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Summary

The aim of this thesis is to exploit microRNA isoforms expression profiles
and Artificial Intelligence (AI) tools to classify samples from different can-
cer studies. MicroRNA (miRNA) are small non-coding RNA molecules of
19-22 nucleotides that regulate gene expression via base-pairing with com-
plementary sequences within mRNA molecules. Each miRNA sequence can
occur with some modifications that may influence the final behavior of the
molecule, this sequence is called isoform. Thanks to the evolution of se-
quencing technologies, an increasing number of miRNA expression data were
released. The Cancer Genome Atlas (TCGA) is one of the projects that col-
lect these kinds of data. Studies carried out on tumor and healthy samples
showed differential expression of miRNA between the two categories, in par-
ticular for those miRNA families related to oncogenic or tumor suppressors
gene pathways. The growing availability of such data together with the cur-
rent AI tools allows us to design more powerful classification tools for tumor
identification.

From this point, I decided to use miRNA isoform expression profiles as
the input of Convolutional Neural Networks to predict malignancy in biolog-
ical samples. With this aim I selected those cancer studies on TCGA with
the highest amount of normal samples with respect to the tumoral available,
that are: Kidney renal papillary cell carcinoma (KIRP), Kidney Renal Clear
Cell Carcinoma (KIRC) and Kidney Chromophobe (KICH). The samples’
numerosity varies among the subtypes and an imbalance between tumor and
healthy samples up to a magnitude order is also present. To obtain their
miRNA isoform expression profiles I considered separately two alignment
tools from which I created two datasets: starting from the original TCGA
alignment tool I created a table for each sample reporting its identified miR-
NAs in the rows and the expressions of 4 detectable isoforms in columns.
From the alignment tool isormiR-SEA, which identifies a greater number of
isoforms I also created a table for each sample with miRNAs in rows and up to
10 detectable isoforms in columns. Finally, for each table in the two datasets,
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a column reporting the total expression for each miRNA was added. In the
second part, I developed a system that, taken as input these two datasets,
classifies samples from the same tissue into one of the four classes, namely
the three cancer types and the healthy samples. The system compares the
two datasets (which represent a different level of miRNA expression) and
measures their effectiveness in classification tasks. I divided the samples of
the three cancer studies in a training set, to train the classifier, and a test
set to compute the performances together with cross-validation. Different
configurations of the input data (isoforms and miRNAs) and classifiers (mul-
ticlass and binary, tumor subtype vs. tumor subtype and normal vs. tumor
subtype) were tested. The overall results reported for each classifier test ac-
curacies greater than 90% in both binary and multiclass approach. Nonethe-
less better performances were reported for the binary approach, in particular
in distinguishing tumoral and normal samples (test accuracy greater than
98%). In almost all the tests, using as input datasets from IsomiR-SEA,
slightly outperformed performances using TCGA dataset as input.
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Chapter 1

Introduction

Thanks to the development of new technologies applied in medicine and biol-
ogy, malignancy detection is nowadays conducted considering an increasing
number of factors that help in obtaining more precise results. These factors
comprehend data from the human genome, which is in its composition an
enormous source of information since it contains the instruction for every
function in the cell. Bioinformatics is a discipline that studies this type of
data. In general, bioinformatics deals with techniques, algorithms, and tools
for analyzing biological data, officially defined in 1970 as a “study of infor-
matic processes in biotic systems” [12][14][13]. Today it combines methods
from biology, computer science, and statistics to understand the biological
processes behind the cell functionalities including aberrations that lead to de-
veloping cancer. Bioinformatic studies for cancer detection analyze different
types of data deriving from the human genome. Among them, microRNA
molecule is gaining more and more interest in literature as biomarker for
cancer due to its regulatory role in gene expression [10]. In this thesis, I ex-
ploit data deriving from microRNA alignment pipelines in order to develop
an innovative method for characterizing samples into its microRNA isoforms
profile and use them as the input of a Convolutional Neural Network for any
classification purpose. The purpose chosen for this thesis is classification of
samples derived from specific cancer studies of kidney tissue. This particular
application has to be intended as an use case of the system developed, since
the sample characterization by means of miRNA isoforms can be exploited
for different different classification tasks. Chapter 2 reports an introduction
to the biological background of microRNA in its biosynthesis, functions, and
isoforms. While, in Chapter 3, Deep Learning tools are introduced focusing
on Convolutional Neural Networks. Chapter 4 introduces the data that will
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1 – Introduction

be utilized for the analysis explaining the difference between the two sources
in producing expression data from microRNA. In Chapter 5 the complete
method for characterizing samples into its microRNA isoforms profile from
the two data sources is reported together with the design of the Convolu-
tional Neural Networks and dataset for the specific use case chosen, that is
predicting malignancy in 3 classes of kidney tumors. Then, Chapter 6 reports
graphical representations of the samples characterizations together with the
results of the classification tasks together with a final discussion of the results
for the specific use case. Finally, Chapter 7 reports some final considerations
regarding the proposed method.

Computational resources were provided by HPC@POLITO, a project of
Academic Computing within the Department of Control and Computer En-
gineering at the Politecnico di Torino (http://www.hpc.polito.it)
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Chapter 2

Biological Background

In this chapter, an overview of the biological background behind the miRNA
is given. After a briefly introduction to the cell protein biosynthesis, where
also miRNA is involved as regulator, a description to its biogenesis and iso-
forms is reported.

2.1 Protein biosynthesis in human cell
During its life cycle, the human cell carries out many complex mechanisms
to exploit its functionalities, one of the most important is the synthesis of
protein. This process can be summarized in two main steps: Transcription
and Translation.

Transcription starts in the cell nucleus with the “unzipping” of the double-
strand DNA molecule in a specific point by the enzyme helicase. The tem-
plate DNA is than copied by means of RNA polymerase that reads from
the 3-prime (3’) end to the 5-prime (5’) end so that a strand of messenger
RNA (mRNA) in the 5’-to-3’ direction is synthesized. In eukaryotic cells
the mRNA undergoes through some post-transcriptional modification before
reaching the cytoplasm and starts the Translation, one of these modifications
is the splicing of introns that are the noncoding part of the gene.

During the Translation, mRNA synthesized from the nucleus is used as
template and decoded by ribosomes that translates a specific sequence to a
polypeptide according to the trinucleotide genetic code rules. The sequence
of amino acids from this step forms the final protein.

The mRNA can undergo through different modification in order to regu-
late the protein production itself. Interactions with miRNA can cause such
modifications.
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2 – Biological Background

2.2 Biogenesis and function of miRNA
In both plants and animals miRNAs are a class of ~22 nucleotides(nt) long
non-coding RNA that can post-transcriptionally regulate gene expression.
As described in [5], biogenesis of canonical miRNAs can be summarised in
the following steps:

1. Transcription of a miRNA gene by RNA polymerase II (Pol II) to synthe-
sizes a much longer RNA called “pri-miRNA”.

2. Self-folding back of pri-miRNA forming a hairpin structure that will be
the substrate for the Drosha-DGCR8 complex (called Multiprocessor in
figure 2.1A).

3. Processing of the pri-miRNA by the Drosha-DGCR8 complex to release a
~60 nt steam-loop called “pre-miRNA”

4. Migration of the pre-miRNA to the cytoplasm through the action of Ex-
portin 5 and RAN-GTP complex.

5. Cutting of the pre-miRNA near the loop by Dicer to generate the miRNA
duplex, which contains the mature miRNA paired to its passenger strand
(respectively red and blue strand in figure 2.1A).

6. Loading of the miRNA duplex into an Argonaute protein to form a silenc-
ing complex with the mature miRNA strand while degrading the passenger
strand.

At its mature stage in the silencing complex, miRNA can be paired with an
analogue sequence of the target RNAs to start the interaction that will lead
to the silencing of the gene transcribed on the RNA target itself (blue; filled
circle, cap; AAAAA, poly(A) tail in figure 2.1A).

If pairing is very extensive, the target can be sliced, whereas if it is not,
the target can undergo other types of repression (as showed respectively at
bottom-left and bottom-right in figure 2.1A) [5].

Canonical miRNAs can derive from both introns and exons of non-coding
primary transcripts, some of which can codify hairpins for more than one
miRNA. In addition, many canonical miRNAs derive from introns of pre-
mRNAs (figure 2.1B) [5].

MiRNA can bind a specific target depending on the conservation of par-
ticular sub-sequences of nucleotide called miRNA-mRNA interactions sites.
Among these sites, the seed sequence (red sequence in Figure 2.2) is the
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2 – Biological Background

Figure 2.1. (A) Biogenesis and function of a typical miRNA. (B) Typical
sources of canonical miRNAs. (source [5])

most important. Nonetheless,additional sites have been recently identified
as able to guarantee high specificity in miRNA-mRNA interaction as showed
in Figure 2.2 H.
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2 – Biological Background

Figure 2.2. miRNA-mRNA Interaction sites schemes. The miRNA-mRNA
interaction sites reported in H with red, green, blue and brown colors are
known respectively as seed (nt 2-7), offset (nt 8), supplementary (13-16) and
central (nt 3-16). In the pie chart is reported the percentage of observed
miRNAs-mRNA interactions that use one of the seven binding mechanism
shown in the boxes from A to G. (source [30])

2.3 miRNA isoforms (isomiRs)
Alterations during the biogenesis pathway of miRNA can generate multiple
miRNA isoforms (isomiRs) from the same miRNA gene. As described in
[30], processes like exoribonucleases, nucleotidyl transferase activity, RNA
editing, and Single Nucleotide Polymorphisms (SNPs) from the miRNA loci
are considered the main causes of such miRNA alterations.

Accordingly to [24], isomiRs can be separated into three main classes:
3’ isomiRs, 5’ isomiRs and polymorphic (SNP) isomiRs (reported in Figure
2.3). These isomiRs may have a huge impact on the capability of the miRNAs
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2 – Biological Background

to regulate gene expression. They can both lead the miRNAs to lose their
capability to downregulate the mRNA, or even to make them acting on a
complete different set of target mRNAs [30].

Figure 2.3. The three main isomiR types. In first line the 5’ dicing site
is upstream or downstream from the reference miRNA sequence. In second
line the 3’ dicing site is upstream or downstream from the reference miRNA
sequence. In third line nucleotides are added to the 3’ end of the refer-
ence miRNA. In the fourth line an SNP where nucleotides changes from the
miRNA precursor.(source [30])

2.4 miRNA in cancer
Due to its regulatory role in gene expression, it has become clear over the
last decades that aberrations in miRNA expression can be present in human
malignancies. Many studies compares miRNA expression profiles between
tumoral and normal tissues showing that up or down regulations of some
miRNAs with roles in oncogenic and tumor suppressor pathways are present.
In tables 2.1 and 2.2 some example of such differences from the let-7 miRNA
family are reported. Table 2.1 shows differential regulations comparing tu-
moral and normal tissue while in table 2.2 the regulation is also linked to
the related miRNA target involved in tumoral pathways, references to these
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2 – Biological Background

data can be found in [17].

miRNA up/down reg. cancer
let-7 up colon cancer

down breast cancer
down prostate cancer
down hepatocellular cancer
down gastric tumor
up uterine leiomyoma
up pancreatic cancer
up hepatocelluar carcinoma

down lung cancer

Table 2.1. let-7 miRNAs up- or down-regulated in various tumors relative
to normal tissues(source [17])

miRNA effect on cell growth Note (cancer type, etc)
let-7 + inhibition of cell growth lung cancer cell lines
let-7 + inhibition of cell growth

(G1 arrest)
A549 lung cancer line or
HepG2 cell line

- enhanced cell growth A549 lung cancer line
let-7c + inhibition of cell growth

(G1 accumulation)
Hepa-1

let-7g + inhibition of cell growth lung cancer cell lines
- enhanced cell growth

let-7a-3 + increased anchorage inde-
pendent growth (soft agar
assay)

549 lung cancer line

let-7 - enhanced cytotoxic-
ity (more apoptosis)
by gemcitabine, 5-FU,
camptothecin

cholangiocarcinoma cell lines

Table 2.2. Phenotypes of cells are described after ectopic expression (de-
noted as “+” in the second column) or inhibition (“-” in the second column)
of a let-7 family miRNAs [17]
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Chapter 3

Deep Learning

In this chapter tools used for the thesis purpose are introduced, starting with
an introduction to Artificial Neural Networks and some metrics regarding
the evaluation of the models. Eventually, Deep Learning algorithms are
introduced focusing on Convolutional Neural Networks(CNN).

3.1 Introduction to Artificial Neural Networks
In the past decades Machine Learning (ML) has gained an incredible interest
in computer science. The success of such topic relies on the fact that its
algorithms are able to extract information from raw data in order to represent
it into a model that will be used to infer things about other data not yet
modeled.

3.1.1 Artificial Neural Networks
Artificial Neural networks are machine learning models that represent the
basis of the CNN [27]. These networks are non-linear structures of statisti-
cal data organized as modeling tools used to simulate complex relationships
between inputs and outputs that other analytical functions cannot repre-
sent. As in the mammalian brain, the fundamental components of a neural
network are the neurons (a.k.a. nodes) and the connections between them.
These connections can change over the time while training, like in its bio-
logical corresponding. In the figure 3.1 a simple structure of neural network
is showed. An artificial neural network receives external signals on a layer
of input nodes connected with numerous internal nodes, organized in several
levels. Each node processes the received signals and transmits the result to
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3 – Deep Learning

Figure 3.1. Multilayer neural network topology.(source [27])

subsequent nodes. This processing occurs in two phases: the input signal is
multiplied by the weight of the connection and then all the results obtained
are added up and sent to a specific function of the neuron that is called ac-
tivation function. A representation of this process that shows an artificial
neuron is reported in figure 3.2 The first model of artificial neuron is the so
called Perceptron. This model, used for binary classification, has the same
structure of the neuron shown in figure 3.2 with a step function as activa-
tion function. Later on, different activation functions were used for artificial
neurons like the Sigmoid function:

g(z) = 1
1 + e−z

(3.1)

Considered the n-dimensional input of the neuron as x = (x1, x2, x3..., xn),
w = (w1, w2, w3, ..., wn) its weight vector and b its bias, the output of the
neuron is computed as showed in function (3.2)

y = g(w · x+ b) (3.2)

When the output goes only to the neurons input of the subsequent layer like
in figure 3.1 we are talking about Feed-Forward Neural Network.
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3 – Deep Learning

Figure 3.2. Details of an artificial neuron.(source [27])

3.1.2 Training of a Neural Network
The aim of the training (or learning) process is calculate weights and biases
that amplify the input signal while reducing its noise to obtain the best pre-
diction.
This process consists in a continuous readjustment of these parameters ac-
cordingly to the error in predicting a certain outcome.
The learning algorithm mostly associated with neural networks is the back-
propagation learning.

Backpropagation Learning

Feed-Forward Neural Networks compute the output with a forward pass of
the input through the network. If the output matches the label, nothing
changes. If the output does not match the label, an adjustment of the weights
is required.
The key of this adjustment in the Backpropagation learning is to back-
propagate the error of the prediction and divide its contribution to each
weight of the network.
The main steps are the following, considering w any weight of the network:

1. Propagation of the input signal up to the output layer where the prediction
of the network is computed (forward-pass phase).
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3 – Deep Learning

2. Computation of a loss function L that quantify the goodness of the pre-
diction, its main argument is the difference between the current and the
expected prediction.

3. Computation of the gradients of L for each parameter of the network with
the chain rule back to the input layer (e.g. for a certain weight ∂L

∂w).
This is how the contributions of every parameter to the prediction error
is quantified (backward-pass phase).

4. Adjustment of the parameters by means of the computed gradients so that
the loss function is minimized. For the weights of the network a learning-
rate α can be considered in order to module the adjustment so that the
new value of a certain weight will be:

w = w − α
∂L

∂w
(3.3)

5. Iterate until certain conditions are met.

The conditions for the iterations to stop can be different. It is usually set
a certain number of epochs after that the training is stopped. The number
of epochs is an hyperparameter that defines the number of times that the
learning algorithm will work through the entire training set. Learning phase
can be stopped also valuating the variation of certain performance metrics,
avoiding the model to be trained up to the maximum number of epochs set.
This technique is called Early Stopping.

3.2 Testing and optimization of a model
In order to assess the performance of our model we need to take into account
different aspects such as the goodness of classification of previously unseen
samples as well as its ability to generalize on a training dataset. The latter
aspect takes into account not only how good, numerous and balanced our
training samples are, but also whether the model itself has the right setting
for the classification purpose. Searching for the right setting of the model
is an optimization problem. From now on the set of samples used in the
training phase and the previously unseen samples will be called respectively
Training set and Test set. In this section some metrics and techniques to
asses the hereinabove aspects are introduced.
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3 – Deep Learning

3.2.1 Metrics
Confusion Matrix

One of the tools for evaluating models in classification tasks is the confusion
matrix (figure 3.3).

Figure 3.3. The confusion matrix in binary classification (source [27])

The confusion matrix is filled accordingly to the number of predicted labels
with respect to the actual ones. In particular, in case of binary classification
the following metrics are reported:

• True Positive (TP): positive predicted labels actually positive.

• False Positive (FP): positive predicted labels actually negative.

• True Negative (TN): negative predicted labels actually negative.

• False Negative (FN): negative predicted labels actually positive.

Different evaluations of the model can be computed from the confusion ma-
trix counts. Here two measures that are generally used for assessing binary
classifiers, i.e. Accuracy and F1 score are described.

Accuracy

Informally, it is the fraction of the correct predictions with respect to all the
predictions of the model. That is, in binary classification:

Accuracy = TP + TN

TP + FP + TN + FN
(3.4)

This metric alone is not sufficient to evaluate the model and in case of im-
balanced data it can be also misleading. To clarify this concept an example
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3 – Deep Learning

is reported. Let’s consider a diagnostic test to evaluate the presence of a
certain disease.
Taken 500 control samples (450 ill, 50 health) the confusion matrix reports
the following counts:

TP = 445, FP = 45, TN = 5, FN = 5 (3.5)

The overall accuracy is 90%, which does not mean that the prediction of
the test is correct nine time out of ten, because the number of True Nega-
tives (samples correctly predicted as health) are only 10% of the total health
samples tested. In these cases, other metrics should be considered.

F1-score

In binary classification, it is the harmonic mean of precision and recall. The
first measures the proportion of the correct positive predictions, while the
second the proportion of actual positive predictions. Mathematically:

Precision = TP

TP + FP
(3.6)

Recall = TP

TP + FN
(3.7)

F1 score = 2TP
2TP + FP + FN

(3.8)

K-folds Cross-Validation

It is a method used both to estimate the ability of the model to generalize
on the training set and it is used in those cases where the training set has a
limited number of samples. In cross-validation the training set is split into K
number of splits (folds), then two groups for K training phases are created:
K-1 splits belong to the training group while the remaining split belongs to
the validation group to tests the model. On every training phase the splits
rotate between the two groups and eventually all the possible variations are
made. When validation group is composed by only one sample, this method
is also called Leave-one-out. On every phase the model is tested and the
metrics calculated so that mean and standard deviations of the metrics can
be obtained to evaluate the aforementioned aspect.
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3 – Deep Learning

3.3 Convolutional neural network
Convolutional neural network is one of the fundamental network architectures
in deep learning. Compared to machine learning, artificial neural networks,
deep learning neural networks (DLNN) have more complex architectures with
a larger number of neurons, hidden layers and connections. Such complexity
allow DLNN to analyze more complex data, such as images, for which DLNN
where firstly conceived. Having multiple hidden layers means having different
levels of representation of the input data that allows DLNN to automatically
extract higher-order features.
CNNs try to learn these higher-order features in the data using convolution.

3.3.1 Architecture
CNNs try to transform input data from the input layer through all the net-
work into a set of class scores. These scores represent how confidently the
network assigned the input data to each class.
CNN architecture is composed of three main parts as showed in figure 3.4:
• Input layer

• Feature-extractions layers

• Classification Layers

Figure 3.4. CNN High-level architecture (source [27])

The input layer can be N dimensional (in case of RGB image, the third
dimension is given by each channel of the image). A fourth dimension can
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3 – Deep Learning

be also considered if the samples are batched together.
Features-extraction layers are generally composed of repeated patterns of
Convolutional Layers and Pooling layers (ReLU layers in figure 3.4 indicates
layers of rectified linear unit activation function). Finally, there are the
classification layers that can be composed of one or more fully connected
layers to produce the class probability or score from the higher-order features
previously extracted.

Convolutional Layers

Figure 3.5. Convolution layer, from input to output (source [27])

Convolutional layers are considered the main blocks of the CNN architec-
tures. The output volume is computed from the following steps:

1. Convolution of the whole input matrix through a sliding window (Kernel
or Filter), obtaining a new matrix, usually with smaller dimensions.

2. The resulting matrix is activated by an activation function, forming an
activation map or featuremap.

3. For all the filters in the Convolutional layer, a new feature map is com-
puted following the first two steps.

4. All the computed feature maps are stacked together along the third di-
mension of the output volume.

Convolution
Convolution is a mathematical operation that merges two sets of information,
in the case of CNNs they are the input data and a Kernel function. Consid-
ering a kernel K[i, j] with dimensions [2I+1,2J+1] where (i, j) = (0,0) is the
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3 – Deep Learning

center of the kernel, the output g[m,n] applying the kernel function on the
input a[m,n] is:

g[m,n] = K[i, j] ∗ a[m,n] =
+I∑

i=−I

+J∑
j=−J

K[i, j] · a[m− i, n− j] (3.9)

The kernel function is slid across the input data and multiplied by the input
data values within its bounds, the result of each step is a single output entry
as showed in figure 3.6

Figure 3.6. Convolution operation (source [27])

Convolution represents how the filter analyzes the input data in order to
recognize some patterns. The moving window is composed of weights that
are multiplied by the input values of the overlapping area to produce the
feature map. Each element in the feature maps is activated by an activaction
function, usually ReLU (indicated as layer in figure 3.4) so that, the feature
map will only retain positive values, the rest are zeros. Eventually, the filters
in the convolutional layer will be trained to locally recognize a specific pattern
in the input data. Farther along in the network filters can recognize nonlinear
combinations of features, detecting increasingly global patterns.

Pooling layers

Pooling layers can be seen as downsampling of the previous Convolutional
output volume. They reduce progressively layer dimensions over the network,
which helps control overfitting and reduces the number of parameters of the
network. A typical operation of downsampling is maxpooling, where the
output of the previous layer is divided into smaller windows from which only
the max value is retained.
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3 – Deep Learning

Classification layers

Classification layer come right after a flattening operation, where the matrices
in the previous pooling layer are flattened so that all the elements lay on a
single dimension. From this point, the architecture of the CNN has the same
structure of an artificial neural network, with fully-connected layers up to
the output layer. The output layer has a number of neurons equal to the
number of classes to be recognized. These neurons usually report a score for
each class obtained after all the forward steps of the input data up to the
output layer so that they can be assigned to a certain class accordingly to
the score.

3.3.2 Design
CNN design involves different types of parameters to be set. Network com-
plex architectures could improve pattern recognition but increase the number
of parameters to be trained and computational costs. Convolutional layer has
different hyperparameters, to set the dimensionality of the output volume
the following have to be considered:

• Kernel (or filter) size: Smaller size collects more local information
but increases the number of observation areas in the input data, which is
directly correlated to the number of neurons in the output volume.

• Number of filters: Different filters can recognize different patterns, in-
creasing the number of filters increases the third dimension in the output
volume.

• Stride: It’s the sliding window step. The parameter controls the over-
lapping area of subsequent sliding windows. Smaller steps allocate more
neurons in the output volume.

• Zero-Padding: Setting this parameter adds zero to the input outlines so
that the output volume has the same spatial size of the input volume.

These parameters can be set accordingly to the classification task. Other
procedures consider the tuning of one or more parameters in order to obtain
the best performances from the model.
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Chapter 4

Data

In this chapter, data sources utilized in this Thesis will be introduced. The
type of miRNA isoforms expression data strongly depends on the alignment
procedure. Two sources of data coming from two different alignment proce-
dures have been considered:

• From The Cancer Genome Atlas

• From IsomiR-SEA tool

The two sources will be described in this chapter while the procedures to
obtain the miRNA isoforms profiles will be discussed in chapter 5 applied to
a specific use case, that is the class of samples derived from kidney tissue.

4.1 Introduction to miRNA alignment files
To produce the miRNA expression profiles of a particular sample, the miRNA
must be sequenced through a sequencing machine. Sequencing machines are
instruments that allow obtaining the ordered sequences of nucleotide basis
(Adenine, Thymine, Cytosine, Guanine) of a particular DNA or RNA sample
taken as input. In the case of RNA molecule, uracil is present in place of
thymine. The machines produce a text file in the so called FASTA or FASTQ
format, reporting the sequences of nucleotide bases (or reads) of the molecules
that have been detected in the sample. In the FASTA format for nucleotide
sequences, each read is reported as a string of letters preceded by a line
that contains the identifier of that read, it usually starts with a grater than
character ’>’. The difference with FASTQ formats is that FASTQ reports
in the next line of the read a sequence of characters for each nucleotide
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base indicating the quality with whom the particular base was identified.
Sequencing of short molecules like miRNA is usually done using a specific
approach that demonstrated to be more accurate in sequencing molecules of
up to 500 base pairs, the Next-Generation Sequencing.

4.1.1 Next Generation Sequencing
Next-generation sequencing (NGS) is a high-throughput approach to DNA
and RNA sequencing that applies massively parallel processing to produce
billions of nucleotide sequences. Different technologies using NGS have sim-
ilar procedure steps:

1. Sample Preparation: The input for the sequencing machines are pre-
pared, also called library preparation, though either amplification of the
nucleotides sequence or ligation with custom adapters. Those adapters
are fragments of nucleotides that enable hybridization to the sequencing
chips in the machine and provide priming sites for the sequencing primers
so that the process of sequencing can start.

2. Sequencing: Each pre-processed fragment is amplified creating clusters
that act as individual sequencing reactions. The sequence of each fragment
is optically read, depending on the technology, from repeated cycles of
nucleotide incorporation. In Illumina system, for instance, the cycles are
represented by repeated incorporation of fluorescent nucleotides detected
by the camera and then removal of the fluorescent groups.

3. Data Output: The machine generate FASTQ format files, containing
the sequences for each cluster.

Different technologies use NGS approach, the main differences lie in the se-
quencing technique, here some examples are reported:

• Pyrosequencing

• Sequencing by Synthesis

• Sequencing by Ligation

• Ion Semiconductor Sequencing

References and supplementary details can be found in [6].
The technology that uses NGS to reveal and quantify presence of miRNA

in samples is called microRNA sequencing (miRNA-seq).
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4.1.2 Short-read alignment algorithms
Sequencing of miRNA molecules produces ~21 nucleotides reads that require
a localization in the genome to be identified. For such short sequences, the
localization in the genome can be tricky, not only because of the enormous
difference of magnitude order (21 bases vs. 3 billion bases) but also because
mutation, insertion or deletion in the sequence to be localized must be taken
into account. Algorithms designed for localizing short reads in the genome are
called short-read alignment algorithms. There are different types of short-
read alignment algorithms in the market implementing different searching
techniques. Here is reported a list of popular short read alignment software
from [20]:

• Bfast

• Bowtie

• BWA

• Novoalign

The output of an alignment algorithm is a file reporting, for each read in
the output sequencing file, where the read was aligned in the reference. The
most common format is the Sequence Alignment Map (SAM), which reports
together with the read position in the reference also other parameters that
refer to the result of the alignment, its compressed binary version is the BAM
format, reference and more details can be found in [21].

4.2 The Cancer Genome Atlas
The Cancer Genome Atlas (TCGA) is a project begun in 2005 from the Na-
tional Cancer Institute and the National Human Genome Research Institute
funded by the US government that aims to catalog and discover carcinogenic
alterations in the genome [32]. Today TCGA has molecularly characterized
over 20,000 primary cancer and matched normal samples spanning 33 cancer
types using different techniques that include gene expression profiling, copy
number variation profiling, SNP genotyping, genome wide DNA methylation
profiling, miRNA profiling, and exon sequencing.
Data from TCGA can be retrieved in the Genomic Data Portal.
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4.2.1 Data for miRNA analysis
Genomic Data Portal comprehends three types of data deriving from miRNA
analysis:

1. Aligned Reads: Usually BAM file originated from the alignment with
BWA-MEM algorithm [19].

2. miRNA Expression Quantification: A text file with a tabular struc-
ture reporting expression of any region in the precursor miRNA grouped
together. In particular it reports read count, reads per million (RPM, that
is a normalization done dividing by the sum of all the reads and multiply
by one million) and a label indicating whether the pre-miRNA was cross-
mapped (i.e. when a read exactly match two different sequence without
recognizing the difference, the read count is assigned to both sequences
and pre-miRNA is labeled as cross-mapped) [9].

3. Isoform Expression Quantification: Compared to the miRNA Ex-
pression Quantification, reads are now referred to the region inside the
pre-miRNA, along with their coordinates (example in 4.1).

The pre-miRNA regions were annotated with different labels: "mature" (i.e.
the mature strand), "star strand" (i.e. the passenger strand), "precursor" (i.e.
precursor miRNA), "stem loop" (i.e. from 1 to 6 bases outside the mature
strand, between the mature and star strands). The annotation label can
be "unannotated", that is when the read was aligned to any region other
than the mature strand in miRNAs where there is no star strand annotated
[1]. These annotation refers to the miRBase database [2]. miRBase is a
database that collects miRNA sequences from different organisms discovered
in RNA deep sequencing analysis [16]. Each entry in the sequences database
is a portion of a miRNA transcript (termed mir in the database), with infor-
mation on the location and sequence of the mature miRNA sequence (termed
miR). Due to the increasing quantity of data of miRNA-seq from different
studies, ensuring the quality of miRNA annotations collected by miRBase
has become challenging. Therefore, miRBase aims to provide post analyses
of published microRNA sequences, including feedback from the users navi-
gating in the miRBase database entries, asking for a confidence level. Each
mature sequence in the database has its "Accession" that is the identifica-
tion string starting with "MIMAT" also reported in the Isoform Expression
Quantification file.
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miRNA ID Isoform coordinates read count RPM cross-mapped miRNA region
hsa-let-7a-1 hg38:chr9:94175940-94175962:+ 1 0.412032 N precursor
hsa-let-7a-1 hg38:chr9:94175960-94175982:+ 2 0.824063 N mature,MIMAT0000062
hsa-let-7a-1 hg38:chr9:94175960-94175984:+ 1 0.412032 N mature,MIMAT0000062
hsa-let-7a-1 hg38:chr9:94175960-94175985:+ 1 0.412032 N mature,MIMAT0000062
hsa-let-7a-1 hg38:chr9:94175961-94175982:+ 1 0.412032 N mature,MIMAT0000062
hsa-let-7a-1 hg38:chr9:94175961-94175983:+ 1 0.412032 N mature,MIMAT0000062
hsa-let-7a-1 hg38:chr9:94175961-94175984:+ 8 3.296253 N mature,MIMAT0000062
hsa-let-7a-1 hg38:chr9:94175961-94175985:+ 1 0.412032 N mature,MIMAT0000062
hsa-let-7a-1 hg38:chr9:94175962-94175981:+ 112 46.147545 N mature,MIMAT0000062
hsa-let-7a-1 hg38:chr9:94175962-94175982:+ 2641 1088.175598 N mature,MIMAT0000062
hsa-let-7a-1 hg38:chr9:94175962-94175983:+ 2202 907.293702 N mature,MIMAT0000062
hsa-let-7a-1 hg38:chr9:94175962-94175984:+ 5234 2156.573677 N mature,MIMAT0000062
hsa-let-7a-1 hg38:chr9:94175962-94175985:+ 155 63.864906 N mature,MIMAT0000062
hsa-let-7a-1 hg38:chr9:94175962-94175986:+ 3 1.236095 N mature,MIMAT0000062
hsa-let-7a-1 hg38:chr9:94175963-94175981:+ 1 0.412032 N mature,MIMAT0000062
hsa-let-7a-1 hg38:chr9:94175963-94175982:+ 9 3.708285 N mature,MIMAT0000062
hsa-let-7a-1 hg38:chr9:94175963-94175983:+ 8 3.296253 N mature,MIMAT0000062
hsa-let-7a-1 hg38:chr9:94175963-94175984:+ 39 16.069235 N mature,MIMAT0000062
hsa-let-7a-1 hg38:chr9:94175963-94175985:+ 1 0.412032 N mature,MIMAT0000062

... ... ... ... ... ...

Table 4.1. Isoform Expression Quantification file

4.3 IsomiR-SEA
Tools for miRNA alignment have been sofar developed using different align-
ment techniques [36]. IsomiR-SEA (ISEA) is an alignment tool developed
by G. Urgese et al. in 2016 [31] for miRNA-seq data. The name stands for
isomiRNA Seed Extension Aligner related to the technique applied in the
alignment where each read (also called tag) is aligned starting from the seed
(nt. 2-7 figure 2.2) of miRNA mature sequences taken as input from a genome
reference file. Alignment results of ISEA compared to other alignment tools
report a more detailed analysis of the sequence taking into account possible in
all the alignment phases, the positions of the encountered mismatches, thus
allowing to distinguish among the different isomiRs and conserved miRNA-
mRNA interaction sites [31]. The output of ISEA is composed of 3 files, a
.log file a .tag and a .gff file. The log file refers to the parameters set for the
alignment, the .tag and .gff file report the results of the alignment. A custom
post processing procedure, developed for a M.Sc. Thesis, has been used to
obtain the alignment results in a database file containing a table named Sam-
ple_MII_iso_inter with all the aligned tag grouped in the detected isoforms
for each sample (figure 4.1). Each column has the following meaning:

• MI: an unique index value assigned to each miRNA sequence in the input
reference file.
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• IEX: a boolean indicating whether the isoform corresponds to the canon-
ical mature sequence reported in the reference database.

• I5P: an integer indicating whether the isoform has insertion(+) or deletion(−)
in the 5’ end compared to the mature sequence.

• I3P: an integer indicating whether the isoform has insertion(+) or deletion(−)
in the 3’ end compared to the mature sequence.

• IMS: stands for multiple nucleotide polymorphism isoform, it is a boolean
indicating if the isoform presents multiple mismatch w.r.t. the mature
sequence.

• ISN: stands for single nucleotide polymorphism isoform, it is a boolean
indicating if the isoform presents at least a mismatch w.r.t. the mature
sequence.

• INS: a boolean indicating presence of mismatch in the seed.

• IOS: a boolean indicating whether the offset site (nt.8) is conserved in
the isoform.

• ISS a boolean indicating whether the supplementary site (nt.13 to 16) is
conserved in the isoform.

• IPS: a boolean indicating whether the compensatory site (nt 12 to 20
approximately) is conserved in the isoform.

• ICS: a boolean indicating whether the central site (nt 4 to 16 approxi-
mately) is conserved in the isoform.

• MII: an unique index assigned to each miRNA while reading the input
reference files, MI refers to the absolute miRNA sequence while MII is
specific of the organism.

• IC5: a boolean indicating whether the 5’ end of the isoform is aligned to
the 5’ end of the miRNA mature sequence, it is set only if an insertion ore
deletion if present, otherwise is ’?’.

• IC3: a boolean indicating whether the 3’ end of the isoform is aligned to
the 3’ end of the miRNA mature sequence, it is set only if an insertion ore
deletion if present, otherwise is ’?’.
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• sample_isea_db_id: the id of the sample in which the isoform was
identified.

• iso5: a sign indicating whether the 5’ end of the isoform corresponds (=)
to the 5’ end of the mature sequence, or an insertion(+) or deletion(−) is
present.

• iso3: a sign indicating whether the 3’ end of the isoform corresponds (=)
to the 3’ end of the mature sequence, or an insertion(+) or deletion(−) is
present.

• iso: a string collapsing IEX,I5P,iso5,IMS,ISN,iso3,I3P labels.

• inter: a string collapsing INS,IOS,ISS,IPS,ICS labels.

• mmCount (Sum): a float indicating the sum of all the reads mapped
with the same alignment score on different miRNAs.

• TI (Count): an integer indicating how many unique tags were grouped
in that isoform.

• mism (mean): a float indicating the mean of mismatches for all the tag
grouped in the isoform.

• MI4S (Mean): a float indicating the mean of the number of miRNAs
the grouped tags were aligned with.

• MSD (Mean): a float indicating the mean of the differences in the scores
between two subsequent alignments of miRNA with the same tag sequence.

• TC (Sum): a float indicating the number of tags grouped within the
isoform.

• AL (Mean): a float indicating the mean of the length of alignment for
every tag grouped within the isoform.

• AM (Mean): a float indicating the mean of the alignment score for every
tag grouped within the isoform.

• countMultimap (Mean): a float indicating the mean of the number of
reads that were mapped to multiple miRNAs associate to the current row.

• SD (Mean): a float indicating the mean of the differences between the
tags and the miRNA grouped with the isoform.
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For ISEA analysis MirGeneDB reference genome file was taken as in-
put. MirGeneDB is another database of validated and annotated miRNA. A
study supporting mirGeneDB [11] shows that only approximately 16% of the
7,095 metazoan entries in miRBase are robustly supported as miRNA genes.
While in mirGeneDB all the miRNA entries are supported by validated ex-
perimental procedures.

Figure 4.1. Sample-MII-iso-inter Table
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Chapter 5

Method

In this chapter, I describe the method that allowed to classify use case specific
samples starting from their miRNA isoform profile exploiting CNN. Firstly, I
describe how the input data for the classifier were designed and how I retrieve
these data from the two sources (Isomir Expression quantification files from
TCGA and Sample_MII_iso_inter tables from ISEA). Eventually, in the
same section, I explain why I chose kidney cancer samples as use case in
the whole panorama of cancer studies. Then I describe the classifier design
itself, which architecture and hyperparameters have been chosen for the first
tests and finally which tests have been planned to evaluate the problem in a
binary or multiclass manner.

5.1 From miRNA alignment maps to miRNA
expression matrices

The current miRNA isoform expression profiles allow us to retrieve different
detailed information regarding the expression of the miRNAs. Due to the
different types of alignment, the information ends up being organized dif-
ferently so that a common way to represent the expression for each miRNA
mature sequence divided into its isoforms is needed. The idea was to orga-
nize the information in tabular structures so that for each miRNA mature
sequence in the row the expression of its isoforms detected in the sample is
reported in columns (see table 5.1 for an example).

For each row, the first column contains an identifier to the miRNA ma-
ture sequence (that is set up differently depending on the miRNA reference
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miRNA_ID iso_1 iso_2 ... exact log2(RPM+1)
miRNA_1 % of iso_1 % of iso_2 ... % of exact total expression

miRNA_2 % of iso_1 % of iso_2 ... % of exact total expression
... ... ... ... ... ...

miRNA_n % of iso_1 % of iso_2 ... % of exact total expression

Table 5.1. Schema of miRNA expression matrix

database) while from the second to the second to last column a float indi-
cating the expression for each isoform in the sample is reported. This value
is computed starting from the read counts identified in the sample for the
reads that were attributed to that specific isoform from the aligner. The
read count is divided by the total number of reads aligned to that miRNA.
This normalization allows representing for each miRNA the percentage of
expression of its isoforms detected in the sample. Finally, the last column
reports a float indicating the total expression of that specific miRNA (ex-
act sequence together with isoforms) detected in the sample. This value is
computed starting from the sum of the total read count of all the isoforms
identified in the sample for that specific miRNA and then divided by the
total read count of all the isoforms of all the miRNAs identified in the sam-
ple so that the expression of each miRNA is normalized in the total sample.
The value is then multiplied by one million (doing the so-called RPM nor-
malization, usually done for count read normalization also in other studies
[9]) so that the expression of a miRNA in a specific sample is comparable
to one from another sample. This normalization can lead to values with
discrepancies of several magnitude orders, for this reason, a supplementary
adjustment is done, which is to sum by one the RPM value and compute the
base two logarithms. This technique, also done in [9], allows not shadowing
the contribution of miRNAs in the sample with a lower expression that is
nonetheless significant.

5.1.1 From TCGA alignment
Starting from the Isoform Expression Quantification File described in sec-
tion 4.2.1 I developed a pipeline in Python[26][23] that creates together with
the reference genome coordinates of miRBase the miRNA expression matrix.
The reference genome coordinates file of miRBase reports the genome coor-
dinates along with the annotations of a particular organism for each miRNA
gene sofar detected. The reference file for homo sapiens is called hsa.gff3
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downloadable from the miRBase site [2]. The file has a tabular structure as
shown in table 5.2, the columns report the following information (from left
to right in 5.2):

• The Chromosome name.

• The sequence type, it can be miRNA_primary_transcript (i.e. hairpin
precursor sequence) or miRNA (mature sequence).

• An integer indicating the start position in the chromosome.

• An integer indicating the start position in the chromosome.

• An integer indicating the end position in the chromosome.

• A sign between + or -, indicating whether it is located in the positive or
negative strand of the DNA.

• The annotations, usually including the miRNA mature sequence ID in
miRBase (starting with MIMAT) and the precursor ID (starting with MI)
in case of miRNA mature sequence type, otherwise only the precursor ID
is reported. Annotations include also a miRNA name, no more used as a
reference because of issues [3].

chr1 miRNA_primary_transcript 17369 17436 - ID=MI0022705;Alias=MI0022705;Name=hsa-mir-6859-1
chr1 miRNA 17409 17431 - ID=MIMAT0027618;Alias=MIMAT0027618;Name=hsa-miR-6859-5p;Derives_from=MI0022705
chr1 miRNA 17369 17391 - ID=MIMAT0027619;Alias=MIMAT0027619;Name=hsa-miR-6859-3p;Derives_from=MI0022705
chr1 miRNA_primary_transcript 30366 30503 + ID=MI0006363;Alias=MI0006363;Name=hsa-mir-1302-2
chr1 miRNA 30438 30458 + ID=MIMAT0005890;Alias=MIMAT0005890;Name=hsa-miR-1302;Derives_from=MI0006363
chr1 miRNA_primary_transcript 187891 187958 - ID=MI0026420;Alias=MI0026420;Name=hsa-mir-6859-2
chr1 miRNA 187931 187953 - ID=MIMAT0027618_1;Alias=MIMAT0027618;Name=hsa-miR-6859-5p;Derives_from=MI0026420
chr1 miRNA 187891 187913 - ID=MIMAT0027619_1;Alias=MIMAT0027619;Name=hsa-miR-6859-3p;Derives_from=MI0026420
chr1 miRNA_primary_transcript 632615 632685 - ID=MI0039740;Alias=MI0039740;Name=hsa-mir-12136
chr1 miRNA 632668 632685 - ID=MIMAT0049032;Alias=MIMAT0049032;Name=hsa-miR-12136;Derives_from=MI0039740
chr1 miRNA_primary_transcript 1167104 1167198 + ID=MI0000342;Alias=MI0000342;Name=hsa-mir-200b
chr1 miRNA 1167124 1167145 + ID=MIMAT0004571;Alias=MIMAT0004571;Name=hsa-miR-200b-5p;Derives_from=MI0000342
chr1 miRNA 1167160 1167181 + ID=MIMAT0000318;Alias=MIMAT0000318;Name=hsa-miR-200b-3p;Derives_from=MI0000342

Table 5.2. hsa.gff3 file from miRBase [2]

Since Isomir Expression Quantification file reports only the alignment co-
ordinates of the reads in the genome, the detectable isoforms for each miRNA
consider only insertion or deletion or exact match w.r.t. the miRNA mature
sequence. The intermediate columns in the matrix are:

• I5P: reporting the reads with a maximal deviation of two positions w.r.t.
the 5’ end coordinates of the miRNA mature sequence in the genome
coordinates file.
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• I3P: reporting the reads with any deviation in the position w.r.t. the 3’
end coordinates of the miRNA mature sequence in the genome coordinates
file.

• I5P-I3P: reporting the reads that satisfied both the I5P and I3P condi-
tions.

• EX: reporting the reads with an exact match in the coordinate positions
of the miRNA mature sequence in the genome coordinates file.

An input/output schema of the Python script is reported in figure 5.1.

Figure 5.1. Input/output schema for the TCGA files pipeline

The pipeline to create an expression matrix follows these steps:

1. The genome coordinates file is loaded as a DataFrame (a variable type
from the Pandas library [22] that replicates the tabular structure of the
original file) that here I call Coordinates-DF.

2. A list of unique mature sequence identifiers (MIMATs) is extracted from
the annotations column and sorted in ascending order.

3. A DataFrame is created, with the MIMATs as indexes (rows) and five
columns, each for every isoform together with the total read count. It
represents the expression matrix to be filled, that here I call Expression-
DF.
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4. The Isoform expression quantification file of a specific sample is loaded as
DataFrame, that here I call Isoform-DF.

5. For each row in Isoform-DF, if the annotations indicate coordinates related
to a MIMAT the script searches for the coordinates of that MIMAT in the
Coordinates-DF.

6. The script compares the coordinates of the Isoform-DF row with the co-
ordinates of the MIMAT, depending on the conditions reported in the
column list (above) the read count of that specific Isoform-DF row is
reported to the corresponding MIMAT row in Expression-DF for the cor-
responding isoform detected.

7. Steps 5 and 6 are iterated until the last row in Isofrom-DF.

8. The Expression-DF is normalized using the procedure reported in 5.1 and
saved as numpy array (variable type from Numpy library [25]).

The final mirna expression matrix for a given sample is composed of
2652 rows (corresponding to the 2652 MIMATs present in miRBase) and 5
columns, one for each isoform including the total expression of the MIMAT
(reported as logRPM).

5.1.2 From IsomiR-SEA alignment
IsomiR-SEA alignment and output post-processing provide the
Sample_MII_iso_inter table. The table can group alignment information
deriving from multiple samples, in addition, it reports a huge number of
characteristics referring to all the interaction sites in the miRNA. This level
of detail allows identifying a greater number of isoforms. In this work, to
differently characterize the isoforms I considered the columns IEX, I5P,
IMS, ISN, I3P, INS (ref. on section 4.3). I chose these columns because
comparing to detectable mismatches in other sites (IOS, ISS, IPS, ICS), seed
mismatches (INS) can have a stronger impact on the miRNA-mRNA interac-
tion, being the seed their primary interaction site (ref. on section 2.2). While
ISN and IMS represent mismatches in the whole sequence so that also mis-
matches in other sites can be included. Combinations of the values reported
in the chosen columns allow separating the aligned reads into 16 different
isoforms reported in table 5.3.

Due to its file format, miRNA expression matrix for each sample can be
extracted from the Sample_MII_iso_inter table using specific SQL queries.
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Sample_MII_iso_inter columns
Isoforms IEX I5P IMS ISN I3P INS

I5P-MS-I3P F !=0 F T/F !=0 T
I5P-MS F !=0 F T/F ==0 T
MS-IM F ==0 T T/F ==0 T

I5P-MS-IM F !=0 T T/F ==0 T
MS-IM-I3P F ==0 T T/F !=0 T

I5P-MS-IM-I3P F !=0 T T/F !=0 T
MS-I3P F ==0 F T/F !=0 T
MS F ==0 F T/F ==0 T

I5P-IM-I3P
F !=0 T T !=0 F
F !=0 F T !=0 F
F !=0 T F !=0 F

IM-I3P
F ==0 T T !=0 F
F ==0 F T !=0 F
F ==0 T F !=0 F

IM
F ==0 T T ==0 F
F ==0 F T ==0 F
F ==0 T F ==0 F

I5P-IM
F !=0 T T ==0 F
F !=0 F T ==0 F
F !=0 T F ==0 F

I5P-I3P F !=0 F F !=0 F
I5P F !=0 F F ==0 F
I3P F ==0 F F !=0 F
EX T ==0 F F ==0 F

Table 5.3. Isoforms extracted from Sample_MII_iso_inter

For this reason, I created a custom script in Python that, taken as input
a file containing instruction to create the query, it extracts the miRNA
expression matrix with the read counts (not normalized) from the Sam-
ple_MII_iso_inter table and reports it into a DataFrame structure. To
query the Sample_MII_iso_inter table I used the SQLite3 library in Python.
The instructions to create the query are retained in a csv file, reported in
a tabular structure on table 5.4). Each row represents a particular isoform
to be extracted using the condition reported in the second column, while
the first column contains the name attributed to the isoform. The last row
(TOT) doesn’t refer to an isoform but allows collecting the total read count
for each MII, that refers to a particular miRNA mature sequence identifier
from the mirGeneDB database (ref. 4.3).

Different miRNAs with similar sequence are likely to have the same mRNA
target (section 2.2). For this reason, i decided to group miRNAs with sim-
ilar sequence so that the miRNA expression matrix for each sample ends
up having in the rows expression of miRNA groups with similar sequence.
This similarity was computed by isomiR-SEA taking as input the mature se-
quences of mirGeneDB and aligned with the mature sequences of mirGeneDB
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Isoform name Query conditions
I5P-MS-I3P I5P!=0 AND I3P!=0 AND INS=="T" AND IMS=="F"
I5P-MS I5P!=0 AND I3P==0 AND INS=="T" AND IMS=="F"
MS-I3P I5P==0 AND I3P!=0 AND INS=="T" AND IMS=="F"
MS I5P==0 AND I3P==0 AND INS=="T" AND IMS=="F"

MS-IM I5P==0 AND I3P==0 AND INS=="T" AND IMS=="T"
I5P-MS-IM I5P!=0 AND I3P==0 AND INS=="T" AND IMS=="T"
MS-IM-I3P I5P==0 AND I3P!=0 AND INS=="T" AND IMS=="T"

I5P-MS-IM-I3P I5P!=0 AND I3P!=0 AND INS=="T" AND IMS=="T"
I5P-IM-I3P I5P!=0 AND I3P!=0 AND (IMS=="T" or ISN=="T") AND INS=="F"
IM-I3P I5P==0 AND I3P!=0 AND (IMS=="T" or ISN=="T") AND INS=="F"
I5P-IM I5P!=0 AND I3P==0 AND (IMS=="T" or ISN=="T") AND INS=="F"
IM I5P==0 AND I3P==0 AND (IMS=="T" or ISN=="T") AND INS=="F"
I5P I5P!=0 and I3P==0 AND IMS=="F" AND ISN=="F" AND INS=="F"
I3P I5P==0 and I3P!=0 AND IMS=="F" AND ISN=="F" AND INS=="F"
EX IEX=="T"
TOT MII>=0

Table 5.4. Table from query.csv file

themselves. The miRNA groups were created considering an alignment score
between each couple of miRNA greater than 15. From the 1171 distinct
miRNA mature sequences in mirGeneDB I obtained 923 miRNA groups that
correspond to the final number of rows in the expression matrix. The in-
dexes to group each miRNA are retained in the GeneDB_TI _MIN so that
a unique query can be created for each sample. The final schema of the
input/output pipeline is reported in figure 5.2.

The steps of the pipeline are the following:

1. The algorithm extracts the unique list of samples from the Sample_MII_iso_file
using a specific query.

2. For each sample in the list of samples, the query is constructed from the
query.csv attaching the GeneDB_TI _MIN so that the miRNAs can be
grouped.

3. The query is processed from Sample_MII_iso_and the expression matrix
extracted (example of a query is reported in appendix A.1).

4. The query result is loaded into a DataFrame variable then normalized
using the procedure reported in 5.1.Finally the matrix is saved as numpy
array.
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Figure 5.2. Input/output schema for the ISEA files pipeline

The final miRNA groups expression matrix has 932 rows and 16 columns
reporting the isoform expression and the total expression for each miRNA
group (reported as loagRPM).

39



5 – Method

5.1.3 Use case
In the panorama of miRNA-seq available data from the Genomic Data Por-
tal, only three primary sites report more than one thousand samples from
miRNA-seq analysis. In figure 5.3 a stacked bar chart shows the distribu-
tion of tumoral and normal tissue in the three sites. For the classification

Figure 5.3. MiRNA-seq samples’ distribution in Breast, Bronchus+lung and
Kidney.(created with [15])

purpose, I looked for the highest normal/tumoral samples ratio for choosing
the primary site, which lead me to the kidney. Kidney samples derive in
turn from three different kidney cancer subtypes assigned to specific TCGA
projects: Kidney renal papillary cell carcinoma (KIRP), Kidney Renal Clear
Cell Carcinoma (KIRC) and Kidney Chromophobe (KICH). The samples’
numerosity varies among the subtypes and an imbalance between tumor and
healthy samples up to a magnitude order is also present (figure 5.4).

Chosen these three cancer subtypes, classification performances for both
binary and multiclass condition will be evaluated (as described in 5.3). Since
I considered tumors coming from the same tissue, I decided to put together
normal samples, while the tumoral samples remain separated in the three
classes (KIRP, KIRC, KICH). Consider samples coming from the same tis-
sue, lead me to another consideration: since the miRNA expression mainly
depends on the type of tissue, only a small percentage of the total miR-
NAs previously considered will be expressed in the specific kidney tissue and
reducing the number of miRNAs (rows in the matrices) can considerably
simplify the feature space for the classification tasks. Therefore a filter based
on expression was designed. It can be applied (differently) in both databases

40



5 – Method

Figure 5.4. Samples’ distribution of the kidney cancer subtypes
(created with [15]).

(miRNA expression matrices from TCGA align. and miRNA groups expres-
sion matrices from ISEA align.) and select those rows that satisfied specific
expression conditions in the whole tissue. To evaluate the expression of the
miRNAs in the whole tissue I took all the samples (normal and tumoral) and
calculate the matrices (expressing read count, not normalized) from the two
alignment procedures (TCGA and ISEA) separately. Then I summed up the
matrices, separately from the two alignment procedures, so that I obtained
the whole expression in read counts for every miRNA/miRNA group in the
last column. Then I normalized in RPM and obtained the miRNA/miRNA
group normalized expression in the whole tissue using the two alignment pro-
cedures. I chose to filter those miRNAs/miRNA groups that in the whole
tissue reported an expression value greater than 10 RPM and 20 RPM. This
lead to a reduction in the number of rows of a magnitude order for both the
databases (from TCGA align. and ISEA align.).

Due to the redundancy of information and a priori knowledge of the data
I decided to group some isoforms of the miRNA groups expression matrices
following the schema reported in table 5.5.

Table 5.6 report the final dimension of the datasets.
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Isoform groups Isoforms

I5P or MS or IM or I3P

I5P-MS-I3P
I5P-MS
MS-IM

I5P-MS-IM
MS-IM-I3P

I5P-MS-IM-I3P
MS-I3P MS-I3P
MS MS

I5P-IM-I3P I5P-IM-I3P

IM or I3P IM-I3P
IM

I5P-IM I5P-IM
I5P-I3P I5P-I3P
I5P I5P
I3P I3P
EX EX

Table 5.5. New isoforms for miRNA groups expression matrices

Align. procedure Initial RPM >10 RPM >20
TCGA align. 2652 x 5 190 x 5 156 x 5
ISEA align. 932 x 16 175 x 11 141 x 11

Table 5.6. New dataset dimensions (rows x columns)

5.2 Classification tool design
To classify kidney samples exploiting the expression of the isoforms for each
miRNA/miRNA group as they are represented in the datasets I used a CNN
with the following architecture (as reported in figure 5.5):

1. A 2D convolutional layer.

2. A dense layer with 64 neurons.

3. An output layer.

The kernel dimension for the convolutional layer varies according to the input,
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I chose to set a monodimensional kernel that covers all the columns (isoforms)
taking a single row at a time(miRNA/miRNA group). It slides vertically the
input computing in the output of the convolutional layer a single value that
refers to a single row. I added no more convolutional layer as I wanted to
keep separate the information for each miRNA/miRNA group taken from the
isoforms. The output layer is composed by a number of neurons related to
the classification task (binary or multiclass). Since I wanted to test different
configurations (section 5.3) the final architecture of the input and output
layer varies with every test. CNN were implemented and fit through the
Keras library [8].

Figure 5.5. CNN architecture

5.2.1 Training and test set preparation
The overl dataset is composed of 1033 samples divided in 3 different TCGA
project (cancer subtypes) including normal samples as showed in figure 5.4.
Accordingly to common machine learning procedure, I split the whole dataset
in training and test set, sampling respectively 929 (90%) and 104 (10%) en-
tries in the whole datasets. Sampling the datasets I chosed each set to be
proportionally composed by samples from all the chosed TCGA projects di-
vided in tumoral and normal sample. In table 5.7 the final split is reported.
Both training and test sets turn out to be unbalanced, since the limited
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TCGA Project Type Training set Test set

KIRC Tumor 492 52
Normal 30 7

KIRP Tumor 259 32
Normal 65 5

KICH Tumor 59 7
Normal 24 1

Table 5.7. Training and test split.

availability of both normal and tumoral samples in Genomic Data Common.
During the training phase, unbalanced dataset can strongly compromise the
performance of the classifier, for this reason I used an oversampling technique
called SMOTE [7] to create artificial samples in the training set so that the
majority and minority classes have always the same number of data. SMOTE
creates artificial samples of the minority class by selecting for each sample
a certain number of neighbors of the same class in the feature space, the
samples are created randomly between the samples and the selected neigh-
bors for all the neighbors, figure 5.6 reports a schema of the oversampling
algorithm. This aspect can be critical in the case of outliers within minority
classes since the algorithm doesn’t recognize the outliers and simply creates
artificial samples that can have the same characteristics as the latter. Since
SMOTE technique can be applied only to multidimensional samples in an
array-like structure, a flattening operation to the miRNA/miRNA groups
expression matrices must be done. For this reason, I decided to flatten the
matrices extracting each column and stack it in a monodimensional array,
this procedure is repeated for all the columns. Figure 5.7 reports a schema
of the procedure to flatten the matrices. The SMOTE technique was applied
exploiting the library imbalanced-learn [18].
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Figure 5.6. Summary scheme of SMOTE technique (source [4])

Figure 5.7. Flattening operation scheme

5.2.2 Hyperparameters settings
To configure the CNN, the 2D-convolutional layer must be set in its hyper-
parameters. As listed in section 3.3.2, the chosen hyperparameters are:

• Kernel (or filter) size: 1xN window, where N is the number of isoforms
(columns) in the input matrix.

• Number of filters: 32.
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• Stride: Kernel scans vertically the input matrix one row at a time with
no overlap:

• Zero-Padding: No zero-padding set.

5.2.3 Training design
To train the CNN in both binary and multiclass classification I used the
following settings:

• Batch size: 8 samples.

• Number of epochs: 100.

• Loss function: Categorical cross-entropy. This loss function can be ap-
plied only when each sample corresponds to a specific class. For this
reason, the output layer must have a softmax activation function. The
categorical cross-entropy has the following formula for a riven output y:

L(y, ŷ) = −
M∑

j=0

N∑
i=0

(yij ∗ log(ŷij)) (5.1)

Where ŷ is the actual class, M refers to the number of output neurons
that is also the number of classes, while N is the number of observations.

• Optimizer: Adadelta[34], an optimizer that dynamically regulates the
learning rate of the gradient descent algorithm.

To optimize the training process I used the Early Stopping technique (ref.
section 3.1.2) so that if the validation set accuracy doesn’t reach a new max-
imum after 35 epochs, the training stops. Once the training is over, the best
model over the whole epochs is saved (i.e. the model that reached the best
validation set accuracy). This technique is called Model Checkpoint.

5.2.4 Model evaluation
To evaluate each model, since I am dealing with a limited number of samples
in the training set, I utilize the K-fold Cross-Validation technique (ref.
section 3.2) setting K equal to 10. At each fold i compute the following
metrics of the best model on the validation set:

• Accuracy (acc)
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• F1-score (f1)

• Loss

• Confusion matrix (CM)

At the end of Cross-Validation(CV), I compute the mean and standard devi-
ation of the accuracy, F1-score and loss among all the folds. Finally, I train
the model with the whole training set and compute the same metrics using
the test set, this results are indicators of the model ability to classify unseen
data (generalization).

5.3 Test plan
To test the capability of the two miRNA isoforms profiles (TCGA and ISEA)
to classify cancer samples I considered two classification approaches:

1. Binary: I took all the possible combinations of the four classes to make
different binary classifiers, which means distinguishing either two types
of cancer subtypes (es. KIRP vs. KIRC) or normal tissue and cancer
subtype specific tissue (es. KIRC vs. Normal).

2. Multiclass: I tested the ability of the CNN to classify a cancer sample
into one of the three subtypes and then a classifier that distinguishes
samples among all the four classes.

Since the two miRNA isoform profiles report different types of isoforms I de-
cided to test whether the larger availability of isoforms from ISEA alignment
procedure can improve the model performance compared to the smaller set
of isoforms from TCGA alignment procedure. The two types of alignment
were tested also comparing the same type of isoforms, to see whether one
of the two alignment procedures reflects better performances in the classi-
fication tool from similar types of information. Together with the isoforms
also the two levels of miRNA/miRNA groups expression were tested, that
are RPM>10 and RPM>20 reported in table 5.6.
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Results and discussion

This chapter reports firstly two representations of the data generated from
the pipelines introduced in section 5.1.1 and 5.1.2, then, a section dedicated
to the results from the tests planned in section 5.3. Finally, a discussion
of the results from this particular classification task in both approaches is
reported in the last section.

6.1 Data representation
In this section, representations of the datasets resulting from the two differ-
ent alignment procedures are reported. The data are represented by means of
the two principal components from the principal component analysis (PCA)
[33] in figures 6.1 and 6.2, each point represents a single sample from one
of the four classes: KIRC, KIRP, KICH and Normal, each labeled with
a different color. In both graphs KIRC and Normal samples have a higher
scattering compared to the other classes, nonetheless, the graph from IsomiR-
SEA alignment shows a relatively higher separability of the classes compared
to the representation using TCGA alignment.
In Supplementary materials A.2 is reported an isoform-level representation
of the datasets by means of horizontal boxplots considering the specific miR-
NA/miRNA groups expression filtering as described in table 5.6. Each box-
plot in figuresA.2 represents the range of values of a specific isoform (in ver-
tical axes) of a specific class (related to the color association in the legend).
Comparing the two types of miRNA/miRNA groups in both alignments they
show almost no difference in terms of isoform expression. Regarding the
TCGA alignment all the classes report a higher expression of I3P isoform
compared to the other isoforms. Isoforms in both alignments don’t show a
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sensible variability among the classes except for MS and MS-I3P isoforms
present in both graphs of the ISEA alignment.
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TCGA alignment

Figure 6.1. Samples from TCGA alignment represented using the first two
components (PCA1 and PC2) from PCA (created with [15]).

IsomiR-SEA alignment

Figure 6.2. Samples from ISEA alignment represented using the first two
components (PCA1 and PC2) from PCA (created with [15]).
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6.2 Classification results
In this section, the results from the two classification approaches (binary and
multiclass) are reported in different sections. For each classifier the results
consider all the combination of two sizes of the datasets (reported in table
5.6) together with the following isoforms combinations (i.e. columns of the
matrices):

• From TCGA(miRNAs):

– I5P,I3P, I3P-I5P, EX and logRPM.
– I5P,I3P, EX and logRPM.
– I3P, EX and logRPM.
– EX and logRPM.
– logRPM only.

• From ISEA (miRNA groups):

– All (all the isoform in table 5.5.)
– I5P,I3P, I3P-I5P, EX and logRPM.
– I5P,I3P, EX and logRPM.
– I3P, EX and logRPM.
– EX and logRPM.
– logRPM only.

Results for each classifier are represented with 2 groups of boxplots (example
in figure 6.3), one for each alignment procedure (TCGA on the left and ISEA
on the right). Each group contains 4 boxplots, each boxplot comes from a set
of a particular averaged cross-validation metric (Accuracy or F1-score) using
a specific dataset (>10 RPM datasets or >20 RPM datasets) of all the com-
bination of isoforms. The first boxplot to the left in the group derived from
the mean cross-validation accuracies of all the classifier (one for each set of
isoforms) using the >10 RPM dataset from the alignment procedure related
to the group. The second boxplot derived from the mean cross-validation
accuracies of all the classifier (one for each set of isoforms) using the >20
RPM dataset from the alignment procedure related to the group. The third
boxplot derived from the mean cross-validation f1-scores of all the classifier
(one for each set of isoforms) using the >10 RPM dataset from the alignment
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procedure related to the group. The third boxplot derived from the mean
cross-validation f1-scores of all the classifier (one for each set of isoforms)
using the >20 RPM dataset from the alignment procedure related to the
group.
Finally, the details of the best classifier is reported together with the results
from Cross-Validation and Test Set. Since Test Set is affected of class im-
balance, together with the mentioned metrics, the confusion matrix is also
reported. While, F1-score in multiclass approach were computed as the av-
erage weighted of F1-scores by support for each class. It accounts for class
imbalance and can result in an F1-score that is not between precision and
recall.

6.2.1 Binary approach
From the binary approach resulted 6 classifiers overall, derived from the
possible combinations of the 4 classes, distinguishing both two types of cancer
subtypes (KIRP vs. KIRC, KIRC vs. KICH and KIRP vs. KICH) and
normal tissue and cancer subtype specific tissue (KIRC vs. Normal, KIRP
vs. Normal and KICH vs. Normal).

KIRP vs. KIRC

Figure 6.3. KIRP vs. KIRC binary classifier results (created with [15]).

The best performances were reported by the following classifier:

• Alignment type: ISEA
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• Expression Filter: 20 RPM

• Columns:

– Isoforms: I5P, I3P, EX
– logRPM: Yes

Cross validation results and performance on test set:

• Cross Validation ( mean (+/- standard deviation) ):

– Accuracy: 0.97 (+/- 0.02)
– F1-Score: 0.97 (+/- 0.02)
– Loss: 0.232 (+/- 0.033)

• Test Set:

– Accuracy: 0.95

– F1-Score: 0.95

– Loss: 0.239

Confusion
matrix

P.
KIRP KIRC

A. KIRP 31 1
KIRC 3 49

53



6 – Results and discussion

KIRC vs. KICH

Figure 6.4. KIRC vs. KICH binary classifier results (created with [15]).

The best performances were reported by the following classifier:

• Alignment type: ISEA

• Expression Filter: 10 RPM

• Columns:

– Isoforms: I5P, I3P, EX
– logRPM: Yes

Cross validation results and performance on test set:

• Cross Validation ( mean (+/- standard deviation) ):

– Accuracy: 0.98 (+/- 0.02)
– F1-Score: 0.98 (+/- 0.02)
– Loss: 0.145 (+/- 0.029)

• Test Set:

– Accuracy: 0.95

– F1-Score: 0.95

– Loss: 0.126

Confusion
matrix

P.
KICH KIRC

A. KICH 6 1
KIRC 2 50
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KIRP vs. KICH

Figure 6.5. KIRP vs. KICH binary classifier results (created with [15]).

The best performances were reported by the following classifier:

• Alignment type: TCGA

• Expression Filter: 20 RPM

• Columns:

– Isoforms: EX
– logRPM: Yes

Cross validation results and performance on test set:

• Cross Validation ( mean (+/- standard deviation) ):

– Accuracy: 0.99 (+/- 0.01)
– F1-Score: 0.99 (+/- 0.01)
– Loss: 0.175 (+/- 0.067)

• Test Set:

– Accuracy: 0.97

– F1-Score: 0.97

– Loss: 0.09

Confusion
matrix

P.
KIRP KICH

A. KIRP 32 0
KICH 1 6
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KIRC vs. Normal

Figure 6.6. KIRC vs. Normal binary classifier results (created with [15]).

The best performances were reported by the following classifier:

• Alignment type: ISEA

• Expression Filter: 10 RPM

• Columns:

– Isoforms: None
– logRPM: Yes

Cross validation results and performance on test set:

• Cross Validation ( mean (+/- standard deviation) ):

– Accuracy: 0.99 (+/- 0.01)
– F1-Score: 0.99 (+/- 0.01)
– Loss: 0.074 (+/- 0.026)

• Test Set:

– Accuracy: 0.98

– F1-Score: 0.98

– Loss: 0.052

Confusion
matrix

P.
Normal KIRC

A. Normal 13 0
KIRC 1 51
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KIRP vs. Normal

Figure 6.7. KIRP vs. Normal binary classifier results (created with [15]).

The best performances were reported by the following classifier:

• Alignment type: ISEA

• Expression Filter: 10 RPM

• Columns:

– Isoforms: I5P, I3P, I5P-I3P, EX
– logRPM: Yes

Cross validation results and performance on test set:

• Cross Validation ( mean (+/- standard deviation) ):

– Accuracy: 0.99 (+/- 0.01)
– F1-Score: 0.99 (+/- 0.01)
– Loss: 0.191 (+/- 0.047)

• Test Set:

– Accuracy: 1.0

– F1-Score: 1.0

– Loss: 0.100

Confusion
matrix

P.
Normal KIRP

A. Normal 13 0
KIRP 0 32
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KICH vs. Normal

Figure 6.8. KICH vs. Normal binary classifier results (created with [15]).

The best performances were reported by the following classifier:

• Alignment type: ISEA

• Expression Filter: 10 RPM

• Columns:

– Isoforms: I5P, I3P, I5P-I3P, EX
– logRPM: Yes

Cross validation results and performance on test set:

• Cross Validation ( mean (+/- standard deviation) ):

– Accuracy: 1.00 (+/- 0.01)
– F1-Score: 1.00 (+/- 0.01)
– Loss: 0.384 (+/- 0.071)

• Test Set:

– Accuracy: 1.0

– F1-Score: 1.0

– Loss: 0.286

Confusion
matrix

P.
Normal KICH

A. Normal 13 0
KICH 0 7
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6.2.2 Multiclass approach
In this section the results of the 3 classifiers from the multiclass approach
are reported. The classifier KIRC vs. KICH vs. KIRP is referred to the
classifiers that distinguish a cancer sample into one of the three subtypes,
while KIRC vs. KICH vs. KIRP vs. Normal to the classifier that
distinguish a sample into one of the 4 classes. The results are reported in
the same order of the previous section.

KIRC vs. KICH vs. KIRP

Figure 6.9. KIRC vs. KICH vs. KIRP multiclass classifier results
(created with [15]).

The best performances were reported by the following classifier:

• Alignment type: TCGA

• Expression Filter: 10 RPM

• Columns:

– Isoforms: I5P, I3P, EX
– logRPM: Yes

Cross validation results and performance on test set:

• Cross Validation ( mean (+/- standard deviation) ):

– Accuracy: 0.96 (+/- 0.01)
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– F1-Score: 0.96 (+/- 0.01)
– Loss: 0.328 (+/- 0.084)

• Test Set:

– Accuracy: 0.93

– F1-Score: 0.93

– Loss: 0.279

Confusion
matrix

P.
KIRP KICH KIRC

A.
KIRP 31 0 1
KICH 0 6 1
KIRC 2 2 48
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KIRC vs. KICH vs. KIRP vs. Normal

Figure 6.10. KIRC vs. KICH vs. KIRP vs. Normal multiclass classifier
results (created with [15]).

The best performances were reported by the following classifier:

• Alignment type: ISEA

• Expression Filter: 10 RPM

• Columns:

– Isoforms: None
– logRPM: Yes

Cross validation results and performance on test set:

• Cross Validation ( mean (+/- standard deviation) ):

– Accuracy: 0.97 (+/- 0.01)
– F1-Score: 0.97 (+/- 0.01)
– Loss: 0.184 (+/- 0.030)

• Test Set:

– Accuracy: 0.93

– F1-Score: 0.93

– Loss: 0.214

Confusion
matrix

P.
Normal KIRP KICH KIRC

A.

Normal 13 0 0 0
KIRP 0 30 0 2
KICH 0 0 6 1
KIRC 0 2 2 48
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6.2.3 Classification results using a Machine Learning
tool

This section reports the results of the same classification tasks using a dif-
ferent well known machine learning method, the Support Vector Machine
(SVM) [29][35]. The aim of this approach is to check whether a different
tool can obtain comparable results from the same input data but rearranged
to the new input dimensionality, that is a monodimensional vector for each
input. For this reason a flattening operation as the one reported in figure 5.7
is done to every sample.
The SVMs were trained with the same training set and tested with the same
procedure proposed so far, choosing a linear kernel as kernel function and
the default parameters reported in the Scikit-Learn library [28].
For the comparison I report the results for those classifiers that had worse
performance compared to the others in both approaches, one from binary
and one from multiclass, that are KIRP vs. KIRC and KIRC vs. KICH
vs. KIRP.

KIRP vs. KIRC

Figure 6.11. KIRP vs. KIRC binary classifier results (created with [15]).

The best performances were reported by the following classifier:

• Alignment type: ISEA

• Expression Filter: 20 RPM
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• Columns:

– Isoforms: I3P, EX
– logRPM: Yes

Cross validation results and performance on test set:

• Cross Validation ( mean (+/- standard deviation) ):

– Accuracy: 0.99 (+/- 0.01)
– F1-Score: 0.99 (+/- 0.01)

• Test Set:

– Accuracy: 0.98

– F1-Score: 0.98

Confusion
matrix

P.
KIRP KIRC

A. KIRP 32 0
KIRC 2 50
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KIRC vs. KICH vs. KIRP

Figure 6.12. KIRC vs. KICH vs. KIRP multiclass classifier results
(created with [15]).

The best performances were reported by the following classifier:

• Alignment type: ISEA

• Expression Filter: 10 RPM

• Columns:

– Isoforms: I5P, I3P, EX

– logRPM: Yes

Cross validation results and performance on test set:

• Cross Validation ( mean (+/- standard deviation) ):

– Accuracy: 0.99 (+/- 0.01)

– F1-Score: 0.99 (+/- 0.01)

• Test Set:

– Accuracy: 0.98

– F1-Score: 0.98

Confusion
matrix

P.
KIRP KICH KIRC

A.
KIRP 32 0 0
KICH 0 6 1
KIRC 1 0 51
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6.3 Discussion of the results
From the classification results the following facts can be highlighted: The
results from both binary and multiclass approach report an overall accuracy
and F1-score grater than 0.9 in both cross-validation and test set with a max-
imal deviation of 0.03 between the two test procedures. Distinguish normal
samples from cancer samples reports the highest performances in terms of
accuracy and F1-score in both cross-validation and test set. KIRC vs. Nor-
mal classifier reports also the lowest values of Loss (0.074 in cross-validation
and 0.052 in Test Set). Overall, datasets from ISEA slightly outperformed
TCGA in cross-validation metrics 5 cases out of 6 from the binary approach.
These results lead to the following considerations:

• The high classification performances may be related to the apparently
good separability of the samples in the 4 classes shown in the PCA graphs
for both the alignment procedures (figure 6.1 and figure 6.2).

• The relatively higher separability of the 4 classes showed in the ISEA
graph (figure 6.2) may justify the better classification results from ISEA
datasets in the binary approach compared to TCGA.

• The relatively lower scattering of the samples in the 4 classes showed in the
ISEA graph (figure 6.2) may also justify the apparently lower variability
of the results as shown in the boxplots in figures 6.3, 6.5, 6.6, 6.8.

Classification with SVM
The overall classification results using SVM led to better performance com-
pared to CNN, in terms of accuracy and F1 scores metrics up to 1 for both
cross-validation and test set in the two approaches (binary and multiclass).
From one side it confirmed the goodness of the data collected in describing
the sample characteristic for the malignancy detection purpose. On the other
side, SVM showed a better separability of the samples in the four classes com-
pared to CNN, starting from the same training set. Nonetheless, the SVM
and other machine learning tools won’t provide any information about the
underlying features that led to the final class, which may be crucial in our
case to understand which characteristics (miRNAs) of the input data are
related to a specific sample condition. Conversely, deep learning tools allow
us to reconstruct the relationship between input data and the final class. In
our case, the information related to the single miRNA/miRNA group coming
from the isoforms can be retrieved in the output neurons of the convolutional
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layer. This information is more reliable the more data we give as input to
the network.
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Conclusions

Sample characterization by means of its miRNA isoforms profiles reported
promising results in detecting malignancy, regardless of the alignment pro-
cedure (ISEA or TCGA). Exploiting datasets containing the expression of
isoforms related to miRNA-mRNA interaction sites (from ISEA alignment)
didn’t show significant improvements compared to less informative datasets
in terms of classification performances for this particular case of study (kid-
ney cancer). Nonetheless, graphical representations (both PCA in figures
6.1,6.2 and boxplots A.2) showed a relatively higher separability of the sam-
ples among the 4 classes using the more informative datasets (ISEA) com-
pared to the less informative (TCGA). This discrepancy may be explained
from the limited number of samples available to train the CNN that may
have led ISEA dataset to not outperform on TCGA, since CNNs’ train-
ing strictly depends on the training set dimensionality, the larger, usually,
the better. The proposed method of miRNA isoform sample profiling for
cancer detection can be applied to study malignancy from different tissues
(bronchus, breast, brain, skin and so on) simply extracting the alignment
results and producing the miRNA expression matrices as input of the CNN
model. Together with malignancy detection, also other types of sample clas-
sification can be taken into account. In general, larger datasets may improve
the performances of the CNN and, therefore, the reliability to relate miR-
NAs/miRNA groups to specific biological pathways.
To conclude, the contributions of the proposed method can be summarized
by the following points:

• The method introduce an innovative sample characterization using the
miRNA isoforms profile. This characterization can be functional to study
specific biological pathways since each miRNA/miRNA group belongs to
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specific gene regulation pathways that influence the cell final behavior.

• The classification method proposed with CNN can help identify those
miRNA/miRNA groups related to a specific sample characteristic chosen
as label. With the growing availability of data, the association can become
more reliable.
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Appendix A

Supplementary materials

A.1 Example of a SQL query
The sample is reported as "xxxx-xxxx-xxxx-xxx"

01 | attach 'GeneDB_TI_MIN .db ' as db1
02 | Select "MIN".MIN , "I5P -MS -I3P".TC as "I5P -MS -I3P", "I5P -MS".TC as "I5P -MS", "MS -I3P".TC as "

MS -I3P", "MS".TC as "MS", "MS -IM".TC as "MS -IM", "I5P -MS -IM".TC as "I5P -MS -IM", "MS -IM -
I3P".TC as "MS -IM -I3P", "I5P -MS -IM -I3P".TC as "I5P -MS -IM -I3P", "I5P -IM -I3P".TC as "I5P -
IM -I3P", "IM -I3P".TC as "IM -I3P", "I5P -IM".TC as "I5P -IM", "IM".TC as "IM", "I5P".TC as

"I5P", "I3P".TC as "I3P", "E".TC as "E", "TOT".TC as "TOT"
03 | from ( select MIN from db1. TI_MIN order by MIN) "MIN"
04 | left outer join( select distinct MIN ,MII from Sample_MII ) "MII"
05 | on "MIN".MIN="MII".MIN
06 | left outer join ( select MII ,sum(`TC (Sum) `) AS TC from Sample_MII_iso_inter where I5P !=0 AND

I3P !=0 AND INS =="T" AND IMS =="F" and sample_isea_db_id =="xxxx -xxxx -xxxx -xxx" group by
MII) "I5P -MS -I3P"

07 | on "MII".MII="I5P -MS -I3P".MII
08 | left outer join ( select MII ,sum(`TC (Sum) `) AS TC from Sample_MII_iso_inter where I5P !=0 AND

I3P ==0 AND INS =="T" AND IMS =="F" and sample_isea_db_id =="xxxx -xxxx -xxxx -xxx" group by
MII) "I5P -MS"

09 | on "MII".MII="I5P -MS".MII
10 | left outer join ( select MII ,sum(`TC (Sum) `) AS TC from Sample_MII_iso_inter where I5P ==0 AND

I3P !=0 AND INS =="T" AND IMS =="F" and sample_isea_db_id == "xxxx -xxxx -xxxx -xxx" group
by MII) "MS -I3P"

11 | on "MII".MII="MS -I3P".MII
12 | left outer join ( select MII ,sum(`TC (Sum) `) AS TC from Sample_MII_iso_inter where I5P ==0 AND

I3P ==0 AND INS =="T" AND IMS =="F" and sample_isea_db_id == "xxxx -xxxx -xxxx -xxx" group
by MII) "MS"

13 | on "MII".MII="MS".MII
14 | left outer join ( select MII ,sum(`TC (Sum) `) AS TC from Sample_MII_iso_inter where I5P ==0 AND

I3P ==0 AND INS =="T" AND IMS =="T" and sample_isea_db_id == "xxxx -xxxx -xxxx -xxx" group
by MII) "MS -IM"

15 | on "MII".MII="MS -IM".MII
16 | left outer join ( select MII ,sum(`TC (Sum) `) AS TC from Sample_MII_iso_inter where I5P !=0 AND

I3P ==0 AND INS =="T" AND IMS =="T" and sample_isea_db_id == "xxxx -xxxx -xxxx -xxx" group
by MII) "I5P -MS -IM"

17 | on "MII".MII="I5P -MS -IM".MII
18 | left outer join ( select MII ,sum(`TC (Sum) `) AS TC from Sample_MII_iso_inter where I5P ==0 AND

I3P !=0 AND INS =="T" AND IMS =="T" and sample_isea_db_id == "xxxx -xxxx -xxxx -xxx" group
by MII) "MS -IM -I3P"

19 | on "MII".MII="MS -IM -I3P".MII
20 | left outer join ( select MII ,sum(`TC (Sum) `) AS TC from Sample_MII_iso_inter where I5P !=0 AND

I3P !=0 AND INS =="T" AND IMS =="T" and sample_isea_db_id == "xxxx -xxxx -xxxx -xxx" group
by MII) "I5P -MS -IM -I3P"

21 | on "MII".MII="I5P -MS -IM -I3P".MII
22 | left outer join ( select MII ,sum(`TC (Sum) `) AS TC from Sample_MII_iso_inter where I5P !=0 AND

I3P !=0 AND (IMS =="T" or ISN =="T") AND INS =="F" and sample_isea_db_id == "xxxx -xxxx -
xxxx -xxx" group by MII) "I5P -IM -I3P"

23 | on "MII".MII="I5P -IM -I3P".MII
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24 | left outer join ( select MII ,sum(`TC (Sum) `) AS TC from Sample_MII_iso_inter where I5P ==0 AND
I3P !=0 AND (IMS =="T" or ISN =="T") AND INS =="F" and sample_isea_db_id == "xxxx -xxxx -

xxxx -xxx" group by MII) "IM -I3P"
25 | on "MII".MII="IM -I3P".MII
26 | left outer join ( select MII ,sum(`TC (Sum) `) AS TC from Sample_MII_iso_inter where I5P !=0 AND

I3P ==0 AND (IMS =="T" or ISN =="T") AND INS =="F" and sample_isea_db_id == "xxxx -xxxx -
xxxx -xxx" group by MII) "I5P -IM"

27 | on "MII".MII="I5P -IM".MII
28 | left outer join ( select MII ,sum(`TC (Sum) `) AS TC from Sample_MII_iso_inter where I5P ==0 AND

I3P ==0 AND (IMS =="T" or ISN =="T") AND INS =="F" and sample_isea_db_id == "xxxx -xxxx -
xxxx -xxx" group by MII) "IM"

29 | on "MII".MII="IM".MII
30 | left outer join ( select MII ,sum(`TC (Sum) `) AS TC from Sample_MII_iso_inter where I5P !=0 and

I3P ==0 AND IMS =="F" AND ISN =="F" AND INS =="F" and sample_isea_db_id == "xxxx -xxxx -xxxx
-xxx" group by MII) "I5P"

31 | on "MII".MII="I5P".MII
32 | left outer join ( select MII ,sum(`TC (Sum) `) AS TC from Sample_MII_iso_inter where I5P ==0 and

I3P !=0 AND IMS =="F" AND ISN =="F" AND INS =="F" and sample_isea_db_id == "xxxx -xxxx -xxxx
-xxx" group by MII) "I3P"

33 | on "MII".MII="I3P".MII
34 | left outer join ( select MII ,sum(`TC (Sum) `) AS TC from Sample_MII_iso_inter where IEX =="T"

and sample_isea_db_id == "xxxx -xxxx -xxxx -xxx" group by MII) "E"
35 | on "MII".MII="E".MII
36 | left outer join ( select MII ,sum(`TC (Sum) `) AS TC from Sample_MII_iso_inter where MII >=0 and

sample_isea_db_id == "xxxx -xxxx -xxxx -xxx" group by MII) "TOT"
37 | on "MII".MII="TOT".MII
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A.2 Input data boxplots
TCGA alignment - 20 RPM

TCGA alignment - 10 RPM

75



A – Supplementary materials

ISEA alignment - 20 RPM
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ISEA alignment - 10 RPM
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