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Summary

Today, food contamination due to foreign body is still a trouble for food
manufacturers. First of all, because they have to guarantee a safe product
to consumers. Secondly because a contaminant can damage the company
reputation and lead to expensive recall campaigns. Finally, because more ac-
curate foreign body detection systems allow the producers to gain important
food certifications that could increase their incomes.

For these reasons many techniques are currently adopted to solve this
problem, such as mechanical filters, metal detectors, X-rays imaging and
near infrared imaging. However, there are still some limitations: nonmetallic
and low-density objects, like fragments of plastics, glass and wood, are not
currently detectable; high penetration depth and low spacial resolution trade-
off is still relevant; some methods are subjected to water attenuation.

The good news is that Microwave Imaging Technology has the potential to
overcome those problems in addition to other attractive characteristics. In-
deed, it is non-destructive, contact-less, non-ionizing, real-time, cost-efficient
and easy to operate.

The goal of this thesis is to apply Machine Learning (ML) algorithms to a
Microwave Sensing (MWS) system to identify foreign objects in hazelnut-
cocoa spread jars on the conveyor belt.

Two kinds of binary classifiers are employed: a Support Vector Machine
(SVM) and a Multilayer Perceptron (MLP). The training is performed on
two different static and balanced datasets.

The first one consists of 1800 synthetic tomographic images. A 10-folds
cross-validation (CV) accuracy of 99.167% is reached for the SVM and a
5-folds CV accuracy of 99.167% is achieved for the MLP, with an error of
0.278% and 1.111% over a test set of 360 samples, respectively. The purpose
of this dataset is to validate the idea of applying ML to the foreign body
detection problem in the hazelnut-cocoa cream jars with MWI.
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Since the results obtained with the first synthetic dataset were encourag-
ing, a second dataset is created. It is composed by 2400 samples of scattering
parameters of real measurements, acquired with a MWI system prototype.
In this case the results are: 10-folds CV accuracy of 95.052% for the SVM
and 5-folds CV accuracy of 95.833% for the MLP, with 6.04% of error over
a test set of 480 samples, for both.

To conclude, since both the best SVM and the best MLP give the same
error rate on the test set, the latter is chosen for a faster hardware implemen-
tation. It is translated into an High Level Synthesis (HLS) C/C++ code and
then synthetized for the Xilinx Zynq®-7000 SoC with Vivado HLS. This al-
lows a large and quick design space exploration to satisfy the 100ms latency
requirement of this project, while optimizing area, power and throughput.
The classification performances on the same Real Test Set are confirmed and
the lowest latency is around 3ms.

Regarding the future works, the main perspectives are to: enlarge the static
real dataset, including also new types of intrusions, such as wood; train differ-
ent classifiers, especially an ensemble; validate the classifiers with dynamic
measurements; discover which is the optimal switching sequence of active
antennas pairs during the transit of the jar below the arch to maximize the
illumination of the target; validate the behavior of the system on different
homogeneous food products, such as honey, yogurt, baby food, and on non-
homogeneous ones, like chocolate spreads with hazelnut grains, to have a
wide range of possible application scenarios.

4



Acknowledgements

I wish to thank my advisor for the proposal of this interesting activity, which
aims to solve a serious industrial issue. On top of that, I really liked the pos-
sibility to experiment on my own and without particular constraints the vast
field of Machine Learning. Politecnico di Torino played also an important
role because it provided for the necessary resources to carry out the project.
Finally, a special acknowledge is for my co-advisor, who constantly listened
to my requests.

5



Contents

1 Introduction 9
1.1 The food contamination problem . . . . . . . . . . . . . . . . 9
1.2 The food contamination solutions . . . . . . . . . . . . . . . . 10

1.2.1 Prevention and control strategies . . . . . . . . . . . . 10
1.2.2 On-line and In-line hazard detection techniques . . . . 11
1.2.3 Microwave Imaging: a promising technology . . . . . . 13

1.3 Thesis focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Microwave Imaging and Machine Learning Theory 21
2.1 Microwave Imaging mathematical background . . . . . . . . . 22
2.2 Machine Learning basic theory . . . . . . . . . . . . . . . . . . 24

2.2.1 Support Vector Machine Classifier . . . . . . . . . . . . 24
2.2.2 Multilayer Perceptron Classifier . . . . . . . . . . . . . 29
2.2.3 Dataset preprocessing . . . . . . . . . . . . . . . . . . 34
2.2.4 Model evaluation schemes . . . . . . . . . . . . . . . . 40
2.2.5 Hyper-parameters tuning techniques . . . . . . . . . . 47
2.2.6 Metrics for performance evaluation . . . . . . . . . . . 49

3 Training and testing with Synthetic Data 55
3.1 Synthetic Dataset creation . . . . . . . . . . . . . . . . . . . . 56

3.1.1 Simulated environment . . . . . . . . . . . . . . . . . . 56
3.1.2 Antennas arch electromagnetic characteristics . . . . . 58
3.1.3 Synthetic Dataset creation procedure . . . . . . . . . . 59

3.2 Synthetic Dataset preprocessing . . . . . . . . . . . . . . . . . 65
3.3 Training procedures and synthetic candidate models . . . . . . 66

3.3.1 SVMs training and synthetic candidate models . . . . . 67
3.3.2 MLPs training and synthetic candidate models . . . . . 77

3.4 Testing, performance evaluations and best synthetic models . . 85

6



3.4.1 SVMs testing, performance and best synthetic model . 85
3.4.2 MLPs testing, performance and best synthetic model . 90

4 Training and testing with Real Data 101
4.1 Real Dataset creation . . . . . . . . . . . . . . . . . . . . . . . 102

4.1.1 MIT-Food system prototype . . . . . . . . . . . . . . . 102
4.1.2 Real Dataset creation procedure . . . . . . . . . . . . . 105

4.2 Real Dataset preprocessing . . . . . . . . . . . . . . . . . . . . 110
4.3 Training procedures and real candidate models . . . . . . . . . 112

4.3.1 SVMs training and real candidate models . . . . . . . . 112
4.3.2 MLPs training and real candidate models . . . . . . . . 118

4.4 Testing, performance evaluations and best real models . . . . 126
4.4.1 SVMs testing, performance and best real model . . . . 126
4.4.2 MLPs testing, performance and best real model . . . . 131

5 Hardware acceleration 141
5.1 Model conversion in a synthesizable code . . . . . . . . . . . . 141
5.2 Design space exploration . . . . . . . . . . . . . . . . . . . . . 144
5.3 Physical implementation and performance estimations . . . . . 145

6 Conclusion and Future Works 149

Bibliography 151

Index 156

7



8



Chapter 1

Introduction

1.1 The food contamination problem
Nowadays, food contamination is a serious concern for food manufactures. In
fact, there are many reasons for them to adopt new and more sophisticated
techniques to detect foreign bodies in their production lines.

First of all, it is better to define what is a foreign body. It is an object or
piece of extraneous matter that may accidentally contaminate food [1]. It is
extrinsic when come from external sources either by deliberate or accidental
means, while it is intrinsic when it is an intrusion that is related to the same
food category, but its presence in the final product is a mistake [2]. Examples
of the first type could be fragments of plastic, glass, wood, metal, paper, but
also stones, insects, human hairs and so on [3]. Instead, regarding the second,
they can be bones and gristle in a meat product, a leaf or stalk in a pack
of frozen vegetables, or an ingredient in an unusual/unexpected state, like
crystallized ingredients considered as glass by consumers [2].

Coming back to the initial statement, the producers’ main motivations are
the following:

• the potential harm that a foreign body can cause when ingested by the
consumer, either due to an injury or to an allergen intolerance [2];

• the subsequent legal battle and claim for compensation;

• the financial and reputational damage, with brand loyalty loss in the
public opinion, these days always more often blown up through social
media [2] [4], which can vanish years of efforts and investments in ad-
vertisements;
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1 – Introduction

• the expensive recall campaign;

• the need of a certain food certification, to elevate the company quality
food standard, promising new markets openings and the capability of
forcing higher products prices [5].

How is the problem of food contamination currently tackled by manufactur-
ers? Are there some limitations and lacks of controls in their production
lines? If so, how can be solved?

1.2 The food contamination solutions

1.2.1 Prevention and control strategies
Prevention plays a key role in food industry: several guidelines are applied
during the manufacturing process to attempt to avoid hazards, such as Good
Manufacturing Practice (GMP) [6] and Hazard Analysis and Critical Control
Point (HACCP) [7]. However the risk of a foreign body is still present and
therefore other strategies have to be introduced.

The control strategies are divided in four categories: Off-line, At-line, On-
line and In-line. They mainly differ in the proximity to the production line
and the analysis time. The first three require the sampling of a product
to generalize the results for the whole production batch. Instead, the last
controls every item [8]. The first two can also be destructive, i.e. they alter
the food under analysis in an irremediable way because chemical reagents
are employed, while the last two categories are non-destructive.

1. The Off-line approach provides for a laboratory analysis to be done.
The place of the lab is outside the industry and requires days to get the
results.

2. The At-line method involves an examination that is carried out in situ
and needs several minutes to complete.

3. The On-line procedure is automatic and analyzes the process line every
few seconds. The sample can be temporary removed from the main line
to be investigated or can enter in a second short and slow line where it
is sampled in real-time. After the examination, the sample returns in
the main line. The speed of the main line is not altered.
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4. The In-linemechanism is automatic and inspects every sample (without
sampling) in less than a second, always leaving it along the manufactur-
ing chain. The speed of the main line is not altered.

Obviously Off-line and At-line strategies are obsolete for intrusion detection
in agri-food products [9]. Therefore Paragraph 1.2.2 deepens On-line and
In-line procedures. Instead, for what concerns the main Off-line and At-line
methods, only a list of them is reported because they are beyond the scope
of this thesis: Nuclear Magnetic Resonance (NMR), Electronic microscopy,
Mass spectrometry, Chromatography [3] and others [9].

1.2.2 On-line and In-line hazard detection techniques
Let us report the principal techniques, that can be both applied on-line or
in-line, with their advantages and limitations:

• visual inspection: operators control the products in terms of shape,
color and other qualitative characteristics. This method is human re-
source expensive, inclined to human errors, not contact-less, but tech-
nologically simple [3];

• mechanical filters: grids with different designs and hole diameters are
placed along the production line to filter out unwanted objects greater
than certain dimensions. They are very important not only for the safety
of the final good, but also for the health of the machines involved in the
manufacturing chain, such as pumps, which could break. They have to
be cleaned often, requiring the interruption of the manufacturing chain
[5];

• magnets: their purpose and their disadvantage are the same as the
mechanical filters, but they attract ferromagnetic materials instead of
blocking them;

• metal detectors: as the name already suggests, they are able to identify
only metal foreign objects;

• X-rays Imaging: an high-energy and ionizing beam passes though or-
ganic materials and is absorbed by high-density tissues, such as metals,
bones, stones and only some types of plastics. A detector array captures
the non-absorbed particles, resulting in a graphical representation of the
object under inspection. Later, a software analyzes the image looking
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1 – Introduction

for defects: the denser the contaminant, the more contrast appears and
the easier it is to detect it. Many X-Ray systems are designed to de-
tect certain plastics, but no X-Ray system can detect all plastics [10].
Their limitations are the involuntary exposition of operators and their
blindness with respect to low-density foreign bodies (thin glass and most
plastics);

• optical techniques: based on the reflection of an incident light beam
at one or more frequencies, these methods are capable of finding only
surface defects and can require multiple frequencies for a specific type
of food;

• Visible/Near Infrared Imaging: it exploits the different absorption
of materials to derive information on the composition of the exposed
food. It is fast and safe, but its weaknesses are the very limited pene-
tration depth, the intense absorption in water (so it is not well suited
for fresh food) and the application restriction to organic constituents
only[3];

• Hyper/Multi-Spectral Imaging: exploiting the normal spectroscopy,
it scans the object under evaluation spatially (read images over time) and
spectrally (acquire images of an area at different wavelengths) to pro-
duce multi-dimensional images which are studied to find a contaminant.
Although it has great accuracy, it works only in surface, requires an high
acquisition time and a large memory, and it is expensive.

• Terahertz Imaging: the principle is the same of the infrared imaging,
despite that the working frequency is in the range [0.1 - 10]THz. Its
limitations are the penetration depth, the attenuation in water, the high
instrumentation cost and the slow acquisition time.

• Ultrasound Imaging: a low energy pulse of sound vibrating at fre-
quencies between 3 and 30 MHz is transmitted into the investigated
object by a transducer probe touching it. The back-scattered signal is
listened by the same probe and it is processesed to form images [11]. It
is employed for superficial and internal defects detection and it is real-
time. The principal disadvantage is the need of a contact between the
transducer and the item to inspect.

• Thermal (Infrared) Imaging: since all materials emit an infrared
radiation, this technology utilizes that radiation to produce an image
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of the thermal distribution of the body’s surface [12]. Even though it
is contact-less, it is expensive and suffers from thermal interference and
difficulty to distinguish the low thermal variation produced by contam-
inants [13].

1.2.3 Microwave Imaging: a promising technology
A complementary and promising technique, aiming to overcome some lim-
itations in current technologies is emerging: Microwave Imaging (MWI).
(MWI).

It is based on exploiting the intrinsic dielectric difference among materials
through low-power electromagnetic waves at microwave frequencies. These
microwaves are radiated through a set of antennas, penetrate the object
under test non invasively, and are scattered back to the same antennas which
record them. Then, the recorded signals are processed with ad-hoc algorithms
which provide a spatial map of the dielectric properties of the object under
test, that is a tomographic 3D image. The last step requires the analysis of
the generated image to locate targets or to distinguish different materials.
This technology works because two different materials that are in contact
create a discontinuity that scatters the incident wave with different intensity
according to the contrast of the dielectric properties of those two materials.

MWI has many attractive characteristics. It is non-destructive, contact-
less, non-ionizing, real-time, cost-efficient and easy to operate [13]. This
technique is different from those already in the market because covers a
specific need. Indeed, it is capable of detecting nonmetallic and low-density
contaminants, such as fragments of plastics, glass and wood. Moreover it
can be tuned to have an appropriate trade-off between penetration depth and
spatial resolution and does not suffer of strong absorption in water [3] [9] [14]
[15]. The only drawback is the requirement of a dielectric contrast between
the background medium and the contaminant: the higher the difference, the
greater the scattered field, the clearer the presence of a contaminant.

Hence, adding an in-line MWI-based intrusion detection system to a typ-
ical food manufacturing chain could help to further decrease the presence of
a foreign body in the end product.
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1 – Introduction

1.3 Thesis focus
The goal of this thesis is to apply Machine Learning (ML) algorithms to
a Microwave Sensing (MWS) system to identify foreign objects in hazelnut-
cocoa spread jars during their way in the production line. It is called Sensing
because in this application the microwave back-scattered signals are exploited
to detect the presence of a contamination without image reconstruction.

Two kinds of binary classifiers are adopted: a Support Vector Machine
(SVM) and a Multilayer Perceptron (MLP).

The former is chosen because it is one of the most common ML algorithms
for binary classification to start with. In fact, thanks to its two hyper-
parameters, it is easy and fast to train and it can help to discover if ML
can solve the problem to be addressed [16]. Moreover, it is applied to other
detection problems with propitious results. Some examples belong to breast
cancer monitoring applications [17] [18] [19].

The latter is selected to have a second classifier to compare with the SVM.
Indeed, whenever a new problem is faced with ML, there are no a priori clues
about which algorithm will perform better. This is due to the No Free Lunch
Theorem [20]. As second reason it is considered interesting because of its
straightforward hardware implementation in case of satisfactory classification
results.

In general, the decision of using these two classifiers was totally uncon-
strained because in literature there are no specific publications about ML
applied to the foreign body detection for industrial food safety.

The training is performed on two different static Datasets, that is the jar is
not moving while its acquisition is in progress. In other words, the conveyor
belt is off.

The first one consists of 1800 synthetic data. They are tomographic im-
ages given by the projection of the imposed dielectric contrast change onto
the Truncated Singular Value Decomposition (TSVD) of the linear operator
L of the reference scenario, i.e. the golden case in which the jar is uncontam-
inated [21]. Figure 1.1 shows two tomographic images of an uncontaminated
and a contaminated jar, respectively. Before training the two ML classifiers,
these data are standardized and reduced in dimensions by Principal Com-
ponent Analysis (PCA). The purpose of this dataset is to validate the idea
of applying ML to the foreign body detection problem in the hazelnut-cocoa
cream jars with MWI.
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1.3 – Thesis focus

(a) (b)

Figure 1.1: Two examples of 3D tomographic images reconstructed with the pro-
jection of the imposed dielectric contrast change onto the Truncated Singular Value
Decomposition (TSVD) of the linear operator L of the reference scenario.
The simulated scenario consists in a cylindrical jar, whose base radius is 3.5 cm and
its height is 8 cm. In (a) an uncontaminated jar. In (b) a contaminated jar where the
presence of the intrusion is clearly visible. The simulated intrusion has a diameter
of 1 cm and a dielectric constant of εplastic = 4.1 @ 10GHz.

Since the results obtained with the first Synthetic Dataset were encourag-
ing, a second Dataset is created. It is composed by 2400 samples of scattering
parameters of real measurements, as proposed by [22] for apple classification.
Data are acquired with the MWI system prototype, also called MIT-Food pro-
totype [23], depicted in Figure 1.2.
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1 – Introduction

Figure 1.2: Overview of the MWI system prototype composed by: an antennas
arch, a Vector Network Analyzer, a switching matrix, a controller (laptop with a
Matlab script).

• an antennas arch [21]: a 3D printed support was designed in order
to fix six antennas in a gallery-shaped architecture: it aims to offer a
multi-view description of the object under test;

16
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(a)

(b)

Figure 1.3: In (a) the antennas arch with a safflower oil jar beneath it and a foreign
body inside. The safflower oil replaces hazelnut-cocoa cream to see the position of the
contaminant during the measurements. It doesn’t change the dielectric properties
of the chocolate because εoil Ä εcream = 2.86 @ 10GHz.
In (b) the foreign body: a 3 mm plastic (PET) sphere (εplastic = 3.2 @ 10GHz)
closed in a latex glove knotted with a fishing wire to handle it easier.

• a Vector Network Analyzer (VNA): it is an instrument which mea-
sures the scattering parameters (also called S-parameters) of the network
composed by the jar, the antennas arch and the air in between. In this
project a two-port VNA is used (one transmitting (TX) and one receiv-
ing (RX)), and a switching matrix and a controller are required, since
the number of antennas is six;

• a switching matrix: it is a device designed to let all the possible cou-
ples of antennas in the system interact to get a complete 6×6 Scattering-
matrix with the 2-ports VNA;
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Figure 1.4: Switching matrix with its driver board.

• a controller: it is a laptop with a Matlab script which pilots the mea-
surements by configuring the switching matrix and by ordering the VNA
to acquire the multi-static S-parameters. It is also in charge of saving
this S-matrix in a textual format.

Finally, the most performing ML algorithm is synthetized for the Xilinx Zynq-
7000 SoC to create an hardware accelerator, with the help of Xilinx Vivado
tools. This is necessary because:

• it is important to evaluate if the classification performances of the purely
software solution are confirmed;

• the MWI system prototype of Figure 1.2 has to be added to the produc-
tion line with a relative compactness;

• the production chain works at a speed of 3 jars per second: assuming
that an half-jar space is left between two subsequent jars, the whole sys-
tem has to classify a jar in 250ms. A specialized accelerator can be faster
than a general purpose processor because it can use specialized arith-
metic units, higher level of parallelism and higher degree of pipelining
[24]. So latency is the principal constraint of this project;
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• the High Level Synthesis (HLS) enables a fast and large design space
exploration to satisfy the latency requirement and, at the same time,
optimize the other classical hardware constraints, such as area, power,
and throughput.

In this way the MIT-Food system prototype, combined with ML algorithms,
can become the first worldwide In-line prototype based on MWS to detect
foreign objects in food/beverage products on a conveyor belt [13].

1.4 Thesis outline
The remainder of this thesis is organized as follows.

Chapter 2 introduces to Microwave Imaging Technology and Machine
Learning. In the first part it explains the principal equations which are at the
base of MWI to reconstruct the dielectric contrast from the scattering param-
eters. In the second section, it deals with some basis on ML. In particular,
it introduces to SVM and MLP algorithms, those used during the project.
Then, it continues with data preprocessing, an important step to extract the
best from the input data. In particular, it focuses on Feature Scaling and
Feature Extraction, respectively with Standardization and Principal Com-
ponent Analysis (PCA). Later, it shows the main techniques to train and
test ML algorithms, such as Cross-Validation (k-fold approach) and Nested
Cross-Validation. Moreover it briefly explains three common techniques for
tuning the hyper-parameters of a model: Grid-Search, Random-Search and
Bayesian Optimization. In conclusion, the most relevant performance met-
rics and plots are described: accuracy, precision, recall, confusion matrix,
ROC curve, and AUC.

Chapter 3 demonstrates how the Synthetic Dataset (the first of Para-
graph 1.3) is generated and preprocessed until the realization of five new
datasets. So, SVMs and MLPs are trained on these datasets, first with a
loose, then with a fine grid. 5-fold and 10-fold Cross-Validation schemes
are used, together with Grid-Search and Bayesian Optimization. Nested
Cross-Validation is also employed for the SVMs. Finally, the classification
performance of the best models are evaluated on their Synthetic Test Sets.
Additionally, the simulated environment is explained, specifically the elec-
tromagnetic characteristic of the antennas arch.

Chapter 4 repeats the same steps of the previous chapter applied to the
Real Dataset. At the beginning, the specifications of the laboratory instru-
mentations are given. Next, the creation of the Real Dataset (the second
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of Paragraph 1.3) with different types of foreign bodies is illustrated. After
its preprocessing, the SVM and MLP classifiers are trained and tested with
the same methodologies of Chapter 3 and the most performing models are
reported and compared.

Chapter 5 talks about the hardware implementation of the best MLP
classifier. First, its Keras model is translated into an High Level Synthesis
(HLS) C/C++ code and then it is imported in Vivado HLS. Here it is sim-
ulated with the same Real Test Set used in Chapter 4 and the classification
performance are confirmed. After a brief design exploration with the con-
straints of 100ms as maximum latency and with the target FPGA of the
Avnet ZedBoard Zynq-7000 Development Board, the promising architectures
are implemented in Vivado to estimate their performance, utilization of re-
sources, and power. The one with the lowest latency is the candidate for the
industrial application.

Finally, Chapter 6 summarizes the thesis, discusses the relevant results
and anticipates the possible future works.
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Chapter 2

Microwave Imaging and
Machine Learning Theory

The first part of this chapter deals with the algorithm which is at the basis
of Microwave Imaging (MWI) Technology. It aims to reconstruct a 3D to-
mographic image of the dielectric contrast of the object under test from the
difference of the Scattering-matrices between the measured scenario and the
reference one.

Instead, the second section focuses on the basic topics of Machine Learn-
ing and the classifiers employed in this project. It explains the theory be-
hind SVM and MLP algorithms and the meaning of their hyper-parameters.
Next, it talks about data preprocessing, in particular Feature Scaling and
Feature Extraction, with a special attention to Standardization and to Prin-
cipal Component Analysis (PCA). It presents the model evaluation schemes
that are usually necessary to train and test ML models. Among these the
most famous are Cross-Validation and Nested Cross-Validation. Moreover it
continues with common techniques for tweaking the hyper-parameters: Grid-
Search, Random-Search and Bayesian Optimization. By the end, the metrics
used to compare the classification performance of different models are illus-
trated, from the accuracy, to the ROC curve, passing from the Confusion
Matrix.
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2 – Microwave Imaging and Machine Learning Theory

2.1 Microwave Imaging mathematical back-
ground

MWI was introduced in Paragraph 1.2.3, where all its interesting features
were discussed in comparison with the other techniques for food inspection.
As already said, its goal is to generate a tomographic 3D image of the object
under test by exploiting the difference of the dielectric properties among the
materials that compose the object itself. In this thesis, the object under test
is the hazelnut-cocoa spread jar of Figure 3.2a.

MWI requires a series of antennas around the object under test to measure
the multi-static, multi-view Scattering-matrix of the network composed by
the object, the antennas, and the air in between. Each p,q-th entry represents
the scattering parameter obtained by using antenna p as transmitter (TX)
and antenna q as receiver (RX). To evaluate the dielectric contrast change
∆χ, the difference of the Scattering-matrices ∆S between the measured sce-
nario and the reference scenario has to be performed. The former is the case
in which the jar could potentially contain a foreign body, the latter when the
jar is for sure free of intrusions. In this work the antennas are six and they
are placed in a gallary-shape structure as shown in Figure 1.3a of Paragraph
1.3 and Figure 4.1 of Paragraph 4.1.1. The result is a 6×6 Scattering-matrix
for each acquisition. However, exploiting the reciprocity, the number of mea-
surements could be reduced from P 2 = 36 to P (P + 1)/2 = 15. Therefore,
the MWI algorithm has to invert Equation 2.1 in order to find ∆χ:

∆S(rp, rq) = −jωεb
4

Ú
D

Eb(rp, r) · E(r, rq)∆χ(r)dr (2.1)

where:
• D is region of interest (ROI), that is the volume of the object under test

(the jar);

• rp and rq are the positions of the transmitting and receiving antennas,
respectively;

• Eb(rp, r) is the "background" electric field radiated in each point r of
the ROI by the antenna in position rp when the volume has no intrusion,
so ∆χ(r) = 0;

• E(r, rq) is the total field measured by antenna q given by the super-
position of the incident field Eb(r, rq), not dependent of ∆χ, and the
scattered field Escat, due to ∆χ (E(r, rq) = Eb(r, rq) + Escat);
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2.1 – Microwave Imaging mathematical background

• εb is the "background" dielectric constant, i.e. the dielectric constant of
the material in the ROI (the hazelnut-cocoa spread);

• ω contains the operating frequency used by the antennas. Its expression
is 2πf ;

• · is a dot product.

Thanks to the distorted Born approximation [25], which holds until the con-
trast between the intrusion and the surrounding medium is low and is local-
ized in a small portion of the ROI, E(r, rq) Ä Eb(r, rq). In other words,
the contribution of the scattered electric field Escat can be neglected and
Equation 2.1 can be linearized in this way:

∆S(rp, rq) = L(∆χ) (2.2)

where L is the linear integral operator which relates the aforementioned
difference of the Scattering-matrices ∆S to the dielectric contrast change
∆χ. The kernel of L is −jωεb/4 ∗ Eb(rp, rm) · Eb(rm, rq), for rm ∈ D. It
is computed off-line for all combination of antennas p and q and for all the
positions inside the ROI with Finite Element Method (FEM) simulations.

Next, the Singular Value Decomposition (SVD) of the linear operator L

is performed:

L = USV ∗ (2.3)

Finally, to reconstruct the the 3D tomographic image, the unknown differ-
ential contrast ∆χ in each point r of the ROI is calculated by inverting
Equation 2.2 and exploiting the Truncated Singular Value Decomposition
(TSVD) [25]:

∆χ(r) =
NØ
n=1

1
σn

< ∆S, un > vn (2.4)

where:

• ∆S is the variation of the Scattering-matrices between the measured
scenario (which can be perturbed or not) and the reference scenario;

• σn is the n-th singular value of L, belonging to S = {σn} which is sorted
in descending order;
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2 – Microwave Imaging and Machine Learning Theory

• un and vn are the n-th singular vectors of L, belonging to U = {un} and
V = {vn}, respectively, that correspond to the sorted singular values;

• N is the truncation factor that defines the level of information to retain
after the TSVD. Its choice is a trade-off between the stability against
the noise affecting the measured Scattering-matrix and the accuracy of
the reconstructed image [24]. In practice, it represents the number of
the couples of antennas to be switched to reconstruct the image;

• < · > is an inner product because U and V are complex numbers
vectors.

To see the reconstructed image, ∆χ(r) is simply plotted in the three-dimensional
space. Two examples of the results are reported in Figure 1.1b of Paragraph
1.3: one is a contaminated jar, the other is a free jar. It is important to
underline that the more evident is dielectric contrast, the higher is the differ-
ence of the Scattering-matrices, the clearer is the presence of a contaminant
in the final image.

2.2 Machine Learning basic theory
As the world of Machine Learning (ML) is really wide and researches on this
field are still on-going, this paragraph just wants to give a brief introduction
to the main topics necessary to understand the subsequent contents of this
thesis. In particular, it deals with supervised ML and binary classification.

2.2.1 Support Vector Machine Classifier
Support Vector Machines (SVMs) are born as supervised ML models for
binary classification. They can also be adopted for multi-class classification
and regression problems. They were first introduced by Cortes and Vapnik
in 1995 [26]. Here the attention is on their classification capabilities. The
following analysis is taken from [27].

A SVM is based on the concept of decision boundary. Indeed, the training
phase has the goal to find the Support Vectors (SVs), which are the training
samples that define the optimal separating hyperplane, the so called decision
boundary, that is the hyperplane which separates the samples in the two
classes with the maximum margin. The margin is defined as the smallest
distance between the decision boundary and any of the samples. Figure 2.1
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can be helpful to understand these concepts. Moreover, the SVs are used in
the prediction phase to assign the class of new unseen data.

Figure 2.1: An example of optimal separating hyperplane with maximum margin
in the Euclidian space. The margin is the distance from the decision boundary
w ∗ x + b = 0 to the closest sample. The SVs are highlighted dots of both classes
which are the nearest to the decision boundary.

Two considerations are important to know. The first is that the smaller is
the number of SVs, the lower is the upper bound of the generalization error.
The second states that the larger is the margin, the lower is the generalization
error of the classifier [20].

Linear SVM
Consider a linear classification problem where the training samples are lin-
early separable in the feature space. The training dataset is composed by
N labelled samples: (xi, yi), i = 1, 2, ..., N, xi ∈ Rd and yi ∈ {−1,+1},
where xi is the i-th sample and yi is the i-th label associated to it. The deci-
sion boundary that separates the samples in the positive and in the negative
classes is given by:

p(x) = wTx + b = 0 (2.5)
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where wT is a vector normal to the optimal hyperplane and b is a constant
bias parameter. The training phase wants to find the right choice of wT and
b such that p(xi) > 0 for the samples having yi = +1 and p(xi) < 0 for the
samples having yi = −1, that can be summarized in yip(xn) > 0 for all the
training data i = 1, 2, ..., N . So the decision function of the SVM classifier is
defined as:

d(x) = sign(wTx + b) (2.6)

As the perpendicular distance of a generic point x from an hyperplane defined
by p(x) = 0 is given by |p(x)|/||w||, the distance of the n-th sample xn to
the decision surface is:

ynp(xn)
||w||

= yn(wTx + b)
||w||

(2.7)

in which p(xn) has been substituted with its complete expression taken from
Equation 2.5. If xn becomes the closest point to the decision boundary,
the perpendicular distance of Equation 2.7 becomes the margin. Hence, to
find the maximum margin solution, Equation 2.7 has to be maximized. This
optimization problem can be simplified throughout a rescaling which ends up
in setting its numerator yn(wTx + b) = 1. Thus, the optimization problem
is simplified in:

arg min
w,b

1
2 ||w||2 (2.8)

where the maximization of ||w||−1 has been converted to the minimization
of ||w||2.

Thanks to the aforementioned simplification, it is also possible to write the
canonical representation of the decision hyperplane that all training samples
have to satisfy:

yn(wTxn + b) ≥ 1, n = 1, 2, ..., N (2.9)

So far, it was assumed that the final result would have been an exact sepa-
ration hyperplane. However, since an exact separation of the training data
can lead to poor generalization, it is accepted that some training points are
misclassified in a controlled way. So the training process has to both maxi-
mize the margin and reduce the number errors at the same time. Therefore,
a penalty is associated to each n-th data point, called slack variable ξn ≥ 0,
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which depends on the position and the distance of each sample with respect
to the decision boundary:

• ξn = 0: the sample is correctly classified, that means it is on the correct
side of the decision boundary and it is outside the margin;

• 0 < ξn ≤ 1: the sample is inside the margin, even thought it is on the
correct side of the decision boundary;

• ξn > 1: the sample is misclassified because it is on the wrong side of the
decision boundary.

The first consequence is that the classification constrains in Equation 2.9 is
replaced with:

yn(wTxn + b) ≥ 1 − ξn, n = 1, 2, ..., N (2.10)

which implies that the exact margin of before is transformed in a soft mar-
gin. The second is that the minimization problem in Equation 2.8 becomes
relaxed:

arg min
w,b

C
NØ
n=1

ξn + 1
2 ||w||2 (2.11)

where C > 0 is a regularization hyper-parameter because it controls the
trade-off between minimizing the training errors and controlling the model
complexity. Since the term C

qN
n=1 ξn is fixed, a large C makes the decision

boundary more complex because the minimization in Equation 2.11 requires
more efforts. In other words, a low C makes the decision surface smooth,
while a high C aims at classifying all training samples correctly by compli-
cating the decision surface.

The quadratic programming problem reported in Equation 2.11 is solved
by maximizing the dual representation of the Lagrangian function:

max L(a) =
NØ
i=1

an − 1
2

NØ
i=1

NØ
j=1

yiyjaiajxTi xj (2.12)

subjected to:
0 ≤ an ≤ C (2.13)

NØ
i=1

aiyi = 0 (2.14)
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i = 1, 2, ..., N . An interesting property of SVMs is that the determination
of the model parameters is a convex optimization problem, and so any local
solution is also a global optimum.
The solution provides a which is used to calculate w and b:

w =
SVØ
i=1

aixiyi (2.15)

b = yi − wTxi (2.16)

After the training, and so when the minimization problem is solved, the
classification of a new data xnew can be performed by evaluating Equation
2.5 because w and b are known at this time:

d(xnew) = sign

 SVØ
i=1

aiyixTi xnew + b

 (2.17)

where SV is the number of SVs because only the SVs appear in the sum-
mation (having an /= 0). They are called in this way because they satisfy
the equality of Equation 2.9: yip(xi) = 1. The practical consequence is that,
once the model is trained, only the SVs are retained, while the other training
samples can be discarded.

Non-linear SVM
In many real-world classification problems, it is not possible to linearly sepa-
rate the training data in the original feature space. In these cases, exploiting
the Mercer’s condition [26], the input space is mapped to a sufficiently higher
dimensional space where a linear separation is feasible. This transformation
is carried out with an appropriate nonlinear mapping function ϕ(·) applied
to the data x. So the decision function of a non-linear SVM becomes:

d(x) = sign

 SVØ
i=1

aiyiϕ(xi)Tϕ(x) + b

 =

= sign

 SVØ
i=1

aiyiK(xi,x) + b

 (2.18)

where:
b = yi −

SVØ
i=1

aiyiK(xi,x) (2.19)
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in which K(xi,x) = ϕ(xi)Tϕ(x) is called kernel function. The most common
kernel designs [28] are:

• Linear: < xi,x >

• Polynomial: (γ < xi,x > +r)d

• Sigmoid: tanh(γ < xi,x > +r)

• Gaussian Radial Basis Function (RBF): e(−γ||xi−x||2)

where < · > is an inner product and || · ||2 is the L2-norm.

For this thesis project, the RBF kernel is employed. So this SVM has two
hyper-parameters, the regularization parameter C and the kernel-specific γ.
The meaning of the first is already discussed above, while the second defines
the inverse of the radius of influence of the samples that are selected as SVs
during the training [28]. Let us examine the two extreme cases. Basically,
if a sample is selected to be a SV and γ is too high, the region of influence
defined by that SV is concentrated around it: this causes overfitting, which
can’t be avoided even by decreasing C to simplify the model. On the other
hand, a too small value of γ, makes the region of influence of that SV as
wide as to arrive to include the whole training set: the resulting model is
like a linear model that separates the two classes with a linear hyperplane.
Obviously, reasonable values stays in between these two extremes1.

It is a common practice to use Grid-Search for the hyper-parameters se-
lection of SVMs because they have only two hyper-parameters to tune [29].
Moreover, it could happen that among the solutions found with Grid-Search
some of them have the same value of γ but different values of C. It is
preferable to choose the solution with the lower C to keep a simple decision
boundary, prevent overfitting, and have a good generation on new unseen
data. Finally, in terms of time, a small C reduces training time and speeds
up predictions [28].

2.2.2 Multilayer Perceptron Classifier
Multilayer Perceptrons (MLP) are supervised learning algorithms that realize
a function f(·) : Rm → Ro by training on a dataset, where m = nfeatures

1To visually understand the behavior of the decision boundary of a SVM with Linear
and RBF kernels, the reader is invited to visit this website: https://cs.stanford.edu/
people/karpathy/svmjs/demo/. Accessed 02/12/2019.
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is the number of dimensions of the generic input x and o = noutputs is the
number of dimensions of the output. MLPs can become non-linear function
approximators for either classification or regression ML problems. They are
a variant of the original Perceptron model proposed by Rosenblatt in the
1950 [30]. The following analysis is taken from [28].

The MLP architecture has a fully connected-design. It is divided in layers
which are composed by series of neurons, also called nodes or units. Inside
a j-th neuron of a generic hidden layer a non-linear function g(·) : R → R
is implemented, named activation function, which transform the incoming
vector x from the previous layer with a weighted linear summation:

zÍ
j = g(

nØ
i=1

wixi + bj) (2.20)

where n is the number of nodes of the previous layer, wi is the i-th weight
of the current layer, bj is the bias of the j-th neuron, and zÍ

j is the output
of j-th neuron. In turn, zÍ

j becomes the xj of the next layer, etc., in case of
a multi-layer structure.

In Figure 2.2 an example of MLP with one hidden layer is shown. In a
MLP the minimum number of layers is three, where the leftmost is known as
input layer, the rightmost is called output layer, and all the other layers in
between these two are the hidden layers. For this basic case, the non-linear
function learned by the hidden layer is (in vector notation):

z(x) = w2 g(wT
1 x + b1) + b2 (2.21)

where g(·) is the activation function of the neurons in the hidden layer;
z(x) is the output of the hidden layer; w1 and w2 are the weight vectors of
the input layer and hidden layer, respectively; b1 and b2 represent the bias
added to all the nodes of the hidden layer and output layer, respectively.

Regarding the depth of the input layer, it is equal to nfeatures. Instead, in
the case of a MLP used for the classification purposes, the number of output
nodes noutputs usually corresponds to the number of classes nclasses that the
model has to classify, except for the binary case in which one output neuron
is enough. Typically in a multi-class situation the activation of the output
layer is a softmax function, whose expression is:

h(z)i = eziqnclasses
l=1 ezl

(2.22)
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Figure 2.2: Example of MLP with one hidden layer.

where zi is the i-th element of the input vector z and h(z)i is the i-th
element of the output vector of the softmax function. h(z)i represents the
probability that the input sample x belongs to the i-th class.

Instead, for binary classification, the output node performs a logistic func-
tion, i.e. a sigmoid, whose output is a scalar between 0 and 1:

h(z) = 1
(1 + e−z) (2.23)

where z is again the weighted linear summation of Equation 2.21 for the
case of Figure 2.2. The default discrimination threshold for the result of the
sigmoid function is set to 0.5 by default: when it is greater or equal 0.5,
the input sample is classified belonging to the positive class; otherwise, it is
predicted to be negative.
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The vector of the weights w and the vectors of the biases b of Equation
2.21 are the parameters that the model has to learn during training. A
common choice to find them is by minimizing the training error, and so the
Loss Function. Several loss functions are available depending on the type
of problem. For classification it is the Cross-Entropy that becomes Binary
Cross-Entropy for the binary case:

Loss(ŷ, y,w) = −y ln ŷ − (1 − y) ln (1 − ŷ) + αR(w) (2.24)
where y is the label associate to the input sample that is processed by

the MLP, ŷ is the predicted label, R is a regularization term that penalizes
model complexity, α > 0 is an hyper-parameter that controls the magnitude
of the penalty (also called Weight Regularization Parameter).

The common choices for the regularization term R are:

• L2 norm: R(w) = 1
2

qn
i=1w

2
i ;

• L1 norm: R(w) = qn
i=1 |wi|;

• Elastic Net: R(w) = ρ
2

qn
i=1w

2
i + (1 −ρ) qn

i=1 |wi|, a convex combination
of L2 and L1, where ρ controls that combination.

To minimize the Loss Function there are different algorithms available,
referred to as optimizers in Keras. Two of the most famous are Stochastic
Gradient Descent (SGD) [28] and Adaptive Moment Estimation (Adam) [31].
The SGD iterates over the training samples and for each of them updates
the model parameters w according to the following update rule:

wi+1 = wi − η∇Loss(ŷ, y,w)i (2.25)
where η > 0 is the learning rate, which controls the step-size of the update

of the parameters; i is the iteration step; ∇Loss(·) is the gradient of the loss
with respect to the weights w. The parameters b are updated similarly, but
without regularization in the loss function. While η is an hyper-parameter
when using SGD, it is not for Adam. In fact, an interesting characteristic of
Adam is the ability to adapt the learning rate η automatically, also reducing
it with the passing of training time [31]. This contributes to eliminate the
learning rate from the list of hyper-parameters to manually tweak.

From Equation 2.25 is evident that to compute the first iteration, the
weights have to be initialized. Since the MLP has a non-convex loss function
where more than one local minima exist, different random weight initial-
izations can lead to different validation accuracy [28]. Therefore, there are
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various weight initializers that can be chosen. They can initialize the weights
with zeros, ones, a single constant for all weights, random values from a nor-
mal distribution, etc. In literature more complex initializers proved to be
more effective: He Normal and Lecun Normal seem to work very well. The
reason is that they prevent a learning slowdown because the standard devi-
ation of their Gaussian distribution used for weight initialization is divided
by the square root of the fan-in, i.e. the number of input units in the weight
tensor [16] [32]. Even so, understanding these dependencies is still a subject
of ongoing research, but for sure MLP are very sensitive to the initialization
strategy.

In summary, after the weight initialization, the MLP for binary case mini-
mizes the Binary Cross-Entropy loss function of Equation 2.24 by repeatedly
updating the weights with Equation 2.25, assuming SGD is used. After hav-
ing computed the loss, a backward pass propagates it from the output layer
to the previous layers, assigning an update to each weight proportional to
the error computed in the output. The final goal is to decrease the loss at
the next iteration. The computation of the gradients and the propagation
of the errors for the weight updates is carried out by an algorithm called
Backpropagation [16].

In this last part the remaining hyper-parameters, usually considered when
training a MLP, are briefly described.

• Number of hidden layers & hidden units. These are the two main
concerns for a designer because these options define the architecture of
the MLP. In literature there are so many different rules of thumbs based
more on experience than on science that complicate the choice of these
two hyper-parameters. Each ML book provides its own version. For ex-
ample, according to [20], three layers suffice to implement any arbitrary
function and only for special problem conditions or requirements more
than three hidden layers should be considered. Moreover, networks with
multiple hidden layers are more susceptible to face unwanted local min-
ima. So, when facing a new ML problem, it is common to start with a
single hidden layer. Since the question is still open because every ML
problem is different from the others, a secure alternative is to make ex-
periments. Spanning many solutions with smart hyper-parameters tun-
ing techniques, such as Bayesian Optimization (Paragraph 2.2.5), can
be a solution.
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• Activation functions. Neurons can compute many activation func-
tions as long as they are non-linear. When approaching a ML problem
with a MLP, the most used are:

elu : s(x) =
x if x > 0
αex − 1 if x < 0

(2.26)

relu : s(x) = max(x, 0) (2.27)
selu : s(x) = k · elu(x, α) (2.28)

tanh : s(x) = ex − e−x
ex + e−x

(2.29)

softsign : s(x) = x

|x| + 1 (2.30)

(2.31)

where k in selu is a scalar constant.

• Dropout rate. It belongs to a set of techniques that aim to mitigate
the effects of overfitting. Among these there is also the penalty param-
eter α of Equation 2.24. The idea is simple: during training a group of
randomly selected neurons on a specific layer are deactivated. This im-
proves the generalization because stimulates the layer to learn the same
input pattern with the remaining neurons. During the prediction phase
the dropout is deactivated.

• Batch-size. It is the number of samples in a batch, that is the set of
samples used in one iteration of model training, which corresponds to
one gradient update [33]. In other words, the batch-size sets the number
of samples the network "sees" before to update its weights. For example,
the batch size of SGD is 1.

2.2.3 Dataset preprocessing
Data are the key elements for ML: it is more likely that a simple model trained
with "quality" data2 outperforms a complex model trained on meaningless

2A possible definition of "quality" can be that of a dataset in which: there are no label
errors, the features have low noise, the data has been scaled to adapt to the model, the
outliers3 are handled correctly, the training set is representative of the data available to
the model at prediction time, etc.
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data [33]. In addition, good training data can ease the task of a model and
allows it to exploit all its potentiality by learning as much as it can from
the input samples. For these reasons, before to train a ML algorithm, it
is common to carry out these two activities: Feature Scaling and Feature
Reduction.

Feature Scaling
Its consists in transforming the features of the input samples to be on a simi-
lar scale, such that the ML model does not prefer one feature over the others
[20]. This could happen when there are some features that have greater nu-
meric range than others. If a model is trained with this kind of data, parts
of its calculations could have numerical problems. One example is the inner
product between the feature vectors in linear, polynomial or sigmoid kernels
of SVMs [29]. Another example concerns MLPs, in which non-uniform fea-
tures prevent the so called uniform learning. When this occurs, the weights
associated to larger features reach their final equilibrium values before the
others, leading to an higher error rate [20]. Scaling also helps the Gradient
Descent algorithm to converge more quickly. In this sense, both SVMs and
MLPs benefit from Feature Scaling: the overall performance rises and the
training stability improves [33]. To conclude, to apply effectively Feature
Scaling, the same scaling method needs to be adopted for both training and
test data [29].

Now four common techniques taken from [33] are explained. x will be
referred as the input vector, while xÍ will be its scaled version.

• Scaling to a range

xÍ = x − xmin
xmax − xmin

(2.32)

This method can be used when the input data x is bounded between a
maximum (xmax) and a minimum value (xmin), there are few or no out-
liers3, and the data will be approximately uniformly distributed across
the new range. Ordinary choices for the range of values of the scaled
vector xÍ are [0, 1] or [-1, 1].

3Outliers: values distant from most other values. Regarding input data, are those
values that are more than roughly 3 standard deviations from the mean [33].
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• Clipping
Simple method that can also be applied before or after other scaling tech-
niques. It is employed when data contain many outliers. Clipping col-
lapses all the feature values above/below a certain maximum/minimum
value to a fixed value.

Figure 2.3: Example of the application of the clipping on an initial data distribu-
tion with many outliers. Image taken from [33].

• Log scaling

xÍ = log(x) (2.33)

It uses the logarithmic nature to compress a broad range of feature values
to a narrow range. It is useful when data has a power law distribution,
that is when there are many samples concentrated in a short range and
few samples span over a wider range.
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Figure 2.4: Example of the application of the log scaling on an initial dataset with
power law distribution. Image taken from [33].

• Standardization
This procedure has different names, such as Z-Score or "centering and
scaling". It transforms individual features in standard normally dis-
tributed data, like the famous Gaussian distribution with 0 mean and
unit variance. Centering and scaling is applied independently on each
feature value by computing the relevant statistics on the samples in the
training set [28]. It is useful when there are a few outliers and the
situation is not so extreme that clipping is needed. The formula is as
follows:

xÍ
i,j = xi,j − µj

σj
(2.34)

∀i ∈ 1, 2, ..., nsamples, ∀j ∈ 1, 2, ..., nfeatures

where xi,j is the j-th feature of the i-th input vector xi to transform,
µj is the mean of all the j-th features belonging to the training set, σj
is the standard deviation of all the j-th features of the training set and
xÍ
i,j is the j-th feature of the i-th transformed vector xÍ

i.

Feature Extraction
The goal of this technique, also known as Feature projection, is to transform
data from an high-dimensional space to a low-dimensional one. Thus, long
data samples can be compressed by reducing the number of features without
loosing to much information [34]. The reasons behind the application of
Feature Extraction are at least three.
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The first resides in the fact that having thousands of features complicates
the training of the ML models [29] which can result in a very long training
time.

The second is related to their prediction performance, which can benefit
of a space with reduced dimensionality. In fact, the Curse of Dimensionality
[35] states that the available data become sparse when the feature space
is high-dimensional. This complicates the job of some ML algorithms that
want to separate the samples with similar properties. The solutions to this
problem are either to increase the number of training samples or to reduce
the number of features.

The third is more practical and is related to resource limited applica-
tions. Indeed, the elimination of useless features can dramatically reduce the
dataset size in terms of disk space occupation. The resulting free space can
potentially be used to increase the dataset.

There are plenty of transformations, linear and non-linear [36]. However,
the focus of this part is on Principal Component Analysis (PCA) because it
is needed in the next paragraphs.

• Principal Component Analysis
Assume to have a dataset D organized as matrix of (nsamples, nfeatures)
with each sample x being a vector with length nfeatures which is the
number of dimensions. Four steps are required to perform PCA [34].

1. Subtract the mean from each feature of each sample. The
subtracted mean µj for all the j-th features of all samples is the
mean of all the j-th features across all dataset D.

xÍ
i,j = xi,j − µj (2.35)

∀i ∈ 1, 2, ..., nsamples, ∀j ∈ 1, 2, ..., nfeatures

where xi,j is the j-th feature of the i-th vector x to transform and
xÍ
i,j is the j-th feature of the i-th transformed vector xÍ. Let us call

the resulting dataset D’.
2. Compute the covariance matrix. Since the covariance is calcu-

lated between 2 dimensions, if x has more than 2 dimensions (i.e.
nfeatures ≥ 2), there is more than one covariance measurement. So
all possible covariance values are organized in a matrix, in which
each (p,q)-th entry is the covariance between dimension p and di-
mension q. That matrix is called covariance matrix . The definition
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of each entry for the general case of data with nfeatures dimensions
is:

cp,q = cov(Dimp, Dimq) (2.36)
∀p, q ∈ 1, 2, ..., nfeatures

where Dimp and Dimq are the p-th and q-th column vectors of
dataset D and so have a length equal to nsamples. Instead, the cov(·)
function is defined as:

cov(Dimp, Dimq) =
qnsamples

i=1 (Dimp −Dimp)(Dimq −Dimq)
(nsamples − 1)

(2.37)
where Dimp and Dimq are the mean of Dimp and Dimq.
Here an example of covariance matrix for a 3 dimensional dataset
with the usual x, y, z dimensions:

C =


cov(x, x) cov(x, y) cov(x, z)
cov(y, x) cov(y, y) cov(y, z)
cov(z, x) cov(z, y) cov(z, z)

 (2.38)

In general, the covariance matrix is square (ndimensions ×ndimensions)
and symmetric (cov(a, b) = cov(b, a)).

3. Generate the feature vector. The eigenvectors and eigenval-
ues of the covariance matrix are calculated and the eigenvectors are
sorted in descending order by eigenvalue. The sorted eigenvectors
are organized in a matrix of vectors called feature vector (FV ).

FV = (eig1, eig2, ..., eignfeatures
) (2.39)

At this point, in order to reduce the dataset dimension, only the
eigenvectors associated with the highest eigenvalues are kept. The
remaining eigenvectors are referred to as the principal components
because they retain the most of the dataset information. This is
clearly a lossy operation, but the smaller the eigenvalues of the dis-
carded eigenvectors, the less information is lost. Hence, the resulting
feature vector becomes:

FÍ
V = (eig1, eig2, ..., eignprincipal components

) (2.40)
where nprincipal components ≤ nfeatures.
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4. Derive the reduced dataset. The centered dataset D’ (nsamples,
nfeatures) is project onto the new low dimensional datasetD” (nsamples,
nprincipal components) thanks to this truncated transformation:

DÍÍ = DÍ FÍ
V (2.41)

The principal components are now the dimensions of the new dataset
and they are uncorrelated respect to the initial dimensions.
Sometimes, PCA is also used to visualize an high dimensional

dataset in 2 or 3 dimensions by retaining only the first two or three
principal components. Three examples can be seen in Figure 3.8,
and in Figure 4.6a and 4.6b.

2.2.4 Model evaluation schemes
Training and testing ML models can be done in different ways. Every ap-
proach provides a performance score as output, but not always it is possible
to generalize the result. In fact, it could depend on the particular bench of
data that is used to get that result, both during the training and the test
phases. If this happens, those results are not representative of the perfor-
mance that the model will have on new unseen data, i.e. the model does
not generalize. Unfortunately, having a low generalization error requires a
complex training and test procedure, which also increases the total training
time. This paragraph deals with the most common methods to evaluate ML
models in an incremental order of complexity, training time and generaliza-
tion capabilities. Models trained and tested with different schemes can’t be
compared between each other.

Model evaluation with held-out test set

Figure 2.5: Model evaluation with held-out test set schema.

This approach splits the dataset in a training set and a test set. The first part
is used to train the model with a certain combination of hyper-parameters.
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Instead, the purpose of the second part is to estimate the score (such as
the accuracy) and the generalization error of the trained model [20]. The
problem of this solution is a serious risk of overfitting on the held-out test
set because the hyper-parameters can be tuned until the estimator performs
optimally. Moreover, this solution has an high variance together with an
high generalization error on the test set because the resulting scores depend
on the specific data that compose both the training and test splits. This
method should be never adopted.

Model evaluation with held-out validation and test sets

Figure 2.6: Model evaluation with held-out validation and test sets schema.

To solve the overfitting problem, another part of the dataset is held out
to form the validation set. The training proceeds on the training set and
the hyper-parameters adjustments is based on the results obtained from the
validation set. When the model seems to be tuned properly, it is trained
on the union of the training and validation sets with the best found hyper-
parameters. Then the final evaluation is done on the test set.

The issues of this methodology are the substantial reduction of the number
of training samples, the variance on all the three sets, and the generalization
error on the test set because the results depend on the choice of the split
[28].

Model evaluation with Cross-Validation and held-out test set
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Figure 2.7: Model evaluation with a 5-fold CV and held-out test set schema.

A solution to the problems of the held-out validation and test sets schema is
represented by the so called Cross-Validation (CV) procedure. It avoids to
use the validation set of before. In fact, in the simplest approach of k-fold
CV , the training set is split into k smaller sets. In turn, k− 1 folds are used
for training the estimator with certain hyper-parameters, and the remaining
fold behaves as a validation set to compute a performance measurement (e.
g. the accuracy). When the loop is terminated, the average of the scores
obtained at each iteration can be considered a low variance estimation of the
model performance with that particular choice of hyper-parameters. The
higher is the number of folds, the more robust is the validation score from
different training-test splits. Other alternatives to k-fold CV exist, such as
Repeated K-Fold, Leave One Out, Stratified k-fold, etc. [28] and all of them
follow in general the same principles.

Finally, various models are trained in this way with different combinations
of hyper-parameters. Their prediction scores over the held-out test set are
used to compare them: also this time the test set represent a source of
generalization error.

The training and testing flow diagram is reported in Figure 2.8. The green
block named "Cross-Validation" carries out the operations of Figure 2.7.
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Figure 2.8: Flow diagram of the training and testing procedures in case of CV.

This method is probably the most famous one because offers many advan-
tages with respect the other solutions. In particular the low variance on the
validation scores, the prevention of the overfitting problem and the absence
of an held-out validation set that would lead to a waste of useful data for the
training phase. Since it is computationally expensive, the typical values for
k (in case of k-fold CV) are 5 or 10 to have robust performance analysis and
speed up implementation [37].

Model evaluation with Nested CV schema
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Figure 2.9: Model evaluation with Nested CV schema with 3-fold CV in both the
inner and outer loops.

Nested CV is the solution to solve all the previous issues. It consists in two
CV loops as can be seen in Figure 2.9 and 2.10. Consider again the basic k-
fold approach for both loops, with r folds for the outer loop and s folds for the
inner one (the method is also valid for different CV strategies). Starting with
the outer loop, r-fold CV is applied on the entire dataset, splitting it in the
usual training and test sets for r-times. Then, each training set is subjected
to another s-fold CV as explained in the non-nested Cross-Validation and
held-out test set schema of before: this is the inner loop. Therefore, there
are r × s repetitions of non-nested CVs, which implies that the drawback of
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this approach is the long training time.
The inner loop is used to find the best hyper-parameter by evaluating

the model on the validation set splits and averaging the validation scores,
as it happened before. After s iterations of a non-nested CV, the model is
trained with the best found hyper-parameters on the entire training set for
that particular training-test split. The outcome is a candidate model which
is evaluated on the remaining test set fold. At the end of the inner loop the
candidate model and its score are saved. In the next outer loop iteration
a new training-test split is generated and the inner loop starts on the new
training set. If the newly discovered candidate model is the same as before,
its score is saved and averaged with the previous evaluations; otherwise this
candidate model is normally saved together with its score.

This process is repeated for r outer iterations. Hence, in the worst case
scenario there could be more than one different candidate models for a max-
imum of r. If this is the case, the analyst can follow at least two ways: she
can either choose any of them, if the difference between their best hyper-
parameters is small because all the candidate models exhibit robustness; or
she can ensemble them in case of very different hyper-parameters.

In summary, the outer loop guarantees that the performance measure-
ments of the best found models have a low generalization error on the test
set because this time it is distributed on the entire dataset.

Due to the fact Nested CV is time-consuming, it is recommend for models
with fast training and a small number of hyper-parameters to tweak, such
as SVMs; instead it is not convenient to apply it for MLPs, in which non-
nested CV is more suitable, even though non-nested CV could yield to overly-
optimistic scores [28] and should be the common practice [38]. Typical values
of r and s for the outer and inner CV loops are 10-10, 30-10, 30-30.

The training and testing flow diagram of the Nested CV schema is il-
lustrated in Figure 2.10. The red block named "Nested Cross-Validation"
carries out the operations of Figure 2.9, while the green block called "Cross-
Validation" realizes the procedure of Figure 2.7.
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Figure 2.10: Flow diagram of the training and testing procedures in case of Nested
CV.

It is important to underline that all these schemes have the goal to give
an estimation of the models performance on new unseen data and so to se-
lect the optimal one. Subsequently, the best model has to be finalized, that
is it has to be trained on the entire dataset with the corresponding best
hyper-parameters, while the other models used for the performance estima-
tion should be discarded. At this point the estimator is ready to be applied
on-site to make new predictions.
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2.2.5 Hyper-parameters tuning techniques
Hyper-parameters tuning is a crucial part for ML, and also the most tedious
and difficult task. In fact, a good selection can boost classification accuracy,
while a poorly configured model may perform no better than chance [39].
Generally speaking, the tuning consists in the following steps [28]:

1. select a ML model to train,

2. define a parameter space,

3. choose a method for searching or sampling candidates,

4. train the model at point 1) with the hyper-parameters selected at point
2) and 3) with one of the model evaluation schema of Paragraph 2.2.4,

5. evaluate the performance of each model with a score function, like those
of Paragraph 2.2.6.

Depending on the problem to face and on the ML algorithm employed, the
quest for the optimal hyper-parameters can be highly time consuming when
the number of possible combinations is considerably high. For this reason
there exist different ways to accomplish this task (point 3) of the previous
list). They are listed in this section.

Manual-Search
This is the basic technique: when facing a new ML problem, the first thing
that a developer does is to attempt to manually adjust some hyper-parameters
to understand some general rules of thumb, such as their upper/lower bounds.
Clearly, this solution is not applicable when dealing with more than a few
hyper-parameters. The results of this approach can still be used in more
sophisticated techniques to limit the grids of possible values of certain hyper-
parameters to avoid wasting time in choices that have already proved to not
give interesting results.

Grid-Search
This method is the most widely used and involves the creation of several grids
of values, one per each hyper-parameter to tune. With the values inserted in
these grids, a number of different models, equal to the number of all possible
combinations of these hyper-parameters, is trained. At the end their scores
(i.e. accuracy, in classification problems) are compared. That is why this
brute-force approach is called Grid-Search. The first grids, sometimes called
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"loose grids", usually contain values that are spaced linearly or logarithmically
as power of 2 or 10 to explore the unknown solution space in a short time.
Later the grids are refined towards the most promising values and a new
Grid-Search is performed. The number of refinements is arbitrary.

Even if Grid-Search outperforms Manual-Search because the human inter-
vention is reduced since many different trials can be executed automatically,
it isn’t the most effective strategy for expensive functions where the number
of possible hyper-parameters combinations explodes, like neural networks.

Random-Search
As the name suggests, it samples the hyper-parameters from their grids with
a random distribution (often uniform), instead of trying all possible combi-
nations like the previous methodology. Despite of its triviality, in such cases
this approach proved to be competitive with domain experts [39] in finding
good settings. Its advantages over an exhaustive search are:

• the possibility to set a budget, that is the number of sampled candidates
or sampling iterations,

• the fact that adding hyper-parameters that do not influence the perfor-
mance does not decrease the efficiency of Random-Search [28].

Bayesian Optimization
Bayesian Optimization is one of the most efficient methods of function min-
imization for the evaluation of functions [39]. It is also known under the
name Sequential model-based optimization (SMBO) when applied to ML. In
short, it first builds a probability model, called surrogate, of the objective
function (i.e. the target function to minimize); then uses it to predict the
next set of hyper-parameters to try in the objective function; in the end
updates the surrogate with the result of the objective function. It outper-
forms both Manual and Random-Search [40] because it chooses the most
promising hyper-parameters based on the historical results that the previous
hyper-parameters obtained in evaluating the target function. Therefore, the
research efforts are concentrated on the most probable hyper-parameters.
In this way the tuning time over a large set of hyper-parameters grids is
dramatically reduced compared to the other methods.

To enter more in the details, the steps that are executed by the Bayesian
Optimization algorithm are [41]:
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1. build a surrogate probability model of the objective function. The com-
mon choices are Gaussian Processes, Random Forest Regressions, and
Tree Parzen Estimators [42];

2. find the hyper-parameters that perform best on the surrogate using a
selection function, such as Expected Improvement, Entropy Search, and
Knowledge Gradient [42];

3. apply them to the true objective function and get the result (score);

4. update the history of the surrogate model with the new pair (score,
hyper-parameters);

5. repeat point 2) and 4) until a maximum time or a maximum number of
iterations is reached.

It is interesting to underline that the time spent to execute point 2) is negli-
gible respect than evaluating hyper-parameters directly on the true objective
function because the surrogate model is simpler to optimize than the real
target function [41].

2.2.6 Metrics for performance evaluation
In order to appreciate the classification performance of a classifier on a given
test set, there are plenty of ways. In this paragraph the most important and
widely known are presented and adapted to the case of binary classification.

Accuracy score
It is defined as:

accuracy(y, ŷ) = correctsamples
nsamples

=

= 1
nsamples

nsamplesØ
i=1

1(ŷi = yi)
(2.42)

where y is the vector of the true labels, ŷ is the vector of the predicted labels,
correctsamples is the total number of samples classified correctly, and nsamples
is the number of samples used for the calculation or the length of the vectors
y and ŷ.

In binary classification positive and negative refer to the model prediction,
and the terms true and false refer to the actual label [28]. So binary classifiers
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are susceptible of two kinds of errors. A sample is defined False Positive (FP)
when is predicted as positive, but in reality belongs to the negative class. In
the opposite case, it is defined False Negative (FN). Instead, a data predicted
correctly is defined True Positve (TP) or True Negative (TN) depending on
its actual class. This implies that the accuracy score for a binary classifier
can be written in another way:

accuracy = (TPs+ TNs)
(TPs+ TNs) + (FPs+ FNs) (2.43)

where TPs, TNs, FPs, and FNs are the number of samples predicted TP,
TN, FP, and FN, respectively.

Precision and Recall scores
For binary classification, precision is the proportion of positive identifications
that are actually correct. High precision relates to a low false positive rate.
Its definition is the following:

precision = TPs

(TPs+ FPs) (2.44)

Instead recall is the proportion of actual positives that are identified correctly
as positives. Sometimes it is called Sensitivity. High recall relates to a low
false negative rate [28]. Its expression is:

recall = TPs

(TPs+ FNs) (2.45)

Both of them can be plotted in the Precision-Recall curve which shows their
trade-off for different thresholds of the classifier. An ideal system should
have high precision and high recall, which corresponds to a large area under
the curve. This curve is useful to set the operating point of the model to the
value that is required by the application. Indeed, by moving the decision
threshold of the model, it is possible to maximize either precision or recall,
remembering that they are antagonist. An example of Precision-Recall curve
can be seen in Figure 3.18 of Paragraph 3.4.1.

Confusion Matrix
It is a practical tool to visualize the quality of the output of a classifier. The
elements in the main diagonal are the number of correct predictions TNs and
TPs, instead the elements outside the diagonal are the number of mistakes,
i.e. FNs and FPs. The ideal condition is when these last contributions are
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0. The definition of Confusion Matrix for binary classification is reported in
Table 2.1.

True label TNs FPs
FNs TPs

Predicted label

Table 2.1: Definition of Confusion Matrix for binary classification.

In Figure 2.11 the Confusion Matrix of a SVM classifier trained on the
Iris Dataset of Scikit-Learn is reported. This example shows a Confusion
Matrix for a multi-class classification problem because the number of classes
is greater than two, since there are three types of iris: setosa, versicolor and
virginica. This model classifies all flowers well, except the versicolor, which
is confused with a virginica six times.

Figure 2.11: Confusion Matrix of a SVM classifier trained on the Iris Dataset of
Scikit-Learn.

51



2 – Microwave Imaging and Machine Learning Theory

ROC curve
The name stands for Receiver Operating Characteristic curve. It shows the
prediction ability of a classifier at all classification thresholds. This curve
plots two parameters on the x and y axes: the True Positive Rate (TPR),
which is synonym for recall, and the False Positive Rate (FPR), which is
complementary to precision. Their expressions are:

TPR = TPs

TPs+ FNs
= recall (2.46)

FPR = FPs

FPs+ TNs
= 1 − precision (2.47)

An example of ROC curve is illustrated in Figure 2.12. By lowering the
classification threshold, the model predicts more data as positive, increasing
both TPs and FPs. An awful classifier has a curve close to the 45° bisector,
while a good one has a curve that is near to the left and top borders. In
other words, an operating point with coordinates (FPR, TPR) is index of an
excellent model when it is close to the ideal (0, 1).

Figure 2.12: An example of a ROC curve.

Together with the ROC curve, another metric is employed: the Area under
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the ROC curve (AUC). It is classification-threshold-invariant, that means it
measures the quality of the predictions independently on what classification
threshold is chosen [33]. For this reason it is often used as a summary of
the model skill. The AUC ranges between 0.5 and 1.0, which are equivalent
to random guessing and perfect classification for every decision threshold,
respectively.
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Chapter 3

Training and testing with
Synthetic Data

This Chapter demonstrates how the Synthetic Dataset (the first of Paragraph
1.3) is generated and how the SVM and the MLP classifiers are trained and
tested on it.

In the initial part, the simulation environment used to produce synthetic
tomographic images is presented, with an explanation of the modeling of the
antennas arch. Then, the procedure to create the Synthetic Dataset is re-
ported in details. The preprocessing stage follows standardization to uniform
the features and with PCA to reduce the high number of features. Differ-
ent levels of PCA retained variance are employed to generate five different
Synthetic Datasets from the initial one: 0.9, 0.925, 0.95, 0.975, 0.99. Each
dataset is shuffled and then split in 80%-20% for training and testing.

So, as many SVMs as the number of Synthetic Datasets are trained with
Grid-Search, first with a loose, then with finer grids: a 5-fold, 10-fold CV
and 30-fold nested CV schemes are implemented. Then, three MLPs with 1,
2 and 3 hidden layers are trained with the best performing Synthetic Dataset
found for the SVM: the one obtained by applying a retained variance of 0.95.
For the MLPs the training approach involves a 5-fold CV scheme and the
best hyper-parameters are searched with Bayesian Optimization. Finally,
the classification performance of the best synthetic SVM and MLP models
are evaluated on their Synthetic Test Sets and the results are compared
throughout common metrics, such as Confusion Matrix and ROC Curve.
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3.1 Synthetic Dataset creation

3.1.1 Simulated environment
Proceeding in order, the model used for the simulations of an hazelnut-cocoa
cream jar is designed with GiD1. It is decided to consider a simple cylinder,
whose base radius is 3.5 cm and its height is 8 cm, as reported in Figure 3.1.

Figure 3.1: Simulated environment: antennas arch with hazelnut-cocoa cream
underneath. Courtesy of Ricci M. [21].

The cylinder volume is entirely composed by chocolate cream, which has
a dielectric constant of εcream = 3 @ 10GHz2. It should be noticed that no

1https://www.gidhome.com
2Even if this is not the precise value (in fact the dielectric constant of the hazelnut-

cocoa spread is εcream = 2.86 @ 10GHz), at the time of the simulation it wasn’t known
yet. Only after the measurement reported in Figure 3.2b the value of 2.86 was discovered.
Despite the error computed with this approximation is about 5%, it is below that of all
the other existing approximations present in the simulated scenario, such as the shape of
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jar is modeled because too thin to be relevant (the thickness of the real jar
is in the order of 1mm), always assuming it is made of a dielectric material
to guarantee the MWI compatibility. The air medium fills the simulated
environment around the cylinder with a dielectric constant equal to εair =
1.00 @ 10GHz. The dielectric properties of the chocolate spread under test
of Figure 3.2a are reported in Figure 3.3.

(a) (b)

Figure 3.2: Measurements of Nutkao’s chocolate cream frequency characteristics
with a VNA. Courtesy of Tobon V. J. [45].

The use of 10GHz is the result of empirical measurements in the range
[1÷20]GHz with a VNA on the hazelnut-cocoa spread (Figure 3.2) to discover
the dependencies of its dielectric constant (εr, Figure 3.3a), conductivity (σ,
Figure 3.3b), penetration depth (PD, Figure 3.3c) and resolution (λ/4, Fig-
ure 3.3d) against frequency. The results say that PD is 3.5 cm and λ/4 is
4mm at 10GHz, and so this frequency allows a good trade-off among pene-
tration depth, resolution, and costs/complexity of the electronic equipment
for this application.

the jar, the position under the antenna arch, the level of the chocolate inside the jar, the
discretization of the electric field in the volume, etc.
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(a) (b)

(c) (d)

Figure 3.3: Results of the measurements of the Nutkao’s chocolate cream fre-
quency characteristics. a) Real part of the dielectric constant. b) Conductivity. c)
Propagation depth. d) Resolution. Courtesy of Tobon V. J. [45].

3.1.2 Antennas arch electromagnetic characteristics
The antennas arch is a multi-antenna system and is visible in Figure 3.1. It is
made of six triangular aperture PCB antennas which are shown in Figure 3.4.
The antennas are disposed in half circle: antennas 3 and 4 are rotated by 15°,
5 and 6 by 60°, antennas 1 and 6 are diametrically opposed but positioned
1 cm below the ideal half circle. The arch is placed around the object to
inspect to exploit multiple views and to be compatible with a future in-line
adoption in food industries.

The triangular aperture PCB antenna properties are described in Figure
3.5 and 3.6, and the key elements are summarized here:
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• this kind of antenna is low-cost and easy to build up;

• the simulated antenna radiates best at roughly 9.6GHz;

• the radiation pattern in far-field is not highly directive because covers
almost all the front of the antenna uniformly. The main lobe is at
233° (with respect the positive side of the x-axis and rotating counter-
clockwise) with a magnitude of 3.77 dBi, an angular width @ 3 dB of
78.9° and a side lobe level of -0.5 dB.

(a) (b)

Figure 3.4: Back a) and front b) of a triangular aperture PCB antenna. The sides
of the PCB are 4 cm x 3 cm. The grey color represent copper. The substrate is FR4.
In the back a ground plane is designed. Courtesy of Ricci M. [44].

3.1.3 Synthetic Dataset creation procedure
Remembering the Equation 2.1 and 2.2 in Paragraph 2.1, the calculus of L re-
quires the knowledge of the "background" electric field. For this reason, after
having designed the simulation environment in GiD, the 3D model is meshed
in tetrahedrons with a 1.2mm grid. Then the resulting model is imported in
a custom software which implements the Finite Element Method (FEM) to
solve the necessary differential equations and boundary conditions numeri-
cally and find the "background" electric fields Eb(rp, rm) and Eb(rm, rq) for
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Figure 3.5: Simulated reflection coefficient of the triangular aperture PCB antenna.

all combination of antennas p and q and for all the positions rm inside the
volume of the jar.

The next step involves the TSVD of the L operator, whose outputs are
the singular values S = {σn} and the associated vectors U = {un} and
V = {vn}. The total number of singular values is 36. It represents all the
possible combinations of transmitting and receiving antennas (one transmit-
ting and one receiving). The truncation is done after the first m = 15 largest
singular values because they give the highest contribution of information.
This means that 15 over 36 are the necessary couples of transmitting and re-
ceiving antennas to be switched to reconstruct the tomographic image of the
jar. Hence, 15 is the number of elements of the upper triangular part of the
Scattering-matrix of the network composed by the jar, the antennas arch and
the air in between, without considering the self scattering s-parameters, i.e.
the main diagonal. The magnitude of the singular values of L are reported
in Figure 3.7.

A dielectric contrast with respect to background material (contrastimp) is
imposed to a selected group of tetrahedrons in order to simulate the presence
of a contaminant inside the cylindrical volume. This contrast is given by
Equation 3.1:

contrastimp = εobj − εbg
εbg

+ AWGN (3.1)
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(a) 2-D triangular aperture PCB antenna radiation pattern in the x-y plane @ 10GHz
(the antenna z-axis is exiting the paper).

(b) 3D triangular aperture PCB antenna radiation pattern @ 10GHz.

Figure 3.6: 2D and 3D triangular aperture PCB antenna radiation patterns @
10GHz. Courtesy of Ricci M. [44].
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Figure 3.7: Magnitute of the singualar values of L.

where εobj is the dielectric constant of the intrusion, εbg is the dielectric con-
stant of the background material (the chocolate spread); AWGN (Additive
White Gaussian Noise) is added to the imposed contrast to better simulate
a real-case scenario.

The position in the volume and the size of the contaminant is set by im-
posing the wanted contrast (Equation 3.1) to a cluster of tetrahedrons, whose
center coincides to the desired location of the wanted intrusion and whose
sphere radius corresponds its dimension. The tetrahedrons that are not in-
side that sphere radius and are cut by the sphere surface are not included
in the cluster and their contrast is only noise. This can be easily proven by
forcing εobj to εbg in Equation 3.1. At this point, every tetrahedron in the
cylindrical volume has an imposed dielectric contrast.

Later, the contrast of the entire volume is projected onto the TSVD do-
main of the L operator by performing Equation 3.2, and the tomographic
image is retrieved with Equation 3.3:

coefimp = (contrastimp • V)∗ (3.2)

project =
nØ
i=1

coefimpi · vi (3.3)
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where coefimp stands for "imposed coefficients", ∗ is the complex conjugate
symbol, • is a dot product, vi is the corresponding eigenvector belonging
to V = {vn} which is obtained from the TSVD of L, project is the recon-
structed tomographic image, and n is the number of the necessary couples
of transmitting and receiving antennas to be switched to reconstruct the to-
mographic image of the jar. This time n is 21 instead of 15 because the
reconstruction of the tomographic image in simulation proved to be better
with 21 singular values. So, 21 is the number of elements of the upper trian-
gular part of the Scattering-matrix of the network composed by the jar, the
antennas arch and the air in between, including the main diagonal.

It is worth to notice the similarity between these two last formulas and
Equation 2.4 of Paragraph 2.1, even if the approaches to generate a synthetic
data and a real data are different. As a matter of fact, the first case imposes
a known dielectric contrast change to a small volume in the jar, the cluster.
Then, it projects the contrast onto the TSVD of the linear operator L of
the simulated reference scenario. The result is a tomographic image with
the presence of a contaminant in the position where the dielectric contrast
change was applied. Instead, the normal procedure starts from the variations
of the scattering parameters measured from the network, composed by the
jar under inspection, the antennas arch and the air in between, and from the
golden case, solves the linear inverse problems with a TSVD and arrives to
extract the dielectric contrast change in the jar, which would be the same
tomographic image if a real intrusion was placed in the same position of the
synthetic approach. Therefore, the advantage of the first methodology is
the control of the position, of the dielectric constant and of the size of the
intrusion in the volume with the goal of generating the same tomographic
image that would be obtained with the standard procedure for the same
kind of contaminant. Moreover, the first strategy permits to decide arbitrary
values of dielectric constant for the intrusion.

As anticipated in Paragraph 1.3, the Synthetic Dataset is created to vali-
date the idea of applying ML to the foreign body detection problem in the
hazelnut-cocoa cream jars with MWI. It is composed by 1800 synthetic data
of tomographic images: 900 contaminated and 900 uncontaminated choco-
late spread jars. This means that the dataset is balanced. Throughout the
thesis, the two classes will be referred as "contaminated" class and "free" class.
Examples of two samples belonging to the contaminated and free classes was
already reported in Figure 1.1 where they are plotted in 3D tomographic
images.
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Let’s describe the Synthetic Dataset generation procedure. Every sample
is generated with a Matlab script which behaves a bit differently if the sample
has to be contaminated or not. For a contaminated sample, the script:

1. chooses the dimension of the intrusion: the sphere radius of the
cluster of tetrahedrons is picked from the range [2 ÷ 10]mm with an
uniform distribution;

2. selects the position of the intrusion: the 3 spacial coordinates of
the center of the cluster of tetrahedrons are generated with an uniform
distribution;

3. checks if the intrusion is confined inside the cylinder volume:
the sum of each coordinate with the sphere radius must not exit the
volume. When it happens, steps 1 and 2 are repeated;

4. prepares a noise term: the noise value is chosen to be in the range
[−0.1 ÷ 0.1] with a Gaussian distribution with mean 0 and standard
deviation 0.025;

5. imposes a contrastimp to the tetrahedrons inside the sphere and
assigns only the noise term to all the others;

6. computes Equation 3.2 and Equation 3.3;

7. saves the tomographic image (project) into a textual file: since it
is an array of complex numbers, it is flattened in a vector of real numbers
where the real and the imaginary parts of each entry are placed one after
the other.

Instead, about the production of uncontaminated/free samples, remembering
Equation 3.1, the only term that is required is the noise. Thus, for an
uncontaminated sample, the script executes steps 4, 5, 6 and 7.

For replicability of the Synthetic Dataset generation process, the Matlab
random generator is initialized every 100 samples. The value for the initial-
ization is even and starts from 0, for the uncontaminated samples, and is
odd and begins with 1, for the contaminated ones. To clarify, the first 100
uncontaminated samples are produced with seed = 0, the second 100 with
seed = 2, etc.; the first 100 contaminated samples are produced with seed =
1, the second 100 with seed = 3, and so on.
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3.2 Synthetic Dataset preprocessing
Dataset preprocessing follows dataset generation. First of all, the entire
Synthetic Dataset is shuffled and then split in two parts, a training set that
consists of 80% of the data and a Synthetic Test Set composed by the re-
maining 20%. It is important to underline the number of samples belonging
to the "contaminated" class and the "free" class are equal in both training
and test sets. In this way training and test sets are still balanced.

The next step consists in standardizing the training data and applying the
same standardization to the test set. The motivations are already explained
in 2.2.3.

Later, PCA is implemented to reduce the number of features. Indeed, the
length of one sample is enormous: 3 563 930 features. In these situations,
training a classifier leads to poor classification performances [43] because of
the Curse of Dimensionality, as discussed in 2.2.3. The solutions to this
problem are mainly two: either increase the number of training samples or
reduce the number of features. As the former implies a substantial growth of
the disk storage because a sample occupies around 30MB, the latter is the
way out. Hence, five PCAs with different levels of retained variance, equal
to 0.9, 0.925, 0.95, 0.975 and 0.99, are executed to generate five new datasets
used to train the ML algorithms in Paragraph 3.3. This choice is due to the
fact there is no a priori knowledge on the problem and it is not possible to
predict which level of retention is more suitable.

Synthetic
Dataset

Dataset
Size

(100%)

Retained
Variance

# of
Extracted
Features

Synthetic
Training
Set Size
(80%)

Synthetic
Test Set

Size (20%)

1 1800 0.90 12 1440 360
2 1800 0.925 15 1440 360
3 1800 0.95 18 1440 360
4 1800 0.975 25 1440 360
5 1800 0.99 32 1440 360

Table 3.1: The five different datasets with the corresponding number of extracted
features according to the level of PCA retained variance that is applied.

As PCA can be also used to visualize a dataset, in Figure 3.8 the plot of
the Synthetic Dataset projected onto the 2 principal components extracted
with PCA is reported. The goal of this graph is only illustrative because the
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total retained variance is 35.377%, that means the level of information that
is transferred to the 2 principal components is poor. This implies that if a
classifier is trained with this new dataset, its performances won’t likely be
good because of the lack of information. However, this 2-D representation
is interesting because it lets to visualize part of the dataset that is going
to be fed to the classifiers: in red the contaminated samples, in green the
uncontaminated/free ones.

Figure 3.8: Plot of the Synthetic Dataset projected onto the 2 principal compo-
nents extracted with PCA. In red the contaminated samples, in green the uncon-
taminated/free ones.

3.3 Training procedures and synthetic candi-
date models

The training procedure is not unique for the two classifiers taken into account.
This section explains both training strategies and provides the best model
hyper-parameters for both the classifiers.
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The software tools and libraries used for dealing with ML are listed in
Table 3.2.

Tool/Library
Name

Formal Library
Name

Version Purpose

Python 3.7.4 Programming language

Anaconda Navi-
gator

1.9.7 GUI to lunch Jupyter Notebook and
manage libraries installation

Jupyter Notebook jupyter-client 5.3.3 Code Editor
jupyter-console 6.0.0
jupyter-core 4.5.0

Scikit-Learn scikit-learn 0.21.3 Machine Learning Python library
scikit-image 0.15.0

Keras keras 2.2.4 Neural Networks Python library

TensorFlow tensorflow 1.14.0 Keras dependency

Hyperopt hyperopt 0.1.2 Bayesian Optimization Library

NumPy numpy 1.17.2 Math library

Matplotlib matplotlib 3.1.0 Library for figures

Pandas pandas 0.25.1 Data structures and data analysis li-
brary

SciPy scipy 1.3.1 Math library

Table 3.2: List of software tools and libraries used for dealing with ML.

3.3.1 SVMs training and synthetic candidate models
Starting with the SVM, the procedure is inspired by [29]. The following
steps are repeated for each of the five Synthetic Training Sets of Table 3.1 in
Paragraph 3.2:

1. consider the Radial Basis Function (RBF) kernel: it is the kernel sug-
gested in [29]. In addition, at the very beginning a Linear kernel was
employed, but it led to poor classification performances (< 90% of ac-
curacy) and was discarded immediately;

2. use cross-validation (CV) and Grid-Search to find the best hyper-parameters
C and γ that maximize the CV accuracy:

(a) to overcome the long training time required by Grid-Search, start
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3 – Training and testing with Synthetic Data

with a loose grid and gradually make a finer grid towards the best
hyper-parameters found with the previous grid;

(b) carry out different k-fold CV strategies hand in hand with the grid re-
finements: from 5-fold CV, passing for 10-fold CV, to 30-fold nested
CV (30-fold in the inner loop, 30-fold in the outer);

3. use the best parameter C and γ of the last finest grid to train the clas-
sifier on the whole training set;

4. test the trained classifier with the best parameter C and γ on the test set
and extract the performance evaluation metrics necessary to compare it
with other solutions.

The most relevant training results of the SVM on the five Synthetic Datasets
are reported in five separate tables: Table 3.3 for Synthetic Dataset 1, Table
3.4 for Synthetic Dataset 2, Table 3.5 for Synthetic Dataset 3, Table 3.6 for
Synthetic Dataset 4, and Table 3.7 for Synthetic Dataset 5. The columns
C Grid and γ Grid contain the start and stop exponents of a logarithmic
scale with base 10 and the number of points used to divide the exponents
interval. For example:

• "[-1, 2] 4p" means the exponent interval has 4 points from -1 to 2 (in-
cluded) which are -1, 0, 1 and 2, and so the grid is composed by: 10−1,
100, 101, 102;

• "[-1, 2] 8p" means the exponent interval has 8 points from -1 to 2 (in-
cluded) which are -1, -0.571, -0.143, 0.286, 0.714, 1.143, 1.571, 2, and so
the grid is composed by: 10−1, 10−0.571, 10−0.143, 100.286, 100.714, 101.143,
101.571, 102.

The column Best (C, γ) includes the couples of hyper-parameters that give
the highest cross-validation score for that grid, which is in the next column
named Best CV Accuracy (%). In the case two or more couples have the
same CV accuracy, the one with the lower C is selected, as explained in
Paragraph 2.2.1.
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3.3 – Training procedures and synthetic candidate models

Grid Type # Folds C Grid γ Grid Best (C, γ) Best CV
Training
Acc. (%)

Loose 1 5 [-5, 10] 16p [-15, 3] 19p (1.0E+06, 1.0E-07) 98.750
(1.0E+02, 1.0E-05) 98.750
(1.0E+00 1.0E-04) 98.750
(1.0E+04, 1.0E-06) 98.750

Loose 2 5 [-3, 7] 11p [-8, -3] 12p (2.7E-02, 2.2E-04) 98.958

Fine 10 [-3, 1] 5p [-5, -3] 9p (2.2E-02, 2.0E-04) 98.958
(6.0E-02, 2.6E-04) 98.958
(1.7E-01, 3.4E-04) 98.958

Table 3.3: SVM training results for Synthetic Dataset 1 (PCA retained variance
= 0.90). The best (C, γ) and its CV accuracy are in bold.

Grid Type # Folds C Grid γ Grid Best (C, γ) Best CV
Training
Acc. (%)

Loose 1 5 [-5, 10] 16p [-15, 3] 19p (1.0E+00, 1.0E-04) 98.819
(1.0E+06, 1.0E-07) 98.819
(1.0E-02, 1.0E-04) 98.819
(1.0E+04, 1.0E-06) 98.819
(1.0E+02, 1.0E-05) 98.819

Loose 2 5 [-3, 7] 11p [-8, -3] 12p (8.0E-02, 2.2E-04) 99.097

Fine 10 [-3, 1] 5p [-5, -3] 9p (7.7E-03, 1.5E-04) 99.097
(2.2E-02, 2.0E-04) 99.097

Table 3.4: SVM training results for Synthetic Dataset 2 (PCA retained variance
= 0.925). The best (C, γ) and its best CV training accuracy are in bold.
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Grid Type # Folds C Grid γ Grid Best (C, γ) Best CV
Training
Acc. (%)

Loose 1 5 [-5, 10] 16p [-15, 3] 19p (1.0E-01, 1.0E-04) 98.958

Loose 2 5 [-3, 7] 22p [-8, -3] 24p (8.0E-02, 2.2E-04) 99.097
(9.0E-03, 1.4E-04) 99.097

Fine 10 [-3, 1] 10p [-5, -3] 6p (7.7E-03, 1.5E-04) 99.167
(1.7E-01, 2.6E-04) 99.167
(4.6E-01, 3.4E-04) 99.167
(2.2E-02, 2.0E-04) 99.167

Table 3.5: SVM training results for Synthetic Dataset 3 (PCA retained variance
= 0.95). The best (C, γ) and its best CV training accuracy are in bold.

Grid Type # Folds C Grid γ Grid Best (C, γ) Best CV
Training
Acc. (%)

Loose 1 5 [-5, 10] 16p [-15, 3] 19p (1.0E-02, 1.0E-04) 99.028

Loose 2 5 [-3, 7] 22p [-8, -3] 24p (8.0E-02, 1.4E-04) 99.028
(2.7E-02, 1.4E-04) 99.028
(2.4E-01, 1.4E-04) 99.028
(7.2E-01, 1.4E-04) 99.028
(9.0E-03, 8.2E-05) 99.028

Fine 10 [-3, 1] 10p [-5, -3] 6p (7.2E-03, 8.7E-05) 99.028
(7.2E-03, 1.1E-04) 99.028
(1.9E-02, 8.7E-05) 99.028
(1.9E-02, 1.1E-04) 99.028
(1.9E-02, 1.5E-04) 99.028
(5.2E-02, 1.1E-04) 99.028
(5.2E-02, 1.5E-04) 99.028

Table 3.6: SVM training results for Synthetic Dataset 4 (PCA retained variance
= 0.975). The best (C, γ) and its best CV training accuracy are in bold.
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Grid Type # Folds C Grid γ Grid Best (C, γ) Best CV
Training
Acc. (%)

Loose 1 5 [-5, 10] 16p [-15, 3] 19p (1.0E-02, 1.0E-04) 99.028
(1.0E-01, 1.0E-04) 99.028
(1.0E+00, 1.0E-04) 99.028

Loose 2 5 [-3, 7] 22p [-8, -3] 24p (2.4E-01 1.4E-04) 99.028
(8.0E-02, 1.4E-04) 99.028
(9.0E-03, 8.2E-05) 99.028
(2.7E-02, 1.4E-04) 99.028
(2.7E-02, 8.2E-05) 99.028
(7.2E-01 , 1.4E-04) 99.028
(2.2E+00, 1.4E-04) 99.028

Fine 10 [-3, 0] 8 [-5, -3] 6p (7.2E-03, 8.7E-05) 99.028
(7.2E-0, 6.7E-05) 99.028
(1.9E-02, 8.7E-05) 99.028
(1.9E-02, 1.1E-04) 99.028
(5.2E-02, 8.7E-05) 99.028
(5.2E-02, 1.1E-04) 99.028
(5.2E-02, 1.5E-04) 99.028

Table 3.7: SVM training results for Synthetic Dataset 5 (PCA retained variance
= 0.99). The best (C, γ) and its best CV training accuracy are in bold.

Instead, in Table 3.8 the SVM training results on the five Synthetic Datasets
are summarized. Every row corresponds to the best performing SVM on each
Synthetic Dataset. The best SVM is in bold with a 10-fold CV accuracy of
99.167%. These final SVMs will be tested in Paragraph 3.4.1.

Synthetic
Dataset

Retained
Variance

# Folds Best (C, γ) Best CV
Training
Acc. (%)

1 0.90 10 (2.2E-02, 2.0E-04) 98.958
2 0.925 10 (7.7E-03, 1.5E-04) 99.097
3 0.95 10 (7.7E-03, 1.5E-04) 99.167
4 0.975 10 (7.2E-03, 8.7E-05) 99.028
5 0.99 10 (7.2E-03, 8.7E-05) 99.028

Table 3.8: Summary of the SVM training results on the five Synthetic Datasets.
Every row corresponds to the best performing SVM relatively to its Synthetic
Datasets. The best SVM is in bold.
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3 – Training and testing with Synthetic Data

For completeness, the outcomes of the training procedure just for the case
of Synthetic Dataset 3, the best dataset, are given in the following.

The first three plots represent the Validation Curves vs. C and vs. γ
for the case of the 10 folds, while the other hyper-parameter is fixed. They
are useful to select the hyper-parameters C and γ that give the highest CV
accuracy. For example, the best C and γ reported in Table 3.5 for 10 folds are
derived from this graph because they produce the peaks of accuracy, which
corresponds to 99.167%.

Figure 3.9: Validation Curve vs. C for the SVMs trained on Synthetic Dataset 3
with the fine grid reported in Table 3.5.
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3.3 – Training procedures and synthetic candidate models

Figure 3.10: Validation Curve vs. C for the SVMs trained on Synthetic Dataset
3 with the fine grid reported in Table 3.5. The four curves that give the maximum
10-fold CV accuracy of 99.167% are kept with respect to Figure 3.9 for a better
visualization.
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Figure 3.11: Validation Curve vs. γ for the SVMs trained on Synthetic Dataset 3
with the fine grid reported in Table 3.5.

The next four plots, in Figure 3.12, represent the "classical" Validation
Curves of the four best SVMs for the case of the 10 folds. "classical" means
that both training and validation accuracy are reported vs. one of the hyper-
parameters, usually C, while the other, γ, is fixed. In this way, this kind of
graphs are able to tell if a given choice of hyper-parameters (C, γ) influences
the overfitting or underfitting of the classifier. What can be seen is:

• none of these four cases is overfitting for the couple (C, γ) marked with
a red cross. In fact, that point is always positioned where there is max-
imum validation accuracy;

• in all of them, the training and validation accuracy are both high and
with low discrepancy in the points marked by the red crosses. This indi-
cates the classifiers are working well, neither overfitting, nor underfitting,
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and that the Grid-Search method found the best values.

(a) (b)

(c) (d)

Figure 3.12: "Classical" Validation Curves vs. C of the four SVMs that give the
maximum 10-fold CV accuracy of 99.167%, trained on Synthetic Dataset 3 with the
fine grid reported in Table 3.5.

The last four plots, in Figure 3.13, represent the Learning Curves of the
same four best SVMs for the case of the 10 folds. Again both training
and validation accuracies are reported. This time the x-axis represents the
training set size. So, this graphs are important to understand if more training
data could be useful to improve the CV accuracy and if the classifier suffers
for a bias error or a variance error . The bias measures the accuracy of the
match between the classifier and the problem, while the variance measures
the precision of the match [20]. In this case both are low because the training
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curve touches the maximum accuracy and the validation curve follows the
training curve with no discrepancy. On the other hand there is no need to
increase the dataset size because the four models have already saturated to
their maximum values.

The lines are the interpolation of the 10-fold CV accuracy points which
are calculated for an increasing training set size. Instead the shadowed re-
gion around the lines is formed by the standard deviations of the accuracies
calculated among the 10 folds.

(a) (b)

(c) (d)

Figure 3.13: Learning Curves of the four SVMs that give the maximum 10-fold
CV accuracy of 99.167%, trained on Synthetic Dataset 3 with the fine grid reported
in Table 3.5.
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3.3.2 MLPs training and synthetic candidate models
The training procedure for the MLP classifier is completely different from
the previous one. Because of the high number of possible hyper-parameters
to tune, the Grid-Search approach is prohibitive for its huge computational
time. Hence, a different method is employed known as Bayesian Optimiza-
tion, already discussed in Paragraph 2.2.5. The goal is to search for the
hyper-parameters that minimize the validation loss. Since the training time is
reduced but still considerable, the MLP is trained only on Synthetic Dataset
3, the one which provided the best results for the SVM.

Three types of MLPs are implemented, with 1, 2 and 3 hidden layers. All
of them have an input layer equal to the number of features, which is 18 in
the case of Synthetic Dataset 3 (with PCA reained variance = 0.95), and an
output layer consisting in one sigmoid neuron, because the MLP is dealing
with a binary classification problem. The choice of three hidden layers comes
from [20], as already discussed in Paragraph 2.2.2.

The subsequent steps explain the procedure that is followed for training
the three MLPs classifiers:

1. define a loose grid and then a fine grid for each tunable hyper-parameter
with the possible values that the Bayesian Optimization algorithm can
pick for the training (Table 3.9). The fine grid is chosen in the direction
of the most performing hyper-parameters found with the loose grid;

2. define constant hyper-parameters which are not tunable, that is they
remain always the same for the entire training phase;

3. configure early-stopping to monitor the validation loss, with 10 epochs
of patience and a triggering condition of 0.0023;

4. use 5-fold CV and Bayesian Optimization to find the best hyper-parameters
that minimize the validation loss. Nested CV is not performed because
of the already high training time of a MLP;

5. use the best hyper-parameters of the last finest grid to train brandly new
MLPs on the 75% of the initial Synthetic Training Set 3 until the epoch

3early-stopping is a technique in charge of stopping the current training when a certain
condition is met, even if the maximum number of epochs is not reached yet, to avoid
overfitting and saving time. In this case, when the validation loss increases or doesn’t
improve (diminishes) of at least 0.002 for 10 subsequent epochs, the current training ends.
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that provides the lowest validation loss. The validation set is created
from the 25% of the initial training set;

6. test the trained classifier with the best hyper-parameters on the test set
and extract the performance evaluation metrics necessary to compare it
with other solutions.

Regarding the tuned hyper-parameters, which are explained in Paragraph
2.2.2, some of them are kept constant:

• Optimizer: Adam, to avoid to tweak the learning rate;

• Loss Function: Binary Cross-Entropy;

• Weight Regularization: L2, active when Weight Regularization Param-
eter is greater than 0;

• Batch-size: 50;

• maximum number of Epochs: 1000.

while others are tuned:

• number of Units per hidden layer,

• Activation Functions: Relu and Selu, because they proved to give the
lower training and validation losses respect to tanh, softmax, sigmoid
and softsign, for this benchmark case: kernel initializer=He Normal,
weight regularization=0, dropout=0, optimizer=Adam, loss function=Binary
Cross-Entropy, batch-size=50, with 10 units in each hidden layer for the
three kinds of MLPs with 1 (Figure 3.14), 2 (Figure 3.15) and 3 (Figure
3.16) hidden layers;

• Kernel Initializer (or Weight Initializer): He Normal and Lecun Normal,
because the first is usually adopted together with Relu and the second
with Selu [46], and because of their properties described in 2.2.2;

• Weight Regularization Parameter;

• Dropout Rate: it is decided to use a value lower than 0.6 of dropped
units per hidden layer.
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3 – Training and testing with Synthetic Data

Figure 3.14: 1 hidden layer MLP benchmark for selecting the Activation Functions
to use in the Bayesian Optimization grid for Synthetic Dataset 3.
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Figure 3.15: 2 hidden layers MLP benchmark for selecting the Activation Functions
to use in the Bayesian Optimization grid for Synthetic Dataset 3.
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Figure 3.16: 3 hidden layers MLP benchmark for selecting the Activation Functions
to use in the Bayesian Optimization grid for Synthetic Dataset 3.
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The most valuable training results of the MLPs on Synthetic Dataset 3 are
reported in three separate tables: Table 3.10 for 1 hidden layer, Table 3.11
for 2 hidden layers, and Table 3.12 for 3 hidden layers. The hyper-parameters
inserted in these tables will be used in the next section to produce the final
MLPs and to test them.

Best Units per layer
Grid
Type

Hidden
Layer
1

Hidden
Layer
2

Hidden
Layer
3

Best
Acti-
va-
tion

Best
Weight
Init.

Best
Weight
Reg.

Best
Drop-
out
Rate

Best
5-
fold
CV
Acc.
(%)

Best
Val.
Loss
(%)

Loose 32 Relu Lecun
Normal

0 0.4 98.889 0.051

64 Selu Lecun
Normal

0 0.5 98.889 0.049

64 Selu Lecun
Normal

0 0.4 98.889 0.055

128 Relu Lecun
Normal

0 0.5 98.889 0.064

256 Selu Lecun
Normal

0 0.4 98.889 0.055

others <
98.889

>
0.049

Fine 136 Relu Lecun
Normal

0 0.55 98.889 0.051

120 Relu Lecun
Normal

0 0.5 98.889 0.053

others <
98.889

>
0.049

Table 3.10: The most valuable training results for Synthetic Dataset 3 (PCA
retained variance = 0.95) for a MLP with 1 hidden layer.
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Best Units per layer
Grid
Type

Hidden
Layer
1

Hidden
Layer
2

Hidden
Layer
3

Best
Acti-
va-
tion

Best
Weight
Init.

Best
Weight
Reg.

Best
Drop-
out
Rate

Best
5-
fold
CV
Acc.
(%)

Best
Val.
Loss
(%)

Loose 32 8 Selu Lecun
Normal

0 0.5 99.074 0.042

32 8 Selu Lecun
Normal

0 0.4 98.981 0.047

32 32 Relu Lecun
Normal

0 0.5 98.981 0.053

32 256 Relu Lecun
Normal

0 0.5 98.981 0.046

128 256 Relu Lecun
Normal

0 0.5 98.981 0.054

others <
98.981

>
0.042

Fine others <
98.981

>
0.042

Table 3.11: The most valuable training results for Synthetic Dataset 3 (PCA
retained variance = 0.95) for a MLP with 2 hidden layers.
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Best Units per layer
Grid
Type

Hidden
Layer
1

Hidden
Layer
2

Hidden
Layer
3

Best
Acti-
va-
tion

Best
Weight
Init.

Best
Weight
Reg.

Best
Drop-
out
Rate

Best
5-
fold
CV
Acc.
(%)

Best
Val.
Loss
(%)

Loose 64 8 8 Relu Lecun
Normal

0 0.55 99.167 0.046

64 8 256 Relu Lecun
Normal

0 0.5 99.074 0.046

128 8 8 Relu Lecun
Normal

0 0.4 99.074 0.049

128 4 8 Relu Lecun
Normal

0 0.4 99.074 0.054

64 4 4 Relu Lecun
Normal

0 0.55 99.074 0.139

others <
99.074

>
0.046

Fine others <
99.074

>
0.046

Table 3.12: The most valuable training results for Synthetic Dataset 3 (PCA
retained variance = 0.95) for a MLP with 3 hidden layers.

3.4 Testing, performance evaluations and best
synthetic models

In this paragraph all the five best found SVM classifiers are tested on their
reduced Synthetic Test Set, reduced with the proper level of PCA. Instead,
the three MLPs are tested on the reduced Synthetic Test Set of Synthetic
Dataset 3.

3.4.1 SVMs testing, performance and best synthetic
model

Starting with the SVM, the results of the tests are reported in Table 3.13.
Test Acc. is the accuracy calculated on the test set, # of Errors are the
number of errors, i.e. the sum of the mispredicticted test samples, Error
Rate (%) is the ratio between the number of errors and the size of the test
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set, which is 360, in percentage. As expected from the 10-fold CV accuracy of
the training stage, the classifier trained on Synthetic Dataset 3 outperforms
the others with only 1 sample mispredicted over 360, which corresponds to
an error rate of 0.278%.

Synt.
Dataset

Retained
Vari-
ance

Best (C, γ) Best
CV

Train-
ing
Acc.
(%)

Test
Acc.

# of
Errors

Error
Rate
(%)

1 0.90 (2.2E-02, 2.0E-04) 98.958 99.167 3 0.833
2 0.925 (7.7E-03, 1.5E-04) 99.097 99.444 2 0.56
3 0.95 (7.7E-03, 1.5E-04) 99.167 99.722 1 0.278
4 0.975 (7.2E-03, 8.7E-05) 99.028 99.167 3 0.83
5 0.99 (7.2E-03, 8.7E-05) 99.028 98.889 4 1.11

Table 3.13: Summary of the test results of the SVMs of Table 3.8. The best SVM
is in bold.

The performance of the best found SVM, the one with (C, γ) = (7.7E-03,
1.5E-04), are also illustrated with some graphs.

From the Confusion Matrix in Figure 3.17 the same information of Table
3.13 is represented. In particular, it is possible to see that precision is at 1,
because no False Positives are predicted, and recall is at 0.994 because of one
False Negative misprediction.
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Figure 3.17: Confusion Matrix of the best found SVM, the one with (C, γ) =
(7.7E-03, 1.5E-04), calculated with the corresponding Synthetic Test Set 3.

In Figure 3.18 precision and recall scores are plotted versus the decision
threshold of the SVM. This graph shows how precision and recall could
change with the choice of the decision threshold of the classifier. In this
case, no threshold adjustment is performed [43]. Hence, the decision thresh-
old is left at 0, which gives the same values of precision and recall cited
before.
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Figure 3.18: Precision and recall scores vs. decision threshold of the best found
SVM, the one with (C, γ) = (7.7E-03, 1.5E-04), calculated with the corresponding
Synthetic Test Set 3.

Finally, the ROC Curve is given in Figure 3.19. The operating point of
this classifier is very near the perfection point placed at coordinates (0, 1).
Moreover, the Area Under the Curve (AUC) is 0.999. These two features let
state this is a very good classifier.
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Figure 3.19: ROC Curve of the best found SVM, the one with (C, γ) = (7.7E-03,
1.5E-04), calculated with the corresponding Synthetic Test Set 3.

For this SVM classifier, 30-fold nested cross-validation (30-fold in both the
inner and outer loops) is carried out on the entire Synthetic Dataset 3 (not
split in 80%-20%) because this should be the common practice to present
ML results (Paragraph 2.2.4). Table 3.14 shows that among the 30 folds
only two couples (C, γ) are selected by Grid-Search: the first with (C, γ) =
(6.0E-02, 2.6E-04) reaches (99.546 ± 0.329)% with a 95% confidence level;
the second with (C, γ) = (7.7E-03, 1.5E-04), the same hyper-parameters of
the 10-fold non-nested CV case, arrives to (98.542 ± 0.835)% with a 95%
confidence level. The grids used for training these classifiers are the same of
the 10-fold non-nested CV of Table 3.5. One could expect the results found
with the 10-fold non-nested CV case should have recurred again. Instead,
the solution with (C, γ) = (6.0E-02, 2.6E-04) proved that is not. The reason
why this happened is because the nested approach tested the classifier with
(C, γ) = (6.0E-02, 2.6E-04) on all the outer folds in which the model resulted
to be the best in the relative inner folds, as discussed in 2.2.4. So the good
performance of the SVM with (C, γ) = (7.7E-03, 1.5E-04) in the 10-fold
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non-nested CV case could be caused by the particular choice of the test set.
However, the nested and non-nested methods are both valid and depends
on the will of the engineer trusting one rather than the other. A possible
overcome to this stalemate is to implement both solutions and measure their
performance on a new unseen dataset.

Synthetic
Dataset

Retained
Variance

#
Occur-
rences

Best
(C, γ)

Best CV
Training
Acc. (%)

95%
Confind-
ence

Interval

Worst
Case

3 0.95 22 (6.0E-02,
2.6E-04)

99.546 0.329 99.216

3 0.95 8 (7.7E-03,
1.5E-04)

98.542 0.835 97.706

Table 3.14: Nested-CV results of the classifier trained on Dataset 3 (PCA retained
variance = 0.95). The best nested SVM is in bold.

3.4.2 MLPs testing, performance and best synthetic
model

Before to enter in the real test section, it is important to explain the procedure
adopted to prepare the most promising MLPs of Paragraph 3.3.1 (candidates)
to the test phase. In short, the hyper-parameters found in Paragraph 3.3.2
with 5-fold CV for the three kinds of MLPs (with 1, 2 and 3 hidden layers)
were used just to select the most promising candidates. Now, the same
hyper-parameters are used to train new MLPs from scratch, with a different
training set but with the same hyper-parameters of the candidates, until the
epoch that gives the lowest validation loss is reached.

The new training set corresponds to the 75% of the original Synthetic
Training Set 3, composed by 1080 samples. The remaining 25% has validation
purposes. The value 25% is chosen arbitrarily because it leads to a validation
set of 360 samples, equal in size to Synthetic Test Set 3. The only difference
in the hyper-parameters respect the 5-fold CV training is the Batch-size that
passes from 50 to 10.

The validation set is required to monitor the learning progress. In fact,
the model has to be trained avoiding overfitting and when the validation loss
arrives to be the minimum, the training of the MLP is stopped and the model
is saved to the disk at that epoch for the subsequent testing stage. For these
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reasons, the training is performed manually4.
The information that are saved to the disk for each model are the archi-

tecture of the network, such as how many input, hidden and output layers,
how many neurons per layer and which activation function they perform,
and the weights of the network, which are the outcomes of the training pro-
cess. So these information are a checkpoint of the model: at a later time the
network can be trained more or can be used to predict new input samples.
The practical adoption of these information for this thesis is for generating
a C/C++ synthesizable code from them automatically, in the event that the
MLP outperforms the SVM. More details in Chapter 5.

The reason why the saving procedure is not done directly during the train-
ing phase with 5-fold CV is because loading and saving a model would require
too much time, just after a few number of Bayesian Optimization iterations
(tens of minutes just after 30 iterations). Therefore, the training phase with
5-fold CV is used to select the most promising candidates without saving the
models. In this way 150 Bayesian Optimization iterations can be reached in
about one day on a normal PC.

Now the performance on the manually trained MLPs are reported in Table
3.15 for 1 hidden layer, Table 3.16 for 2 hidden layers, and Table 3.17 for
3 hidden layers. Every classifier is tested on Synthetic Test Set 3. A new
column, Epochs, is added compared to Table 3.13: it indicates the epochs
at which the manual training was stopped.

The most performing MLPs are summarized in Table 3.18. The winning
classifier is highlighted in bold. It is a 3 hidden layers MLP, which mispredicts
4 out of 360 samples, so it has an error rate of 1.111%. Therefore, the clues
got after the 5-fold CV training phase are confirmed: the best MLP found
so far needs 3 hidden layers.

4Although this training is called "manual", a model is programmed to be saved auto-
matically every time its validation accuracy overcomes the maximum validation accuracy
found until that epoch. The human intervention is only for stopping the training when
the model start to overfit or when it doesn’t learn anymore.
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Best Units per layer
Hidden
Layer
1

Hidden
Layer
2

Hidden
Layer
3

Best
Acti-
vation

Best
Val.
Acc.
(%)

Best
Val.
Loss
(%)

Test
Acc.

# of
Errors

Error
Rate
(%)

32 Relu 98.889 0.055 98.333 6 1.67
32 8 Selu 99.167 0.046 98.056 7 1.94
32 8 Selu 99.167 0.045 98.056 7 1.94
128 256 Relu 98.889 0.059 98.056 7 1.94
128 4 8 Relu 99.167 0.050 98.889 4 1.111

Table 3.18: Summary of the test results of the MLPs in Table 3.15, 3.16 and 3.17.
The best MLP is in bold.

The performance of the MLP with 3 hidden layers and [128, 4, 8] Relu
Units, the one which gave the lowest error rate and which is reported in bold
in Table 3.18, are illustrated with some graphs.

Before that, the Loss Curves and the Learning Curves of this classifier
are plotted in Figure 3.20. The Training Loss decreases fast for the first 100
epochs, then continues to diminish very little and stays below 0.1: this is an
index the model is learning from the training data. For what concerns the
Validation Loss, it follows the Training Loss for 300 epochs, then it starts to
increase, showing the first symptoms of overfitting. This is not a problem
because, as reported in Table 3.12, this classifier is stopped and saved at
epoch 54 which corresponds to one of the minima of the Validation Loss.
Not by chance the peak of the Validation Accuracy (99.167%) occurs at the
same epoch.
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Figure 3.20: Loss Curves and the Learning Curves of the best found MLP with
3 hidden layers and [128, 4, 8] Relu Units, trained with 75% of the training set of
Synthetic Dataset 3 and validated on the remaining 25%.
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Now, the performance metrics. The Confusion Matrix can be seen in
Figure 3.21. Precision is at 1, because no False Positives are predicted, and
recall is at 0.978 because of four False Negative mispredictions.

Figure 3.21: Confusion Matrix of the best found MLP with 3 hidden layers and
[128, 4, 8] Relu Units, calculated with Synthetic Test Set 3.

In Figure 3.22 Precision and recall scores are plotted versus the decision
threshold of the MLP. Since the output layer of this classifier is a sigmoid, it
is decision threshold is 0.5 by default, as denoted by the red dotted vertical
line, and the possible values span the [0, 1] range. Thus, when the output of
the sigmoid activation is below the threshold, the input sample is classified
as free, otherwise as contaminated. For this classifier threshold adjustment
could improve the recall while maintaining maximum precision.
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Figure 3.22: Precision and recall scores vs. decision threshold of the best found
MLP with 3 hidden layers and [128, 4, 8] Relu Units, calculated with Synthetic Test
Set 3.

To conclude, in Figure 3.23 the ROC Curve is plotted. The operating
point of this classifier is again near the point (0, 1) and this time the AUC
is 0.992, a bit less than the AUC of the best SVM found earlier. However,
this classifier is still good.
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Figure 3.23: ROC Curve of the best found MLP with 3 hidden layers and [128, 4,
8] Relu Units, calculated with Synthetic Test Set 3.

For the MLP nested cross-validation accuracy is not performed at all be-
cause it is too time consuming. Indeed, MLPs are usually trained with non-
nested CV. Another option is to use only a validation set, but to compensate
the absence of cross-validation the training is repeated for a certain number of
times with different random weight initialization due to the stochastic nature
of neural networks: in fact the model can hit potential local minima depend-
ing on the initial value of its weights. On the other hand, cross-validation
offers a sort of robustness the more folds are employed, as already described
in 2.2.4. Ultimately, as a rule of thumb, as long as the training results are
confirmed on the test set, that is there is no big difference in the classification
accuracies, the training can be considered well done.
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Chapter 4

Training and testing with
Real Data

Due to the fact that the results of the application of ML algorithms to the
Synthetic Dataset were promising, this chapter deals with the generation of a
Real Dataset (the second cited in Paragraph 1.3), and the following training
and testing phases of SVM and MLP classifiers.

At the beginning, some of the laboratory instruments specifications are
illustrated and the real antennas arch is shown. This time the Real Dataset
is created with the scattering parameters of the network composed by a
safflower oil jar (which emulates the hazelnut-cocoa spread), the antennas
arch and the air in between, acquired with the MIT-Food prototype described
in Paragraph 1.3.

For the preprocessing stage, solely standardization is applied, while PCA
is not needed because proved to lower the classification accuracy the less
information is retained. Therefore, the standardized but non-reduced dataset
is the only one employed in the next phases.

All the subsequent activities consist in training and testing SVM and MLP
classifiers. They are carried out with the same procedures of the Synthetic
Dataset detailed in Paragraph 3.3.

To conclude, the classification performance of the best real SVM and MLP
models are evaluated on the test set and the results are compared thanks to
the usual metrics.
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4.1 Real Dataset creation

4.1.1 MIT-Food system prototype
As introduced in Paragraph 1.3, the Real Dataset is acquired with a series of
laboratory measurements made with the MIT-Food prototype, illustrated in
Figure 1.2. Even if this kind of system can be used to generate tomographic
images, it is employed wtih ML to predict the membership of a sample in a
class without create an image. For this reason it should be called Microwave
Sensing system instead of Microwave Imaging system.

The general view of the MIT-Food prototype system is already summarized
in Paragraph 1.3. So, in this section the specifications of some of its blocks
are formalized.

• Antennas arch. The simulated model of Figure 3.1 has become reality
and a picture of it can be seen in Figure 4.1. Its geometrical character-
istics are the same of those declared in Paragraph 3.1.1. The support
of the antennas is realized with resin and its design is suitable for an
in-line assembly, on top of a conveyor belt.
About a real triangular aperture PCB antenna:

– its behavior can be affected on the hand-made welding between the
antenna and a coaxial cable connected to its port, as shown by the
different reflection coefficients in Figure 4.2;

– the simulated antenna radiate at about 9.6GHz as demonstrated in
Figure 3.5, while the real antenna in Figure 4.2 has radiation peaks
in the range [10 ÷ 10.6]GHz. In addition, the measured reflection
coefficient is better than the simulated of at least 10 dB;

– the MWI problem is not antenna dependent as long as the simu-
lated scenario is carefully designed to work with the frequency that
is irradiated by the antenna, in this case 10 GHz. This will be even
more true when a new and more accurate simulated scenario will be
created which will model the jar and the antennas (currently the an-
tennas are not simulated) to create a brand new operator L. Further,
the MWI approach is differential, so the resulting Scattering-matrix
can be considered as due to the intrusion only, plus the obvious en-
vironmental noise; consequently the only limitation is the strength
of the signal due to the intrusion which has to be higher than the
noise level.
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4.1 – Real Dataset creation

Figure 4.1: Real antennas arch with hazelnut-cocoa cream underneath. Courtesy
of Ricci M. [44].

• Vector Network Analyzer (VNA). It works at same frequency of
the simulated case, that is 10GHz because of the advantageous trade-off
among penetration depth, resolution and electronics cost examined in
Paragraph 3.1.1. Its precise name is P9375A Keysight Streamline USB
Vector Network Analyzer1, 26.5 GHz. Its key features are:

– compactness, portability, and easy connections;
– wide frequency range from 300 kHz up to 26.5 GHz;
– support of Electronic Calibration Modules for simple and quick cal-
ibration;

– dynamic range up to 115 dB2;

1https://www.keysight.com/en/pdx-2916424-pn-P9375A/
keysight-streamline-series-usb-vector-network-analyzer?cc=US&lc=eng

2Dynamic range = source maximum output power minus receiver noise floor @ 10 Hz
IF bandwidth. Does not include single module crosstalk effects
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Figure 4.2: Measured reflection coefficients of the 6 triangular aperture PCB an-
tennas. The discrepancies are caused by the different hand-made welds between the
antennas and the coaxial cables.

– measurement speed in the order of few milliseconds, with 24ms for
201 points, full 2-port cal, and 100 kHz IF bandwidth.

• Switching-matrix. Despite the simplicity of its task, it is a complex
subsystem. In order to be able to measure all the 30 pairs by all the com-
binations of the six antennas3, a switching system piloting the antennas
transmissions and receptions is necessary. The 2x6 electro-mechanicaI
switching matrix is built by merging six 2-to-1 Keysight 8762B Coaxial
Switches and two 6-to-1 Keysight 87206B Multiport Coaxial Switches,
together with the Driver Board L4445A and the custom Extender and
Distribution Boards, as shown in the block diagram of Figure 4.3. A
Matlab script controls both the VNA and the switching matrix Driver
Board in order to measured the 30 scattering parameters, by activating
any transmitting path from one VNA port to one transmitting antenna,
and any receiving path from one receiving antenna to the other VNA
port.

3The self-scattering parameters on the main diagonal are not acquired.
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4.1 – Real Dataset creation

Figure 4.3: Top view of the switching matrix subsystem. Courtesy of Turvani G.

The main characteristics of these electromechanical switches are:

• small package size and portability;

• insertion loss less than 0.5 dB @ 10GHz;

• isolation between ports greater than 90 dB @ 10GHz;

• standing wave ratio (SWR) less than 1.35 dB4;

• minimum number of cycles of 1 000 000 for model 8762B and 5 000 000
for model 87206B;

• maximum switching speed of 30ms for model 8762B and 15ms for model
87206B.

4.1.2 Real Dataset creation procedure
In Paragraph 1.3 it was explained the purpose of the controller: thanks to
a laptop with a Matlab script, it orders the measurement system to acquire
the Scattering-matrix of the network composed by the jar under the anten-
nas arch, the antennas arch and the air in between, and saves them in a
textual format. Instead of calculating the difference between the measured

4SWR is defined as the ratio of the maximum amplitude of a standing wave in a
transmission line to the minimum amplitude the AC signal along that line.
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4 – Training and testing with Real Data

Scattering-matrix and that of the reference scenario, i.e. "golden" matrix in
which no intrusion is in the jar, and then solving the linear (ill-posed) inverse
problem with Equation 2.4, it is decided to feed directly the ML classifiers
with the acquired scattering parameters. If ML algorithms will return good
results, the latency of the MIT-Food prototype could be reduced substan-
tially because the prediction will be shown in real-time without the need to
reconstruct a tomographic image: the prototype will become a Microwave
Sensing system. In a final industrial application the laptop will be replaced
by a compact embedded device.

Paragraph 1.3 introduced that the Real Dataset is formed by 2400 samples
of scattering parameters of real measurements: 1200 contaminated and 1200
uncontaminated safflower oil jars5. Also this time the dataset is balanced.
It is important to underline that these measurements are made in static
conditions, that is the jar is not moving while the acquisition is in progress.
The analysis in motion is foreseen to be performed in the next few months.

Now the Real Dataset generation procedure is described. Different types
of objects are selected to be intrusions: a metal sphere, a glass fragment, a
big plastic sphere, a small plastic sphere, a triangular plastic fragment, and
a cap shape plastic. All of them are collected in Figure 4.5 and reported in
Table 4.1 with their dimensions. For a set of contaminated samples of the
same type, the steps are:

1. prepare the selected contaminant: the target is closed in a latex
glove or in a plastic net knotted with a fishing wire to manage it easier
from outside the jar;

2. insert the contaminant in the jar: when the position of the intrusion
inside the jar is satisfactory, the fishing wire is stuck externally to the
jar with adhesive tape to keep the target in position. For the first 100
samples the target is put more or less at the half height of the jar. For
the second 100 samples it is left floating in surface. In the case the
specific weight of the contaminant does not allow it to sink into the oil,
or in other words it can only stays floating in surface, 200 samples per

5The safflower oil replaces hazelnut-cocoa cream because it is transparent, and so the
position of the contaminants can be monitored easily, and its behavior in the microwave
spectrum is similar to the chocolate spread, since εoil Ä εcream = 2.86 @ 10GHz. The
jar is made of transparent plastic and it is the original Nutkao’s vessel.
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4.1 – Real Dataset creation

intrusion type are acquired. Instead, the position of the target in the
horizontal plane (at fixed height) is changed about every 25 samples;

3. place the jar under the antennas arch: the jar is placed approx-
imately inside the range ± 2 cm from the central position under the
antennas (Figure 4.4) arch and is rotated of a maximum angle of ±10°
with respect to its long-side axis. The non perfect position is desired to
take into account the possible non precise acquisition time instant and
the not perfectly straight orientation of the jar when it will move on the
conveyor belt. At every sample, the jar is moved and rotated, always
remaining inside the range and the maximum angles defined above;

4. run the acquisition from the controller: the Matlab script is exe-
cuted, the switching matrix and the VNA compute the measurements
and the Scattering-matrix is obtained;

5. convert the S-matrix in a sample: since the S-matrix is symmetric
due to reciprocity, only the elements placed in the triangular upper part
of the matrix are used because the other would be redundant, as already
mentioned in Paragraph 2.1. Moreover, as every scattering parameter is
a complex numbers, row-by-row these elements are flattened in a vector
of real numbers, where the real and the imaginary parts are placed one
after the other. The elements on the main diagonal, the self-scattering
parameters of the antennas, are not included also because they produced
worse results in preliminary image reconstruction experiments. So the
resulting sample has a length of 30, i.e. 30 features.

On the other hand, to make an uncontaminated/free sample, uniquely steps
3, 4 and 5 are necessary.
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4 – Training and testing with Real Data

(a) (b)

(c)

Figure 4.4: The central position below the antennas arch in c) and the two extreme
positions that the jar can assume during the measurements, -2 cm in a) and +2 cm
in b).
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4.1 – Real Dataset creation

(a) Metal sphere. (b) Glass fragment. (c) Big plastic sphere (in a
plastic net knotted with a
fishing wire).

(d) Small plastic sphere
(in a latex glove knotted
with a fishing wire).

(e) Triangular plastic frag-
ment (view 1).

(f) Triangular plastic frag-
ment (view 2).

(g) Triangular plastic frag-
ment (view 3).

(h) Cap shape plastic (view
1).

(i) Cap shape plastic (view
2).

Figure 4.5: Pictures of all types of contaminants.
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4 – Training and testing with Real Data

In Table 4.1 all types of contaminants employed to populate the Real
Dataset are listed. Max. Size(mm) and Min. Size(mm) are the lengths of
the maximum and minimum dimensions of the target in millimeters.

Type of Contaminant # of
Samples
at Half
Height

# of
Samples

in
Surface

Total #
of

Samples

Max.
Size
(mm)

Min.
Size
(mm)

Metal sphere 100 100 200 10

Glass fragment 100 100 200 13 2

Big plastic sphere 100 100 200 20

Small plastic sphere 100 100 200 3

Triangular plastic fragment 200 200 8 1

Cap shape plastic 200 200 15 9

Table 4.1: All types of contaminants contained in the Real Dataset. Measurement
uncertainty: 1mm.

In the case of the Real Dataset, at the opposite of the Synthetic Dataset,
the replicability of the generation process is impossible due to the intrinsic
nature of a scientific experiment.

4.2 Real Dataset preprocessing
For the preprocessing stage, solely standardization is applied. About PCA,
it is not used because gave lower classification accuracy the less information
was retained. Therefore, this time the initial Real Dataset is standardized,
but non-reduced, so there is only one dataset for the next phases, instead of
five of the synthetic case.

The preprocessing stage of the Real Dataset is very similar to the one of the
Synthetic Dataset of Paragraph 3.2. Indeed, the Real dataset is shuffled and
then split in two parts, a training set of 80% of the data and a test set of 20%.
Again, the number of samples belonging to the "contaminated" class and the
"free" class are equal in both training and test sets, so they are balanced.

Then, the same scaling of the synthetic case, standardization, is applied
to the training and test set. However, since the highest feature in the Real
Dataset is 0.004928 and the lowest is -0.007949, scaling may not be neces-
sary because all the features have already the same order of magnitude. This
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4.2 – Real Dataset preprocessing

statement is verified by training SVMs and MLPs with a non-standardized
Real Dataset with the identical procedures followed in the previous section,
Paragraph 3.3. Here only the final results are reported: the 10-fold CV accu-
racy of the best non-standardized SVM is about 1% less than the one of the
best standardized SVM; the 5-fold CV accuracy of the best non-standardized
MLP is around 10% lower than the respective accuracy of the best standard-
ized MLP. Therefore, standardization definitely helps.

Talking about PCA for features reduction, this time it is not used due to the
already low number of features of a real sample, which is 30. Thus, there
is one Real Dataset usable for training. This choice is validated by training
five different SVMs with as many Real Datasets reduced by keeping the same
amounts of retained variance of the synthetic case: 0.9, 0.925, 0.95, 0.975,
and 0.99. The training stopped at Loose Grid 2 because the purpose was to
find a trend and not a precise result. So the best 5-fold CV accuracies after
Loose Grid 2 for each Real Dataset are shown in Table 4.2. Clearly, the more
reduction is performed, the more information is lost, affecting the accuracy.
In fact, in the last row, the original Real Dataset (with no PCA reduction)
provides the highest accuracy. The conclusion is that a feature reduction
method like PCA is convenient when the number of features is extremely
high, i.e. in the order of thousands, according to [29].

Synthetic
Dataset

Dataset
Size

(100%)

Retained
Variance

# of Ex-
tracted
Features

Synthetic
Training
Set Size
(80%)

Synthetic
Test Set
Size
(20%)

5-fold
CV Acc.

(%)

1 2400 0.90 10 1920 480 86.406
2 2400 0.925 11 1920 480 86.667
3 2400 0.95 14 1920 480 90.313
4 2400 0.975 14 1920 480 91.354
5 2400 0.99 22 1920 480 92.344
6 2400 1.00 30 1920 480 94.531

Table 4.2: The best 5-fold CV accuracies after Loose Grid 2 for each SVM trained
with a Real Dataset reduced with an increasing retained variance. The last row
reports the accuracy of the SVM trained with the original Real Dataset (with no
PCA reduction).

As already done in Paragraph 3.2, the 2-D and 3-D representations of the
Real Dataset are illustrated in Figure 4.6a and 4.6b: in red the contaminated
samples, in green the uncontaminated/free ones. These plots are obtained by
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4 – Training and testing with Real Data

reducing that dataset with PCA with the constraint to have respectively 2
and 3 principal components as outcomes. It is important to remember these
graphs are just informative.

4.3 Training procedures and real candidate
models

The training procedures that are adopted for the 2 kinds of classifiers taken
into account, SVMs and MLPs, are identical to those described in Para-
graph 3.3 for the synthetic case. Hence, this section addresses to report and
comment the training results of the classifiers on the Real Dataset.

4.3.1 SVMs training and real candidate models
The SVMs are trained on the Real Dataset with the procedure discussed
in Paragraph 3.3.1. The training results with the highest accuracy are re-
ported in Table 4.3. The most performing SVMs are three with a 10-fold CV
accuracy of 95.052%, but the one with the lower C is selected and it is in
underlined in bold. This SVM will be tested in Paragraph 4.4.1.

Grid Type # Folds C Grid γ Grid Best (C, γ) Best CV
Training
Acc. (%)

Loose 1 5 [-5, 10] 16p [-15, 3] 19p (1.0E+02, 1.0E-02) 93.958
(1.0E+04, 1.0E-03) 93.958

Loose 2 5 [0, 8] 18p [-6, 0] 14p (2.3E+02, 1.4E-02) 94.531
(7.6E+01, 4.1E-02) 94.531
(2.6E+01, 4.1E-02) 94.531

Fine 10 [1, 3] 9p [-3, -1] 15p (5.6E+01, 2.7E-02) 95.052
(1.8E+02, 1.4E-02) 95.052
(1.0E+02 , 1.9E-02) 95.052

Table 4.3: SVM training results for the Real Dataset. The best (C, γ) and its CV
accuracy are in bold.

In addition, the plots that are produced by the training procedure can be
seen in the following figures.

The first three plots represent the Validation Curves vs. C and vs. γ
for the case of the 10 folds, while the other hyper-parameter is fixed. The
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4.3 – Training procedures and real candidate models

(a) Plot of the Real Dataset projected onto the 2 principal components extracted with
PCA. In red the contaminated samples, in green the uncontaminated/free ones.

(b) Plot of the Real Dataset projected onto the 3 principal components extracted with
PCA. In red the contaminated samples, in green the uncontaminated/free ones.

Figure 4.6: 2-D and 3-D plots of the Real Dataset.
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4 – Training and testing with Real Data

selection of the optimal hyper-parameters C and γ is done by looking at the
accuracies of these graphs.

Figure 4.7: Validation Curve vs. C for the SVMs trained on the Real Dataset
with the fine grid reported in Table 4.3.
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4.3 – Training procedures and real candidate models

Figure 4.8: Validation Curve vs. C for the SVMs trained on the Real Dataset
with the fine grid reported in Table 4.3. The three curves that give the maximum
10-fold CV accuracy of 95.052% are kept with respect to Figure 4.7 for a better
visualization.
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4 – Training and testing with Real Data

Figure 4.9: Validation Curve vs. γ for the SVMs trained on the Real Dataset with
the fine grid reported in Table 4.3.

The next three plots, in Figure 4.10, are the Validation Curves of the three
best SVMs for the case of 10 folds. They display the training and validation
accuracies vs. C, while γ is fixed. What can be observed is that all the
solutions, those marked with the red cross, are at the limit of overfitting
because the training and the validation accuracies are both high, but for
larger values of C they diverge. So all the solutions are working well and
again this confirms that Grid-Search is a good method for finding the best
values.
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4.3 – Training procedures and real candidate models

(a) (b)

(c)

Figure 4.10: "Classical" Validation Curves vs. C of the three SVMs that give the
maximum 10-fold CV accuracy of 95.052%, trained on the Real Dataset with the
fine grid reported in Table 4.3.

To conclude, the last plots show the Learning Curves of the same three
best SVMs. They are in Figure 4.11. From all the graphs, it can be no-
ticed the models have a low bias because the training accuracy is very high,
though not at 1.0, and low variance because the training and validation ac-
curacies are getting closer and closer. On the contrary of the synthetic case,
these classifiers will benefit the addition of new training data and the actual
maximum validation accuracy of 95.052% could increase of around 1-2%.
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4 – Training and testing with Real Data

(a) (b)

(c)

Figure 4.11: Learning Curves of the three SVMs that give the maximum 10-fold
CV accuracy of 95.052%, trained on the Real Dataset with the fine grid reported in
Table 4.3.

4.3.2 MLPs training and real candidate models
The MLPs are trained on the Real Dataset with the identical procedure
discussed in Paragraph 3.3.2. For the Real Dataset three MLPs are trained,
respectively with 1, 2, and 3 hidden layers. This time the input layer has 30
neurons because of the number of features of the Real Dataset. The rest of
the architecture is still composed by 1, 2 or 3 hidden layers, and an sigmoid
output neuron. The loose and the fine grids are reported in Table 4.4, where
the second grid is a more accurate version of the first based on the accuracy
results of the latter. The constant and tuned parameters of the previous
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4.3 – Training procedures and real candidate models

time continue to be the same, a part the Activation Functions, the Weight
Initializers and the Batch-size. Indeed:

• together with Relu and Selu, Tanh is added to the grid of Activation
Functions because it demonstrates low training and validation losses
when the three kinds of MLPs are trained with the benchmark of Para-
graph 3.3.2. The Tanh behavior is visible in Figure 4.12, 4.13, and 4.14;

• it is decided to add Glorot Normal to the Weight Initializers because it
is one of the most famous initialization;

• the Batch-size is not fixed at 50 anymore, but it can be 10, 50 or 100,
because it was discovered it impacts the regularization of the model: the
more it is high, the highest is the regularization, the less the training
time.
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4.3 – Training procedures and real candidate models

Figure 4.12: 1 hidden layer MLP benchmark for selecting the Activation Functions
to use in the Bayesian Optimization grid for the Real Dataset.
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Figure 4.13: 2 hidden layers MLP benchmark for selecting the Activation Functions
to use in the Bayesian Optimization grid for the Real Dataset.
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4.3 – Training procedures and real candidate models

Figure 4.14: 3 hidden layers MLP benchmark for selecting the Activation Functions
to use in the Bayesian Optimization grid for the Real Dataset.
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The highest training results of the MLPs on the Real Dataset are inserted
in three different tables: Table 4.5 for 1 hidden layer, Table 4.6 for 2 hidden
layers, and Table 4.7 for 3 hidden layers. As can be seen, many classifiers
overcome 94% of 5-fold CV accuracy. Their hyper-parameters will be used
in the next section to the create the final MLPs and to test them.

Best Units per layer
Grid
Type

Hidd.
Lay.
1

Hidd.
Lay.
2

Hidd.
Lay.
3

Best
Ac-
tiv.

Best
Weight
Init.

Best
Weight
Reg.

Best
Drop-
out
Rate

Best
Batch-
size

Best
5-
fold
CV
Acc.
(%)

Best
Val.
Loss
(%)

Loose others <
93.819

>
0.174

Fine 112 Relu Lecun
Normal

0 0.5 10 93.819 0.174

192 Relu Lecun
Normal

0.0001 0.5 10 93.819 0.198

224 Relu Glorot
Normal

0.0001 0.55 10 94.167 0.190

others <
93.819

>
0.174

Table 4.5: The most valuable training results for the Real Dataset for a MLP with
1 hidden layer.
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Best Units per layer
Grid
Type

Hidd.
Layer
1

Hidd.
Layer
2

Hidd.
Layer
3

Best
Ac-
tiv.

Best
Weight
Init.

Best
Weight
Reg.

Best
Drop-
out
Rate

Best
Batch-
size

Best
5-
fold
CV
Acc.
(%)

Best
Val.
Loss
(%)

Loose others <
94.097

>
0.237

Fine 32 128 Selu Lecun
Normal

0 0.1 10 94.236 0.163

128 256 Relu Glorot
Normal

0.001 0.5 10 94.097 0.237

others <
94.097

>
0.237

Table 4.6: The most valuable training results for the Real Dataset for a MLP with
2 hidden layers.

Best Units per layer
Grid
Type

Hidd.
Layer
1

Hidd.
Layer
2

Hidd.
Layer
3

Best
Ac-
tiv.

Best
Weight
Init.

Best
Weight
Reg.

Best
Drop-
out
Rate

Best
Batch-
size

Best
5-
fold
CV
Acc.
(%)

Best
Val.
Loss
(%)

Loose 512 64 128 Selu He Nor-
mal

0 0.3 10 94.444 0.159

64 256 128 Selu He Nor-
mal

0.0001 0.1 10 94.306 0.227

512 64 128 Selu He Nor-
mal

0 0.4 10 94.097 0.162

others <
94.097

>
0.163

Fine 64 256 64 Selu He Nor-
mal

0 0.3 10 94.375 0.163

others <
94.097

>
0.163

Table 4.7: The most valuable training results for the Real Dataset for a MLP with
3 hidden layers.

125



4 – Training and testing with Real Data

4.4 Testing, performance evaluations and best
real models

In this section the candidate classifiers of the previous two paragraphs are
tested on the held-out 20% of the Real Dataset and their performances are
shown with the usual metrics. It is important to underline that the perfor-
mance metrics of two classifiers trained on different datasets can’t be com-
pared. So the results of Paragraph 4.4.1 have to be compared to those of
Paragraph 4.4.2 only.

4.4.1 SVMs testing, performance and best real model
The results of the tests of the most performing SVMs on the Real Test Set are
reported in Table 4.8. The difference compared to the synthetic case is the
calculus of the Error Rate because its denominator is now 480. The winner
is the SVM with (C, γ) = (5.6E+01, 2.7E-02) with 29 samples mispredicted
over 480, which corresponds to an error rate of 6.042%. It confirms the
primacy conquered during the training stage.

Best (C, γ) Best CV
Training
Acc. (%)

Test Acc. Errors Error Rate
(%)

(5.6E+01, 2.7E-02) 95.052 93.958 29 6.042
(1.8E+02, 1.4E-02) 95.052 93.333 32 6.667
(1.0E+02, 1.9E-02) 95.052 93.750 31 6.458

Table 4.8: Summary of the test results of the SVMs of Table 4.3. The best SVM
is in bold.

The performance metrics of the SVM with (C, γ) = (5.6E+01, 2.7E-02)
are given in the subsequent figures.

Figure 4.15 is the Confusion Matrix. It tells that precision is at 0.969
and recall is at 0.908. Of course, it would be better to have a lower number
of False Negatives than False Positives because it is safer to discard a jar
which could be a potential hazard (although it is not), rather than let it pass
labelled as "free".
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4.4 – Testing, performance evaluations and best real models

Figure 4.15: Confusion Matrix of the best found SVM, the one with (C, γ) =
(5.6E+01, 2.7E-02), calculated with the Real Test Set.

In Figure 4.16 precision and recall scores are plotted versus the decision
threshold of the SVM. From this graph it could be noticed that the number
of False Negatives could be reduced until 0 with threshold adjustment, by
moving the decision threshold of the SVM on the left until -1.87. Despite the
problem of high False Negatives is solved, the occurrences of False Positives,
and so the precision (the solid line in light blue in the plot) would raise,
leading to a substantial increase of the discarded jars. Therefore, if threshold
adjustment is employed in future works, it has to be carefully controlled to
minimize the sum of False Negatives and False Positives together [43].
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4 – Training and testing with Real Data

Figure 4.16: Precision and recall scores vs. decision threshold of the best found
SVM, the one with (C, γ) = (5.6E+01, 2.7E-02), calculated with the Real Test Set.

The last figure (4.17) is the ROC Curve. Although the operating point of
this classifier is not at coordinates (0, 1), it is still very near to it and the
AUC score is at 0.982. The classifier is working fine.
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4.4 – Testing, performance evaluations and best real models

Figure 4.17: ROC Curve of the best found SVM, the one with (C, γ) = (5.6E+01,
2.7E-02), calculated with the Real Test Set.

Also this time 30-fold nested cross-validation (30-fold in both the inner
and outer loops) is performed for this SVM on the whole Real Dataset (not
split in 80%-20%). In Table 4.9 are reported the results. Among the 30
folds, many couples (C, γ) are found by Grid-Search. Here it is decided
to keep those with the highest number of occurrences, that is those that
were selected more often as best classifiers by Grid-Search in the inner loop.
They are two: the first has (C, γ) = (5.6E+01, 3.7E-02) and gets (95.714
± 0.976)% with a 95% confidence level; the second has (C, γ) = (5.6E+01,
7.2E-02) and reaches (94.000 ± 0.815)% with a 95% confidence level. The
training grids are taken from the 10-fold non-nested CV case of Table 4.3.
Differently from the synthetic case where the solution that gave the highest
nested accuracy had different hyper-parameters from that discovered during
the training phase, now both solutions have C identical to that of the 10-
fold non-nested CV case (Cnested = Cnon−nested = 5.6E+01), while γ is a bit
different but with the same order of magnitude (γnested1 = 3.7E-02, γnested2 =
7.2E-02, γnon−nested = 2.7E-02). Even if the final results of nested and non-
nested methods shouldn’t be compared, it is interesting too see they arrive
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4 – Training and testing with Real Data

to almost the same best solution, in this case.

Occurrences Best
(C, γ)

Best CV
Training Acc.

(%)

95%
Confindence
Interval

Worst Case

7 (5.6E+01,
3.7E-02)

95.714 0.976 94.738

5 (5.6E+01,
7.2E-02)

94.000 0.815 93.185

< 5 others < 94.000

Table 4.9: Nested-CV results of the classifier trained on the Real Dataset. The
best nested SVM is in bold.

As last consideration, it is nice to understand which types of contaminants
are mispredicted to improve the classification capabilities of the MIT-Food
prototype in future. From Table 4.10 it is possible to see that the strongest
contribute of error comes from the triangular plastic fragment (Figure 4.5f,
4.5e, and 4.5g). In fact, in this case the outcome of the classifier behaves like a
coin toss, with an accuracy of 51.220%. However, if we image to exclude this
case for a moment, the resulting error rate on the test set would be 2.050%
instead of 6.042%. The reasons why this small triangular plastic fragment is
mispredicted are not due to its small dimensions, as one could think. In fact,
the small plastic sphere, which has a diameter of 3mm against the triangular
plastic that has dimensions 8mm x 6mm x 1mm, is correctly recognized. A
possible interpretation to this may be the following. Since the triangular
piece of plastic is floating onto the oil surface, the MWI prototype system
misinterprets the signal as coming from a position outside the volume where
oil is present because the dielectric contrast between air-plastic interface is
greater than the plastic-oil one. This is for sure an aspect that needs an
additional investigation in future works.
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Type of Sample Occurrences
in Test Set

Errors Error Rate
(%)

Free = No contaminant 240 7 2.917

Metal sphere 45 1 2.222

Glass fragment 43 1 2.326

Big plastic sphere 37 0 0

Small plastic sphere 35 0 0

Triangular plastic fragment 41 20 48.780

Cap shape plastic 39 0 0
Sum 480 29 6.042

Sum without
triangular plastic fragment 439 9 2.050

Table 4.10: Types of samples in the Real Test Set and their contribution to the
final Error Rate. The number of occurrences of the various types of contaminants in
the Real Test Set are not uniform because the test samples were selected randomly
from the shuffled Real Dataset.

4.4.2 MLPs testing, performance and best real model
Exactly as happened before for the most promising synthetic candidates,
new MLPs are trained from scratch with the same hyper-parameters that
gave the highest 5-fold CV accuracy in Paragraph 4.3.2. They are manually
trained on the 75% of the Real Training Set, corresponding to 1920 training
samples, before their evaluation on the Real Test Set. The remaining 25% of
the initial Real Training Set is used for validation purposes, i.e. to monitor
the learning process and to prevent overfitting. The value 25% is adopted
arbitrarily to create a validation set of 480 samples as large as the Real Test
Set. The resulting models are also saved to the disk for a possible subsequent
hardware implementation.

The tests which are carried out on the brand new trained MLPs candidates
are reported in Table 4.11 for 1 hidden layer, Table 4.12 for 2 hidden layers,
and Table 4.13 for 3 hidden layers.

The most accurate MLPs are summarized in Table 4.14. The classifier which
outperforms the others is in bold: it is a 2 hidden layers MLP with [128, 256]
Relu Units which has an error rate of 6.042%, mispredicting 29 out of 480
test samples.
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4.4 – Testing, performance evaluations and best real models

Best Units per layer
Hidden
Layer
1

Hidden
Layer
2

Hidden
Layer
3

Best
Acti-
vation

Best
Val.
Acc.
(%)

Best
Val.
Loss
(%)

Test
Acc.

Errors Error
Rate
(%)

224 Relu 96.042 0.15381 93.750 30 6.250
128 256 Relu 95.833 0.199 93.958 29 6.042
512 64 128 Selu 96.250 0.142 93.542 31 6.458

Table 4.14: Summary of the test results of the MLPs in Table 4.11, 4.12 and 4.13.
The best MLP is in bold.

The Loss Curves and the Learning Curves of the manual training of the
best MLP are reported in Figure 4.18. The Training Loss decreases rapidly
for the first 50 epochs, then diminishes slowly and remains above 0.1. This
means the model has difficulty in learning from the training data. On the
other hand, the Validation Loss stabilizes immediately, just after 40 epochs.
It doesn’t increase, but it doesn’t improve more than about 0.2. This be-
havior would lead to a model with high variance in the long term, but the
model is stopped and saved at epoch 184, where the maximum of Validation
Accuracy of 95.833% is reached. It also corresponds to one of the minima of
the Validation Loss, resulting in a small discrepancy with the Training Loss,
and so a low variance. Probably, continuing the training for more epochs,
the Training Loss will continue to decrease, while the Validation Loss will
stabilize or will increase, overfitting the model. The same reasonings can be
done for the Learning Curves which are an equivalent version of the Loss
Curves.
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4 – Training and testing with Real Data

Figure 4.18: Loss Curves and the Learning Curves of the best found MLP with 2
hidden layers and [128, 256] Relu Units, trained with 75% of the Real Training Set
and validated on the remaining 25%.
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The performance of the selected MLP with 2 hidden layers and [128, 256]
Relu Units are given with the following plots.

Staring with the Confusion Matrix in Figure 4.19 it can be seen that
precision is at 0.965 and recall is at 0.912. To make a comparison with the
Confusion Matrix of the final SVM of Figure 4.15 where precision is at 0.969
and recall 0.908, the MLP has 1 misprediction less in the False Negatives and
1 more in the False Positives. Overall, the total number of mispredictions is
29 for both.

Figure 4.19: Confusion Matrix of the best found MLP with 2 hidden layers and
[128, 256] Relu Units, calculated with the Real Test Set.

In Figure 4.20 precision and recall scores are plotted versus the decision
threshold of the MLP. The decision threshold is still at 0.5 and threshold
adjustment could improve recall, paying attention to possible False Positives
increments.
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Figure 4.20: Precision and recall scores vs. decision threshold of the best found
MLP with 2 hidden layers and [128, 256] Relu Units, calculated with the Real Test
Set.

Finally, the ROC Curve is in Figure 4.21. The operating point of this
MLP is near the point (0, 1) and its AUC is 0.980. Instead, the AUC of the
final SVM was 0.982.
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Figure 4.21: ROC Curve of the best found MLP with 2 hidden layers and [128,
256] Relu Units, calculated with the Real Test Set.

As already stated in Paragraph 3.4.2, nested cross-validation is not em-
ployed for its extremely long training time. 5-fold non-nested CV proved to
give good results for this application with a relatively fast training.

At the end, Table 4.15 illustrates which are the types of contaminants
that are mispredicted. Once again, the triangular plastic fragment (Figure
4.5f, 4.5e, and 4.5g) is the cause of most of the errors (21). Indeed, this
MLP makes the 51.229% of errors for this kind of hazards: a very poor result
and still useless as the 48.780% of the final SVM. On the other hand, this
MLP predicts correctly all the other test samples of the remaining types of
intrusions. If the errors due to the triangular plastic fragment are discarded,
the resulting Error Rate on the test set would decrease at 1.882%, instead
of the overall 6.042%. It is also less than the same Error Rate calculated on
the final SVM which was 2.050%.
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Type of Sample Occurrences
in Test Set

Errors Error Rate
(%)

Free = No contaminant 240 8 3.333

Metal sphere 45 0 0

Glass fragment 43 0 0

Big plastic sphere 37 0 0

Small plastic sphere 35 0 0

Triangular plastic fragment 41 21 51.220

Cap shape plastic 39 0 0
Sum 480 29 6.042

Sum without
triangular plastic fragment 439 8 1.822

Table 4.15: Types of samples in the Real Test Set and their contribution to the
final Error Rate.

To conclude, this MLP with 2 hidden layers and [128, 256] Relu Units is
chosen for the last step of this thesis, which is the hardware implementation.
The reasons that support its candidacy against the final SVM with (C, γ) =
(5.6E+01, 2.7E-02) are:

• it has a lower number of False Negatives which are more important than
False Positives because this system has to impede a contaminated jar
passes its control;

• it is able to predict all the intrusions with no errors, except the triangular
plastic fragment;

• its hardware realization is faster because of its straightforward architec-
ture;

• it has the an Error Rate of 6.042% on the test set equal to the SVM.
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Chapter 5

Hardware acceleration

This chapter talks about all the steps involved in the developing of an hard-
ware accelerator for the best MLP discovered in Chapter 4, whose architec-
ture is [30, 128, 256, 1]. In short, they consist in: Keras model conversion in
a synthesizable C/C++ code, High Level Synthesis (HLS) with design space
exploration, and physical implementation on FPGA for the estimations of
latency, utilization of resources, and power.

5.1 Model conversion in a synthesizable code
As already said in Paragraph 4.4.2, during the training of the MLPs on the
75% of the Real Training Set, their architecture and their weights are saved
on the disk. These two are the ingredients for the Keras model conversion
into a synthesizable C/C++ code. In fact, when the number of neurons in
each layer of the network, the number of hidden layers, and the activation
functions inside each neuron are known, the MLP is completely defined.

Instead of writing the code manually, the conversion is realized by means
of a package called hls4ml1. It takes the architecture of the MLP as a JSON
file, the weights as a HDF5 file, the target FPGA, and automatically gener-
ates a synthesizable C++ code (together with a skeleton of the testbench)
ready to be imported in Xilinx Vivado tools. However, that code doesn’t
include the standardization of the inputs, a fundamental step to make the
MLP work as expected. So it is edited to add the Standardization Block,

1https://fastmachinelearning.org/hls4ml/

141

https://fastmachinelearning.org/hls4ml/


5 – Hardware acceleration

which standardizes the inputs with the mean and standard deviation val-
ues obtained during the preprocessing phase of Paragraph 4.2. In this way,
new unseen data undergo the same standardization of the training samples.
In Figure 5.2 the additional lines of code inserted in the C++ code for the
Standardization Block are presented.

• the arrays called "mean" and "stddev" contain the values necessary to
compute the standardization (lines 107-108);

• "input1" is the input sample with length "N_INPUT_1_1" = 30 (line
91). It is redirected from the input of the network (line 125) to the input
of the Standardization (line 116);

• "input2" is the output of the Standardization Block (lines 115-117) that
goes to the input of the network (line 126), always with length 30 (line
113).

The target FPGA for this project is the Xilinx xc7z020clg484-1 mounted
on the Avnet ZedBoard Zynq-7000 Development Board, whose picture is in
Figure 5.1.

Figure 5.1: Picture of the Avnet Zedboard Zynq-7000 Development Board.
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5.1 – Model conversion in a synthesizable code

Figure 5.2: C++ code with the additional lines for the Standardization Block.

143



5 – Hardware acceleration

5.2 Design space exploration
hls4ml allows to configure various settings to automatically custom the code
with the desired Vivado HLS directives. They are: clock period, internal
fixed-point precision, pipelining, resource reuse, "latency" or "resource" strat-
egy. It is decided to try different combinations of those parameters to explore
various kinds of architectures in Vivado HLS. For each solution four values
are set for the clock period while maintaining the other settings fixed: 5, 10,
50 and 100 ns. Overall, the goal is always to maintain the correct function-
ality, the latency under 100ms, and the resource utilization below the limits
of the target FPGA.

All the architectures are required to pass the C simulation that takes
the samples of the Real Test Set as stimuli. Around 50 architectures are
developed. Those that pass the C simulation and provides interesting results
in terms of latency and resource utilization after the High Level Synthesis are
reported in Table 5.1. All of them have an internal fixed-point precision of
<64, 32>, where 64 is the internal bit-width parallelism and 32 (out of 64) are
the fractional bits, and are generated with a "latency" strategy because lower
precisions and "resource" strategy prevented the C simulations to pass. The
architectures in the table continue with physical implementation in Vivado,
which is described in Paragraph 5.3.

Solution Target
Tck (ns)

Latency
(ms)

BRAMs
(%)

DSPs
(%)

FFs
(%)

LUTs
(%)

1 5 4.611 84 22 14 22
2 10 4.118 84 22 5 10
3 50 7.682 84 14 3 9
4 100 15.364 84 14 3 9

5 5 3.503 85 22 15 27
6 10 2.989 85 22 5 16
7 50 3.953 85 14 3 14
8 100 7.906 85 14 3 14

9 5 0.361 86 80 50 119
10 10 0.602 86 80 36 110
11 50 3.010 86 23 29 105
12 100 6.019 86 23 29 105

Table 5.1: Post-Synthesis results of the most interesting solutions. The resources
that exceed the limits are highlighted in red.
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5.3 Physical implementation and performance
estimations

The physical implementation on the ZedBoard requires that the architectures
in Table 5.1 are saved as Intellectual Property (IP) Cores and imported in
Vivado. Then, each IP has to be connected to the Zynq Processing System
(PS) and to a 64-bit wide BRAM. The adopted interface is a 64-bit AXI
Interface and the connections are illustrated in Figure 5.3. In this way, more
realistic performance can be estimated because the ZedBoard ecosystem is
taken into account. At this point the implementation of each solution is
carried out until the Bitstream Generation. The estimations are reported in
Table 5.2.

From the results one can infer that the lowest latency is achieved by so-
lution 6, with 2.997ms. In addition, that solution is also competitive with
the others in terms of resource usage and power consumption. The calculus
of the latency is given by the multiplication of the number of clock cycles
obtained with the RTC/C Co-Simulation and the target clock period Tck.
The last solution, instead, has not finished the implementation because it
exceeded the limit of hardware resources of the FPGA. These estimations
belong to the PL only.

Solution Target
Tck (ns)

Latency
(ms)

BRAMs
(%)

DSPs
(%)

FFs
(%)

LUTs
(%)

Power
(W)

1 TIMING NOT MET 42 11 18 39 3.055
2 10 4.119 42 11 8 13 1.990
3 50 7.684 41 11 7 17 1.766
4 100 15.367 41 11 7 17 2.653

5 TIMING NOT MET 43 11 18 37 2.966
6 10 2.997 43 11 9 14 1.974
7 50 3.924 41 11 8 18 1.789
8 100 7.848 41 11 8 18 1.732

9 5 *
10 10 *
11 50 *
12 100 *

Table 5.2: Post-Implementation results of the most interesting solutions. * marks
the solutions whose implementation failed due to a lack of resources.

Of course, connecting the various blocks together is not enough to make
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the MLP work on the FPGA. Indeed, the firmware of the PS needs to be
written before to program the board, but this is out of the scope of this
thesis. However, a short description of the behavior that the system should
have is given anyway. At first, the PS triggers the PL by the AXI-Lite
Interface. Subsequently, the PL reads data directly from the BRAM with its
Input AXI-Master Interface, computes the output, and writes it back to the
memory through the Output AXI-Master Interface. Finally the PL warns
the PS that its execution is done with an interrupt, so that the latter can
read the result from the BRAM. In this reasoning it is assumed that the data
are already present in memory.
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Chapter 6

Conclusion and Future
Works

This thesis work showed that it is possible to detect contaminants acciden-
tally included in packaged foods with Microwave Sensing combined with
Machine Learning. The experiments carried out on cocoa-hazelnut spread
jars are encouraging: the best Support Vector Machine reached a 10-folds
CV accuracy of 95.052%, the best Multilayer Perceptron a 5-folds CV accu-
racy of 95.833%, both mispredicting 29 samples out of the 480 of the Real
Test Set composed by only six types of foreign bodies. Moreover, the MLP
implemented in FPGA is able to guarantee real-time detection thanks to its
low latency of about 3ms, a crucial element to sustain the throughput of a
production line. Hence, the MIT-Food prototype system is on the good way
to become an important additional block for the food industries that want to
improve their intrusion detection rate of low density contaminants for food
safety.

In the end, some possible hints and perspectives to improve the MIT-Food
prototype require to:

• enlarge the static real dataset to include more samples of contaminants
already considered and to add new types of intrusions, such as wood;

• train different types of classifiers to see if they perform better than those
used in this work. For example a Nearest Neighbors, a Decision Tree, a
Convolutional Neural Network, an SVM with threshold adjustment [43]
or an ensemble classifier [20] [28] made either by different classifiers or by
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the same classifier adopted for each antenna pair/channel (e.g. antenna
grouping [37]), as proven by [43];

• validate the classifiers with dynamic measurements, that is with a mov-
ing conveyor belt. For this purpose, place a photocell before the antennas
arch to begin the acquisition when the jar is in the starting position. In
addition, knowing the speed of the conveyor belt and the average time
of an acquisition, the relative position of the jar with respect to the an-
tennas arch can be calculated. So it could be feasible to discover which
is the optimal switching sequence of active antennas pairs during the
transit of the jar below the arch to maximize the illumination of the
target [21] and to let the system work in high-speed conveyor belts;

• increase the speed of the acquisition with a 6-channel VNA, able to
acquire all channels in parallel. In this way, a single row of the S-matrix
is collected in one shot and the latency of the system is reduced;

• use more durable electromechanical switches able to sustain the indus-
trial production rate in order to replace them not too often;

• integrate the VNA controller in hardware to have a compact device;

• validate the behavior of the system on different homogeneous food prod-
ucts, such as honey, yogurt, baby food, and on non-homogeneous ones,
like chocolate spreads with hazelnut grains, to have a wide range of
possible application scenarios and validate the prototype even more.

150



Bibliography

[1] Foreign Body (2017). Oxford Dictionary of English, Oxford University
Press.

[2] Wright D., Friedrichs R. (2017). Foreign Bodies - Techniques for
Investigation and Identification. https://www.rssl.com/%7E/media/
rssl/en/files/documents/white-paper/rssl-foreign-bodies.
pdf?la=en. Accessed: 30/10/2019.

[3] Giordano A., Vipiana F., Casu M. R., Savorani F. (2018). Microwave
Imaging Technology for Food Contamination Monitoring. Politecnico di
Torino, Turin, IT.

[4] White V. (2016). Mars recalls chocolate products in 55
countries. https://www.newfoodmagazine.com/news/22851/
mars-recalls-chocolate-products-in-55-countries/. Accessed:
30/10/2019.

[5] Dellapiana, B. (2019). NUTKAO quality and safety. MIT-Food - Mi-
crowave Imaging Technology for Food Contamination Monitoring, Po-
litecnico di Torino, Turin, 10 October. Accessed: 01/11/2019.

[6] Institute of Food Science and Technology, Manning L. (2012). Food
and Drink - Good Manufacturing Practice - A Guide to its respon-
sible management. Institute of Food Science & Technology, Wiley-
Blackwell, 280. https://books.google.it/books?id=KugWswD7ESQC&
printsec=frontcover&redir_esc=y#v=onepage&q&f=false. Ac-
cessed: 30/10/2019.

[7] Sperber W. H., Stier R. F. (December 2009). Happy 50th
Birthday to HACCP: Retrospective and Prospective. Food-
Safety magazine, 42–46. https://www.foodsafetymagazine.
com/magazine-archive1/december-2009january-2010/
happy-50th-birthday-to-haccp-retrospective-and-prospective/.
Accessed: 30/10/2019.

[8] SAVORANI, F. (2019). MIT-Food Microwave Imaging Technology for

151

https://www.rssl.com/%7E/media/rssl/en/files/documents/white-paper/rssl-foreign-bodies.pdf?la=en
https://www.rssl.com/%7E/media/rssl/en/files/documents/white-paper/rssl-foreign-bodies.pdf?la=en
https://www.rssl.com/%7E/media/rssl/en/files/documents/white-paper/rssl-foreign-bodies.pdf?la=en
https://webthesis.biblio.polito.it/7482/1/tesi.pdf
https://webthesis.biblio.polito.it/7482/1/tesi.pdf
https://webthesis.biblio.polito.it/7482/1/tesi.pdf
https://www.newfoodmagazine.com/news/22851/mars-recalls-chocolate-products-in-55-countries/
https://www.newfoodmagazine.com/news/22851/mars-recalls-chocolate-products-in-55-countries/
http://www.politocomunica.polito.it/news/allegato/(idnews)/13592/(ord)/0
http://www.politocomunica.polito.it/news/allegato/(idnews)/13592/(ord)/0
http://www.politocomunica.polito.it/news/allegato/(idnews)/13592/(ord)/0
https://books.google.it/books?id=KugWswD7ESQC&printsec=frontcover&redir_esc=y#v=onepage&q&f=false
https://books.google.it/books?id=KugWswD7ESQC&printsec=frontcover&redir_esc=y#v=onepage&q&f=false
https://www.foodsafetymagazine.com/magazine-archive1/december-2009january-2010/happy-50th-birthday-to-haccp-retrospective-and-prospective/
https://www.foodsafetymagazine.com/magazine-archive1/december-2009january-2010/happy-50th-birthday-to-haccp-retrospective-and-prospective/
https://www.foodsafetymagazine.com/magazine-archive1/december-2009january-2010/happy-50th-birthday-to-haccp-retrospective-and-prospective/
http://www.politocomunica.polito.it/news/allegato/(idnews)/13592/(ord)/0
http://www.politocomunica.polito.it/news/allegato/(idnews)/13592/(ord)/0


Bibliography

Food Contamination Monitoring: project overview. MIT-Food - Mi-
crowave Imaging Technology for Food Contamination Monitoring, Po-
litecnico di Torino, Turin, 10 October. Accessed: 01/11/2019.

[9] Wang, Kaiqiang, Da-Wen Sun, Hongbin Pu. (2017). Emerging Non-
destructive Terahertz Spectroscopic Imaging Technique: Principle and
Applications in the Agri-food Industry. Trends in Food Science & Tech-
nology 67, 93-105.

[10] Peco InspX (2019). Detecting plastics with x-ray inspection systems.
https://www.peco-inspx.com/blog/x-ray-detectable-plastics/.
Accessed: 02/11/2019.

[11] sAwad T.S., Moharram H.A., Shaltout O.E., Asker D., Youssef M.M.
(2012). Applications of Ultrasound in Analysis, Processing and Quality
Control of Food: A Review. Food Research International 48.2, 410-27.

[12] Gowen A. A., Tiwari B. K., Cullen P. J., Mcdonnell K., O’Donnell C.
P. (2010). Applications of Thermal Imaging in Food Quality and Safety
Assessment. Trends in Food Science & Technology 21.4, 190-200.

[13] Vipiana, F. (2019). MIT-Food Microwave Imaging Technology for Food
Contamination Monitoring: project overview. MIT-Food - Microwave
Imaging Technology for Food Contamination Monitoring, Politecnico di
Torino, Turin, 10 October. Accessed: 01/11/2019.

[14] Tobon V. J., Rivero J., Scapaticci R., Farina L., Crocco L., Vipiana F.
(2019). Monitoring of Food Contamination via Microwave Imaging, 2019
International Applied Computational Electromagnetics Society Sympo-
sium (ACES), 1-2.

[15] Zhanke Yan, Yibin Ying, Hongjian Zhang, Haiyan Yu (2006). Research
progress of terahertz wave technology in food inspection. Proc. SPIE
6373, Terahertz Physics, Devices, and Systems, 63730R.

[16] Nielsen M. A. (2015). Neural Networks and Deep Learn-
ing. Determination Press. Accessed: 14/11/2019. http:
//neuralnetworksanddeeplearning.com/index.html

[17] Conceicao R. C., Hugo Medeiros M., O’Halloran, Rodriguez-Herrera
D., Flores-Tapia D., Pistorius S. (2014). SVM-based Classification of
Breast Tumour Phantoms Using a UWB Radar Prototype System.
2014 XXXIth URSI General Assembly and Scientific Symposium (URSI
GASS), 1-4.

[18] Byrne D., O’Halloran M., Jones E., Glavin M. (2011). Support Vector
Machine-Based Ultrawideband Breast Cancer Detection System. Journal
of Electromagnetic Waves and Applications 25.13, 1807-816.

152

http://www.politocomunica.polito.it/news/allegato/(idnews)/13592/(ord)/0
http://www.politocomunica.polito.it/news/allegato/(idnews)/13592/(ord)/0
http://www.politocomunica.polito.it/news/allegato/(idnews)/13592/(ord)/0
http://www.politocomunica.polito.it/news/allegato/(idnews)/13592/(ord)/0
https://www-sciencedirect-com.ezproxy.biblio.polito.it/science/article/pii/S0924224417301565
https://www-sciencedirect-com.ezproxy.biblio.polito.it/science/article/pii/S0924224417301565
https://www-sciencedirect-com.ezproxy.biblio.polito.it/science/article/pii/S0924224417301565
https://www-sciencedirect-com.ezproxy.biblio.polito.it/science/article/pii/S0924224417301565
https://www.peco-inspx.com/blog/x-ray-detectable-plastics/
https://www.sciencedirect.com/science/article/abs/pii/S096399691200141X
https://www.sciencedirect.com/science/article/abs/pii/S096399691200141X
https://www.sciencedirect.com/science/article/abs/pii/S096399691200141X
https://www.sciencedirect.com/science/article/pii/S092422440900301X
https://www.sciencedirect.com/science/article/pii/S092422440900301X
https://www.sciencedirect.com/science/article/pii/S092422440900301X
http://www.politocomunica.polito.it/news/allegato/(idnews)/13592/(ord)/0
http://www.politocomunica.polito.it/news/allegato/(idnews)/13592/(ord)/0
http://www.politocomunica.polito.it/news/allegato/(idnews)/13592/(ord)/0
http://www.politocomunica.polito.it/news/allegato/(idnews)/13592/(ord)/0
https://ieeexplore.ieee.org/document/8712878
https://ieeexplore.ieee.org/document/8712878
https://ieeexplore.ieee.org/document/8712878
https://ieeexplore.ieee.org/document/8712878
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/6373/1/Research-progress-of-terahertz-wave-technology-in-food-inspection/10.1117/12.686840.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/6373/1/Research-progress-of-terahertz-wave-technology-in-food-inspection/10.1117/12.686840.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/6373/1/Research-progress-of-terahertz-wave-technology-in-food-inspection/10.1117/12.686840.short
http://neuralnetworksanddeeplearning.com/index.html
http://neuralnetworksanddeeplearning.com/index.html
https://ieeexplore.ieee.org/document/6930131
https://ieeexplore.ieee.org/document/6930131
https://ieeexplore.ieee.org/document/6930131
https://ieeexplore.ieee.org/document/6930131
https://ieeexplore.ieee.org/document/6930131
https://www.tandfonline.com/doi/abs/10.1163/156939311797454015
https://www.tandfonline.com/doi/abs/10.1163/156939311797454015
https://www.tandfonline.com/doi/abs/10.1163/156939311797454015


Bibliography

[19] Sacristán J., Oliveira B. L., Pistorius S. (2016). Classification of Electro-
magnetic signals obtained from microwave scattering over healthy and
tumorous breast models. 2016 IEEE Canadian Conference on Electrical
and Computer Engineering (CCECE), 1-5.

[20] Duda R., Peter E., Stork. D. G. (2001). Pattern classification. Wiley,
New York, 2nd Edition.

[21] Ricci M., Crocco L., Vipiana F. (2019). Microwave Imaging Device for In-
Line Food Inspection. Submitted at: European Conference on Antennas
and Propagation (EuCAP) 2020.

[22] Migliaccio C. (2019). Non Destructive Control of Fruit Quality using Mi-
crowaves. MIT-Food - Microwave Imaging Technology for Food Contam-
ination Monitoring, Politecnico di Torino, Turin, 10 October. Accessed:
01/11/2019.

[23] Vipiana F., Casu M., Vacca M., Dassano G., Turvani G., Tobon J.,
Demichela M., Geobaldo F., Savorani F., Bosco F., Mollea C., (2019).
MIT-Food, Microwave Imaging Technology for Food Contamination
Monitoring. Politecnico di Torino, Turin. Accessed: 01/11/2019.

[24] Sarwar I., Turvani G., Casu M. R., Tobon J. A., Vipiana F., Scapaticci
R., Crocco L. (2018). Low-Cost Low-Power Acceleration of a Microwave
Imaging Algorithm for Brain Stroke Monitoring. Journal of Low Power
Electronics and Applications, 8(4), 43.

[25] Berteo M., Boccacci P. (1998). Introduction to inverse problems in imag-
ing. Bristol Philadelphia: Institute of Physics.

[26] Cortes C., Vapnik V. (1995). Support-Vector Networks. Mach. Learn.
20, 3, 273-297.

[27] Bishop C. (2006). Pattern recognition and machine learning (Information
Science and Statistics). New York: Springer Science Business Media.

[28] scikit-learn developers (2019). scikit-learn user guide. Release 0.21.3.
[29] Hsu CW., Chang CC., Lin CJ. (2016). A Practical Guide to Support

Vector Classification. National Taiwan University, Taipei 106, Taiwan.
Accessed: 13/11/2019.

[30] Rosenblatt, F. (1958). The perceptron: A theory of statistical separa-
bility in cognitive systems (Project PARA). Washington: U.S. Dept. of
Commerce, Office of Technical Services.

[31] Kingma D., BaAdam J. (2015). A Method for Stochastic Optimization.
3rd International Conference for Learning Representations, San Diego.

[32] Glorot X., Bengio Y. (2010). Understanding the difficulty of training

153

https://ieeexplore.ieee.org/document/7726761
https://ieeexplore.ieee.org/document/7726761
https://ieeexplore.ieee.org/document/7726761
https://ieeexplore.ieee.org/document/7726761
http://www.politocomunica.polito.it/news/allegato/(idnews)/13592/(ord)/0
http://www.politocomunica.polito.it/news/allegato/(idnews)/13592/(ord)/0
http://www.politocomunica.polito.it/news/allegato/(idnews)/13592/(ord)/0
http://www.researchers.polito.it/en/success_stories/metti_in_rete_projects/microwaves_to_monitor_food_contamination
http://www.researchers.polito.it/en/success_stories/metti_in_rete_projects/microwaves_to_monitor_food_contamination
http://www.researchers.polito.it/en/success_stories/metti_in_rete_projects/microwaves_to_monitor_food_contamination
http://www.researchers.polito.it/en/success_stories/metti_in_rete_projects/microwaves_to_monitor_food_contamination
https://www.mdpi.com/2079-9268/8/4/43
https://www.mdpi.com/2079-9268/8/4/43
https://www.mdpi.com/2079-9268/8/4/43
https://www.mdpi.com/2079-9268/8/4/43
https://doi.org/10.1023/A:1022627411411
https://doi.org/10.1023/A:1022627411411
https://scikit-learn.org/stable/_downloads/scikit-learn-docs.pdf
https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
https://searchworks.stanford.edu/view/691927
https://searchworks.stanford.edu/view/691927
https://searchworks.stanford.edu/view/691927
https://arxiv.org/abs/1412.6980v9
https://arxiv.org/abs/1412.6980v9
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf


Bibliography

deep feedforward neural networks. 13th International Conference on Ar-
tificial Intelligence and Statistics (AISTATS), Chia Laguna Resort, Sar-
dinia, Italy.

[33] Google Developers. Machine Learning Crash Course. https://
developers.google.com/machine-learning/crash-course. Accessed
04/12/2019.

[34] Smith L. (2002). A tutorial on Principal Components Analy-
sis http://www.cs.otago.ac.nz/cosc453/student_tutorials/
principal_components.pdf. Accessed: 05/11/2019.

[35] Hastie T., Tibshirani R., Friedman J. H. (2009). The elements of sta-
tistical learning: Data mining, inference, and prediction. Springer, New
York, 2 edition.

[36] Tenenbaum J. B., de Silva V., Langford J. C. (2000). A Global Geo-
metric Framework for Nonlinear Dimensionality Reduction. Science 290,
2319–2323.

[37] Oliveira B., Jones E., Science Foundation Ireland (2018). Towards Im-
proved Breast Cancer Diagnosis using Microwave Technology and Ma-
chine Learning. National University of Ireland Galway.

[38] Abdulaal M., Casson A., Gaydecki P. (2018). Performance of Nested vs.
Non-Nested SVM Cross-Validation Methods in Visual BCI: Validation
Study. 2018 26th European Signal Processing Conference (EUSIPCO),
1680-1684.

[39] Bergstra J., Yamins D., Cox D.D. (2013). Hyperopt: A Python Library
for Optimizing the Hyperparameters of Machine Learning Algorithms.
Proceedings of the 12th Python in Science Conference (SciPy 2013).

[40] Bergstra J., Bardenet R., Bengio Y., Kégl B. (2011). Algorithms for
Hyper-Parameter Optimization. 25th Annual Conference on Neural In-
formation Processing Systems (NIPS 2011), Dec 2011, Granada, Spain.

[41] Koehrsen W. (2018). A Conceptual Explanation of Bayesian
Hyperparameter Optimization for Machine Learning.
https://towardsdatascience.com.

[42] Frazier P. I. (2018). A Tutorial on Bayesian Optimization. arXiv e-prints.
[43] Santorelli A., Yunpeng L., Porter E, Popovic M., Coates M. (2016).

Microwave Breast Cancer Detection via Cost-sensitive Ensemble Classi-
fiers: Phantom and Patient Investigation. Biomedical Signal Processing
and Control 31.C, 366-76.

[44] Ricci M. (2019). MIT-Food prototype: Multi-antenna system. MIT-Food
- Microwave Imaging Technology for Food Contamination Monitoring,
Politecnico di Torino, Turin, 10 October. Accessed: 01/11/2019.

154

http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://developers.google.com/machine-learning/crash-course
https://developers.google.com/machine-learning/crash-course
http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf
http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf
https://web.mit.edu/cocosci/Papers/sci_reprint.pdf
https://web.mit.edu/cocosci/Papers/sci_reprint.pdf
https://web.mit.edu/cocosci/Papers/sci_reprint.pdf
https://aran.library.nuigalway.ie/handle/10379/14986
https://aran.library.nuigalway.ie/handle/10379/14986
https://aran.library.nuigalway.ie/handle/10379/14986
https://www.research.manchester.ac.uk/portal/files/70557953/final_after_revision.pdf
https://www.research.manchester.ac.uk/portal/files/70557953/final_after_revision.pdf
https://www.research.manchester.ac.uk/portal/files/70557953/final_after_revision.pdf
https://www.research.manchester.ac.uk/portal/files/70557953/final_after_revision.pdf
http://conference.scipy.org/proceedings/scipy2013/pdfs/bergstra_hyperopt.pdf
http://conference.scipy.org/proceedings/scipy2013/pdfs/bergstra_hyperopt.pdf
http://conference.scipy.org/proceedings/scipy2013/pdfs/bergstra_hyperopt.pdf
https://hal.inria.fr/hal-00642998/document
https://hal.inria.fr/hal-00642998/document
https://hal.inria.fr/hal-00642998/document
https://arxiv.org/pdf/1807.02811.pdf
https://www.sciencedirect.com/science/article/pii/S174680941630129X
https://www.sciencedirect.com/science/article/pii/S174680941630129X
https://www.sciencedirect.com/science/article/pii/S174680941630129X
https://www.sciencedirect.com/science/article/pii/S174680941630129X
http://www.politocomunica.polito.it/news/allegato/(idnews)/13592/(ord)/0
http://www.politocomunica.polito.it/news/allegato/(idnews)/13592/(ord)/0
http://www.politocomunica.polito.it/news/allegato/(idnews)/13592/(ord)/0


Bibliography

[45] Tobon V. J. (2019). MIT-Food prototype: synthetic aperture sys-
tem. MIT-Food - Microwave Imaging Technology for Food Contamina-
tion Monitoring, Politecnico di Torino, Turin, 10 October. Accessed:
01/11/2019.

[46] François C. and others (2015). Keras
[47] Santorelli A., Yunpeng L., Porter E., Popovic M., Coates M. (2014).

Investigation of Classification Algorithms for a Prototype Microwave
Breast Cancer Monitor. 8th European Conference on Antennas and
Propagation (EuCAP 2014), 320-24.

[48] Duarte J. et al. (2018). Fast inference of deep neural networks in FPGAs
for particle physics. JINST 13 P07027.

155

http://www.politocomunica.polito.it/news/allegato/(idnews)/13592/(ord)/0
http://www.politocomunica.polito.it/news/allegato/(idnews)/13592/(ord)/0
http://www.politocomunica.polito.it/news/allegato/(idnews)/13592/(ord)/0
https://keras.io
https://ieeexplore.ieee.org/document/6901757
https://ieeexplore.ieee.org/document/6901757
https://ieeexplore.ieee.org/document/6901757
https://ieeexplore.ieee.org/document/6901757
https://arxiv.org/abs/1804.06913
https://arxiv.org/abs/1804.06913


Index

C, 27
γ, 29
k-fold CV, 42
GiD, 56
hls4ml, 141

accuracy score, 49
activation function, 30
Adam, 32
Adaptive Moment Estimation, 32
antennas arch, 16, 102
At-line strategy, 10
AUC, 53

batch-size, 34
Bayesian Optimization, 48
bias error, 75
Binary Cross-Entropy, 32

Clipping, 36
Confusion Matrix, 50
contaminated class, 63
covariance matrix, 38
Cross-Validation, 42
CV, 42

decision boundary, 24
dielectric contrast, 60
dropout rate, 34

False Positive Rate, 52

Feature Extraction, 37
Feature Scaling, 35
feature vector, 39
foreign body, 9
free class, 63

Gaussian Radial Basis Function
kernel, 29

GMP, 10
Good Manufacturing Practice, 10
Grid-Search, 47

HACCP, 10
Hazard Analysis and Critical

Control Point, 10
hidden layer, 30
Hyper/Multi-Spectral Imaging, 12

In-line strategy, 11
Intellectual Property Core, 145
IP Core, 145

learning rate, 32
Log scaling, 36
Loss Function, 32

Manual-Search, 47
measured scenario, 22
Microwave Imaging, 13, 22
Microwave Sensing, 14

156



INDEX

Microwave Sensing system, 102,
106

MIT-Food prototype, 15, 102
MLP, 29
Multilayer Perceptron, 29
MWI, 13, 22
MWI system prototype, 15
MWS, 14

Nested Cross-Validation, 44
Nested CV, 44
neuron, 30
No Free Lunch Theorem, 14

object function, 48
Off-line strategy, 10
On-line strategy, 10
optimizer, 32
outlier, 35

PCA, 38
photocell, 150
precision score, 50
Principal Component Analysis, 38
principal components, 39

Random-Search, 48
RBF kernel, 29
Real Dataset, 106
recall score, 50
Receiver Operating Characteristic

curve, 52
reference scenario, 14, 22

ROC curve, 52

Scaling to a range, 35
selection function, 49
Sensitivity, 50
SGD, 32
Standardization, 37
Stochastic Gradient Descent, 32
Support Vector Machine, 24
surrogate model, 48
SVM, 24
switching matrix, 17, 104
Synthetic Dataset, 63

Terahertz Imaging, 12
Thermal (Infrared) Imaging, 12
Tomography, 13
True Positive Rate, 52

Ultrasound Imaging, 12
uniform learning, 35

validation set, 41
variance error, 75
Vector Network Analyzer, 17, 103
Visible/Near Infrared Imaging, 12
VNA, 17, 103, 150

weight initializer, 33
Weight Regularization Parameter,

32

X-rays Imaging, 11

157


	Introduction
	The food contamination problem
	The food contamination solutions
	Prevention and control strategies
	On-line and In-line hazard detection techniques
	Microwave Imaging: a promising technology

	Thesis focus
	Thesis outline

	Microwave Imaging and Machine Learning Theory
	Microwave Imaging mathematical background
	Machine Learning basic theory
	Support Vector Machine Classifier
	Multilayer Perceptron Classifier
	Dataset preprocessing
	Model evaluation schemes
	Hyper-parameters tuning techniques
	Metrics for performance evaluation


	Training and testing with Synthetic Data
	Synthetic Dataset creation
	Simulated environment
	Antennas arch electromagnetic characteristics
	Synthetic Dataset creation procedure

	Synthetic Dataset preprocessing
	Training procedures and synthetic candidate models
	SVMs training and synthetic candidate models
	MLPs training and synthetic candidate models

	Testing, performance evaluations and best synthetic models
	SVMs testing, performance and best synthetic model
	MLPs testing, performance and best synthetic model


	Training and testing with Real Data
	Real Dataset creation
	MIT-Food system prototype
	Real Dataset creation procedure

	Real Dataset preprocessing
	Training procedures and real candidate models
	SVMs training and real candidate models
	MLPs training and real candidate models

	Testing, performance evaluations and best real models
	SVMs testing, performance and best real model
	MLPs testing, performance and best real model


	Hardware acceleration
	Model conversion in a synthesizable code
	Design space exploration
	Physical implementation and performance estimations

	Conclusion and Future Works
	Bibliography
	Index

