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Introduction

In the aerospace company, base-shake sine testing is a well-known technique used to study and
analyze the dynamic characteristics of the spacecraft. Often, analyses of this kind are very ex-
pensive for the companies, so it is preferable to combine the analysis in the laboratory together
with numerical simulations that can highlight trends not visible in the experimental tests.[18]
This type of simulations are based on finite element analysis with deterministic approaches, in
which the properties of the shaking structure (shaker and seismic mass) are assigned a priori [13].
The latter are obtained with a retrospective approach, in phases prior to spacecraft testing with
the so-called "dummy tests", i.e. vibrational tests in which the dynamic quantities of the target
test (e.g. the spacecraft) are known. However, as accurate as this phase is, the deduction of
these parameters is subject to unpredictable perturbations and the use of perturbed parameters
can affect the numerical simulations made on the spacecraft.
These disturbances in the parameters can be due to a variety of causes. It is important to re-
member that the structure used for base-shake sine testing is located in a sterile place where
quantities such as humidity and temperature are constantly monitored to allow the test to be as
accurate as possible. On the other hand there are components of the shaking structure that are
difficult to control and the dynamic characteristics of the latter may vary during testing.
Many components of the structure have the task of decoupling the vibrations of the satellite from
the vibrations of the structure itself; in fact it has been demonstrated, through Virtual Shaker
Testing (VST) [18]-[19], that the accelerations given as input to the structure do not correspond
to those declared in the sine test specification. One of the most important effects is given by the
dynamic coupling between shaker and test article.
It is, therefore, understood that there is unpredictable variability in the test and so a determin-
istic approach in the mathematical modelling and simulations of the vibration problem may be
incomplete. The mathematical literature provides tools based on the uncertainty quantification
in mathematical models with parameters perturbed by stochastic phenomena. [2]-[8]-[15]
Activities in the area of uncertainty quantification analysis for spacecraft do exist but are rela-
tively limited and lack additional development and practical guidelines and procedures in order
to be used in industrial practice. Recently, the European Space Agency (ESA) proposed two
studies, EDIS (Enhancements of Dynamic Identification for Spacecraft), on stochastic correlation
and validation of structural dynamic models, and ARVAN (Application of the Reliability Version
of ASKA and NASTRAN), on probabilistic coupled dynamic analysis and structural reliability
of satellites. Both studies, based on Monte Carlo Methods, are in progress under the technical
management of the European Space Agency [9].
The aim of this thesis is to present a more accurate method of uncertainty quantification analy-
sis than the Monte Carlo method (MC). In fact, as explained in more detail below, the number
of sample M strongly influenced the accuracy of MC, in fact the rate convergence is equal to
O(M−1/2) [8]. In the literature, however, there are methods with a stronger accuracy such as
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generalized polynomial chaos Stochastic Galerkin methods [4] and Stochastic Collocation Meth-
ods (SC) [2]. These approaches require a rather advanced mathematical treatment compared to
Monte Carlo method. For this reason, we apply the SC to a simplified physical system. The
complex consisting of the shaker, the seismic mass and the satellite is approximated as a system
of rigid bodies.
The stiffness (and the corresponding damping) of the oil meatus represents the uncertain quantity
on which we place the interest, approximated with a torsional spring. In the real physical system
it is an under-pressure oil with the purpose of isolating the vibrating base, called slip table, from
the seismic mass, i.e. a reinforced concrete structure where the shaker and the spacecraft rest.
The physical properties of the oil meatus are difficult to monitor precisely and their variation
may not be detected, so the meatus assumes random characteristics. In addition, the unpre-
dictable perturbations of the properties of the pressurized oil can influence the vibrations and
the dynamic characteristics of the satellite. The most interesting datum in spacecraft analysis is
the vibration resonance frequency, this depends on the structural properties of the test article.
The European Space Agency (ESA) imposes constraints on the resonance frequency to the man-
ufacturers. As it can easily imagined, the costs of building a spacecraft are far from superfluous
and for this reason several tests are performed both experimental and numerical to ensure the
ESA requirements. It is important for an aerospace company to know whether uncertainties
about mechanical components can distort the test and influence the final result.
This thesis is organized in four main chapters: in the first we describe the physical system under
examination with its geometrical approximations, while in the second chapter we introduce the
methods of uncertainty quantification by comparing the results obtained on a benchmark case
of aggregation/dispersion of a particle system identified by their speed in space. The use of
a case-example like this one, is preparatory to understand some choices and hypotheses made
through the thesis. In fact, in this benchmark case it is possible to calculate analytically the
quantities of interest, e.g. the average, which are then compared with the numerical quantities
obtained. The third and fourth chapters present the construction of the mathematical model
and its motion equations using a rigorous formalism of Analytical Mechanics. Then numerical
results of systems of deterministic parameter equations are presented. Finally, the stochastic
methods presented within chapter 2 are applied to the physical system, assuming the stiffness of
the oil meatus perturbed by a random variable with an assigned probability distribution.
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Chapter 1

Physical Model

1.1 The physical system
The physical system studied in this thesis consists mainly of three elements: the seismic mass, the
shaker body and the satellite. Figure 1.1 illustrates the FEM domain system useful to simulate
the base-shake sine vibration test.
The seismic mass corresponds to a wide reinforced concrete structure, while the shaker body is
an electrodynamic shaker, inside which there is a coil. The latter is often bought from external
manufacturers who take care of the assembly and testing phase of the product; following the
manual prepared by the manufacturer, the customer is able to obtain the various mechanical
properties of the shaker body.
In this thesis we consider the LDS V994 shaker body, used by Thales Alenia Space (TAS) [23],
it is represented in Fig 1.2.
The V994 is tied to a magnesium base called the slip table. The material is chosen for its

Figure 1.1: FEM domain representing the S/C+VTA assembly on TAS v994 shaker assembly,
lateral configuration
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1 – Physical Model

Figure 1.2: The High force shaker LDS V994 made by Brüel and Kjær Sound and Vibration
Measurement A/S [21].

lightness in order to avoid an overload on the coil.
The slip table is responsible for transmitting the movement made by the coil to the object placed
on it, e.g. the spacecraft. However, it should be noted that the spacecraft is fixed to the table
through the VTA, the Vibration Test Adapter.
Beneath the slip table there are bearings and the oil meatus, i.e. pressured oil which allows
the slipping without friction between the solids. A marble base is placed under the slip table,
the marble has a hardness and surface finish that allows the slipping through the oil. Finally,
under the marble base there is a steel plate, which interfaces with the rest of the seismic mass
in reinforced concrete.
The operation of a base-shake sine test is straightforward. The movement is impressed by
the shaker body: the horizontal sinusoidal movement of the coil produces on the slip table an
oscillating force, which causes the vibrations of the test item placed on it. The force applied is
decided beforehand by the tester and is imposed in the form of a sine sweep acceleration, with
the property of varying its oscillation frequency from an initial f0 with a sweep rate Rf expressed
in octaves/minutes [20].
The spacecraft (S/C) placed on the shaker assembly can have various shapes and dimensions, in
this discussion we deal with medium-high S/C size (from 2.5 tons or 2.5 · 103 kg).

1.2 Geometry description
In the previous section the real physical system has been described. However, at a mathematical-
mechanical level is useful to introduce some hypotheses and approximations in order to work and
analyze the dynamic behavior of the spacecraft.
The first assumption consists in approximating the whole complex composed by the shaker
assembly and the spacecraft to a system of rigid bodies; this allows us to considerably reduce the
number of degrees of freedom (dofs). Moreover, the geometric characteristics of the S/C are not
taken into account, indeed the VTA + S/C + slip table assembly is condensed into a rectangular
object with inertia and whose mass is the sum of the three components.
From a mathematical-modelling point of view this is allowed, since the weight force is neglected.
Note that all displacements are taken from the static equilibrium configuration, which means
that the weight force does not have to be taken into account as it is balanced by the springs’
static elastic return force [11]. Further, the forces that should be applied to the slip table, are
exerted on the centre of gravity (CoG) of the condensed mass thus maintaining a modelling
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1 – Physical Model

consistency.
Let us introduce {i1, i2, i3} a fixed system with origin in the CoG of the seismic mass, the point
O; then we indicate with m1 the mass of the space craft and the Vibration Test Adapter (VTA),
while the slip table (SL) is represented by m2. Therefore, the sum m = m1 +m2 is the condensed
rigid body analysed in this thesis. We refer to the mass m as the test-target (or test-article) and
to the mass M as the seismic mass.
The V994 shaker body, except the SL, is supposed to have neglected mass; however the coil
function is approximated to a damped spring (kb, cb) and an external force, applied to the CoG
of the slip table represented by the point B in Fig. 1.3.
The inertial properties of the seismic mass M are approximated by a damped spring (kst, cst)
fixed in its CoG, the point O. The spring is introduced in order to avoid the excessive rotation
of the mass.
The longitudinal distance between the CoG of the S/C and the CoG of the seismic mass is h2d,
while h1d is the longitudinal distance between the CoG of the S/C+VTA and the CoG of the
slip table. However, we will use the vertical CoG coordinate of the condensed mass, which is
the point C, with the parameter ∆h, see Fig. 1.4. In Fig. 1.1 - 1.3 it is observed that the slip
table and the spacecraft are not positioned centrally with respect to O, this horizontal distance
is represented by the parameter h3.
The oil meatus is represented in Fig. 1.3 by a grey coloured bearing, to which a stiffness
and relative damping (kte, cte) is assigned (see Appendix D.4). However, at the mathematical
modeling level it is approximated by a torsional spring with damping with one end tied to the
mass m and the other to the seismic mass M . The stiffnesses kb and kst have been obtained
from the numerical simulations of the partner company of this thesis. While kte is the parameter
that is supposed to be affected by random perturbations, later on. The rotational inertia of the

S/C

VTA

Slip table

Oil meatus

Seismic mass

Coil

i1

i2

O

B

Ah2d

h3

kst , cst

kb , cb

kte , cte

Figure 1.3: The physical system in Fig. 1.1 in the y-z plane with the indicated components (on
the left). The system with fixed cartesian reference system and the mechanical approximations
(on the right).
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i1

i2

O

C

h3

kst , cst

kb , cb

kte , cte
Δh

Figure 1.4: The condensed physical system analysed, where C is the CoG of the S/C+VTA+ST
assemby.

Description Values Unit of measure
kte Torsional oil meatus 2.1535 · 108 N·m
kb Coil 10 N/m
kst Torsional M 10 N·m
m Test-item mass 2730.337 kg
M Seismic mass 2.1439 · 105 kg
Im Inertia moment m 8086.645 kg·m2

IM Inertia moment M 470229.1 kg·m2

∆h Vertical: C −O 2.388718 m
h3 Horizontal: C −O 1.3438 m
Rf Sweep rate 4 octave/min
f0 Initial sweep frequency 5 Hz

Table 1.1: Table of parameters

seismic mass is IM , while Im is the moment of inertia of the test article.
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Chapter 2

Uncertainty Quantification

This chapter is devoted to the formulation of ordinary differential equations (ODE) systems
with random inputs/parameters and the solving approaches present in the literature. This type
of differential equations are the basic tools for the uncertainty quantification (UQ). The UQ is
concerned with estimating the impact of the uncertain input data on the model’s outputs. It
aims to enhance the model’s usefulness by presenting an output in a probabilistic framework.
This propagation of uncertainty through the model allows additional uncertainty analyses such
as determining and/or reducing the principal contributors to the output uncertainties. Some of
the most popular numerical methods for ODE in UQ studies will be presented, following [8] and
[2]-[3]. Moreover, in order to clarify the concept we present a benchmark example, which will be
particularly useful to emphasize some properties of the presented methods. A review of the basic
theories of probability and numerical integration is in the Appendices B and C respectively.

2.1 Introduction to Stochastic Systems
Let (Ω,F , P ) be a complete probability space and ω ∈ Ω is an event. Consider a d-dimensional
boundary domain D ⊂ Rd, d = 1,2,3, with boundary ∂D. The time domain is [0, T ] with T > 0.
The problem is to find a solution as

u(x, ω, t) : D̄ × [0, T ]× Ω→ R (2.1)

of the differential system
L(x, ω, t;u) = f(x, ω, t), x ∈ D (2.2)

subject to the boundary condition

B(x, ω, t;u) = g(x, ω, t), x ∈ ∂D (2.3)

where (x1, . . . , xd) are the coordinate in Rd. In details that L is a differential operator, while B
is a boundary operator and ∂D is sufficiently regular to allow the differential problem to be well
posed.
Let us consider an ordinary differential equation (ODE) defined as follows:{

d
dtu(ω, t) = −α(ω)u
u(ω,0) = β(ω)

(2.4)

5



2 – Uncertainty Quantification

where α, β are two random variables, and α is the uncertain rate and β is the uncertain initial
condition. If the distribution function of α and β is known, i.e. F(α,β), it is possible to evaluate
statistical quantities; note that if they are independent F(α,β) = FαFβ .
Therefore, the solution of the system (2.4) is a random quantity

u(ω, t) : [0, T ]× Ω→ R (2.5)

whose exact solution is
u(ω, t) = β(ω)e−α(ω)t (2.6)

Since the solution u of the problem (2.4) depends on random variables, we are interested in the
so-called quantities of interest of the problem, i.e. the expectation of the solution defined as

E(u(ω, t)) = E(β e−αt)
= E(β)E(e−αt), (if α, β independent)

(2.7)

2.1.1 Input Parameterization
Prior to any numerical experiments, is essential to characterize the random input, i.e. reduce
an infinite-dimensional probability space to a useful finite-dimensional space or, more crucial,
require that the random variable are mutually independent.
We firstly introduce the parameterization procedure whereby it is possible to parameterize a set
of variable Y = (Y1, . . . , Yn), n > 1, with distribution function FY , as Y = T (Z) where T is a
transformation function and Z = (Z1, . . . , Zd), 1 ≤ d ≤ n a set of mutually independent random
variable.
Note that if α and β are independent Y (ω) = (α, β) = Z(ω) ∈ R2 and the solution becomes

u(Z, t) : [0, T ]× R2 → R (2.8)

while if they are not independent it is possible to find a Z(ω) such that

α(ω) = α(Z(ω)), β(ω) = β(Z(ω))

or there is a function g such that β = g(α), and so Y (α, g(α)) ∈ R, the solution can be expressed
with a single random variable as

u(Z, t) : [0, T ]× R→ R (2.9)

2.2 Monte Carlo method
Monte Carlo (MC) method is one of the widely used numerical method to compute statistical
quantities. It is easy to implement and with a straightforward interpretation, although due to
its robustness the MC method can be extremely slow. The MC method integration converges
with a rate of O(M−1/2), where M in the number of samples.
The reasons why MC method is so heavily exploited are: it does not require information of
uncertainty distribution, so it can be used directly on experimental observations. Furthermore,
the Monte Carlo method is able to manage well the increase of dimension of the uncertainty
without any kind of complication in its formulation, finally, the Monte Carlo method always
gives a qualitatively correct answer.

6
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For example, the integral of a Lebesgue integrable function h(Z) can be expressed as the average
or the expectation of the function h as follows

E(h(Z)) = I(h) =
∫
h(z)gZ(z)dz (2.10)

where Z is a random variable with probability density gZ .
The Monte Carlo method is based on the probabilistic interpretation of an integral. Consider
a sequence {zn} of realizations of a the random variable Z with the density gZ . The empirical
approximation of the expectation as

IM (h) = 1
M

M∑
k=1

h(zk) (2.11)

note it is unbiased, which means the average on IM (h) is exactly I(h).
The Monte Carlo integration error is

εM (h) = I(h)− IM (h) (2.12)

and for the Central Limit Theorem (presented and demonstrated in the Appendix B) we have
that

εM (h) ≈ σM−1/2 ν (2.13)
where ν is a N(0,1), while σ is the standard deviation of h(Z). In [8] there is an in-depth
analysis of the Monte Carlo method, here we present a brief proof that proves that the error size
is O(M−1/2). This proof follows from the Central Limit Theorem (CLT).
Let we define ζi = (h(zi)− h̄)/σ for zi uniformly distributed, where h̄ is defined in (2.10). Then

E(ζi) = 0,

E(ζ2
i ) =

∫ 1

0
σ−2(h(zi)− h̄)dz = 1,

E(ζiζj) = 0, if i /= j

Following the CLT, we now consider sum

SM = 1
M

M∑
i=1

ζi = σ−1εM

and its standard deviation is

E(S2
M )1/2 = E

 1
M2

(
M∑
i=1

ζi

)21/2

= M−1

E(
M∑
i=1

ζ2
i ) + E(

M∑
i=1

∑
j /=i

ζiζj)

1/2

= M−1(
M∑
i=1

1)1/2 = M−1/2

Therefore
E(ε2

M ) = σM−1/2

In conclusion, the general procedure of the Monte Carlo sampling method used to solve ordinary
differential equations with uncertain parameters as (2.4) follows three basic steps
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• Generate identically and independently distributed random (or pseudo-random) numbers
zk = (αk, βk), k = 1, . . . ,M , according with the probability distribution F(α,β) and density
f(α,β).

• For each k = 1, . . . ,M solve the problem (2.4) with a numerical method and obtain u(zk, t)

• Estimate the required solution statistics, as mean or variance. For example, the solution
of the mean is

E(u(t)) ≈ ū(t) = 1
M

M∑
k=1

u(zk, t) (2.14)

that is an unbiased approximation of (2.7). While the variance is

V ar(u(t)) ≈ 1
M − 1

M∑
k=1

(u(zk, t)− ū(t))2

2.3 Generalized Polynomial Chaos
A fundamental principle in the construction of numerical methods alternative to the Monte Carlo
Method is the concept of Generalized Polynomials Chaos (gPC) [4]-[15]. The material from here
until the end of the chapter is largely based on [2] but we used the notation consistent with
[10] to indicate polynomials. Let Z a continuous random variable with distribution FZ(z) and
probability density fZ(z), then suppose that all the moment exist and they are finite. Let us
define a Hilbert space

L2(IZ) = {f : IZ ⊆ Ω→ R : E(f2) <∞}
and a polynomial set as

{P0(Z), P1(Z), . . . , Pn(Z), . . . } (2.15)
the gPC are orthogonal polynomials that satisfy the following definition

E(Pm(Z)Pn(Z)) =
∫
Pm(Z)Pn(Z)fZ(z)dz = hnδnm, n,m = 1,2, . . . (2.16)

where δnm is the kronecker delta and

E(Pn(Z)2) =
∫
P 2
n(Z)fZ(z)dz = hn, n = 1,2, . . . (2.17)

It is observed that the theory just cited is equivalent to the definition of orthogonal polynomials
in the numerical approximation of integral described in Appendix C. Note that {Pn(Z)}, with
n = 1,2, . . . has the property of being a base made of orthogonal polynomials for L2(Ω), in which
the density of the random variable acts as a weight function. This establishes a correspondence
between the distribution of the random variable Z and the type of classical orthogonal polynomial
present in literature:

• Legendre Polynomial chaos if Z ∼ U(a, b) where

fZ(z) = 1
b− a

χ[a,b](z) (2.18)

• Laguerre Polynomial chaos if Z ∼ Exp(λ) where

fZ(z) = λe−λz (z > 0) (2.19)

8
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• Hermite Polynomial chaos if Z ∼ N(µ, σ2) where

fZ(z) = 1√
2πσ2

exp
[
− (z − µ)2

2σ2

]
, (z ∈ R) (2.20)

• Jacobi Polynomial chaos if Z ∼ Beta(α, β) where

fZ(z) = (b− z)α(z − a)β
(b− a)(α+β+1)B(α+ 1, β + 1) , z ∈ [a, b], α, β > −1 (2.21)

In conclusion, functions of the random variable Z can be approximated using a basis function; this
it is ensured by the orthogonality property defined in (2.16). The approximation is guaranteed
by the following to results.

Definition 2.1 (Strong gPC approximation). Let h(Z) be a function of random variable Z with
probability distribution FZ(z). A generalized polynomial chaos in a strong sense is hn(Z) ∈
Pn(Z), where Pn(Z) is the polynomial space of Z of degree up to n ≥ 0, such that

‖h(Z)− hn(Z)‖ → 0, n→∞ (2.22)

in a proper norm defined in IZ

Definition 2.2 (Weak gPC approximation). Let Y be a random variable with probability dis-
tribution FY (y) and let be S a standard random variable in a set of gPC basis functions. A
weak generalized polynomial chaos approximation is Yn ∈ Pn(S) such that Yn converges to Y in
a weak sense, e.g.

Yn
P−→ Y (2.23)

2.4 Stochastic Galerkin Method
The generalized polynomial chaos (gPC) stochastic Galerkin method is an extension of classical
Galerkin approach for deterministic equations [2]. Let us use the ODE system defined in (2.4)
where the initial condition is assumed deterministic then{

d
dtu(Z, t) = −α(Z)u(Z, t)
u(Z,0) = β

(2.24)

where Z is a random variable. If the u solution is sufficiently regular in L2(Ω), a Hilbert space,
then it admits a base of the type {Pk(Z)}, this is also called gPC base function satisfying (2.16).
Then the gPC projection of the solution is

uM (Z, t) =
M∑
k=0

ûk(t)Pk(Z), ∀t ≥ 0 (2.25)

the expansion coefficient is defined as

ûk(t) = 1
hk
E(u(Z, t)Pk(Z)) (2.26)

9
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where hk = ‖Pk‖2L2 defined in (2.17).
Let us suppose that the constant function α(Z) of the random variable Z can be expressed as

αM (Z) =
M∑
m=0

amPm(Z) (2.27)

however, if it does not exist, one can use numerical quadrature rules with a sufficient number of
points.
Exploiting the gPC M -th degree approximation uM (Z, t) ≈ u(Z, t) is possible to replace it in
(2.24) system obtaining

d

dt
uM (Z, t) = −αM (Z)uM (Z, t)

d

dt

M∑
k=0

ûk(t)Pk(Z) = −
M∑
m=0

amPm(Z)
M∑
k=0

ûk(t)Pk(Z)

d

dt

M∑
k=0

ûk(t)Pk(Z) = −
M∑
m=0

M∑
k=0

amûk(t)Pk(Z)Pm(Z)

(2.28)

The gPC Galerkin procedure provides that

E

(
d

dt
uM (Z, t)Pj(Z)

)
= E(−αM (Z)uM (Z, t)Pj(Z)), ∀j = 1, . . . ,M (2.29)

upon substituting the (2.28) expression for αM and uM in (2.29), we obtain

E

(
d

dt

M∑
k=0

ûk(t)Pk(Z)Pj(Z)
)

= −E
(

M∑
m=0

M∑
k=0

amûk(t)Pk(Z)Pm(Z)Pj(Z)
)

d

dt
ûj(t) = 1

hj

M∑
m=0

M∑
k=0

emkjamûk(t), ∀j = 1, . . . ,M

(2.30)

where ûk(t) is defined by the expression (2.26) and

emkj = E(Pm(Z)Pk(Z)Pj(Z)), m, k, j = 1, . . . ,M (2.31)

The system (2.30) is a system of coupled deterministic ordinary differential equations (ode) in
the variable {ûj(t)} with initial condition

ûj(0) = bj , ∀j = 1, . . . ,M, where βM =
M∑
k=1

bkPk(Z) (2.32)

the size of this system isM+1, it can be solve with classical numerical method, e.g. Runge-Kutta
method.
The Stochastic Galerkin method approach in the calculation of the quantities of interest is
clearly different from that used by the Monte Carlo method. In fact, is introduced the probability
distribution chosen for the varaiable Z, the uncertainty, which was not present in the MC method.
This introduction is far from trivial, in fact it allows to calculate more accurately the quantities
of interest, making, however, the method less general; on the other hand, the great power of MC
lies in its malleability and in the fact that, if we can not have any kind of information on the

10
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distribution of uncertainty, but we have given experimental, through the empirical approach it is
possible to calculate qualitatively correct quantities. The MC method can, with a bit of abuse,
be considered a useful brute force method to be used in borderline situations, however it is not
an accurate method as we describe previously and if it is possible to know the distribution of
uncertainty then it is not recommended. In the literature there are some improvements of the
MC methods, but are not taken into consideration in this thesis, see [8].

2.5 Stochastic Collocation method

The methods of solving systems of stochastic differential equations presented so far have shown,
on one hand, a immediate implementation at the expense of a low convergence speed equal to
O(M−1/2) (Monte Carlo methods); on the other hand there is a very high convergence speed,
although, the formulation and implementation require much greater mathematical complexity
(Stochastic Galerkin methods). For these reasons, we present the Stochastic Collocation Method
(SC), proposed in [3]. Exploiting the numerical theory on integral calculus, the stochastic collo-
cation methods achieves fast convergence when the solutions is sufficient smooth, as Stochastic
Galerkin methods. Nevertheless, collocation methods require solutions of the corresponding de-
terministic problems at each points (called collocation nodes), similar to Monte Carlo methods,
this yields the implementations of SC simple. Such properties make these methods a good alter-
natives to those presented previously.
Let us take the system defined in (2.24) with deterministic initial condition{

d
dtu(Z, t) = −α(Z)u(Z, t)
u(Z,0) = β

(2.33)

where Z is a random variable in IZ ⊂ Rd, d = 1,2,3. Let {zj}Rj=1 ⊂ IZ be a set of nodes, where
R > 1 is the number of collocation nodes. Then for each j = 1, . . . , R we have to solve at the
node zj the ode system {

d
dtu(zj , t) = −α(zj)u(zj , t)
u(zj ,0) = β

(2.34)

since that value of Z is fixed the differential problem is deterministic and for this reason with
the ensemble {uj}Rj=1 of the solutions, where uj = u(·, zj), it is possible to apply post-processing
operations in order to obtain useful stochastic quantities. Moreover, if we find w(Z) ∈ W (Z),
where W (Z) is a polynomial space, such that

‖w(Z)− u(Z)‖ → 0, R→∞ (2.35)

which means w(Z) is a good approximation of u(Z), where the norm is typically a Lp norm with
p ≥ 1.
Note that the problem (2.34) for each j is naturally decoupled. This is in direct contrast to
the stochastic Galerkin approaches, where the resulting expanded equations in the (2.30) are, in
general, coupled.
There are two major approach for SC methods: interpolation approach and pseudospectral ap-
proach.

11
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2.5.1 Lagrangian Interpolation approach
Let {zj}Rj=1 be the nodal set, the Lagrangian basis polynomials is defined as

lj(Z) =
R∏

m=1
m/=j

Z − zm
zj − zm

(2.36)

where
lj(zi) = δij , 1 ≤ i, j ≤ R (2.37)

Solving the the ode system the ensemble of solutions {uj}Rj=1 is obtained. Then focal point of the
Lagrangian interpolation approach for stochastic collocation method is to find the polynomial
w(Z) ∈W (Z) that is a good approximation of u(Z) such that w(zj) = u(j) for each j and

w(Z) =
R∑
j=1

u(zj)lj(Z) (2.38)

is important to observe that even if the method has a straightforward formulation, it can become
nontrivial in practice.
Once all the collocation points are obtained, the statistics of the random solution can be evalu-
ated, e.g.,

E(w(Z)) =
R∑
j=1

w(zj)
∫
IZ

lj(Z)fZ(z)dz (2.39)

2.5.2 Pseudospectral approach
The discrete projection or pseudospectral approach for the stochastic collocation methods is based
on approximate, by an integration rule as the quadrature formulas, the expansion coefficient:

ûk(t) = 1
hk

E(u(Z, t)Pk(Z)) (2.40)

of the continuous generalized polynomial chaos (gPC) projection of the solution of the problem
(2.34)

uM (Z, t) =
M∑
k=0

ûk(t)Pk(Z), ∀t ≥ 0. (2.41)

Recall that a quadrature rule is an approximation of an integral by∫
IZ

g(z, t)fZ(z)dz ≈
R∑
i=1

pig(zi, t) (2.42)

It is an interpolation formula, where {zi} are the nodes obtained as the R zeros of the PR(Z),
the orthogonal polynomial to the weight function fZ(z), and pi are the corresponding weights.
Therefore, the pseudospectral gPC projection of solution is

wM (Z, t) =
M∑
k=0

ûk(t)Pk(Z), ∀t ≥ 0 (2.43)

12



2 – Uncertainty Quantification

where the expansion coefficient is approximated as

ŵk(t) = 1
hk

R∑
i=1

piu(zi, t)Pk(zi) (2.44)

Moreover, if the quadrature rule is convergent, then ŵk(t) → ûk(t), for all t, k and for R → ∞,
thereby wn and un become identical ∀Z.
It is important to observe that in Stochastic Collocation method the distribution of collocation
points is fixed deterministically a priori and is determined through the aid of existing theory
polynomial interpolation (or integration). Furthermore, by constructing the appropriate poly-
nomial interpolations, SC method can achieve fast convergence, even exponential convergence
under sufficient smoothness conditions, similar to stochastic Galerkin methods. However, the
method finds difficulties when the uncertainty dimensionality increases. In fact the error of the
SC method is proportional to O(R−α/d) where R is the number of nodes, α > 0 is a constant
that depends on the smoothness of the solution and d > 1 is the size of the uncertainty. This
brings a notable complication since every collocation point requires a deterministic system sim-
ulation, bringing a considerable increase of the computational times. And for d� 1 the rate of
convergence deteriorates drastically. This is the well-known "curse of dimensionality".
In order to make the SC method a good alternative in high-dimensional to MC it necessary to
reduce the number of collocation nodes. In [2] and [3] algorithms to build scattered grids of
points to keep high order of accuracy by the SC, are presented. For example, in [3] it is shown
that for random dimensions d = 50, the stochastic collocation methods (using both Stroud’s
methods and Smolyak methods for sparse grid) are more efficient than brute-force Monte Carlo
methods.

2.6 Benchmark case

This section presents a simple system of ordinary differential equations in order to clarify the
concepts just mentioned in the previous sections, following [16]. Moreover, this simple example
will be particularly useful later on, when we will have to describe the dynamic behavior of the
physical system at the core of this thesis; in fact, some hypotheses and assumptions that will be
placed in the following chapters are, in part, justified in this section. Let us define a set of N
particles their behavior is described by an ode system where vi is the velocity of the i-th particle,
i = 1, . . . , N . Although, the latter is a function of Z, a stochastic variable with probability
density gZ as

vi = vi(Z, t), ∀i = 1, . . . , N (2.45)

The governing equation of the system is

d

dt
vi(Z, t) = 1

N

N∑
j=1

k(Z, t)[vj − vi] (2.46)

with initial conditions

vi(Z, t) = v0
i , ∀i = 1, . . . , N. (2.47)

13
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Let us define V (Z) = N−1∑N
j=1 vj(Z, t). We can prove that

d

dt

1
N

N∑
i=1

k(Z, t)vi(Z, t) = 1
N

N∑
i=1

k(Z, t)[V (Z)− vi(Z, t)]

= k(Z, t)V (Z)− 1
N

N∑
i=1

k(Z, t)vi(Z, t)

= 0,
d

dt
V (Z) = 0 ⇒ V (Z) = V

Therefore, we can rewrite the system as

d

dt
vi(Z, t) = 1

N

N∑
j=1

k(Z, t)[vj − vi]

= k(Z, t)[V − vi]

(2.48)

Integrating in time the (2.48) we obtain the solution

vi(Z, t) = V + (v0
i − V ) e−

∫ t

0
k(Z,s)ds ∀i = 1, . . . , N (2.49)

Let’s now suppose that we can separate the stochastic part from the time depending part in
k(Z, t) as

k(Z, t) = k(Z)h(t) (2.50)
and we assume that k(Z) = Z.
We would like to calculate the expected velocity of the i-th particle

E(vi(Z, t)) =
∫
IZ

vi(z, t)gZ(z)dz (2.51)

In conclusion, by substituting the (2.49) in (2.51) we obtain that

E(vi) =
∫
IZ

(V + (v0
i − V ) e−z

∫ t

0
h(s)ds)g(z)dz (2.52)

Therefore based on the probability distribution we will have different behaviors, let we describe
a few case with different characteristics.

2.6.1 Uniform case
Let us define Z ∼ U [a, b] such that

gZ(z) = 1
b− a

χ[a,b](z) (2.53)

upon substituting the probability density in (2.52) we obtain:

E(vi) = V + (v0
i − V )

∫
IZ

exp
[
−z
∫ t

0
h(s)ds

]
1

b− a
χ[a,b](z)dz

= V + (v0
i − V )

(b− a)

∫ b

a

exp
[
−z
∫ t

0
h(s)ds

]
dz

= V + (v0
i − V )

(b− a)
exp

[
−a
∫ t

0 h(s)ds
]
− exp

[
−b
∫ t

0 h(s)ds
]

∫ t
0 h(s)ds

(2.54)
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Figure 2.1: Uniform case: The evolution of the exact expected trajectories vi(t) (2.56).

Assuming that the stochastic parameter of the system is time-independent, i.e. h(t) = 1. We
have

E(vi) = V + (v0
i − V ) e

−at − e−bt

(b− a)t (2.55)

The standard case is with a = 0 and b = 1; thereby, the equation (2.55) becomes

E(vi) = V + (v0
i − V )
t

(1− e−t) (2.56)

The equations (2.55)-(2.56) represent the analytical expression of the mean velocity obtain by
the ode system (2.48). However, this system can be solved by numerical integrating methods
as Runge-Kutta, but this type of methods have to be tailored to ordinary differential equations
(ODE) with random input/parameter.
Let we start with the traditional methods, the Monte Carlo sampling, following the three steps
cited above

• Generate i.i.d random (or pseudo-random) numbers z1, . . . , zM , according with the proba-
bility distribution GZ and density gZ .

• For each k = 1, . . . ,M solve the problem (2.48) with a numerical method (Runge-Kutta)
and obtain vi(zk, t) for each i-th particle

• Estimate the required solution statistics, as mean or variance.

Then the mean velocity of the i-th particle obtained with MC is

v̄i(t) = 1
M

M∑
k=1

vi(zk, t), ∀t ≥ 0 (2.57)
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Figure 2.2: Uniform case: The convergence of the error in the MC in loglog scale (on the left),
compared with the error in SC in semilog scale (on the right). Calculated at t = 1.5.

and the variance is

V ar(vi(t)) = 1
M − 1

M∑
k=1

(vi(zk, t)− v̄i(t))2, ∀t ≥ 0 (2.58)

where v̄i(t) in (2.58) is obtained with (2.57).
As already mentioned in the previous sections, MC is extremely simple, at a practical level; but
it only exploits a sequence of realizations of a random variable and its mathematical treatment
does not show the origin of a particular probabilistic distribution. Moreover, the convergence
error is O(M−1/2) due to the Central Limit Theorem. Therefore, we notice the need to use
another numerical approach, the Stochastic Collocation method (SC).
Let us rewrite the definition of the expectation of the velocity defined in (2.51), substituting the
probability density (2.53) as

E(vi) =
∫
vi(z, t)

1
b− a

χ[a,b](z)dz = 1
b− a

∫ b

a

vi(z, t)dz (2.59)

numerically the integral can be approximated using the Gauss-Legendre Formula.
So, let {(zk, wk)}Mk=1 be a set of nodes in the random space IZ = [a, b] and their correspond-
ing weights. Solving the deterministic ode for vi(zk, t), for each k = 1, . . . ,M , the integral is
approximate as

E(vi) = 1
b− a

∫ b

a

vi(z, t)dz ≈
1

b− a

R∑
k=1

wkvi(zk, t) (2.60)

and the variance is calculated using the second moment as

V ar(vi(t)) = 1
b− a

∫ b

a

vi(z, t)2dz − v̄i(t)2 (2.61)

where v̄i(t) in (2.61) is obtained with (2.60).
If Z ∼ U [0,1]

E(vi) =
∫ 1

0
vi(z, t)dz ≈

M∑
k=1

wkvi(zk, t) (2.62)
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Figure 2.3: Gaussian case: The evolution of the exact expected trajectories vi(t) (2.64), with
h(s) = 1 and µ = 1, σ = 0.5

2.6.2 Gaussian case
Let us consider Z ∼ N(µ, σ2), where

gZ(z) = 1√
2πσ2

exp
[
− (z − µ)2

2σ2

]
(2.63)

The (2.52) becomes

E(vi) = V + (v0
i − V )√
2πσ2

∫
IZ

exp
[
−z
∫ t

0
h(s)ds

]
exp

[
− (z − µ)2

2σ2

]
dz

= V + (v0
i − V ) exp

[
−µ
∫ t

0
h(s)ds+ σ2

2

(∫ t

0
h(s)ds

)2]
︸ ︷︷ ︸

A

(2.64)

Equation (2.64) represents the analytical solution of the mean velocity of the ode system (2.48).
Note that

eA → 0 for t→ +∞⇔ ∀t − µ
∫ t

0
h(s)ds+ σ2

2

(∫ t

0
h(s)ds

)2

< 0 (2.65)

that is ∫ t

0
h(s)ds < 2µ

σ2 (2.66)

If we suppose h(t) = 1 we have that
∫ t

0 h(s)ds = t and so the solution diverges from

t >
2µ
σ2 (2.67)
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Figure 2.4: Gaussian case: The convergence of the error of the MC in loglog scale (on the left),
compared with the error in the SC in semilog scale (on the right). Calculated at time t = 0.1
with µ = 1, σ = 0.5

We are therefore observing the following physical phenomenon: an aggregation takes place in
the time interval and then a repulsion from 2µ

σ2 on, as shown in Fig. 2.3.
The MC method is applied simply using the (2.57)-(2.58) formulas, it is now easy to understand
the reason why this approach uses the calculation of the sample mean regardless of the probabilis-
tic distribution; the result is influenced only by the realizations generated by the pseudo-random
number simulation algorithms mentioned in the appendix.
The SC method needs a more complete treatment, the (2.51) become

E(vi(Z, t)) =
∫
vi(z, t)

1√
2πσ2

exp
[
− (z − µ)2

2σ2

]
dz (2.68)

in the case is exploited the Gauss-Hermite Formula. However, we need a variable transformation
instead of using the formula explained by (C.39). So we set

ζ = z − µ√
2σ2

, dz =
√

2σ2dζ (2.69)

and the (2.68) is transformed as

E(vi) = 1√
π

∫
vi(µ+

√
2σζ, t)e−ζ

2
dζ ≈ 1√

π

R∑
k=1

wkvi(µ+
√

2σζk, t) (2.70)

and using the transformation to return to the variable Z, we have

E(vi) ≈ v̄i(t) = 1√
π

R∑
k=1

wkvi(zk, t) (2.71)

2.6.3 Exponential case
Let us consider Z ∼ Exp(λ) with λ > 0, where

gZ(z) = λe−λz (z > 0) (2.72)
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Figure 2.5: Exponential case: The evolution of the exact expected trajectories vi(t) (2.73), with
λ = 1.

Figure 2.6: Exponential case: The convergence of the error of the MC in loglog scale (on the
left), compared with the error in the SC in semilog scale (on the right). Calculated at time t = 1
with λ = 1

Setting h(t) = 1 the (2.52) becomes

E(vi) = V + (v0
i − V )

∫ +∞

0
e−ztλe−λzdz

= V + (v0
i − V ) λ

λ+ t
, ∀t ≥ 0

(2.73)

note that E(vi)→ V for t→∞. Observe that the mean velocity is lower that the Gaussian case.
The Monte Carlo method uses (2.57)-(2.58), while the Stochastic Collocation approach exploits
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the variable transformation
ζ = λz, dz = 1

λ
dζ (2.74)

in (2.51) with the exponential probability density as

E(vi(Z, t)) =
∫ ∞

0
vi(z, t)λe−λzdz (2.75)

Exploiting the Gauss-Laguerre Formula defined in (C.38), we obtain the following expression

E(vi) =
∫ ∞

0
vi(ζ/λ, t)e−ζdζ ≈

R∑
k=1

wkvi(ζk/λ, t) (2.76)

and then the approximation of the expected velocity is

E(vi) ≈
R∑
k=1

wkvi(zk, t) (2.77)
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Chapter 3

2-Degrees of Freedom

In this chapter we analyze the system composed of seismic mass and test-target, in which 2
degrees of rotational freedom are taken into account. Therefore, a free coordinate represents the
rotation angle θ2 of the seismic mass with respect to the point O, its Center of Gravity (CoG);
while the second θ1 describes the rotation of the test target with respect to its CoG. It must be
noted, however, that the angle θ1 is chosen relative to the upper plane of the seismic mass on
which the test article rests. The coil is neglected. The system is represented in Fig. 3.1.
To summarize the Lagrangian coordinates are:

• θ1(t) which is the rotation of the target mass m around the point C;

• θ2(t) which is the rotation of the seismic mass M around the point O;

Is important to understand the reason that leads to introduce a system with only two degrees of
freedom (dof ). As mentioned previously, the numerical technique called Finite Elements Method
(FEM) exploits the the analysis of systems with many dofs, in systems of this type the analytical
analysis is prohibitive. However, we will notice later, and in particular in the next chapter, that
some analytical calculations are extremely complex.
This chapter, then, serves as a test in order to understand the rotational behavior of the physical
system and to justify some hypothesis which will allow for a complete analysis of the virtual
shaker testing of a Space Craft (S/C).

3.1 The Mathematical Model
Let us introduce {e1, e2, e3} a mobile reference system, concordant with the rotation θ2(t) for
t ≥ 0 of the seismic mass. The relationship between the fixed reference system {i1, i2, i3},
introduced in the Chapter 1, is described by the rotation matrix:(

i1
i2

)
=
[

cos θ2 − sin θ2
sin θ2 cos θ2

](
e1
e2

)
note that i3 = e3.
The aim of this section is to build a mathematical model describing the dynamic behavior of the
physical system described in Chapter 1. To do this, we use the theory of Analytical Mechanics
presented in Appendix A.
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Figure 3.1: The 2dof system at the initial time t = 0 (on the left) and the rotated system with
the lagrangian coordinates θ1(t) and θ2(t) for t > 0 (on the right).

Our focus will be to have a system of two equations in θ1(t) and θ2(t).
Let’s we start from the Lagrange equation:

d

dt

(
∂

∂q̇k
T

)
− ∂

∂qk
T = Q

(a)
k with k = 1,2 (3.1)

where T is the kinetic energy of the system and Qk is generalized Lagrangian force, and:

{q(t)} = {θ1(t), θ2(t)}.

Compared with the physical system described in the Chapter 1, the coil is neglected. So, ob-
serving the Fig. 3.1, the moments generated by the torsional springs are the following

Mte = −kteθ1i3 − cteθ̇1i3

Mst = −kstθ2i3 − cteθ̇2i3.

They cause the rotations of the two mass m and M as

εM = θ2i3

εm = (θ1 + θ2)i3.
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By using the the approach explained in the appendix A, we could calculate the virtual rotations.
Simply differentiating with respect to the Lagrangian coordinates

δεM = ∂εM
∂θ1

δθ1 + ∂εM
∂θ2

δθ2

= δθ2i3

δεm = ∂εm
∂θ1

δθ1 + ∂εm
∂θ2

δθ2

= (δθ1 + δθ2)i3
Let us define the virtual work as

δL(a) =
2∑
i=1

M
(a)
i · δεi where δεi =

2∑
k=1

∂εi
∂θk

δθk (3.2)

and it can then be reparametrized by the definition of generalized coordinates (see Appendix A):

δL(a) =
2∑
i=1

M
(a)
i · (

2∑
k=1

∂εi
∂θk

δθk) =
2∑
k=1

Qk · δθk (3.3)

where the generalized Lagrangian force is

Qk =
2∑
i=1

M
(a)
i · ∂εi

∂θk
∀k. (3.4)

Proceeding in this way, we obtain:

δL(a) = Mst · δεM +Mte · δεm −Mte · δεM
= [−kstθ2 − cstθ̇2]δθ2

+ [−kteθ1 − cteθ̇1](δθ1 + δθ2)
+ [kteθ1 + cteθ̇1]δθ2

simplifying the expression of the virtual work of the system

δL(a) = + [−kteθ1 − cteθ̇1]δθ1

+ [−kstθ2 − cteθ̇2]δθ2

and then we have the generalized Lagrangian force as

Q
(a)
θ1

= −kteθ1 − cteθ̇1

Q
(a)
θ2

= −kstθ2 − cstθ̇2

Finally we have to calculate the rotational kinetic energy of the system as the sum of the two
component of the physical system m and M

T = Tm + TM = 1
2IM θ̇2

2 + 1
2Im(θ̇1 + θ̇2)2

In conclusion, using the the Lagrangian equation defined in (3.1) we are able to write the equa-
tions system

Imθ̈1 + Imθ̈2 + cteθ̇1 + kteθ1 = 0
Imθ̈1 + (Im + IM )θ̈2 + cstθ̇2 + kstθ2 = 0.

(3.5)
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Due to the fact that the equations are linear we can be written in the matrix form:

[m]{θ̈}+ [c]{θ̇}+ [k]{θ} = 0 {θ} =
(
θ1
θ2

)
(3.6)

where:
[m] =

[
Im Im
Im Im + IM

]
[c] =

[
cte 0
0 cst

]
[k] =

[
kte 0
0 kst

]
It is observed how the equations, although they may seem rather simple, are coupled and this
complicates the search for a solution. In order to solve this problem there is the need to introduce
a method capable of decoupling equations of the type described by (3.5) and it is called Modal
Analysis, see [11].

3.1.1 Basic introduction of Modal Analysis
Consider an undamped linear system with multiple degrees of freedom, the equation is:

[m]{q̈}+ [k]{q} = {0}. (3.7)

We are searching for a solution such that all the masses follow one time function as:

{q(t)} = {Q0}g(t) (3.8)

where {Q0} is a constant non null vector and g(t) is a generic function depending on time.
Differentiating with respect to the time, we obtain:

[m]{Q0}g̈(t) + [k]{Q0}g(t) = {0} (3.9)

Then we multiplying both members for a row vector {Q0}T :

{Q0}T [m]{Q0}g̈(t) + {Q0}T [k]{Q0}g(t) = 0 (3.10)

Now we could observe that {Q0}T [m]{Q0} > 0 and {Q0}T [k]{Q0} ≥ 0, in fact the mass matrix
is positive definite and the stiffness one is positive (or semi-positive) definite. Therefore we have

g̈(t)
g(t) = − {Q0}T [k]{Q0}

{Q0}T [m]{Q0}
= −ω2 ≤ 0 (3.11)

and so we come to the equation
g̈(t) + ω2g(t) = 0 (3.12)

and the solution of the (3.7) is

{q(t)} = {Q0} cos (ωt+ ϕ) (3.13)

and so differentiating two times the (3.13) and substituting in (3.7) we obtain

−ω2[m]{Q0} cos (ωt+ ϕ) + [k]{Q0} cos (ωt+ ϕ) = {0} (3.14)

From the equation (3.14) it is easy to have the eigenvalue problem:

([k]− ω2[m]){Q0} = {0} (3.15)
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due to the fact that {Q0} is non-zero, it must be true that

det([k]− ω2[m]) = 0 (3.16)

Note that in a system with n degrees of freedom the condition (3.16) is an algebric equation
of 2n-degree in the variable ω (or n-grade in the variable ω2), this equation takes the name of
characteristic equation:

anω
2n + an−1ω

2n−2 + · · ·+ a1ω
2 + a0 = 0 (3.17)

The zeros of the characteristic polynomial are the eigenvalues ω2
1 , . . . , ω

2
n. The eigenvalues matrix

is a diagonal matrix containing all the eigenvalues:

[Λ] = diag(ω2
r) =


ω2

1 0 0 0
0 ω2

2 0 0

0 0 . . . 0
0 0 0 ω2

n

 (3.18)

the square root of the eigenvalues are called natural pulses of the n-dof system. If we substitute
all the eigenvalues in the (3.15) and we solve the algebric system we obtain the eigenvectors, that
are called modal forms

{ψ1}, . . . , {ψn} (3.19)

the modal matrix contains all the eigenvector sorted by column

[Ψ] = [{ψ1} . . . {ψn}]. (3.20)

Orthogonality of the modal forms

The mass and the stiffness matrix have important characteristics that may result important in
the resolution of an n-dof system. In fact as we said previously [m] and [k] are real and symmetric
this leads to having real eigenvalues and eigenvectors, while by the fact that the two matrices
are positive definite (or semi-definite) we get that the eigenvalues are positive.
However, a crucial property of the eigenvectors is the orthogonality with respect to the mass
matrix and the stiffness matrix that we will present in this paragraph.
Consider the eigenvalue problem (3.15), for any r = 1, . . . , n we define an eigenvalue ω2

r and
there is an associated eigenvector {ψr}. If we take s = 1, . . . , n and we have ω2

s , we could write
the (3.15) problem in this way: {

ω2
r [m]{ψr} = [k]{ψr}
ω2
s [m]{ψs} = [k]{ψs}

(3.21)

pre-multiplying the fist equation of (3.21) by {ψs}T and the second by {ψr}T we get{
ω2
r{ψs}T [m]{ψr} = {ψs}T [k]{ψr}
ω2
s{ψr}T [m]{ψs} = {ψr}T [k]{ψs}

(3.22)

doing the transposition of the second equation and exploiting the property of symmetry of [m]
and [k] we have

ω2
s{ψs}T [m]{ψr} = {ψs}T [k]{ψr} (3.23)
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subtracting it from the first equation of (3.22) we obtain

(ω2
r − ω2

s){ψs}T [m]{ψr} = 0 (3.24)

which leads to

if ωr /= ωs ⇒ {ψs}T [m]{ψr} = 0
if ωr = ωs ⇒ {ψr}T [m]{ψr} = mr > 0.

(3.25)

Note that mr is called r-th modal mass and is positive because [m] is positive definite. It is
observed that taking the first equation of (3.22) we have

if ωr /= ωs ⇒ {ψs}T [k]{ψr} = 0
if ωr = ωs ⇒ {ψr}T [k]{ψr} = ω2

rmr = kr ≥ 0
(3.26)

and kr is called r-th modal stiffness. The second equation of the (3.26) is particularly useful to
check out if the orthogonalization was performed correctly, in fact

ω2
r = kr

mr
∀r = 1, . . . , n. (3.27)

To summarize we have proved that

{ψr}T [m]{ψr} = diag(mr)
{ψr}T [k]{ψr} = diag(kr)

(3.28)

and so the eigenvectors are said to be m-orthogonal and k-orthogonal.
Now let us shift the attention to the modal matrix [Ψ]. It is constituted by the eigenvectors
sorted by column and they are defined up to a constant. Often this constant is chosen in a such
way to have all the modal masses equal to 1, however in general if

{ψr}T [m]{ψr} = mr /= 1 (3.29)

so we could m-normalize as follows:

{ψ̃r} = {ψr}√
mr

(3.30)

and then we have

{ψ̃r}T [m]{ψ̃r} = [I]
{ψ̃r}T [k]{ψ̃r} = diag(ω2

r) = [Λ]
(3.31)

note that software used for numerical calculations chooses automatically the eigenvectors that
make the (3.31) true.

Decoupling of the equation. Proportional damping

Let us consider an unforced viscous dumped system with multi degrees of freedom. The equations
that describe this system are the following:

[m]{q̈}+ [c]{q̇}+ [k]{q} = {0}. (3.32)
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In general this equations are not decoupled and this could make the resolution a bit tricky, so in
this paragraph we will describe the decoupling of an n-dof equation exploiting the modal matrix
and all the observations that we made previously.
Firstly we have to analyse the undamped system described by the equation (3.15), calculating
the eigenvalues, and the associated eigenvectors, we can build the modal matrix [Ψ]. Then we
define the modal transformation

{q(t)} = [Ψ]{φ(t)} (3.33)

where {φ(t)} is the vector of the modal coordinates (also called normal, principal or natural).
Substituting the (3.33) in (3.32) we have

[m][Ψ]{φ̈}+ [c][Ψ]{φ̇}+ [k][Ψ]{φ} = {0} (3.34)

multiplying the latter equation by [Ψ]T we get

[Ψ]T [m][Ψ]{φ̈}+ [Ψ]T [c][Ψ]{φ̇}+ [Ψ]T [k][Ψ]{φ} = {0} (3.35)

using the property described in (3.28) we could re-write (3.35) as

diag(mr){φ̈}+ [Ψ]T [c][Ψ]{φ̇}+ diag(kr){φ} = {0} (3.36)

In general, [Ψ]T [c][Ψ] is not diagonal and this implies that it is not possible to decouple the
equations using the modal analysis, while in an undamped system this problem does not exist.
However, there is a solution, it is called proportional damping or Rayleight damping [13]. The
description of that case is particularly easy, from a mathematical point of view, and every situa-
tion with a non-proportional damping but with small entity of damping could be approximated
with the proportional one.
The general formula for the viscous proportional damping is called the Cauchy series:

[cp] =
n−1∑
i=0

ai[m]([m]−1[k]) (3.37)

where n is the number of dofs, while ai are the possibly null coefficient. Note that a sufficient
condition, but not necessary, for having proportional damping is setting every ai coefficient to
zero, except the first twos as:

[cp] = α[m] + β[k] ⇒

{
a0 = α

a1 = β
(3.38)

Now if we suppose [c] = [cp] we could re-write the (3.36) obtaining

diag(mr){φ̈}+ [Ψ]T (α[m] + β[k])[Ψ]{φ̇}+ diag(kr){φ} = {0} (3.39)

and so we could decouple the equations, for every r = 1, . . . , n

mrφ̈r + (αmr + βkr)φ̇+ krφr = 0. (3.40)

At this stage we have built n decoupled equations for the unforced viscous proportional damped
system with n degrees of freedom. Dividing for the modal mass we have the canonical form

φ̈r + 2ζrωrφ̇+ ω2
rφr = 0 (3.41)
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with the natural pulse ω2
r and the damped factor ζr defined as

ζr = α

2
1
ωr

+ β

2ωr. (3.42)

When ζr < 1, the r-th mode is said to be under-damped. This is a very frequent case, where the
zeros of the characteristic polynomial (3.16) are complex conjugated. Due to the under damped
hypothesis it is possible to write the analytical solution of (3.41) as:

φr(t) = (Ar cos (ωdrt) +Br sin (ωdrt))e−ζrωrt (3.43)

where:
ωdr = ωr

√
1− ζ2

r (3.44)
is the free damped vibration pulse of the r − th mode. Ar and Br are two constants dependent
on the initial conditions {q(t = 0)} = {q0} and {q̇(t = 0)} = {q̇0} calculated exploiting the
m-orthogonality and the k-orthogonality:

{q(t)} = [Ψ]{φ(t)} =
n∑
r=1
{ψr}φr(t) =

n∑
r=1
{ψr}(Ar cos (ωdrt) +Br sin (ωdrt))e−ζrωrt (3.45)

multiplying for {ψs}T [m] we have

{ψs}T [m]{q(t)} =
n∑
r=1
{ψs}T [m]{ψr}(Ar cos (ωdrt) +Br sin (ωdrt))e−ζrωrt (3.46)

and setting t = 0, we obtain

{ψs}T [m]{q0} =
n∑
r=1

Ar{ψs}T [m]{ψr} = Asms. (3.47)

In the same way, differentiating and setting t = 0 we get

{ψs}T [m]{q̇0} =
n∑
r=1

(Brωdr − ζrωrAr){ψs}T [m]{ψr} = (Bsωds − ζsωsAs) (3.48)

finally we have the constants defined as

Ar = {Ψr}T [m]{q0}
mr

Br = {Ψr}T [m]
ωdrmr

({q̇0}+ ζrωr{q0}) (3.49)

3.1.2 Application of the modal approach to the 2-dof satellite problem
The linear system of equations obtained describing the rotations of the test article and the seismic
mass is

[m]{θ̈}+ [c]{θ̇}+ [k]{θ} = 0 {θ} =
(
θ1
θ2

)
(3.50)

where:
[m] =

[
Im Im
Im Im + IM

]
[c] =

[
cte 0
0 cst

]
[k] =

[
kte 0
0 kst

]
As mentioned earlier, the advantage of analyzing a system with few dofs like this one is that we
can get an analytical expression of most of the quantities involved in the description. Knowing
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these quantities will give us a better understanding of the numerical methods we will be obliged
to use later.
Therefore, in this paragraph we try to derive the analytical expression of the pulse frequencies.
Firstly, we have to study the undamped system, defining the eigenvalue problem

([k]− ω2[m]){θ0} = {0} (3.51)

The characteristic polynomial obtained is

det([k]− ω2[m]) = (kte − ω2Im)(kst − ω2(Im + IM ))− (ωIm)2 = 0 (3.52)

solving the second order equation for ω2 yields the two real and positive eigenvalues ω2
1 , ω

2
2

defined as

ω2
1,2 = Imkst + (Im + IM )kte ±

√
−4ImIMkstkte + (−Imkst − Imkte − IMkte)2

2IMIm
(3.53)

the roots of the eigenvalues are the natural pulses for the physical system.
For simplicity we will not explicitly replace the value of the eigenvalues till the end.
The eigenvector is calculated by solving the matrix system:[

kte − ω2
1Im −ω2

1Im
−ω2

1Im kst − ω2
1(Im + IM )

](
ψ11
ψ21

)
=
(

0
0

)
(3.54)

obtaining the eigenvector associated to the first eigenvalue ω2
1

ψ11 = ω2
1Im

kte − ω2
1Im

, ψ21 = 1 (3.55)

While solving [
kte − ω2

2Im −ω2
2Im

−ω2
2Im kst − ω2

2(Im + IM )

](
ψ12
ψ22

)
=
(

0
0

)
(3.56)

we get the eigenvector associated to the second eigenvalue ω2
2

ψ12 = 1, ψ22 = ω2
2Im

kst − ω2
2(Im + IM ) (3.57)

The modal matrix is built sorting by column the eigenvectors (or modal forms) as

[Ψ] =

 ω2
1Im

kte−ω2
1Im

1
1 ω2

2Im

kst−ω2
2(Im+IM )


Following the steps described in the previous section, we define the modal transformation

{θ(t)} = [Ψ]{φ(t)} (3.58)

so we can rewrite the system (3.50) multiplying by [Ψ]T

[Ψ]T [m][Ψ]{φ̈}+ [Ψ]T [c][Ψ]{φ̇}+ [Ψ]T [k][Ψ]{φ} = 0 {φ} =
(
φ1
φ2

)
. (3.59)
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Using the m-orthogonality and the k-orthogonality we obtain two diagonal matrices. As we
know, [Ψ]T [c][Ψ] is not always diagonal; however, as mentioned in the previous section, we can
suppose to have the proportional damping:

[cp] = α[m] + β[k] (3.60)

We note that [k] is a diagonal matrix while [m] is not; so that to be consistent with the (3.5) we
see that:

α = 0

∃ β > 0 so that
{
cte = βkte

cst = βkst

(3.61)

which gives:

[Ψ]T [m][Ψ]{φ̈}+ [Ψ]T (α[m] + β[k])[Ψ]{φ̇}+ [Ψ]T [k][Ψ]{φ} = 0
diag[m]{φ̈}+ (β diag[k]){φ̇}+ diag[k]{φ} = 0

(3.62)

For r = 1,2 we have the decoupled equations

mrφ̈r + βkrφ̇r + krφr = 0 (3.63)

which can be solved with the resolution methods of systems with a single degree of freedom;
moreover, the use of modal analysis also greatly facilitates the resolution using numerical methods
of time integration such as the Runge-Kutta or the Eulero method.
Dividing by the modal mass mr, we obtain the canonical form as in (3.41):

φ̈r + 2ζrωrφ̇r + ω2
rφr = 0 (3.64)

with natural pulse ωr and the damped factor ζr for the r − th mode

ζr = α

2
1
ωr

+ β

2ωr = β

2ωr. (3.65)

At this point, it is simple to construct the modal matricesmr and kr at a theoretical level because
we have to follow the steps described above.
The modal stiffness matrix is obtained as:

[Ψ]T [k][Ψ] =

kte
(

ω2
1Im

kte−ω2
1Im

)2
+ kst 0

0 kst

(
ω2

2Im

kst−ω2
2(Im+IM )

)2
+ kte


=
[
k1 0
0 k2

] (3.66)

while the mass matrix is calculated as follows

[Ψ]T [m][Ψ] =
[
m1 0
0 m2

]
(3.67)

where:

m1 =
(

ω2
1Im

kte − ω2
1Im

)(
ω2

1I
2
m

kte − ω2
1Im

+ Im

)
+
(

ω2
1I

2
m

kte − ω2
1Im

)
+ Im + IM

m2 =
(

ω2
2Im

kst − ω2
2(Im + IM )

)(
ω2

2Im(Im + IM )
kst − ω2

2(Im + IM ) + Im

)
+
(

ω2
2I

2
m

kst − ω2
2(Im + IM )

)
+ Im

(3.68)
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We suppose an under damped mode, so we obtain the solution described by the (3.43), which is
the exact solution of the system (3.50)

{θ(t)} = [Ψ]{φ(t)} =
2∑
r=1
{ψr}(Ar cos (ωdrt) +Br sin (ωdrt))e−ζrωrt (3.69)

Note that Ar and Br are two constants depending on the initial conditions defined in the (3.49).
Remember that

ωdr = ωr
√

1− ζ2
r (3.70)

is the unforced damped vibration pulse of the r-th mode. Therefore, the frequency is defined as

fr = ωr
2π and so fdr = fr

√
1− ζ2

r (3.71)

where fdr is the frequency of vibration of the unforced viscous proportional damped system.

3.2 Numerical Analysis
This section contains the numerical results of the modal analysis of a 2 dof rotational system.
The purpose is to compare the exact solution obtained by the equation (3.69) with the numerical
one calculated by applying Runge and Kutta on the system (3.63).
Before adding complications to our analysis, we try to better understand the test target behavior
in a 2 dof rotational study. The numerical analysis performed on MATLAB is based on two
different approaches compared to each other.
The first is to calculate analytically the eigenvalues using the formula (3.53) and then using
the (3.55) and (3.57) we obtain the exact values of the eigenvectors. By solving the expression
defined in (3.69), we have the exact solution of the displacements {θ(t)}.
The numerical approach is based on the MATLAB eigenvalues calculation routine:

1 [ Psi , Om_q] = eig (K,M) ;
2 Om = sqrt (diag (Om_q) ) ;

where K is the stiffness matrix, while M is the mass matrix presented in the equation (3.50). In
this way, the software solve the eigenvalue problem (3.51), obtaining the modal matrix [Ψ] and
the natural pulses ω.
Using the modal analysis, described in the previous section, we are able to build the modal mass
and stiffness matrix, useful in the system equations (3.63). In order to solve the system we can
exploit any numerical integration method. In this section we used the Runge-Kutta with the
fourth-order, meaning that the local truncation error is on the order of O(h5), while the total
accumulated error is on the order of O(h4), where h > 0 is the step size. In the appendix Mis-
cellaneous Topics it is possible to have a description of the algorithm.
The result obtained are represented in Fig. 3.2, from which we can see that there is a good agree-
ment between the numerical and exact solution. This excellent matching is due to the accurate
implementation of the MATLAB function eig, indeed in Table 3.1 it is possible to observed how
the difference between the natural pulses ω1 and ω2 calculated through the analytical approach
and the numerical ones is negligible. Moreover, this agreement allows us to exchange, in the
next analysis, the numerical method with the analytical for the calculation of the eigenvalues
(eigenvectors respectively). The physical system with 2 dof allows us to calculate the resonance
frequency in a rather simple way, both analytically and numerically. The method is the same
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Figure 3.2: The comparison between the numerical solution and the exact solution obtained with
(3.69).

Numerical Exact Error
ω1 0,0046 0,0046 5.6361 · 10−12

ω2 164,5852 164,5852 1 · 10−14

fdr 26,1844 26,1844 1 · 10−14

Table 3.1: Comparing the eigenvalues (natural pulse) calculated with the numerical and with the
(3.53) formula. The resonance frequency fdr is expressed in Hz, while the natural pulses in rad/s.

and is based on the use of (3.71). For the analytical formulation it is sufficient to substitute the
natural pulses calculated with (3.53); while for the numerical ones, the values obtained by the
eig function are used.
We are interested in the damped resonance frequency of the target test which is represented by
the second mode; this is due to the construction of the modal matrix. The numerical values are
shown in Table 3.1.

3.2.1 Initial Condition

The initial condition of the ordinary differential equation (ODE) system for the angles θ1(0),
θ2(0) are set to zero, indeed in a real base-shake sine test the test article and the seismic mass at
t = 0 are supposedly stationary while the target movement is generated by the coil that impresses
a force applied to the slip table. It has not been imposed an external forcing moment to the test
article because it would not be a correct representation of the physical system. For these reasons
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the initial condition are
{θ(0)} =

(
0
0

)
, {θ̇(0)} =

(
θ̇0
0

)
(3.72)

where, in particular, the angular velocity θ̇0 is equal to 5 Hz (31.41 rad/s).

3.3 2-DOF Stochastic System
The mathematical model associated with the physical system analysed so far is deterministic,
in which each quantity is supposedly known or derived from experimental data by the partner
company of this thesis. However, in Chapter 1 the focal point has been presented: the randomness
of some stiffnesses (and the respective dampings) in the shaker assembly. These elements can
change due to temperature and humidity variations in the laboratory. All components of the
shaker are scrupulously monitored to avoid any small variation that could compromise the success
of the test, but some components are difficult to control, because of their position and/or nature.
One of these components is the oil meatus, a pressurized oil with the aim of avoiding the influences
created by the vibrations of the seismic mass at the target test.
The use of a purely mechanical deterministic approach is for these reasons, questionable since it
cannot take into account the aforementioned factors.
Let us define the stiffness of the oil meatus kte as dependent on a centered random variable Z,
i.e E(Z) = 0, as follows:

kte = k̄te + γZ (3.73)

where k̄te is the experimental data obtained from the partner company assigned in Table 1.1,
while γ is a constant called perturbation size. Note that kte is a random quantity where E(kte) =
k̄te, moreover kte ≥ 0 and then 0 ≤ γ ≤ k̄te; the greater the value of γ, the greater the stochastic
perturbation in the kte parameter. Moreover, the perturbation of the kte strongly depends on
the chosen probability distribution for the random variable Z. So let us suppose that Z has
a uniform U [−1,1] distribution. This choice allows us, at least in the first analysis, to assume
equally probable any perturbation to the k̄te value.

3.3.1 Monte Carlo method
The first approach used is the Monte Carlo method, already widely described above. Once
the sample size M and perturbation size γ have been assigned, pseudo-random numbers, in
accordance with the uniform distribution, are generated through pre-implemented algorithms in
the used software (in this case MATLAB). Obtaining the random realizations:

(kte)k = k̄te + γzk, k = 1, . . . ,M (3.74)

Description Values Unit of measure
α Proportional damping parameter 0 s
β Proportional damping parameter 3.379 · 10−4 s
cst Torsional M damping 3.379 · 10−3 N·m·s
c̄te Torsional meatus damping 7.277 · 10−4 N·m·s

Table 3.2: Table of parameters.
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for each value of (kte)k the [k] stiffness matrix and the [c] proportional damping matrix defined
in (3.50) are built and using the modal analysis we get M -th systems of equations for the two
free coordinates as (3.63). Solving by Runge-Kutta we obtain M -th realizations of the ODE
problem solution

θr(zk, t), r = 1,2 k = 1, . . . ,M.

However, in experimental tests the satellite displacements are obtained through accelerometers
and so the results are in the form of accelerations. Once computed {θ(t)}, it is straightforward
to calculate the accelerations vector {θ̈(t)}:

θ̈r(zk, t), r = 1,2 k = 1, . . . ,M. (3.75)

In this analysis, we setM = 1000 samples. We are interested in the quantities related to the test
target; so we can calculate the expected acceleration of the test item with the formula similar to
(2.57)

¨̄θ1(t) = 1
M

M∑
k=1

θ̈1(zk, t), ∀t ≥ 0 (3.76)

while the respective sample variance is obtained as in (2.58)

σ̂2
θ̈
(t) = 1

M − 1

M∑
k=1

(θ̈1(zk, t)− ¨̄θ1(t))2, ∀t ≥ 0 (3.77)

its square root is the standard deviation.
In the absence of details on the nature of the disturbances, it is very difficult to construct useful
statistics to describe the phenomenon. So using only the average (3.76), the standard deviation
derived from (3.77) and Chebyshev’s inequality (B.23). It is possible to construct intervals as
the following

P
(
|θ̈1 − ¨̄θ1| ≥ λσ̂

)
≤ 1
λ2 , ∀t ≥ 0 ⇒ [ ¨̄θ1 − λσ̂, ¨̄θ1 + λσ̂] (3.78)

and they can qualitatively describe a variation interval for the expected solution. Note that the
intervals built with the Chebyshev’s inequality are weaker than the confidence intervals used in
statistical models [12], however those require more information on the perturbation error.
The size of the uncertainty band is affected by varying the perturbation size. For large γ, i.e.
50% of k̄te, the uncertainty band is small around ¨̄θ1 for very small times (close to the initial
condition) while with the passing of time the band becomes very wide and ¨̄θ1 loses oscillatory
behavior and stabilizes around zero, see Fig. 3.4. This is due to the fact that a value of γ like this
introduces a very high uncertainty on kte, indeed the stiffness of the oil meatus varies between
1.0784 · 108 N·m and 3,2280 · 108 N·m. The oscillations produced by a system with such a wide
range of mechanical stiffnesses, lead to cancel the average behaviour of θ̈1. However, at large
times, the displacement is damped by cte = βkte causing the test item to stop.
By varying the perturbation size γ from 20% to 2% of k̄te, it is observed how the uncertainty
bands are reduced for a fixed time (e.g. t = 0.2 s) around ¨̄θ1, while the latter regains physically
consistent oscillatory behavior. This is caused by the considerable reduction of the uncertainty
on the stiffness, which leads to have vibrational systems more similar to each other, decreasing
the flattening of ¨̄θ1 oscillations. Exasperating the approach just described, putting γ equal to
1% of k̄, it is observed that it is no longer possible to distinguish the uncertainty band from the
mean, in this case the stiffness of the oil meatus varies between 2.1320 · 108 N·m and 2.1750 · 108
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Figure 3.3: The convergence error in Monte Carlo method in loglog scale (on the left), compared
with the convergence error of Stochastic Collocation in semilog scale (on the right). γ = k̄te/10,
t = 0.217 s.

N·m, see the last figure of Fig. 3.4
The same method can be used to calculate the statistics for the frequencies of vibration of the
unforced viscous proportional damped system obtained with (3.71), as follows:

f̄dr = 1
M

M∑
k=1

fdr(zk), σ̂2
f = 1

M − 1

M∑
k=1

(fdr(zk)− f̄dr)2, (3.79)

these quantities are, of course, also affected by the perturbation size parameter, indeed with
γ = k̄te/2 we have a resonance of 25.9727 Hz with a standard deviation of 3.7948 Hz; while with
the diametrically opposed case γ = k̄te/100 we obtain f̄dr = 26.1856 Hz and σ̂f = 0.074 Hz, see
Table 3.3 for the other numerical results.

3.3.2 Collocation method
We analyzed in Chapter 2 Monte Carlo methods have a convergence speed of O(M−1/2), this is
a big limit in our analysis; in order to have an acceptable error we have to work with at least
1000 samples, see Fig 3.31. This is not compatible with the experimental reality, indeed, as
already mentioned, it is not easy to measure the variations in the physical characteristics of the
oil meatus. In order to have such a high number of data, it would be necessary to focus the tests
only on the meatus properties, thus diverting the attention to the real aim of the base-shake sine
test: the resonance frequency and the vibrational responses of the spacecraft.
For this purpose, as described in the previous chapter we introduce the Stochastic Collocation
method, exploiting the generalized polynomial chaos (gPC) theory. The behaviors highlighted in
the numerical experiments with SC are equivalent to those of MC, with a remarkable advantage:
the convergence rate of collocation methods is higher and it requires few collocation nodes in the
[−1,1] range.

1The figure is obtained assuming that the exact mean of 3.69 can be reached with SC with R = 30000 nodes or
with the MC with M = 100000, however the latter has a computational time of about 6 hours, so it is advisable
to use the first method.
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MC SC
f̄dr σ̂f (kte)min (kte)max f̄dr σ̂f (kte)min (kte)max

Deterministic
fdr = 26.1844
k̄te = 2.1535

Stochastic

Uniform
γ = k̄te/2 25.9727 3.7948 1.0784 3.2280 25.8971 3.8628 1.1495 3.1575
γ = k̄te/5 26.1677 1.4908 1.7234 2.5833 26.1404 1.5157 1.7519 2.5551
γ = k̄te/10 26.1868 0.7438 1.9385 2.3684 26.1735 0.7559 1.9527 2.3543
γ = k̄te/25 26.1879 0.2973 2.0675 2.2395 26.1827 0.3022 2.0732 2.2338
γ = k̄te/50 26.1866 0.1487 2.1105 2.1965 26.1840 0.1510 2.1133 2.1937
γ = k̄te/100 26.1856 0.0743 2.1320 2.1750 26.1843 0.0755 2.1334 2.1736

Table 3.3: Table of the results obtained in the various numerical experiments. f̄dr is expected
resonance frequency (in Hz), while σ̂f is the deviation standard error (in Hz). (kte)min and
(kte)max are the minimums and maximums perturbed stiffness in N·m. Note: for simplicity of
reading the table, the order of magnitude of the stiffnesses has not been reported, it is equal to
·108.

In Fig. 3.3 we can see that with only 6 nodes the error committed by the method is equal to
1.4673 · 10−4, while with MC to have the same order convergence error we should work with a
number of nodes much higher than the one used in this thesis.
So SC is faster in computational time and accuracy than the MC.
Using the Gauss-Legendre quadrature formula as in (2.60)-(2.61) we are able to approximate the
mean and the variance of the θ̈1(t)

E(θ̈(t)) = 1
2

∫ 1

−1
θ̈1(z, t)dz ≈ 1

2

R∑
k=1

wkθ̈1(zk, t) = ¨̄θ1(t) and σ̂2
θ̈
(t) ≈ 1

2

∫ 1

−1
θ̈1(z, t)2dz − ¨̄θ1(t)2

where R is the number of nodes and wk are the corresponding weights.
In Fig. 3.5 is represented the mean ¨̄θ1, when perturbation size γ varies. The behavior in SC is
similar to the MC case, we can see how the fluctuation of the uncertainty bands tend to narrow
around the expected θ̈1 as the perturbation size γ decreases. However, there are a couple of
differences.
Firstly, for γ equal to 50% of the value of k̄te, we notice how the mean ,unlike MC, loses less its
oscillatory behavior; for times between 0.3 and 0.4 s, the uncertainty bands and the expected θ̈1
begin to oscillate again, this is due to the fact that the perturbations on the meatus stiffness is
smaller, it varies between 1.1495 · 108 N·m and 3.1575 · 108 N·m.
Remember that the damping is proportional and so linearly depending on the stiffness matrix,
hence it is perturbed and this influences the behavior for large times. Indeed, we have another
difference in the cases γ equal to 20% and 10% for times t ≥ 0.7 s: in the MC case the oscillatory
trend of the average and the respective bands is completely lost, instead it is present in the SC
and consistent with the deterministic solution in Fig 3.2.
Decreasing the perturbation size up to the extreme case γ = k̄te/100, that is equal to 1% of
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the stiffness of the oil meatus, observe how it is no longer possible to distinguish, the variability
abound the expectation.
The resonance frequencies are reported in the Table 3.3 as they vary by γ. The expected fre-
quencies f̄dr are lower and closer to the deterministic value, however the standard deviations are
slightly wider. With a perturbation size of γ equals to 2% of kte we get a value of 26.1840 Hz
with a deviation of 0.1510 Hz from the higher 26.1866 Hz and 0.1487 Hz in the Monte Carlo
method.
With γ = k̄te/100 the frequency is almost deterministic with a standard deviation of 0.0755
Hz, which means that although the perturbation on kte is not excessively high the resonance
frequency for the rotational case at 2 degrees of freedom is not affected drastically.
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Figure 3.4: Monte Carlo method: representation of the expected θ̈1 in rad/s2 (in blue) with the
uncertainty band (in black), varying the perturbation size γ, M=1000.
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Figure 3.5: Stochastic Collocation method: representation of the expected θ̈1 in rad/s2 (in blue)
with the uncertainty band (in black), varying the perturbation size γ, R=6.
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Chapter 4

3-Degrees of Freedom

In this chapter we continue the analysis of the system composed by the seismic mass and the
test article adding a new degree of freedom. The new Lagrangian coordinate x represents the
relative horizontal translation of the CoG of the test target. Since the centre of mass at the
initial condition is indicated with the point C, the new free coordinate is x = C ′ − C, where C ′
is the CoG for t ≥ 0.
Thus we define the following coordinates:

• θ1(t): the rotation of the target mass m around the point C;

• θ2(t): the rotation of the seismic mass M around the point O;

• x(t): the relative horizontal translation of the target mass m;

There is a need to add the external force and the spring, with its damping, which approximate
the operation of the coil. All this, together with the addition of a degree of freedom, turns out to
be an an obvious step for a more in-depth analysis of the physical system. However, this choices
bring with them a considerable increase in complications. For the reasons just mentioned, in
this chapter it will no longer be possible to calculate analytically the quantities in use, these will
be obtained numerically with the same methods used in the previous chapter. This approach is
justified by the results of the 2-dof system.

4.1 The Mathematical Model
The mathematical approach applied in this section is similar to the one used in Chapter 3. The
aim is to build an ODE system with three equations in such a way to solve it through the modal
analysis.
The Lagrange equation becomes:

d

dt

(
∂

∂q̇k
T

)
− ∂

∂qk
T = Q

(a)
k with {q(t)} = {θ1(t), θ2(t), x(t)} (4.1)

where T is the kinetic energy of the system calculated as follows

T = Tm + TM = 1
2IM θ̇2

2 + 1
2Im(θ̇1 + θ̇2)2 + 1

2m|vC
′ |2 (4.2)
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e2

e1

O

h3kst , cst

kb , cb

i1

i2

C

θ2(t)

θ1(t)

kte , cte

C′ 

x(t)

h3 + x (t)

i1

i2

O

C

h3

kst , cst

kte , cte

kb , cb F(t)
F(t)

Figure 4.1: The 3 dof system at the initial condition t = 0 (on the left) and for t > 0 with the
three lagrangian coordinate {θ1(t), θ2(t), x(t)} (on the right).

where vC′ is the velocity of the CoG of the mass m and is obtained as the time derivative of its
coordinates

ΦC′ = C ′ − C + C −O = xe1 + h3e1 + ∆he2

= [(x+ h3) cos θ2 −∆h sin θ2]i1 + [(x+ h3) sin θ2 + ∆h cos θ2]i2
ΦC = C −O = h3e1 + ∆he2

= [h3 cos θ2 −∆h sin θ2]i1 + [h3 sin θ2 + ∆h cos θ2]i2

(4.3)

Fig. 4.1 shows the system with the damped springs and the external force applied to the CoG
of the test target. Therefore, we can define the angular moments and active force as

Mte = −kteθ1i3 − cteθ̇1i3

Mst = −kstθ2i3 − cstθ̇2i3

F (t) = F (t)e1 = F (t) cos θ2i1 + F (t) sin θ2i2

Fb = −kbx− cbẋe1

= −kbx(cos θ2i1 + sin θ2i2)− cbẋ(cos θ2i1 + sin θ2i2)

these angular moments produce the rotations of the masses m and M :

εM = θ2i3

εm = (θ1 + θ2)i3
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and the virtual rotations are obtained as

δεM = ∂εM
∂x

δx+ ∂εM
∂θ1

δθ1 + ∂εM
∂θ2

δθ2

= δθ2i3,

δεm = ∂εm
∂x

δx+ ∂εm
∂θ1

δθ1 + ∂εm
∂θ2

δθ2

= (δθ1 + δθ2)i3

We identify the virtual displacement of the CoG of the mass m with the following expression

δC′ = ∂ΦC′

∂x
δx+ ∂ΦC′

∂θ1
δθ1 + ∂ΦC′

∂θ2
δθ2

= [cos θ2i1 + sin θ2i2]δx
+ [(−∆h cos θ2 − (x+ h3) sin θ2)i1 + (−∆h sin θ2 + (x+ h3) cos θ2)i2]δθ2

and

δC = ∂ΦC
∂x

δx+ ∂ΦC
∂θ1

δθ1 + ∂ΦC
∂θ2

δθ2

= [(−∆h cos θ2 − h3 sin θ2)i1 + (−∆h sin θ2 + h3 cos θ2)i2]δθ2

The virtual work using the same formula as (3.3) is

δL(a) = Mst · δεM +Mte · δεm −Mte · δεM + F (t) · δC′ + Fb · δC′ − Fb · δC
= [−kstθ2 − cstθ̇2]δθ2

+ [−kteθ1 − cteθ̇1]δθ1

+ F (t)δx−∆hF (t)δθ2

+ [−kbx− cbẋ]δx+ [∆h(kbx+ cbẋ)]δθ2

− [∆h(kbx+ cbẋ)]δθ2

(4.4)

which becomes

δL(a) = + [−kteθ1 − cteθ̇1]δθ1

+ [−kstθ2 − cstθ̇2 −∆hF (t)]δθ2

+ [F (t)− kbx− cbẋ]δx
(4.5)

We recognize the three generalized Lagrangian forces, one for each free coordinate

Q
(a)
θ1

= −kteθ1 − cteθ̇1

Q
(a)
θ2

= −kstθ2 − cstθ̇2 −∆hF (t)
Q(a)
x = F (t)− kbx− cbẋ

(4.6)

Using (4.1) with (4.6) we have the three equations of motion:

Imθ̈1 + Imθ̈2 + kteθ1 + cteθ̇1 = 0
mẍ−m∆hθ̈2 −m(h3 + x)θ̇2

2 + kbx+ cbẋ = F (t)
2m(h3 + x)ẋθ̇2 −∆hmẍ+ Imθ̈1 + (Im + IM + (∆h2 + h2

3)m+mx(2h3 + x))θ̈2

+ kstθ2 + cstθ̇2 = −∆hF (t)

(4.7)
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It is observed that the obtained equations are coupled and non-linear. However, the quantities
involved are rather small because it would be physically unacceptable to obtain large angles
and displacements. Due to this observation, it is possible to exploit the linearization around
the equilibrium configuration of the unforced system (see Appendix A). The latter are simply
calculated setting to zero the three Lagrangian forces, and they result:

θeq1 = θeq2 = 0, xeq = 0. (4.8)

now defining a auxiliary variable η it is possible to assume the linearized coordinates around the
equilibrium points as

θ1(t) = θeq1 + εη1(t) = εη1(t)
θ2(t) = θeq2 + εη2(t) = εη2(t)
x(t) = xeq + εη3(t) = εη3(t)

(4.9)

where 0 < ε� 1 and |η| = O(1). Moreover we know that F (t) is an oscillating function around
the point C, its expression is

F (t) = masw

where asw is the sine sweep acceleration [20]:

asw =
(

1− e−t/2
)

sin
(

2π 60f0

Rf · ln 2
(
2

Rf
60 t − 1

))
f0 is the initial frequency and Rf is called the sweep rate. Due to its formulation, we could
consider small oscillations around the equilibrium point, so that F (t) can be scaled as εF (t).
At this point it is immediate to linearize the equations, simply by replacing the linearized coor-
dinates defined in (4.9) in the system of ordinary differential equations (4.7).
Let us start with the Lagrangian coordinate x, using the Taylor expansion we obtain:

mεη̈2 −∆hmεη̈2 −m(h3 + εη3)(εη̇2)2 + kbεη3 + cbεη̇3 = εF (t) (4.10)

by neglecting higher order terms in ε the equation becomes

mεη̈2 −∆hmεη̈2 + kbεη3 + cbεη̇3 = εF (t) (4.11)

and then dividing by ε we have the linearized equation for the Lagrangian coordinate η3

mη̈3 −∆hmη̈2 + kbη3 + cbη̇3 = F (t) (4.12)

Using the same approach we obtain the linearized equations for η1:

Imη̈1 + Imη̈2 + +kteη1 + cteη̇1 = 0 (4.13)

and for η2:

Imη̈1 −∆hmη̈3 + (Im + IM + (∆h2 + h2
3)m)η̈2 + kstη2 + cstη̇2 = −∆hF (t) (4.14)

In conclusion, we are able to write the ODE system for the 3-dof case in a matrix form using the
(4.13)-(4.14)-(4.12) as

[m]{η̈}+ [c]{η̇}+ [k]{η} = {f(t)}, {η} =

η1
η2
η3

 (4.15)
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Figure 4.2: The sweep acceleration asw imposed to the slip table (on the left) compared with its
approximation a (on the right). In asw it is easy to observe the sweep behavior as time progresses.

where:

[m] =

Im Im 0
Im Im + IM + (∆h2 + h2

3)m −m∆h
0 −m∆h m


[c] =

cte 0 0
0 cst 0
0 0 cb

 [k] =

kte 0 0
0 kst 0
0 0 kb


while the vector of the external force is:

{f(t)} =

 0
−∆hF (t)
F (t)


4.1.1 Sweep approximation
Let us assume F (t) as the force applied by the coil to the slip table. Exploiting the assumptions
and the hypothesis of Chapter 1, we suppose that the force is applied directly to the point C,
the CoG of the S/C+VTA+ST. The expression of the external force is

F (t) = masw (4.16)

where asw is the sine sweep acceleration:

asw =
(

1− e−t/2
)

sin
(

2π 60f0

Rf · ln 2
(
2

Rf
60 t − 1

))
(4.17)

f0 is the initial frequency and Rf is called the sweep rate. Note that the first exponential term
is used to describe the physical fact that the coil starts from standstill and gradually reaches
the regime state and it could be neglected. However, this definition of the sweep acceleration
is not in line with the harmonic external force required in some modal analysis tools, such as
receptance, so we have to rework the expression.
Firstly we use the Mclaurin expansion of 2

Rf
60 t, obtaining:

2
Rf
60 t = 1 + Rf

60 t ln 2 + o(t)
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and replacing in the (4.17) we redefine the sweep acceleration as:

a =
(

1− e−t/2
)

sin(2πf0t) ' sin(2πf0t) (4.18)

A convenient representation of an harmonic function pulse is Ω = 2πf0.
It is easy now to write the force vector {f(t)} applied to the system, as:

{f(t)} =

 0
−∆hF (t)
F (t)

 '
 0
−m∆h
m

 sin(Ωt) = {h(t)} (4.19)

where {h(t)} is the harmonic force vector and {H0} = (0,−m∆h,m)T .

4.1.2 Application of the modal approach to the 3-dof satellite problem
In case of viscous proportional damping the forced solution could be calculated using the modal
transformation {η} = [Ψ]{φ}, calculating the eigenvalues and the eigenvectors of the undamped
and unforced system.
Therefore replacing {η} and applying the [Ψ]T directly to the equation (4.15), we could exploit
the m-orthogonality and the k-orthogonality explained in the previous section, as follows

[Ψ]T [m][Ψ]{φ̈}+ [Ψ]T [c][Ψ]{φ̇}+ [Ψ]T [k][Ψ]{φ} = [Ψ]T {f(t)} (4.20)

that becomes:
diag[m]{φ̈}+ (β diag[k]){φ̇}+ diag[k]{φ} = [Ψ]T {f(t)} (4.21)

if we fix r = 1, 2, 3 and βkr = cr, for simplicity of notation, we have:

mrφ̈r + βkrφ̇r + krφr = {Ψr}T {f(t)} (4.22)

using the sweep approximation defined in (4.18) we have

mrφ̈r + βkrφ̇r + krφr = {Ψr}T {H0} sin(Ωt) (4.23)

Due to the linearization of the equation we could find a solution at regime as {η(t)} = {η0} sin(Ωt),
we could note that the modal coordinates will be harmonic at regime as well; that leads to the
equation:

(kr − Ω2mr + Ωcr)φr(t) = {Ψr}T {H0} sin(Ωt) (4.24)

and:

{η(t)} = {η0} sin(Ωt) =
3∑
r=1
{Ψr}φr(t) =

3∑
r=1
{Ψr}φr0 sin(Ωt) (4.25)

Finally we obtain the amplitude of the oscillation at regime expressed by:

{η0} =
3∑
r=1

{Ψr}T {H0}{Ψr}
kr − Ω2mr + Ωcr

(4.26)

and we could define the receptance as:

ajk(Ω) = ηj0
Hk0

∣∣∣∣
Hi0=0,∀i /=k

. (4.27)
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Figure 4.3: The numerical acceleration in rad/s2 of the forced 3 dof system using Runge-Kutta
method on the (4.22) (on the left) and on (4.23) (on the right).

Note that the all forces must be set to zero, except for the k-th degree of freedom.
Using the (4.26) and the (4.27) we are now able to write the expression of the receptance as:

ajk(Ω) =
3∑
r=1

ΨjrΨkr

kr − Ω2mr + Ωcr
=

3∑
r=1

Ψ̃jrΨ̃kr

ω2
r − Ω2 + 2ζrΩ ωr

(4.28)

where Ψ̃r = Ψr/
√
mr is the m-normalized eigenvector.

The receptance is particularly useful to calculate the resonance frequencies of the system, in fact
the latter are the frequencies that maximize the modulus of aij ; note that in general an external
force in complex exponential form isG(t) = G0e

iΩt and the receptance will be a complex function,
while in this analysis we have that:

{f(t)} ' {h(t)} = {H0} sin(Ωt) = =({H0}eiΩt). (4.29)

4.2 Numerical Analysis
In this section the numerical results obtained from the mathematical model will be presented
and analyzed.
Firstly we observe that in this system it is no longer possible, with respect to to the previous
chapter, to calculate analytically quantities as natural pulse ω and the modal matrix [Ψ]. How-
ever, thanks to the good results obtained by the two degrees of freedom problem, we can rely on
some pre-implemented MATLAB functions. Exploiting the eig function, we solve the eigenvalue
problem of the 3-dof system undamped and unforced where the stiffness matrix and the mass
matrix is defined in (4.15).
In order to obtain the displacement of the target test identified by the coordinate θ1(t), there is
no need to approximate the sweep acceleration with the equation (4.18), indeed in this phase of
the study the theory of modal analysis does not require the harmonicity of the external force.
Thus, we use a numerical integration method as Runge-Kutta with the fourth-order of accuracy
in order to solve (4.22). Fig. 4.3 represents the angular acceleration θ̈1(t). The acceleration
peak at time t = 36.17 s corresponds to the attainment of the resonance frequency for the free
coordinate θ1, this is due to the nature of the force obtained from a sweep-type acceleration,
which increases the oscillation frequency with the passage of time [20]. It is important to observe
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how the oscillations are so close, this happen because of the small wavelength.
The analytical calculation of the solution according to the theory of the vibration mechanics of
forced systems with many degrees of freedom is possible but it is fairly articulate and complex,
although the good agreement of the previous chapter allows us to neglect this calculation.
It is important to highlight that to calculate the receptance defined by the (4.28), we have to
use the harmonic external force {h(t)} in (4.19). So, to get the solution θ1(t) and its respective
acceleration θ̈1(t) we use the equation (4.22) with the external forces vector {f(t)}, while to get
the resonance frequencies defined in (4.28) we have to approximate the force to the harmonic
{h(t)}. Note that in Fig. 4.3, on the right, it is represented the acceleration θ̈1(t) computed
with Runge-Kutta on (4.23). Due to the harmonicity of the force, the acceleration peak is not
obtained and a smaller time interval is reported.
In Fig. 4.4 is represented the receptances; we can see the three peaks corresponding to the three
resonance frequencies of the 3-dof system. The frequency of interest corresponding to rotation
θ1 of the test target and it is the third.
The resonance frequency of the damped unforced 3-dof is 26,1821 Hz and it is slightly lower than
the forced one as 26.9306 Hz. However, the obtained result is in good agreement with the one
deduced in the previous chapter, the unforced resonance frequency of the 3-dof system is 0.0023
Hz lower than the 2-dof; thus the addition of a degree of freedom does not drastically affect the
unforced resonance of the test article. The results are summarized in Table 4.2.

4.2.1 Initial Conditions
The initial conditions of the ODE for the 3-dof system are set to zero. This is consistent with
the experimentation, in fact the system at the initial instant starts from standstill; then it begins
to swing, under the effect of the external force exerted by the shaker (coil) at the slip table.
Compared to the previous chapter in which there was no forcing and therefore at a practical level
we had to assume a non-zero initial condition for θ̇1(0). In this analysis the presence of {f(t)}
allows us to be more physically consistent for initial conditions, as follows:

{q(0)} =

0
0
0

 , {q̇(0)} =

0
0
0

 (4.30)
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Figure 4.4: The receptances of the deterministic system in semilogaritmic scale. Their modal
contributes are represented in dashed lines.
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MC SC
(kte)min (kte)max ∆kte (kte)min (kte)max ∆kte

Deterministic
k̄te = 2.1535

Stochastic

Uniform
γ = k̄te/2 1.0784 3.2280 1.0751 1.1495 3.1575 1.0040
γ = k̄te/5 1.7234 2.5833 0.4301 1.7519 2.5551 0.4016
γ = k̄te/10 1.9385 2.3684 0.2150 1.9527 2.3543 0.2008
γ = k̄te/25 2.0675 2.2395 0.0860 2.0732 2.2338 0.0803
γ = k̄te/50 2.1105 2.1965 0.0430 2.1133 2.1937 0.0402
γ = k̄te/100 2.1320 2.1750 0.0215 2.1334 2.1736 0.0201

Table 4.1: Table stiffness perturbations. (kte)min and (kte)max are the minimums and maximums
in N·m. ∆kte = γ(zk)max, ∀k. Note: the order of magnitude of the stiffnesses has not been
reported, it is equal to ·108 .

4.3 3-DOF Stochastic System
Let us suppose to have the kte parameter uncertain and perturbed by a centered random Z
variable, as follows:

kte = k̄te + γZ (4.31)

where k̄te is the experimental value in Table 1.1, while γ is the perturbation size mentioned in
the previous chapter.
Define Z ∼ U [−1,1], we present the analysis of the results obtained from the numerical experi-
ments carried out through the two approaches to ordinary differential equations with an uncertain
parameter: the Monte Carlo method (MC) and the Stochastic Collocation method (SC).
We must pay particular attention to the fact that in the 3 degrees of freedom (dof) system the
oscillations of the test target are very rapid, see Fig. 4.3, this is due to the presence of the
external force {f(t)} or its approximation {h(t)}.

4.3.1 Monte Carlo method
Let us fix the sample size M and the perturbation size γ, then we can generate the realizations
of the stiffness perturbed by a random variable with known distribution:

(kte)k = k̄te + γzk, k = 1, . . . ,M

as already described in Chapter 3 for each (kte)k value we have to build the [k] stiffness matrix
and the respective [c] damping matrix. By using the eig function, we get the natural pulses ωk,
where the index k = 1, . . . ,M represents the dependence on the random realizations, and the
respective modal eigenvectors.
By using the equation (3.71) we obtain the resonance frequency of the fdr(zk) of the M deter-
ministic systems, while through the formula of the receptance (4.28), we obtain the resonance
frequencies fr(zk) of the forced system (4.23). We are interested in the resonance frequency of
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the test-target, so we are referring to the case with r = 3, which is the third mode in (3.71)
and the third peak in the receptance (4.28). The mean and the variance are computed with the
formulas:

f̄dr = 1
M

M∑
k=1

fdr(zk), σ̂2
f = 1

M − 1

M∑
k=1

(fdr(zk)− f̄dr)2. (4.32)

and

f̄r = 1
M

M∑
k=1

fr(zk), σ̂2
f = 1

M − 1

M∑
k=1

(fr(zk)− f̄r)2. (4.33)

The results obtained are in line with those of the 2-dof system. We observe how, for γ equal
to 50% of k̄te there is a rather high standard deviation in both forced and unforced case, which
tends to go down as the perturbation size decreases. Notice that the values of the standard
deviations of the f̄dr frequencies are almost equal to those of the 2-dof system in the Table 3.3,
which means that, for the same range of γ, the frequency deviations are the same.
Solving by Runge-Kutta with the fourth-order of accuracy the ODE system (4.22) we obtain the
M -th realizzations:

θr(zk, t), k = 1, . . . ,M

and respective accelerations
θ̈r(zk, t), k = 1, . . . ,M

The mean and the variance of the test-item acceleration are computed as in Chapter 3 in (3.76)-
(3.77):

¨̄θ1(t) = 1
M

M∑
k=1

θ̈1(zk, t), σ̂2
θ̈
(t) = 1

M − 1

M∑
k=1

(θ̈1(zk, t)− ¨̄θ1(t))2, ∀t ≥ 0 (4.34)

In Fig. 4.5 are represented the accelerations and uncertainty bands (3.78) when the perturbation
size γ varies.
We observe that, with γ small the uncertainty band becomes very tight around the mean value
¨̄θ1, for this reason in the extreme case γ = k̄te/100 a zoom of the peak obtained at time t ' 36
s has been added, that shows how the uncertainty band maintains the oscillatory behavior with
a different wavelength.
In the case with γ = k̄te/2, we observe that the uncertainty band has a very wide wavelength
compared to the mean value ¯̈θ1, the latter due to the stiffness variability of the oil meatus tends
zero by losing the peak of maximum amplitude oscillation. This is consistent with the larger
standard deviation in the frequency f̄r, see Table 4.2, in fact the peak in the amplitude oscillation
represent the achievement by the satellite of the resonance frequency. The range the stiffness
kte, see Table 4.1, leads to different time-instants resonance peaks, creating a more streamlined
form of the mean acceleration. The same behaviour occurs with γ = kte/5, but the standard
deviation of frequency is smaller and this is also noticeable with the uncertainty band in Fig. 4.5,
where the number of resonance peaks are in a shorter time interval that goes from t = 30 s to
t = 40 s. This characteristic does not happen with a smaller range values of kte where the stan-
dard frequency deviation is lower allowing the expected acceleration to have a more pronounced
resonance peak. So the main effect of the uncertainties is the smoothing of the resonance point
making it less sharper and abrupt than in cases with a lower perturbation size.
The number of samples used in this analysis is quite elevated (M = 1000) however, as in the
case of two degrees of freedom the error and computational time can be high, the time taken
for each numerical experiment is about 30 min. Moreover, as already mentioned, it would be
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MC SC
f̄dr σ̂f f̄r σ̂f f̄dr σ̂f f̄r σ̂f

Deterministic
fdr = 26,1821
fr = 26.9306

Stochastic

Uniform
γ = k̄te/2 25.9704 3.7944 26.7233 4.0094 25.8948 3.8624 26.6440 4.0809
γ = k̄te/5 26.1654 1.4907 26.9156 1.5769 26.1381 1.5156 26.8867 1.6031
γ = k̄te/10 26.1845 0.7437 26.9338 0.7868 26.1712 0.7559 26.9197 0.7997
γ = k̄te/25 26.1856 0.2973 26.9344 0.3146 26.1804 0.3021 26.9289 0.3196
γ = k̄te/50 26.1843 0.1486 26.9330 0.1573 26.1817 0.1511 26.9302 0.1598
γ = k̄te/100 26.1833 0.0743 26.9319 0.0786 26.1820 0.0755 26.9305 0.0799

Table 4.2: Table of the results obtained in the various numerical experiments. f̄dr is the expected
resonance frequency and its standard deviation (in Hz) for the unforced system; while f̄r is the
expected frequency with its deviation (in Hz).

rather difficult to obtain 1000 numerical values of the rigidity of the oil meatus, for this reason
we present the results with the second analysis approach chosen for the thesis.

4.3.2 Collocation Method
The Stochastic Collocation methods exploit the gPC projection and the quadrature rules in order
to approximate the quantities of interest. The main advantage of the SC methods is that it does
not require an excessive number of collocation points R, i.e. we will use R = 6 nodes, as in
the 2-dof case. Moreover the computational time is reduced, the time taken for each numerical
experiments is about 10 seconds.
The mean and the standard deviation are obtained using the approximation of Lebesgue’s integral
using Gauss-Legendre’s formula (since Z ∼ U [−1,1]) for the vibration frequency of the 3 dof
system without the external force, as follows

E(fdr) = 1
2

∫ 1

−1
fdr(z)dz ≈

1
2

R∑
k=1

wkfdr(zk) = f̄dr and σ̂2
f ≈

1
2

∫ 1

−1
f2
dr(z)dz − (f̄dr)2

while for the resonance frequency of the 3 dof system with the external force, with the following
formula

E(fr) = 1
2

∫ 1

−1
fr(z)dz ≈

1
2

R∑
k=1

wkfr(zk) = f̄r and σ̂2
f ≈

1
2

∫ 1

−1
f2
r (z)dz − (f̄r)2

In Table 4.2 we observe that with a high perturbation size, equal to k̄te/2, the standard devia-
tion σ̂f is high. By lowering the perturbation size the deviation tends to decrease, moreover the
difference between the deterministic value of fdr (and fr, respectively) with the mean value f̄dr

51



4 – 3-Degrees of Freedom

(and f̄r, respectively) obtain in the numerical experiments decrease, until you have a difference
of 1 · 10−4 Hz. Because of the greater accuracy of the SC method, see figure 3.3 of the 2-dof
case, we can say that the presence of a very low uncertainty represented by a perturbation size
as small as γ = k̄te/100 allows to obtain an average value very close to the deterministic one
with a standard deviation of 0.0755 Hz.
Using the same approach, exploiting the Gauss-Legendre’s quadrature formula we can approxi-
mate the mean value and the variance of the test-target acceleration:

E(θ̈(t)) = 1
2

∫ 1

−1
θ̈1(z, t)dz ≈ 1

2

R∑
k=1

wkθ̈1(zk, t) = ¨̄θ1(t) and σ̂2
θ̈
(t) ≈ 1

2

∫ 1

−1
θ̈1(z, t)2dz − ¨̄θ1(t)2

the standard deviation is obtain with the square root of the variance.
In Fig. 4.6 the expected acceleration and the uncertainty band are represented.
The main difference is highlighted in cases with high perturbation size (γ equal to 50% and 20%
of the value of k̄te) where we have a more edgy and less smooth trend than the Monte Carlo
method both for the ¨̄θ1 and for uncertainty band. This affects the variance deviation (and the
associated standard deviation) of the resonance frequency which is 4.0809 Hz for case γ = k̄te/2
and 1.6031 for case γ = k̄te/5.
Particularly interesting, can be observed that in the Fig. 4.6 for the case with a γ equal to
50% of the k̄te, a zoom of the oscillations in the first time instants has been added to point out
that the uncertainty bands follow the oscillatory behavior of the mean acceleration with a higher
wavelength. Moreover, it is observed that the uncertainty in the first time instants is smaller for
small γ values and it is almost impossible to recognize the uncertainty band and the expected
acceleration.
The uncertainty band in the case γ = k̄te/25 is clearly visible in the time interval between t = 33
s and t = 39 s, thanks to the zoom placed in Fig 4.6. We can make the same observation
in the extreme case γ = k̄te/100; only by zooming in on the zone of maximum acceleration
amplitude we can see the difference between the uncertainty band and the ¨̄θ1, this proximity
between the two quantities leads to a resonance frequency f̄r = 26.9305 Hz, which is very close
to the deterministic one, fr = 26.9306 Hz, with a standard deviation of 7.9 %.
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Figure 4.5: Monte Carlo method: representation of the expected θ̈1 in rad/s2 (in blue) with the
uncertainty band (in black), varying the perturbation size γ, M=1000.
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Figure 4.6: Stochastic Collocation method: representation of the expected θ̈1 in rad/s2 (in blue)
with the uncertainty band (in black), varying the perturbation size γ, R=6.
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Chapter 5

Outcomes and future
developments

The aim of this thesis was to analyze how unpredictable perturbations on the mechanical stiffness
of the components of a shaker assembly could influence the resonance frequency and dynamic
characteristics of a satellite.
In order to manage stochastic perturbations, it was necessary to introduce ordinary differential
equations with uncertain parameters and then present solving methods clarifying their advan-
tages and disadvantages with numerical experiments.
In the aerospace field, some studies are progressing in the area of uncertainty quantification and
these are based on the Monte Carlo (MC) method [9]. In this thesis, we have shown that the MC
method has a fairly simple mathematical formulation and also does not require information on
the probability distribution of uncertainty. This is certainly an advantage when the distribution
is not known and only the experimental data are available; but as we proved in this thesis in
particular with the convergence graphs 3.3 and the various numerical results, the Monte Carlo
method requires a very high sample numberM . The results presented in this thesis are obtained
by setting M = 1000, despite the high number of sample the error committed in the approxi-
mation of the mean value is about M−1/2 ' 0.0316 which is definitely too high considering the
orders of magnitude taken into account in this thesis. Moreover, as already mentioned above,
supposing to have 1000 experimental values of oil meatus stiffness is wrong because this would
shift the attention to the real aim of the base-shake sine test: the resonance frequency and the
vibrational responses of the satellite.
For these reasons we presented an alternative method based on the generalized polynomial chaos
(gPC) [4]-[15], the Stochastic Collocation (SC) method [2]-[3]. An advantage of the SC lies in
a higher convergence rate with a smaller R, collocation nodes, requests; in this thesis, we have
shown that with R = 6 the approximation error is about 1.4673 · 10−4, see Fig. 3.3. However,
the formulation of the method requires the knowledge of the uncertainty probability distribution,
improving the approximation of the quantities of interest.
This thesis presents two case studies: the 2-degrees of freedom without an external force and the
3-degrees of freedom with a sine sweep external force; whose results are summarized in Table
5.1. Note that in Appendix D the results obtained with the 1-dof system are reported.
Using the descriptions of the sine-shake test bases in the literature [18]-[19] and under the su-
pervision of Thales Alenia Space’s engineers, a mathematical model was built using Analytical
Mechanics. Once the motion equation (3.50) and (4.22)-(4.15) were obtained, the uncertain pa-
rameter, i.e. the stiffness of the oil meatus represented by the torsional equivalent rigidity kte,
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1DOF 2DOF 3DOF
Unforced Unforced Unforced Forced

f̄dr σ̂f f̄dr σ̂f f̄dr σ̂f f̄r σ̂f

Deterministic 25.9623 26.1844 26.1821 26.9306

Stochastic

Uniform
γ = k̄te/2 25.6774 3.8301 25.8971 3.8628 25.8948 3.8624 26.6440 4.0809
γ = k̄te/5 25.9186 1.5029 26.1404 1.5157 26.1381 1.5156 26.8867 1.6031
γ = k̄te/10 25.9515 0.7495 26.1735 0.7559 26.1712 0.7559 26.9197 0.7997
γ = k̄te/25 25.9606 0.2996 26.1827 0.3022 26.1804 0.3021 26.9289 0.3196
γ = k̄te/50 25.9619 0.1498 26.1840 0.1510 26.1817 0.1511 26.9302 0.1598
γ = k̄te/100 25.9622 0.0749 26.1843 0.0755 26.1820 0.0755 26.9305 0.0799

Table 5.1: SC: Table of the results. f̄dr represents the resonance frequency and σ̂f is its deviation
standard error (in Hz). f̄r is the frequency for the forced system and its deviation standard (in
Hz).

was perturbed with a random variable.
Based on the value of the perturbation size γ various numerical results were obtained comparing
the Monte Carlo method with the Stochastic collocation method, proving the effectiveness and
accuracy of the latter. Moreover, these results show how the oil meatus influenced the resonance
frequencies and the dynamic properties of the satellite. About concerning the influence of oil
meatus in the resonance frequency, Table 5.1 shows that, for example, if the perturbation size γ
is equal to the 10% of the value of k̄te then the mechanical rigidity varies between 1.9527 · 108

N·m and 2.3543 ·108 N·m and the resonance frequencies have a standard deviation of about 80%.
In the literature, the stiffness values used in numerical simulations can change a lot, so a choice
of such a perturbation size may not be excessive. However, the influences due to the physical
perturbations of the pressurized oil can hardly exceed the value of γ = k̄te/10, but since there are
no studies focused on the perturbations of the mechanical stiffness of the oil meatus, we decided
to present also the two extreme cases (γ = k̄te/2, γ = k̄te/5) where the standard deviation of the
frequency is much higher.
The results, although preliminary, shown in this thesis and the interest of the European Space
Agency (ESA) [9] in the field of uncertainty quantification (UQ) make the work done particularly
interesting with possible developments.
A first improvement may be to develop the stochastic collocation approach in engineering sim-
ulations based on Finite Element method (FEM). This, however, has a major limitation at
implementation level, in fact, numerical simulations are performed on commercial software that
does not involve the use of collocation methods, so we should implement a code that is able to
include this type of models. The second improvement lies in this last observation, in fact to
improve the reliability of numerical experiments it would be interesting to make some tests on
the variation of the oil meatus rigidity, obtaining more experimental data and with the statistical
models present in the literature, see some in [12], it would be possible to have more information
on the probability distributions of the uncertainty so as to build ad hoc numerical methods.

56



5 – Outcomes and future developments

At the scientific level, in conclusion, it can be interesting and useful to better understand the
uncertainty fluctuations of the satellite physical properties, both by performing more targeted
tests for the oil meatus and by building more complex numerical simulation codes using innova-
tive stochastic approaches that allow to reduce the computational costs that are fundamental in
the company.
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Appendix A

Analytical Mechanics

In this chapter we introduce some of the basic concepts of Analytical Mechanics, which give us a
rigorous procedure to build a mathematical model for the satellite physical system. The material
presented is based on [1].

A.1 Free coordinates and virtual displacements
Let us define free coordinate system for a set of configurations C, the correspondence that asso-
ciates a set of real numbers (q1, . . . , qN ) ∈ U ⊆ RN , at each instant of time t, to a configuration
in C. The set U has to be connected and open. The function

P (q1, . . . , qN ; t) (A.1)

assigns the position of the point when the parameters (q1, . . . , qN ) change. The corresponding
motion of P depends on the N -functions qk(t), with k = 1, . . . , N

P (t) = P (q1(t), . . . , qN (t); t) (A.2)

By differentiating the position in time it is possible to obtain the velocity of a generic point P

vP = dP

dt
=

N∑
k=1

∂P

∂qk
q̇k + ∂P

∂t
(A.3)

which implies

dP = vP dt =
N∑
k=1

∂P

∂qk
dqk + ∂P

∂t
dt (A.4)

Finally we define the virtual displacement (velocity, respectively) as the displacement (velocity,
respectively) instantaneously consistent with the constraint, and their expressions are

δP =
N∑
k=1

∂P

∂qk
δqk, v′(P ) =

N∑
k=1

∂P

∂qk
νk (A.5)

Note that δP is used to indicate the virtual displacement and to distinguish it from the infinites-
imal displacement dP . While δqk are the virtual increments of the Lagrangian coordinates and
νk are the virtual variations in time of the Lagrangian coordinates. In both cases, the compat-
ibility with system constraints is taken into account, but this does not necessarily refer to the
displacement of point P .
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A.1.1 Work
Let us suppose that the active force F (P,v, t) and the corresponding motion P (t) are known.
Then we define the differential form of the work as

dL = F (P (t),vP (t), t) · vP (t)dt = Π(t)dt (A.6)

where
Π = F · vP (A.7)

is the power. If we consider a system of forces Fi applied to the points {Pi}, with i = 1, . . . , n,
described by the (q1, . . . , qN ) free coordinates, we call elementary work

dL =
n∑
i=1

Fi · dPi (A.8)

and virtual work
δL =

n∑
i=1

Fi · δPi (A.9)

and using the (A.5) we obtain

δL =
n∑
i=1

Fi ·

(
N∑
k=1

∂P

∂qk
δqk

)
=

N∑
k=1

n∑
i=1

(
Fi ·

∂P

∂qk

)
δqk =

N∑
k=1

Qkδqk (A.10)

where Q = {Qk}Nk=1 is the generalized force and its components are the lagrangian components
of the active force.
If the system of forces is conservative with potential U then the elementary work becomes an
exact differential δL = δU , and dL = dU . From the previous expressions we have that

Qk = ∂U

∂qk
, k = 1, . . . , N (A.11)

A.2 Static and virtual work principle
The laws of mechanics make it possible to study every type of motion, once the forces and the
initial conditions are known. Le us introduce the equation

ma = F (P,v). (A.12)

Definition A.1. A configuration P ∗ is called an equilibrium if

F (P ∗,0) = 0. (A.13)

where P (t) = P ∗, for each t ≥ t0, is a constant solution of (A.12), and it corresponds to the
initial conditions P (t0) = P ∗, v(t0) = 0.

Definition A.2. The ideal constraints are those capable of performing the systems of constrain-
ing reactions Φ such that

δL(c) = Φ · δP ≥ 0, ∀δP

starting from an equilibrium configuration.
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Definition A.3. A constraint is called bilateral if each virtual displacement (or velocity) is
reversible. While a bilateral constraint that can be expressed as

f(q1, . . . , qN ; t) = 0

is called holonomic.
In order to characterized the equilibrium configurations of a generic mechanical system, it is

important to present a fundamental theorem, see [1] for the proof.

Theorem A.1 (Virtual Work Theorem). Let δL(a) be the virtual work obtained by active force.
The necessary and sufficient condition so that a configuration C is in equilibrium for a mechanical
system with ideal constraints, is that

δL(a) ≤ 0, ∀δP from C (A.14)

or
δL(a) = 0, ∀δP reverisible from C (A.15)

A.3 Kinetic Energy
The kinetic energy is the scalar defined as

T = 1
2

n∑
i=1

miv
2
i (A.16)

while for a general material system is expressed

T = 1
2mv

2
G + T (G) (A.17)

i.e. the sum of the kinetic energy of the CoG and the kinetic energy of the system in a relative
motion with respect to the CoG. Moreover, if we substitute the definition of the velocity vi (A.3)

vi =
N∑
k=1

∂Pi
∂qk

q̇k + ∂P

∂t
(A.18)

the kinetic energy becomes

T = 1
2

n∑
i=1

miv
2
i = 1

2

n∑
i=1

mi

(
N∑
k=1

∂Pi
∂qk

q̇k + ∂P

∂t

)
·

(
N∑
h=1

∂Pi
∂qh

q̇h + ∂P

∂t

)

=
N∑
k=1

N∑
h=1

(
n∑
i=1

1
2mi

∂Pi
∂qk

∂Pi
∂qh

)
q̇kq̇h +

N∑
k=1

(
n∑
i=1

mi
∂Pi
∂qk

∂Pi
∂t

)
q̇k +

n∑
i=1

1
2mi

∂Pi
∂t

∂Pi
∂t

= 1
2

N∑
k,h=1

akhq̇kq̇h +
N∑
k=1

bkq̇k + c

(A.19)

The matrix

A =

a11 . . . a1N
...

...
aN1 . . . aNN

where akh =
n∑
i=1

mi
∂Pi
∂qk

∂Pi
∂qh

, k, h = 1, . . . , N

is called mass matrix.
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A.4 Lagrangian Mechanics
In the previous section we introduced the virtual works principle, which is a procedure capable of
forming equilibrium equations in constrained systems. We have to define the dynamic equivalent,
the d’Alembert Principle.
Let us introduces the dragging force

Fτ = −ma (A.20)
and it is called inertia force, then the fundamental law of the relative dynamics becomes

(F − Fτ ) + φ = (F −ma) + φ = 0 (A.21)

where F indicates the resultant of active forces, while φ is the resultant of the binding reactions.
It can can be generalized in
Theorem A.2 (The d’Alembert Principle). Let us suppose that a system of k ≤ n active forces
Fi is applied to a system of material points {(Pi,mi)}, with i = 1, . . . , n. So it is possible to pass
from static equations

k∑
i=1

Fi = 0 (A.22)

to the dynamic equations, provided that all the inertia forces are included in the active forces as
k∑
i=1

(Fi −miai)−
n∑

i=k+1
miai = 0. (A.23)

If we apply the d’Alembert principle to the virtual work principle we obtain a fundamental
concept of the Lagrangian mechanics
Theorem A.3 (Symbolic relation of dynamic). Let {(Pi,mi)}, with i = 1, . . . , n be a system of
free material points or subject to ideal constraints. The system {(Pi,Fi)}, with i = 1, . . . , n is
a set of active forces applied to the points Pi. Necessary and sufficient condition for the set of
accelerations {(Pi,ai)}, with i = 1, . . . , n, to provide system motion is that

n∑
i=1

(Fi −miai) · δPi ≤ 0 (A.24)

while if the constraints are ideal and bilateral
n∑
i=1

(Fi −miai) · δPi = 0 (A.25)

for each {(Pi, δPi)}ni=1 admissible virtual displacement.

A.4.1 The Lagrange Equations
Let us consider a system with holonomic, ideal and bilateral constraints. Using the equation
(A.5) in the (A.25) we obtain

n∑
i=1

(Fi −miai) · δPi =
n∑
i=1

(Fi −miai) ·
N∑
k=1

∂Pi
∂qk

δqk =

N∑
k=1

(
n∑
i=1

(Fi −miai) ·
∂Pi
∂qk

)
δqk =

N∑
k=1

(Qk − τk)δqk = 0

(A.26)
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where τk are the lagrangian components of the opposite of the inertial forces. Let T be the kinetic
energy then it is possible to prove that [1]

τk = d

dt

(
∂T

∂q̇k

)
− ∂T

∂qk
, ∀k = 1, . . . , N. (A.27)

Therefore, substituting the (A.27) in (A.27) we obtain the Lagrange equations
d

dt

(
∂T

∂q̇k

)
− ∂T

∂qk
= Qk, ∀k = 1, . . . , N (A.28)

A.4.2 Lagrangian Determinism
The motion equations (A.28) are second order differential equations in time. The Cauchy theorem
guarantees the existence of one and only one solution to the initial-values problem, where position
and velocity are assigned for each t ≥ 0, as long as the forces are sufficiently regular on position
and velocity.
Definition A.4. The function f : D ⊂ Rn → R is Lipschitz continuous in one or more variables
(e.g. x1 ∈ [a, b]) if there exists a constant K such that

|f(x
′′

1 , . . . , xn)− f(x
′

1, . . . , xn)| ≤ K|x
′′

1 − x
′

1|, ∀x
′

1, x
′′

1 ∈ [a, b], ∀x2, . . . , xn. (A.29)

The Lagrange equations are deterministic, i.e. the knowledge of the act of motion in a certain
time instant t0 guarantees the complete characterization of the motion for some t ≥ t0. In fact
it is possible to state the following theorem:

Theorem A.4. Let us consider holonomous system with ideal and bilateral constraints, (q1, . . . , qN )
are the free coordinates. The Cauchy problem, for each k = 1, . . . , N{

d
dt

(
∂T
∂q̇k

)
− ∂T

∂qk
= Qk

qk(t0) = qk0 q̇k(t0) = q̇k0
(A.30)

admits one and only one solution in at least an interval t ∈ [t0, t1], with t1 > t0, if the Lagrangian
components are Lipschitz continuous functions of the free coordinates and time derivatives.

If all the forces applied to system are conservative, their Lagrangian components may be
expressed with the potential as (A.11). Moreover, due to the fact that the conservative forces
are always positional, Qk does not depend either on velocity or on time, we define the Lagrange
function as L(q, q̇, t) = T (q, q̇, t) + U(q, q̇, t) where

∂L
∂q̇k

= ∂(T + U)
∂q̇k

= ∂T

∂q̇k
(A.31)

and so the (A.28) becomes
d

dt

(
∂L
∂q̇k

)
− ∂L
∂qk

= 0, ∀k = 1, . . . , N (A.32)

Note that if there are both conservative (with potential U) and non conservative forces it is
possible to define the Lagrange equations with the Lagrange function as

d

dt

(
∂L
∂q̇k

)
− ∂L
∂qk

= Qn.c.k , ∀k = 1, . . . , N (A.33)

where Qn.c.k is the non conservative Lagrangian force.
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A.5 Linearization of the motion equations
Let us define q0 = (q0

1 , . . . , q
0
N ) the free coordinates corresponding to the equilibrium configura-

tions. Using a variable transformation we write the free coordinates qk(t) close to q0
k as

qk(t) = q0
k + εηk(t), ∀k = 1, . . . , N (A.34)

where 0 < ε � 1 and |η| = O(1). By substituting the variable transformation in the Lagrange
equations we are able to linearize the motion equations.
Let us fix k, the Lagrange equation becomes

d

dt

(
∂T

∂q̇k

)
− ∂T

∂qk
= ∂U

∂qk
(A.35)

then, the linearized kinetic energy defined by (A.19) is

T = 1
2

N∑
i,j

aij(q)q̇iq̇j = ε2

2

N∑
i,j

aij(q0
k + εη)η̇iη̇j = ε2

2 η̇i ·A(q0
k + εη) · η̇j (A.36)

and so the (A.35) is rewritten as

ε2 d

dt

 N∑
j=1

ajkη̇j

 = ε2

2

N∑
i,j=1

[
∂

∂ηk
aij(q0

k + εη)
]
η̇iη̇j + ∂

∂ηk
U(q0

k + εη) (A.37)

it is observed that all the terms are at least of the second order in the variable ε. Let us use the
Taylor series in ε on the potential U as

U(q0 + εη) = U(q0) + ε

N∑
j=1

∂U

∂qj

∣∣∣∣
q=q0

ηj + ε2

2

N∑
i,j=1

∂U

∂qj∂qi

∣∣∣∣
q=q0

ηjηi + o(ε2)

= U(q0) + ε2

2

N∑
i,j=1

b0ijηjηi + o(ε2) = U(q0) + ε2

2 η ·B
0 · η + o(ε2)

(A.38)

note that the first sum is set to zero due to the stationary potential Theorem, see [1]. Differen-
tiating (A.38), we obtain

∂

∂ηk
U(q0 + εη) = ε2

N∑
j=1

b0kjηj + o(ε2) (A.39)

Let we use the first order Taylor series in ε for the mass matrix A as

aij(q0 + εη) = aij(q0) + ε

N∑
k=1

∂aij
∂qk

∣∣∣∣
q=q0

ηk + o(ε) (A.40)

hence
∂

∂ηk
aij(q0 + εη) = ε

∂aij
∂qk

∣∣∣∣
q=q0

ηk + o(ε) (A.41)
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The partial derivatives are at least of the first order in ε and, therefore, the first term of the
(A.37) is of order ε3, and it may be neglected. A similar consideration is made for the left-hand
side of (A.37):

ε2 d

dt

 N∑
j=1

ajk(q0 + εη)η̇j

 = ε2 d

dt

 N∑
j=1

ajk(q0)η̇j +O(ε)


= ε2 d

dt

N∑
j=1

ajk(q0)η̈j +O(ε)

(A.42)

In conclusion, by combining the above observations we obtain the motion equations approximated
to the second order

N∑
j=1

A0
jkη̈j =

N∑
j=1

b0jkηj

A0η̈ = B0η

(A.43)

where A0, B0 are the mass matrix and the Hessian matrix of the potential U , respectively, both
computed in equilibrium configuration q0.
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Appendix B

Essentials of Probability Theory

In this chapter we will present some basic concepts of probability [2]-[8] and statistics computation
[12].

B.1 Random variable
Firstly, we start with a collection of definitions and properties of the measure theory that will be
useful later on.

Definition B.1. Let Σ be a non-empty set and P(Σ) a partition set of Σ. A set A ⊆ P(Σ) is
called a σ-algebra if

• Σ ∈ A, ∅ ∈ A

• if A ∈ A then Ac ∈ A

• ∀(An)n∈N countable family of elements of A then⋃
n∈N

An ∈ A and
⋂
n∈N

An = (
⋃
n∈N

Acn)c ∈ A

Note that if we take ε ⊂ P(Σ) a collection of subset of Σ the intersection of all the σ-algebras
(or σ-fields) which contains ε is the smallest σ-algebra containing ε. So σ(ε) is called σ-algebra
generated by ε.
If Σ is a topological space, then the smallest σ-algebra on Sigma containing all open sets (or,
equivalently, all closed sets) is called Borel σ-algebra.

Definition B.2. Let A be a σ-algebra and µ : A → [0,∞] a function such that µ(∅) = 0. µ is
called a measure if it is σ-additive, which means that for all countable family (An)n∈N of pairwise
disjoint elements of A we have that

µ(
⋃
n∈N

An) =
∑
n

µ(An)

Observe that if µ(Σ) = 1 then µ is called a probability measure.

65



B – Essentials of Probability Theory

Note that the triplet (Σ,A, µ), with A a σ-algebra, is called ameasure space, and each element
of A is a measurable set. While (Ω,F , P ) is a probability space, where F is the σ-algebra of events
and Ω is the a sample space which represents the possible results of a random phenomenon.
Finally we can define X : Ω→ R a random variable if

{X ≤ x} = {ω ∈ Ω : X(ω) ≤ x} ∈ F , ∀x ∈ R (B.1)

B.2 Probability Distributions
The concept of probability is used to measure the likelihood of the occurrence of certain events.

Definition B.3. Let the triplet (Ω,F , P ) be probability space and X a random variable. The
function

FX(x) = P (X ≤ x) = P ({ω ∈ Ω : X(ω) ≤ x}), x ∈ R (B.2)

is the distribution function of X.

Some elementary properties of probability measures are easily summarized. For events A,B ∈
F ,

P (A ∪B) = P (A) + P (B)− P (A ∩B),

and if A and B are independent

P (A ∩B) = P (A) · P (B)

Moreover
P (Ac) = 1− P (A), P (Ω) = 1, P (∅) = 0.

B.2.1 Discrete Distributions
Let us take a countable set of values {x1, . . . , xk, . . . }. Suppose X ∈ {x1, . . . , xk, . . . } is random
variable then the sets

{X = xi} i = 1,2, . . .

are events and so we can write

{X ≤ x} =
⋃
xi≤x

{X = xi}.

Now defining p : R→ R+ as pi = p(xi) = P (X = xi), p enjoys the same properties as probabilities

0 ≤ p(xi) ≤ 1, ∀i,
∑
i

p(xi) = 1 (B.3)

and so it is called a probability density, while the distribution is defined as

FX(x) =
∑
i

pi =
∑
i

p(xi) (B.4)

and it is called a discrete distribution. The random variable X with a distribution like (B.4) is
a discrete random variable.
In probability literature, there are two important discrete distributions:
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• Binomial distribution B(n, p) with n ∈ N0 and p ∈ [0,1] where

P (X = xk) =
(
n

xk

)
pxk (1− p)(n−xk), xk ∈ {0,1,2, . . . }; (B.5)

• Poisson distribution P (λ) with parameter λ > 0 and

P (X = xk) = e−λ

xk! λ
xk , xk ∈ {0,1,2, . . . }. (B.6)

B.2.2 Continuous Distributions
In contrast to discrete distributions and random variables taking values in a numerable set, we
define a distribution and random variables which may take on values in R. These types of vari-
ables are called continuous variable and distribution.

The probability density of a continuous random variableX is a non-negative function fX(x) ≥
0 such that

P (X ∈ A) =
∫
A

fX(x)dx, A ∈ B(R) (B.7)

where B(R) is the Borel σ-algebra. A continuous random variable takes any precise value with
probability 0

P (X = x) = 0, ∀x ∈ R. (B.8)
The distribution of a continuous random variable is defined as

FX(x) = P (X ≤ x) =
∫ x

−∞
f(x)dx, x ∈ R (B.9)

Definition B.4. Let us define two random variables X and Y . They are independent if and
only if

F(X,Y )(x, y) = FX(x)FY (y), ∀x, y ∈ R (B.10)
where F(X,Y )(x, y) is the joint distribution function and FX(x) and FY (y) are their marginal
distribution function.

We will deal here with three important continuous distributions

• Uniform distribution U(a, b) with density

fX(x) = 1
b− a

χ(a,b)(x) (B.11)

where χ(a,b)(x) is called the characteristic function and is 1 when x ∈ (a, b), 0 otherwise.

• Exponential distribution Exp(λ) with λ > 0, where

fX(x) = λe−λx, x > 0. (B.12)

• Gaussian or Normal distribution N(µ, σ2) and

fX(x) = 1√
2πσ2

exp
[
− (x− µ)2

2σ2

]
, µ ∈ R, σ > 0 (B.13)

note that N(0,1) is called standard Gaussian
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B.2.3 Expectation and Moments Theory
Let us take (Ω,F , P ) a probability space and continuous random variable X with density fX .
We can define g : R→ R a measurable function such that

g ◦X ∈ L1((Ω,F , P )) ⇔ g ∈ L1((R, B(R), fX)) (B.14)

the integral
E(g(X)) =

∫ ∞
−∞

g(x)fX(x)dx (B.15)

is defined as the expectation or mean value of g(X). Note that if X ∈ L1((Ω,F , P )) then the
mean value of the continuous random variable X is

E(X) =
∫ ∞
−∞

xfX(x)dx (B.16)

while if X ∈ Lm((Ω,F , P )) we can define the moment of order m of X as

E(Xm) =
∫ ∞
−∞

xmfX(x)dx (B.17)

the intergral
E((X − E(X))m) =

∫ ∞
−∞

(x− E(X))mfX(x)dx (B.18)

is called the centered moment of order m. The centered moment of order 2 is called variance

V ar(X) = E((X − E(X))2) =
∫ ∞
−∞

(x− E(X))2fX(x)dx (B.19)

and its square root is the deviation error, in fact the latter represents the deviation from the
mean value.
Similarly, for a discrete random variable X with probability pi = P (X = xi), we have

E(X) =
n∑
i=1

xipi

V ar(X) = E((X − E(X))2) =
n∑
i=1

(xi − E(X))2pi

(B.20)

Here we present some important properties of the expectations, let us take two random variables
X,Y , we have:

• Linearity: E(aX + bY ) = aE(X) + bE(Y )

• Product: E(XY ) = E(X)E(Y ) if X,Y are independent

• Jensen inequality: If g is a convex function

E(g(X)) ≥ g(E(X)) (B.21)

• Markov inequality: if X is a non-negative random variable, then for all r > 0

P (X ≥ r) ≤ E(X)
r

(B.22)
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• Chebyshev inequality: if X random variable with mean µ and finite variance σ2, then for
all r > 0

P (|X − µ| ≥ r) ≤ σ2

r
(B.23)

Definition B.5. Let (Ω,F , P ) be a probability space and X a random variable. We can define
the characteristic function of X, the complex valued function

φx(t) = E(eitx) =
∫ ∞
−∞

eitxfX(x)dx, ∀t ∈ R (B.24)

Note that all the definitions and properties can be extended to X = (X1, . . . , Xn) n-dimensional
random vector.

B.2.4 Convergence of Random Variables and Limit Theorems
Let (Ω,F , P ) be a probability space and (Xn)n∈N a sequence of random variables.

Definition B.6. The sequence (Xn)n∈N converges almost surely (or a.s) to X if

P ({ω ∈ Ω : Xn(ω)→ X(ω)} = P (Xn → X) = 1, n→∞ (B.25)

can be written as Xn
a.s.−−→ X

Definition B.7. The sequence (Xn)n∈N converges in probability to X if ∀ε > 0

lim
n→∞

P (|Xn −X| > ε) = lim
n→∞

P ({ω ∈ Ω : |Xn(ω)−X(ω)| > ε}) = 0 (B.26)

it is written as Xn
P−→ X

Definition B.8. The sequence (Xn)n∈N with X ∈ Lp(Ω,F , P ), p ≥ 1, converges in p-th mean
(or in norm Lp) to X if

‖Xn −X‖pLp(Ω,F,P ) = E(|Xn −X|p)→ 0, n→∞ (B.27)

it is written as Xn
Lp

−−→ X.
We have to observe that if we set q < p (Lq ⊂ Lp), if Xn

Lp

−−→ X then Xn
Lq

−−→ X. Moreover let
p = 2 if Xn

L2

−−→ a then E(Xn)→ a and V ar(Xn)→ 0, where a is a constant.

Convergence in p-th mean implies convergence in probability, while the viceversa is true if
the sequence is uniformly bounded as |Xn| ≤M , ∀n. Convergence in probability does not imply
a.s. convergence, whereas the opposite is true. However, if Xn

P−→ X then Xnk

a.s.−−→ X for a
suitable subsequence (Xnk

).

Definition B.9. Let µn, n ∈ N, and µ be a finite measure on (R, B(R)). It is said that (µn)n
converges weakly to µ if, ∀f ∈ Cb(R) (continuous and bounded)∫

R
fdµn →

∫
R
fdµ, n→∞ (B.28)

where these are the Lebesgue integrals. It is written as Xn ⇀ X
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Definition B.10. The sequence (Xn)n∈N converges in law (or in distribution) to X if the
sequence of the laws PXn

converges weakly to the law PX , or ∀f ∈ Cb(R)∫
R
f dPXn →

∫
R
f dPX ⇔ E(f(Xn))→ E(f(X)), n→∞ (B.29)

it is written as Xn
d−→ X. Note that

Xn
d−→ X if and only if FXn(x)→ FX(x), n→∞ (B.30)

for all points x where the distribution function FX is continuous.

We have to observe that if Xn
P−→ X then Xn

d−→ X.
This overview of definitions is preparatory to understand one of the most important theorems
of probabilistic literature: Central Limit Theorem, the proof is not reported (see [2]); the latter
will be necessary to understand the characteristics of the methods in previous chapters. Firstly
we have to state a theorem that we present without proof.

Theorem B.1 (Paul Lévy). Let (Xn)n∈N a sequence of real random variables with characteristic
function (φXn)n so

• If Xn
d−→ X then ∀t ∈ R

lim
n→∞

φXn(t) = φX(t) (B.31)

with φX characteristic function of the random variable X

• If ∀t ∈ R

lim
n→∞

φXn
(t) = ϕ(t) (B.32)

with ϕ continuous in 0, then there exists a random variable X such that ϕ = φX and then
Xn

d−→ X.

Note that the two items of this theorem correspond to the necessary and sufficient condition
to make the theorem true.

Central Limit Theorem

Theorem B.2. Let (Xn)n∈N be a sequence of independent real random variable in L2(Ω,F , P )
with mean value µ and variance σ2.
Set Sn =

∑n
i=1Xi and S∗n its standardization with null mean and unitary variance. Then it can

be stated that
S∗n

d−→ N(0,1), n→∞ (B.33)

Note that the theorem could be re-written as
√
n(X̄n − µ) d−→ N(0, σ2) (B.34)

where X̄n = Sn

n is called the sample mean.
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B.3 Simulation of Random Variables
Let FX be the distribution function of a random variableX. One of the basic tasks in a stochastic
simulation is to generate x1, . . . , xN realizations from the i.i.d. variables X1, . . . , XN

1 with FX .
Note that x1, . . . , xN are just numbers, however the tricky part of this problem is to generate N
numbers that well represent the distribution assigned experimentally.
Before going further in the analysis of the statistical simulation we have to present some defini-
tions and properties.

Definition B.11. Let X be a random variable with distribution function FX . The quantile
function is defined as

Q : u ∈ (0,1)→ Q(u) = inf{x : u ≤ FX(x)} (B.35)

For a fixed u, Q(u) is called the u-quantile.
It should be noted that the quantile function Q for a random variable X is a non-decreasing and
left continuous function. It has jump points at constant traits of FX . For each u ∈ (0,1) and
x ∈ R the following conditions are equivalent:

Q(u) ≤ x, u ≤ FX(x) (B.36)

and so if the distribution function is invertible, then Q = F−1
X .

We observe that if the variable X has quantile functon Q and U is a uniform random variable
in (0,1), then X and Q(U) have the same distribution, in fact

P (Q(U) ≤ x) = P (U ≤ FX(x)) =
∫ FX(x)

0
du = FX(x). (B.37)

Some sort of inverse property can be proved, indeed if X has a continuous distribution function
FX in each x then the random variable FX(X) is a U(0,1):

P (FX(X) ≤ u) = P (X ≤ Q(u)) = FX(Q(u)) = u (B.38)

Now we have all the tools to generate a simulation flux, which is the numerical sequence
x1, . . . , xN artificially generated as realizations of random variables X1, . . . , XN i.i.d. with dis-
tribution FX . This problem could be split in two sub-problems:

1. Generate a numerical flux u1, . . . , uN from a U(0,1);

2. Obtain x1, . . . , xN from u1, . . . , uN .

To solve the first sub-problem there are many available algorithms that could generate a "random"
sequence of uniformly distributed values in the interval [0,1]; however these algorithms use a
deterministic implementation to generate them, as recursion. For this reason the sequence of
outputs u1, . . . , uN is called a sequence of pseudorandom numbers.
It is clear now the use of the words "artificially generated", in fact the uniform flux is generated
by a computer which uses algorithms, the latter are not specifically analysed here, see [12].
The second sub-problem, we can use the definitions and properties explained previously. In fact
we can generate x1, . . . , xN realizations with distribution FX using the quantile function

x1 = Q(u1), x2 = Q(u2), . . . , xN = Q(uN ). (B.39)

1independent and identically distributed
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Note that for each distribution FX ad hoc algorithms have been studied which could exploit the
properties of the distribution functions. For example, to generate two random realizations z1, z2
from a N(0,1) there is the Box-Muller algorithm, see [12].

Multivariate simulation

In the previous section we described the univariate simulation, using a pseudorandom numerical
flux u1, . . . , uN to rebuild the realizations x1, . . . , xN of random variables X1, . . . , XN with FX .
This is granted in R, however is no longer valid in Rn because this space in not sorted. Often a
multivariate random generation is based on multiples univariate simulations. For example, if the
distribution of the variable X, which is a random vector, permit the representation with DAG2.
We can use the conditional densities to generate the numerical flux desired.

B.4 Statistical Tools
Suppose we are on the opposite side of what has been described above. We have experimental
data which are the representation of a random variable with an unknown distribution. In this
case it is easy to imagine we have to build some methods or models which allow us to calculate
quantities useful for the analysis and the well understanding of the data behavior.

Definition B.12. A sample is a random variable {X1, . . . , Xn} represented by data, or by
experimental observations. A statistics is a function S = T (X1, . . . , Xn) and its distribution is
called a sample distribution.

It is important to understand that a statistics is a function of data only and is not a random
variable. The most used statistics are the sample mean, defined as

X̄ = 1
n

n∑
i=1

Xi (B.40)

and the sample variance

S2 = 1
n− 1

n∑
i=1

(Xi − X̄)2 (B.41)

It is not easy to obtain the sample distribution of a statistics, there are basically two alterna-
tives: the exact calculus and the approximated one. The first way uses probability methods
to calculate exactly the distribution, however this approach is not always possible or it proves
to be exaggeratedly difficult. So often, in mathematical statistics, the approximation with the
Central Limit Theorem is used obtaining the asymptotic distribution. This method applies for
large n and is based on substituting the sample distribution with its limit value. For example,
let X1, . . . , Xn be a sample of a random variable with mean µ, such that µ /= 0 and with finite
forth moment µ4 = E((X − µ)4); for the central limit theorem we have that

√
n(X̄n − µ) d−→ N(0, σ2) (B.42)

and √
n(S2

n − σ2) d−→ N(0, µ4 − σ2) (B.43)

2Directional Acyclic Graph
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Appendix C

Integral calculus and Orthogonal
Polynomials

C.1 Introduction to numerical integral calculus
In this chapter we will analyse how to evaluate numerically definite integrals [10]

I(f) =
∫ b

a

f(x)dx (C.1)

Often the analytic way may results impossible or unnecessarily complex; moreover, if the function
f(x) is known by points or evaluable for each x with a routine, the analytical approach has to
be discarded.
Suppose to know the function f(x) by points {xi}, chosen arbitrarily or calculated. We examine
the construction of the quadrature formulas as∫ b

a

f(x)dx ≈
n∑
i=1

wif(xi) (C.2)

where xi are called nodes, while wi are the weights of the quadrature formula.
Assign distinct nodes {xi} and suppose the interval [a, b] limited, we could approximated the
function f(x) with a polynomial Ln−1(f ;x) with n−1 degree, it is the only one who interpolates
the function in the nodes:∫ b

a

f(x)dx =
∫ b

a

[Ln−1(f ;x) + En(f ;x)]dx =
∫ b

a

Ln−1(f ;x)dx+
∫ b

a

En(f ;x)dx

with
Ln−1(f ;x) = f(xi) i = 1, . . . , n (C.3)

Suppose now that we represent Ln−1(f ;x) with the Lagrange form

Ln−1(f ;x) =
n∑
i=1

li(x)f(xi) (C.4)

we obtain ∫ b

a

f(x)dx =
n∑
i=1

wif(xi) +Rn(f) (C.5)
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where

wi =
∫ b

a

li(x)dx (C.6)

while

Rn(f) =
∫ b

a

En(f ;x)dx (C.7)

represent the error of the quadrature formula. Note that this type of formulas are called inter-
polatory. They are consider to be exact, which means the error Rn(f) is null, whenever f(x) is
a polynomial with degree lower or equals to n− 1.
A useful concept for comparing the accuracy degree of different quadrature formulas is the pre-
cision degree.
A quadrature formula has a precision degree d if is exact when the integrand function f(x) is a
polynomial with degree lower or equals to d and there is at least one d+ 1 polynomial for which
the error is not null.
Suppose now we want to evaluate the integral I(f) where the function f(x) is factorized as

f(x) = w(x)g(x) (C.8)

where w(x) is a function which contains the singularity of f(x), while g(x) is the regular part of
f(x). We can generalized the approach defined in (C.5) and (C.6) so as to build an interpolation
formula for the integral ∫ b

a

w(x)g(x)dx (C.9)

where (a, b) could be illimited.
Using Lagrange form, we have

g(x) =
n∑
i=1

li(x)g(xi) + En(g;x) (C.10)

and we obtain ∫ b

a

w(x)g(x)dx =
n∑
i=1

wig(xi) +Rn(g) (C.11)

where

wi =
∫ b

a

w(x)li(x)dx (C.12)

and

Rn(f) =
∫ b

a

w(x)En(g;x)dx (C.13)

The function w(x) must be such as to permit the existence of the integrals and to permit the
construction of the weights wi. The formula (C.11) has at least a degree of accuracy equal to
n− 1.
In order to have the (C.2) defined with a "good" discretization of the integral is necessary that

lim
n→∞

n∑
i=1

wif(xi) =
∫ b

a

f(x)dx (C.14)
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in that case we said that the formula is convergent. There are many condition that ensure the
convergence. For example, if the interval (a, b) is limited and f ∈ C[a, b] the convergence is
guaranteed if

n∑
i=1
|wi| ≤ K (C.15)

where K is an independent constant from n. Note that the only condition that we imposed until
now is that the nodes {xi} are supposed to be distinct, however it is possible to build different
quadrature formulas choosing other approaches:

• equidistant nodes, Newton-Cotes Formulas 1;

• nodes that are the zeros of orthogonal polynomials, Gaussian Formulas

C.2 Orthogonal Polynomials
Lets define a not negative and not null weight function w(x) in the interval (a, b) that could be
finite or infinite, then suppose that all the moment

mk =
∫ b

a

w(x)xkdx k = 0,1, . . . (C.16)

exist. Define a polynomial system as

{P0(x), P1(x), . . . , Pn(x), . . . } (C.17)

where
Pn(x) = kn,0x

n + kn,1x
n−1 + · · ·+ kn,n and kn,0 /= 0 (C.18)

is called a Orthogonal polynomial in (a, b) with respect to the weight function w(x) if∫ b

a

w(x)Pn(x)Pm(x)dx = hnδnm (C.19)

where δnm is the kronecker delta, note that

hn =
∫ b

a

w(x)P 2
n(x)dx > 0 n = 1,2, . . . (C.20)

and if hn = 1 is called a orthonormal polynomial.
The interval (a, b) and the weight function w(x) uniquely define the polynomials Pn(x), up to
not null constant. This concept is well explained in this theorem, which we report without proof.

Theorem C.1. Each orthogonal polynomials system {Pn(x)} satisfies a three-term recurrence
relationship as:

Pn+1(x) = (Anx+Bn)Pn(x)− CnPn−1(x), n = 1,2, . . . (C.21)

with Cn > 0. Where

An = kn+1,0

kn,0
Bn = An

(
kn+1,1

kn+1,0
− kn,1
kn,0

)
Cn = An

An−1

hn
hn−1

.

1not taken into account here
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This result allowed us to state that the system {Pn(x)} defined by the couple {(a, b), w(x)}
could be uniquely identified by the coefficients {(An, Bn, Cn)}.
For each n > 1 the orthogonal polynomial Pn(x) has n real and distinct roots in the interval
(a, b). Moreover, the zeros of Pn(x) alternate with those of Pn−1(x). Then we can define another
theorem.

Theorem C.2. For each polynomial q(x) with degree lower or equals to n− 1 we have∫ b

a

w(x)Pn(x)q(x)dx = 0 (C.22)

In particular ∫ b

a

w(x)Pn(x)xkdx = 0 k = 0,1, . . . , n− 1 (C.23)

this last equation defined uniquely the orthogonal polynomial.
In literature are known some orthogonal polynomial that are called classic, here we see the

most used:
• Legendre Polynomials Pn(x): w(x) = 1, (a, b) = (−1,1){

P0(x) = 1, P1(x) = x

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x), n = 1,2, . . .
(C.24)

kn,0 = (2n)!
2n(n!)2 , hn = 2

2n+ 1

• Laguerre Polynomials Ln(x): w(x) = e−x, (a, b) = (0,∞){
L0(x) = 1, L1(x) = 1− x
(n+ 1)Ln+1(x) = (2n+ 1− x)Ln(x)− nLn−1(x), n = 1,2, . . .

(C.25)

kn,0 = (−1)n
n! , hn = 1

• Hermite Polynomials Hn(x): w(x) = e−x
2 , (a, b) = (−∞,∞){

H0(x) = 1, H1(x) = 2x
Hn+1(x) = 2xHn(x)− 2nHn−1(x), n = 1,2, . . .

(C.26)

kn,0 = 2n, hn =
√
π2nn!

• Jacobi Polynomials Pα,βn (x): w(x) = (1− x)α(1 + x)β , α, β > −1, (a, b) = (−1,1)
P0(x) = 1, P1(x) = [1 + 1

2 (α+ β)]x+ 1
2 (α− β)

2(n+ 1)(n+ α+ β + 1)(2n+ α+ β)P (α,β)
n+1 (x) =

(2n+ α+ β + 1)[(α2 − β2) + (2n+ α+ β + 2)(2n+ α+ β)x]P (α,β)
n (x)−

2(n+ α)(n+ β)(2n+ α+ β + 2)P (α,β)
n−1 (x), n = 1,2, . . .

(C.27)

kn,0 = 2n
[(
n+ α

n

)
+
(
n+ β

n

)]
,

hn = 2α+β+1

2n+ α+ β + 1 ·
Γ(n+ α+ 1)Γ(n+ β + 1)

n!Γ(n+ α+ β + 1)
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C.3 Gaussian quadrature
In the previous section we proof that with n distinct nodes {xi} is possible to build a quadrature
formula as (C.11) with at least a degree of accuracy equal to n − 1. However, we would like to
choose a more convenient node assignment mode. So we suppose that :

• the weight function w(x) has to be w(x) /= 0 and w(x) ≥ 0 in (a, b)

• all the moments exist, as mk =
∫ b
a
w(x)xk <∞, with k = 0,1, . . .

Firstly we have to observe that 2n−1 is the maximum precision degree reachable from a formula
with n real nodes. In fact if we suppose by absurd that we could reach a precision degree of 2n,
we could define

f(x) =
n∏
i=1

(x− xi)2 ∈ P2n (C.28)

so we have that

0 <
∫ b

a

w(x)
n∏
i=1

(x− xi)2dx =
n∑
i=1

wi · 0 +Rn(f) = 0 (C.29)

which is the absurd.
Therefore, we can state that the necessary and sufficient condition for the formula∫ b

a

w(x)f(x)dx =
n∑
i=1

wif(xi) +Rn(f) (C.30)

has precision degree equals to 2n−1, and it is calledGaussian. Due to its precision degree, belongs
to the class of interpolation formulas, while the nodes {xi} are the n zeros of the polynomial
Pn(x), with n degree, in (a, b) orthogonal to the weight function w(x).
Let us try to find a representation of the weight wi, so lets take in the equation (C.30)

f(x) = Pn(x)
x− xk

=
n∏
i=1
i /=k

(x− xi) (C.31)

we obtain ∫ b

a

w(x) Pn(x)
x− xk

dx = wkP
′
n(xk) (C.32)

and so

wk = 1
P ′n(xk)

∫ b

a

w(x) Pn(x)
x− xk

dx k = 1,2, . . . , n (C.33)

However, this expression does not highlights some important characteristics of the weight func-
tion, moreover it does not use the property of the Gaussian formulas, and so if we choose

f(x) =
[
Pn(x)
x− xk

]2
∈ P2n−2 (C.34)

we obtain

wk = 1
[P ′n(xk)]2

∫ b

a

w(x)
[
Pn(x)
x− xk

]2
dx k = 1,2, . . . , n (C.35)
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this expression proof that the weights {wi} of the Gausssian formulas are all positive, and this
property in a limited interval (a, b) garantees the convergence of the quadrature formulas for all
f(x) ∈ C[a, b], in fact it is easy to see that if we set f(x) = 1

n∑
i=1
|wi| =

n∑
i=1
|wi| =

∫ b

a

w(x)dx <∞. (C.36)

If we associate the classic orthogonal polynomial to the quadrature formula we obtain the Classic
Gaussian formulas:

• Gauss-Legendre formula ∫ 1

−1
f(x)dx ≈

n∑
i=1

wif(xi) (C.37)

where kn,0
∏n
i=1(x− xi) = Pn(x) is the Legendre polynomial.

• Gauss-Laguerre formula ∫ ∞
0

e−xf(x)dx ≈
n∑
i=1

wif(xi) (C.38)

where kn,0
∏n
i=1(x− xi) = Ln(x) is the Laguerre polynomial.

• Gauss-Hermite formula ∫ ∞
−∞

e−x
2
f(x)dx ≈

n∑
i=1

wif(xi) (C.39)

where kn,0
∏n
i=1(x− xi) = Hn(x) is the Hermite polynomial.

• Gauss-Jacobi formula∫ 1

−1
(1− x)α(1 + x)βf(x)dx ≈

n∑
i=1

wif(xi), α, β > −1 (C.40)

where kn,0
∏n
i=1(x− xi) = P

(α,β)
n (x) is the Hermite polynomial.

C.4 Error estimation
Let we suppose that we have built a quadrature formula as

Qn(f) =
n∑
i=1

wif(xi) (C.41)

that approximate the integral

I(f) =
∫ 1

−1
w(x)f(x)dx (C.42)

For the interpolation formulas we have defined a representation of the integral error

Rn(f) = I(f)−Qn(f) (C.43)
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however this expression has only theoretical importance, usually you take another formula Qm(f)
with more nodes (m > n), that is more precise and so

|Rn(f)| ≈ |Qm(f)−Qn(f)| (C.44)

where normally m = n + 1 when f(x) is sufficiently regular, while m ≈ 2n in other cases. The
couple {(Qm(f), Qn(f))} costs n+m evaluations of the function {f(xi)}.
If we take a Gaussian quadrature formula as

Gn(f) =
n∑
i=1

wif(xi) (C.45)

assuming
|Rn(f)| ≈ |Gn(f)−Gn + 1(f)| (C.46)

we impose the calculus of 2n + 1 values of {f(xi)}, in fact Gn(f) and Gn + 1(f) have not any
nodes in common. Moreover, the degree of precision more accurate of the formula Gn + 1(f) is
2n+ 1.
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Appendix D

Miscellaneous Topics

D.1 Runge-Kutta Method
In this section we describe briefly the Runge-Kutta method [10] for solving an ordinary differential
equation system (ode) as {

ẏ = f(x, t)
y(0) = y0

(D.1)

the algorithm is

yn+1 = yn + 1
6(k1 + 2k2 + 2k3 + k4)

tn+1 = tn + h
(D.2)

for n = 0,1,2, . . . , where

k1 = hf(tn, yn)

k2 = hf(tn + h

2 , yn + k1

2 )

k3 = hf(tn + h

2 , yn + k2

2 )

k4 = h f(tn + h, yn + k3)

(D.3)

D.2 Beta distribution and Gauss-Jacobi formula
Let us define X a random variable with general Beta distribution with probability density, [17]:

fX(x) = (b− x)α(x− a)β
(b− a)(α+β+1)B(α+ 1, β + 1) , x ∈ [a, b], α, β > −1

where
B(α+ 1, β + 1) = Γ(α+ 1)Γ(β + 1)

Γ(α+ β + 2) , note that Γ(α+ 1) = α!

The Gauss-Jacobi formula to approximate the integral calculus is∫ 1

−1
(1− x)α(1 + x)βg(x)dx ≈

n∑
i=1

wig(xi), α, β > −1

80



D – Miscellaneous Topics

it is easy to note that the weight function of the Jacobi orthogonal polynomial is similar to the
density function of a Beta distribution. Therefore, in order to calculate the mean of g(Z), where
Z ∼ Beta(α, β) in [a, b] = [−1,1], we exploits the gPC Jacobi as

E(g(Z)) = 2−(α+β+1)

B(α+ 1, β + 1)

∫ 1

−1
(1− z)α(1 + z)βg(z)dx

≈ 2−(α+β+1)

B(α+ 1, β + 1)

n∑
i=1

wig(zi)

= α!β!
(α+ β + 1)!2

−(α+β+1)
n∑
i=1

wig(zi), α, β > −1

D.3 1-Degree of Freedom

i1

i2

O

C

h3

kte , cteΔh

i1

i2

O h3

Δh

θ1(t)

kte , cteC

Figure D.1: The single dof system at the initial condition t = 0(on the left) and for t > 0 the
free coordinate θ1(t) (on the right) .

Let us analyze the case with a single rotational degree of freedom of the system defined in
Fig. 1.4. The free coordinate θ1 is the rotation of the test article with respect to the plane of
the fixed seismic mass. This study is trivial exercise of vibration mechanics [11] where the mass
m can rotate and its motion is influenced by a torsional spring with damping (the oil meatus).
From Fig. D.1, it is simple to get the equation of motion

Imθ̈1 + cteθ̇1 + kteθ = 0 (D.4)

which is a second order ODE.
The characteristic polynomial

Ims
2 + ctes+ kte = 0,
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whose roots are
s1,2 = −cte ±

√
c2te − 4kteIm
2Im

.

Therefore, if
c2te > −4kteIm, (D.5)

the solution of (D.4) writes
θ1(t) = A1e

s1t +A2e
s2t

where the constants A1, A2 are obtained through the initial conditions. We denote by ccr =
2
√
kteIm the critical damping and by ζ = cte/ccr the damping factor.

The natural pulse is defined as:

ω =
√
kte
Im

while the pulse of the damped free oscillations is obtained with the formula

ωd = ω
√

1− ζ2.

provided ζ < 1, which is consistent with the previous requirement (D.5). Using (3.71) we have
the frequency of the free and damped oscillations:

f = ω

2π , fd = f
√

1− ζ2.

From this equation it can be seen that assuming kte perturbed by a random variable Z, it is
immediate to calculate the perturbed fd(Z), its mean value and the respective standard deviation.
Note that with a small abuse of notation in the thesis we refer to fd as fdr because, with a number
of degrees of freedom greater than one, the index r indicates the r-th mode, however in the sigle
dof r = 1.

D.4 Equivalent oil meatus stiffness
The index of kte stands for "torsional equivalent" stiffness of the spring, and its damping, which
in the thesis represents the oil meatus. However, it is important to specify that this definition is
a small abuse of notation, in fact the spring identified by kte is actually obtained from the serial
composition of two other springs with their stiffness, as follows:

kte = ktkm
kt + km

where km = 2.7489 · 109 N·m is the rigidity of the oil meatus and kt = 2.3365 · 108 N·m is the
torsional stiffness of the S/C. The technique of assigning a rigidity to the spacecraft corresponds
to the same trick used in the kst definition, these values are useful to make the study more similar
to the experimental results [18]-[19].
The use in the thesis of kte stiffness, for the analysis of the stochastic perturbations, does not
bring either errors or binding suppositions.
Observe that in the thesis we assumed that the uncertainty perturbations are on the torsional
equivalent stiffness kte and not exactly on the rigidity of the oil meatus km. A possible improve-
ment of the thesis, could be to perturb the km parameter and do the same calculations.
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