an entropy variation can still appear due to a change
in prices P or in the index of trading value T.

Finally we can note that entropy variation in (38) is logarithmic in nature, which means
that changes dS can be viewed as per cent changes in the volume flow rate, price or index
of trading value - corrected by the Marginal Entropic Index - and with k equal to 1.

2.3.3 Income and Wealth

Global productive content contribution is assumed to be attributed to humankind and
measured by GDP per capita. Relationship (33) can be adjusted substituting the index of
trading value T with income rate w and allowing N to represent the total population, to
obtain:

PV = Nw. (41)

This relationship is a mean value among all people considered in N, there is then a
individual distribution according to individual contribution. Equation (41) can be regarded
as the kinetic value that measures the amount of value circulating between people.

It is well known in economics that income has a skewed distribution. As mean income
rises, the curve broadens as income distribution becomes more uniform and moves right.
To describe this relationship, economists use different distributions, with the log-normal
the most common, but others include Gamma and Maxwell-Boltzmann distributions.

Similar skewed distribution is found in analyzing kinetic energies of gasses’ particles,
which, as discussed above, are distributed following a Maxwell-Boltzmann distribution
about a mean energy value kT.
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2.3.4 Elasticity

In a thermodynamic system, pressure and volume are not always inversely proportional,
but are related through an index n of compression or expansion. This gives rise to the
following polytropic relationship:

PV n = C, (42)

where C is a constant. Characteristic of polytropic equations is that they can be adapted
to fit any situation. Any relationship can be obtained with (42). If n = 0, a constant price
situation is found. If n =∞ a constant volume flow position is obtained.

Similar relationship fits also for economics, where price and volume are not always
simply inversely proportional. Furthermore, combining (42) with (33) and setting N = 1,
we can let Equation 42 cover the index of trading value T too,

T = CV 1−n. (43)

2.3.5 Utility

In utility theory, each consumer associates an amount of utility to each good, which depends
on personal interests, and given a budget constraint, decides how to allocate its budget
in order to maximize its utility. A basic rule of utility theory, is that as a consumer
demands more of the same good, the utility gained by each incremental unit diminishes.
This behavior is referred to as diminishing marginal utility and is formalized as following:

(δY/δV )a
Pa

=
(δY/δV )b

Pb
= ... =

(δY/δV )n
Pn

(44)

where (δY/δV )i is the ratio of the marginal utility per volume variation of item i and Pi
is the price of item i. This relationship states that the variation in marginal utility of a
good, with respect to its variation in volume and its price, is equal to that of another good.
Consumer equilibrium in Equation (44), if reached, is never maintained.

An example of diminishing marginal utility is the following. A human or an animal,
might feel hungry and desperate if they have not eaten for long time. But once they
find some food, their benefit from eating it decreases as they sate their hunger; they will
not keep eating forever. In modern societies, there is a large difference between utility
preferences. Advanced societies demand almost entirely unnecessary goods while poor one
still starve for daily survival.

We can say that a good we are interested in, which might have gone through many
production stages, has a low level of entropy and a high level of order of productive content.
But as the good is consumed, a part of productive content is assimilated by the consumer,
satisfying a portion of his utility; the rest is discarded contributing to entropy rise. Thus,
we now try to find a link between entropy and utility.

A consumer who buys a good, passes from a moment where his level of entropy was
high before the purchase, to one where the entropy level has decreased at the moment of
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the purchase. In the act of purchasing, the consumer has gained some negentropy because
he has increased order for himself. However, to purchase the good, an amount of money
must have left his stock, resulting in an overall entropy variation very small; but large
enough for the purchase to make sense. After the purchase however, as the good is being
consumed, new entropy would gradually be created. Also in the case the consumer did
not purchase the item, entropy creation would have happen through other consumptions
or loss of value of the money stock.

Utility can then be defined as potential economic entropy. Utility resides at the begin-
ning of ownership and entropy is generated as the purchased item goes through time.

A thermodynamic process must be able to describe variations in price and utility in-
dependently from the underlying productive content. The entropic value Q which incor-
porates changes in demand, new money and other features, can be used to describe how
individual utility is influenced.

For a single consumer, we can set his stock to be made by one unit N = 1. Thus,
Equation (38) links the marginal entropy change for one unit of product, to the marginal
entropy change of the consumer for that product.

Further, his wage w can be related to the total value flow PV that he can purchase:

w = PV (45)

Then, w = 1 can be set and one can imagine that its budget can be spent on one
product only. Thus, inverting for V Equation (45) and substituting into Equation (38),
we obtain, (

dS/dV

P

)
= (ω − ωn+ 1). (46)

It is straightforward to see the similarity of the left terms of (46) with Equation (44) for
diminishing marginal utility. Additionally, the relationship could further be simplified if we
assume the elastic constant n to be 1, resulting in the price P being inversely proportional
to volume V, independently on the the value of the lifetime coefficient ω.

We can then say that entropy and utility are related to each other, with the entropy
proceeding in the opposite direction, thus called negentropy. Moreover, entropy is additive,
so summing all contributions from different consumers together can bring to a measure of
social good.

This is not an equilibrium process, but one forever seeking it. A thermodynamic repre-
sentation of the economic system is therefore of non-equilibrium and obeys to Le Châtelier
principle, which states that, if a change occurs in one of the factors under which a system
is in equilibrium, then the system will tend to adjust itself so as to annul the effects of that
change. It does not mean the system will reach it, but that it will continually try to reach
the equilibrium. Therefore, differently from economics, where the constraint is associated
with the budget or wage, a thermodynamic representation can take into account a multiple
of relevant factors, allowing the constraint to be variable as well.
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2.4 Production and Consumption

Human needs are met by a combination of production and consumption, measured in mon-
etary terms by GDP. However, this value does not describe the dynamics of the economic
system.

The traditional economic framework that describes the production dynamics is the
theory of the firm which relies on production and marginal productivity functions and
relates inputs and outputs of a process. An important production function is the Cobb-
Douglas’s that follows,

VO = Aeλt(NK)α(NL)β, (47)

where, VO is the output volume flow, A represents usage of stocks per unit of time, NK and
NL capital and labour stocks, α and β the elastic coefficients, and the exponential function
is the Hicks-neutral technical progress function and represents the impact of technical
progress over time.

In Equation (47) does not appear any reference to possible short-time shortages or
constraints. Economics, gives for granted the supply of energy and consequently α and
β are a measure of the marginal productivities of capital and labour, measured as shares
of capital and labour costs, while all other factors are measured through the technical
progress. however, the Cobb − Douglas production function assumes supply of resources
and forgets about productive content consumption and entropy generation.

In the short-term, resources can be divided in renewable with an extended lifetime, or
non-renewable with short lifetime, i.e. that needs continuous substitution. For example,
human contribution lasts for long time, and is renewed with the birth and education process.
On the other hand, fuels usually have a very short lifetime. Resources operates also at
different activity levels during their lifetime. Ultimately, in the long-term all resources
must be substituted.

In this section an alternative framework, typical of chemical reactions, is proposed to
describe the production system. A system works according to a fixed process, that is a
process that needs an exact combination of resources in input to yield a final product as
output. Input volume flows of energy and resources arise from stocks or from external
sources. Thus, to produce one unit of output O, the production function needs α units of
capital stock K, β units of labour L and δ units of resources R. The production process
works then similarly to a chemical reaction and can be written:

αK + βL+ δR
 1O. (48)

There are however some key differences. In economics, reactions only proceeds for-
ward. Then, reactants always need some treatment to be used for producing output.
Consequently, an amount of waste with low productive content and high entropy value
must be discarded with a resulting increase in entropy in the system. The consumer will
therefore pay according to the process occurred and for the efficiency losses in the chain.
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To account for efficiency losses, production waste will be indicated byD. Then Equation
(48) can be corrected into,

αK + βL+ δR
 1O + ρD. (49)

We can then represent the creation of an ordered product with low entropy and the genera-
tion of high entropy waste through the combination/consumption of resources. Ultimately,
when the final output is consumed as well, a further increase in entropy is generated.

The thermodynamic approach is based on Le Châtelier principle. The system does
not reach an equilibrium, but continually seek to proceed to such state. We can see
that, from the thermodynamic perspective, we operate in a non-equilibrium system, while
from the macroeconomic accounts perspective, that is, in terms of money, we operate in
an equilibrium system. In fact, the equality symbol is used in Equation (47), while the
reversible chemical reaction symbol is used in (48) and (49). We then need to identify the
source of disequilibrium.

Let us redefine the volume flows, separating them into active component referred as a
and an inactive one referred as (1 − a), respectively indicating the part of the stock that
are actively contributing to the output and the part that is not being used. In chemistry,
the concept of activity is common; it indicates the effective concentration of a species in
a mixture. In an economic context, a is variable. It depends on the portion of resources
used to fuel productivity, but refers also to stock constraints due to stock renewability or
eventual shortages.

We could represent the proportion of active stock as Na = a · N and the portion of
inactive stock as Ni = (1− a) ·N . As a consequence, the volume flow can be indicated as,

V = v ·Na = v · a ·N, (50)

with v the volume flow rate per unit of time.
For example, the output flow on the right side of (49) contributed by active labour,

is offset by potential output that could be generated by inactive labour, which therefore
does not contribute to generate value for the system but rather absorbs it. Likewise, it be
would preferable to have a production system that is always fully active rather than one
interrupted by down-times. Another example is the case of debt used to finance production
flows. If interest rates increase a portion of the active stock of money must be transferred
to interest payments, decreasing activity levels.

Additionally, although it does not appear in national accounts, resource stocks exhibit
property of utilization. Flow in production and consumption are variable and subject to
levels of demand, depletion, human intervention, and could also face saturation or inactivity
of the stock itself, with consequential obsolescence and depreciation.

We now look at volume input flow on the left side of (49) as reactants of capital, such
as labour and resources, which are fed in the production process to deliver steady output
flows defined through activity levels, that indicates the proportion of each input stock that
actively contributes to the production process and output flow.
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In addition, an amount of motive force of anticipated benefits can be injected to further
increase the activity levels of the production flow.

However, the rise in activity levels is not consequential. The maximum level that can
be reached depends upon inactive availabilities and ultimate output demand. For example,
an input factor that was already fully active cannot contribute to further production flow
and eventually become a constraint.

To explain the impact of motive force on production flows the concept of Free Energy is
recalled. The concept was pioneered by Josiah Willard Gibbs and Herman von Helmholtz.
It expresses the available amount or free energy that can be used up in a reaction to
equilibrium. In economics we apply the variant, that is used in chemistry, to describe the
chemical potential µ,

µ = µstd −NkT lnV, (51)

expressed as a logarithmic function of the volume and a constant, called standard state
value µstd, measured empirically.

In the economic representation, the free value of an economic component can be asso-
ciated to both volume flow or activity rate. Since in economics the factor k becomes 1, we
can write,

µ = µstd −NT lnV (52)

µ = µstd −NT ln a (53)

with N the stock number and T the index of trading value.
Instead of using energies, we refer to the free values of each reactant, both in input and

output. Considering the Euler exponents set out in the Cobb-Douglas production function,
to recognize that a fixed amount of input factors are needed to make a product, the net
free value available is then equal to

1[µ]O + ρ[µ]D − α[µ]K − β[µ]L − δ[µ]R (54)

The equation describes the parts of inactive inputs that become active when they combine
together to form product.

Two features should be noted. First, in economics the components melt together
through a common denominator: money. Second, change in free value ∆µ can also be
expressed as negative change in entropy −T ∗ ∆S; for example, in a forward reaction or
in a growing economy, free value is consumed to fuel growth, with a resulting increase in
entropy.

Another expression that can be written is the following,(
V2
V1

)
= eS2−S1

(
V2
V1

)α
K

(
V2
V1

)β
L

(
V2
V1

)δ
R

(
V2
V1

)−ρ
D

, (55)(
V2
V1

)
= eS2−S1

(
a2
a1

)α
K

(
a2
a1

)β
L

(
a2
a1

)δ
R

(
a2
a1

)−ρ
D

. (56)
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On the right side of Equations (55) and (56) changes in output volume flows are expressed
on the left as a function of an exponential term, accounting for entropy change, and a
series of factors accounting for changes in production flows. In Equation (55) changes are
expressed in term of volume flows; while in Equation (56) changes are expressed in term
of activity levels.

So, change in demand to consume more is compensated by changes in production
factors corrected by an entropy factor related to the whole system. A perfectly efficient
production function would allow a change in entropy equal to zero; in other words, an
input combination that is fully transformed in output without production of waste would
be possible. But we know that this would violate the Second Law of Thermodynamics.

Even if Equations (55), (56) have similarities with the Cobb-Douglas function, there
are some key differences. If a rise in the system entropy is met by a change in input and
output volumes, such that the entropy generated in the system is null, then the system
entropy has been transferred to the system relating input and output consumption and
waste production. In Equation (49), a technical progress function is not required, as this
is incorporated in changes in the mixture of inputs and production flows. Finally, no
assumption is made on forward growth or decline; any position is a continual dynamic
feedback situation and equilibrium is just a temporary moment.

We can say that in an economic system, change in active output volume demanded
is represented by a change in the system entropy function and a change of flow of input
factors available to combine together. A restriction on any input factor influences the whole
system and might become a constraint.

The production process outlined is dynamic in the sense that we have built an economic
system that links multiple parts in an economic chain, emphasizing the interacting nature
of the system, where the free energy used by a component of the system is replaced by that
of another, resulting in an overall increase of entropy. Moreover, if a particular constraint
has an effect on a component of the economic chain, it might happen to cause a reaction
on other parts of the chain.

The thermodynamic nature of the economic perspective outlines that output is a com-
plex non-equilibrium function, influenced by many dynamically interacting stocks and
flows, with an equilibrium position that is itself continuously varying to seek entropy max-
imization states, according to eventual constraints.

In general terms, we can write an entropy function, recalling the Boltzmann entropy,
which describes entropy as a logarithmic function of economic activity V and the level of
constraints X present in the system:

S = ln
V

X
. (57)

We will now use an example to show the growth of entropy in our economic system.
Imagine a man living outside civilized society. He wants to build an house from local
material to improve his well-being and protect from natural events. Using resources and
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his physical effort, the man builds a more ordered state for himself. However, without
effort to maintain the house, it will fall into despair and eventually fall down and lose its
value, resulting in an entropy increase.

During the production process, assembling resources with his effort, the man has created
order and caused an entropy reduction. On the other hand, unusable waste has bee created,
resulting in an increase of entropy. Furthermore, through the life of the house, other entropy
is generated as the house is being consumed by the man and the environment. If the man
eventually take care of the house or builds another one, the process would restart from
beginning, with a consequent perpetual increase in entropy.

In modern societies, humans have assembled together and made technological advance-
ments that allowed to transfer efforts to other resources at his own benefit, becoming an
overseer of the process. The discovery of new sources of energy has allowed humans to
accelerate the rate of production and consumption, even resulting in what we call ex-
treme consumerism and planned obsolescence. At this stage, entropy production rate has
increased enormously, but is still dependent on supply of energy and resources.

We then see that both economic and thermodynamic systems favors conditions of max-
imum entropy production. This principle causes the pursue of position where activity
rates of inactive inputs can be easily and with minimum cost increased, e.g. investments
in economic structures that allow higher output yields or bypass eventual constraints and
pursuit of short-term project rather than sustainable long-term ones.

2.5 Money

We have set until now an economic system in terms of flows and stocks, giving an idea of
how large can the interconnections be and thus the complexity degree of the whole system.
Money is central for this system to work. It can be seen as a common stock used as a mean
to exchange value between different flows. Money is therefore considered as a unique large
stock accounting for all production flows, but in the opposite direction.

A monetary equivalent of value, equal to price times volume flow P · V , flows in and
out of the stock, in the opposite direction of value itself. The stock of money is made of
N units, with productive content k equal to 1 of any currency, and it is turned around by
the index of trading value T , also called Velocity of Circulation, according to (33).

In the classic theory of money, the quantity N of money is taken as identity measure.
Here, since the framework we are building is an attempt at demonstrating that, like any-
thing else in Nature, also economics follows the rule of thermodynamics, it is reasonable
to think that money too behave accordingly to these rules, and then a general entropy
function can be given.

A problem that arises in economics, is that while k in thermodynamics is fixed, and we
fixed its value also in our economic system, the dilutive effect of inflation must change all
other parameters. In other words, reflection of change in the real value k of money appear
as a change in the factors of (33), where N represents the stock of money.
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Moreover, if also the amount of money N is fixed, then, again, the index of trading
value T must be able to reflect changes in both the volume flow V and prices P .

Another difference between the thermodynamic and economic system resides in the
number of unknowns. In a non-flow thermodynamic system, k represents the Boltzmann
constant, N the number of molecules, P the pressure, V the volume and T the temperature;
k and N are fixed, while P , V and T are variable, resulting in three unknowns. In a flow
system, V and N become the volume flow and the molecule flow respectively. N is now
variable as well, resulting in four unknowns. However, volume flow V and molecular flow
N can be summarized with the specific volume v = V/N , reducing the number of variables
for flow systems to three variables, as in non-flow systems.

In money systems however all factors are variable. Even the productive content k,
which is actually a nominal value, can vary under extensive inflation. Further, it is not
possible to substitute V and N with a ratio of the two. Dividing a volume output by a
depreciating money stock number might compromise the definition of volume at constant
prices. It is also preferable to preserve the volume flow measure as it is, since it is used to
describe the size of an economy.

The risk is that change in money stock N can find a way of influencing all other
variables. One, imperfect, solution consists in dividing the output price level P by the
number of units of monetary stock N , obtaining a specific price PN = P/N . In this way
we leave undisturbed output volume flow V and velocity of circulation T , although the
nature of price level P and the variable size of stock N is changed. The new relation is the
following,

PNV = T, (58)

where both k and N are set to 1. By taking logs and differentiating, we obtain,

dPN
PN

+
dV

V
=
dT

T
. (59)

The velocity of circulation of money can then be influenced by both, a change in the
specific price PN or in the output volume flow V . However, if the two factors on the left
side balance each other, the velocity of circulation can be unchanged.

The reasons for this variations might be found looking at the elastic index n as a
function of time. By taking the logarithm, differentiating and rearranging a polytropic
expression of the kind PNV

n = C, we find that,

n = −
(
dPN
PN

)/(
dV

V

)
(60)

It is now possible to lay out a general entropy generation function in the case of money.
Recalling Equation (38) and the case where we substitute the lifetime coefficient ω with
the rate of return 1/r, the entropy generation is related to three factors: (i) the elastic
index n, (ii) the growth rate of volume flow dV

V , and (iii) the lifetime coefficient ω, or
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its inverse, the rate of return r. For money, the rate of return r can be considered the
long-term average level of the velocity of circulation.

The presence of constraints for volume flow was discussed in the previous sections.
Now the focus is shifted on constraints acting on money. Interest rates and central banks
overall monetary base are some of these. In the thermodynamic perspective, changes in
monetary base N impact on Specific Price PN . If the monetary base increases, specific
price decreases, since the two are inversely related. However, this is likely to lead to a
rise in prices P , which corresponds to an inflation phenomenon due to printing of money,
balancing back the specific price.

In the previous section, concept of active and inactive stocks led to a relation between
change in entropy generation, output volume flow and constraints acting on output flows.
Similarly, we study the forces acting on money, which continually flows into and out of the
economy. Here, a thermodynamic system for economics seems to operate with a polytropic
relationship between specific price, output volume and velocity of circulation, with varia-
tions in the elastic index affecting the relationship. Additionally, the link between entropy
and utility is extended to include money utility as well.

A general rule, in macroeconomics, is that money demand is positively related to income
and output, and it is negatively related to interest rates. A rise in interest rates usually
constitutes a restraining force on an economy, while a decrease, an expansionary force. We
say that interest rates are negatively related to money entropy generation; when entropy
increases, and so does money demand, price inflation must be balanced by interest rates.
Interests represent then a form of constraint on money flow and a negative entropy change.

Money balance exists primarily to facilitate flow of value G in an economy. However,
money are often deposited on bank accounts, where they earn interests. A rise in interest
rates, would potentially decrease the stock of active money in the economy: when interest
rates increase, who borrows money, must pay larger interests, resulting in a decrease in
investments. Therefore, it is useful to find a cumulative interest index, indicated by I,
which accounts for interest compound cumulations along time:

It = I0 · (1 + i1) · (1 + i2) · ... · (1 + it), (61)

with I0 an initial rate. Since money balance exists to help value flow G, and an increase
in interest rates diminishes the amount of money circulating, the index of interest rate
subtracts from the potential value flow it could have generated in an economy. It can be
stated that, in the long-term, value flow G and interest index I proceeds in tandem as in,

G = Iθ (62)

with θ close to 1.
Proceeding similarly to section 5, where we stated that entropy changes are related to

differences in rates changes of volume flows, we can state for money that entropy changes
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depend on the difference between the rates of change of output value flow G and money
interest index I,

dS =

(
dG

G
− dI

I

)
. (63)
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3 Data

In this chapter, the different types of artificially generated series used throughout the work
are illustrated. The analysis has been performed over different mathematical and finan-
cial processes. Among the mathematical processes, the following are studied: Fractional
and Geometric Brownian Motion (FBM and GBM); Cox-Ingersoll-Ross (CIR); Hull-White-
Vasicek (HWV). Then, the following financial processes are investigated: Autoregressive
Fractionally Integrated Moving Average (ARFIMA); Generalized Autoregressive Condi-
tional Hetereskedasticity (GARCH). Furhermore, the main features of some financial assets
that are referred to in this work are presented. Last, the sampling method used to arrange
data into comparable sequences is outlined. However, first of all the most important prop-
erties and definition of elementary statistics and time series are recalled.

3.1 Stochastic Properties of Random Data

3.1.1 Expectation and Variance

Given a random variable X, the first moment, or expectation is equal to,

E[X] =

∫ ∞
−∞

xfx(x)dx. (64)

The second moment, or variance is equal to,

E[X2] = V ar[X] = E[X − µ]2 =

∫ ∞
−∞

(x− µ)2fx(x)dx. (65)

As we will see later, the variance can be indicated as γ0.

3.1.2 Covariance, Autocovariance and Autocorrelation

In statistics, the covariance refers to a measure of dependability of two variables with each
other; a measure of how two variables vary together. Covariance is equal to the expectation
of the product of the distances between the variables and their respective mean,

E[X,Y ] = Cov[X,Y ] = E[(X − E[X])(Y − E[Y ])] (66)

If we substitute the random variable Y with X we obtain the variance seen above.
Moreover, for a time series, we can define the autocovariance, which is a measure of how a
variable and its lagged value vary together. In other words, is a measure of time depend-
ability of a variable with it self.
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If the same stochastic process, in t and t + j is equal to, respectively, E[Xt] = µ + εt
and E[Xt+1] = µ+ εt+j . The autocovariance is then given by

E[Xt, Xt+j ] = E[(Xt − E[Xt])(Xt+j − [Et+j ])]

= E[(µ+ εt − µ)(µ+ εt+j − µ)] (67)

= E[εtεt+j ]

= 0.

and is indicated as γj .
Then, the j-th autocorrelation ρj is defined as the j-th autocovariance divided by the

variance:

ρj = Corr(Yt, Yt−j) =
Cov(Yt, Yt−j)√

V ar(Yt)
√
V ar(Yt−j)

=
γj√
γ0
√
γ0

=
γj
γ0

(68)

with |ρj | < 1 for all j.

3.1.3 Stationarity

For a stochastic process Xt, if the mean and the autocovariances do not depend on time,
the process is said to be covariance-stationary or simply stationary :

E(Xt) = µ, for any t

E(Xt − µ)(Xt−j − µ) = γj , for any t and j

Notice that if a process is covariance stationary, the covariance between Xt and Xt−j
depends only on the lag j and not on the date t.

3.1.4 Ergodicity

A covariance-stationary process is said to be ergodic for the mean when the following
conditions are satisfied. The time average of the process converges in probability to its
mean,

lim
t→∞

1

T

T∑
t=1

xt = lim
t→∞

x̄ = E(Xt), (69)

and provided that the autocovariance γj are absolutely sumable,

∞∑
j=0

|γj | <∞. (70)
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3.1.5 Long memory

Finally, models (i) and (ii) have in common the long range dependence, which means that
observations widely separated in time present significant dependence. One definition of long
range dependence or long memory is defined by specifying an hyperbolic autocorrelation
function ρj ,

ρj ∼ j2d−1L(j) as j→∞, 0 < d < 0.5. (71)

with d the memory parameter and L(j) a slowly varying function.

3.2 Artificial Data Series

3.2.1 Fractional Brownian Motion

The Fractional Brownian Motion is a long memory processes first introduced by Mandel-
brot and Van Ness (1968) referring to it as a self-similar process. A stochastic process Xt,
with t ∈ R, is said to be self-similar if there exist H > 0 such that for any scaling factor
c > 0,

Xct
L
= cHXt, (72)

with H the Hurst exponent and (
L
=) equivalence in distribution. Self-similar processes are

stochastic models where a scaling in time is equivalent, in term of distribution, to an appro-
priate scaling in space. Moreover, for any k, the distribution of (Xt1+c−Xt1+c−1, ..., Xtk+c−
Xtk+c−1) does not depend on c, the Xt is said to be self-similar with stationary increments.

So, a gaussian process BH
t is called a fractional brownian motion, if it satisfies,

1. BH
t is self-similar with 0 < H < 1,

2. BH
t has stationary increments.

When H = 0.5 we obtain a simple Brownian Motion with independent increments.
When 0 < H < 0.5 the Fractional Brownian Motion is said to be anti-persistent, which
means that increments tend to be opposite signed. Conversely, when 0.5 < H < 1 the it is
said to be persistent, which means that increments tend to be equally signed.

3.2.2 Geometric Brownian Motion

The Geometric Brownian Motion is used as a basis for the Black-Scholes-Merton model
used to price options,

dXt = µ(t)Xtdt+D(t,Xt)σ(t)dWt, (73)

µ(t) indicates the level of return, D(t,Xt)σ(t) the volatility and dWt is a simple Wiener
process. Volatility is deterministic and constant and there are no jumps. Increments are
independent on previous states.
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3.2.3 Cox-Ingersoll-Ross

The Cox-Ingersoll-Ross is a model with ergodic and stationary distribution, used to simu-
late interest rates:

dXt = s(t)[µ(t)−Xt]dt+D(t,X
1/2
t )σ(t)dWt. (74)

The drift factor s(t)[µ(t) −Xt] assures mean reversion of the process, s(t) represents the
speed of convergence to the mean level of return, µ(t) indicates the level of return, σ(t)
the volatility, and dWt is a simple Wiener process. The process is mean reverting, that
means the process tends to its mean when the it goes to infinite. Another feature of the
Cox-Ingersoll-Ross model is that it never touches the zero level. When the process comes
closer to zero, the drift factor becomes dominant as the standard deviation, represented by

the term D(t,X
1/2
t )σ(t), becomes very small by definition. As a consequence, the effect of

further shocks in interests is limited.

3.2.4 Hull-White-Vasicek

Hull-White and Vasicek models are two different specification of processes used to model
interest rates. In the former, parameters vary with time deterministically, in the latter
they are fixed:

dXt = s(t)[µ(t)−Xt]dt+ σ(t)dWt. (75)

The drift factor of the process is s(t)[µ(t) −Xt], s(t) represents the speed of convergence
to the mean level of return, µ(t) indicates the level of return, σ(t) the volatility, and dWt

is a simple Wiener process.

3.2.5 White Noise

The following definition of white noise is used in the financial models presented below
and therefore it is here introduced. A sequence {εt}∞t=−∞ whose elements have mean zero,
variance σ2 and for which the elements of ε are uncorrelated with each other across time,

E(εt) = 0 (76)

E(ε2t ) = σ2 (77)

E(εtετ ) = 0 for t 6= τ (78)

Furthermore, if we substitute (78) with a stronger condition that ε’s are independent
with each other and if we say that ε follows a normal distribution:

εt, ετ independent for any t, τ (79)
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εt ∼ N(0, σ2), (80)

then we have a Gaussian white noise process.

3.2.6 Autoregressive Fractionally Integrated Moving Average

The model of an autoregressive fractionally integrated moving average process (ARFIMA)
of a time series of order (p,d,q) with mean µ, may be written, using the lag operator L, as:

Φ(L)(1− L)d(yt − µ) = Θ(L)εt, (81)

with εt i.i.d. and ∼ (0, σ2ε )
The autoregressive part of the process is represented by the factor

Φ(L) = 1− φ1L− ...− φpLp,

where the lag operator of order p shifts the value of yt back to p observations, so that one
obtains:

Φ(L)yt = (1− φ1L− ...− φpLp)yt = yt − φ1yt−1 − ...− φpyt−p.

Analogously, the moving average part of the process is represented by the factor

Θ(L)εt = (1 + θ1L+ ...+ θqL
q)εt = εt + θ1εt−1 + ...+ θqεt−q.

Finally, (1− L)d is the fractionally differencing operator defined by:

(1− L)d =
∞∑
n=0

Γ(k − d)Lk

Γ(−d)Γ(k + 1)
.

For d < 1/2 the ARFIMA process is said to exhibit long memory. So, when d > 1/2
one can represent the process in an alternative form that still maintain the invertibility
property as:

(1− L)d−1(1− L)Φ(L)(y − µ) = Θ(L)εt.

3.2.7 Generalized Autoregressive Conditional Heteroskedasticity

The third model is the autoregressive conditional heteroskedastic. ARCH(q) models are
used to generate processes with stochastic volatility. The reason why this model was
introduced is the following.

We say that εt follows an ARCH(q) when its conditional variance is defined as,

σ2t = ω + α1ε
2
t−1 + ...+ αqε

2
t−q, (82)

with ω > 0, αi ≥ 0, i = 1, ..., p, σt = εt/zt and zt ∼ N(0, 1).

40



As we said before, εt is white noise but it is not an independent process. The uncondi-
tional variance of the process is defined as σ2 = ω/(1−

∑
i αi) with

∑
i αi < 1 to hold for

covariance-stationarity of the process.
When εt is an ARCH(q) process, the conditional variance ε2 = ω +

∑q
i=1 αiε

2
t−i + ηt,

with ηi = σ2t (z
2
t − 1), is a AR(q) process.

The model used in this work is the Generalized Autoregressive Conditional Heteroskedas-
ticity or GARCH(p,q), that takes into account also p lags of conditional variances:

σ2t = ω +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjσ
2
t−j , (83)

with ω > 0, αi ≥ 0 for i = 1, ..., q, βi ≥ 0, i = 1, ..., p, σt = εt/zt and zt ∼ N(0, 1).
In this model the unconditional variance is given by σ2 = ω/(1 −

∑q
i αi −

∑p
j βj).

If εt follows a GARCH process, then ε2t follows an ARMA process with conditional het-
eroskedastic terms ηt.

3.3 Market Data

The objective of this thesis is to compare financial and mathematical models to financial
markets by means of a cluster entropy approach. Results for financial markets where
developed in Ponta and Carbone (2018) and Ponta and Carbone (2019). This section
recalls major features of the data used those works.

The cluster entropy approach was applied to data of some European assets, namely
BUND, BOBL, DAX, Euro Currency, Euro Stoxx and FIB30 to obtain a quantification of
cross-market heterogeneity and the weights of the optimal portfolio, and to some of the
most important USA’s indexes, namely the S&P500, NASDAQ and Dow Jones Industrial
Average, to study the sensitivity of the method to prices and provide a measure of dynamics.
Results are reported only for NASDAQ and Dow Jones Industrial Average, while results
for S&P500 can be found in Appendix A.7. Data were downloaded from www.bloomberg.

com/professional.
Note that while NASDAQ is an index resulting from all the public firms quoted on the

market, the DJIA and S&P500 are indexes representative of a selected number of public
firms. For each index, data include tick-by-tick prices from January 2018 to December
2018. Main information about the data series are reported in Table 1.

3.4 Sampling

To study the dynamics of financial series different time horizons are compared, but so that
the comparison is possible, series must be of the same lengths. It is therefore necessary
to propose a sampling method that makes the series comparable but that do not discards
useful information contained in the series.
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Raw data are provided under the form of monthly series, i.e. tick-by-tick series from
the first tick in a month to the last one. Note that lengths of the monthly series might
vary: months have different number of trading days and the number of transactions per
unit of time is not regular.

The following method is then applied. The series are cumulatively summed to obtain
twelve cumulative series. The first cumulative series ranges from the first transaction of
January 2018 to the last one of January 2018; the second ranges from the first transaction
in January 2018 to the last of February 2018; continuing in this fashion, the twelfth ranges
from the first transaction in January 2018 to the last of December 2018, which is equivalent
to the whole year. Because each cumulative series ranges from the first tick of 2018 to the
last tick of the relative month, the twelve series have very different lengths.

To sample such cumulative series, twelve sampling frequencies, i.e. twelve integers
indicating for each series the number of samples to skip for every number reported, must
be found. Sampling frequencies are obtained dividing the length of each cumulative series
by the length of the shortest and then rounding to the closest integers. Thence, each
cumulative series is sampled with the relative sampling frequency to yield a sampled series:
for each sample in the sampled series, a number of samples equal to the sampling frequency
has been discarded in the cumulative series.

The sampled series obtained are approximately of equal lengths. To obtain twelve series
of exactly equal length the observations exceeding the length of the shortest series are cut
off.

The result consists in twelve sampled series that are equal in length but that represent
different time horizons.

To generate comparable artificial series a similar method is used. We took as reference
the lengths of NASDAQ cumulative series reported in Table 1. Then, a series of length
equal to that of NASDAQ in 2018 (i.e. the length of the twelfth cumulative series) was
generated. Thence, we divided the series in the respective cumulative series according
to the lengths obtained for NASDAQ cumulative series reported in Table 1. Then the
sampling method proceeds analogously from the calculation of the sampling frequency.

Such sampling method was applied to series generated by artificial financial models to
make sure that the information content would be comparable to that of real-world financial
series.

42



Month S&P500 NASDAQ DJIA

Jan 516635 586866 516644

Feb 984046 1117840 984101

Mar 1500662 1704706 1500764

Apr 2017282 2291572 1623779

May 2558504 2906384 2165044

Jun 3075125 3493250 2681708

Jul 3580946 4069315 3187571

Aug 4146769 4712062 3753440

Sep 4614188 5243031 4220776

Oct 5180010 5885785 4786628

Nov 5685831 6461851 5292492

Dec 6142450 6982025 5749152

Table 1: Cumulative indexes’ lengths
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4 Methods

In this section the methods used throughout the work are recalled. The cluster entropy
approach developed in Carbone (2013) and in Ponta and Carbone (2018) is now recalled
along with some of the results for the sake of clarity.

4.1 Moving Average Cluster Entropy

As noted before Shannon wanted to measure the amount of information embedded in
a message to separate the corresponding sequence into the the portion that is actually
carrying the relevant information and the portion that is not necessary to reproduce the
initial message.

The Shannon functional is written as,

S(τ, n) =
∑

P (τ, n) logP (τ, n), (84)

where P (τ, n) is a probability distribution associated with the time series y(t).
To obtain such a probability distribution it is necessary to partition the continuous

phase space into disjoints sets. The method traditionally adopted divides the sequence
into segments of equal lengths. In this work, however, a method developed recently in
Carbone (2013) is used.

A time series y(t), such as those in Figures 1.a and 1.b, is partitioned in clusters by
the intersection with its moving average ỹn(t), with n the size of the moving average. The
simplest type of moving average is defined at each t as the average of the n past observation
from t to t− n+ 1,

ỹn(t) =
1

n

n−1∑
k=0

y(t− k). (85)

Note that while the original series is defined from 1 to m, the moving average series is
defined from 1 to m − n + 1 because n samples are necessary to initialize the series. The
original series and the moving average series are indicated as {y(t)}mt=1 and {ỹn(t)}m−n+1

t=1

respectively. Consecutive intersections of the time series and of the moving average series
yield a partition of the phase space into a series of clusters. Each cluster is defined as the
portion of the time series y(t) between two consecutive intersection of y(t) itself and its
moving average ỹn(t) and has length (or duration) equal to:

τj ≡ ||tj − tj−1||, (86)

where tj−1 and tj refers to two subsequent intersections of y(t) and ỹn(t).
In this work a different type of moving average called Detrending Moving Average

(DMA) algorithm is used. For each time series y(t) and moving average window n (assum-
ing n to be odd) three different types of moving averages are computed: (a) backward, (b)
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centered and (c) forward,

ỹn,backward(t) =
1

n

n−1∑
k=0

y(t− k) (87)

ỹn,centered(t) =
1

n

(n−1)/2∑
k=−(n−1)/2

y(t− k) (88)

ỹn,forward(t) =
1

n

0∑
k=−(n−1)

y(t− k). (89)

For each moving average window n the probability distribution function P (τ, n) of the
lengths τ can be obtained by counting the number of clusters Nj(τj , n) with length τj ,
j ∈ {1,m}. The result is,

P (τ, n) ∼ τ−DF(τ, n), (90)

where D = 2−H and H indicate respectively the fractal dimension and the Hurst exponent
of the sequence. The Hurst exponent is widely used to indicate the degree of persistence of
long-range correlated clusters. Long-range correlation means that the clusters are organized
in a similar way along the time series, even for clusters far away in time from each other,
a fact that is defined as self-similarity. Note also that, for a given moving average window
n, the frequency of a cluster of length τj is averaged over the number of moving average
types that generated it, i.e. if a cluster of length τk is generated by both the backward and
centered DMA then the two frequencies are summed and averaged by two.

In Equation (90) the term F(τ, n) takes the form,

F(τ, n) ≡ e−τ/n, (91)

to account for the drop-off of the power-law behavior for τ < n and the onset of the
exponential decay when τ ≥ n due to the finiteness of n. When n → 1 the lengths τ of
clusters tend to be centered around a single value. When n→ m, that is when n tends to
the length of the whole sequence, only one cluster with τ = m is generated. For middle
values of n however a broader range of lengths is obtained and therefore the probability
distribution spreads all values.

When the probability distribution in (90) is fed into the Shannon functional in (84) the
result is the following,

S(τ, n) = S0 + log τD − logF(τ, n), (92)

which, after substituting (91), becomes,

S(τ, n) = S0 + log τD +
τ

n
, (93)

45



where S0 is a constant, log τD accounts for power-law correlated clusters related to τ−D

and τ/n accounts for exponentially correlated clusters related to the term F(τ, n).
The term S0 can be evaluated in the limit τ ∼ n → 1, which results in S0 → −1 and

S(τ, n) → 0, that corresponds to the fully deterministic case, where each cluster has size
equal to 1. On the other hand, when τ ∼ n → N , the maximum value for the entropy is
obtained with S(τ, n) = logND, which corresponds to the case of maximum randomness,
where there is one cluster coinciding with the whole series.

Equation (93) shows that power-law correlated clusters, characterized by having length
τ < n, are described by a logarithmic term as log τD, and their entropy do not depend on
the moving average window n. However, for values of τ ≥ n, which represent exponentially
correlated clusters, the term τ/n becomes predominant. Cluster entropy increases linearly
as τ/n, with slope decreasing as 1/n. Hence, due to the finite size effects introduced by
the partitioning method, in τ = n the behavior of entropy changes and its values exceeds
the curve log τD. In other words, clusters that are power-law correlated does not depend
on n, are said to be ordered and represent deterministic information. Clusters that are
exponentially correlated does depend on n, are said to be disordered and represent random
clusters.

As stated in the introduction, the meaning of entropy in information theory can be
compared with the meaning of entropy in thermodynamics. In an isolated system, the
entropy increase dS refers to the irreversible processes occurring spontaneously within the
system. In an open system however a further increase in entropy dSext occurs due to the
irreversible processes spontaneously occurring with the external environment.

The term log τD should be interpreted as the entropy of the isolated system. It is
independent on n, that is it is independent on the partitioning method. It is also of the
form of the Boltzmann entropy, that can be written as S = log Ω, with Ω the volume of
the isolated system. Therefore the quantity τD corresponds to the volume occupied by the
fractional random walker.

On the other hand, the term τ/n represents the excess entropy introduced by the
partitioning method and in fact depends on the moving average window n. If same size
boxes were chosen, the excess entropy term τ/n would vanish and entropy would reduce
to the logarithmic term. When a moving average partition is used, the term τ/n emerges
to account for the additional heterogeneity introduced by the randomness of the process.
Thence, for exponentially correlated clusters entropy exceeds the limit of the logarithmic
term.

Cluster entropy results obtained for price series of (a) NASDAQ and (b) Dow Jones
Industrial Average markets are reported in Figures 1.c and 1.d from Ponta and Carbone
(2019). Plots of cluster entropy curves represent 18 curves, one for each moving average
window n used to partition the series, with n = 30, 50, 100, 150, 200, 300, ..., 1500. The time
horizon analyzed is indicated as M , i.e. M4 indicates that the cumulative series ranging
from January 2018 to April 2018 is studied.
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4.2 Cumulative Entropy Indexes

One important step is to quantify the property of the entropy series. In order to improve
the accuracy of the method one can consider consider the integral of the entropy function
over the clusters length τ , a cumulative measure able to embed all information in a single
figure:

I(n) =

∫
S(τ, n)dτ, (94)

which for discrete sets reduces to,

I(n) =
∑
τ

S(τ, n). (95)

4.2.1 Market Heterogeneity Index

In Ponta and Carbone (2018), the analysis is performed over prices and volatilities series
for different European assets, namely BUND, BOBL, DAX, Euro Currency, Euro Stoxx
and FIB30 to obtain a quantification of cross-market heterogeneity and the weights of the
optimal portfolio.

The authors define (95) as the Market Heterogeneity Index and use it to summarize
the information for each single market over the clusters lengths. A first integration over
τ yields a quantification of cross-market heterogeneity. Over different assets, the authors
found that while (95) for the series of the prices is almost invariant, it varies significantly
for the series of the volatilities. Furthermore, the authors integrate one more time the
volatility series over the moving average window n to obtain the weights of the optimal
portfolio, in comparison to the Sharp approach.

4.2.2 Market Dynamic Index

On the other hand, in Ponta and Carbone (2019), the index is calculated with the purpose
of obtaining the horizon dependence and quantify the market dynamics. It was defined as
Market Dynamic Index. In Figures 1.e and 1.f results of the Market Dynamic Index are
shown only for NASDAQ and Dow Jones Industrial Average series, results on S&P 500
are reported in Appendix A.7. For small values of n, horizon dependence is small, but
it increases as n increases too. Horizon dependence is larger for NASDAQ than for Dow
Jones Industrial Average.
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Figure 1: Time series, cluster entropy curves (M12) and Market Dynamic Index for (a)
NASDAQ and (b) Dow Jones Industrial Average. Results are reported from Ponta and
Carbone (2019)
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5 Results

In this section, Cluster Entropy and Market Dynamic Index have been calculated over
series obtained by a variety of financial and mathematical models. The artificial mod-
els considered are: Geometric and Fractional Brownian Motion (GBM and FBM); Cox-
Ingersoll-Ross (CIR); Hull-White-Vasicek (HWV); Autoregressive Fractionally Integrated
Moving Average (ARFIMA); Generalized Autoregressive Conditional Heteroskedasticity
(GARCH).

The investigation was motivated by the results obtained in real-world financial markets
(NASDAQ, DJIA and S&P500). As shown in Chapter 4, cluster entropy in financial
markets was proved to be significantly market and horizon dependent (Ponta and Carbone,
2019).

5.1 Fractional Brownian Motion

According to the classical financial theory, all the information are reflected by market prices
and it is not possible to take advantage of past observations to predict future outcomes.
Therefore, subsequent price deviations are said to be identically and independently dis-
tributed (iid). If that were true, correlation would be null and prices would be modelled
correctly by a fractional brownian motion with Hurst exponent H = 0.5, which is equal to
a simple brownian motion. However, several studies have shown that real world markets do
not adhere faithfully to the standard theory of perfectly informed and rational investors.

The fractional brownian motion is first investigated in this thesis. Results of the cluster
entropy analysis over fractional brownian motion series with Hurst exponent H = 0.5 (see
Chapter 3 for a short overview on FBM). The fractional brownian motion were generated
by means of the FRACLAB MATLAB tool available at https://project.inria.fr/

fraclab/. The results are shown in the top panel of Figure 2. In the middle panel of
the figure, plots of the entropy cluster at horizon M12 are reported. Cluster Entropy
calculated at other time horizon presents a similar behavior. In general, one can expect
that power-law correlated clusters follow a smooth logarithmic behavior, then for τ ≥ n
the exponential decay sets on and entropy increases linearly with the term τ/n dominating.
In the bottom plot, values of the market dynamic index are shown. One can note that
they overlap at any moving average window n and time horizon M . At small n, values of
I(n,M) are small too. Then, at larger n, when a broader range of clusters’ lengths τ is
spanned in the power-law distribution, values of I(n,M) increase too.

A number of other fractional brownian motion series generated with Hurst exponent
varying in the range 0.1 ≤ H ≤ 0.9 were analysed. The results are reported in the Appendix
A.1.
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Figure 2: Time Series (top), Cluster Entropy (middle) and Market Dynamic Index (bot-
tom) for series generated by Fractional Brownian Motion with Hurst exponent H = 0.5
obtained by means of the FRACLAB tool available at https://project.inria.fr/

fraclab/.
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5.2 Geometric Brownian Motion

The Geometric Brownian Motion (GBM ) is frequently used to model asset prices (see
Chapter 3 for a short overview). Geometric Brownian Motion series are generated by means
of the MATLAB tool available at https://it.mathworks.com/help/finance/gbm.html.

Cluster entropy results for series generated by means of Geometric Brownian Motion
processes, with r = 1 · 10−7 and σ = 5 · 10−4, are shown in Figures 3. Time horizons shown
are M3, M6, M9 and M12. As one can see cluster entropy curves are quite similar over
different time horizons.

In Figure 4.a results for Market Dynamic Index are shown. Again, at every moving
average n and time horizon M , Market Dynamic Index values overlap.

Another Geometric Brownian Motion series was generated. Details on the analyzed
parameters are reported in Table 2 and results obtained for other set of parameters are
reported in the Appendix A.2.

GBM µ σ

1 0 5 ·10−6

2 1 ·10−7 5 ·10−4

CIR s µ σ

1 2 ·10−7 1 ·10−7 5 ·10−4

2 1 ·10−7 9 ·10−7 9 ·10−4

HWV s µ σ

1 2 ·10−7 6 ·10−7 6 ·10−4

2 2 ·10−6 9 ·10−7 6 ·10−4

Table 2: Parameters choice for Stochastic Differential Equation (SDE) processes. Models
reported are the following: Geometric Brownian Motion GBM, Cox-Ingersoll-Ross CIR
and Hull-White-Vasicek HWV. Parameter µ indicates the level of return, σ the standard
deviation and s the speed of convergence to the mean of the process.
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Figure 3: Cluster entropy results for series generated by means of Geometric Brownian
Motion process. To generate the series the following parameters are used: µ = 1 ·10−7 and
σ = 5 · 10−4. Labels indicate time horizons M3, M6, M9 and M12.
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Figure 4: Market Dynamic Index for series generated by means of Geometric Brownian
Motion process. To generate the series the following parameters are used: µ = 1 ·10−7 and
σ = 5 · 10−4.
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5.3 Cox-Ingersoll-Ross

The Cox-Ingersoll-Ross is a mathematical model used to simulate interest rates (see Chap-
ter 3 for a short overview). Cox-Ingersoll-Ross series are generated by means of the MAT-
LAB tool available at https://it.mathworks.com/help/finance/cir.html.

Cluster entropy results for series generated by means of Cox-Ingersoll-Ross processes,
with s = 2 · 10−7, µ = 1 · 10−7 and σ = 5 · 10−4, for time horizons M3, M6, M9 and
M12 are shown in Figure 5. Cluster entropy values do not present significant variation
at different time horizons. The logarithmic term of the form log τD describes power-law
correlated clusters, while the linear term τ/n describes exponentially correlated clusters.

Market Dynamic Index results are shown in Figure 6. Curves overlap also in this case
at every moving average window n and time horizon M .

Another Cox-Ingersoll-Ross series was generated. Details on the specification analyzed
are reported in Table 2 and results obtained for other set of parameters are reported in the
Appendix A.3.
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Figure 5: Cluster entropy results for series generated by means of Cox-Ingersoll-Ross pro-
cess. To generate the series the following parameters are used: Speed of convergence to the
mean s = 2 · 10−7, µ = 1 · 10−7 and σ = 5 · 10−4. Labels indicate time horizons M3, M6,
M9 and M12.
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Figure 6: Market Dynamic Index for series generated by means of Cox-Ingersoll-Ross
process. To generate the series the following parameters are used: s = 2 ·10−7, µ = 1 ·10−7

and σ = 5 · 10−4.
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5.4 Hull-White-Vasicek

The Hull-White-Vasicek is another mathematical model used to simulate interest rates (see
Chapter 3 for a short overview). Hull-White-Vasicek series are generated by means of the
MATLAB tool available at https://it.mathworks.com/help/finance/hwv.html.

Results for the cluster entropy analysis on series generated by means of Hull-White-
Vasicek processes with s = 2 · 10−6, µ = 9 · 10−7 and σ = 6 · 10−4, for time horizons M3,
M6, M9 and M12 are shown in Figure 7. No significant difference can be found between
cluster entropy results at different time horizons. Again, a smooth logarithmic behavior
and a linear behavior describe respectively power-law and exponentially correlated clusters.

Then, in Figure 8 results for the MDI are shown. Values of I(n,M) are identical for
every moving average window n and time horizon M .

Another Hull-White-Vasicek series was generated. Details on the specification analyzed
are reported in Table 2 and results obtained for other set of parameters are reported in the
Appendix A.4.
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Figure 7: Cluster entropy results for series generated by means of Hull-White/Vasicek
process. To generate the series the following parameters are used: s = 2 ·10−6, µ = 9 ·10−7

and σ = 6 · 10−4. Labels indicate time horizons M3, M6, M9 and M12.
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Figure 8: Market Dynamic Index for series generated by means of Hull-White/Vasicek
process. To generate the series the following parameters are used: Speed of convergence to
the mean s = 2 · 10−6, µ = 9 · 10−7 and σ = 6 · 10−4.
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5.5 Autoregressive Fractionally Integrated Moving Average

Among financial models, the autoregressive fractionally integrated moving average is one
of the most common processes used to model prices of long-range correlated assets (see
Chapter 3 for a short overview). ARFIMA series are generated by means of the MATLAB
tool available at
https://www.mathworks.com/matlabcentral/fileexchange/25611-arfima-simulations.

Figures 9 and 10 illustrate cluster entropy curves for series obtained by means of
ARFIMA models at different time horizons. In Figure 9 the parameters are φ = 0.3,
d = 0.25, θ = 0.4. In Figure 10 the parameters are φ1 = 0.4, φ2 = 0.16 and θ1 = 0.9,
θ2 = 0.81, θ3 = 0.729 and d = 0.11. Each plot refers to a different time horizon, namely M3,
M6, M9 and M12. In both figures, cluster entropy varies over the time horizons considered.
One can note a significant difference in the degree of choppiness of power-law correlated
clusters: Figure 9, with a higher d = 0.25 is choppier than Figure 10, with d = 0.11. Then,
exponentially correlated clusters are described by the linear term τ/n.

The Market Dynamic Index is shown in Figure 11. MDI curves vary significantly for
each time horizon M. Plots 11.a, 11.b refer to the models in Figures 9, 10 respectively;
in Figure 11.a, I(n,M) assumes different value for each n and M . On the other hand,
in Figure 11.b I(n,M) is almost M -invariant for small values of n, but a dependence on
M is found for larger n. The other plots represent results for different combination of
parameters. Also in these cases I(n,M) behaves similarly.

Several other combinations of parameters were studied (see Table 3), results obtained
for other set of parameters are reported in Appendix A.5.

Model Number φ θ d

1 0.3 0.4 0.25

2 0.3 0.85 0.25

3 0.9 0.85 0.25

4 0.3 0.4 0.48

5 0.9 0.4 0.48

6 0.3 0.85 0.48

7 0.9 0.85 0.48

8 0.4, 0.16 0.9, 0.81, 0.729 0.11

9 0.4, 0.16 0.9, 0.81, 0.729 0.3

Table 3: Parameters choice for ARFIMA processes
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Figure 9: Cluster entropy results for series generated by means of ARFIMA processes.
The series used to plot the entropy clusters was generated with the following parameters:
φ = 0.3, d = 0.25, θ = 0.4. The time horizon analyzed in figures are M3, M6, M9 and M12
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Figure 10: Cluster entropy results for series generated by means of ARFIMA processes. The
autoregressive, moving average and differencing parameters are the following: φ1 = 0.4,
φ2 = 0.16 and θ1 = 0.9, θ2 = 0.81, θ3 = 0.729 and d = 0.11. The time horizon analyzed in
figures are M3, M6, M9 and M12
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Figure 11: Market Dynamic Index plots for ARFIMA models. Panels (a) and (b) are
referred to cluster entropy results in Figures 9, 10. Panels (c), (d), (e) and (f) are referred
to other combination of parameters 2, 9, 6, 4 reported in Table 3.
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5.6 Generalized Autoregressive Conditional Heteroskedasticity

Generalized autoregressive conditional heteroskedastic processes are used to model volatil-
ities of time series (see Chapter 3 for a short overview on GARCH). GARCH series are
generated by means of the MATLAB tool available at https://it.mathworks.com/help/
econ/garch.html.

Figures 12, 35 and 13 illustrate cluster entropy curves for series obtained by means
of GARCH models at different time horizons. The parameters set are the following. In
Figure 12: ω = 0.1, α = 0.475 and β = 0.1. And in Figure 13: ω = 0.1, α = 0.475 and
β = 0.25. Each plot refers to a different time horizon, namely M3, M6, M9 and M12.
Several combination of parameters where studied (see Table 4), results are reported in
Appendix A.6. All plots present a smooth logarithmic behavior for power-law correlated
clusters. No significant differences can be observed neither over time, nor between different
model specifications.

Figure 14 shows the market dynamic index calculated on GARCH series seen above.
Values of I(n,M) overlap at every moving average window n and time horizon M .

A number of other GARCH series were generated. Details on the specification analyzed
are reported in Table 2 and results obtained for other set of parameters are reported in the
Appendix A.6.

Model Number α β ω

1 0.475 0.1 0.1

2 0.1 0.25 0.1

3 0.475 0.25 0.1

Table 4: Parameters choice for GARCH processes
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Figure 12: Cluster entropy results for series generated by means of GARCH processes.
The series used to plot the entropy clusters are generated with the following parameters:
ω = 0.1, α = 0.475 and β = 0.1. The time horizon analyzed in figures are M3, M6, M9
and M12

65



Figure 13: Cluster entropy results for series generated by means of GARCH processes.
The series used to plot the entropy clusters are generated with the following parameters:
ω = 0.1, α = 0.475 and β = 0.25. The time horizon analyzed in figures are M3, M6, M9
and M12
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Figure 14: Market Dynamic Index for GARCH(1,1) models. The model used to generate
the series has the following parameters: in (a) α = 0.475 and β = 0.1 and in (b) α = 0.475
and β = 0.25.
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6 Discussion and Conclusions

In this section, the main results of the analysis of the cluster entropy and Market Dynamic
Index are discussed and compared with those obtained for real-world financial markets.

As previously discussed, cluster entropy behavior is described by Equation (93). Hence,
power-law correlated clusters, i.e. clusters with length τ < n, are expected to follow a loga-
rithmic behavior, regardless of the moving average window n, and therefore independently
on the partitioning method used. On the other hand, exponentially correlated clusters, i.e.
clusters with length τ ≥ n, are expected to follow a linear behavior described by the term
τ/n, which does depend on the moving average window n and whose slope decreases as
1/n. Cumulative information measures are useful to summarize key information in a single
numerical index. The Market Dynamic Index is thus obtained by means of Equation (95)
from cluster entropy results. It summarizes the information present in the entropy curves
at different time horizons M and moving average windows n. We assume that power-law
correlated clusters can be considered as the information carriers. Hence, those clusters are
considered into the calculation of the Market Dynamic Index.

In this thesis it has been shown that differences emerge from the comparison between
cluster entropy results obtained on artificial series models and real-world market series. Fig-
ures show cluster entropy results for the following processes: Fractional Brownian Motion
(Figure 2), Geometric Brownian Motion (Figure 3), Cox-Ingersoll-Ross (Figure 5), Hull-
White-Vasicek (Figure 7) and GARCH (Figures 12 and 13). All cluster entropy curves
exhibit a smooth logarithmic behavior for power-law correlated clusters, independently on
the model and on the time horizon.

As one can see in Appendix A.1, cluster entropy results for series generated by means
of Fractional Brownian Motion processes with Hurst exponent 0 < H < 0.5 (anticorrelated
FBMs) do not present any horizon dependence. Conversely, Fractional Brownian Motion
series with 0.5 < H < 1 (positively correlated FBMs) do show some horizon dependence.
However, as it will be clarified below, Fractional Brownian Motion series do not fully
reproduce financial markets behavior.

A significant horizon dependence emerges for series generated by ARFIMA processes,
as one can note by observing Figures 9, 10. Given a set of parameters, power-law correlated
cluster entropy frequently deviates from the ideal logarithmic path and vary over different
horizons. The magnitude of such deviations is strongly dependent on the differencing
parameter d, which quantifies the correlation degree of the series. Thus, cluster entropy
for series generated by ARFIMA process exhibit horizon dependence as observed in real
world financial markets.

Thus, in conclusion, the Market Dynamic Index summarizes the results obtained on
cluster entropy. In particular, series that do not embed persistence, namely those generated
by means of Fractional Brownian Motion, Geometric Brownian Motion, Cox-Ingersoll-Ross,
Hull-White-Vasicek and GARCH processes, do not present any horizon dependence. As one
can see in Figures 2 (bottom), 4, 6, 8, 14, Market Dynamic Index curves overlap for each
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moving average window n and time horizon M . Additionally, a comparison over series ob-
tained by fully independent processes shows that the index I(n,M) assumes approximately
equal values independently on the process used to generate the series.

Results of the Market Dynamic Index of persistent series generated by Fractional Brow-
nian Motion are reported in Appendix A.1. Anti-persistent series, i.e. series generated with
Hurst exponent 0 < H < 0.5, show overlapping values of the Market Dynamic Index and
therefore do not present any horizon dependence. Conversely, positively correlated series,
i.e. series characterized by 0.5 < H < 1, do present a significant degree of horizon de-
pendence. However, series generated by Fractional Brownian Motion fail at reproducing
financial markets with such a large Hurst exponent. To generate an horizon dependence
comparable with that found in financial markets an unrealistic persistence must be chosen.

On the other hand, Market Dynamic Index for series generated by ARFIMA processes
are reported in 11. When the differencing parameter d is 0 < d < 0.2 Market Dynamic
Index curves are n-invariant for small values of n, but horizon dependence emerges at larger
n. When 0.2 < d < 0.5 Market Dynamic Index curves show a significant horizon depen-
dence even at small n. Therefore, according to the choice of the differencing parameter
d, series generated by ARFIMA processes can simulate financial markets dynamics very
closely.

It must be then concluded that cluster entropy behavior is deeply linked to positive
persistence and long-range correlation embedded in the series. In real-world financial series
horizon dependence deviates from the case of absolutely random series, such as those
generated by means of stochastic differential equations. Therefore, as suggested by many
recent studies, contrary to the traditional financial theories, the hypothesis of efficient
markets and random walk behavior of financial stochastic processes do not hold. Thence,
the integration performed by the Market Dynamic Index on cluster entropy allows to obtain
this result in a cumulative, and then particularly robust, manner. Moreover, as shown on
NASDAQ and DJIA, where the former is a diversified stock market with a high degree of
heterogeneity and the latter is an index representative of a chosen set of industrial stocks,
the Market Dynamic Index can quantify intrinsic market heterogeneity.

Further investigation are needed in order to achieve deeper insights and shed light on
the characteristic behaviour shown by the moving average cluster entropy and how these
relates to the intrinsic properties of financial markets.
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A Appendixes

A.1 Fractional Brownian Motion
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Figure 15: Time Series for series generated by Fractional Brownian Motion with Hurst
exponent 0.1 < H < 0.9. Results for H = 0.5 are reported in Chapter 5 and repeated here
for the sake of completeness.
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Figure 16: Cluster entropy for series generated by means of Fractional Brownian Motion
with H = 0.2. The time horizon analyzed in figures (a), (b), (c) and (d) is M3, M6, M9
and M12 respectively.
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Figure 17: Cluster entropy for series generated by means of Fractional Brownian Motion
with H = 0.4. The time horizon analyzed in figures (a), (b), (c) and (d) is M3, M6, M9
and M12 respectively.
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Figure 18: Cluster entropy for series generated by means of Fractional Brownian Motion
with H = 0.6. The time horizon analyzed in figures (a), (b), (c) and (d) is M3, M6, M9
and M12 respectively.
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Figure 19: Cluster entropy for series generated by means of Fractional Brownian Motion
with H = 0.8. The time horizon analyzed in figures (a), (b), (c) and (d) is M3, M6, M9
and M12 respectively.
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Figure 20: Market Dynamic Index for series generated by Fractional Brownian Motion
with Hurst exponent 0.1 < H < 0.9. Results for H = 0.5 are reported in Chapter 5 and
repeated here for the sake of completeness.
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A.2 Geometric Brownian Motion

Figure 21: Time Series generated by means of Geometric Brownian Motion processes. To
generate the series the following parameters are used: (a) r = 0 and σ = 5 · 10−6 (b)
r = 1 · 10−7 and σ = 5 · 10−4. Results in the right panel are reported in Chapter 5 and
repeated here for the sake of completeness.
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Figure 22: Cluster entropy for series generated by means of Geometric Brownian Motion
processes. To generate the series the following parameters are used: r = 0 and σ = 5 ·10−6.
Time horizons reported are M2, M4, ..., M12.
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Figure 23: Market Dynamic Index for series generated by means of Geometric Brownian
Motion processes. To generate the series the following parameters are used: (a) r = 0 and
σ = 5 · 10−6 (b) r = 1 · 10−7 and σ = 5 · 10−4. Results in the right panel are reported in
Chapter 5 and repeated here for the sake of completeness.
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A.3 Cox-Ingersoll-Ross

Figure 24: Time Series generated by means of Cox-Ingersoll-Ross processes. To generate
the series the following parameters are used: (a) s = 2 · 10−7, r = 1 · 10−7 and σ = 5 · 10−4

(b) s = 1 · 10−7, r = 9 · 10−7 and σ = 9 · 10−4. Results in the left panel are reported in
Chapter 5 and repeated here for the sake of completeness.
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Figure 25: Cluster entropy for series generated by means of Cox-Ingersoll-Ross processes.
To generate the series the following parameters are used: s = 2 · 10−7, r = 1 · 10−7 and
σ = 5 · 10−4. Time horizons reported are M2, M4, ..., M12.
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Figure 26: Cluster entropy for series generated by means of Cox-Ingersoll-Ross processes.
To generate the series the following parameters are used: s = 1 · 10−7, r = 9 · 10−7 and
σ = 9 · 10−4. Time horizons reported are M2, M4, ..., M12.
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Figure 27: Market Dynamic Index for series generated by means of Cox-Ingersoll-Ross
processes. To generate the series the following parameters are used: (a) s = 2 · 10−7,
r = 1 · 10−7 and σ = 5 · 10−4 (b) s = 1 · 10−7, r = 9 · 10−7 and σ = 9 · 10−4. Results in the
left panel are reported in Chapter 5 and repeated here for the sake of completeness.
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A.4 Hull-White-Vasicek

Figure 28: Time Series generated by means of Hull-White-Vasicek processes. To generate
the series the following parameters are used: (a) s = 2 · 10−7, r = 6 · 10−7 and σ = 6 · 10−4

(b) s = 2 · 10−6, r = 9 · 10−7 and σ = 6 · 10−4. Results in the right panel are reported in
Chapter 5 and repeated here for the sake of completeness.
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Figure 29: Cluster entropy for series generated by means of Hull-White-Vasicek processes.
To generate the series the following parameters are used: s = 2 · 10−7, r = 6 · 10−7 and
σ = 6 · 10−4. Time horizons reported are M2, M4, ..., M12.
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Figure 30: Cluster entropy for series generated by means of Hull-White-Vasicek processes.
To generate the series the following parameters are used: s = 2 · 10−6, r = 9 · 10−7 and
σ = 6 · 10−4. Time horizons reported are M2, M4, ..., M12.
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Figure 31: Market Dynamic Index for series generated by Hull-White-Vasicek processes.
To generate the series the following parameters are used: (a) s = 2 · 10−7, r = 6 · 10−7 and
σ = 6 · 10−4 (b) s = 2 · 10−6, r = 9 · 10−7 and σ = 6 · 10−4. Results in the right panel are
reported in Chapter 5 and repeated here for the sake of completeness.
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A.5 Autoregressive Fractionally Integrated Moving Aaverage

Figure 32: Entropy clusters for series generated by means of ARFIMA processes. The series
used to plot the entropy clusters was generated with the following parameters: φ = 0.3,
d = 0.25, θ = 0.85. Plots (a), (b), and (c) shows curves for time horizons M3, M6, M9 and
M12 respectively.
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Figure 33: Entropy clusters for series generated by means of ARFIMA processes. The series
used to plot the entropy clusters was generated with the following parameters: φ = 0.9,
d = 0.25, θ = 0.85. Plots (a), (b), and (c) shows curves for time horizons M3, M6, M9 and
M12 respectively.
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Figure 34: Entropy clusters for series generated by means of ARFIMA processes. The
series used to plot the entropy clusters was generated with the following parameters: (a)
φ = 0.3 and θ = 0.4, (b) φ = 0.9 and θ = 0.4, (c) φ = 0.3 and θ = 0.85, (d) φ = 0.9 and
θ = 0.85. Plots (a), (b), and (c) shows curves for time horizons M3, M6, M9 and M12
respectively.
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A.6 Generalized Autoregressive Conditional Heteroskedasticity

Figure 35: Cluster entropy for series generated by means of GARCH processes. The series
used to plot the entropy clusters are generated with the following parameters: ω = 0.1,
α = 0.1 and β = 0.25. The time horizon analyzed in figures (a), (b), (c) and (d) is M3,
M6, M9 and M12 respectively.
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Figure 36: Market Dynamic Index for series generated by GARCH processes. The series
used to plot the entropy clusters are generated with the following parameters: ω = 0.1,
α = 0.1 and β = 0.25.
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A.7 Market Data

Figure 37: Time series, cluster entropy curves (M12) and Market Dynamic Index for
S&P500. Results are reported from Ponta and Carbone (2019)
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A.8 MATLAB Scripts

Listings

1 Main Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
2 Load Sampling Lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3 FBM Generating Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4 Main Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5 Plot of Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6 Plot of Cluster Entropy Curves . . . . . . . . . . . . . . . . . . . . . . . . . 99
7 Plot of Market Dynamic Index . . . . . . . . . . . . . . . . . . . . . . . . . 102
8 Series Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
9 Entropy Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
10 MDI Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
11 DMA Main Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
12 Backward DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
13 Centered DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
14 Forward DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
15 Cluster Probability Computation . . . . . . . . . . . . . . . . . . . . . . . . 110
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1 close

2 clear

3 tic

4

5 % %%%%%%%%%%%%%%%%%%%%%%%%I N S T R U C T I O N S %%%%%%%%%%%%%%%%%%%%%%%%

6 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7 % 0 Check the output directory

8 % 1 Modify "ModelName ".

9 % 2 Modify parameters "one", "two", "three".

10 % 3 Modify cell array "SeriesInformation ".

11 % 4 Modify generating function.

12 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

13 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

14

15

16 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

17 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

18 % User Input

19 % First , choose the raw data to take series dimensions from (length of each

20 % time horizon). Second , choose the model in "ModelName ".

21

22

23 [N RawDataLengths] = loadsamplinglengths(’CCMP’);

24 ModelName = ’FBM’

25 Label = ’(l)’

26 H = 0.9

27

28 SeriesInformation {1,1} = ModelName;

29 SeriesInformation {2,1} = [’Hurst Exponent = ’, num2str(H)];

30 createandsetdirectory(ModelName);

31 save([’/Users/pietromurialdo/BigData/Results/’, ModelName ’/’, ’

SeriesInformation ’], ’SeriesInformation ’)

32

33 y = fbmgen(N, H);

34 save([’/Users/pietromurialdo/BigData/Results/’, ModelName ’/’, ’timeseries.

mat’], ’y’)

35

36

37 % To let this section work , move the series you want to draw figures of in

38 % the folder in [/ Users/pietromurialdo/BigData/Results/, ModelName ].

39

40

41 COMPUTE_ANALYSIS(ModelName , y, RawDataLengths);

42

43

44

45 PLOT_TIMESERIES(ModelName , Label);

46 for i = 1:12

47 PLOT_ENTROPY_FIG(ModelName , Label , i);

48 end
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49 PLOT_MDI(ModelName , ’(h)’);

Listing 1: Main Script

1 function [N, periodLengths] = loadsamplinglengths(RealSeriesName)

2

3 % the directory for real data is assumed to be constant.

4

5 inputDir = [’/Users/pietromurialdo/BigData/RawIndexData/’];

6

7 tmp = load([inputDir , RealSeriesName , ’RawLengths ’, ’.mat’]);

8 periodLengths = tmp.DataLength;

9 N = periodLengths {12};

10 clear tmp

11 end

Listing 2: Load Sampling Lengths

1 function [Z] = fbmgen(N, H)

2

3 seed = 123456789;

4 Z = fbmwoodchan(N, H, ’seed’, seed);

5 end

Listing 3: FBM Generating Script

1 function COMPUTE_ANALYSIS(ModelName , TimeSeries , RawDataLengths)

2

3 %

4 %

5 %

6 %

7 %

8 % Definition and evential creation of destination directory. The directory

9 % is specific to the family model level. That means that simulation many

10 % combination of parameters for "GBM" will always be saved in the same

11 % directory. Then the user must deal with the output at each iteration. The

12 % model used is specifi

13

14 directory = [’/Users/pietromurialdo/BigData/Results/’, ModelName , ’/’];

15

16 window = [30 ,50 ,100 ,150 ,200:100:1500];

17

18
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19 [sampledYList , SampledSeriesLength] = seriessampling(TimeSeries ,

RawDataLengths);

20 save([directory , ’SampledSeriesLength.mat’], ’SampledSeriesLength ’);

21

22 entropyMtx = cell (12,1);

23 for i = 1:12

24 filename = [directory , ’EntropyMtx -M’, num2str(i)];

25 entropyMtx{i,1} = entropy(sampledYList{i}, window , filename);

26 end

27

28 filename = [directory , ’MarketDynIndex ’];

29 [intS] = mdindex(entropyMtx , window , filename);

30

31 end

Listing 4: Main Analysis

1 function PLOT_TIMESERIES(ModelName , Label)

2

3

4 directory = [’/Users/pietromurialdo/BigData/Results/’, ModelName , ’/’];

5

6 tmp = load([directory , ’SeriesInformation.mat’])

7 info = tmp.SeriesInformation;

8 clear tmp

9

10 tmp = load([directory , ’timeseries.mat’])

11 TimeSeries = tmp.y;

12 clear tmp

13

14 length(TimeSeries)

15 max(TimeSeries)

16 min(TimeSeries)

17

18 plot(TimeSeries);

19

20 % text (0.7* length(TimeSeries), 0.5*( max(TimeSeries) + min(TimeSeries)), ’

Time Series ’, ’fontsize ’, 15);

21 % for i = 1: length(info)

22 % text (0.7* length(TimeSeries), 0.5*( max(TimeSeries) + min(TimeSeries))

- (0.5*i)*(max(TimeSeries) + min(TimeSeries)) ,...

23 % info{i}, ’fontsize ’,15);

24 % end

25

26 dim = [.7, .3, .1, .1];

27 for i = 1: length(info)

28 string{i} = info{i};

29 end

98



30 string{i + 1} = ’Time Series ’;

31 annotation(’textbox ’, dim , ’String ’, string , ’FitBoxToText ’, ’on’, ’

fontsize ’, 14);

32

33 if ischar(Label)

34 dim = [.25, .6, .3, .3];

35 annotation(’textbox ’, dim , ’String ’, Label , ’FitBoxToText ’, ’on’, ’

fontsize ’, 14);

36 end

37

38 print(’-djpeg’, [directory , Label , ’TimeSeries ’]);

39 close

40

41 end

Listing 5: Plot of Time Series

1 function PLOT_ENTROPY_FIG(SeriesModelName , Label , TimeHorizonIndex)

2

3 %

4 %

5 %

6 %

7 % Definition of basic variables. It is assumed a major directory containing

8 % all results; further specific directories are addressed in the variable

9 % "SeriesModelName", which specify the model used to generate the series.

10 % "window" is assumed constant; in case of modifications , nested functions

11 % and linked functions must be checked.

12

13

14 directory = [’/Users/pietromurialdo/BigData/Results/’, SeriesModelName , ’/’

];

15 window = [30 ,50 ,100 ,150 ,200:100:1500];

16

17 %

18 %

19 %

20 %

21 % Load the sampled series length used to normalize entropy curves.

22

23 tmp = load([directory , ’SampledSeriesLength.mat’]);

24 pathsLength = tmp.SampledSeriesLength;

25 clear tmp

26

27 %

28 %

29 %

30 %
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31 %

32 % Load info used to generate the artificial data. Since Directory and info

33 % must match , eventual mismatches are indications of mistakes.

34

35 tmp = load([directory , ’SeriesInformation.mat’])

36 info = tmp.SeriesInformation;

37 clear tmp

38

39 %

40 %

41 %

42 %

43 % Load entropy matrix according to the model specified and the index passed

44 % as input

45

46 tmp = load([directory , ’EntropyMtx -M’, num2str(TimeHorizonIndex), ’.mat’])

47 paths = tmp.entropyMatrix;

48 clear tmp

49

50 %

51 %

52 %

53 %

54 % First block of code plots entropy curves figures.

55 %

56 % Second block writes figure specification inside the plot according to

57 % string vector Info.

58 %

59 % Third block saves figure

60 %

61 %

62 % %%%%%%%%%%

63 % %%%%%%%%%%

64 %

65 %

66 %

67 % Plot entropy curves

68

69 indexFig = (1: length(window)) ’;

70 for k = 1: length(window)

71 figure (9000);

72 hold on; %fissa la figura in uso in modo che tutte le modifiche future

vengano aggiunte alla figura corrente.

73 grid off; %toglie la griglia.

74 box on; %chiude gli assi a inquadrettare la figura.

75

76 plot(paths{indexFig(k)}(: ,1), ...

77 - log(paths{indexFig(k)}(: ,2) ./ (0.75 * pathsLength)), ...

78 ’.-’);

79
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80 fig = gca;

81 fig.XScale = ’lin’;

82 fig.YScale = ’lin’;

83 fig.XLim = [1 150];

84 fig.XTick = [50 100 150];

85 fig.YLim = [4 12];

86 fig.YTick = [4:2:12];

87 fig.YTickLabels = [1:0.5:3];

88 % fig.YLim = [4 13]; %%%

89 % fig.YTick = [4:2:12];

90 % fig.YTickLabels = [1:0.5:3];

91 xlabel(’\tau [s]’, ’fontsize ’, 18)

92 ylabel(’S(\tau ,n)’, ’fontsize ’, 16) %Cosa significa ’[a.u.]’?

93

94 freccia = annotation(’arrow’);

95 freccia.Position = [0.45 0.3 -0.27 0.55];

96 freccia.LineWidth = 0.75;

97 text (22,11,’n’,’fontsize ’, 16)

98 end

99

100 %

101 %

102 %

103 %

104 % Figure specifications

105

106 dim = [.7, .3, .1, .1];

107 for i = 1: length(info)

108 string{i} = info{i};

109 end

110 string{i + 1} = [’M’, num2str(TimeHorizonIndex)];

111 annotation(’textbox ’, dim , ’String ’, string , ’FitBoxToText ’, ’on’, ’

fontsize ’, 14);

112

113 if ischar(Label)

114 dim = [.5, .15, .3, .3];

115 annotation(’textbox ’, dim , ’String ’, Label , ’FitBoxToText ’, ’on’, ’

fontsize ’, 16);

116 end

117

118 %

119 %

120 %

121 %

122 % Save Figure

123

124

125 filename = [directory , SeriesModelName , ’EntropyCurvesM ’, num2str(

TimeHorizonIndex)];

126 %hgsave(filename)

101



127 print(’-djpeg’,filename)

128

129 close

130

131 end

Listing 6: Plot of Cluster Entropy Curves

1 function PLOT_MDI(SeriesModelName , Label)

2

3

4

5 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6

7 directory = [’/Users/pietromurialdo/BigData/Results/’, SeriesModelName , ’/’

];

8 window = [30 ,50 ,100 ,150 ,200:100:1500];

9

10

11 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

12

13

14 tmp = load([directory , ’SeriesInformation.mat’]);

15 info = tmp.SeriesInformation;

16 clear tmp

17

18

19 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

20

21

22 tmp = load([directory , ’MarketDynIndex.mat’]);

23 integral = tmp.mdi{1,1}

24 clear tmp

25

26

27 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

28

29

30

31

32 windowIndex =[];

33 newWindow = [30 ,50 ,100 ,150 ,200];

34 fontsize2 = 18;

35 font_sz = 18;

36

37 for i = 1: length(newWindow)

38 tmpIndex = find(window == newWindow(i));

39 windowIndex = [windowIndex; tmpIndex ];
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40 clear tmpIndex

41 end

42

43

44 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

45 %

46 %

47 %

48 %

49

50

51 figure;

52 hold on; box on; grid on;

53

54 for i = 1:12

55 plot(newWindow , - integral(i,:), ’.-’);

56 end

57

58 ylabel(’I(n)’ ,’fontsize ’, fontsize2);

59 xlabel(’n’ ,’fontsize ’, fontsize2);

60 set(gca , ’xlim’, [0 200]);

61 set(gca , ’ylim’, [150 700]);

62 set(gca , ’fontsize ’, font_sz);

63 ta = annotation(’arrow ’);

64 ta.Position = [0.5 0.2 -0.15 0.3];

65 ta.LineWidth = 0.5;

66 text (63,400,’M’,’fontsize ’ ,16);

67 %figlegend(SeriesModelName , 125, 250);

68

69 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

70 %

71 %

72 %

73 % Figure specifications

74

75 dim = [.7, .3, .1, .1];

76 for i = 1: length(info)

77 string{i} = info{i};

78 end

79 string{i + 1} = ’MDI’;

80 annotation(’textbox ’, dim , ’String ’, string , ’FitBoxToText ’, ’on’, ’

fontsize ’, 14);

81

82 if ischar(Label)

83 dim = [.5, .3, .3, .3];

84 annotation(’textbox ’, dim , ’String ’, Label , ’FitBoxToText ’, ’on’, ’

fontsize ’, 16);

85 end

86

87 % create smaller axes in top right , and plot on it
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88 axes(’Position ’ ,[0.2 .6 .3 .3]);

89 box on

90 hold on

91

92 for i = 1: length(windowIndex)

93 plot ([1:1:12] , - integral (1:12, i), ’o’, ’MarkerSize ’, 5);

94 end

95

96 xticks ([]);

97 ylabel(’I(M)’,’fontsize ’ ,11);

98 xlabel(’M’,’fontsize ’ ,11);

99 set(gca ,’fontsize ’ ,11);

100 set(gca ,’xlim’ ,[0 13]);

101 set(gca , ’ylim’, [150 700]);

102 set(gca ,’Color’ ,[255/256 255/256 239/256]);

103 ta1 = annotation(’arrow’);

104 ta1.Position = [0.35 0.63 -0.015 0.22];

105 ta1.LineWidth = 0.5;

106 text (6.3,580,’n’,’fontsize ’ ,11);

107

108

109

110

111

112 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

113 %

114 %

115 %

116 %

117

118

119 nomefile2 = [directory , ’MDI’];

120

121 %hgsave(nomefile2)

122 print(’-djpeg’, nomefile2)

123

124 close

125

126 end

Listing 7: Plot of Market Dynamic Index

1 function [yList , minSampledLength] = seriessampling(oneSeries , seriesLength

)

2

3 for i = 1: length(seriesLength)

4 len(i,1) = seriesLength{i};

5 newSeries{i} = oneSeries (1: seriesLength{i});
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6 end

7

8 minLength = min(len);

9 for i = 1: length(len)

10 samplingFreq{i} = round(len(i)/minLength);

11 sampledSeries{i} = newSeries{i}(1: samplingFreq{i}:end);

12 newLength(i) = length(sampledSeries{i});

13 end

14

15 minSampledLength = min(newLength);

16 clear newLength

17 for i = 1:12

18 yList{i,1} = sampledSeries{i}(1: minSampledLength);

19 end

20 end

Listing 8: Series Sampling

1 function [entropyMatrix] = entropy(y, movAvgWindow , filename)

2

3 %la funzione lavora su una serie alla volta e restituisce una matrice nnx2 ,

4 %dove nn indica il numero di finestre di media mobile. la prima colonna

5 %indica la dimensione del cluster tau e la seconda la freq assoluta

6 %corrispondente.

7

8 N = length(y);

9 entropyMatrix = cell(length(movAvgWindow), 1);

10

11 for ii=1:3

12 DMA_type = ii;

13 [y_tilde_vect_cell , sigma_2_DMA_vect , sigma_DMA_vect] = DMA(y,

movAvgWindow , N, DMA_type);

14 [ProbSomma] = computeClusterProbability(y, y_tilde_vect_cell , 1);

15 ProbSommaAllDMA {:,ii} = ProbSomma ’; % ogni colonna contiene la matrice

ProbSomma , che una nnx2 , per un diverso tipo di media mobile.

16 clear ProbSomma

17 end

18

19 for kkk = 1: length(movAvgWindow)

20 vtemp = [ProbSommaAllDMA {1}{ kkk}; ProbSommaAllDMA {2}{ kkk};

ProbSommaAllDMA {3}{ kkk}];

21 tau_Entropia =unique(vtemp (:,1));

22 for kk=1: length(tau_Entropia)

23 idxE = find(vtemp (:,1)== tau_Entropia(kk));

24 if(length(idxE)==3)

25 Entropia(kk) = sum(vtemp(idxE ,2))/3;

26 elseif(length(idxE)==2)

27 Entropia(kk) = sum(vtemp(idxE ,2))/2;
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28 else

29 Entropia(kk) = vtemp(idxE ,2);

30 end

31 end

32 entropyMatrix{kkk ,1} = [tau_Entropia ,Entropia ’];

33 clear vtemp tau_Entropia Entropia

34

35 end

36

37 save([filename , ’.mat’], ’entropyMatrix ’);

38

39 end

Listing 9: Entropy Calculation

1 function [integralS , integralD , integralTot] = mdindex(entropyMtx ,

movAvgWindow , filename)

2

3 %ATTENZIONE! Le linee commentate riguardano il calcolo di intergrali nei

4 %casi di cluster di dimensione maggiore della finestra di MA usata per

5 %calcolarli. Es. Dopo il calcolo dell ’entropia , si ottiene una cell array

6 %dove ogni cella contiene dati riferiti a una data finestra di MA. Ognuna

7 %di queste celle contiene due colonne , la prima con la dimensione del

8 %cluster , la seconda con la freq assoluta del cluster stesso. Per certe

9 %serie , possibile che non siano stati trovati cluster di dimensione

10 %maggiore o uguale a quella della finestra di MA usata per individuarli.

11 %Pertanto , il calcolo degli integrali per cluster di dimensioni maggiori

12 %della finestra di MA usata per individuarli , d errore quando questi

13 %cluster non esistono.

14

15

16 windowIndex =[];

17 newWindow = [30 ,50 ,100 ,150 ,200];

18

19 for i = 1: length(newWindow)

20 tmpIndex = find(movAvgWindow == newWindow(i));

21 windowIndex = [windowIndex; tmpIndex ];

22 clear tmpIndex

23 end

24

25 for i = 1: length(entropyMtx)

26

27 for ii = 1: length(newWindow)

28 entropyMtx{i}{ windowIndex(ii)}(:,1);

29 idxff_s = find(entropyMtx{i}{ windowIndex(ii)}(: ,1) <= newWindow(ii)

); % seleziono cluster di dim. minore di newWindow(ii)

30 % idxff_d = find(entropyMtx{i}{ windowIndex(ii)}(:,1) >

newWindow(ii));
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31

32 dati_entropia{i,ii} = [entropyMtx{i}{ windowIndex(ii)}(:,1), -log(

entropyMtx{i}{ windowIndex(ii)}(:,2))];

33

34 tmp_s = cumsum(dati_entropia{i,ii}(idxff_s ,2));

35 % tmp_d = cumsum(dati_entropia{i,ii}(idxff_d ,2));

36 % tmp_tot = cumsum(dati_entropia{i,ii}(:,2));

37 integralS(i,ii)=tmp_s(end);

38 % integralD(i,ii)=tmp_d(end);

39 % integralTot(i,ii)=tmp_tot(end);

40 end

41 end

42 mdi{1,1} = integralS;

43 % mdi{1,2} = integralD;

44 % mdi{1,3} = integralTot;

45 save([filename , ’.mat’], ’mdi’);

46 end

Listing 10: MDI Calculation

1 function[y_tilde_vect_cell , sigma_2_DMA_vect , sigma_DMA_vect] = DMA(y,nv ,N,

DMA_type)

2

3 if(DMA_type ==1)

4 [y_tilde_vect_cell , sigma_2_DMA_vect , sigma_DMA_vect] = DMA_backward(y,

nv ,N);

5 elseif(DMA_type ==2)

6 [y_tilde_vect_cell , sigma_2_DMA_vect , sigma_DMA_vect] = DMA_centered(y,

nv ,N);

7 else

8 [y_tilde_vect_cell , sigma_2_DMA_vect , sigma_DMA_vect] = DMA_forward(y,

nv ,N);

9 end

10 end

Listing 11: DMA Main Script

1 function [y_tilde_vect_cell , sigma_2_DMA_vect , sigma_DMA_vect] =

DMA_backward(y,nv ,N)

2

3 sigma_DMA_vect =[];

4

5 sigma_2_DMA_vect =[];

6 N = length(y);

7 c=0;

8
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9 for ni = 1: length(nv)

10 n=nv(ni);

11 y_tilde_vect =[];

12

13 for i = n+1: length(y)

14

15 y_tilde = (sum(y(i-n+1:i)))/n;

16

17 y_tilde_vect = [y_tilde_vect;y_tilde ];

18

19 end

20

21 c=c+1;

22 y_tilde_vect_cell{c}= y_tilde_vect;

23

24 sigma_2_DMA = sum((y(n+1:end)-y_tilde_vect (1:end)).^2)/(N-n);

25

26 sigma_2_DMA_vect = [sigma_2_DMA_vect;sigma_2_DMA ];

27

28 sigma_DMA_vect = [sigma_DMA_vect;sqrt(sigma_2_DMA)];

29

30 clear y_tilde y_tilde_vect sigma_2_DMA

31 end

Listing 12: Backward DMA

1 function [y_tilde_centrale_vect_cell , sigma_2_DMA_vect_centrale ,

sigma_DMA_vect_centrale] = DMA_centered(y,nv ,N)

2

3 sigma_2_DMA_vect_centrale =[];

4 sigma_DMA_vect_centrale =[];

5 c=0;

6

7 for ni = 1: length(nv)

8 n=nv(ni);

9

10 y_tilde_centrale_vect =[];

11

12 if(mod(n,2) ==0)

13

14 start_i = n/2+1;

15

16 end_i=length(y)-(n/2);

17

18 else

19 start_i = (n-1) /2+1;

20 end_i=length(y) -((n-1)/2);

21 end
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22

23 for i= start_i:end_i

24 if(mod(n,2) ==0)

25 y_tilde_centrale_t = [0.5 *(y(i-(n/2)))+0.5 *(y(i+(n/2)))+ sum(

y((i-((n-2)/2)):(i+((n-2)/2))))];

26

27 y_tilde_centrale = y_tilde_centrale_t/n;

28 else

29 y_tilde_centrale_t = sum(y((i-((n-1)/2)):(i+((n-1)/2))));

30 y_tilde_centrale = y_tilde_centrale_t/n;

31 end

32

33

34 y_tilde_centrale_vect =[ y_tilde_centrale_vect;y_tilde_centrale ];

35

36 end

37 c=c+1;

38

39 y_tilde_centrale_vect_cell{c}= y_tilde_centrale_vect;

40

41 if(mod(n,2) ==0)

42 sigma_2_DMA_centrale = sum((y((n/2) +1:end -((n/2)))-

y_tilde_centrale_vect (1:end)).^2)/(N-n);

43 else

44 sigma_2_DMA_centrale = sum((y((n-1) /2+1:end -((n-1) /2))-

y_tilde_centrale_vect (1:end)).^2)/(N-n);

45 end

46

47

48

49

50 sigma_2_DMA_vect_centrale = [sigma_2_DMA_vect_centrale;

sigma_2_DMA_centrale ];

51

52

53 sigma_DMA_vect_centrale = [sigma_DMA_vect_centrale;sqrt(

sigma_DMA_vect_centrale)];

54

55

56 clear y_tilde_centrale y_tilde_centrale_vect sigma_2_DMA_centrale

y_tilde_centrale_t

57 end

Listing 13: Centered DMA

1 function [y_tilde_destra_vect_cell , sigma_2_DMA_vect_destra ,

sigma_DMA_vect_destra] = DMA_forward(y,nv,N)

2
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3

4 sigma_2_DMA_vect_destra =[];

5 sigma_DMA_vect_destra = [];

6 c=0;

7

8 for ni = 1: length(nv)

9 n=nv(ni);

10

11 y_tilde_destra_vect =[];

12

13 start_i = 1;

14

15 end_i=length(y)-n;

16

17 for i= start_i:end_i

18 y_tilde_destra = (sum(y(i:(i+n-1))))/n;

19

20

21 y_tilde_destra_vect =[ y_tilde_destra_vect;y_tilde_destra ];

22

23 end

24 c=c+1;

25

26 y_tilde_destra_vect_cell{c}= y_tilde_destra_vect;

27

28

29 sigma_2_DMA_destra = sum((y(1:end -n)-y_tilde_destra_vect (1:end)).^2)/(N

-n);

30

31 sigma_2_DMA_vect_destra = [sigma_2_DMA_vect_destra;sigma_2_DMA_destra ];

32

33

34 sigma_DMA_vect_destra = [sigma_DMA_vect_destra;sqrt(

sigma_DMA_vect_destra)];

35 clear y_tilde_destra y_tilde_destra_vect sigma_2_DMA_destra

36 end

Listing 14: Forward DMA

1 function [ProbSomma] = computeClusterProbability(serie ,y_media_mobile_cell ,

iii)

2

3 for k=1: length(y_media_mobile_cell) %lunghezza pari al numero di finestre

di MA

4

5 Prezzo_MediaMobile = (serie(end -length(y_media_mobile_cell{k})+1:end)-

y_media_mobile_cell{k}); %differenza tra serie reale e sua media mobile

6
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7 segno_p = sign(Prezzo_MediaMobile (1)); %segno della prima diff

8

9 count = 1;

10 durata = [];

11 for x=2: length(Prezzo_MediaMobile)

12 segno_c= sign(Prezzo_MediaMobile(x));

13 if(segno_p == segno_c)

14 count = count +1;

15 else

16 durata = [durata; count ];

17 count = 1;

18 segno_p = segno_c;

19 end

20 end

21

22

23 tau = unique(durata); %lista di tutte le durate possibili , ordinate in

crescente

24 if ~isempty(tau)

25 for i =1: length(tau)

26 ripetizioni(i) = length(find(durata ==tau(i))); %per ogni durata

, restituisce il numero di ripetizioni

27 end

28

29 probabilita{k,iii}=[tau ,ripetizioni ’]; %k scorre con la

corrispondete finestra di MA

30 clear tau durata ripetizioni Prezzo_MediaMobile

31

32

33 end

34 end

35

36

37 %’size della matrice p r o b a b i l i t :’

38 a=size(probabilita);

39 for n = 1:a(1) %per ogni riga della matrice p r o b a b i l i t ; ossia per ogni

finestra di ma.

40 tau_tot =[];

41 ripetizioni_tot =[];

42 for j =1:a(2) %solo 1 in teoria

43 if ~isempty(probabilita{n,j})

44 tau_t = probabilita{n,j}(:,1);

45 ripetizioni_t = probabilita{n,j}(:,2);

46

47 for i = 1: length(tau_t)

48 idx = find(tau_tot == tau_t(i));

49

50 if isempty(idx)

51 tau_tot =[ tau_tot;tau_t(i)];

52 ripetizioni_tot= [ripetizioni_tot;ripetizioni_t(i)];
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53 else

54 ripetizioni_tot(idx) =ripetizioni_tot(idx)+

ripetizioni_t(i);

55 end

56 end

57 end

58 end

59

60 [tau_tot_ord I] = sort(tau_tot);

61 ripetizioni_tot_ord= ripetizioni_tot(I);

62

63 ProbSomma{n}= [tau_tot_ord ,ripetizioni_tot_ord ]; % dove n l’indice

delle finestre di MA.

64

65 clear tau_tot ripetizioni_tot tau_t ripetizioni_t ripetizioni_tot_ord

tau_tot_ord

66 end

Listing 15: Cluster Probability Computation
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