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Abstract

The increase in the production and employment of wearable devices in everyday
life, as well as the improvement of their refinement and precision, encourage the
development prospects of this market in the future. The wearable market amount
is estimated to reach 57,653 million dollars in 2022. This is due to their continuous
increase in easy to use, flexibility, convenience and the possibility of returning the
collected data in real-time. Nevertheless, there are still limits, such as the life of
their battery, which is holding back their position on the market.
On the other hand, the study of new methods for estimating vital parameters with
non-invasive techniques is encouraged by the increased computational capacity of
these devices and by their facility to be integrated with complex algorithms, such
as machine learning algorithms. In fact, the objective of this thesis work consists
in the use of a wearable device for blood pressure measurements.
One of the biggest causes of death around the growing world in recent decades
are cardiovascular disease (CVD). The number of people suffering from it increases
year by year and one of the risk factors that compete with the appearance of the
pathology is chronic hypertension, characterized by high variations in pressure over
prolonged periods of time.
Therefore, estimating blood pressure is pivotal in order to monitor the health sta-
tus of the population. Currently the measurement are mainly performed through
auscultatory devices such as the sphygmomanometer, which can be digital or clas-
sic, requiring in the second case the presence of a trained operator, and they both
require static conditions for the subjects.
Encouraged by this, with the increase in the refinement of wearable devices and the
implementation of machine learning algorithms, it has been explored other physio-
logical parameters that allow to measure blood pressure via indirect measurement.
An example is the Pulse Wave Velocity (PWV), in which the variation in the prop-
agation velocity of the pressure wave generated by the passage of blood in the
vessels is observed. PWV, together with the variation of vessels diameters, can be
therefore used to estimate pressure in a specific observation window, that in the
proposed study consists in 10 seconds.
In this thesis work, a model was implemented to estimate pressure through the col-
lection of data (ECG, PPG and ABP signals) taken from online databases (MIMIC
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data).
àFrom electrocardiogram (ECG) and photoplethysmography (PPG) signals the best
morphological or temporal characteristics are identified in order to train a linear
regression algorithm that allows to estimate blood pressure values.
The results are achieved by implementing the Random Forest as a linear regression
model and by splitting the data-set into training set and test set. A quadratic error
and a standard deviation of approximately 8 ± 10 mmHg for SBP, 6 ± 9 mmHg for
DBP and 7 ± 9 mmHg for MAP are obtained. Finally, the system was validated
through 10-fold cross-validation.
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Chapter 1

Introduction

1.1 Wearable technologies application
Nowadays wearable technologies represent one of the pillars of the electronic de-
vices market. Their market is estimated to reach 57,653 millions of dollar in 2022
[1]. The main slice of this market is represented by devices related to fitness and
well-being (Figure 1.1).

Figure 1.1: Principal market areas of wearable devices [1].

The increase in chronic diseases and cases of obesity simultaneously to the in-
crease in popularity of these devices have led to a diffused use of wearable devices,

1



Introduction

such as activity and movement trackers.
This family of devices can provide information about various vital parameters by
returning daily reports on the health status of those who use them.
With wearable it is intended a technology device "that can be worn, such as cloth-
ing or glasses, that contain computer technology or can connect to the internet”
[3]. These devices can reach a computing capacity similar to the ones of laptops or
mobile phones. In addiction, wearable devices have the possibility of incorporat-
ing sensors capable of taking biofeedback and monitoring physiological functions.
Moreover, they allow the creation of protocols for monitoring the condition of the
subject remotely while performing normal activities at home or at work.
The diffusion of these technologies allows to have the availability of huge amounts
of data, even outside the environments in which they could usually be obtained,
such as the heart rate (HR) or the cadence of the user’s pace or the levels of stress.
This encourages to search new methods for estimating important vital parame-
ters by minimizing the footprint with which they are obtained and by limiting the
awareness of the user, while improving the quality of the measurements.
In addiction, new data communication systems through the Internet and the pos-
sibility of storing them to online archives, such as the Cloud, must be considered.
This new family of devices has taken the name of Internet of Things (IoT), which
has encouraged researchers to seek solutions in which different devices communicate
directly with the internet by collecting data of different origin. These new wearable
devices are forming a new market segment called: Wearable IoT, for their ability
to integrate sensing, calculation and communication [6].

On the other hand, the increase in the use of medical wearable devices poses
new challenges on the management of this enormous amount of sensitive data, with
the consequent need to place stakes that allow the protection of consumers through
their awareness of their correct use. An example may be the case of fitness tracking
Strava © App, in which it was found by the Pentagon that through that application
it was possible to identify the movements of US military forces in Syria [4].

1.2 Objective of the work
One of the most important parameters to be monitored and measured in a non-
invasive way, but at the same time in a serious and accurate way, is blood pressure
(BP). BP is mainly measured to control patients in serious health conditions such
as hypertension or following a heart attack.
In addition to clinical practices, BP control is a useful parameter to monitor also
during sports practices, to monitor progress and the possible presence of pathologies
not yet identified. This is because during physical activity, although an increase of
more than 200 mmHg in the maximum pressure is tolerable for those who do sports,
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an increase of about 15 mmHg for the minimum pressure can be an indication of
coronary heart disease [2].
Classically BP is measured through the sphygmomanometer, a medical device con-
sisting of a sleeve in which air is blown through a pump and a stethoscope to
auscultate the heart beat, to understand when the flow through the arm (where
the measurement typically takes place) is interrupted after inflating the cuff. This
measurement method requires training by the person who performs it and it entails
the impossibility of carrying the measurements out while the subject is in motion.
For this reason, one of the topics on which researchers are focusing is the estimation
of pressure through different methods. This thesis work has the goal to estimate
BP through the study of the correlation between Pulse Wave Velocity (PWV) and
BP variations.
More precisely, two signals are needed to do this, such as ECG and PPG, without
the need for other means or devices. Thanks to this system it is possible to carry
out the measurement in a simpler and safer way for the subject and giving infor-
mation on his health, the risk of heart attacks and the stress conditions following
physical activity.
Given the potential market in which this technology can be used, it is useful to
invest both in the realization of medical devices and in the implementation of de-
vices usable by simple consumer, who can use them without the intervention of a
professional medical figure.
This is also due to the strong restrictions on the legislation that regulates the accu-
racy and reliability of the measure that a device must have in order to be considered
a medical device.
This study focuses on the realization of an algorithm for processing the signals
and the data obtained from them through computational tools such as Matlab in
order to estimate BP in a non-invasive way through the study of PWV. Online
databases such as MIMIC II and MIMIC III, from the free access portal Phys-
ioNet [62], are used for the realization of the model, since a large enough database
from devices was not available. This work shows the feasibility of a new method of
measuring BP, adopting strategies that can make it automatic and easy to perform.

The implemented algorithm is based on the following steps:

• Initial analysis and feasibility study: in the first phase of the research the
problem was analyzed, the feasibility of the method that was chosen to imple-
ment was investigated and the state of the art was studied. In particular, the
following researches were made:

1. Physiology studies, in particular regarding the cardiovascular system and
blood pressure.

2. Studies on the role and useful information of the signals involved such as
ECG, PPG and BP.
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3. Research in literature on works concerning the estimation of BP through
these signals.

• Choice of sources from which to obtain the signals: in this phase the MIMIC
II and MIMIC III online databases were chosen for their immediate avail-
ability and the unnecessary implementation of denoising or signal alignment
algorithms.

• Implementation of the model through Matlab tools: in which it is implemented
a mathematical model for the first signals elaboration and analysis, followed
by the feature’s extraction (like the PTT, the PIR etc. used for their correla-
tion with BP) and finally by the realization of a machine learning regression
algorithm based on Random Forest model for BP estimation.

• Validation of the algorithm: the last step regards the validation of the created
model in order to establish its level of reliability and the quality of the reached
results. This stage is implemented with the k-fold cross-validation method and
the hypothesis test.
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Chapter 2

Physiological background

2.1 Heart physiology
The heart is a muscle that generates the force necessary to circulate blood in the
blood vessels [10], situated in the thoracic cavity, just above the diaphragm, which
separates the thoracic cavity from the abdominal ones. Anatomically and func-
tionally, the heart is divided into right and left portions, that are separates by
a longitudinal wall called septum, which prevents the blood in the two chambers
from mixing. Within these two areas, a further wall separates the upper and lower
portions, forming a total of four cavities with different sizes: two upper, the atria,
which receive the venous blood returning from the circulation and that perform a
contraction action to push the blood into the two lower cameras, and the ventricles,
which receive the blood from the atria and generate the pressure necessary to push
the blood out of the heart into the large arteries [10].
The contraction of the heart conveyed by the transmission of electrical impulses gen-
erated by pacemaker cells and transmitted through the muscles of the myocardium
is called myogeny and is independent of the commands of the central nervous sys-
tem. The conduction system causes a conduction wave that guides the impulse first
through the atria, which contract simultaneously as a unit, and subsequently to the
ventricles, ending with their depolarization and then contraction, putting blood in
the blood vessels. The heart then works as two intermittent pumps that support
the circulation of the blood. To do this, the two pumps must remain synchronized
[7]. Cardiac contraction is called systole, while the release phase is called diastole.

The action potential is an event supported by ionic currents that depolarize and
repolarize the cell [7]:

• the repolarization phase is generated by a progressive reduction of the passage
inside the cell of Sodium and Calcium ions and by an output current of positive
charges (K+ ions) that make the inside of the cell negative. This generates
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the formation of the resting potential, in which the amount of K+ ions inside
the cell is lower than that of Na+ ions outside;

• the depolarization phase is characterized by an inversion of polarization and
therefore by a massive entry of positive charges inside the cell. Calcium ions go
into the cell generating an action potential. The impulse from the sinoatrial
node (SA), located on the outer wall of the right atrium, reaches the atri-
oventricular node (AV) located above the plane of the tricuspid valve, where
conduction slows down. The contraction of the atria occurs before the ven-
tricular one and it allows the atrium to fill the left ventricular chamber. From
the AV node, the His beam originates running along the wall of the interven-
tricular septum. Reaching the distal portions, it gives rise to two branches,
the right branch and the left one. These branches spread into the peripheral
system of conduction (Purkinje fibers) which allows the almost simultaneous
transmission of the pulse (depolarization waves) to the endocardium of the
two ventricles [7].

The heart cycle is the period defining the time interval between a systole and
the next one. It consists of four phases [10]:

1. ventricular filling: the blood reaches the ventricles thanks the opening of the
Atrioventricular valves between the atria and the ventricles. Since the heart is
relaxed, the diastolic phase occurs. The increase of the ventricular volume at
the end of the filling phase determines the closure of the valves, marking the
beginning of the systolic phase;

2. isovolumetric contraction: in this phase all the valves are closed. The pressure
inside the ventricle rises rapidly due to isometric contraction. When the value
of the ventricular pressure exceeds that of the aorta, the semi-moon valves
open;

3. ejection: with the opening of the semi-moon valves, the blood is expelled from
the contracting ventricle. Ventricular pressure continues to rise (because it
continues to contract) while volume decreases rapidly;

4. iso-volumetric release: once the aortic valve is closed, the pressure inside the
ventricular chamber decreases.

6
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Figure 2.1: Representation of heart cycle [8].

The cardiovascular system, consisting of the heart and blood vessels, is in charge
of releasing nutrients and oxygen to the body cells.

The blood vessels can be distinguished in:

• arteries: vessels that transport nutrients from the heart to the tissues. They
have a thickness of the walls and a diameter of the relatively large vases [10].
One of the main characteristics of the larger arteries is to offer little resistance
to the passage of blood so they have a task mainly of conducting the flow;

• veins: which have about the same diameter as the arteries but half the thick-
ness of the walls. Their thickness is justified by the need for veins to have
significantly lower blood pressure than that in the arteries. Their job is to
bring venous blood to the heart.

Finally, there are two types of blood circulation [9]:

• the systemic ones connect the heart to all tissues of the body. The blood
moves along the arteries, according to decreasing diameters. In the capillary
network, it gives oxygen and nutrients to the tissues. Recharging itself with
waste substances and carbon dioxide, the blood reaches the right ventricle
through the veins;

• the pulmonary circulation connects the heart to the lungs. The blood rich in
carbon dioxide moves from the right ventricle to the pulmonary artery. Latter
branches out into smaller vessels to form a network around the pulmonary
vesicles. Here, the blood recharges with oxygen, releasing carbon dioxide.

7
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Figure 2.2: Representation of the two type of blood circulation.

2.2 Electrocardiogram
The electrocardiogram (ECG) is the recording and reproduction of the electrical
and chemical activity of the cardiac muscle fibers during the cardiac cycle [10]. It
is a registration of bio-potential produce by continuous depolarization and repolar-
ization of cardiac muscle fibers during the cardiac cycle.
It can provide information useful to establish the condition of the patient, based
on the analysis on the intervals it is composed of.
Specifically, it is formed by the following waves and segments [65]:

Figure 2.3: Electrical activity pattern of the heart [67].
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• the P wave is a deflection wave that represents the depolarization phase of the
atria [10], as previously seen, the depolarization of the atria starts from the
atrial sinus node. However, there are not enough cells to produce a depolar-
ization important enough to be detected by the sampling system;

• the QRS complex is generated after atrial depolarization and consists of 3
waves constituting the ventricular depolarization;

– the Q wave is usually thin and small and is related both to the depolar-
ization of the interventricular septum and to the respiration. They give
information about the myocardial infarction;

– the R wave is the largest because it reflects the depolarization activity of
a large portion of the ventricle;

– the S wave is generated by the final action of ventricle depolarization
[10]. When the complex is ended the ventricular chambers are completely
depolarized and the atriums are repolarized;

• finally, the T wave which represents the repolarization phase of the ventricle;

• the PR interval is the time measured between the atrial depolarization and
the followed ventricular ones;

• the ST segment is the portion between the end of the ventricular depolariza-
tion, with the end of QRS complex, and their repolarization.

Electrodes placed on the skin are typically used to record the ECG signal, the
difference in potential due to the travel of these signals along the body is measured.
The differences with which the signal occurs are not only due to the intensity of
the contraction of the heart muscle but also to the position of the electrodes on the
subject’s skin. In fact, the waveform of the ECG appears in different shapes based
on the position as well as on the number of electrodes that perform the sampling.
For this reason, standard configurations have been introduced with respect to which
to take the signal.

Bipolar Limb

The most common configuration is that which respects the structure of the Einthoven
triangle (which has the name of the German scientist who described it first), in
which an imaginary triangle is formed that widens up to reach its apexes at the
hands and at the left foot. The triangle may not be so extensive but also more
concentrated in the chest area only. The electrodes that make up the corners are
connected to a device that measures the voltage. The potential difference of each
pair of electrodes is measured and the resulting signal defines a derivation [10]. Any
potential difference is defined as Leads [12]:
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• Lead I: obtained as the difference between the electrode potential towards the
left arm (LA) and the right arm (RA):

I = LA − RA; (2.1)

• Lead II: obtained as the difference between the electrode potential towards the
left foot (LL) and the right arm (RA):

II = LL − RA; (2.2)

• Lead III: relating to the voltage difference between the electrode of the left
foot (LL) and the left arm (LA):

III = LL − LA; (2.3)

In addition to this configuration there is the unipolar, in which the limb electrodes
refer to a single reference electrode and the precordial leads, also a unipolar config-
uration in which six electrodes are placed on the lungs that measure the electrical
activity on the transverse the front one. In particular, the latter configuration al-
lows to study with particular accuracy the possible damages following a damage
thanks to the proximity to the cardiac chambers.

2.3 Blood Pressure
The blood flowing inside their vessels generates a pressure on the walls proportional
to the force that the heart uses to pump the blood into the vessels, which is called
blood pressure. In general, the law that best describes the phenomenon is the
flow law [10], from which the flow of the fluid is obtained as the ratio between the
pressure gradient, with it is directly proportional, and the resistance to the flow,
with which it is inversely proportional.

Flow = ∆P

R
(2.4)

The pressure gradient is the force that pushes the blood along the vessels while
resistance is the set of factors that obstruct the flow.
As shown in Figure 2.4 the beginning of the systemic circulation, the average pres-
sure in the aorta throughout the cardiac cycle is about 80-120 mmHg, while in the
large veins of the thoracic cavity, that bring the blood back into the heart chambers,
is between 2-8 mmHg and about 0 mmHg in the vena cava. This pressure differ-
ence allows us to assume that the pressure gradient that allows blood to circulate
is virtually equal to the average pressure.
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Figure 2.4: BP gradient which guides the blood flow.

The resistance understood as the degree with which the flow in the vessel is
delayed is influenced by several factors such as:

• radius of the vessel, which affects resistance more than any other. A decrease
in the radius of the vessel is called vasoconstriction while an increase in va-
sodilation;

• length of the pot, in which a greater length lends itself to an increase in the
resistance to the flow. Nonetheless, the blood vessels do not vary in length
except in periods of growth;

• blood viscosity, as a more viscous fluid increases the friction within the fluid
itself. It is influenced by the presence of figured elements of the blood and
plasma proteins. However, their variation is a slow process.

The mathematical aspects linked to this phenomenon are expressed by Poiseuille’s
law, in which resistance is obtained as:

R = 8tη

πr4 (2.5)

where η is the viscosity of the fluid flowing through the tube, with length L and
radius r. As it can be see, the component that most influences the resistance is the
radius of the tube, which assumes a prevalent importance.

Depending on the type of vessel in which it is measured, this is called venous
pressure or arterial pressure. The tone of the venous pressure is lower than the
arterial one [10], since in this tract the blood does not receive the cardiac thrust.
For this reason, the measurement of venous pressure is carried out only in the case
of particular pathologies [13].
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Arterial Pressure

The role of the arteries is to lead blood from the heart to the tissues. This is made
possible by the thickness of their walls, together with the presence of elastic fabric
which gives it a certain rigidity and the ability to expand and contract following
each ventricular contraction, which allows it to be defined as a pressure reservoir
[10].

The arteries are structurally organized in 4 different layers: [40]:

1. Endothelium, which serve like a wall for blood flow inside the vessels. It has
superficial importance for the mechanical properties of the arteries;

2. Elastin which sizable elastic properties that can produce tension on the walls.
It is responsible of elastic response of the arterial vessels at low BP values [40];

3. Collagen, stiffer than the elastic layer and exerts more tension when the arte-
rial vessel became more stretched. It gives an important contribution to the
arterial wall property for high BP values [40];

4. Smooth-muscle to modulate the elasticity of the arteries producing tension
[41].

Disease like aging contributes changes mechanical properties of arterial walls strongly
and this can be effects to cardio-circular performance.

When the arterial walls expand during systole the elastic fibers expand like
a spring, while when there is no more blood flow during the diastole the walls
passively retract by elastic recall, allowing the blood to continue to circulate also
in this phase.

Figure 2.5: Aretery like pressure tank.
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The blood pressure depends on the blood flow at a given time: an increase in
blood volume causes an increase in blood pressure. Since the blood is introduced
from the heart into the large arteries during systole, the arteries will contain more
blood in the systolic period than in the diastolic one. Therefore, four arterial pres-
sure values can be distinguished, all resulting from the same periodic phenomenon.
Each one, however, depends on specific hemodynamic parameters [15]:

Figure 2.6: Representation in time of arterial blood pressure [16].

Mean atrial pressure (MAP), is the pressure that a continuous and non-pulsatile
flow system would have, to keep the blood flow constant. It depends on cardiac
output and vascular resistance, which in turn are determined by vessel size and by
the number of small arteries and arterioles.

• Diastolic blood pressure (DBP), also called minimum pressure. It is generated
when the heart is not contracted but released. Its value is always lower than the
systolic one [13]. The hemodynamic parameters that influence this measure
are the peripheral resistance to the sliding generated by the small arterioles,
the rigidity of the arteries and the duration of the diastolic phase [57].

• Systolic blood pressure (SBP), also called maximum pressure, is generated by
the flow of oxygen-rich blood into the vessels during the contraction phase of
the heart. It depends on the left ventricular ejection rate, vascular resistance
and peripheral reflection waves. Indeed, if the cardiac output increases, the
systolic blood pressure augments contrary to the diastolic one, which does not
undergo significant variations. An increase in peripheral resistance correspond
to a systolic pressure increasing, but also to a more marked increase in the di-
astolic one. The decrease in arterial compliance increases systolic pressure due
to two mechanisms: the decrease in the damping capacity of the systolic wave
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as a result of the more rigid arterial walls, and the earlier arrival of peripheral
reflection waves that are added to the incident wave generated by the left ven-
tricle. Changes in the characteristics of the reflected waves (amplitude of the
reflected wave and location of the reflection site) cause some modifications of
the arterial pressure, especially in the central arteries [57].

• Pulse pressure represents the aortic pressure pulse during systole. In fact, the
aorta undergoes a great variation in pressure during the ejection phase, due
to the high blood flow that passes through its vessel walls [17]. Pulsatory
pressure, also called differential pressure, is defined as the variation of blood
pressure values around the mean pressure values. It can be measured through
the difference between systolic and diastolic pressures [18]. The pulse pressure
is mainly influenced by the viscoelastic properties of the wall of arteries with
more or less large diameters. When the blood flow is constant, there is a
reduction in the viscoelastic properties of the wall of the large arteries, causing
an increase in systolic pressure and a decrease in the diastolic one, so the non-
variation of the mean pressure and the increase of the pulse pressure [57].

Table 2.1: American Heart Association [25] rages defined of pressure.

Systolic (mmHg) Diastolic (mmHg)

normal below 120 below 80
elevated 120 - 129 below 80
high BP (stage 1) 130 - 139 80 - 89
high BP (stage 2) 140 or higher 90 or higher
hypertension crisis above 18 above 120

2.3.1 Hypertension
Hypertension, associated with pressure values above 120/80 mmHg, is a disease
that affects at least 60 million people in the United States, about 1 in 6 adults is
affected [10]. The main forms with which it occurs are two: primary and secondary
hypertension. Of the first, also called essential hypertension, which affects about
90 % of hypertensives, the causes are not well defined, but it is certainly associ-
ated with risk factors such as obesity, stress, smoking and genetic predisposition.
The second is associated with secondary pathologies, such as renal hypertension,
associated with kidney dysfunction due to inappropriate secretion of the endocrine
system.
Arteriosclerosis is related to hypertension, in which plaques are formed at the level
of the arterial walls with a consequent decrease in their elasticity and a decrease in
their lumen diameter. In particular, the decrease in the lumen increases resistance
to the passage of blood by triggering the arteriosclerotic process. This triggers a
vicious circle in which the two phenomena amplify the effects of the other, progres-
sively worsening the health conditions of the person suffering from hypertension.
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In addition to this, the pathology can lead to other cardiovascular disorders, such
as the increased risk of myocardial infarction due to the cardiac activity required
to balance its effects on the vessels. Heart failure may occur due to the increase in
end-diastolic volume due to the increase in the volume of blood required. Or there
may be other consequences for the kidneys, such as kidney failure, or retinal level,
with loss of vision.

2.4 PPG sensor
This technology, based on optical technique, make possible to detect the blood
volume changes in peripheral body areas. It is a non-invasive kind of technology
composed by two mainly parts:

- a LED (Light-Emitting Diode) which convert electrical energy into light. It is
characterized by a narrow single bandwidth (50 nm typically) [19]. It has a
high operating longevity (>105 h) and good mechanical robustness and relia-
bility. They are used for the ability to maintain a constant level of brightness
intensity low enough to reduce at the same time the heating of the tissues and
the danger of damaging the tissues with non-ionizing radiation;

- a corresponding photodiode that matches the light source spectral character-
istic, to measure blood volume changes at the arteries, converting light energy
into electrical current [19].

2.4.1 Physical principles
Light propagating through a medium interacts with it in different ways. It can be
partly reflected, absorbed, scattered or transmitted. It can pass through a medium
as a ballistic component or it can be split into different components (Figure 2.7)
[14].

Figure 2.7: Physical response of objects affected by radiation.

At the base of this phenomena there are four parameters:
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1. The refractive index, which define the speed of light and its variation give rise
to scattering, refraction and reflection phenomena. It usually occurs when
light is incident to the boundaries between two media characterized by two
different refractive indices;

Figure 2.8: Example of light refraction corresponding to the boundary that sepa-
rates two media described by different refractive indices (n1 < n2) (Haahr, 2006).

2. Absorption coefficient, in which the loss of photonic energy during interaction
with the media is converted into either heat or into light of longer wavelengths.
It is wavelength dependent and it is defined as a probability of photon absorp-
tion per unit path length, which the photon passed through medium;

3. Scattering coefficient, which involves the deflection of the beam due to the
interaction with the medium. Among the factors that influence this parameter
are the wavelength of the light source and the variation of the refractive indices
of the different tissues crossed by the light beam.

2.4.2 Sensor configuration
To minimize these effects and optimize the light transmission system, it is neces-
sary to identify the wavelength window that is affected to a lesser extent by the
absorption and scattering effects by the tissues, mostly composed of water, which
absorbs a lot of radiation in the infrared at higher wavelengths and in ultraviolet.

Figure 2.9: Possible configurations of the PPG sensor.
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The PPG signal can be measured in two configurations: in transmission or
reflection mode.

- In the first configuration, the light radiation that passes through the medium
is measured by the photodiode, placed in a position opposite the LED. This,
however, limits the possible sites of signal collection, the finger would be the
best, and suffers from the interference due to the light present in the surround-
ing environment, as well as to clutter the daily or sports activities that you
want to improve in the case of positioning on the finger;

- In the second configuration the photodiode receives the reflected or back-
scattered radiation from the medium. This gives the possibility of having
multiple sensor application sites for measurement. On the other hand, it is
mainly affected by the movement artifacts and by the contact pressure varia-
tions which translate on the signal quality.

2.4.3 Influencing factor
Light intensity reflected by the blood vessels, bones and skin is traduced in variation
of PPG intensity signal. In general, the significant variations are duo to the change
of amount of blood in the vessels and this permit to study the performance of
vascular system. However, the amount of light that is usually studied does not
coincide with the incident one, but it oscillates between 1 % and 5 % of the initial
radiation and this increase the difficult to distinguish the light absorption by blood
from that caused by other anatomical components [20]. The light transmitted or
reflected is influenced by different factors like:

• skin properties: skin structure and composition, blood oxygen saturation, tem-
perature and blood flow variation;

• number of red blood cells in circulation, orientation and agglomeration;

• speed of contraction and dilation of arterioles and their capillaries.

The structure of the skin produces a minimum dispersion of light like the 6 % of
the total reflected.
In addition to melanin and water, there are also other substances which affect the
absorption spectrum of this layer, including hemoglobin, fibrous proteins, collagen,
fat, bilirubin and carotene.
The measurement of non-absorbed light, i.e. reflected or transmitted light, can be
used to estimate the amount of blood volume in the tissues, since they are inversely
related to each other [21].
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Beer-Lambert’s law (Equation 2.6) can be used to estimate the physical corre-
lation with the biological behavior of light diffusion through the body [47]:

Iout(λ) = Iin(λ)e−µad (2.6)

It is influenced by different factors like: light intensity of the light, the wavelength
of the incident light, the length of the path and the composition of the structure
in which pass the radiation.

2.4.4 PPG signal morphology
The waveform of the PPG signal consists of two components: AC and DC compo-
nent. The AC component is attributed to the pulsatile behavior of the cardiovas-
cular system and synchronous cardiac variations in blood volume at each heartbeat
[35]. This component is superimposed to the DC one, which represents the contin-
uous component linked to the average volume of blood. The latter changes slowly
over time and is influenced by breathing, vasomotor activity, sympathetic nervous
system activity, vasoconstrictor waves as well as thermoregulation [19].

Figure 2.10: Components of PPG signal.

The first part of the waveform is called anacrotic phase or systolic tract and
is obtained by the passage of blood from the aortic root to the peripheral site on
which the sensor is placed. The second part, the catacrotic phase, includes the
diastolic tract and is obtained by the transmission of pressure from the ventricle,
along the aorta, to the lower part of the body [21].
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Figure 2.11: Typical waveform of PPG signal [26].

The features of the signal are:

• systolic peak: obtained when the pressure pulse reaches the peripheral site
from the left ventricle;

• diastolic peak: generated when the pressure wave through the arteries and
reaches the lower part of the body;

• systolic-diastolic peak-to-peak time (SDPPT): measured as the interval time
between the systolic peak and the diastolic one [24];

• dicrotic notch: located at the diastolic tract, it is generated in the instant of
closing of the aortic valve [35]. This episode causes a retrograde flow and an
increase of the blood volume in the arteries for a short time [26]. Its amplitude
varies with the elasticity of the arterial vessels and depends on the pressure
wave that is reflected in the peripheral arteries [35];

• pulse width: defined like the width of the signal obtained considering the time
distance of the two points of the PPG signal with a value equal to half of
the systolic peak. This point relates more precisely the PPG signal with the
resistance of the vascular system than the peak reached in the systolic phase;

• pulse area: defined as the total area underlying the PPG signal curve. The
Inflection Point area (IPA) is an indicator of the resistance of peripheral vessels
[43] and is obtained by the ratio of the two areas underlying the curve separated
by the dichrotic notch;

• peak to peak interval: time interval between two systolic peaks of the PPG
signal. This value corresponds to the duration of the cardiac cycle and is
comparable to the RRI of the ECG signal;
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• pulse interval: which measures the distance between the start and end point
of the PPG signal. This is a time interval related to some parameters of the
heart system, but the precise relationship is not yet known [26].

• photoplethysmography intensity ratio (PIR): which is the relationship between
the peaks and the valleys of the signal inside the observation window [43].

2.5 The ABP signal

To complete, you also need to deepen your atrial blood pressure signal (ABP). The
source of this signal is the same as for the PPG signal, i.e. the heart. In fact,
the two signals have a similar morphology, with particular differences due to the
technique and the collection area of the respective signals.
For the ABP signal, the signal acquisition site assumes considerable importance,
as already seen above, becouse the characteristics of the vessels have a marked
heterogeneity between the proximal areas of the heart, characterized by a marked
elasticity due to the thickness of the walls, and the distal ones, characterized by
narrower vessels that offer greater resistance to flow [28].

Figure 2.12: Comparison between pressure waveform from acquired from different
sites [26].

The signal is represented by a pressure wave, which moves through the arteries
and will have different diffusion speed and morphology based on the area crossed, as
shown in Figure 2.13. A pressure wave that diffuses through a viscoelastic tube is
progressively attenuated with an exponential decrease in speed, but if the tube has
different branches in which to divide, reflection phenomena occur which translate
into an amplification of the signal.
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Figure 2.13: Comparison between the ABP and PPG signals [5].

The contribution of reflection changes the morphology of the signal collected
at the arteries from the recorded near the heart. In the aorta for example, the
reflection is negligible as it is less rigid.
Aortic pressure can also be measured at the radial artery using a transfer function,
or in carotid artery.
The difference between ABP and PPG is related also to the different technique used
to acquire the signal. The aortic pressure wave can be acquired using a non-invasive
technique, which uses a pencil type probe with a built-in transducer [28]. The
acquisition of the PPG signal is different, as already explained. The contribution
of absorption and reflection of the light generated by the different tissues is added.
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State of the art

3.1 Conventional method for BP measuring
Blood pressure can be measured in invasive and non-invasive way. In the following
sections both methods are described.

3.1.1 Invasive method

Early studies, since the second half of the XVIII century, aimed the possibility of
blood pressure estimation. The discovery was reached by Stephen Hales (1677 -
1761) [50], who firstly measure the mean BP by inserting a tube, opened to the end,
in the carotid artery of a horse and measuring the height reached by the horse’s
blood. The discover gives the possibility to measure BP and after it, multiple study
and device were implemented to reach a major precision, safety and comfort.
Actually, invasive methods remain the gold standard for BP measures, for its ac-
curacy and the possibility of beat-to-beat measuring of the pressure. Despite this,
it is used only in the case of wide fluctuations in the subject’s pressure values or if
a continuous control of his pressure values is necessary or subjects which can’t use
non-invasive methods like obese people.
The measurement is performed through a needle normally inserted in an artery,
usually the radial artery because of its superficiality and accessibility, connected
through a catheter to a pressure transducer, who traduced a physical quantity in
input, from saline in the latter part of the tube, in an electrical one with respect
to the atmospheric pressure. This measuring system needs to be calibrated respect
the atmospheric pressure.
The device measures the wave of blood hitting the catheter through the needle and
the blood pressure waveform is displayed on a monitor, after being amplified and
filtered.
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Because of its invesiveness and uncomfortable for the patient, this type of mea-
surement is disadvantaged in the long run, with the risk for the patient to contract
an infection where the catheter is inserted or bleeding due to its sudden detach-
ment. In fact, this procedure is used for hospitalized patients in intensive care unit
or in the operation room, where a continuous control is needed. Figure 3.1 depicts a
pressure transducer typically used for monitoring BP with invasive measurements.

Figure 3.1: Invasive blood pressure measurement [5].

3.1.2 Non-invasive methods

Figure 3.2 shows different technique to measure the BP in non-invasive way which
remain the best way to measure the BP in term of safety and usability outside
clinics.

Figure 3.2: Tree schema of different ways to compute the blood pressure measure-
ments [23].
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Inflatable cuff

The first and the most popular measuring method is based on occlusive method.
The occlusion is provided on the artery, typically the brachial artery, by an ex-
ternal pressure imposed from the outside. This vessel is used because it is at the
same level of the heart. As a consequence, in this way, the hydrostatic pressure
component is delated, not affecting the measurement.
The device that performed the measure is the sphygmomanometer, that was per-
fected for clinical environments by prof. Riva Rocci in 1896. Even today, this
method is the one most used in BP measurements. It consists of an inflatable cuff
connected to both the pressure measurement system and the pump with a valve
that regulates the amount of air present in the cuff.
The cuff, posed on the upper harm, is inflated to reach a pressure superior of the
systolic pressure and to interrupt the blood flow. Then the pressure inside the cuff
is reduced by means of the valve until the flow is restored.
By analyzing the restored process, is possible to measure the SBP and DBP.
The most used sphygmomanometer is mercury based. The mercurial sphygmo-
manometer consists on a cloth cuff connected through a tube to an external pump
with a valve and a mercury column. Another pressure measuring system is the
aneroid sphygmomanometer, in which the mercury column is substituted by a clock
manometer with mobile needle and a graduate scale in mmHg. This system does
not maintain the stability of the measurements over time and it needs to be cali-
brated.
New kind of sphygmomanometer, called hybrid sphygmomanometer, try to repro-
duce the best features of mercury ones and replace with electrics component, with
a display instead a manometer of the mercury ones and it replaces [49].
Due to the time interval between measurements, this measurement method cannot
measure the pressure minute by minute, for each heartbeat, therefore it is not a
continuous, but an intermittent measurement method.
Figure 3.3 shows a mercury based sphygmomanometer.

Figure 3.3: Example of mercury based sphygmomanometer [51].
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Auscultatory method

With a stethoscope, placed on the antecubital fossa of the elbow, the presence or
absence of a beat is auscultated during air inflection and deflection of the cuff. When
the pulsatile blood flow is restored reducing the air in the cuff the stethoscope makes
the possibility to check the sounds generated by the combination of the turbulent
blood flow and the oscillations of the arterial wall [29].
The sounds are called Korotkoff sounds, in honor of the Russian physicist who firstly
study the relation between blood pressure and blood pressure cuff. He divided the
detected sound in five phases [30]:

• Phase 1: the first phase corresponds to the appearance of a clear, palpable
and repetitive pulse. The pressure measured is the systolic one;

• Phase 2/Phase 3: the second one have sounds becoming less intense and more
durable, with the presence of slight noise until the third one, in which the
beats are less clear and low;

• Phase 4: the sounds become softer and less distinct from each other;

• Phase 5: the final corresponds to the last audible sound. The pressure mea-
sured in this phase is the diastolic one.

This method can suffer from human errors because of the need of a trained operator
to perform the measurement.

Oscillometric method

The oscillometric method is performed to reduce the error computed by the aus-
cultatory method [31]. It is a derivative measurement technique consisting in a
pneumatic circuit connected to a cuff, with similar functions to the cuff of the
sphygmomanometer, but with internal pressure sensors connected to electrical cir-
cuit to detect the pulse pressures inside.
The measurement is performed automatically by the device positioned in corre-
spondence of the writs or of the biceps. It stars with rapid inflating air until the
lumen of the artery is completely compressed and the flow is interrupted. In this
way the pressure wave is completely reflected and diffuses in the cuff.
The cuff is subsequently deflated in steps of 5 mmHg and the sequence considers
that the pressure in the cuff decreases by one step when two pulses of equal ampli-
tude are detected. The cuff is subsequently deflated in steps of 5 mmHg and the
sequence considers that the pressure in the cuff decreases by one step when two
pulses of equal amplitude are detected. At each step, the system acquires the pres-
sure and amplitude of the pulses. Until the measure system reaches a maximum
the amplitude of the beats increasing during the cuff deflates. Once the maximum
is exceeded, the detection of the beats stops permanently at the moment in which
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normal flow is restored. The pressure variations are produced by the passage of
the pressure wave in the artery and they are recorded thanks to the counterposed
action between the blood pressure and the inflated cuff pressure. These variations
induce small changes in the volume in the cuff, and then in the pressure inside it.
In the condition in which there is the maximum variation in the section of the artery
during the cardiac cycle, pressure pulsations of maximum amplitude are found.
When the maximum amplitudes are detected the pressure inside the cuff correspond
to the mean arterial pressure (MAP). Typically, the SBP and DBP are measured by
algorithm way and often the corresponds to the 45 % - 55 % of the pulse amplitude
maximum for the SBP and to the 74 % - 82 % for the DBP.
Figure 3.4 represent an example of oscillometric shygmomanometer.

Figure 3.4: Oscillometric sphygmomanometer [52].

3.1.3 Tonometric method
Tonometric measurement is a continuous cuff-less technique to detect blood pres-
sure. It is based on strain gauge pressure sensor (piezoresistive crystals) placed over
placed over the skin, in correspondence of blood vessels with to superficial arteries
located near bone structures, generally the radial or carotid arteries because their
easily access and large diameter.
It is normally applied on the right wrist and receive proportionally pulse and it
receives the ones produced inside its. Unlike the measurement systems seen so far,
this technique does not determine a complete occlusion of the flow of the vessels on
which the sensor is applied. In this way it is possible to detect the pulse wave of
the blood flow and to obtain the consequent pressure values during the acquisition.
The system needs to be calibrated with SBP and DBP values measured with tra-
ditional methods, such as oscillometric or auscolturory methods.
The calibration must be perform for each patient and this does not make it ideal for
hospital measurements. Furthermore, the quality of the registered signal is affected
by the correct positioning of the sensor and by its high sensitivity to movement
artifacts [32].
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Figure 3.5: Tonometric method for BP estimation [55].

3.1.4 Volume clamp method

The technique is based on measuring blood pressure through a cap placed on a finger
that gives its air flow so that the diameter of the vessels never changes during the
cardiac cycle. In addition, there is a PPG system that allow to detect variations in
the blood volume in the vessels during the different phases of cardiac cycle.
This system allows to automatically adjust the response to changes in diameter and
to detect the pressure wave inside, therefore the values of SBP and DBP. The control
works with negative feedback. When the systolic peak is detected which leads to an
increase of blood volume detected by the PPG system, the servo pressure system
responds quickly increasing the volume of air inside the cuff to maintain the blood
volume constant [37]. In this way the beat-by-beat pressure can be measured. The
continuous pressure variations inside the cuff to impede the blood vessels diameter
changes corresponds to the MAP.
This system is a good solution for healthy subjects, but it is not optimal in case of
subjects with bad peripheral perfusion.

Figure 3.6: Volume clamp device for BP estimation [54].
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3.2 Wearable devices for blood pressure estima-
tion

As mentioned in the Introduction, the wearable device market is growing rapidly.
There are many advantages that these devices offer in terms of ease of use, cal-
culation capacity and minimal invasiveness. Furthermore, the possibility of being
connected to the internet and the emergence of new communication systems, such
as 5G, will strengthen this family of technologies in the Internet of Things (IoT).
One of the challenges that is being faced now is to increase its charge capacity while
keeping the calculation levels high. These technologies have the ability to collect
data and to extract variables with refined accuracy.
Currently the devices of this family used both in the clinic and for remote home
monitoring are based on

- tonometric measurement;

- analysis of the PWV.

The first one uses the technique showed below but in automatic way. It can
be associated to a watch with a display that showed the measured values. Fur-
thermore, it can send the collected data through a Bluetooth connection to the
smartphone which a specific App.
The first of the devices falling into this class is the BP Pro developed by Healthstats
(30 Tai Seng Street, #09-03 BreadTalk IHQ, Singapore 534013). It is constituted
by a sensor module with a piston (the sensore plugger) that exercise a constant
compression on the radial artery during the sampling period (10 s). It is based
on the applanation tonometry to acquire the pulse waves [39], detected from the
radial waveform, and it gives a brachial blood pressure measurement after every
sampling.
The measurement is automatically computed from the matching of pressure wave-
form sampled with template waveform, obtained from several indices and coef-
ficients. When the sampled waveform coincides with one of the templates it is
collected and the MAP calculated. The SPB and DBP are extracted from derived
coefficients by detecting the calibrated level through change in arterial waveform
[48].
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Figure 3.7: Volume clamp device for BP estimation [39].

This device has shown excellent results in terms of accuracy, with an error within
5 mmHg from auscultation method, defined by the guidelines for use in the clinical
environment, by various validation tests. In addition, it allows rapid measurements
repeated several times throughout the day, up to 96 times in 24 hours. Despite
this, it has not yet obtained FDA approval and it is classified like cosmetic device.

Another example of device is the Omron pressure measurement device called
HeartGuide. It is the only model who receive the FDA approval as a medical device
until now. The device needs to work of an the specific Omron App to send the
registration [53]. The App elaborates the acquisition and gives the measurements
of BP and other vital signs like HR and the number of steps.

Figure 3.8: HeartGuide watch developed by Omron [53].

To collect pressure data, the subject must be stationary and bring the arm to
which the watch is applied at chest height, keeping it still. The detection takes
a few minutes and an accelerometer checks if you maintain a correct posture and
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if you are moving. If excessive movement is detected, the detection is canceled.
During the detection, initially the cuff in the strap inflates to obtain the width of
the arm, then deflates and inflates again until it reaches a clear detection of the
pulse wave in the vessels. Finally, it deflates again and the detection can be read
both from the watch and from the device to which it is connected via Bluetooth.
In occasion of the annual congress of the European Society of Hypertension (ESH)
in Athens 2014 , prof. Parati present a validation study for SOMNOtouchTM NIBP
accuracy for non-invasive BP estimation through the PTT [56]. The device has
been designed to continuously monitor patient pressure in a clinical environment
by minimizing invasiveness. It is made up of a central body for data collection
and processing to which the electrode cables for the collection of the ECG signal
and the PPG sensor are connected. During the validation tests, the device’s accu-
racy was compared with the measurements performed with the auscultory method,
demonstrating an accuracy within the criteria of the ESH-IP 2010 for both SBP
and DBP.
This encourages the deepening and development of devices based on this technology
for the definitive affirmation of this new family, capable of performing BP detections
in multiple environments (clinical, sports, etc.) in a continuous and non-invasive
way.

Figure 3.9: Architecture of SOMNOtouchTM device [56].
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3.2.1 Blood pressure estimation using other physiological
parameters

In addition to classical methods, in literature, there has been a huge attention for
the study of other physiological parameters. This is because they try to make the
system portable, non-invasive and that allows the continuous detection of pressure
values.
The goal is to make detection as invasive measurement method as possible con-
tinuously due to the importance of long-term measurement to observe changes in
pressure values and to make a prognosis, diagnosis and treat the pathologies asso-
ciated with hypertension in time [43].
In this section, attention is placed on the study of the Pulse Wave Velocity (PWV)
with the Pulse Transit Time (PTT) and of the parameters obtainable from the
PPG signal for the estimation of blood pressure. Other studies have already identi-
fied the correlation between PTT and BP since the 2000 [43]. PTT consists of the
delay between the detection of the R wave of the ECG signal and the systolic peak
detected in the PPG signal of the pulsed wave transmitted through the circulatory
system to the peripheral sites. Chen et al. [44] for example have demonstrated
the possibility to measure the SBP through the pulse arrival time with successive
calibration. Another case is the study conducted by Poon et al. [45] for a PTT
initial calibrated model for the SBP and DBP estimation.

Despite its merits, the use of this technique is still limited above all by the need
for continuous system calibrations and therefore difficult to apply to the long-term
monitoring of the subjects. Furthermore, the need for continuous calibration of the
instrument does not allow this technology to replace the traditional measurement
methods, as the standards do not foresee the need for calibration for this class [42].

The Pulse Transit Time

The PPT is the measure of the time interval necessary to the pressure pulse to
spread into peripheral blood vessels. It begins when the pulse pressure is detected
in aortic vessel, due to systolic phase of the heart cycle, and it finishes when the
pulse is detected in the distal part of the vessels.
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Figure 3.10: Example of measure of the pulse transit time between ECG R-peak
and the initial stage of anacrotic phase of PPG signal [58].

Essentially the elasticity of the vessels has been traced back to the volume of
blood circulating in the vessel [38]. When the pressure increases, the compliance of
the vessel decreases and therefore the temporal window between the beat and the
arrival of the pressure wave to the peripheral areas decreases, decreasing the PTT.

The most effective mathematical models behind these phenomena are studied
by Brawell-Hill and Moens-Kortwege, which have been widely used and they have
been widely used and extended. Moens-Kortwege describes the relation between
the PWV and the elasticity of the arteries as reported in Equation 3.1:

PWC =
ó

tE

ρd
(3.1)

Where E is the elastic module of the vessel wall, t the vessel thickness, ρ the blood
density and d the arterial diameter. Geddes described the elastic module of the
vessel wall as a function of the blood pressure (Equation 3.2) [46].

E = E0e
αP (3.2)

Where E0 is the elastic module at zero pressure, α is a constant variable with a
range values between 0.016 – 0.018 mmHg−1 and P is the BP. Furthermore, the
relation between PTT e PWV can also be expressed according to Equation 3.3:

PWV = A

PTT
(3.3)

Where the numerator parameter A is intended like the distance between the heart
and the peripheral sample site [40]. Finally, through Equation 3.1 and Equation
3.3, BP can be estimated:

A

PTT
=

ó
tE

ρd
(3.4)
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To extract BP is necessary to define an initial calibration and the t/d value
relation constant. Furthermore, also considering constant the distance A and the
elasticity parameter E0, the BP can be estimated through a logarithmic relation-
ship:

BP = a ∗ (PTT ) + b (3.5)

From this equation we can define three subject-constants a, b and c to obtain a
regression relationship between BP and PTT, that also include the HR as second
variable:

BP = a ∗ (PTT ) + b ∗ HR + c (3.6)

Because of to the approximation computed to the variables and the necessity of
repetitive calibrations, the BP measured with the PTT technique has normally
higher error levels than classical methods. Furthermore, the HR has positive and
negative relation with the BP measures: positive for normal conditions but nega-
tive under baroreflex activity [73]. Finally, another parameter which influences the
error is the distance between the heart and the site if detection of the signal: in
particular, which decrease when it is large [33].
Given the need for an initial calibration, it is assumed that the estimate through
the PTT can record, with this setting, only the pressure variation values (relative
pressure). Therefore, it is necessary to initially estimate pressure with classic meth-
ods and to repeat the operation over time. This is the case of another work focused
on the theme, proposed by I. Sharifi et al., in which the values of SBP and DBP
are estimated as follows:

DBP = MAP0 + 2
γ

log PTT0

PTT
− 1

3(SBP0 − DBP0) ∗ (PTT0)2

(PTT )2 (3.7)

SBP = DBP + (SBP0 − DBP0) ∗ (PTT0)2

(PTT )2 (3.8)

where PTT0, SBP0, DBP0 and MAP0 are the initial conditions. In addition to
these calibration-based methods, new methods have been studied to overcome this
limit by switching from automatic learning algorithms that can vary their con-
figuration according to the data they receive at the input [59], [60]. Particular
importance in the case of supervised learning is the necessity to provide multiple
systems with input to these systems so as to make the algorithm capable of adapt-
ing to the various cases and responding with a possible contained error.

There are several possibilities to calculate the PTT:

- I-PTT in which it is measured the time interval between aortic blood flow
(BF) and the temporal BP in distal positions (see Figure 3.11);
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- PPG-PTT which measures the time interval between two characteristic points
of the PPG signal. The time interval can be identified through a two-channel
PPG system where the signal is picked up in two different points, one more
proximal and one more distal [22]. It is calculated like the interval between
two points of the pulse wave detected;

- PAT that is the time interval from the R-peak of ECG signal and a specific
point of PPG signal (like systolic peak) detected distally to the heart.

Figure 3.11: Different PTT measures in different points of the body [34].

The last method is the one often used for BP estimation. For the minimum
width of the window in which the measurement is made, all the small contributions
of delay can give rise to errors which, if accumulated, can give rise to errors of large
proportions. This is the case of the Pre-Ejection-Period (PEP), which is considered
as the delay between the depolarization of the left ventricle and the opening of the
aortic valve [36]. The factors that influence this delay are different and they change
from subject to subject. This delay can result in pressure estimation errors. To
eliminate this error, additional complex instrumentation is required and for this
reason the error is normally overlooked.
Normally three different points of PPG signal are used for the PTT estimation:
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Figure 3.12: Different PTT computed between ECG and PPG signals [35].

- PTT-peak: the distance between the R-peak of ECG signal and systolic peak
of the PPG signal representing the same cardiac cycle [35];

- PTT-middle: the distance between the R-peak of ECG signal and the maxi-
mum slope of PPG signal in the same cardiac cycle [35];

- PTT-foot: the distance between the R-peak of ECG signal and the minimum
of PPG signal in the same cardiac cycle.

To influence the PTT there are several parameters like:

- Rigidity of arterial walls;

- Subject’s age;

- Stress level;

- Posture;

- Temperature;
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3.3 Employed tools
For this work, mainly two computational environments were used. The Phys-
ionet portal, available online, for the collection of data, which have been processed
through the second environment: MatlabTM , that allowed the realization of the
algorithm and its validation.

3.3.1 Physionet
The Physionet online portal was born in 1999 with the aim of collecting biomedical
signals useful for researchers and students to conduct their researches. It therefore
allows free access to sensitive data, whose privacy is guaranteed, such as physiolog-
ical and clinical data, as well as the related open-source software [61].
Through the database, it is possible to access more than 50 different databases,
containing cardiac, pulmonary, neural and other parameters. In the case of MIMIC
databases, it is possible to download the single 24-48 hour tracing of more than 100
patients with multiple signals collected simultaneously. Thanks to these peculiar-
ities, the portal was essential, as it provided the source of the data necessary for
the realization of the algorithm.

Figure 3.13: Physionet online ATM [61]
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3.3.2 MatlabTM

MatlabTM is a numerical computing, programming and visualization environment
that uses high level language. Through the software it is possible to perform cal-
culations, measurements and visualization of the signals. In addition, it can be
used for the implementation of elaborate algorithms for data processing and rapid
visualization of the results achieved. In this case it is through this software that our
model was created. In this case, the model was implemented through this software.

Figure 3.14: Different panels of MatlabTM enviroment
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Chapter 4

Materials and Methods

4.1 MIMIC databases

This work would require the collection of multiple physiological parameters regis-
tered simultaneously from healthy and hypertensive subjects, whose pathology had
been claimed by medical evaluations. In this way the algorithm can be trained
and tested with specific data relating to age, sex and habits of selected subjects.
Unfortunately, it was not possible to implement this protocol and this required the
search for an alternative source of information.
MIMIC is an open access online database containing multi-parameter biomedical
data collected by the MIT Lab for Computational Physiology [62].
It collects data from intensive care from around 60,000 hospitalizations. It is a
huge source of free access information for carrying out studies in a wide range of
clinical fields, from cardiology to pneumatology. The available data concerned only
signal recordings, therefore the work focused only on the information available, not
considering information such as age and gender for the realization of the model.
In carrying out this study, the subjects whose parameters were necessary for the
implementation of the system were searched within the database. In particular it
was request that ECG, PPG and ABP signals were simultaneously recorded for
each subject.
However, the collection of this information was not born with the same purpose of
this thesis, therefore the quality of the data collected was not particularly taken
care of, which in this case have a central role. This is because using mainly mor-
phological information, especially on the PPG signal. In fact, a clear and prolong
repetition of the characteristic waveform, which is difficult, especially for the sam-
pling sites that are typically used in the collection of PPG signals such as the finger,
which offers, albeit minimally, a footprint for the subject in performing even the
simplest actions during the day.
The collected data for the creation of the database come from the Intensive Care
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Unit (ICU) and this adds up to problems relating to the quality of the signal, be-
cause most of the subjects whose data has been collected is over 50 years of age and
it is subjected to drugs that alter their pressure values. Moreover, age influences
the elasticity of the vessels: in particular, vessels of older people are characterised
by less elasticity and, consequently, higher stiffness. This is traduced in changes of
the PPG signal waveform as a reduction in the time interval between the systolic
peak and the diastolic peak, as it is shown in Figure 4.1 [64].

Figure 4.1: Example of the effect of advancing age on signal quality [64].

In addition, the signal waveform can present abnormal and noisy recordings, as
missing peak, pulsus bisferiens, interference to the sensor (sensor-off) and others.

Figure 4.2: PPG signal of the subject p000333 with pulsus bisferiens.

In healthy subjects, significant changes in blood pressure occur with a time
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interval of at least 10 minutes. For this reason, during the first conception of the
work, it was evaluated to obtain 5-minute signal windows with respect to which
to evaluate the pressure values. However this was not possible due to the quality
of the signals obtained from the database, which suffered in some cases from a
not negligible alteration of the measurements, which did not allow the use of such
large windows (Figure 4.3). In addition, very long acquisitions would have been
required in order to train the algorithm and the length of the acquisitions available
in the database was not enough. For this reason it is used a modified window
length to reach a compromise between samples quantities and quality of the signals
contained.

Figure 4.3: ECG, PPG and ABP signals of the subject p000160 with significant
disturbances.
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4.2 Algorithm description
Figure 4.4 represents the used flowchart. It shows the steps that have been taken
in the implementation of the algorithm.

Figure 4.4: Flow chart of developed algorithm.

The first phase focuses on the selection of signals with minimum noise and a
sufficiently large window. The second phase focuses on the signal pre-processing,
which is followed by the extraction of the defined features. The third part in-
stead concerns the organization of the dataset and the application of the regressive
method. Finally,the system is validated to verify its capacity to generalize not
reaching overfitting.

4.2.1 Subjects selections
The first step of the algorithm involves identifying the subjects in the database that
are adequate in terms of the presence of the necessary signals with an adequate level
of quality of the trace to correctly measure the sought parameters.
Given the structure of the online portal, to identify the subjects that contained the
signals, the plots were examined and observed directly on the Physionet portal.
The research took a long time due to the huge amount of subjects collected and to
the absence of prior informations on the types of signals that correspond to each
subject (derivation of the ECG, ABP, PPG, Respiration Rate (RESP) signal, etc.).
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After having identified the subjects and having downloaded their tracks, the quality
of the contained signals is investigated respecting two phases:

1. The ABP signal is studied to eliminate parts of the track where there are
alterations of unknown origin that do not allow it to be used for our model.

Figure 4.5: Noisy ABP signal (Subject ID: 3702767)

2. The ECG, PPG signals were broken into 1 minute fragments, assessing the
quality of the traces. In many cases the quality of the signal was poor, espe-
cially for what concern the PPG signal, since high noise levels were present.
This resultes in the exclusion of the segments.

Figure 4.6: Noisy segment of PPG signal from Subject 3702767
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If the number of segments is considered acceptable (at least more than 50 segments
not excluded), then the subject goes to the second phase. In this case, the analysis
of the signals of the subjects collected led to 24 of them. The Figure 4.7 shows the
example of a subject with a clear presence of noisy corrupted signals.

Figure 4.7: Example non acceptable signals quality with consequence elimination
of the subject (ID: 3106311).

4.2.2 Signal processing

To remove the distortion effects of the signals caused by background noise and
artifacts, a pre-processing phase was implemented which included the filtering and
denoising of the ECG and PPG signals. In the case of the ABP signal this operation
was not necessary because there was a clear and distinct waveform in the segments
that passed the initial selection, also thanks to the invasiveness of the sampling
which limits the presence of artifacts.

PPG signal filtering

The PPG signal suffers from noisy contributions and interference, which mainly
translate into the morphology of the waveform. This is also due to the fact that
the signal is characterized by low amplitudes.
The frequency content of the signal is concentrated in a band between 0.01 Hz and
3 Hz [68]:
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• low frequencies (0.01 Hz - 0.04 Hz), which contains information about the
sympathetic and parasympathetic activity of the nervous system;

• medium frequencies (0.04 Hz - 0.15 Hz);

• high frequencies (0.15 Hz - 0.5 Hz), affected by parasympathetic system
activity and respiration;

• heart rate (0.5 Hz - 3 Hz).

The main noise contributions that sum up to the PPG signal originate from:

• movement artifact, due to the position of the sensor (typically on the wrist
or finger) which is exposed to the movements of the subject, also involving
exposure to light sources that contribute to signal alterations. The artifact
is concentrated between 0.05 Hz and 8 Hz and for this reason it is difficult
to remove without altering the high frequency information of the signal [68].
To remove it, various removal methods have been proposed, among which the
one proposed by Ju-Won Lee et al. analyzing the signal of the acellerometer
contained in the PPG sensor.

• line interference, which in many cases affects the signals taken by means
of instruments because of the presence of cables and connections to the line.
It corrupts the signal at a frequency of 50 Hz or 60 Hz, which can be easily
eliminated by filtering it with a low pass filter.

• baseline dift, due to small repetitive movements of the subject like respiration
[40]. Typically it occurs around low frequencies (0.4 Hz [69]) and it can be
removed through a high pass filter.

In order to comply with what has been discussed, it was decided to digitally
filter the signals using a finite response band-pass filter (FIR) with a bandwidth
between 0.5 Hz - 5 Hz to contain the information about cardiac activity, removing
low-frequency drifts, network interference and high frequency movement artifacts.
The FIR filter was chosen because it does not alter the morphological components
of the signal, leaving them unchanged. However, its limitation consists in the
introduction of a delay on the signal proportional to the order of the filter, which
in this case was chosen to be equal to 4 as suggested by the work of Y. Liang et al.,
who compared the performance of different filters. They proposed the parameters
for the filters that reached the best values in term of signal quality index [70]. Given
the high precision required for the timing of the signals, double pass filtering was
used, in order to remove the delay by using double pass filtering [71].

44



Materials and Methods

Table 4.1: Filter characterization

Filter type Order Band (Hz)

FIR (Butterworth [70]) 4 0.5 - 5

Figure 4.8: Band-pass filter transfer function implemented.

Figure 4.9: Filtered PPG signal.
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ECG signal filtering

The ECG signal is the result of the sum of several waveforms originating at differ-
ent moments from the heart muscle. Each waveform is characterized by different
frequency bands:

• P wave (0.5 Hz - 8 Hz);

• T wave (1 Hz - 7 Hz);

• R wave (5 Hz - 15 Hz).

The amplitude of the ECG signal is between 10µV - 4 mV: it is very small and for
this it suffers the interference on the quality of the signal originated by different
sources of noise [72].

• network interference, the main source of disturbance for the ECG signal
due to the presence of cables and network connections. Focusing around 50-
or 60 Hz, it alters the morphology of the signal. To remove it, the signal is
filtered with a low pass filter with a 50 Hz cutoff frequency.

• baseline wander, caused by subject movement artifacts such as breathing,
which by concentrating around low frequencies (0.5 Hz) can be easily elimi-
nated through a high pass filter [72].

• muscle contractions, being a sample made superficially on the skin, the
signal may be affected by the contribution of the electromyographic signal
(EMG) originated from muscle contraction. The EMG signal has a band
around 0.05 Hz - 300 Hz [66] overlapping that of the ECG signal, around
the band containing the different waveforms that characterize it. For this
reason, the contribution of the EMG cannot be totally removed and it can
give problems especially in the detection of the ECG during physical activity
[76].

• movement of the electrodes, which modifies the contact impedance of the
electrodes with anomalous manifestations on the signal. Since the interference
band concentrates around 1 Hz - 10 Hz this interference cannot be removed
[76].

To minimize the noisy components, the signal was filtered through a FIR bandpass
filter, of order 4 and bandwidth between 5 Hz - 30 Hz. In this way, any low
frequency drifts, network interference and the informations about the others ECG
waves are limited by concentrating the information relating to the peak R of the
signal.
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Table 4.2: Filter characterization

Filter type Order Band (Hz)

FIR (Butterworth) 4 5 - 30

Figure 4.10: Band-pass filter transfer function implemented.

Figure 4.11: ECG signal filtered with incremented quality.
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4.2.3 Features extraction
According to what has been found in the literature, multiple information extracted
from the PPG and ECG signals have been explored to measure the pressure through
this signal as accurately as possible. The main limit found for all the examined cases
is the quality of the PPG signal, that can present itself with an altered morphology
also because of the areas from which it is normally registered. Even in the case of the
database used, it was possible to observe this problem, as explained in the previous
section, and this led to the necessity of choosing which signal characteristics could
be studied by reaching adequate levels of precision.
Initially, one of the parameters that was extracted was the distance between the
systolic peak reached by the PPG signal and the diastolic one, as this distance
is directly correlated with the quality of the cardiac contraction and varies with
a certain proportion to the variation of the BP. However, due to the variety of
morphology with which the signal occurred, it was not always possible to distinguish
the diastolic peak for all subjects and this distance was not considered, wanting to
maintain a minimally significant number of subjects (and therefore samples) to
implement the algorithm.
For all the signals processed, a 10-second window was used in which to extract the
signal features.

PPG features extraction

To extract all the parameters from the PPG signal, the systolic peaks of the signal
were searched by imposing a minimum threshold equal to 30% of the maximum of
the signal identified inside the window and a minimum interval between one peak
and and it was considered at least 0.33 seconds between one peak and the next one,
according to the cardiac property of one heart beat for second about. Once all the
signal peaks were identified, the minimum points between two systolic peaks were
searched related to the end of diastolic phase, by imposing the presence of a valley
between two consecutive peaks.
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Figure 4.12: Identification of the systolic peak and diastolic valley of the PPG
signal (Subject ID: 3702767).

The characteristics of the PPG signal that have been extracted were mediated
with the time window considered and they are the following:

1. the systolic upstroke time (SUT), meaning the time interval between the sys-
tolic peak and the previous diastolic valley at the end of previous diastolic
phase;

2. the diastolic time (DT), as the time interval between the systolic peak and the
successive diastolic valley;

3. the photoplethysmography intensity ratio (PIR), which is calculated as the
difference between the maximum and minimum peak of the PPG signal for
each cardiac cycle [43]. This parameter can theoretically varies according to
the variations of vessels diameters, as expressed in Equation 4.1.

PIR = eβ∆d (4.1)

where β is a function of the path covered by the light beam. PIR can capture
the low frequency information of the ABP signal spectrum, originating from
arterial compliance and cardiac output [43]. As seen in the previous para-
graphs, the arteries vary their diameters during the different phases of the
cardiac cycle (Figure 4.13), increasing simultaneously with the systolic phase
of arterial BP and decreasing it in the diastolic phase (Dd < Ds).
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Figure 4.13: Artery diameter variation during cardiac cycle [63].

This involves variations in the amount of light absorbed by the blood tissues,
giving the possibility of obtaining this parameter as a function of the difference
in intensity of the PPG signal at the relative maximum and minimum points
[63]. According to Figure 4.14, PIR is measured as follow:

PIR = IH
IL

(4.2)

Figure 4.14: Diagram for PIR evaluation and relation with physiological back-
ground [74].

4. rate peaks alternating component of the signal, since eliminating the continu-
ous component, that brings information about changes in blood volume pulses,
which is synchronized to the heartbeat [73]. Once the continuous component
of the signal is set to zero, the average intensity of the systolic peaks of the
AC signal is calculated.

5. the mean intensity of the systolic peak found in the window;

6. the mean intensity of the diastolic valley of the signal in the window.
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ECG features extraction

The only sought information for the ECG signal is the R peak of the QRS complex,
relating to the depolarization of the ventricles. Given the relative good quality of
the ECG traces present in the database for the identification of the QRS complex,
the method developed by Pan and Tompkins in 1985 was used. This method is
based on the analysis of the slopes of the QRS complex in terms of duration and
amplitude. It consist in the following steps [75]:

• Band-pass filtering, the signal is filtered through a band-pass filter, which
increases its quality in terms of signal to noise ratio (SNR) (done in the pre-
vious signal processing phase).

• Derivative, in which the filtered signal is differentiated to identify the slopes
of the QRS complex. This step enhances the high frequency components of
the signal, as in the case of the waveform of the R peak which is concentrated
around the higher ones with respect of the other ECG waves.

• Squaring, in which each component of the differentiated signal is squared
to emphasize the high frequency components of the signal, bringing them to
positive values. The operation is performed according to Equation 4.3.

Y (nT ) = [X(nT )]2 (4.3)

where T is the sampling period of the signal.

• Moving Average, in which a moving average window flows along the signal.
This operation smoothes the output signal from the previous phase, reducing
the QRS complex to a single peak, easy to identify. The most important
choice concerns the size of the window, as a larger window certainly includes
the QRS complex, but it could also involve the T wave, while a too small
window can lead to the appearance of narrower peaks, with the risk of having
more than one them in the same QRS complex. In this work, a window of
150 ms was assumed, in agreement with the average amplitude of the QRS
complex considering a minimum margin.

The result of this method is shown in Figure 4.15.
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Figure 4.15: ECG signal (blu) (Subject ID: 3702767) with superimposed output of
the moving average window (red).

Figure 4.16: Representation of the results of every algorithm’s phases.
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Once the peak of the R wave was obtained, it was possible to pass to the estimate
of the heart rhythm inside the window and to the estimate of the PTT.

Pulse Transit Time estimation

The importance of the correct estimate of this parameter has already been ex-
plained. The PTT can capture the high frequency information of the ABP signal
spectrum, but only after the necessary starting approximations.
Among the seen measurements, the PTT middle was chosen, meaning the distance
between the peak of the R wave of the ECG signal and the corresponding maximum
slope point of the PPG signal, as shown in Figure 4.19.
Before implementing the steps leading to the PTT estimate, it is imposed that a
maximum slope point must be contained between two consecutive R peaks, the first
considered and its next.

tR−peak(i) < tPPG−peak(i) < tR−peak(i + 1) (4.4)

Once the validity criterion has been passed, the following steps are applied:

1. Individuation of the R-wave peaks of the ECG signal through the method
discussed in the previous section. The result of this first step is reported in
Figure 4.16;

Figure 4.17: R peak from filtered ECG signal.

2. PPG signal derivation. This step is necessary because the inversion points
relative to the maximum slope of the signal can be obtained from the maximum
of the derivative waveform of the PPG signal. For graphic convenience, points
below zero are set to zero (Figure 4.17);
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Figure 4.18: 1th dPPG signal with points below zero are set to zero.

3. Identification of the maximum points of the derivative signal by imposing a
threshold equal to 30% of the maximum of the embankment, with an interval
between two successive peaks around 0.33 seconds;

4. It is verified that the first R-wave peak is before the maximum slope point of
the PPG signal, if not, the calculation starts from the second point;

5. Finally, calculation of the distance between the peak R and the maximum
slope identified in the maximum of the derivative PPG signal (Figure 4.19)
for the points that comply with the initial condition within the window and
calculate its average value, if not, the calculation starts from the second peak.
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Figure 4.19: ECG and PPG signals with the respective points with respect to which
the PTT measurement is performed.

Pressure values extraction

The pressure values relating to all the intervals of the various signals are obtained in
the form of an average value with respect to the window. Pressure measurements
concern both the SBP and the DBP, but also the mean arctic pressure (MAP),
obtained through the Thirty-Three percent formula [77] reported in Equation 4.5.

MAP = 2 ∗ DBP + SBP

3 (4.5)

Which is simplified as:

MAP = DBP + 0.33 ∗ PP (4.6)

considering PP as:
PP = SBP − DBP (4.7)

To detect the maximum and minimum points of the ABP signal, it is proceeded
as in the PPG systolic point individuation, with the exception of the fact that
given the invasiveness of the sampling, the only artifacts that were presented were
those caused by the movement of the catheter. Since these kind of artifacts at the
beginning, it was possible, at this point, to work directly on the signal, without
other intermediate steps.
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1. Identification of the maximum points of the ABP signal by imposing a mini-
mum threshold equal to half of the maximum of the signal inside the window
and an interval between one peak and the next one of approximately 0.33
seconds. These points are related to SBP.

2. Identification of the minimum points between two systolic peaks, related to
the DBP values.

3. MAP estimation through Thirty-Three percent formula.

Figure 4.20: ABP signals with the respective SBP (red) and DBP (yellow) points.

4.3 Data organization

Data organization represented one of the central phases of the work.
Each subject whose signals have been used to extract the features is identified by an
integer number to replace the ID (list of subject in Appendix A) and the matrices
containing the samples of each feature are concatenated to obtain the complete
dataset.
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Table 4.3: Regression Model characterization.

Mean σ

PIR 3.23 0.55
PTT 0.54 0.46
HR 13.21 2.82
HI 2.61 9.01
HL 2.78 9.09
meu 0.98 3.34
SUT 0.22 0.06
DT 0.36 0.20

By observing the central values reported in Table 4.3 assumed by the different
features and their deviation from these values, to the features have been imposed
reasonable margins to be considered physiological valid, given the impossibility of
excluding errors made during data collection.

• PTT:
0.2s < PTT < 0.8s (4.8)

the minimum limit is imposed because the pressure wave will not reach the
finger in a shorter time than the electrochemical conduction that leads to the
contraction of the heart, while the maximum limit is imposed if there are
anomalies on the path that lead to overestimate the time lapse;

• SUT e DT:
0.1s < SUT < 0.4s (4.9)

0.1s < DT < 0.8s (4.10)

Obtained by observing the mean values of all samples and their respective
standard deviations;

• SBP and DBP values:
SBP > 80mmHg (4.11)

30mmHg < DBP < 130mmHg (4.12)

Due to uncontrolled point changes in the signal that led to incorrect estimation
within the observation interval according to literature.

After this phase, Subject 18 was eliminated, because it did not presented a sufficient
number of samples. As a consequence, 23 subjects were then analyzed, for a total
of more than 10600 samples.
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4.4 Feature selection

The next step concerned the correlation between the information taken by the
features. This step is necessary because a strong correlation between two features
may be due to the fact that one of the two features generates the other or the two
of them are connected [78]. In this case, if the increase or decrease of one feature
affects the increase or decrease of the other one respectively, the two features are
said to be linearly related. It is possible that two features are correlated in a
negative way, that is, the growth of one corresponds to a decrease of the other and
vice versa.
Figure 4.20 shows an example of correlation plots.

Figure 4.21: Example of attended correlation plot [79].

The correlation score is between -1 and 1 and the values that lead to affirm a
linear correlation between different features are around 0.5 - 0.7. Values around
the unit mean a strong linear correlation, while values around -1 a strong negative
correlation.
If all the features within the dataset were strongly correlated with each other, a
problem calledmulticollinearity would be encountered [78]. In this case, a redun-
dancy of information having the same origin or that carries the same information
has an impact on the quality of the estimate, also giving misleading results.
If the features were not correlated, it would mean that their values are not influenced
by common factors and that therefore each of them brings additional information
that can be useful for classification/regression purposes.
Although in the case of tree decision (presented in the next section) this problem
does not alter the measurements, since once it decides to separate its limb, it will
choose only one of the most correlated features. It was decided to investigate the
correlation graph of the features through the correlogram and a limit of 0.8 was
imposed, to limit the feature strongly correlated.
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Figure 4.22: Correlation graphic of the feature extracted.

As shown in the graph, the features that had the highest correlation values
between them are:

• the meu with the IH and IL respectively: r = 1.00 r = 1.00;

• the IH and IL: r = 1.00.

This means that these three features bring the same information and that they
influence each other. For this reason just the meu was preserved.
As a result of this phase, we will therefore maintain a total of 6 features, optimizing
the information brought by the available dataset:

1. PIR;

2. PTT;

3. HR;

4. meu;

5. SUT;

6. DT.
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4.5 Regression analysis
Regression analysis consists in creating a predictive model in which the relationship
between dependent (target) and independent (predicted) variables is investigated
[81].

Figure 4.23: Example of regression analysis to extract the fitting curve (red) of
target data (black) [81].

Assuming that the data y depend on a number of variables i: f = f(x1, ..., xi), it
is possible to derive the relationship between the two of them through the regressive
model that allows to minimize the residual error or the quadratic error between
prediction and target [71]. A linear regression model can be [71]:

ŷ = β0 + βT1 ∗ x + Ô (4.13)

where β0 and βT1 are the scalar and the vector to choose, while Ô is the error between
the target and the model prediction.
Minimizing the mean square error means minimizing the following expression:

L =
Ø
i

(y − β0 − β1
i xi)

2 (4.14)

In this configuration, by minimizing the mean square error between the estimated
values and the reference target, the fitting quality operated can be estimated and
the best coefficients of the linear system can be chosen [71].
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4.5.1 Random Forest
For this work the Regression model adopted is the Random Forest.

Figure 4.24: Structure of Random Forest [80].

The Random Forest is the result of a set of decision methods whose prediction
result is the result of the combination of the different predictions of the individual
decision-makers within the system [40]. In making the decision, each tree works
independently in parallel with the other trees without the slightest exchange of
information between them.
In the realization of its structure it uses random subset of the dataset to train
and identify the one that minimizes the quadratic error of each tree [81]. This
random choice allows to minimize the risk of model overfitting. In addition to
this, to prevent the system in its construction from focusing on a single feature of
the dataset, a limited number of functions are used for each node. By imagining
the space on which the dates are distributed, the use of multiple decision-makers
allows to identify the plans with respect to which they are linearly correlated with
the output. The advantage of using this regression method lies in its high accuracy
and ease of implementation. However, it is extremely sensitive to the dataset,
therefore, in the case of noisy datasets, it can be affected in terms of performance,
also leading to the overfitting of the model.

Model implementation and testing

The available dataset consists of a total of approximately 10,600 samples for each
of the 6 features selected from the previous phase. To implement the model, the
dataset is separated into two parts:
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1. the first to train the system, the 70% of the subjects, therefore in the first
approximation 16 subjects;

2. the second to test the accuracy achieved by the algorithm, equal to the re-
maining 30%, i.e. 7 subjects.

The subjects dedicated to train and to test the system were randomly chosen from
those present in the dataset. For each of the measurements that have been taken,
a single regressive Decision Tree corresponds, all having the same settings showing
in Table 4.4.

Table 4.4: Regression Model characterization.

Model Method # Tree Leaf Size

Random Forest Regression 200 5 (Default)

Table 4.5 shows the identifiers of the subjects used to train the system and the
ones of those used to test it.

Table 4.5: Subject selected to implement training and test phases.

Training Test

Subject 8 Subject 9
Subject 17 Subject 22
Subject 24 Subject 21
Subject 4 Subject 7
Subject 20 Subject 23
Subject 11 Subject 10
Subject 12 Subject 5
Subject 1
Subject 3
Subject 2
Subject 13
Subject 14
Subject 19
Subject 15
Subject 6
Subject 16

After having chosen which subjects to use in the two phases of the regression,
the data of the two groups were randomly mixed to minimize the risk of excellent
premises due to slightly variable trends in pressure values.
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Results

This chapter reports the results achieved by the algorithm implemented for the
estimation of the three BP values. As explained in the previous chapter, the avail-
able dataset has been filtered and highly correlated features have been eliminated
to avoid a redundancy of information. To implement the regression, the data set is
divided into two parts, respectively intended to train and to test the network, with
respect to the subjects treated. After training the system,the samples of subjects
that were not used in the first phase are used to test it.
The following parameters have been used to evaluate the fit quality achieved by
the algorithm:

• Route-Mean-Square error (RMSE), which represents the quadratic mean
difference between the target and the estimated value [82]. It is useful to
measure the quality of the prediction. In the case of n predicted values, with y
corresponding to the vector of the target values and ŷ to the vector of the values
predicted by the algorithm, the RMSE is obtained according to Equation 5.1
[82].

RMSE = 1
n

nØ
i=1

(yi − ŷi)2 (5.1)

• Standard Deviation (σ), is a statistical dispersion index that measures the
variability of a population. In general, it is used as a means of measuring the
dispersion of data with respect to a defined position index, which is typically
represented by the average value [82].

σ =
óqN

i=1(xi − x̄)2

N
(5.2)

• Determination coefficient (R2), The coefficient is defined as the proportion
of the estimate variance of the regression. This makes it useful for evaluating
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the quality of the estimate of the variables (output) dependent on the inde-
pendent variables [83]. It can assume values in the range between 0 and 1,
which indicate respectively a very bad and an excellent fitting of the data by
the implemented regression system.

The graphs of the SBP, DBP and MAP pressure values obtained for each signal
window are shown below (Figure 5.1). A part of these signals was used for training
(blue) and a part for testing (red). In order to obtain excellent results, the data
used in the training phase must be as representative as possible of the total set of
data in order to obtain a reliable forecast.

Figure 5.1: Graphs of the outputs for used in the training phase (blue) and of the
outputs used in the test phase (red) to verify the quality of the fitting.

Figures 5.2, 5.3, 5.4 show the values predicted by the regression models (red),
corresponding to the different pressure measured from the ABP signals window
(blu).
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Figure 5.2: Estimated SBP superimposed on target values obtained from the ABP
signal.

Figure 5.3: Estimated DBP superimposed on target values obtained from the ABP
signal.
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Figure 5.4: Estimated MAP superimposed on target values obtained from the SBP
and DBP values with Thirty-third percent formula.

Table 5.1: Performance reached in terms of accuracy and variability of the regres-
sion system

Pressure measured RMSE (mmHg) σ (mmHg)

SBP 8.36 ±10.5
DBP 6.4 ±9.45
MAP 6.72 ±9.45

The Table 5.1 shows the result of the predictions in term of RMSE and σ. The
best result in term of readout error and variability is reached by the DBP.

The determination coefficient was calculated to evaluate the statistical correction
of the model respect the data available. The values obtained for the three estima-
tors are shown in Table 5.2. For all three cases, significant values were reached,
demonstrating a good adaptation of the data to the regression systems.

Table 5.2: Determination coefficient reached by the three regression systems.

SBP DBP MAP

R2 0.89 0.90 0.90
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As reported, the best results in terms of reduced error have been achieved for
the estimation of diastolic pressure. This is evidenced by the Figures 5.5, 5.6, 5.7
which show the error distribution for the individual estimators of SBP, DBP and
MAP respectively. As it can be seen from the histograms, most of the errors made
by the estimators are concentrated in the range around ±10 mmHg, with few values
far outside this range, especially for SBP.

Figure 5.5: Error histogram of SBP.

Figure 5.6: Error histogram of DBP.
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Figure 5.7: Error histogram of MAP.

Observing the scatter plots in Figure 5.8, it is possible to assess that the es-
timates made for all the implemented models manage to concentrate along the
central straight line, indicating an almost linear correlation between the target and
the estimated values.
In special, central pressure values for each predictor have good precision related
to target pressure values expect for the extremes, which present high variation.
This is due to the insufficient number of samples to prepare the system toward
this possibility, as can be seen in Figure 5.9, which represent all BP values used
for training and testing the systems. The graph shows high number of samples for
central values but not enough for the high ones. This is traduced in an accentuated
error compared to the average related the central values.
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Figure 5.8: Three estimator’s Scatter plot.

Figure 5.9: Distribution histogram respectively of all data-set SBP, DBP and MAP
values.
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By examining the trend of the estimated blood pressure samples with respect
to the targets, it is possible to observe that there are cases in which there is a very
similar trend (Figure 5.10) and cases in which the regressive system have more
difficulties to estimate the correct trend (Figure 5.11).

Figure 5.10: Estimate range of SBP values of test-set in which the system makes
large errors (> 10 mmHg).

70



Results

Figure 5.11: Part of the SBP signal of test-set in which the predictor is able to
estimate with contained error with respect to the target values.

Figures 5.2, 5.3, 5.4 represent the behavior of the system with the data mixed
for the individual subjects randomly selected for the test session.
Now it is investigated how the system behaves with respect of individual subjects.
As a consequence, the performance evaluation scores were obtained individually
rather than analyzing the entire test set. The results obtained for the subjects
forming the test set are reported in Table 5.3.

Table 5.3: Performance reached in terms of route mean square error and standard
deviation of the regression system for individual subjects of test-set.

Subject SBP DBP MAP
RMSE (mmHg) ±σ(mmHg) RMSE (mmHg) ±σ(mmHg) RMSE (mmHg)±σ(mmHg)

Subject 9 5.98 ± 5.27 6.75 ± 8.15 6.03 ± 7.11
Subject 22 2.36 ± 0.68 1.57 ± 0.44 1.50 ± 0.45
Subject 21 7.98 ± 6.78 5.19 ± 4.21 5.74 ± 5.02
Subject 7 5.76 ± 13.26 4.48 ± 11.12 4.50 ± 11.61
Subject 23 12.75 ± 10.15 9.42 ± 8.22 10.22 ± 8.83
Subject 10 6.41 ± 10.63 5.24 ± 8.51 5.40 ± 9.16
Subject 5 9.30 ± 10.15 6.94 ± 10.20 7.44 ± 9.84
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For all subjects, a limited error is observed except for Subject 23, which presents
a wide range of pressure values with high number of samples that reaches high
pressure level (in some sections the SBP exceeds 200 mmHg and the DBP exceeds
110 mmHg) as shown in the histogram (Figure 5.12), compared to the subjects with
less RMSE and standard deviation (Figure 5.13,5.15). The error could have been
limited by training the system with data that involve a larger group of subjects and
that covering a wide range of cases. This was not possible in this study because of
the nature of the MIMIC database, which was born with another objective.

Figure 5.12: Distribution of BP values for Subject 19.

Figure 5.13: Pressure histogram for Subject 21.
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Figure 5.14: Pressure histogram for Subject 10.

Finally, the weight of the single feature was investigated to discover which one
have major decision importance. In other words, this part served to understand
which features had the greatest decision-making influence, affecting the output
more. This phase is also necessary to refine the estimate of those parameters that
can most influence the quality of the model. The obtained results are represented
in Figure 5.15.

Figure 5.15: Histogram of importance of single features.

As it can be seen from the Figure 5.15, the most important features are those
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reported in the data organization phase, i.e. the HR, the PTT and the PIR and
each of these has a specific role in capturing information from the spectrum of the
pressure signal, as reported in the previous sections.

5.1 Validation

Given the size of the dataset and observing the prediction performance on the test
set, it was decided to validate the system to identify problems such as overfitting
and inability to generalize the system in the presence of data different from the
ones forming the training set. The K-fold cross validation method was used to
implement this phase.
The K-fold consists in dividing the dataset into K subset and repeating the train-
ing and classification operation K times [84]. For each iteration, a subset of the
available K is used to test the system, while the remaining K-1 are used to train it
[84].

A K equal to 10 is used. Therefore the data-set (randomly mixed) is divided
into 10 subsets and in each turn a different subset is used in the test phase, while
the remaining 9 are used to train the different regression systems.
To evaluate the results, the RMSE is calculated at each iteration and if the error
values between all the sessions are similar, there is no overfitting by the system.
The obtained results are reported in Table 5.4.

Table 5.4: Performance reached in terms of RMSE and standard deviation of the
regression system for individual subjects of test-set.

SBP DBP MAP
RMSE (mmHg) RMSE (mmHg) RMSE (mmHg)

8.06 6.22 6.41
8.34 6.23 6.56
7.91 6.26 6.49
7.78 6.36 6.43
7.85 6.26 6.43
7.77 5.08 6.06
7.27 5.92 5.99
8.26 6.57 6.77
8.18 6.63 6.82
8.65 6.88 7.13

From Table 5.4 it is possible to assess that the error settles about the same
value with minimal variations in all the three cases. This indicates that the system
achieves a good level of consistency and repeatability of the performances achieved.
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Figure 5.16: Error distribution for each K.

The k-fold cross-validation is used also to find the best configuration of the
Forest in term of number of tree. The number of tree varies between 50 to 300 and
for each configuration the k-fold is executed. For each session with different tree
configuration the mean RMSE is taken and finally, the performances are studied to
choice the best possible configuration. Table 5.5 shows the mean RMSE for each
cross-validation session. As it is reported, DBP and MAP reach the best one with
a number of tree equal to 200 and the RMSE of SBP varies negligibly between the
different configurations. For this reason the best configuration has a number of 200
tree for each BP values calculation.

Table 5.5: K-fold cross-validation to investigate the best configuration.

Pressure RMSE RMSE RMSE RMSE RMSE RMSE
# Trees = 50 # Trees = 100 # Trees = 150 # Trees = 200 # Trees = 250 # Trees = 300

SBP 8.07 8.01 8.00 7.99 7.99 7.97
DBP 6.35 6.29 6.28 6.28 6.28 6.28
MAP 6.60 6.54 6.55 6.50 6.52 6.51

The last step investigated the statistical correlation between the measurements
obtained by invasive detection method for ABP and the measurements obtained
by regression, investigating the PWV and the morphological characteristics of the
PPG signal.
To this purpose, the hypothesis test, or T-test, was carried out, in order to in-
vestigate if the population of the data estimated through the regression algorithm is
statistically relevant with the one obtained with invasive detection method. If they
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are relevant, it means that they bring two different information and therefore these
two methods lead to unrelated results. Otherwise, they carry the same information
and the achieved results are similar. The results of the T-test are reported in Table
5.6.

Table 5.6: T-test on estimated data (PWV) vs. target data (ABP).

Pressure H p

SBP 0 0.82
DBP 0 0.61
MAP 0 0.68

H is the null hypothesis and p is the p-value. The null hypothesis is not rejected
for all regression systems (H = 0), with a level of significance (p-value) far above
the threshold α < 5% .This means that the two methods carry statistically similar
information and that therefore the non-invasive method implemented through the
study of the PWV and the use of prediction algorithms can prove to be a valid
alternative to the classical methods.
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Chapter 6

Conclusions

6.1 Conclusion of present work
The implemented method in this thesis focused on estimating systolic, diastolic
and average blood pressure through the study and analysis of Pulse Wave Velocity
as an alternative method to the "classic" ones, that, for many years, have been
known as more reliable. The possibilities of estimating the different blood pressure
values were mainly studied through the Pulse Transit Time, which required the
implementation of a method for identifying the QRS complex of the ECG signal,
in particular the R-peak, and the Photoplethysmogram signal. From the latter
morphological characteristics are extrapolated, such as the Photoplethysmogram
Intensity Ratio. This one, together with the PTT, have shown in literature the
ability to capture the information contained in the spectrum of the ABP signal [40]
and this is also confirmed by the results achieved by the algorithm implemented in
this thesis.
One of the main advantages of the proposed study, compered to those seen in
literature, is the possibility to perform measurements without the necessity of using
a calibration system for each different subject.
Some conclusion can be summarized as follow:

• The algorithm lends itself to an easy and quick estimate of the different blood
pressure values compared to a large dataset. Ease of implementation was
one of the objectives pursued to limit computational cost, in an application
perspective on wearable devices.

• As far as the explored signals are concerned, the algorithm has excellent anal-
ysis capabilities of the treated signals. Despite this, the algorithm is not
appropriate to noisy signals and to signals affected by marked interference,
due to the choice to investigate the method in a context of normal operation
to study its effectiveness on the signals involved in a context.
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• The observation window of the signals is too short and is not appropriate for
the type of estimate that was wanted, as the blood pressure values vary with
a time interval of about a few minutes. This is due to the reduced amount
of data in the MIMIC database which do not show a long enough observation
interval without interference, since the purpose of this database is not the
same to the one of this work. In addition to the limits of the model itself, the
limits due to the treated database are added, since MIMIC is a collection of
data from the Intensive Care Unit (ICU) department, in which patients are
subjected to drugs that alter blood pressure values.

• In terms of accuracy and variability of the results of the algorithm, encourag-
ing performances have been achieved, although, for clinical applications, they
do not meet the performances imposed by the American National Standards
by the Association for the Advancement of Medical Devices (AAMI), the or-
ganization responsible for the safety and accuracy of medical devices. The
standard imposes an error of the device below 5 mmHg , with a standard de-
viation of 8 mmHg compared to the already approved devices available on the
market [85]. However, this study is not born with the purpose of developing a
medical device, but rather a tool for the consumer, for whom regulations are
less restrictive and they require less amount of time for their approval.

• One of the limitations of the proposed thesis work is the need to implement 3
different regression systems, one for each individual pressure studied, especially
treating the minimum and maximum pressure as if they were unrelated, while
this is not true in reality.

• Another innovative approach of this thesis work concerns the in-depth analysis
of the regression system applied to subjects of whom, once trained, it does
not know any information regarding blood pressure values, age, sex, physical
characteristics and without an initial calibration.

It is then possible to conclude that the system in its current state returns encourag-
ing results if it is intended for the consumers, thinking to develop a wearable device
capable of obtaining ECG and PPG signals with good accuracy and returning blood
pressure values during daily activities.

6.2 Future work
Based on the results achieved in this thesis work, several changes and improvements
are encouraged:

• Tailored with data collected from ECG, PPG and BP by subjects in different
situations (healthy, sick, young, elderly) with the direct purpose of studying
BP through PWV.
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• Exploring other features of PPG signal, such as the T1 interval (the distance
between the systolic peak and the diastolic peak), which was not possible to
study due to the quality of the signals extracted from the subjects present in
the database.

• Exploration of other regression methods, possibly also nonlinear, in order to
compare the results. In addition, algorithm that returns multiple outputs
simultaneously for different kind of pressure should be considered.

• Testing the method on devices from the market to improve the develop model
in order to overcome the problems that concern real-time acquisitions, such as
the synchronization of the devices and the quality of the obtained signals.
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Appendix A

List of subject from MIMIC
II/III

Below, in Table A.1 is the complete list of subjects present in the MIMIC II /
III database used in this thesis work to implement the algorithm. The subject
ID is represented by the numbers on the left while what is after the "_" indicates
the specific acquisition of the subject. In some cases, multiple acquisitions were
processed for the same subject.

Table A.1: List of subject and related acquisition.

Subject ID
3100033_0008m
3106149_0023m
3106150_0029m
3106152_0004m
3106152_0007m
3106152_0010m
3106186_0033m
3106263_0012m
3106263_0016m
3106380_0007m
3400086m
3400290m
3500192m
3500228m
3501358_0005m
3501441_0010m
3501441_0011m

Continued on next page
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List of subject from MIMIC II/III

Table A.1 – continued from previous page
Subject ID

3501441m
3503726_0008m
3702767_0014m
3703802_0009m
3500015_0002m
3500015m
3500192_0002m
3503654_0013m
3702767m
3703856_0001m
3703856m
3703872_0004m
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