
POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Elettronica

Tesi di Laurea Magistrale

Design of a Reconfigurable
In-Memory Neural Network

Accelerator

Relatori:
Prof. Maurizio Zamboni
Prof. Marco Vacca
Prof. Giovanna Turvani

Candidato:
Maurizio Spada

Dicembre 2019

Acknowledgments

I would like to give special thanks to my parents and my brothers for supporting
me during all these years and for believing in me.

I also thank all the people who helped me, especially during the most difficult
moments.

I would like to thank all the professors I had during these years and in particu-
lar prof. Maurizio Zamboni, prof. Marco Vacca, prof. Mariagrazia Graziano and
prof. Giovanna Turvani who encouraged me and helped me to express all my po-
tential for this master’s project.

I also want to thank Andrea Coluccio who supported me and helped me during
these last months.

I

Abstract

Neural networks (NNs) are nowadays widely used for many applications like speech
and image recognition. This kind of neural networks has already exceeded human
accuracy in many domains at the cost of high complexity from a computational
point of view.

Usually, CPU and GPU are used to implement such algorithms. GPUs perform
better than CPUs thanks to their high number of cores and their wider buses which
allow increasing the throughput to the memory. However, even though GPUs can
reach very high-performances for data-oriented algorithms, they consume a lot of
power.

For low power applications, GPUs are out of the question, so neural network
accelerators are designed to obtain high performances with low power consumption.
This thesis work can be divided into two parts: in the first one the AlexNet algorithm
is implemented on CPU and GPU and performances are compared.

In the second part, a reconfigurable In-Memory neural network accelerator is
presented. This accelerator allows implementing the most common neural networks
layers and it is characterized by very low power consumption.

The word “In-Memory” means the capability of executing simple logic opera-
tions inside the memory. An architecture based on Logic-in-Memory has several
benefits mainly related to the possibility of executing some operations inside the
memory itself without wasting energy for transferring data from the memory to the
computational units.

Hardware architecture

The hardware accelerator high-level scheme is shown in Figure 1.
The most important layers executed by neural networks have been implemented.

In particular, the same hardware has been shared to execute convolutional, fully-
connected and normalization layers. The ReLU activation function has been imple-
mented with a multiplexer with two inputs which is driven by an AND gate.

The pooling layer, instead, requires dedicated hardware to compute the maxi-
mum value among a certain number of inputs.

In this project, two memories have been used to store data and weights.

II

Figure 1: Hardware accelerator high-level scheme.

III

Performance

This hardware accelerator is characterized by a very low power consumption with the
possibility to increase its throughput replicating multiple times the whole structure.

Theoretically by multiplying the whole hardware (including the memory) n-
times, it is possible to increase the performances on the single image being elab-
orated or it is possible to recognize multiple images simultaneously. In the latter
case, the performance improvement is equal to the number of time the structure is
replicated.

The synthesis has been performed with both 45 nm and 28 nm technological
nodes and the results shown in Table 1 have been obtained:

45 nm (max freq.) 28 nm (f = 285.71 MHz) 28 nm (max freq.)
Area [mm2] 0.195 0.142 0.142
Power [mW] 41.89 22.42 43.69
Frequency [MHz] 285.71 285.71 588.23

Table 1: Synthesis results.

By using more advanced technologies the performances can be improved in terms
of both maximum frequency and power.

After the synthesis the place & route has been executed using Cadence Innovus
with the 45 nm technology.

The results are reported in Table 2:

Post place & route
Area [mm2] 0.190
Power [mW] 169.1
Frequency [MHz] 270.27

Table 2: Post place & route results.

The area and the frequency post place & route have decreased a little bit while
the power consumption has increased by 4 times.

It is worth highlight the power estimation post place & route has been obtained
by setting the inputs switching activity to 0.5.

IV

Table of contents

Acknowledgments I

1 State of the art 1
1.1 Introduction to Neural Network . 1
1.2 Convolutional Neural Network . 5
1.3 AlexNet neural network . 8

1.3.1 Architecture model . 8
1.3.2 Local response Normalization layer 10
1.3.3 Max-Pooling layer . 11
1.3.4 Dropout . 12
1.3.5 Softmax . 12

1.4 ZFNet . 13
1.5 LeNet-5 . 14
1.6 GoogLeNet . 16

1.6.1 The 1x1 convolution . 16
1.6.2 Inception module . 17
1.6.3 Global Average Pooling . 19

1.7 VGGNet . 21
1.8 Residual Neural Network . 22
1.9 Other Neural Networks . 24

1.9.1 DenseNet . 24
1.9.2 Recurrent Neural Networks 25

1.10 Logic-in-Memory . 27

2 AlexNet software implementation 28
2.1 TensorFlow . 28
2.2 Python code . 29

2.2.1 AlexNet class . 29
2.2.2 Caffe class . 32
2.2.3 Data generator class . 33
2.2.4 Dataset class . 33
2.2.5 High level file . 35
2.2.6 How to select a GPU or a CPU to run the algorithm 37
2.2.7 How to profile TensorFlow . 38
2.2.8 How to evaluate the inference time 40
2.2.9 How to obtain power data of the GPU 41

V

3 Comparison GPU vs CPU 46
3.1 CPU structure . 46
3.2 GPU structure . 48
3.3 AlexNet implementation: GPU vs CPU 50

4 Hardware implementation 72
4.1 Convolutional layer . 72

4.1.1 Modified Baugh-Wooley . 74
4.1.2 LiM array . 75
4.1.3 Convolutional surrounding logic 82

4.2 ReLU activation function . 90
4.3 Fully-Connected layer . 91
4.4 Max-Pooling layer . 95
4.5 Batch Normalization layer . 100
4.6 Rounding method . 102
4.7 Data and weight memory . 103
4.8 High-level scheme . 107
4.9 Chip parameters . 109

5 Software model of the designed accelerator 111
5.1 Fully-precision floating-point model 111
5.2 Fixed-point model . 112
5.3 LeNet-5 software model . 112

5.3.1 Weights and biases conversion 114
5.3.2 Quantization function . 116
5.3.3 Accuracy results and fixed-point format selection 119

6 Verification 122

7 Synthesis and Place & Route 126
7.1 Synthesis . 126

7.1.1 45 nm technology node . 126
7.1.2 28 nm technology node . 127

7.2 Place & Route . 128

8 State of the art comparison 131
8.1 Parallelization technique . 134

9 Conclusions and future works 138
9.1 Future work . 138

Bibliography 140

VI

List of figures

1 Hardware accelerator high-level scheme. III

1.1 Neuron structure. 1
1.2 Sigmoid function. 2
1.3 Hyperbolic tangent function. 3
1.4 ReLU function. 4
1.5 Convolutional neural network (example from [1]). 5
1.6 Different forms of pooling (figure from [2]). 7
1.7 AlexNet architecture model (figure from [3]). 8
1.8 Padding example with P = 2 (two “edges” of zeros). 9
1.9 Overlapping pooling example. 11
1.10 Dropout technique example. 12
1.11 Convolutional layer without 1x1 filter. 16
1.12 Convolutional layer with 1x1 filter. 17
1.13 Inception module without dimension reductions. 18
1.14 Inception module with dimension reductions. 18
1.15 GoogLeNet neural network model [4]. 20
1.16 Different VGG layer structure using single scale (256) evaluation [5]. 21
1.17 Residual block [6]. 22
1.18 Figure 3. Example network architectures for ImageNet. Left: the

VGG-19 model as a reference. Middle: a plain network with 34 pa-
rameter layers. Right: a residual network with 34 parameter layers.
The dotted shortcuts increase dimensions [6]. 23

1.19 A deep DenseNet with three dense blocks [7]. 24
1.20 A 5-layer dense block. Each layer takes all preceding feature-maps as

input [7]. 25
1.21 A RNN with a hidden state [8]. 26
2.1 CPU profiling. 39
3.1 i7 CPU architecture. 47
3.2 Tesla GPU architecture [9]. 49
3.3 Tesla GPU architecture single cluster [9]. 50
3.4 CPU number of threads to vary the batch size. 52
3.5 CPU convolutional layers delay vs batch size. 54
3.6 CPU FC layers delay vs batch size. 55
3.7 GPU convolutional layers delay vs batch size. 56
3.8 GPU FC layers delay vs batch size. 57
3.9 CPU convolutional layer delay/GPU convolutional layer delay. 58

VII

3.10 CPU FC layer delay/GPU FC layer delay. 59
3.11 GPU and CPU delay vs batch size. 60
3.12 CPU delay/GPU delay vs batch size. 61
3.13 CPU delay distribution for batch size = 1. 62
3.14 GPU delay distribution for batch size = 1. 63
3.15 MACs per second CPU vs batch size. 64
3.16 MACs per second GPU vs batch size. 65
3.17 MACs per second GPU/MACs per second CPU vs batch size. 66
3.18 Frame per second CPU vs batch size. 67
3.19 Frame per second GPU vs batch size. 68
3.20 GPU power consumption vs batch size. 69
3.21 GPU energy vs batch size. 70
4.1 Baugh-Wooley method and its modified form. 74
4.2 LiM array. 76
4.3 Basic cell 1x1 filter. 77
4.4 PE 1x1. 78
4.5 filter 1x2. 79
4.6 PE 1x2. 80
4.7 PE 2x2. 81
4.8 LiM array surrounding logic. 83
4.9 Convolutional layer step 1. 84
4.10 Convolutional layer step 2. 84
4.11 Convolutional layer step 3. 85
4.12 Convolutional layer with multiple input channels. 86
4.13 Convolutional block surrounding logic. 89
4.14 Hardware which performs the ReLU activation function. 90
4.15 Flatten operation. 91
4.16 4x4 filter used for FC layers - Part 1. 93
4.17 4x4 filter used for FC layers - Part 2. 93
4.18 Max-Pooling HW implementation. 96
4.19 Map-pooling with convolutional logic high-level scheme. 99
4.20 Batch Normalization. 102
4.21 Memory system. 104
4.22 Tri-state buffer. 105
4.23 Weights memory: example of a reading operation. 106
4.24 Hardware accelerator high-level scheme. 108
6.1 Verification flow [10]. 122
6.2 Input image. 123
7.1 Physical chip of this hardware accelerator. 129

VIII

Chapter 1

State of the art

1.1 Introduction to Neural Network

Neural networks (NNs) are nowadays widely used for many applications like speech

and image recognition. This kind of neural networks has already exceeded human

accuracy in many domains at the cost of high complexity from a computational

point of view.

Neural networks are based on neurons which are the smallest units in every

network. A neuron performs a weighted sum of the inputs and then it applies a

non-linear function called activation function (Figure 1.1).

Neuron

Figure 1.1: Neuron structure.

where wi are the weights and b is the bias.

There are several functions which can introduce non-linearity into a neural net-

work. The most used ones are:

1

1 – State of the art

• Sigmoid function: this function is one of the historical non-linear functions

and the output value is always in the range [0 ÷ 1]. It can be represented by

the following equation:

y =
1

1 + e−x

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x

0

0.2

0.4

0.6

0.8

1

y
=

1/
(1

+e
-x

)

Sigmoid function

Figure 1.2: Sigmoid function.

• Hyperbolic tangent: the hyperbolic tangent function, as the sigmoid one,

is one of the historical non-linear function and its output values are limited

between −1 and +1. This function follows the following law:

y = tanh(x) =
1− e−2x

1 + e−2x

2

1 – State of the art

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

-1

-0.5

0

0.5

1
y
 =

 t
a
n

h
(
x
)

Hyperbolic tangent function

Figure 1.3: Hyperbolic tangent function.

• Rectified Linear Unit function (ReLU): the ReLU function is very sim-

ple and allows fast training. For this reason, it has become very popular in

recent years. It provides a null value for every negative input and the input

itself if it is positive. The equation which describes this behaviour is:

y = max(0,x)

3

1 – State of the art

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

-1

-0.5

0

0.5

1

1.5

2

y
 =

 m
a
x
(
0

,x
)

ReLU function

Figure 1.4: ReLU function.

• maxout: this function takes the max value of two intersecting linear functions.

The most simple neural network has three layers: an input layer, a hidden layer

and an output layer. Each layer is made of by neurons and each one of them

is connected to all the successive layer neurons (this is called Fully Connected

layer).

When a neural network has more than one hidden layer, it is called a deep

neural network (DNNs). Thanks to multiple hidden layers, DNNs are able to learn

with more complexity and abstraction high-level features. For this reason, DNNs

achieve superior performance in many tasks.

Every neural network has to be trained before performing the classification oth-

erwise the obtained results would be wrong or not very accurate. Training a network

means changing the values of the weights and biases in order to minimize the loss

function which is the distance between the wanted result with respect to the ob-

tained one. Once the training is finished the neural network can be used to evaluate

different inputs by using the weights and biases determined during the training and

this process is called inference.

4

1 – State of the art

1.2 Convolutional Neural Network

A Convolutional Neural Network (CNN) is a very common form of DNNs. Normally

a DNN can be composed by only Fully Connected (FC) layers. However, this kind

of choice implies a significant amount of storage and computation because every

neuron of a layer is connected to every neuron of the successive layer. Thankfully,

in many application, it is possible to use a reduced number of connections without

affecting the final results and it is also possible to share the weights which means

reducing the storage needed for their memorization.

CNNs use both fewer connections and weights sharing and in this way they are

able to reach very high performances.

Generally, a CNN contains multiple convolutional layers which allow extracting

high-level features of the input. Each convolutional layer generates a feature map

(fmap) which contains the features extracted from that layer. Every fmap contains

essential and unique information about the input data.

CONV

layer

Low-level

features
…

CONV

layer

Mid-level

features
…

CONV

layer

High-level

features

FC

layer

Class

scores

Modern Deep CNN: 5 – 1000 layers 1 – 3 layers

Convolu�on Non-linearity Normaliza�on Pooling
Fully

Connected
Non-linearity

Op�onal

Figure 1.5: Convolutional neural network (example from [1]).

In Figure 1.5, it is possible to see the main layers used for an application like

image recognition. In particular each CONV layer contains up to 4 sub-layers:

• Convolution: each layer which performs a convolution takes as input a set

of 2-D input feature maps (IFMAPs) and every map is called channel. For

an image there are 3 channels representing the RGB values. Every channel

5

1 – State of the art

is convolved with a distinct filter. Filters are organized also as a set of 2-D

matrices which contain the weights determined from the training step. The

results of each channel convolution are, then, summed together. The final

result of a CONV layer is an output feature map OFMap. If more sets of filters

are used it is possible to obtain multiple output channels. It is also possible

to process together multiple IFMAPs as a batch in order to improve the filters

weights reuse. The general equation which allows to compute every element

of the OFMAP is the following ([1]):

O[z][u][x][y] = B[u] +
C−1∑
k=0

S−1∑
i=0

R−1∑
j=0

I[z][k][Ux+ i][Uy + j] ·W[u][k][i][j]

0 ≤ z < N,0 ≤ u < M,0 ≤ x < F,0 ≤ y < E

E = (H −R + U)/U, F = (W − S + U)/U

where O, I, W and B are the ofmaps, ifmaps, filters and biases matrices re-

spectively. U is a given stride size. The other parameters meaning is specified

in the following table:

Shape parameter Description
N Batch size of 3-D fmaps
M # of 3-D filters (# of ofmap channels)
C # of filter/ifmap channels

W/H ifmap plane width/height
S/R filter plane width/height (= W or H in FC layers)
F/E ofmap plane width/height (= 1 for FC layers)

Table 1.1: Shape parameters of a convolutional/fully connected layer ([1]).

• Non-linearity: this layer applies a function (activation function) which in-

troduces non-linearity into a neural network and usually this layer is placed

after each convolutional or fully connected layer. Different types of activation

function are available and they have been already analyzed in the previous

section (section 1.1).

• Normalization: the goal of this layer is to control the input distribution across

6

1 – State of the art

layers. The idea is to normalize the input in order to reach zero mean and a

unit standard deviation.

• Pooling: computations focused on reducing the dimensionality of a feature

map. Since the pooling is applied to each channel separately it allows creating a

network more robust and invariant to distortion and small shifts. For example,

if max pooling is used with a stride of 2, the following output map is obtained:

9 3

10 32

5 3

2 2

1 3

2 6

21 9

11 7

32 5

6 21

18 3

3 12

2x2 pooling, stride 2

Max pooling Average pooling

Figure 1.6: Different forms of pooling (figure from [2]).

Usually, a CNN contains from 1 to 3 FC layers placed at the end of the network

itself. Each FC layer may contain a non-linearity layer other than the standard

fully connected layer.

7

1 – State of the art

1.3 AlexNet neural network

AlexNet is the name of a CNN, designed by Alex Krizhevsky [11] which is able to

process a very large dataset like ImageNet. This network is able to recognize 1000

different classes of images. This kind of task requires a very big neural network with

a large number of weights.

1.3.1 Architecture model

The architecture model can be seen in Figure 1.7:

Convolu�onal

layers

Normaliza�on

layers

Max-Pooling

layer

Fully-Connected

layers

Layer 1

Layer 2

Layer 3 Layer 4 Layer 5

Layer 6 Layer 7

Layer 8

227x227x3

55x55x96

27x27x256

13x13x384 13x13x384 13x13x256

4096 4096

1000

Figure 1.7: AlexNet architecture model (figure from [3]).

The activation function used in the AlexNet algorithm is the ReLU function and

it is applied after each convolutional layer and each fully connected layer except for

the last one which is connected to a 1000-way softmax. This last function produces

a probability distribution over the 1000 classes labels. After the softmax, there is

a max function which selects the output class label with the highest probability for

each input image.

The layers organization is the following one:

8

1 – State of the art

• the first convolutional layer has as input a 227x227x3 image which is convolved

with 96 distinct filters of size 11x11x3 with a stride of 4. The output dimension

of a convolutional layer can be computed with the following formula:

WO =
WI − F + 2 · P

S + 1

HO =
HI − F + 2 · P

S + 1

DO = K

where WI , HI , K are respectively input matrix width, height and number of

filters (also called kernels). P is the padding while S is the stride. DO is the

output channel number. For the first convolutional layer the padding is equal

to P = 0. Padding means adding “edges” of zeros (see Figure 1.8) to preserve

the output image size avoiding information loss.

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

4x48x8

8x8

Figure 1.8: Padding example with P = 2 (two “edges” of zeros).

• The output of the first convolution is normalized with a normalization

layer and then an overlapping Max-Pooling is applied (normalization and

pooling layers are explained later)). The output of the max-pooling layer is a

27x27x96.

9

1 – State of the art

• The second convolutional layer takes as input the output of the previous pool-

ing layer and convolves it with 256 distinct filters of size 5x5x96 with a stride

of 1. The second convolution layer input is split into two parts (called groups)

of size 27x27x48 each and the convolution of the two groups is executed in

parallel. The padding for this layer is equal to P = 2.

• Also the output of the second convolutional layer is first normalized and then

the pooling layer is applied. The output dimension, in this case, is 13x13x256.

• The third convolutional layer convolves the output of the previous layer with

384 distinct filters of size 3x3x256 with a stride of 1. The padding of this layer

is P = 1.

• The fourth and fifth convolutional layers convolve the output of their previous

layers with 384 (for the fourth layer) and 256 (for the fifth one) filters of size

3x3x256 with a stride of 1. Both convolutional layers inputs are split into

two groups of size 13x13x192 which are executed in parallel. For these two

convolutional layers, the padding is equal to P = 1.

• To the output of the fifth convolutional layer is applied a pooling layer and its

output dimension is 6x6x256.

• The last three layers are all fully connected. They have 4096, 4096 and 1000

neurons respectively.

1.3.2 Local response Normalization layer

This layer normalizes the input distribution in order to reach zero mean and a unit

standard deviation. In the AlexNet algorithm a local response normalization is used.

The formula below is the one used for this kind of normalization:

bix,y =
aix,y

(K + α
∑min(N−1,i+n/2)

j=max(0,i−n/2) (ajx,y)2)β

As it is possible to see, it depends on several hyper-parameters like α, β, n and K

which are set to the following values:

10

1 – State of the art

• α = 0.0001;

• β = 0.75;

• n = 5, which is the 1-D window normalization size;

• K = 1.

N instead is the total number of kernels in the layer.

1.3.3 Max-Pooling layer

In the AlexNet algorithm, an overlapping max pooling is used. The only difference

with respect to the one described in the previous section (section 1.2) is the overlap-

ping. If the pooling windows is RxR and the stride S is greater or equal to R, then

the pooling windows do not overlap. However, if the stride S is lower than R then

an overlapping pooling is obtained. From a practical point of view an overlapping

pooling looks like the following figure (Figure 1.9):

R

R

Overlapping region

Pooling windows
Stride S

Figure 1.9: Overlapping pooling example.

11

1 – State of the art

1.3.4 Dropout

The Dropout operation allows to turn off some neurons in the hidden layers with a

certain probability. In the AlexNet this probability is set to 0.5. This technique is

used during the training of a neural network in order to speed up the loss function

convergence.

X X

X X

Standard neural net Neural net a er

dropout

Figure 1.10: Dropout technique example.

1.3.5 Softmax

After the last fully connected layer a 1000 way softmax function is applied. This

function transforms its input in a probability which is useful in some applications

like image recognition where the most probable class should be predicted. It should

be noted that if the application goal is just to know the identified classes then this

layer is not implemented because it is sufficient to see the output of the last FC

layer. The formula which implements the softmax function is:

y =
ex∑k
j=1 e

aj

12

1 – State of the art

1.4 ZFNet

The ZFNet neural network [12] is an improved version of the AlexNet. This network

has significantly improved the image classification error with respect to the AlexNet

neural network.

The improvements introduced by the ZFNet are related to the first two convo-

lutional layers: in particular, for the first one the filter size has been reduced from

11x11 to 7x7 and the stride has also been decreased from 4 to 2. For what concerns

the second convolutional layer, everything is the same except for the stride which

becomes 2 instead of 1 and the padding which is 0 in this case.

This two small modifications allowed the ZFnet to decrease the top-5 error by

1.7%.

The idea behind these small variations is that by reducing the filter size and the

stride more information can be extracted by the first layer.

13

1 – State of the art

1.5 LeNet-5

The LeNet-5 neural network algorithm [13] is one of the most simple algorithms

which is able to automatically classify hand-written digits.

Different versions of this network have been developed over time. However, the

original model is the one shown in Table 1.2.

Layer Feature Map Size Kernel Size Stride Activation
Input image 1 32x32 - - -
convolution 6 28x28 5x5 1 tanh

Average Pooling 6 14x14 2x2 2 tanh
convolution 16 10x10 5x5 1 tanh

Average Pooling 16 5x5 2x2 2 tanh
convolution 120 1x1 5x5 1 tanh

Fully-Connected - 84 - - tanh
Fully-Connected - 10 - - softmax

Table 1.2: LeNet-5 layers summarized.

The padding value is always 0 for every layer in the LeNet-5 algorithm.

The version implemented in this thesis is a little bit different with respect to

the original one. The first difference is the activation function: the tanh function is

very demanding from a computational point of view so it has been substituted by

the ReLU. Another difference is that the third convolutional layer has been replaced

with a fully connected one. For what concerns the pooling layer, the max-pooling

layer has been used instead of the average one. In Table 1.3 the summary of the

LeNet-5 modified version is reported.

14

1 – State of the art

Layer Feature Map Size Kernel Size Stride Activation
Input image 1 32x32 - - -
convolution 6 28x28 5x5 1 ReLU

Max Pooling 6 14x14 2x2 2 ReLU
convolution 16 10x10 5x5 1 ReLU

Max Pooling 16 5x5 2x2 2 ReLU
Fully-Connected 120 1 ReLU
Fully-Connected - 84 - - ReLU
Fully-Connected - 10 - - softmax

Table 1.3: Summary of the LeNet-5 modified version.

This modified version will be used to test the correct behaviour of the hardware

accelerator chapter 6.

15

1 – State of the art

1.6 GoogLeNet

The GoogLeNet [4] is a neural network used to recognized images like AlexNet,

ZFNet and VGGNet. However, this network has significant improvements over

ZFNet and AlexNet and at the same time, it has a relatively lower error rate com-

pared with the VGGNet. In Figure 1.15 the GoogLeNet neural network model is

shown.

The GoogLeNet algorithm introduces some new important concepts which are

worth to be mentioned:

• The 1x1 convolution;

• Inception Module;

• Global Average Pooling.

1.6.1 The 1x1 convolution

The 1x1 convolution is used to reduce the computation needed by bigger convolu-

tional layers. As a matter of fact, if the computation is reduced, the depth and the

width of the network can be increased. To explain better why the computation is

reduced, it might be useful to analyze an example. In Figure 1.11 a 5x5 filter is

applied to an input feature map.

14x14x480 14x14x48

5x5 �lter

48 output

channels

Figure 1.11: Convolutional layer without 1x1 filter.

The number of operations are

operations = (14 · 14 · 48) · (5 · 5 · 480) = 112.9× 106

16

1 – State of the art

Now if a 1x1 filter is applied before the 5x5 one, like in Figure 1.12

14x14x480 14x14x16

1x1 �lter

16 output

channels

14x14x48

5x5 �lter

48 output

channels

Figure 1.12: Convolutional layer with 1x1 filter.

the number of operations becomes

operations = (14 · 14 · 16) · (1 · 1 · 480) + (14 · 14 · 48) · (5 · 5 · 16) = 5.3× 106

which means that even if an additional layer has been inserted the total executed

operations are more than 20 times less.

1.6.2 Inception module

An inception module is a computational block where filters with multiple sizes are

applied to the same input and then their results are concatenated. In Figure 1.13 it

is possible to see a naive version of the inception module.

17

1 – State of the art

1x1 conv 3x3 conv 5x5 conv 3x3 max pooling

Previous layer

Filter

concatenation

Figure 1.13: Inception module without dimension reductions.

By inserting 1x1 convolution the number of operations to be done are reduced

as seen in subsection 1.6.1.

1x1 conv

3x3 conv 5x5 conv

3x3 max pooling

Previous layer

Filter

concatenation

1x1 conv

1x1 conv1x1 conv

Figure 1.14: Inception module with dimension reductions.

18

1 – State of the art

1.6.3 Global Average Pooling

In classical neural network implementation like AlexNet, fully-connected layers are

used at the end of the network. In GoogLeNet, global average pooling is used near

the end of the network before inserting an actual fully-connected layer. The idea

is that by using the average pooling there is not any weight to store which is a

big advantage for such enormous networks. Moreover moving from an FC layer

to an average pooling one allows improving the top-1 accuracy by about 0.6%.

This means that no precision is lost when the fully-connected are substituted by an

average pooling. Obviously, at the end of the network, at least one FC layer has still

to be inserted followed by a softmax function to obtain the classification results.

19

1 – State of the art

Figure 1.15: GoogLeNet neural network model [4].

20

1 – State of the art

1.7 VGGNet

The VGGNet [14] neural network has improved networks like ZFNet, AlexNet and

GoogLeNet in classification tasks.

This network is based on a 3x3 filters in every convolutional layer. The idea is

that by using 2 layers of 3x3 filters, a 5x5 area can be covered. If instead 3 layers of

3x3 filters are used, a 7x7 effective area is covered. This means that large-size filters

such as the ones used in AlexNet, ZFNet and so on, are not needed.

Furthermore, by using smaller filters, the number of parameters to be stored are

fewer. On top that having fewer parameters to be learnt during training allows a

faster convergence and reduces the overfitting problem.

Figure 1.16: Different VGG layer structure using single scale (256) evaluation [5].

21

1 – State of the art

1.8 Residual Neural Network

In traditional neural networks, each layer feeds into the next layer. In residual

neural network (ResNet) [6], on the other hand, each layer feeds into the next one

and directly into the ones about 2-3 hops away. As a matter of fact, the basic block

in such a network is a residual block like in Figure 1.17.

Figure 1.17: Residual block [6].

It is known that the accuracy of neural networks increases with an increasing

number of layers. However, there is a limit to the layers which can be added and

that result in an accuracy improvement. It might happen that very deep neural

networks are able to learn very complex functions but due to vanishing gradients

and high dimensionality problems, they are not able to learn simple functions like

the identity one.

Furthermore, if the number of layers continues to be increased, the accuracy will

start to saturate at some point and eventually it will start to degrade. This problem

is called degradation and due to it, shallower networks might learn better than

their deeper counterparts.

For this reason, a block like the one in Figure 1.17 is used. This residual con-

nection connects the input to a certain layer output by an element-wise addition.

Essentially, residual blocks allow the flow of information from initial layers to

last ones.

In Figure 1.18 there are some examples of ResNet.

22

1 – State of the art

Figure 1.18: Figure 3. Example network architectures for ImageNet. Left: the
VGG-19 model as a reference. Middle: a plain network with 34 parameter layers.
Right: a residual network with 34 parameter layers. The dotted shortcuts increase
dimensions [6].

23

1 – State of the art

1.9 Other Neural Networks

Nowadays there are a lot of different neural networks which in one way or the other

use the layers and the principles seen before.

There are other two neural networks which are worth to be mentioned: DenseNet

and Recurrent neural network (RNN).

1.9.1 DenseNet

In standard Convolutional neural network, input images go through convolution to

obtain high-level features. In ResNet, instead, the identity block is used to propagate

the input from the initial layers to last ones with an element-wise addition.

In DenseNet neural network [7], on the other hand, each layer is connected to

all the next ones through concatenation. It is like each layer receives a collective

knowledge from all the preceding layer [15].

In Figure 1.19 a complete dense neural network with three dense blocks is de-

picted.

Figure 1.19: A deep DenseNet with three dense blocks [7].

In Figure 1.20 an example of a 5-layer dense block is presented. Each layer

receives all preceding feature maps and thanks to this the network can be thinner

and compact. As a matter of fact, the number of channels is usually fewer in this

kind of network.

24

1 – State of the art

Figure 1.20: A 5-layer dense block. Each layer takes all preceding feature-maps as
input [7].

1.9.2 Recurrent Neural Networks

Recurrent neural networks (RNN) [8] are used when it is necessary to take a series of

input with no predetermined limit on size.

The difference with respect to a regular neural network called repeatedly is that

RNNs are able to remember the past and then take decisions based on what they

have learnt.

The idea is that the outputs are influenced by weights applied on inputs (just like

regular neural networks) and by a hidden state vector which represents the context

based on input/outputs history.

Due to this, the same input can produce a different output depending on the

previous inputs in the series.

25

1 – State of the art

h0 h1
…h2 h3

y1 y2 y3

x1 x2 x3

WhWh Wh

Wx Wx Wx

Wy Wy Wy

Figure 1.21: A RNN with a hidden state [8].

In Figure 1.21, an example of a Recurrent neural network is depicted. Hidden

states are used to carry information from one input in the series to others.

26

1 – State of the art

1.10 Logic-in-Memory

Modern computing systems are based on von Neumann paradigm which consists of

exchanging data between a CPU and a memory.

A CPU executes instructions on data, read from the memory, and then it writes

back the results in the same memory. It is clear that this kind of mechanism is not

efficient when the CPU has to deal with large quantities of data because a lot of

reading/writing operations from/to the memory are executed.

Today, CPUs are very powerful and over the year their performances have in-

creased thanks to a higher number of cores and a higher clock frequency. On the

other hand, memories are not able to scale and improve at the same speed as the

CPUs. For this reason, the memory bandwidth is becoming the main limitation of

system performances.

Another important drawback of this type of paradigm is power consumption.

Every access in memory consumes power which means that for data-intensive appli-

cations the amount of energy spent for memory accesses has a big influence on the

overall power consumption.

A possible alternative to this paradigm is the Logic-in-Memory (LiM) approach

[16]. Integrating simple logic directly inside the memory cell could cross the memory

wall problem. Furthermore, since data are computed inside the memory there is no

need to move them between the storage unit and the computing one.

This solution seems promising in theory but it is important to consider the

operations to be executed in memory. First of all only basic operation can be

implemented inside the memory and a different technology with respect to CMOS

might need to be used for the memory implementation to obtain actual performance

improvement.

Another important aspect is that not all algorithms can benefit from a LiM

approach. If data are moved in different positions very often during the algorithm,

it might be necessary to use several interconnections and this is not an ideal solution.

27

Chapter 2

AlexNet software implementation

2.1 TensorFlow

TensorFlow is one of the most successful open-source platforms for neural network

development. A neural network in TensorFlow is expressed as a computation graph

with nodes and edges: a node represents an operation while an edge represents the

data consumed or produced by one or more nodes.

TensorFlow uses tensors to represent nodes. A tensor is an arbitrary dimen-

sional array (which can represent a high order matrix or a vector) and each node

can take more inputs and produce several outputs. There are two types of tensors:

placeholders and variables. Variables are the parameters of the algorithm and Ten-

sorFlow keeps track of how to change these to optimize the algorithm. Placeholder,

on the other hand, are objects that allow you to feed in data of a specific type and

shape and depend on the results of the computational graph, such as the expected

outcome of a computation.

In a Neural Network weights are represented by variables which TensorFlow

automatically changes to minimize the loss function (when training is performed)

while input data are represented by placeholders.

When training is performed, training data are usually first extracted and then fed

to a model running on an accelerator. However if not optimized, while the CPU is

preparing the data, the accelerator is sitting idle doing nothing and vice versa when

the accelerator is training the model, the CPU is sitting idle. Since the training

step time is the sum of both CPU pre-processing time and the accelerator training

time, it is clear that one has to optimize in some way both of them to increase the

performances of the algorithm.

One method to reduce this time is to overlap the preprocessing and the model

execution of a training step: while the accelerator is performing training step N, the

28

2 – AlexNet software implementation

CPU is preparing the data for step N+1. Thanks to this optimization it is possible to

reduce the step time to the maximum (instead of the sum) between the training step

time and the CPU pre-processing time. This method can be used also for inference

and it is called input pipeline.

Furthermore, TensorFlow is capable to work in a heterogeneous environment

with multicore CPU, GPU and Tensor Processing Unit (TPU) from mobile devices

to production data centres.

2.2 Python code

The AlexNet Neural Network has been implemented using Python and the Tensor-

Flow framework. The code has been divided into the following sections:

• AlexNet class;

• Dataset class;

• Data generator class;

• high-level file;

• Caffe classes.

2.2.1 AlexNet class

In this class the model of the AlexNet has been described: all the layers have been

implemented using TensorFlow variables for the weights. This model is based on a

Git-Hub open source project implemented by Frederik Kratzert [17].

At the beginning of the code the class AlexNet is declared and then the init

function is defined. This function is executed every time a class is called because

it is the constructor of a class. As it is possible to see from the code below, in this

constructor the main features of the class are defined and the arguments of the class

are stored into class variables.

import tensorflow as tf

2 import numpy as np

29

2 – AlexNet software implementation

4

class AlexNet(object):

6 """ Implementation of the AlexNet."""

8 def __init__(self , x, keep_prob , num_classes , skip_layer ,

weights_path=’DEFAULT ’):

10 """ Create the graph of the AlexNet model.

12 Args:

x: Placeholder for the input tensor.

14 keep_prob: Dropout probability.

num_classes: Number of classes in the dataset.

16 skip_layer: List of names of the layer , that get trained from

scratch

18 weights_path: Complete path to the pre -trained weight file , if it

isn’t in the same folder as this code

20 """

Parse input arguments into class variables

22 self.X = x

self.NUM_CLASSES = num_classes

24 self.KEEP_PROB = keep_prob

self.SKIP_LAYER = skip_layer

26

if weights_path == ’DEFAULT ’:

28 self.WEIGHTS_PATH = ’bvlc_alexnet.npy’

else:

30 self.WEIGHTS_PATH = weights_path

32 # Call the create function to build the computational graph of AlexNet

self.create ()

At the end of the constructor, another function is called: the create() function

defines all the layers of the AlexNet.

def create(self):

2 """ Create the network graph."""

1st Layer: Conv (w ReLu) -> Lrn -> Pool

4 conv1 = conv(self.X, 11, 11, 96, 4, 4, padding=’VALID’, name=’conv1’)

norm1 = lrn(conv1 , 2.5, 1e-04, 0.75, name=’norm1’)

6 pool1 = max_pool(norm1 , 3, 3, 2, 2, padding=’VALID’, name=’pool1’)

8 # 2nd Layer: Conv (w ReLu) -> Lrn -> Pool with 2 groups

conv2 = conv(pool1 , 5, 5, 256, 1, 1, groups=2, name=’conv2’)

10 norm2 = lrn(conv2 , 2.5, 1e-04, 0.75, name=’norm2’)

pool2 = max_pool(norm2 , 3, 3, 2, 2, padding=’VALID’, name=’pool2’)

12

3rd Layer: Conv (w ReLu)

14 conv3 = conv(pool2 , 3, 3, 384, 1, 1, name=’conv3’)

16 # 4th Layer: Conv (w ReLu) splitted into two groups

30

2 – AlexNet software implementation

conv4 = conv(conv3 , 3, 3, 384, 1, 1, groups=2, name=’conv4’)

18

5th Layer: Conv (w ReLu) -> Pool splitted into two groups

20 conv5 = conv(conv4 , 3, 3, 256, 1, 1, groups=2, name=’conv5’)

pool5 = max_pool(conv5 , 3, 3, 2, 2, padding=’VALID’, name=’pool5’)

22

6th Layer: Flatten -> FC (w ReLu) -> Dropout

24 flattened = tf.reshape(pool5 , [-1, 6*6*256])

fc6 = fc(flattened , 6*6*256 , 4096, name=’fc6’)

26 dropout6 = dropout(fc6 , self.KEEP_PROB)

28 # 7th Layer: FC (w ReLu) -> Dropout

fc7 = fc(dropout6 , 4096, 4096, name=’fc7’)

30 dropout7 = dropout(fc7 , self.KEEP_PROB)

32 # 8th Layer: FC and return unscaled activations

self.fc8 = fc(dropout7 , 4096, self.NUM_CLASSES , relu=False , name=’fc8’)

Every layer has been defined later in the code as a function with appropriate

arguments. For example in the following piece of code it is possible to see the

convolutional layer function which takes as arguments the layer input, the filter

width, the number of filters, the stride in both y and x-direction, a name, the padding

type and finally the number of groups in which the convolutional layer should be

divided.

def conv(x, filter_height , filter_width , num_filters , stride_y , stride_x , name ,

2 padding=’SAME’, groups =1):

""" Create a convolution layer.

Moreover, each layer has its own weights which usually are defined after a Neural

Network training. However, it is possible to find files which contain pre-trained

weights. In this way, the inference can be performed without any training.

It is clear that these weights have to be loaded in the graph defined by Tensor-

Flow. The function which allows doing this operation is the following one:

def load_initial_weights(self , session):

2 """ Load weights from file into network.

4 As the weights from http :// www.cs.toronto.edu/~ guerzhoy/tf_alexnet/

come as a dict of lists (e.g. weights[’conv1 ’] is a list) and not as

6 dict of dicts (e.g. weights[’conv1 ’] is a dict with keys ’weights ’ &

’biases ’) we need a special load function

8 """

Load the weights into memory

10 weights_dict = np.load(self.WEIGHTS_PATH , encoding=’bytes’,

allow_pickle=True).item()

31

2 – AlexNet software implementation

12 # Loop over all layer names stored in the weights dict

for op_name in weights_dict:

14

Check if layer should be trained from scratch

16 if op_name not in self.SKIP_LAYER:

18 with tf.variable_scope(op_name , reuse=True):

20 # Assign weights/biases to their corresponding tf variable

for data in weights_dict[op_name]:

22

Biases

24 if len(data.shape) == 1:

var = tf.get_variable(’biases ’, trainable=False) #load weights only of non

trainable layers

26 session.run(var.assign(data))

28 # Weights

else:

30 var = tf.get_variable(’weights ’, trainable=False) #load weights only of non

trainable layers

session.run(var.assign(data))

It is worth noting that in this class it is possible to define layers to be trained in

the SKIP LAYER variable: for these layers pre-trained weights will not be used which

means that they have to be trained from scratch. However, the possibility to train

just a certain number of layers is very interesting because if one has a particular

set of images to be recognized, by training only the last Fully Connected layers, for

example, it is possible to increase the accuracy for those specific images.

2.2.2 Caffe class

This class contains only the images categories names which can be recognized with

the pre-trained weights loaded in the TensorFlow graph. These are just a few lines

of this class in order to see how categories are defined:

class_names = ’’’tench , Tinca tinca

2 goldfish , Carassius auratus

great white shark , white shark , man -eater , man -eating shark , Carcharodon carcharias

4 tiger shark , Galeocerdo cuvieri

hammerhead , hammerhead shark

6 electric ray , crampfish , numbfish , torpedo

32

2 – AlexNet software implementation

2.2.3 Data generator class

In this class, image data are prepared in order to use the input pipeline method

to increase performances and reduce the amount of time to perform the inference.

class dataGenerator(object):

2 def __init__(self , val_path=’val’):

self.all_images = self.generate_list(val_path)

4

def generate_list(self , val_path):

6 all_images = {} #make a dictionary

for img_folder in os.listdir(val_path):

8 img = glob.glob(val_path + os.path.sep + img_folder + os.path.sep + ’*.jpg’)

#store images path for each category

10 all_images[img_folder] = img

return all_images

12

def get_next_image(self):

14 while True:

#choose one random category

16 img_class1 = random.choice(list(self.all_images))

#choose one random image from that category

18 img1 = random.choice(self.all_images[img_class1])

yield (img_class1 , img1)

It is possible to see how the constructor method calls the generate list function

which basically searches in the given path all the jpg images. A dictionary is created

where at each key all the images which corresponds to that key are stored. For

example if the path is something like:

/category name/image name.jpg

the key is the category name while the images for each key are those in the folder

itself. Moreover, every time a new image is requested through the function get next

image, a random image of a randomly chosen category is picked.

2.2.4 Dataset class

Once the images are prepared, the tf.data API has to be used to build flexible and

efficient input pipelines. The code from [18] which implements tf.data API has been

modified and used in order to work with the AlexNet model. A detailed explanation

on how to use this API can be found here [18] and here [19], while in the following

33

2 – AlexNet software implementation

only the main features are highlighted and explained.

class Dataset(object):

2

def __init__(self , batch_size , generator=dataGenerator ()):

4 self.next_element = self.build_iterator(batch_size , generator)

6 def build_iterator(self , batch_size , pair_gen: dataGenerator):

#batch_size = batch_size

8 prefetch_batch_buffer = 5

10 dataset = tf.data.Dataset.from_generator(pair_gen.get_next_image , (tf.string ,

tf.string))

dataset = dataset.map(self._read_image_and_resize)

12 dataset = dataset.batch(batch_size)

dataset = dataset.prefetch(prefetch_batch_buffer)

14 iter = dataset.make_one_shot_iterator ()

element = iter.get_next ()

16

return element

18

def _read_image_and_resize(self , label , img):

20 # read images from disk

#print("img: ", img , "+ label ", label , "\n")

22 img1_file = tf.read_file(img)

img1 = tf.image.decode_jpeg(img1_file)

24 #Set shape

img1.set_shape ([None , None , 3])

26

28 #make transformation on the image

img_resized = tf.image.resize_images(img1 , [227, 227])

30 img_centered = tf.subtract(img_resized , IMAGENET_MEAN)

#RGB -> BGR

32 img_bgr = img_centered [:,:,::-1]

34 return img_bgr , label

The main idea is to create a dataset of images and categories up to the batch size

dimension using the previously defined Data generator class. After that, an

iterator is created in order to remember what element has been used and most

important what is the next image to be evaluated.

Every time next element is called, a new dataset of images of batch size di-

mension is created thanks to the function build iterator.

It has to be highlighted how each image is resized and converted in BGR format

(instead of RGB) before being evaluated.

34

2 – AlexNet software implementation

2.2.5 High level file

In the high-level file, all the classes are joined together and the AlexNet network is

actually run and the results are printed on a terminal. First of all, some parameters

have to be defined:

• num classes: the classes number is fixed to 1000 and this value depends on the

actual number of categories on which the network has been trained and on the

dimension of the last fully connected layer (which means how many neurons

the last layer has);

• batch size: the batch size is the number of images to be evaluated in the same

run of the algorithm. It can be seen as the fourth dimension of the input

matrix (because there are already width, height and channel);

• train layers: train layers are the ones to be trained. Usually only the last fully

connected layers are selected. In this case, this array is empty because no

training is performed;

• generations: number of times the algorithm is executed. This option is used

only when training is performed.

batch_size = 100

2 num_classes = 1000

generations = 10000 #total steps

4 train_layers = []

6 generator = dataGenerator ()

ds = Dataset(batch_size , generator)

8 next_batch = ds.next_element #next iterator

10 keep_prob = 1.0

12 # Initialize model

model = AlexNet(next_batch [0], keep_prob , num_classes , train_layers)

14

Link variable to model output

16 score = model.fc8

prob = tf.nn.softmax(score)

18 #Test output

20 init = tf.global_variables_initializer ()

#sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))

35

2 – AlexNet software implementation

22 sess = tf.Session ()

sess.run(init)

24 # Load the pretrained weights into the non -trainable layer

model.load_initial_weights(sess)

26 img_input = model.X

In the first part of the code the needed classes are called and the model is initialized.

After that the normalized version of the softmax function is applied at the output

of the last fully connected layer.

It is important highlighting that in this phase the TensorFlow graph has been

created but only when the session is instantiated and run the evaluation truly starts.

For example to initialize all the variables of the graph the following code has been

written:

init = tf.global_variables_initializer ()

However, the actual initialization is not executed until the session is run. This means

that the following lines have to be added:

sess = tf.Session ()

2 sess.run(init)

These lines create a Session and then the init tensor is evaluated. TensorFlow is

different with respect to the other programming languages: tensors are evaluated

only when the run of the session is performed and only the tensors which are the

arguments of the run function are actually evaluated. However, it is common that

some tensors are the results of several operations on previous tensors. In those cases,

TensorFlow is able to track backwards all the tensors that need to be evaluated and

to compute the right results.

TensorFlow while running the algorithm performs its routines to optimize the

code based on the CPU or GPU available. In order to allow TensorFlow to properly

execute these routines (before actually evaluating the performance of the algorithm)

the following code has been added:

for i in range (100): ###used to allow TensorFlow to run its routines to optimize

the CPU

2 output= sess.run(prob)

which means execute the algorithm 100 times before going on with the remaining

code.

The final part of the high level file code is the following:

36

2 – AlexNet software implementation

t = time.time() #Time from epoch (1 january 1970 in seconds)

2 (output , output_prova ,[img1 ,label]) = sess.run([prob ,img_input , next_batch])

#output_prova = sess.run(img_input)

4 t_f = time.time() #Final time

for step in range(batch_size):

6

index = argmax(output ,1)[step]

8 print(f"step {step}, label:{ label[step]}, label_pred_argmax: {class_names[index]}

")

#plt.subplot(1, 2, 1)

10 #plt.imshow(img1[step]. astype(np.uint8))

#plt.title(f ’{label[step]}’)

12 #plt.subplot(1, 2, 2)

#plt.imshow(output_prova[step]. astype(np.uint8))

14 #plt.title(f ’{class_names[index]}’)

#plt.show()

16 print("\nFinal time [s]: ", t_f -t)

The algorithm is evaluated once again and its results are compared with the category

name of each input image. Since also the img input is evaluated it is also possible

to print on screen the actual input picture of the model and the picture to which

corresponds the category name compared with the AlexNet output. This is done

just to see if the right images are evaluated each time.

2.2.6 How to select a GPU or a CPU to run the algorithm

On a typical system, there are multiple computing devices. In TensorFlow [20], the

supported device types are CPU and GPU. They are represented as strings. For

example:

• “/cpu:0”: it indicates the CPU of the system;

• “/device:GPU:0”: it corresponds to the GPU of the system, if there is any;

• “/device:GPU:1”: it points to the second GPU of the system, etc.

However if a TensorFlow operation can be executed on either the CPU or the GPU,

the latter device will be always used if not specified differently. To force the execution

of the algorithm on the CPU the following line of code has to be added at the

beginning of the code:

with tf.device("/cpu:0"):

37

2 – AlexNet software implementation

To find out which devices the operations and tensors are assigned to, it is sufficient

to create a session with log device placement which is a configuration option and

set it to True. For example:

sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))

This line of code will produce the following output:

Device mapping:

2 /job:localhost/replica:0/task:0/device:XLA_CPU:0 -> device: XLA_CPU device

/job:localhost/replica:0/task:0/device:XLA_GPU:0 -> device: XLA_GPU device

4 /job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: Tesla K40c, pci

bus id: 0000 :08:00.0, compute capability: 3.5

IteratorToStringHandle: (IteratorToStringHandle):

/job:localhost/replica:0/task:0/device:CPU:0

6 IteratorGetNext: (IteratorGetNext): /job:localhost/replica:0/task:0/device:CPU:0

conv1/weights/Initializer/random_uniform/RandomUniform: (RandomUniform):

/job:localhost/replica:0/task:0/device:CPU:0

8 conv1/weights/Initializer/random_uniform/sub: (Sub):

/job:localhost/replica:0/task:0/device:CPU:0

conv1/weights/Initializer/random_uniform/mul: (Mul):

/job:localhost/replica:0/task:0/device:CPU:0

10 conv1/weights/Initializer/random_uniform: (Add):

/job:localhost/replica:0/task:0/device:CPU:0

conv1/weights: (VariableV2): /job:localhost/replica:0/task:0/device:CPU:0

2.2.7 How to profile TensorFlow

Being able to profile a TensorFlow graph could be very useful to evaluate the perfor-

mances of a Neural Network. Thanks to timeline module [21] this is quite simple:

by adding just a few lines of code it is possible to create a json file with profiled

data stored in Chrome trace format:

...

2 previous code

...

4 options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)

run_metadata = tf.RunMetadata ()

6 output = sess.run(prob , options=options , run_metadata=run_metadata)

fetched_timeline=timeline.Timeline(run_metadata.step_stats)

8 chrome_trace = fetched_timeline.generate_chrome_trace_format ()

with open(’timeline_CPU_input_pipeline_batch_size_5.json’, ’w’) as f:

10 f.write(chrome_trace)

38

2 – AlexNet software implementation

Basically the algorithm is run with options and metadata like shown in the above

code and then the chrome trace is written in a json file. Once the file has been

created, by going on the Chrome browser at the following address

chrome://tracing/

it is possible to load the json file and then something similar to the following timeline

can be obtained:

Figure 2.1: CPU profiling.

On the top there is the time axis in ms. To get more precise info about some

operation it is sufficient to click on it. Also on the right side, there are simple tools:

selection, pan, zoom and timing. On the left side for each process, it is possible

to see how many threads are used and which are the operations executed by each

one of them. In the image above there is just one process and eight threads: each

horizontal track represent a thread on CPU.

While on the GPU by defaults TensorFlow uses as much memory as it can, on

CPU it is mandatory to specify the number of threads and core processors to be

used by the algorithm in order to evaluate in similar condition the performances. To

do that before declaring a session it is sufficient to add the following configuration

option:

39

chrome://tracing/

2 – AlexNet software implementation

session_conf = tf.ConfigProto(intra_op_parallelism_threads =8,

inter_op_parallelism_threads =8)

2 sess = tf.Session(config=session_conf)

The best performance can be obtained by declaring both intra op parallelism

threads and inter op parallelism threads equal to the maximum number of

threads of the processor.

2.2.8 How to evaluate the inference time

In order to evaluate the inference time it is sufficient to use the time.time() function

before and after the execution of the algorithm and then do a simple subtraction

like in the following code:

t = time.time() #Time from epoch (1 january 1970 in seconds)

2 output=sess.run(prob)

t_f = time.time() #Final time

4 print("\nFinal time [s]: ", t_f -t)

#print duration time on text_file

6 with open(’duration_batch_size_5.txt’,’a’) as f:

f.write(f"duration[s]: {t_f -t} \n")

However it is clear that this algorithm should be executed several times in order

to compute the mean value among all the inference times. For this reason each

inference time is written in a file opened in append mode. Moreover, an additional

python script has been written in order to execute the algorithm multiple times.

It is clear that another possibility could have been writing a for loop and execute

multiple times the code above. However, executing the whole file together is more

similar to an actual run of the algorithm. Remember also that TensorFlow does

several optimizations when running the code, so the solution with a for loop could

have given a no truthful result. The python script is actually very simple:

for j in range (100):

2 import high_level_file_5

importlib.reload(high_level_file_5)

Normally when a script is imported once, even if the import statement is written a

second time it will not be executed again, while with the function importlib.reload

(python script name) the compiler is forced to import again the script which

means, in this case, execute again the AlexNet algorithm.

40

2 – AlexNet software implementation

2.2.9 How to obtain power data of the GPU

Nvidia GPUs come with very handy developer tools which allow profiling deeply

every algorithm. However, these tools work well only for codes based on CUDA

API. Nevertheless thanks to some command-line tools provided by Nvidia itself, it

is possible to measure some parameters of the GPU like temperature, power, used

memory and so on. In particular the command nvidia-smi provides the following

GPU parameters:

+---+

2 | NVIDIA -SMI 418.67 Driver Version: 418.67 CUDA Version: 10.1 |

|-------------------------------+----------------------+----------------------+

4 | GPU Name Persistence -M| Bus -Id Disp.A | Volatile Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory -Usage | GPU -Util Compute M. |

6 |===============================+======================+======================|

| 0 Tesla K40c Off | 00000000:08:00.0 Off | 0 |

8 | 58% 75C P0 157W / 235W | 294 MiB / 11441 MiB | 97% Default |

+-------------------------------+----------------------+----------------------+

10

+---+

12 | Processes: GPU Memory |

| GPU PID Type Process name Usage |

14 |===|

| 0 22113 C /bin/mumax3 283MiB |

This is just an example where it is possible to see the power consumption. This

means that in order to measure multiple times the power and then make an average

among all the values, one needs to iterate this command every tot. amount of time.

Fortunately an option for this command is -lms numb which basically means repeat

every numb (expressed in ms) the command nvidia-smi.

There are still two problems: the command needs to be executed just when the

algorithm is run, no sooner no later and furthermore when the option to repeat

the command is given, the process related to that command will run forever if not

stopped.

To solve all the above problems the following code can be used and can be

implemented directly in the python script of the algorithm:

nvidia_cmd=subprocess.Popen(["nvidia -smi", "-lms", "1"], stdout=subprocess.PIPE ,)

2 grep_cmd = subprocess.Popen (["grep", "MiB"], stdin= nvidia_cmd.stdout ,

stdout=subprocess.PIPE ,) #second command

output = sess.run(prob)

4 #get process PID and kill it

41

2 – AlexNet software implementation

pid = nvidia_cmd.pid

6 pid2=grep_cmd.pid

os.kill(pid , signal.SIGKILL)

8 os.kill(pid2 , signal.SIGKILL)

if not nvidia_cmd.poll() and not grep_cmd.poll():

10 print ("Process correctly halted")

end_of_pipe=grep_cmd.stdout

12 with open(’power_batch_size_5.txt’,’a’) as f:

for line in end_of_pipe:

14 f.write(str(line)+"\n")

The first two lines basically represent the bash command:

>> nvidia− smi − lms 1 |grep ′′MiB′′

while the others represent just the python way to kill the process once finished and

write the result on a file opened in append mode. For example the result of these

lines of code may be something like this:

| 24% 47C P0 63W / 235W | 11019 MiB / 11441 MiB | 13% Default |

2 | 0 18625 C python3 .7 11006 MiB |

| 24% 47C P0 63W / 235W | 11019 MiB / 11441 MiB | 13% Default |

4 | 0 18625 C python3 .7 11006 MiB |

| 24% 47C P0 63W / 235W | 11019 MiB / 11441 MiB | 13% Default |

6 | 0 18625 C python3 .7 11006 MiB |

| 24% 47C P0 62W / 235W | 11019 MiB / 11441 MiB | 13% Default |

8 | 0 18625 C python3 .7 11006 MiB |

| 24% 47C P0 65W / 235W | 11019 MiB / 11441 MiB | 13% Default |

10 | 0 18625 C python3 .7 11006 MiB |

It is worth highlighting that the GPU consumes power even if not used: this is

called idle power. To obtain the true power consumption the idle power has to be

subtracted to the measured one. By running the nvidia-smi command when nothing

is running on the GPU the following power is obtained:

PIdle = 20 W

As done previously to measure the inference time, a python script that runs a

certain number of times the AlexNet algorithm has been written. However since

each nvidia-smi command gives more than one sample, each iteration has to be

separated in order to be able to do the average among all the samples. The script

again is very similar to the previous one:

42

2 – AlexNet software implementation

for j in range (10):

2 import high_level_file_5

with open(’power_batch_size_5.txt’, ’a’) as f:

4 f.write("--------------------- \n")

importlib.reload(high_level_file_5)

6 with open(’power_batch_size_5.txt’, ’a’) as f:

f.write("--------------------- \n")

The only difference with respect to the previous script for the inference time is that

after each iteration the file is opened and two dash lines are added (the first time

the script is imported the added line is only one).

There is more to say about the results obtained by this script: at each iteration,

a different number of values are provided. Since at each iteration the measured

values are very similar it is possible to select among all, the iterations where there

is the highest number of samples and then compute the average among them in

order to obtain a reasonable mean value. It has to be remarked that the mean value

takes into account the number of samples so it is mandatory to first extract only the

iterations with the same number of samples and then compute the average value.

To simplify the script inside each dash line two W letters have been inserted to

obtain something like this:

| 0 18625 C python3 .7 11008 MiB |

2 | 25% 50C P0 69W / 235W | 11021 MiB / 11441 MiB | 17% Default |

| 0 18625 C python3 .7 11008 MiB |

4 ------W---------W----

------W---------W----

and then the following bash command has been executed

cat power_batch_size_5.txt | grep W | tr -s ’ ’ | cut -d ’W’ -f 1 | cut -d ’ ’ -f

5 > extracted_batch_size_5.txt

In this way the following result is obtained and saved in the file extracted batch

size 5.txt:

63

2 63

63

4 62

65

6 ------

64

8 63

43

2 – AlexNet software implementation

63

Now Matlab scripts have been written to obtain the final data:

matrix_out = classify_power_values(’extracted_batch_size_5.txt’);

2 line_to_write = mean(matrix_out ,2);

f_out = fopen(’power_batch_size_5.txt’,’w’);

4 for index = 1:(length(line_to_write))

fprintf(f_out ,’%f\n’, line_to_write(index));

6 end

fclose(f_out);

In this first script the function classify power values is called and it basically

extracts from each file only the data with the same number of samples as discusses

before. The code of this function is the following one:

function [matrix1] = classify_power_values(file_name)

2 %function Summary of this function goes here

% Detailed explanation goes here

4 f = fopen(file_name);

i = 1;

6 n_max = 0;

k = 1;

8 vect2 = zeros (5,1);

matrix_f = zeros(n_max , 1);

10 temp = 0;

while ~feof(f)

12 line1 = fgetl(f);

if(strcmp(line1 ,’------’))

14 %new simulation data

if(temp == 0)

16 temp = 1;

i = 1;

18 n = length(vect2); %% # of elements in the array

if(n > n_max)

20 n_max = n;

k = 1;

22 clear matrix_f;

matrix_f = zeros(n_max , 1);

24 matrix_f(:,k) = vect2;

k = k+1;

26 clear vect2;

elseif(n == n_max)

28 matrix_f(:,k) = vect2;

k = k+1;

30 clear vect2;

else

32 clear vect2;

end

44

2 – AlexNet software implementation

34 end

else

36 vect2(i) = str2double(line1);

i = i+1;

38 temp = 0;

end

40 end

fclose(f);

42 matrix1 = matrix_f;

end

Now this function extracts the data with the same number of samples and then the

main script computes automatically the mean value among samples at the same

position. This is done because the iterated nvidia-smi command gives samples over

time so if the algorithm is iterated multiple times, it is possible to obtain an av-

erage value at each iteration and by joining together all the iterations, the power

consumption over time can be computed.

45

Chapter 3

Comparison GPU vs CPU

Neural Network algorithms perform differently if a GPU or CPU is used. There are

mainly two different performance indicators [22] which have to be considered when

comparing a CPU and a GPU for neural network algorithms like AlexNet:

• Processing speed;

• Data transfer speed from the memory.

The processing speed depends on a various number of factors like cores number,

clock speed (frequency) and last but not least number of instructions completed

in each clock cycle (IPC, instructions per cycle). The IPC depends heavily on the

application. The theoretical number is two to four instructions per cycle. However,

the practical performance can be more or less close to the maximum based on if the

processor is able to to get all necessary data on time. In the case of a memory-bound

algorithm, the performance is easily reduced to a small percentage of the maximum.

For GPUs, processing units are highly different from general-purpose CPUs: the

processing speed is much greater (mainly thanks to a large number of specialized

cores though with lower frequency) and also the throughput to the memory is much

greater due to wider buses usually.

This means that algorithms which are limited by processing speed and by mem-

ory can perform much better if executed on GPUs. Moreover, today’s GPUs offer

also double precision floating point capabilities.

To understand better all the differences listed before it might be useful to analyze

the typical structure of an Intel i7 CPU and a NVIDIA Tesla GPU.

3.1 CPU structure

The generic structure of an Intel i7 CPU is shown in the Figure 3.1. There are four

46

3 – Comparison GPU vs CPU

Core 0

L1 CACHE

L2 CACHE

L3 CACHE

DDR MEMORY CONTROLLER

Core 1

L1 CACHE

L2 CACHE

Core 2

L1 CACHE

L2 CACHE

Core 3

L1 CACHE

L2 CACHE

Intel i7 CPU block diagram

QuickPath Interconnect

Figure 3.1: i7 CPU architecture.

cores, three levels of cache and a DDR memory controller. Everything in this scheme

is standard except for the QPI (or QuickPath Interconnect). The QPI is a new

serial bus introduced by Intel in 2008 in some desktop and server processors which

basically replaces the Front-Side Bus and increases the scalability and the available

bandwidth. The Front-Side Bus (FSB) is the one which transports data between

CPU and Northbridge, knows also as Memory Controller Hub or Host Bridge. The

Northbridge is responsible for tasks that require the highest performances.

In this comparison chapter, the Intel i7 930 has been used. The main specifica-

tions are:

• Clock frequency: 2.8 GHz (4 cores, 8 threads);

• DDR3 Memory bandwidth: 25.6 GB/s;

• DDR3 clock frequency: 1066 MHz;

• FSB bus width: 192 bits;

47

3 – Comparison GPU vs CPU

• Flop/cycle: 8 FP32 Flop/cycle and 4 FP64 Flop/cycle;

• Peak FP performance: 89.6 Gflops (FP32) and 44.8 Gflops (FP64).

There are few things to be highlighted here: FLOP means floating point operations

and the Peak FP performance is computed by means of the following formula:

Peak FP Performance = # cores · fclk · Flops/cycle (3.1)

Then based on which type of data is used (single precision 32 bits or double precision

64 bits) it is possible to obtain an indicator for single and double precision peak FP

performance.

3.2 GPU structure

The generic architecture of a NVIDIA TESLA GPU is depicted in Figure 3.2. From

the above picture it is possible to highlight the most important elements of a Tesla

GPU architecture:

• Host interface and Compute work distribution: it takes instructions and data

from Host CPU and its main memory respectively. Furthermore, it manages

the threads of executions which means that it is responsible to assign groups

of threads to processor clusters.

• TPC: it stands for texture/processor clusters which are the basic building

block of a NVIDIA Tesla architecture. A single GPUs can have up to eight

TPCs.

Each TPC contains two Streaming multiprocessor (SM). As shown in the Fig-

ure 3.3 in each SM there are at least eight Streaming Processors cores (SP) and

two special function units. In every TPC there is also a Texture unit and a mem-

ory: both are shared between the two SMs. SPs are often called CUDA core. In the

NVIDIA TESLA K40c (the one used in this comparison) there are 2880 CUDA cores.

This means that today’s GPUs are well beyond the very simple scheme shown in

Figure 3.2. The main specs of the NVIDIA TESLA K40c are:

48

3 – Comparison GPU vs CPU

Figure 3.2: Tesla GPU architecture [9].

• Clock frequency: 745 MHz (2880 cores);

• Boost clock frequency: 876 MHz;

• DDR5 Memory bandwidth: 288.4 GB/s;

• DDR5 clock frequency: 1502 MHz;

• Interface bus width: 384 bits;

• Flop/cycle: 3 FP32 Flop/cycle and 1 FP64 Flop/cycle;

• Peak FP performance: 5.046 Tflops (FP32) and 1.682 Tflops (FP64).

As it can possible to see, though the clock is slower with respect to the CPU one,

there are so many cores which allow obtaining much better performance. Another

important element is the memory bandwidth which is one order of magnitude higher

49

3 – Comparison GPU vs CPU

Figure 3.3: Tesla GPU architecture single cluster [9].

than the CPU one. Overall it is possible to say that the GPU will perform better

than a CPU in every algorithm which is capable of using at the best all the cores

and all the memory bandwidth.

3.3 AlexNet implementation: GPU vs CPU

The AlexNet neural network has been implemented on CPU and GPU and an ex-

tensive profiling of the algorithm has been performed with the code explained in

the chapter 2. Performance indicators such as total and layer by layer delay, power

consumption and frame per second have been evaluated.

For clarity purposes, the AlexNet layers are summarized in the Table 3.1 while

the detailed explanation can be found in the subsection 1.3.1.

50

3 – Comparison GPU vs CPU

Layer Filter size Output channel Stride Padding
convolution 1 + ReLU 11x11 96 4 0

Normalization - - - -
Max Pooling 3x3 - 2 -

convolution 2 + ReLU 5x5 256 1 2
Normalization - - - -
Max Pooling 3x3 - 2 -

convolution 3 + ReLU 3x3 384 1 1
convolution 4 + ReLU 3x3 384 1 1
convolution 5 + ReLU 3x3 256 1 1

Max Pooling 3x3 - 2 -
Fully-Connected + ReLU - 4096 - -
Fully-Connected + ReLU - 4096 - -

Fully-Connected - 1000 - -
Softmax - - - -

Table 3.1: AlexNet layers summarized.

All the results in this section have been carried out with an Intel i7 930 as CPU

and a Nvidia TESLA K40c as GPU.

The first comparison is related to the layer by layer delay ratio between CPU

and GPU. Having in mind the different characteristics of GPUs and CPUs it is

possible to foresee some results: in particular layers like convolution, normalization

and fully-connected ones are likely to be slower on CPUs than on GPUs and by

increasing the batch size this ratio is expected to grow higher. For the other layers,

it is difficult to predict because they have relatively simple operations.

It is important to highlight that while GPUs performances do not change sig-

nificantly from one run to the other, CPUs performances are strongly affected by

the number of threads used at each run. Even though Tensorflow allows to set the

number of cores and threads to be used it is not sufficient to guarantee that at

each iteration the code uses always the same number of threads. In Figure 3.4 the

number of threads used by the CPU to vary the batch size is shown.

51

3 – Comparison GPU vs CPU

4

5

6

7

8

9

10

11

0 5 10 15 20 25 30 35 40 45 50

#
 o

f
th

re
a

d
s

Batch size

CPU Threads

Figure 3.4: CPU number of threads to vary the batch size.

This variation of the number of threads affects the performances and it may

cause variation among different batch sizes of the ratio between CPU and GPU

layer by layer delay.

In the following table, the delay ratio between CPU and GPU is presented for

each operation performed in the AlexNet including reshaping and split operations

which are executed to adapt the dimension of a layer output to be accepted as input

for the successive layer. Data for batch sizes 1, 5 and 10 are reported.

52

3 – Comparison GPU vs CPU

Layer
CPU delay/GPU delay

batch size = 1 batch size = 5 batch size = 10
convolution 1 + ReLU 6.10 21.17 27.09

Normalization 24.98 5.38 4.48
Max Pooling 7.88 5.21 17.47

Split 4.10 11.60 32.37
convolution 2 11.47 23.14 39.14

ReLU 15.00 5.58 6.86
Normalization 9.94 30.55 17.84
Max Pooling 5.59 4.16 4.90

convolution 3 + ReLU 10.46 20.39 19.42
Split 4.00 5.55 6.11

convolution 4 11.79 15.54 13.87
ReLU 4.50 13.00 6.75
Split 3.57 4.64 6.85

convolution 5 8.74 14.52 10.21
ReLU 3.4 11.00 9.00

Max Pooling 2.20 4.00 3.55
Reshape 0.54 0.73 0.89

Fully-Connected 6 25.25 38.92 16.04
ReLU 1.20 2.00 3.40

Fully-Connected 7 23.36 36.26 15.16
ReLU 1.20 2.00 3.40

Fully-Connected 8 13.74 18.91 10.54
Softmax 1.80 2.79 4.97

Table 3.2: AlexNet layer by layer delay ratio between CPU and GPU to vary the
batch size.

As it is possible to see from Table 3.2, the general behaviour is that by in-

creasing the batch size, the ratio increases which means that the GPU becomes

more convenient to use for high batch sizes. However, there are some strange data:

normalization layers are incoherent because sometimes the ratio increases and some-

times decreases significantly to vary the batch size and FC layers delay ratio also

increases and decreases without an obvious reason. To understand better why this

strange behaviour happens it is fundamental to analyze not only the ratio but also

the delays of CPU and GPU layers separately.

What is important to understand from this table is that except for the reshaping,

all the other operations are faster on a GPU. This result is very important because

53

3 – Comparison GPU vs CPU

it validates all the initial hypothesis on the performance indicators which have to

be considered when comparing a CPU and a GPU for neural network algorithms

(chapter 3). For what concerns the reshape operation, its time duration can be

neglected if compared with all the other layers.

From now on, the delays of the most important layers are compared for both

CPU and GPU implementation.

0

50

100

150

200

250

300

0 5 10 15 20 25 30

D
e

la
y

 [
m

s]

Batch size

CPU conv layers delay

conv1 layer conv2 layer conv3 layer conv4 layer conv5 layer

Figure 3.5: CPU convolutional layers delay vs batch size.

In Figure 3.5 it is possible to see how the convolutional layers delay increases

almost linearly with the batch size. This behaviour is expected since the number of

images on which the convolution is applied increases. However, it is worth highlight-

ing how the convolutional layer 2 takes more time to end then all the others. This

is due to the number of input and output channels: the second convolutional layer

takes as input 96 channels which are higher than the input channels taken by the

first one and produces 256 output channels which again is higher than the first one.

Even so, this does not explain why the successive convolutional layers take less time

to finish the convolution. If one analyzes in more details the AlexNet algorithm, it

is straightforward to see that the second convolutional layer uses a 5x5 filter while

the next ones use a 3x3 filter.

54

3 – Comparison GPU vs CPU

For what concerns the delay of other convolutions, convolution 3 is slower than

the 4th one which is slower than the last one. This might seem strange because

the last three convolutions are very similar. However, it has to be considered that

convolution 2, 4 and 5 are actually split into two parts and executed simultaneously

while convolution 1 and 3 are not. So, for this reason, the third convolution is slower

than 4th and 5th ones, while the last one is faster than the 4th convolution because

it has fewer output channels.

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30 35 40 45 50

D
e

la
y

 [
m

s]

Batch size

CPU FC layers delay

FC6 layer FC7 layer FC8 layer

Figure 3.6: CPU FC layers delay vs batch size.

Figure 3.6 shows the delay of fully-connected (FC) layers to vary the batch size.

It is straightforward to understand that by going towards the end of the algorithm

the delay of the layers decreases because the dimension of the outputs decreases as

well: the sixth FC layer takes more time than the seventh and eighth layer. This

because of the input dimension of the FC6 which is bigger than the FC7, while FC8

has fewer output channels.

55

3 – Comparison GPU vs CPU

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30

D
e

la
y

 [
m

s]

Batch size

GPU conv layers delay

conv1 layer conv2 layer conv3 layer conv4 layer conv5 layer

Figure 3.7: GPU convolutional layers delay vs batch size.

In Figure 3.7 it is possible to see the convolutional layers delay executed by a

GPU. Differently from the CPU, all convolutional layers have a very similar delay

except for the first one which diverges for high batch sizes due to the bigger filter

size and the bigger input matrix.

56

3 – Comparison GPU vs CPU

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35 40 45 50

D
e

la
y

 [
m

s]

Batch size

GPU FC layers delay

FC6 layer FC7 layer FC8 layer

Figure 3.8: GPU FC layers delay vs batch size.

The behaviour of the FC layers (Figure 3.8) on GPU has a surprisingly different

behaviour than the expected one. In fact, the delay of all the FC layers remains

constant from a batch size equals to 10 to a batch size of 30. Then it increases a

little bit and becomes constant again.

This strange behaviour is due to the high computation required by the FC layers

which dominates the delay despite the actual dimension of the batch size. As a

matter of fact, increasing the batch size means doing the same number of operations

on more images but since the GPU has a highly parallelized structure, it can handle

the additional operations simultaneously without weighing too much on the delay.

Clearly, at a certain point, the batch size dimension will require the GPU to take

more time to finish all the layer operation (as happens for bath size greater than

30) due to resources constraints.

57

3 – Comparison GPU vs CPU

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30

R
a

o
 C

P
U

/G
P

U
 d

e
la

y
s

Batch size

CPU_delay/GPU_delay conv_layers

CPU_delay/GPU_delay conv1 CPU_delay/GPU_delay conv2 CPU_delay/GPU_delay conv3

CPU_delay/GPU_delay conv4 CPU_delay/GPU_delay conv5

Figure 3.9: CPU convolutional layer delay/GPU convolutional layer delay.

By plotting the delay ratio between convolutional layers of CPU and GPU (Fig-

ure 3.9), it is possible to see that the first convolutional layer, due to its higher

input dimension and its bigger filter size, has the highest ratio. This means that

more than the others, it is the first layer which benefits more from a GPU imple-

mentation. Even so, the ratio of all convolutional layers delay is greater than 10

for every batch size analyzed and since it has an increasing trend it is possible to

predict that for higher batch sizes the ratio will increase.

58

3 – Comparison GPU vs CPU

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40 45 50

R
a

o
 C

P
U

/G
P

U
 d

e
la

y
s

Batch size

CPU_delay/GPU_delay FC_layers

CPU_delay/GPU_delay FC6 CPU_delay/GPU_delay FC7 CPU_delay/GPU_delay FC8

Figure 3.10: CPU FC layer delay/GPU FC layer delay.

The delay ratio concerning the FC layers is quite different from the convolutional

ones. However, it has to be considered that this ratio is strongly affected by the FC

layers behaviour of the GPU implementation which does not increase constantly. As

a matter of fact, in Figure 3.10 the ratio has an alternating behaviour for each FC

layer because while the GPU delay is constant, the CPU one always increases. For

this reason, the ratios reach highest values only when the GPU delay is constant

and decreases as soon as the GPU delay increases.

59

3 – Comparison GPU vs CPU

y = 0.0023x - 0.0306

y = 0.036x + 0.0362

0

2

4

6

8

10

12

0 50 100 150 200 250 300

D
e

la
y

 [
s

]

Batch size

GPU vs CPU delay

GPU_behavior CPU_behaior Linear (GPU_behavior) Linear (CPU_behaior)

Figure 3.11: GPU and CPU delay vs batch size.

In Figure 3.11, the overall delay of the AlexNet implementation on GPU and

CPU is compared to vary the batch size.

As expected the GPU is able to execute the whole algorithm much faster than

the CPU. From the graph, it also seems that the total GPU delay is not affected

too much by the batch size showing a linear behaviour with a very low angular

coefficient.

On the other hand, the total CPU delay shows a more marked linear behaviour

with a linear coefficient which is one order of magnitude higher than the GPU one.

It has some irregularity around batch sizes 100 and 130 probably due to the number

of threads which is not always constant.

It is worth highlighting that the angular coefficients of the linear approximations

indicate how much time the CPU and the GPU implementation needs to execute

the algorithm per batch sizes.

These coefficients are:

mCPU = 0.036
s

batch size

60

3 – Comparison GPU vs CPU

mGPU = 0.0023
s

batch size

This means that the GPU implementation is one order of magnitude faster than

the CPU for all the batch sizes analyzed.

0

5

10

15

20

25

30

0 50 100 150 200 250 300

C
P

U
_

d
e

la
y

/G
P

U
_

d
e

la
y

Batch size

CPU_delay/GPU_delay

Figure 3.12: CPU delay/GPU delay vs batch size.

In Figure 3.12 the ratio between the CPU AlexNet total delay and the GPU one

to vary the batch size is reported. The ratio is expected to be always increasing.

However, there are some up and down due to the CPU delay that has some irreg-

ularity due to the number of threads which is not always constant while the GPU

one increases linearly to vary the batch size.

61

3 – Comparison GPU vs CPU

To compute the AlexNet delay, several iterations have been considered for every

batch size and then a mean value has been used. In the following figures, it is

possible to see the delay distribution for batch size equals to 1 over 100 iterations

for both CPU (Figure 3.13) and GPU (Figure 3.14).

0.05600

0.05800

0.06000

0.06200

0.06400

0.06600

0.06800

0.07000

0 10 20 30 40 50 60 70 80 90 100

D
e

la
y

 [
s

]

Iteration

Delay distribution CPU

Batch size = 1 Linear (Batch size = 1)

Figure 3.13: CPU delay distribution for batch size = 1.

For what concerns the CPU delay, it is possible to see that the linear interpolation

between all the measured values can be considered constant among all the iterations.

This means that the plotted distribution has more or less a fixed mean value.

62

3 – Comparison GPU vs CPU

0.000000

0.002000

0.004000

0.006000

0.008000

0.010000

0.012000

0 10 20 30 40 50 60 70 80 90 100

D
e

la
y

 [
s

]

Iteration

Delay distribution GPU

Batch size = 1 Linear (Batch size = 1)

Figure 3.14: GPU delay distribution for batch size = 1.

The GPU delay distribution (Figure 3.14) shows a behaviour which is very similar

to the CPU one except for the final iterations where there are some peak values which

are much higher than the previous one. Due to those values, the linear interpolation

is not a constant value but it is an increasing line. However, since there are few

values which are far from the others, they can be considered as noise and can be

neglected when computing the mean value.

63

3 – Comparison GPU vs CPU

To measure the performances it may be useful to compute how many multiply

and accumulate operations (MACs) per second are executed from GPU and CPU

and then compare them. This number expresses the efficiency of CPU and GPU for

neural networks algorithms.

0

10000

20000

30000

40000

50000

60000

70000

0 5 10 15 20 25 30

M
A

C
s

p
e

r
se

co
n

d
 C

P
U

Batch size

MACs per second CPU

conv1 layer conv2 layer conv3 layer conv4 layer conv5 layer fc6 fc7 fc8

Figure 3.15: MACs per second CPU vs batch size.

In Figure 3.15 it possible to see how the number of MACs per second changes

layer by layer. By increasing the batch size this number remains more or less the

same although FC layers tend to increase their efficiency to vary the batch size. It

has to be highlighted that the FC6 layer is overlapped with the FC7 layer because

the efficiency of these two layers is almost the same.

However, this behaviour starts to change around batch size equals to 30 because

the CPU has reached its maximum performance and the efficiency starts to drop.

64

3 – Comparison GPU vs CPU

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

0 5 10 15 20 25 30

M
A

C
s

p
e

r
se

co
n

d
 G

P
U

Batch size

MACs per second GPU

conv1 layer conv2 layer conv3 layer conv4 layer conv5 layer fc6 fc7 fc8

Figure 3.16: MACs per second GPU vs batch size.

For what concerns the GPU, the number of MACs per second increases by in-

creasing the batch size. This behaviour means that the GPU has not reached its

maximum performance even with batch size equals to 30. Also in this figure, the

FC6 layer is overlapped with the FC7 layer because the efficiency of these two layers

is almost the same.

This difference in terms of maximum performance between CPU and GPU is due

to both the higher memory bandwidth and the higher number of cores of GPUs.

65

3 – Comparison GPU vs CPU

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30

M
A

C
s_

p
e

r_
se

co
n

d
_

G
P

U
/M

A
C

s_
p

e
r_

se
co

n
d

_
C

P
U

Batch size

MACs_per_second_GPU/MACs_per_second_CPU

conv1 layer conv2 layer conv3 layer conv4 layer

conv5 layer fc6 layer fc7 layer fc8 layer

Figure 3.17: MACs per second GPU/MACs per second CPU vs batch size.

In Figure 3.17 it is possible to appreciate the ratio between the two previous

graphs (Figure 3.15 and Figure 3.16). This ratio is deeply influenced by the GPU

contribution which increases to vary the batch size while the CPU one is more or

less constant.

It is worth highlighting that the ratio between the two efficiencies is always

greater than 10 which underlines how good a GPU is for this type of algorithms.

66

3 – Comparison GPU vs CPU

Another figure of merit to evaluate the performance of a neural network al-

gorithm, like AlexNet, which recognizes images, is the frame per second. This

performance indicator can be computed as follows:

batch size

delay

where the denominator is the total delay of the algorithm of a particular batch

size.

0

5

10

15

20

25

30

35

0 50 100 150 200 250 300

F
ra

m
e

 p
e

r
se

co
n

d

Batch size

Frame per second CPU

Figure 3.18: Frame per second CPU vs batch size.

In Figure 3.18, it is possible to see how the FPS are always below 30.

67

3 – Comparison GPU vs CPU

0

100

200

300

400

500

600

700

800

0 50 100 150 200 250 300

F
ra

m
e

 p
e

r
se

co
n

d

Batch size

Frame per second GPU

Figure 3.19: Frame per second GPU vs batch size.

The FPS for a GPU should be higher than the CPU ones since all the data

analyzed until now say that the GPU performs better than the CPU for neural

network algorithms.

As a matter of fact the maximum FPS value for a GPU is around 680. This

means that the ratio between CPU FPS and GPU ones is:

FPSratio =
FPSGPU
FPSCPU

= 22.67

which means that the GPU is able to analyze almost 23 times the images analyzed

by the CPU in the same amount of time.

68

3 – Comparison GPU vs CPU

The last performance indicators are the power and the energy needed to obtain

all the performances seen until now.

Unfortunately only the power consumption of the GPU can be measured thanks

to the nvidia-smi command. The CPU power consumption can not be measured

without a specific instrument and even so there is always some background process

which will affect the final measurements.

40

50

60

70

80

90

100

110

120

0 5 10 15 20 25

P
o

w
e

r
[W

]

Acquision me [ms]

GPU Power consump on

Batch size = 5 Batch size = 10 Batch size = 15 Batch size = 20 Batch size = 25

Batch size = 30 Batch size = 35 Batch size = 40 Batch size = 45 Batch size = 50

Figure 3.20: GPU power consumption vs batch size.

In Figure 3.20, the GPU power consumption to vary the batch size is plotted. As

expected the power consumption increases with the batch size with peaks of almost

110 W with batch size equals to 50. It has to be remarked that this power is of the

algorithm only: the idle power has been subtracted and no other programs were

using the GPU while the measurement was carried out.

69

3 – Comparison GPU vs CPU

By multiplying the power consumption for the delay, it is possible to compute

the energy. Since both the power and the delay increase with the batch size, the

expected behaviour is an increasing one just as shown in Figure 3.21.

0

10

20

30

40

50

60

0 50 100 150 200 250 300

E
n

e
rg

y
 [

J]

Batch size

GPU Energy

Figure 3.21: GPU energy vs batch size.

As a final comparison, this implementation is compared with another AlexNet

software implementation with different GPU and CPU [23].

Platform FPS max Power [W] Energy/images [J]
Intel Xeon E5-2673 5 130 25.400
Intel i7 930 (this implementation) 30 - -
GTX Titan X 769 250 0.325
Tesla K40c (this implementation) 680.81 148 0.180

Table 3.3: Comparison with other AlexNet implementations.

In Table 3.3 it is possible to see how this AlexNet implementation on a Tesla

K40c is much more power-efficient: it consumes 148 W which is less than the Titan

X implementation. However, it has to be noticed that this implementation has

almost 100 FPS less than the Titan X one but it is more energy-efficient since the

energy/image is almost twice less.

70

3 – Comparison GPU vs CPU

For what concerns the CPUs comparison, unfortunately only the FPS can be

compared because there are no power data on this AlexNet implementation on a

CPU.

The FPS of the Intel i7 930 are higher than the Xeon one and it is possible to

estimate that the power consumption is higher too.

In conclusion, it is straightforward to see that a GPU implementation is better

than a CPU one in everything: the FPS are higher, the power consumption is lower

and it is more energy-efficient.

71

Chapter 4

Hardware implementation

Designing a reconfigurable HW accelerator based on logic-in-memory for neural

networks requires an analysis of the most used neural networks to understand which

are the layers to implement, all the parameters that change among all the algorithms

and how many bits are needed to guarantee a satisfying accuracy.

Neural networks such as AlexNet, ZFNet, LeNet-5, GoogLeNet, VGGNet, DenseNet

and ResNet have been analyzed. The idea is to find common characteristics among

all the algorithms in order to design an HW accelerator as much optimized as pos-

sible for almost every network.

All the implemented layers can be executed separately which means that if a

not implemented layer has to be executed at a certain point in the network, it is

possible to execute the implemented layers on the designed accelerator and the not

implemented ones outside (for example with a microprocessor).

The main constraint on this project is the power consumption. For this reason,

all the design choices are made to keep as low as possible the power consumption.

The layers which have been implemented are: convolutional, batch normaliza-

tion, fully-connected and max-pooling while as activation function, the ReLU has

been chosen among all the possible ones.

4.1 Convolutional layer

The convolutional layer is probably the most used in every convolutional neural

network. The Amdahl’s law says that in an elaboration system it is important to

optimize the most frequent case in order to obtain an overall increase in performance

which is equal to:

Speed− up =
1

(1− P + P
S

)

72

4 – Hardware implementation

where P stands for how many times the frequent operation is executed with respect

to all the others and S indicates the improvement in terms of speed-up due to the

optimizations done to the most frequent case.

As an example, if the convolution is executed just the 30% of the time and if one

is able to improve the execution time of that operation by a factor of 2, the overall

speed-up is:

Speed− up =
1

(1− P + P
S

)
=

1

(1− 0.3 + 0.3
2

)
= 1.17

which is clearly not good. However, if the convolution is executed 70% of the time

with the same value for S, the overall speed-up is:

Speed− up =
1

(1− P + P
S

)
=

1

(1− 0.7 + 0.7
2

)
= 1.54

Which means that the new architecture is able to perform 1.5 times faster than the

previous one.

By analyzing several neural networks, the following characteristics have come to

light:

• Filter sizes values: 1x1, 2x2, 3x3, 5x5, 7x7, 11x11.

• Stride values: 1, 2, 4.

• Max feature maps number: 1024 (GoogLeNet).

It has to be highlighted that a 11x11 filter with a stride of 4 is used only by the

AlexNet algorithm.

However, the ZFNet algorithm is basically a better evolution of the AlexNet,

because it has better accuracy, with a smaller filter dimension (7x7 instead of 11x11)

and a smaller stride value (2 instead of 4).

For these reasons the actual characteristics implemented by this accelerator are:

• Filter sizes: 1x1, 2x2, 3x3, 5x5, 7x7.

• Stride values: 1, 2.

• Max feature maps number: 1024 (GoogLeNet).

73

4 – Hardware implementation

The core operation of a convolutional layer is the MAC. Since this accelerator will

be based on logic-in-memory, it is important to think right from the beginning what

types of logic will be implemented in the memory and what the surrounding logic

will contain.

It is clear that inserting a multiplier directly in the memory is not convenient

since it consumes a lot of power and it is slower. On top of that since a minimum

of parallelization is needed it is straightforward to understand that inserting several

multipliers and adders in the memory is not feasible.

Fortunately, a multiplier can be implemented in another way using the Modified

Baugh-Wooley method.

4.1.1 Modified Baugh-Wooley

The Baugh-Wooley method consists in substituting a multiplier with basic logic

gates, such as AND and NAND gates, and a number of adders which is equal to the

highest number of bits between the two operands.

Figure 4.1: Baugh-Wooley method and its modified form.

Between the two methods shown in Figure 4.1, the Modified Baugh-Wooley has

been chosen due to the lower number of adders. It is important to highlight that all

the adders but the last one are no-signed adders which means that the sign extension

74

4 – Hardware implementation

has to be done with zeros. The last adder instead has to be signed because in the

last case a negative number has to be added.

4.1.2 LiM array

The logic-in-memory array is based on 9 processing elements with 3 additional adders

and some registers. The design idea is to implement the possibility of executing up

to a 7x7 filter with as low clock cycles as possible. However, it should be noticed

that a 7x7 filter is executed just from the ZFNet algorithm and just once. For this

reason, the LiM array has been designed to execute up to 5x5 filter as fast as it can

with the possibility of executing a 7x7 one but with more clock cycles. All the design

choices have been made to save power where possible without affecting too much

the performances considering all the possible algorithms which can be executed on

this accelerator.

In Figure 4.2 it is possible to appreciate the overall structure of the LiM array.

This type of structure is versatile because it is possible to decide how many

blocks of this LiM array structure can be actually implemented in the memory. As

an example, one can decide to implement the whole structure or just the processing

elements.

75

4 – Hardware implementation

Figure 4.2: LiM array.

In the following, each block will be analyzed except for the rounding blocks which

will be discussed in the section 4.6.

Processing element 1x1

All the PEs are based on the Modified Baugh-Wooley method. In particular, the

PE 1x1 is made of a block called filter and adders which are needed to compute the

76

4 – Hardware implementation

final result.

It has to be highlighted that each PE can perform up to 4 MACs operations. In

the specific case of a PE 1x1, only one multiplication is needed. As an example, a

4 bits PE 1x1 will be analyzed. The filter computes all the partial products which

will be then added together. In Figure 4.3 it is possible to see all the logic gates

needed to compute all 4 partial products.

Figure 4.3: Basic cell 1x1 filter.

D3, d2, d1 and d0 represent each bit of the input datum while w3, w2, w1, w0

each bit of the input weight. For what concerns the partial products, the notation

used is the following one:

Pi,j

where i represents the partial product number, while j represents the bit number of

77

4 – Hardware implementation

each partial product.

All the partial product Pi have to be added as shown in Figure 4.4. It has to be

highlighted that each partial product is left-shifted of a number of position which is

equal to the i index and then added together with all the others Pi.

Figure 4.4: PE 1x1.

As mentioned in the subsection 4.1.1 all the adders but the last one are no-signed

adders which means that the sign extension has to be done with zeros.

78

4 – Hardware implementation

Processing element 1x2

The PE 1x2 is very similar to the PE 1x1, in fact it is implemented as two 1x1

filters. In Figure 4.5 it is possible to see how each filter generates 4 partial products

where each one is a 4 bits value.

Also in this case, an example with just 4 bits is used to make more understandable

the overall structure.

Figure 4.5: filter 1x2.

The convention used in Figure 4.5 is slightly different from the one used in the

previous case. As a matter of fact, each partial product is denoted with:

Pi,j

where i represents the number of filters which has computed the partial product,

while j represents the partial product number.

In this specific case, there are two 1x1 filters which means that all the P0,j

represent the partial products generated by the first filter, while all the P1,j represent

the ones generated by the second 1x1 filter.

It has to be noticed that this PE 1x2 implementation, is not based just on the

replica of the PE 1x1, because if it were so, at the end it would have one additional

adder to take into account the negative number which has to be added. Since the

negative number to be added to complete each multiplication is known a priori, it

is possible to join together two multiplications by adding properly all the partial

79

4 – Hardware implementation

products and at the end it is sufficient to add one negative number which is two

times the negative number to be added in case of a single multiplication.

This improvement allows saving one adder which is an important contribution

in terms of both delay and power since theoretically this structure can be used with

more than 4 bits.

Figure 4.6: PE 1x2.

80

4 – Hardware implementation

Processing element 2x2

The PE 2x2 is based on two PE 1x2: in this case no further optimizations can be

done and for this reason it is sufficient to replicate the structure of a PE 1x2 and

adding a final adder to sum the two outputs coming from each PE 1x2.

Figure 4.7: PE 2x2.

In Figure 4.7 it is possible to see 8 inputs: 4 are data inputs and 4 are weights

input. Also in this example, each input has 4 bits.

It is worth highlighting that final adder is a SIGNED adder.

81

4 – Hardware implementation

4.1.3 Convolutional surrounding logic

The surrounding logic has to provide the input to the LiM array and it has to handle

the output of each convolutional layer. It has to be noticed that the surrounding

logic has to handle multiple input channels and the insertion of zeros as padding.

In Figure 4.8 it is possible to see the surrounding logic of the LiM array. The

input data come from a data memory which will be discussed later on. For now, it

is sufficient to know that one row per time can be read by the memory and this row

can go in any of the shift registers. Then the multiplexers which are at the input of

each PE are properly controlled in order to use the right data input to compute the

desired filter.

For what concerns the input weights, they are stored in a big register organized

as a matrix with 7x7 basic cell of n-bit each. This matrix register can be controlled

row by row which means that the input and the output of each row have 7 · n bits

where n is the number of bits of each cell. The number of rows and columns depends

on the maximum dimension of the filter size.

The multiplexers in Figure 4.8 are needed also for the weights, but this time the

connections come directly from the register matrix. In the end, the number of muxes

and connections has to be doubled with respect to the one shown in the figure to

take into account also the input weights of each PE.

The number of shift registers is 7 because this is the maximum dimension of the

filter size. The width of each register file depends on the maximum dimension of the

input image among all the neural network algorithms analyzed which is 229 · n bits

where n is the number of bits of each cell.

Practically these shift registers represent a copy of the data memory rows needed

to perform the filter computation. From now on the shift registers will be considered

as 229 cells of n bits each to simplify the dissertation.

82

4 – Hardware implementation

Figure 4.8: LiM array surrounding logic.

83

4 – Hardware implementation

The idea behind the shift registers is to replicate the movement of the filter

throughout the input matrix. If the filter moves from left to right of a number of

position which is equal to the stride value until the end of the input matrix, the

shift registers perform a left shift of stride positions. In this way, it is possible to

connect just the first 7 cells of each shift registers simplifying also the connections

to the input multiplexer of each PE.

In Figure 4.9, Figure 4.10 and Figure 4.11 it is possible to see the principle behind

the shift register implementation.

A B C D E

Shi� register

A B C D E

Figure 4.9: Convolutional layer step 1.

0A B C D E

Shi� register

A B C D E

Figure 4.10: Convolutional layer step 2.

With the HW shown in Figure 4.8, the convolution of a single input channel can

be performed. However a convolution might have multiple input channels, a bias to

be added and zeros to be inserted as padding.

84

4 – Hardware implementation

AA B C D E

Shi� register

00B C D E

Figure 4.11: Convolutional layer step 3.

To be able to perform these additional operations, further hardware has to be

added. In Figure 4.13 it is possible to see that two more registers, as well as an

adder and additional muxes, have been added. In particular:

• Reg0 SL: in this register is loaded first the bias and then each partial result

of the output of a convolutional layer. Considering an output channel, each

element is obtained as a set of filters applied to all the input channels and

then added together with the bias. For this reason, if this process is serialized,

it is possible to use the Reg0 SL to store the bias values and all the partial

result of each output channel. The right input of this register is selected by a

multiplexer which selects between the bias value, contained in a register and

then replicated 229 times, and a row read from the data memory.

• Reg1 SL: the partial results of each output channel are stored in this register.

The convolutional logic described before is able to compute one datum per time

which means that this register is divided into 229 cells of n bits each where

each cell can be controlled separately. The convolutional logic computes a

value which is stored in the appropriate cell of this register. Then this cell is

added with the equivalent Reg0 SL cell through the additional adder and the

output value is stored again in the same cell of Reg1 SL register.

• 2 muxes 229 to 1: these 2 muxes are used to select the two cells from Reg0 SL

and Reg1 SL to be added.

85

4 – Hardware implementation

• Adder: final adder which is used to sum together the values from Reg0 SL and

Reg1 SL.

It is important to highlight that there are two muxes which select the right Reg1 SL

input: the first one select among the convolutional logic output, the adder output

and the max-pooling output which will be discussed later on. For what concerns

the second mux, it is used to perform the ReLU activation function.

Y1 + Y2 + Y3 + Bias

Z1

Z1 =

Channel 3Channel 2Channel 1

Out channel 1

Figure 4.12: Convolutional layer with multiple input channels.

In Figure 4.12 it is possible to see how a convolutional layer with 3 input channels

works: each input channel is convolved with its filter and then all the partial outputs

are added together with the bias to generate an element for each output channel.

If the example in Figure 4.12 has to be executed with this HW accelerator the

following operations would be performed:

• The bias value is stored in the Reg0 SL and the proper data and weights are

read from the memory and then through the matrix register and the shift

registers they are stored in the right PEs.

86

4 – Hardware implementation

• Y 1 is computed from the convolutional logic and then stored into the first cell

of the Reg1 SL.

• Y 1 is added with the bias stored in the Reg0 SL and the result is loaded in

the same cell of the Reg1 SL.

• Once the entire row of the output channel is computed and stored in the

Reg1 SL register, it is written in the data memory.

• By following all the previous points the whole output channel is computed and

stored into the data memory.

• The input channel 2 is loaded into the memory and this time instead of loading

the bias value in the Reg0 SL register, the first row computed in the previous

steps and stored in the data memory is loaded.

• Y 2 is computed and stored into the first cell of the Reg1 SL.

• Y 2 is added with the first cell of Reg0 SL which contains Y 1 + bias and the

result is stored again in the Reg1 SL register.

• Once again the whole output channel is computed and stored in the data

memory. Each element is of the type Y 1 + Y 2 + bias.

• All these steps are repeated in order to add the results coming from the input

channel 3.

• At the end, the data memory will contain the final output channel values.

From this brief explanation, it is clear that a data memory with 2 banks is

needed: one bank is used to store the input channels and the other is used to store

the output channels.

Now there is only one operation left to cover: the zero-padding. Zero padding

means adding zeros in one or more rows and one or more columns. Fortunately

implementing this operation is quite easy: if rows of zeros have to be written, it is

sufficient to reset the Reg1 SL register and write it into the data memory. When

columns of zeros have to be written instead, the Reg1 SL register can still be used:

before starting the computation of a new row, this register is always reset. This

87

4 – Hardware implementation

means that it already contains all zeros. To take into account the zero-padding for

the columns, it is sufficient to write the first output value from the convolutional

logic in the position 0 + padding in the Reg1 SL register. Thus the generic output i

will be written in the position i+ padding. Once all the output channels values for

one row have been written in the Reg1 SL register, the zero-padding in the columns

at the right side of the computed data are already there thanks to the initial reset.

Hence, at this point it is sufficient to write the Reg1 SL content in the data memory

and proceed with the remaining computations.

It is worth highlighting that when performing the zero-padding of the columns,

the Reg1 SL register cells which contain the padding values are not added with the

Reg0 SL content in order to avoid the addition with the bias value stored at the

first cycle in the Reg0 SL register.

88

4 – Hardware implementation

Figure 4.13: Convolutional block surrounding logic.

89

4 – Hardware implementation

4.2 ReLU activation function

The ReLU activation function is very simple to be implemented in hardware. It is

sufficient to check if the MSB of the datum is 1 (which means that it is a negative

value) and then select the proper input to the Reg1 SL.

Figure 4.14: Hardware which performs the ReLU activation function.

In Figure 4.14 it is possible to see how the ReLU function is implemented: a

2 inputs multiplexer is used to select the right input of the Reg1 SL. However the

ReLU function is not always used as activation function and in general, not all the

layers use it. For example, the last fully-connected layer does not use any activation

function.

For this reason, the ReLU function is applied only if the ReLU signal is equal to

1. This signal is generated by the control unit because it has to be asserted only if

two conditions are satisfied:

• A ReLU external signal which must be active for the entire duration of the

layer operations has to be asserted. This signal indicates whether or not the

ReLU function has to be applied to that specific layer.

• The computation of the final input channel is being performed.

The problem is that in the Reg1 SL the partial result of a convolved channel

per time is stored. This means that the ReLU signal can not be always asserted

otherwise the activation function would be applied on each partial result and not

only on the final ones as it is supposed to.

To solve this problem the control unit checks the input channel which is being

processed and only if it is the last one the ReLU signal is asserted (if the activation

90

4 – Hardware implementation

function has to be applied). The AND gate is used because the value to store is zero

only if the ReLU function has to be applied and the input values are negative.

4.3 Fully-Connected layer

The first fully-connected (FC) layer is usually preceded by a flatten operation in order

to transform the input structure which is a 3D matrix into a vector with only one

dimension. In Figure 4.15 it is possible to see an example of a flattening operation.

Neuron

......

Output previous layer

FC inputs

......

Neuron

fla�en

Figure 4.15: Flatten operation.

However, the flatten operation does not change the input data in any way. It is

just a compression of all the input dimensions into a single one. This means that if

the FC weights, instead of being ordered into a single vector, match the input data

order before applying the flatten operation, it would be possible to delete the flatten

operation and execute the FC layers as they were convolutional layers with weights

that always change. Another important difference is that all the input values are

multiplied for their equivalent weights and then they are added together to retrieve

91

4 – Hardware implementation

just one single output. To obtain more outputs it is sufficient to use another set of

weights. As a matter of fact, each output value of a FC layer represents a distinct

output channel.

Theoretically, it is possible to implement the operations required by a FC layer

with the same HW used for the Convolution. In particular, if the reg intermediate

register (Figure 4.2) is used as an accumulator, it is possible to compute the mul-

tiplication of each input value for its equivalent weight and store the partial sum

into this register. For this reason, there is a rounding unit at the input of this reg-

ister. If it were only for the convolution the rounding unit would not be necessary

because the internal parallelism is such that the worst-case can be handled without

any losses in precision. On the other hand, the FC layers can potentially do tons of

additions which means that fully precision is not an option.

Assuming to use the same HW, there are still some issues to be solved. First of

all the convolutional HW has been designed to compute the result of a particular

filter applied to the input matrix. The main problem is that FC layers do not have

filters because all the inputs are connected to all the neurons. It is clear that this

can be seen as a unique giant filter but it is not feasible.

To solve this problem, one idea is to see the FC layers as a certain filter applied

to all the inputs with different weights. For example, a filter 4x4 can be used in

order to use as much PEs as possible. Differently from a convolution, the filters

can not be overlapped in any case while covering the whole input matrix. For this

reason, if a 4x4 filter is chosen then a stride of 4 has to be implemented as possible

shift value for the shift registers.

From a graphical point of view an FC layer would be implemented as in Fig-

ure 4.16 and Figure 4.17 with a 4x4 filter with a stride of 4.

92

4 – Hardware implementation

A B C D E
A B C D E

Shi� register

Figure 4.16: 4x4 filter used for FC layers - Part 1.

A B C D E
A B C D E

Shi� register

X X X X

Figure 4.17: 4x4 filter used for FC layers - Part 2.

When shifting of 4 positions the filter might go outside the useful data of the

input matrix, as shown in Figure 4.17. In this case, the wrong data could be used

to compute the final result. However, in this HW implementation, the data memory

is written row by row with the useful data and when the number of data is not

enough to cover the entire row width, zeros are automatically inserted. With this

little trick, the problem of using the wrong data is automatically solved.

However, when a filter 4x4 is used it is important to check if the input rows and

the input columns are divisible by 4 because if they are not the computation of the

last filter needs to be handled differently. If the number of rows is not divisible by 4

when computing the filters of the last rows only the row or rows which contain the

actual data are read from the memory and stored in the shift register or registers.

The other shift registers are reset to be sure they contain zeros and not other values.

In this way when they are used for the multiplication, their contribution would be

zeros and the result would not be affected. Similarly, when the input columns are

93

4 – Hardware implementation

not divisible by 4 an additional, the last filter can be still computed because it would

use the values shifted in the shift register. If these values are zeros their contribution

would not affect either in this case the final result.

This method while more difficult from a control point of view, it is indeed the

most effective one for this kind of architecture. Moreover, it is quite easy to check if

the number is actually divisible by 4 by looking at the last two bits (least significant

ones):

• 00: the number is divisible by 4.

• 01, 10, 11: the number is not divisible by 4. In this case, the rest could be 1,2

or 3.

It has to be noticed that it is sufficient to shift right the input number by two

positions to perform the division by 4. While the dimension of the data memory is

determined by the worst-case scenario in terms of input images, the weight memory

must be as large as the data memory but also divisible by 4 in order to not make

too complex the control unit of the FC layers.

The reason behind this constraint on the weight memory is to avoid trying to read

inexistent rows or columns. In fact, if the weight memory had the same dimension

of the data memory and an FC layer with an input equal to the max dimension

of the memory was executed, at a certain point, the weight address generated by

the Control unit would have addressed an inexistent location in the memory. This

problem should never happen and while for the data memory it can not actually

happen thanks to the shift registers and the check on the divisibility of the input

rows and columns (as explained before), the weight memory is susceptible to this

issue. There are two methods to solve this problem: the first one is to make the

weight memory dimension divisible by 4; the latter is to make way more complex

the control unit. Between the two solutions, the first one has been chosen.

It is important to highlight that no matter what are the values read from the

additional locations of the weight memory, the final result is always right because

their contribution is zero thanks to the multiplication with the values stored in the

shift registers which are zeros.

94

4 – Hardware implementation

4.4 Max-Pooling layer

The Max-Pooling layer can be implemented using blocks which compute the max

value between 2 inputs. As done for the convolutional layer, it is important to

analyze the most important neural networks algorithms in order to understand the

hardware blocks which need to be implemented. In Table 4.1 the main parameters

of the Max-Pooling layer of each neural network analyzed has been reported.

NN algorithm Window size Stride
LeNet-5 2x2 2
AlexNet 3x3 2
ZFNet 3x3 2
GoogLeNet 3x3 2
Vgg 2x2 2
ResNet Average pooling
DenseNet (for image net) 3x3 2

Table 4.1: Max-Pooling parameters for different neural network (NN) algorithms.

From Table 4.1 it is possible to see that a window size of 2x2 or 3x3 can be

used, while the stride is always equal to 2. Even so, there are some neural networks

algorithms which use the average pooling instead of the one implemented in this HW

accelerator. Nevertheless, it has been chosen to not implement the average pooling

to keep as simple as possible the implemented HW which means that eventually the

average pooling must be executed outside.

95

4 – Hardware implementation

Figure 4.18: Max-Pooling HW implementation.

96

4 – Hardware implementation

In Figure 4.18 the HW implementation of the Max-Pooling (MP) layer is shown.

The maximum window size is 3x3 which means that in total the MP block has to

accept up to 9 inputs. The MP operation is applied at each input channel and the

windows are moved throughout each channel. For this reason, the shift registers

used in the convolution layer can be re-used to store the inputs of the MP layer.

Furthermore, a stride equals to 2 has already been implemented for the convolution

so no changes have to be performed except for the extra connections from the shift

register to the MP blocks. It has to be highlighted that only 3 shift registers are

used because they contain all the 9 inputs needed in the worst case.

For what concerns the output of the MP layer, it goes in the proper cell of the

Reg1 SL register.

Additional design choices have been made in order to save power where possible:

if an MP operation with a window size of 2 has to be executed there is no need to

keep active all the max blocks (which are combinatorial and so if the input changes

they also change consuming more power). For this reason, there are the enable

signals:

• Enable 1 stage 2x2: this signal is set to 1 whenever an MP operation has to

be executed (the window size does not matter). When this signal goes to 1, all

the max blocks controlled by this signal receive the correct inputs (otherwise

they receive 0 as input in order to keep the output equal to 0 and save power

when they are not used). The register enabled by this signal will then sample

the output of a 2x2 MP window and will send it to the Reg1 SL through the

final mux.

• Enable 1 stage 3x3: this command is used pretty much as the previous one

with only one exception: it is asserted only when an MP operation with window

size 3x3 has to be executed.

• Enable 2 stage 3x3: this signal is used to enable the last 2 max blocks in order

to produce the right result for a 3x3 MP window and send it to the Reg1 SL

through the final mux with the select signal set to 1.

With this optimizations, power can be saved when the MP layer is not executed and

when an MP layer with a window size of 2 is executed. When a 3x3 MP window is

97

4 – Hardware implementation

used, every block in Figure 4.18 is used so now power can be saved.

98

4 – Hardware implementation

Figure 4.19: Map-pooling with convolutional logic high-level scheme.

99

4 – Hardware implementation

4.5 Batch Normalization layer

There are several normalization layers which can be used with neural networks

algorithms. Usually, they are executed after a convolutional layer but before the

activation function. Most of the normalization layers are not trainable and they use

division to compute the output value.

However, among all the normalization functions, there is one of them which is

trainable: this normalization function is called Batch normalization (BN).

BN is very similar to a convolutional layer during inference because it is basically

a multiplication of each input datum for a weight determined during training and

then a bias, also determined during training, is added.

It is important to highlight that BN is applied at each value of each input channel

and each normalized input channel becomes an output channel. This means that

the number of output channels is equal to the number of input ones.

The BN formula is the following one:

y =
γ√

V ar(x) + ε
· x+

(
β − γ√

V ar(x) + ε

)
where γ and β are parameters determined with training, while V ar(x) and E(x)

are respectively the variance and the average value of all x values in a mini-batch

size. A mini-batch size is a group of input images which are used during training

and which are evaluated simultaneously. During inference what happens is that this

formula can be seen as:

y = Weight ∗ x+Bias

where both weight and bias values are constant throughout an entire channel but

change among all the input channels. This means that each input channel has

its own weight and a bias value. The main difference with respect to convolution is

that there is not a summation through all the input channels to determine one single

element of each output channel and that the bias value changes for each channel.

Fortunately with a little trick it is possible to execute the BN layer as it were

a convolutional one: it is known that an element of a generic output channel of a

convolutional layer is computed multiplying each input channel for a different filter

and then add all the results of each channel convolution together with a bias value.

100

4 – Hardware implementation

These filters change only if a different output channel is computed. If the output

channels of the BN layer are interpreted as output channels of a convolutional one,

it is sufficient to set the filter size as well as the stride to 1, in order to have that

each value of each input channel is multiplied and added with a bias value. The

key point here is that each set of filters which are used to compute the output

channels contains only one filter which is different from zero (since it is a 1x1 filter

each filter contains just one value). Which means that even if the sum through all

the convolved channels is computed it will be still equal to a single input channel

multiplied for the appropriate weights and added with the appropriate bias since all

the other convolved channels have been multiplied by zero.

By writing down with formulas this concept, the following equation can be ob-

tained:


F1,i,j

F2,i,j

...

FC−1,i,j

FC,i,j

 =


W1 0 ... 0 0

0 W2 ... 0 0

...

0 0 ... WC−1 0

0 0 ... 0 WC

 ·


F1,i,j

F2,i,j

...

FC−1,i,j

FC,i,j

+


B1

B2

...

BC−1

BC

 (4.1)

where F̂ it the normalized version of a given feature map F in the CxHxW order

(channel, height, width) obtained with the above matrix-vector operations for each

spatial position i,j.

101

4 – Hardware implementation

Figure 4.20: Batch Normalization.

In Figure 4.20 it is possible to see how the BN control unit basically gives the

start signal to the convolutional one and set the filter size to 1. The stride is set

from the external word and must be equal to 1 for this layer.

4.6 Rounding method

In the designed accelerator three distinct rounding units have been implemented.

However, the only one which implements a proper rounding method is the one at

the output of the LiM array, namely Rounding block out LiM array. The other

two are based just on a saturator.

The Rounding block present at the output of the LiM array first apply a round

half-up method to the input data in order to have the right number of fractional

bit and then if the rounded value is too high or too small it is saturated to the

maximum value representable. It has to be noticed that due to the nature of this

block and due to the operations that it has to do, it can not be made parametric.

As a matter of fact, the only way to round a value in such a way it has only the

right number of integer and fractional bits is to know the fixed point format. For

this reason, this unit can not be parametric as the other.

For what concerns the other two rounding units, they are parametric since in this

102

4 – Hardware implementation

case, they are going to act only on the MSB of the input value. This different ap-

proach works because the values stored in the reg intermediate register (Figure 4.2)

are then used for other additions with numbers with the same fixed-point format.

Moreover, additions do not increase the number of fractional bits but only the one

of integer bits. This is true not only for the reg intermediate register but also for

the reg1 SL register (Figure 4.13) which is where the other rounding unit is placed.

The idea for these two rounding units is to see if the value is too high or too small

and then based on the result the input value will be saturated or the MSB will be

just removed without any precision loss.

4.7 Data and weight memory

The memory system is shown in Figure 4.21. The data memory is made of two equal

banks of size 229 · 229 cells of n bits each organized as a 2D matrix. It is worth

highlighting that every parameter in this HW accelerator can be changed including

the number of bits used for each cell and for representing data, the dimension of

data and weights memories and many others. This because the architecture has been

designed to be as generic as possible in order to handle every possible neural network

with different input dimensions too. However, all the configurable parameters have

been set to match the worst-case scenario among all the analyzed neural networks.

The data memory, as well as the weight one, is synchronous only for writing

operation.

The data memory has a single port which acts as data input and data output

port in order to decrease the number of pins required. Obviously, there is an address

input as well as write and read signals. The single-port allows to read or write an

entire row of the data memory which means that it has a parallelism of 229 · n bits.

103

4 – Hardware implementation

Figure 4.21: Memory system.

It has to be noticed that since there is one port which is shared for both input

and output data a tri-state buffer has to be implemented in order to avoid conflicts

on the data bus. The tri-state buffer implemented is shown in Figure 4.22.

104

4 – Hardware implementation

Figure 4.22: Tri-state buffer.

A tri-state buffer has to be implemented for each unit which is connected to the

data-bus to avoid conflicts.

The weight memory is slightly different: first of all, there are two distinct ports,

one for input data and one for output data. This memory has different parallelisms

for reading and writing operations: when a writing operation has to be carried out,

only one datum per time can be written in the memory. On the other hand, when

a reading operation is executed, 7 data per time are red simultaneously.

The weight memory is organized as 2D matrix too, of size 232 · 232 because it

has to be divisible by 4 and it has to be greater or equal to the dimension of the

data memory. Moreover, the weight memory contains only one bank. The addresses

for both writing and reading operations are divided into row and column. In the

worst-case scenario for a convolutional layer, a 7x7 filter has to be used while for

FC layers a 4x4 filter is always used with a stride of 4.

The main difference is that for a convolutional filter the weights are read just once

for each input channel while FC layers need to read the weights for each computation.

An assumption is made in this case: the convolutional weights are always stored in

the upper left of the matrix.

However, for each computation of an FC layer, 4x4 weights have to be read from

the memory. When another operation has to be performed, other 4x4 weights have

to be read, but this time, only the columns change because the rows are always the

same (at least until the end of the row is reached). Therefore for reading operations

105

4 – Hardware implementation

Figure 4.23: Weights memory: example of a reading operation.

changing the columns actually means moving of 4 cells to the right in a specific row.

Evidently since in any case, 7 data are read at each reading operation, but from one

column to the next one, there is a 4 cells shift, some data are read multiple times

(Figure 4.23).

106

4 – Hardware implementation

4.8 High-level scheme

By joining together all the implemented building blocks, the final hardware acceler-

ator can be obtained.

In Figure 4.24 the high-level scheme of the whole accelerator is depicted.

As it is possible to see, a unique block is used for convolutional, fully-connected

and batch normalization layers while the max-pooling one required additional logics

to compute the maximum value given a certain number of inputs.

107

4 – Hardware implementation

Figure 4.24: Hardware accelerator high-level scheme.

108

4 – Hardware implementation

4.9 Chip parameters

In this section the configurable parameters which have to be provided as input are

described:

• start conv, start FC, start max pooling and start BN signals are used to

select which operation has to be executed among all the implemented ones.

• sel input format signal is used for the rounding unit at the output of the

LiM array. In particular if it is 1, it means that the input fixed-point format is

Q3.5, otherwise, it is Q2.6. (The floating-point format used will be discussed

in more details in the next chapter).

• filter width is used to indicate the dimension of the filter to be used for the

convolutional layers. It can be 1, 2, 3, 5 or 7.

• input rows and input columns parameters are used for the FC layers. They

indicated how many rows and how many columns there are in the input. When

the input of an FC layer is not a matrix (which happens for all the FC layers

after the first one) then the input columns value indicates how many columns

there are in the first row of the input.

• output width is used to indicate how many values have to be computed for

convolutional layers. Since the output of the convolutional layer is a matrix

this parameter indicates either the number of rows or columns. It has to be

noticed that this parameter has to be set also for the batch normalization layer

because this layer is based on the convolutional one. The formula to compute

this value is:

output width =
input− filter width

stride
+ 1

It is worth highlighting that the output width parameters has to be given

without considering the padding zeros.

• input channels and output channels parameters indicate how many chan-

nels are given as input and how many of them the accelerator should compute

as output.

109

4 – Hardware implementation

• padding value indicates how many zeros have to be inserted as padding in the

output. There are no constraints on its maximum value. However, looking at

all the different neural network algorithms the maximum padding value does

not exceed 4.

• stride parameter is used for convolutional layer and it can assume the values

1 or 2.

• ReLU signal indicates whether or not the ReLU activation function has to be

executed.

110

Chapter 5

Software model of the designed

accelerator

For verification purposes, it is important to write a software model which is able

to emulate the designed hardware (HW). A software implementation generally is

written with a high-level language to guarantee a faster simulation time which is

very useful especially during the verification of the hardware.

Since neural networks models are implemented using fully-precision computation,

a software model of the designed HW has been written without considering the

limited number of bits. This first model is very useful because it allows checking if

layer by layer everything in the HW accelerator works as supposed to.

One the correctness of the HW has been checked, the software model has been

converted into a fixed-point one in order to understand how the accuracy changes

to vary the number of bits and the adopted fixed-point format.

Both software models have been written with Matlab.

5.1 Fully-precision floating-point model

The first software implementation has been written without considering the limited

number of bits to be used in an actual HW implementation. Each layer has been

implemented in a parametric way (just like the HW) with functions in Matlab. In

particular, the implemented functions are:

• conv function.

• FC func.

• max pool func.

111

5 – Software model of the designed accelerator

The batch normalization layer has not been implemented since it is based on the

convolutional one so it is sufficient to set the right parameters of the conv function

and use directly it.

5.2 Fixed-point model

From the fully-precision model, it is very simple to switch on a fixed-point one: it

is sufficient to quantize each output to the number of bits at disposal adopting the

same rounding technique used in HW accelerator. It is clear that all the inputs, as

well as the weights and the biases value, have to be quantized to be given as input

to either the HW accelerator or the fixed-point model.

The fixed-point model is quite useful since it allows to simulate different rounding

methods and different fixed-point formats in order to find out which combination

reaches the highest accuracy. Even so, it is fundamental to choose a neural network

algorithm first to compare the results and the final accuracy of the fixed-point model

with the floating-point one. The chosen neural network algorithm is LeNet-5.

5.3 LeNet-5 software model

The LeNet-5 neural network has been implemented first with Keras, which is an

open-source library written in Python and capable of running on top of TensorFlow.

Keras allows to implement, train and test a neural network very quickly. For in-

stance, to define a model with Keras made of layers organized as a linear stack it is

sufficient to write this line of code:

model = keras.Sequential ()

Now that the model has been defined, it is possible to add layers to it in a very

easy way. To define the whole LeNet-5 neural network the following lines have been

written:

model.add(layers.Conv2D(filters=6, kernel_size =(5, 5), activation=’relu’,

input_shape =(32 ,32 ,1)))

2 model.add(layers.MaxPooling2D ())

model.add(layers.Conv2D(filters =16, kernel_size =(5, 5), activation=’relu’))

4 model.add(layers.MaxPooling2D ())

model.add(layers.Flatten ())

112

5 – Software model of the designed accelerator

6 model.add(layers.Dense(units =120, activation=’relu’))

model.add(layers.Dense(units=84, activation=’relu’))

8 model.add(layers.Dense(units=10, activation = ’softmax ’))

Once the network has been defined, it has to be trained and then weights and biases

values have to be extracted to be used with the Matlab model.

To extract biases and weights it is sufficient to use the get weights() function.

It has to be noticed that this function can be applied to a single layer so a for cycle

is needed to extract all layers parameters. Therefore, the code required to extract

the needed parameters will look similar to this:

for layer in model.layers:

2 intermediate_layer_model = Model(inputs=model.input , outputs=layer.output)

intermediate_output = intermediate_layer_model.predict(test[’features ’])

4 if(layer.name == model.layers [0]. name):

np.save("conv1_input.npy", test[’features ’])

6 np.save("conv1_labels_input.npy", test[’labels ’])

np.save("conv1_weights.npy", layer.get_weights ()[0])

8 np.save("conv1_bias.npy", layer.get_weights ()[1])

np.save("conv1.npy", intermediate_output [:,:,:,:])

10 elif(layer.name == model.layers [1]. name):

np.save("pool1.npy", intermediate_output [:,:,:,:])

12 elif(layer.name == model.layers [2]. name):

np.save("conv2_weights.npy", layer.get_weights ()[0])

14 np.save("conv2_bias.npy", layer.get_weights ()[1])

np.save("conv2.npy", intermediate_output [:,:,:,:])

16 elif(layer.name == model.layers [3]. name):

np.save("pool2.npy", intermediate_output [:,:,:,:])

18 elif(layer.name == model.layers [4]. name):

np.save("flatten.npy", intermediate_output [:,:])

20 elif(layer.name == model.layers [5]. name):

np.save("FC1_weights.npy", layer.get_weights ()[0])

22 np.save("FC1_bias.npy", layer.get_weights ()[1])

np.save("FC1.npy", intermediate_output [:,:])

24 elif(layer.name == model.layers [6]. name):

np.save("FC2_weights.npy", layer.get_weights ()[0])

26 np.save("FC2_bias.npy", layer.get_weights ()[1])

np.save("FC2.npy", intermediate_output [:,:])

28 elif(layer.name == model.layers [7]. name):

np.save("FC3_weights.npy", layer.get_weights ()[0])

30 np.save("FC3_bias.npy", layer.get_weights ()[1])

np.save("FC3.npy", intermediate_output [:,:])

32 print(intermediate_output.shape)

The code fragment above checks if the layer at each iteration corresponds to one of

those implemented and based on which layer is, it will extract weights (get weights()

113

5 – Software model of the designed accelerator

[0]) and biases (get weights()[1]). Some layers like the pooling ones do not have

weight or biases to be extracted.

The partial outputs of each layer are also extracted in order to compare them

with the Matlab model. This can be done by defining a sub-model which has the

same input of the original one, but the output is the output of a specific layer. Then,

the inference can be executed and the output can be actually evaluated.

It is worth highlighting that all the parameters and outputs are extracted as

numpy array.

5.3.1 Weights and biases conversion

The data extracted from the Keras model of the neural network have to be converted

in txt files to be used as inputs for the Matlab model and for the HW accelerator.

A Matlab script which implements exactly this conversion has been written and the

code is the following one:

conv1_weights = readNPY(’conv1_weights.npy’);

2 conv1_bias = readNPY(’conv1_bias.npy’);

fileID_w = fopen(" conv1_weights.txt", ’w’);

4 fileID_b = fopen(" conv1_bias.txt", ’w’);

for ch_out = 1: length(conv1_weights (1,1,1,:))

6 for row = 1: length(conv1_weights (:,1,1,1))

for column = 1: length(conv1_weights (1,:,1,1))

8 fprintf(fileID_w , "%1.5f ", conv1_weights(row , column , 1, ch_out));

end

10 fprintf(fileID_w , "\n");

end

12 fprintf(fileID_b , "%1.5f \n", conv1_bias(ch_out));

fprintf(fileID_w , "-------------------------------- new ch weights\n");

14 end

fclose(fileID_w);

16 fclose(fileID_b);

18 conv2_weights = readNPY(’conv2_weights.npy’);

conv2_bias = readNPY(’conv2_bias.npy’);

20 fileID_w = fopen(" conv2_weights.txt", ’w’);

fileID_b = fopen(" conv2_bias.txt", ’w’);

22 for ch_out = 1: length(conv2_weights (1,1,1,:))

for ch_input = 1: length(conv2_weights (1,1,:,1))

24 for row = 1: length(conv2_weights (:,1,1,1))

for column = 1: length(conv2_weights (1,:,1,1))

26 fprintf(fileID_w , "%1.5f ", conv2_weights(row , column , ch_input , ch_out));

end

28 fprintf(fileID_w , "\n");

114

5 – Software model of the designed accelerator

end

30 fprintf(fileID_b , "%1.5f \n", conv2_bias(ch_out));

fprintf(fileID_w , "--------------------------------new ch weights\n");

32 end

end

34 fclose(fileID_w);

fclose(fileID_b);

36

38 FC1_weights = readNPY(’FC1_weights.npy’);

FC1_bias = readNPY(’FC1_bias.npy’);

40 fileID_w = fopen(" FC1_weights.txt", ’w’);

fileID_b = fopen(" FC1_bias.txt", ’w’);

42 for ch_out =1: length(FC1_weights (1,:))

for ch_in =1: length(pool2 (1,1,1,:))

44 j = 1;

for row =1: length(pool2 (1,:,1,1))

46 for column =1: length(pool2 (1,1,:,1))

fprintf(fileID_w , "%1.5f ",

FC1_weights(ch_in+(j-1)*length(pool2 (1,1,1,:)),ch_out));

48 j = j+1;

end

50 fprintf(fileID_w , "\n");

end

52 fprintf(fileID_b , "%1.5f \n", FC1_bias(ch_out));

fprintf(fileID_w , "--------------------------------new ch weights\n");

54 end

end

56 FC2_weights = readNPY(’FC2_weights.npy’);

FC2_bias = readNPY(’FC2_bias.npy’);

58 fileID_w = fopen(" FC2_weights.txt", ’w’);

fileID_b = fopen(" FC2_bias.txt", ’w’);

60 for ch_out =1: length(FC2_weights (1,:))

for ch_in =1: length(FC2_weights (:,1))

62 fprintf(fileID_w , "%1.5f ", FC2_weights(ch_in ,ch_out));

end

64 fprintf(fileID_b , "%1.5f \n", FC2_bias(ch_out));

fprintf(fileID_w , "\n--------------------------------\n");

66 end

fclose(fileID_w);

68 fclose(fileID_b);

70

FC3_weights = readNPY(’FC3_weights.npy’);

72 FC3_bias = readNPY(’FC3_bias.npy’);

fileID_w = fopen(" FC3_weights.txt", ’w’);

74 fileID_b = fopen(" FC3_bias.txt", ’w’);

for ch_out =1: length(FC3_weights (1,:))

76 for ch_in =1: length(FC3_weights (:,1))

fprintf(fileID_w , "%1.5f ", FC3_weights(ch_in ,ch_out));

115

5 – Software model of the designed accelerator

78 end

fprintf(fileID_b , "%1.5f \n", FC3_bias(ch_out));

80 fprintf(fileID_w , "\n--------------------------------\n");

end

82 fclose(fileID_w);

fclose(fileID_b);

84

%%read input

86 fileID_data = fopen(" input_conv1.txt", ’w’);

88 for row = 1: length(in_conv1 (1,:,1))

for column = 1: length(in_conv1 (1,1,:))

90 fprintf(fileID_data , "%2.5f ", double(in_conv1(1,row ,column)));

end

92 fprintf(fileID_data , "\n");

end

94 fprintf(fileID_data , "-------------------------------\n");

96 fclose(fileID_data);

The readNPY function is available on GitHub and allows to convert a nunpy

array into a multidimensional array which can be handled by Matlab. For each

layer, a nested for cycle has been used to handle multiple channels. Furthermore,

the input data extracted as well as the output of each layer contain multiple images

so it is important to take this into account when converting the values.

5.3.2 Quantization function

The HW accelerator designed, as well as its Fixed-point Matlab model, uses a limited

number of bits to represent data and parameters. For this reason, a quantization

function is needed. Here is reported the Matlab function which performs the quan-

tization:

function [outputArg1] = quantizationFunc(value , n_bit_int , n_bit_fract)

2 %This function convert fractional number into number with

if(value >= 0)

4 value = fix(value *2^(n_bit_fract)+0.5);

else

6 value = value *2^(n_bit_fract);

if(value == (fix(value) -0.5))

8 value = fix(value);

else

10 value = round(value);

end

12 end

116

5 – Software model of the designed accelerator

output1 = value /(2^(n_bit_fract));

14 if(output1 > (2^(n_bit_int -1) -1/(2^ n_bit_fract)))

outputArg1 = (2^(n_bit_int -1) -1/(2^ n_bit_fract));

16 elseif(output1 <(-2^(n_bit_int -1)))

outputArg1 = (-2^(n_bit_int -1));

18 else

outputArg1 = output1;

20 end

end

First the number sign is checked: if it greater than 0 then the input value is

rounded using the following formula:

round partial value(x) = fix(x · 2n bit fract + 0.5)

if instead the number was negative then the rounded value would have followed the

following formula:

round partial value(x) = x · 2n bit fract

and then we can either use fix or round function to round the value.

The fix function rounds both positive and negative number towards 0, while

round follows the round half-up scheme which means that if the number is ≥ 0.5

then it is rounded to 1 otherwise to 0.

There is a different formula based on the sign of the input value. This just

because the Matlab code is trying to model the HW: the rounding method imple-

mented in HW is based on round half-up with a saturator. However, it is important

to analyze what the HW actually does when rounding a negative number with this

method. Suppose to have an input number like

input number = 11.01→ −0.75

The objective is to obtain a rounded value equal to −1. Now with the method

implemented in HW a 1 is added in the position after the truncation will happen.

Moreover, this is a positive value which has to be added even in case of a negative

number.

117

5 – Software model of the designed accelerator

11.01+

00.10 =

−−−−−−−−

11.11

Then the number is truncated (in this case the truncation happens where the point

is located) and the following result is obtained:

11→ −1

Which is exactly the desired value. Thanks to this technique, from an HW point

of view, always the same value is added either a positive value or a negative one is

given as input. This technique works well due to the 2’s complement which is used

to represent the negative numbers.

The advantage is that a true rounding method is implemented for both positive

and negative values with only one slightly difference: 0.5 and −0.5. Suppose to have

the following numbers:

11.10→ −0.5 and 01.10→ +1.5

Now by applying the method explained before for the negative case, the following

result would be obtained:

11.10+

00.10 =

−−−−−−−−

00.00→ 00

while for the positive case:

118

5 – Software model of the designed accelerator

01.10+

00.10 =

−−−−−−−−

10.00→ 10

As it is possible to the 0.5 case is handled differently based on the sign of the

input value: if the number is positive 0.5 is rounded towards 1; if it is negative −0.5

is rounded towards 0.

This is what happens in the HW implementation. To replicate this behaviour

on Matlab two different functions have to be used and then in the case of a negative

number the following code has to be added, in order to check the −0.5 case:

if(value == (fix(value) -0.5))

2 value = fix(value);

else

4 value = round(value);

end

Next, the following formula is applied:

round final value(x) =
x

2n bit fract

The remaining Matlab code implements the saturator.

Moreover, it is worth highlighting that the fixed-point format has to be estab-

lished before calling this function.

5.3.3 Accuracy results and fixed-point format selection

To find the proper fixed-point format which does not decrease too much the final

accuracy, tons of simulations have to be done because it is a matter of choosing the

right format with the right number of bits.

To start with at least a proper number of bits, several papers on quantized neural

networks have been read. From those, it is possible to say that if no particular

quantization method (like the one based on logarithms) is used then 8 bits should

be more than enough to guarantee a respectable accuracy.

119

5 – Software model of the designed accelerator

Once the number of bits is fixed, the proper fixed-point format should be found.

However, instead of going with a try and error approach, each input and each layer

output of the floating-point implementation of the LeNet-5 has been analyzed.

The maximum input value is 255 while the maximum convolutional layer output

is 215 and 96 is the maximum fully-connected layer one. Even so, all weights and

bias are smaller than 0 which means that some fractional bits have to be taken

into account otherwise each input would be multiplied by 0. Here is an example of

weights and biases value for the first convolutional layer:

Weights example of the first convolutional layer

2 -0.13532 0.08340 -0.14414 0.02273 -0.14778

-0.04864 -0.09778 0.12905 0.13890 -0.10809

4 -0.09904 0.01753 -0.10780 -0.03043 -0.07611

-0.08719 -0.03902 -0.00248 -0.13409 0.11730

6 -0.01271 -0.02316 0.11619 0.16934 0.00220

Biases example of the first convolutional layer

8 -0.00003

-0.00082

10 -0.00102

0.00025

12 -0.00005

-0.00077

To solve this problem, there are two ways:

1. Increase the number of bits.

2. Find another solution.

Assuming the number of bits can not be changed (otherwise the HW accelerator

would reach 16 or more bits internally), another solution has to be found. It is known

that the basic operation of each layer in a neural network is a MAC (multiply and

accumulate). If one is able to scale the input without affecting the final accuracy

it would be possible to use still 8 bits without having weights and biases equal to

0. Fortunately, both addition and multiplication satisfy the distributive property

which means that if a scale of a factor S is applied on both input and biases values

(not weights ones) the output would be the right one scaled by S:

Output = W ·X +B

Output

S
=
W ·X +B

S
= W · X

S
+
B

S

120

5 – Software model of the designed accelerator

By choosing S = 100 the max input value changes from 255 to just 2.55 which

means that with 3 bits for the integer part all the input values can be represented.

Assuming to have 8 bits at disposal, 3 can be used for the integer part and 5 for the

fraction part meaning that the final fixed-point format is Q3.5.

It is important to notice here that apart from the first convolutional layer, all the

others can be represented with only 2 integer bits (if divided by a factor S obviously).

Even the first convolutional layer has a maximum value which is slightly greater than

2 (215/100 = 2.15).

The adopted fixed-point format is Q3.5 for the inputs and the weights of the first

convolutional layer, while it is Q2.6 for all the other parameters. Even the output

of the first convolutional layer is expressed with the Q2.6 format.

By using the format mentioned before a higher accuracy could be reached because

more fractional bits are taken into account.

As a matter of fact by running the LeNet-5 quantized model with 300 test images

and the previous fixed-point format an accuracy of 99.67% have been obtained which

is amazing considering that the floating-point model, as well as the Keras model with

double precision, had an accuracy of 98.67%.

121

Chapter 6

Verification

The verification step is one of the most important steps since it allows to verify the

correct behaviour of the designed hardware. Creating a software model of the hard-

ware allows comparing the results layer by layer in order to be sure that everything

works as supposed to.

VHDL

Floating point

neural network model

Floating point

neural network model

Fixed point

neural network model

Figure 6.1: Verification flow [10].

In this specific case, the LeNet-5 has been tested with images coming from the

MNIST database, so all the outputs here are referred to a particular neural network

algorithm. Both Matlab and VHDL layer by layer outputs have been written on a

file in order to make easier the verification step.

In the following the results of the second max-pooling layer are reported consid-

ering just the first two channels as an example:

Max -pooling 2 output (first two channels) -- Matlab fixed -point model

0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

0.0000000 0.0000000 0.0000000 0.1718750 0.0000000

0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

0.0000000 0.1718750 0.0000000 0.0000000 0.0000000

0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

122

6 – Verification

0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

0.4375000 0.0000000 0.0000000 0.0000000 0.0312500

To be noticed how dash lines are used to separate the different output channels.

Max -pooling 2 output (first two channels) -- VHDL output

0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

0.000000e+00 0.000000e+00 0.000000e+00 1.718750e-01 0.000000e+00

0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

0.000000e+00 1.718750e-01 0.000000e+00 0.000000e+00 0.000000e+00

0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

4.375000e-01 0.000000e+00 0.000000e+00 0.000000e+00 3.125000e-02

The two outputs are identical. It is clear that the final result is what matters

the most because it tells which number image has been given as input.

In this case, the input image was the one reported in Figure 6.2.

Figure 6.2: Input image.

The output of the last fully-connected layers are:

FC3 output -- Matlab fixed -point model

-0.0468750

0.0156250

0.0312500

-0.0156250

-0.0625000

-0.0312500

123

6 – Verification

-0.0937500

-0.0781250

0.2031250

-0.0312500

The highest value from above is 0.2031250 in position 8 (from 0 to 9). This

means that the recognized number is 8 which is correct.

FC3 output -- VHDL output

-4.687500e-02

1.562500e-02

3.125000e-02

-1.562500e-02

-6.250000e-02

-3.125000e-02

-9.375000e-02

-7.812500e-02

2.031250e-01

-3.125000e-02

The highest value from above is 2.031250e − 01 in position 8 (from 0 to 9).

This means that the recognized number is 8 which is correct. The software and the

hardware produce the same results and the highest value of the last layer output

correspond to the input image which means that everything works as supposed to.

A Matlab script has been written in order to automatically compare the result

of the HW with the image’s label in order to see if the HW has recognized correctly

the input image.

This script is actually very simple and it performs the multiplication by 100 of

the HW output and then apply the softmax function. It has to be noticed that

these last two operations are not mandatory.

FC3_out = "FC_3_output.txt";

2 input_matrix = zeros(1, 10);

fileID_d = fopen(FC3_out , ’r’);

4 formatSpec = "%f";

numb_rows_ext = 1;

6 for i = 1: numb_rows_ext

line_d = fgetl(fileID_d);

8 prova = sscanf(line_d , formatSpec , [1 inf]);

input_matrix(i,1: length(prova)) = sscanf(line_d , formatSpec , [1 inf]);

10 end

12 out = softmax ((input_matrix .*100) ’);

[max_value , max_index] = max(out);

14 predicted_value = max_index -1

124

6 – Verification

fclose(’all’);

16

input_labels = readNPY (" conv1_labels_input.npy");

18 correct_value = input_labels (300)

This code prints the predicted value from the HW accelerator and the correct

one coming from the database MNIST. The index of the label is 300 just because in

this case the tested image was the 300th in the MNIST database.

125

Chapter 7

Synthesis and Place & Route

In this chapter the synthesis and place & route results of the HW accelerator are

reported.

7.1 Synthesis

The synthesis of the HW accelerator has been performed with Synopsys Design

Compiler with two distinct CMOS technology nodes: 45 nm and 28 nm. For both

technology nodes maximum frequency, area and power consumption have been com-

puted.

7.1.1 45 nm technology node

The option used for the synthesis are:

• Clock period of 3.5 ns:

create clock -name MY CLK -period 3.5 clk

• Clock uncertainty of 0.07 ns:

set clock uncertainty 0.07 [get clocks MY CLK]

• Inputs and outputs delay:

set input delay 0.5 -max -clock MY CLK [remove from collection [all

inputs] clk]

set output delay 0.5 -max -clock MY CLK [all outputs]

• BUF X4/A input capacitance (3.4 fF) used as load for the outputs:

set OLOAD [load of NangateOpenCellLibrary/BUF X4/A]

126

7 – Synthesis and Place & Route

set load $OLOAD [all outputs]

Once the synthesis has been performed it is possible to use the commands

report power, report area and report timing to obtain respectively power con-

sumption (in the worst case), area and maximum frequency.

It is worth highlighting how the report power command computes the power

in the worst case by setting all the inputs switching activities to 0.5. However the

result of the worst case is quite important in this case because it is unfeasible to

implement all the neural network algorithm and to compute for each of them the

switching-activity-based power consumption. As a matter of fact the estimation of

this more precise power consumption took 12 hours for a very simple neural network

like LeNet-5 and the results are not so different with respect to the worst case to

justify a so demanding analysis for all the neural networks algorithms.

In Table 7.1 the synthesis results are reported for 45 nm technology node.

45 nm
Area [mm2] 0.195
Power [mW] 41.89
Power (LeNet-5) [mW] 36.02

Table 7.1: Synthesis results.

The maximum frequency reached by this HW implementation is equal to:

FMAX = 285.71 MHz

7.1.2 28 nm technology node

For the 28 nm technology node, two distinct syntheses have been performed: in the

first one the same frequency of the 45 nm technology node has been kept in order

to see what benefits derives from a newer technology for what concerns the power

consumption. In the second synthesis instead, the maximum frequency has been

found to see how much faster the accelerator can get with newer technology.

In Table 7.2 it is possible to see the results of both syntheses.

127

7 – Synthesis and Place & Route

28 nm (f = 285.71 MHz) 28 nm (max freq.)
Area [mm2] 0.142 0.142
Power [mW] 22.42 43.69

Table 7.2: Synthesis results.

With this newer technology the following maximum frequency has been reached:

FMAX = 588.23 MHz

As it is possible to see if the same frequency is kept the power consumption

becomes half while with almost the same power consumption as in the older tech-

nology the maximum frequency can be doubled by changing the technology. So

this means that this architecture critical path can benefit from newer technology

implementation.

7.2 Place & Route

The synthesis results are very good to have an idea on how the designed hardware

behaves in terms of power consumption and maximum frequency. However, in very

complex designs these values may change significantly from the ones of the final

chips.

To obtain a more accurate values (near to the actual ones) the place and route

step has to be executed. This step involves deciding where to place all the compo-

nents, circuitry and logic elements in a limited amount of space. Then the wires are

connected to the placed components.

128

7 – Synthesis and Place & Route

Figure 7.1: Physical chip of this hardware accelerator.

In Figure 7.1 the physical chip of the hardware accelerator is depicted.

In Table 7.3 the comparison of power, area and clock period between post-

synthesis and post place & route are reported.

Post-synthesis Post place & route
Area [mm2] 0.195 0.190
Power [mW] 41.89 169.1
Frequency [MHz] 285.71 270.27

Table 7.3: Synthesis vs place & route results for 45 nm.

The area and the frequency have decreased a little bit while the power consump-

tion has increased of 4 times.

It is worth highlight the power estimation post place & route has been obtained

by setting the inputs switching activity to 0.5.

Nevertheless this increasing in the power consumption might seem unjustified,

but the clock signal and the interconnections in very complex design can reach

an high percentage of the total power consumption and their contributions can be

evaluated only after the place & route step.

Another important contribution to the final power consumption is the actual

129

7 – Synthesis and Place & Route

load capacitance. As a matter of fact this value in post-synthesis simulation is fixed

to 3.4 fF while after the place & route is evaluated as 0.616 nF. The capacitance

computed by Innovus is closer to the real one since this is the final step in the design

flow.

It has to be noticed that the clock period decreases of just 0.2 ns from post-

synthesis to post place & route which means that the delay of all paths is well

balanced and is not affected too much by the interconnections non-idealities.

130

Chapter 8

State of the art comparison

In this chapter, a comparison between this work and the state of the art has been

performed. The parameters compared are:

• Area;

• power;

• execution time;

• FPS;

• energy per FPS;

• GOP/s/W;

• clock period.

One of the most used neural network for comparison purposes is the AlexNet.

However, this HW implementation is not able to execute the AlexNet because it

does not have the possibility to execute an 11x11 filter for the convolution. Even so,

it is sufficient to add a proper control unit for the 11x11 case to solve this problem

because the HW itself can execute every filter size.

In order to compute the execution time of distinct neural networks a series of

parametric equations which are able to estimate the execution time of each layer

have been extracted. Then with Matlab, all these equations have been implemented

and a script which is able to compute all the parameters explained above has been

written. It has to be underlined that this Matlab implementation is parametric

which means that for every neural network parameters like execution time, FPS

and energy per FPS can be computed.

131

8 – State of the art comparison

It is clear that to have a precise estimation of the actual execution time it is

important to consider also the time needed to write the data from the files to the

memory and vice-versa.

The LeNet-5 has been implemented with this script and the execution time com-

puted by Matlab is equal to the one computed with ModelSim. To have a fair

comparison, the AlexNet has been implemented with this script and then compared

with the state of the art. First of all a comparison with a previous thesis work [24]

has been done. It is worth highlighting that the comparison has been made with syn-

thesis result with a 45 nm technology node without considering how frequency and

power are affected by the place & route (in the [24] these results are not available).

This work WINNER implementation [24]
Area [mm2] 0.195 211.2
Power [mW] 41.89 70× 103

Execution time [ms] 2.31× 103 0.75
FPS [1/s] 0.43 1.32× 103

Energy per FPS [mJ/FPS] 225.81 0.039
Minimum clk period [ns] 3.50 3.55

Table 8.1: Synthesis results compared with WINNER implementation [24].

It has to be noticed that the processing time of the different works analyzed is

scaled to batch size equal to 1.

It is clear that from a power consumption point of view, this implementation is far

more convenient since there are more than three orders of magnitude between the two

compared power. However, WINNER implementation is a parallelized architecture

which explains not only the high power consumption but also the extreme efficient

architecture from an energy point of view. This happens because even if the power

consumption is quite high, the WINNER implementation is able to finish the whole

AlexNet much faster.

Another important parameter which is used to compare the performances be-

tween differences hardware implementations is the GOP/s/W.

This parameter is computed as the number of basic operations executed in one

second divided by the power consumption. In this way it possible to compute

the true performances of the accelerator without considering the time needed to

132

8 – State of the art comparison

write/read data on/from a file.

Moreover, the way data are written in the memories could be different with re-

spect to the one used in this architecture. In particular, larger memories can be

used to store all the inputs channel and to store all the output channels avoiding

the reading/writing operation of files every time a new channel is needed/computed.

Another possible solution could be writing one output channel to a file while com-

puting a new one without increasing the memory dimension.

These are only some solutions to mask or to avoid completely the time required

to transfer data to/from the implemented memories.

For this reason, it is quite important to compute a parameter which evaluates

the pure performance of the hardware in terms of operation per second and then

divides it for its power consumption to obtain the efficiency of the accelerator.

Considering as the worst-case the first convolutional layer of the ZFNet but with

just one input and output channels, it is possible to evaluate the GOP/s/W for this

hardware accelerator. The time needed to write/read to/from a file has not been

considered. In the following table (Table 8.2) this parameter is compared with other

hardware implementations:

This work FPGA1 [23] FPGA2 [23] FPGA3 [23] FPGA4[23]
Precision [N-bit] 8 32 8/16 16 16
GOP 0.0012 1.33 30.9 30.76 1.45
Power [W] 0.042 18.61 25.8 9.63 30.2
Performance [GOP/s] 1.5 61.62 117.8 136.97 565.94
Efficiency [GOP/s/W] 34.9 3.31 4.57 4.22 22.15

Table 8.2: Comparison power and GOP/s/W between this work and other FPGA
implementations [23].

where FPGA1 is Virtex-7 VX485T, FPGA2 is Stratix-V GSD8 FPGA3 is Zynq

XC7Z045 and FPGA4 is Virtex-7 VC709.

From this new comparison, it is possible to see that the bottleneck of this work is

the writing/reading operation to move data and weights from/to a file. As a matter

of fact, the GOP/s/W of this architecture considering just the operations done from

when the memories contain the right data and weights is the highest among all the

analyzed implementations.

It has to be noted though that the results in Table 8.2 compares ASIC results

133

8 – State of the art comparison

(this work) with FPGAs. To have a fair comparison other ASIC implementations

should be analyzed (Table 8.3).

This work ShinDianNao [25] Eyeriss [25] Fulmine [25] Origami[25]
Technology [nm] 45 65 65 LP 65 LL 65
Area [mm2] 0.195 4.86 12.25 6.86 3.09
Power [mW] 42 320 278 24 93
Performance [GOP/s] 1.5 128 46 9.28 74
Efficiency [GOP/s/W] 34.9 400 166 618 804
Efficiency per area unit [GOP/s/W/mm2] 178.97 82.30 13.55 90.09 260.19

Table 8.3: Comparison power and GOP/s/W between this work and other ASIC
implementations [25].

where LP means Low Power while LL stands for Low Leakage.

From Table 8.3 it is possible to see that there are ASIC implementations far

more efficient than this work in terms of GOP/s/W. From an area point of view, the

smallest ASIC implementation among the analyzed ones is almost 16 times bigger

than this work.

Hence, to take into account also the area another parameter can be computed:

efficiency per area unit expressed as GOP/s/W/mm2. As a matter of fact, if

the area is taken into account, this solution is second only to the Origami architecture

[25] in terms of efficiency per area unit.

8.1 Parallelization technique

The parallelization technique can be applied to this accelerator to improve the per-

formances. In particular it possible to replicate the whole chip including the two

memories. This is one of the strengths of this implementation: not only it is com-

pletely configurable for what concerns the number of bits and the specifications of

each layer but it can be also parallelized based on how much area is at disposal and

based on the power budget.

Theoretically if one parallelizes this architecture n-times, the execution time

should decrease of the same amount. The AlexNet algorithm has in the worst case

384 distinct output channels. Since each output channel can be computed separately

it is possible to execute each channel on a separate instance of the HW accelerator.

For this reason, having more than 384 replicas is useless.

134

8 – State of the art comparison

The Matlab script has been modified to take into account a parallelization of

384 times and every parameter has been recomputed. In Table 8.4 the parallelized

accelerator has been compared with WINNER architecture.

This work WINNER implementation [24]
Area [mm2] 74.88 211.2
Power [mW] 16.12× 103 70× 103

Execution time [ms] 9.8 0.75
FPS [1/s] 102 1.32× 103

Energy per FPS [mJ/FPS] 1.56 0.039
Minimum clk period [ns] 3.50 3.55

Table 8.4: Parallelized accelerator compared with WINNER architecture [24].

As it is possible to see the execution time is improved by a factor of 235, which

means that the performance improvement is not equal to the parallelization factor

for this type of architecture.

It is straightforward to see that even with a parallelized architecture the per-

formance in [24] can not be reached. However, it has to be noted that the power

is 4 times smaller than WINNER implementation and the area is almost 3 times

smaller.

If we increase the parallelization of a factor 4 (which means 4 ∗ 384) the same

power consumption could be reached with an increase in terms of performance which

is null in the case of AlexNet but which can be very important for a network like

GoogLeNet which has up to 1000 output channels.

Supposing to use the parallelized version, it is possible to compare this work

with other AlexNet models. One possible comparison is with a Floating-point im-

plementation in terms of execution time, FPS and energy per FPS. To have a fair

comparison, the execution time has to be scaled in order to represent the elaboration

of a single frame. In Table 8.5 some state of the art results have been reported.

135

8 – State of the art comparison

This work GPU1 [23] GPU2
Execution time [ms] 9.8 1.3 6.84
FPS [1/s] 102 769.0 680.8
Energy per FPS [mJ/FPS] 1.56 0.42 0.16
Power [W] 16.12 250 235

Table 8.5: State of the art comparison - Floating point vs this work.

Where GPU1 [23] is a GTX Titan X while GPU2’s results are the one reported

in section 3.3 and in this case a Nvidia Tesla K40c has been used.

It is clear that the GPU implementations are faster and more energy efficient

but they consume more power. However, these are floating-point implementations.

In the next table (Table 8.6) a comparison with other fixed point work has been

reported.

This work FPGA1 [23] FPGA2 [23] FPGA3 [23]
Execution time [ms] 9.8 21.61 20.10 2.56
FPS [1/s] 102 46.3 50.0 391.0
Energy per FPS [mJ/FPS] 1.56 8.68 7.68 0.2

Table 8.6: State of the art comparison - Fixed-point vs this work.

From these results, it is clear that this work is among the best in terms of

efficiency thanks to low power consumption and a good parallelization.

All these considerations have been made by using the parallelization technique

to improve the performance on a single image. However, this technique can be used

to increase the number of images being elaborated simultaneously.

This means that in the same amount of time it is possible to compute a number

of images which is equal to the parallelization factor.

So theoretically to match the same power consumption of the Winner archi-

tecture [24] a parallelization factor of 1666 should be used which means that the

parallelized version is able to obtain the performances shown in Table 8.7.

136

8 – State of the art comparison

This work (k=1666) WINNER implementation [24]
Area [mm2] 324.87 211.2
Power [mW] 69.79× 103 70× 103

Execution time [ms] 1.39 0.75
FPS [1/s] 721.21 1.32× 103

Energy per FPS [mJ/FPS] 0.13 0.039
Minimum clk period [ns] 3.50 3.55

Table 8.7: Parallelized accelerator (version 2) compared with WINNER implemen-
tation [24].

where k is the parallelization factor.

As it is possible to see there is still almost an order of magnitude of difference

between the efficiency of the two architectures. The area has increased too and in

this case, it is higher than the Winner implementation.

If compared with results in Table 8.6 and in Table 8.5 this architecture is much

more efficient if parallelized with the second method. Obviously, the power con-

sumption has increased as well but if it is not a problem then this could be another

possible solution to increase the performances.

137

Chapter 9

Conclusions and future works

The reconfigurable in-memory accelerator for neural networks designed in this project

is characterized by a very low power consumption without giving up too much on

the performances. Multipliers have been substituted by simple gates and adders

which means that they can be actually implemented in memory.

Furthermore, this hardware is completely reconfigurable and can execute the

most important layers used in the most common Neural Networks.

It is clear that this accelerator has been designed for low power application, but

based on the power budget one has, it is possible to parallelize this structure to

increase the performances.

The parallelized version is among the best hardware implementations in terms

of energy efficiency.

9.1 Future work

To improve the performances of this work several solutions can be tried:

• Implement the clock gating;

• Use a cache memory instead of an external data memory;

• Approximated arithmetic.

The clock gating can decrease significantly the overall power consumption and

it can be applied to all the control units as well. In particular, the control unit

hierarchy has been designed in such a way only a few machines are active per time.

This means that the benefits of this technique can be quite important.

To improve the execution time a solution could be taking the data memory inside

the accelerator and implement it as a cache memory. In this way, multiple rows could

138

9 – Conclusions and future works

be read at the same time decreasing significantly the time needed to store the data

in the shift registers.

The performances of neural networks which use filter sizes bigger than 2x2 can

benefit from an internal cache.

Furthermore, an approximated arithmetic can be used for multipliers and adders.

This should increase the maximum clock frequency and at the same time, both the

area and the power should decrease.

It is clear that the accuracy could be affected by this approximation but still, it

might be interesting evaluating how much.

139

Bibliography

[1] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. Efficient process-

ing of deep neural networks: A tutorial and survey. Proceedings of the IEEE,

105(12):2295–2329, 2017.

[2] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,

Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional

architecture for fast feature embedding. In Proceedings of the 22nd ACM in-

ternational conference on Multimedia, pages 675–678. ACM, 2014.

[3] Francisco J. Rodŕıguez, Antonio Garćıa, Pedro J. Pardo, Francisco Chávez,

and Rafael M. Luque-Baena. Study and classification of plum varieties using

image analysis and deep learning techniques. Progress in Artificial Intelligence,

7(2):119–127, Jun 2018.

[4] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed,

Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-

novich. Going deeper with convolutions. CoRR, abs/1409.4842, 2014.

[5] Sik-Ho Tsang. Review: Vggnet - 1st runner-up (image classification), winner

(localization) in ilsvrc 2014, Sep 2019.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. CoRR, abs/1512.03385, 2015.

[7] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected convo-

lutional networks. CoRR, abs/1608.06993, 2016.

[8] Mahendran Venkatachalam. Recurrent neural networks, Jun 2019.

[9] Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym. Nvidia

tesla: A unified graphics and computing architecture. IEEE micro, 28(2):39–55,

2008.

[10] Andrea Coluccio. In-memory binary neural networks. Master’s thesis, Politec-

nico di Torino, 2019.

[11] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. In Advances in neural information

processing systems, pages 1097–1105, 2012.

140

Bibliography

[12] Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolu-

tional networks. CoRR, abs/1311.2901, 2013.

[13] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning ap-

plied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, Nov

1998.

[14] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[15] Sik-Ho Tsang. Review: Densenet - dense convolutional network (image classi-

fication), Mar 2019.

[16] Giulia Santoro, Giovanna Turvani, and Mariagrazia Graziano. New logic-in-

memory paradigms: An architectural and technological perspective. Microma-

chines, 10(6):368, May 2019.

[17] Frederik Kratzert. Finetuning alexnet with tensorflow. Flair of Machine Learn-

ing - A virtual proof that name is awesome!

[18] Uri Merhav. How to (quickly) build a tensorflow training pipeline. Medium,

Nov 2018.

[19] Data input pipeline performance : Tensorflow core. TensorFlow.

[20] Using gpus : Tensorflow core. TensorFlow.

[21] Illarion Khlestov. How to profile tensorflow. Medium, Mar 2017.

[22] P. Maciol and K. Banas. Testing tesla architecture for scientific computing: The

performance of matrix-vector product. In 2008 International Multiconference

on Computer Science and Information Technology, pages 285–291, Oct 2008.

[23] Huimin Li, Xitian Fan, Li Jiao, Wei Cao, Xuegong Zhou, and Lingli Wang.

A high performance fpga-based accelerator for large-scale convolutional neural

networks. In 2016 26th International Conference on Field Programmable Logic

and Applications (FPL), pages 1–9, Aug 2016.

[24] Simone Domenico Antonietta. Weights in-memory neural network embedded

ram. Master’s thesis, Politecnico di Torino, 2019.

[25] F. Conti, R. Schilling, P. D. Schiavone, A. Pullini, D. Rossi, F. K. GÃ1
4
rkaynak,

M. Muehlberghuber, M. Gautschi, I. Loi, G. Haugou, S. Mangard, and

L. Benini. An iot endpoint system-on-chip for secure and energy-efficient near-

sensor analytics. IEEE Transactions on Circuits and Systems I: Regular Papers,

64(9):2481–2494, Sep. 2017.

141

	Acknowledgments
	State of the art
	Introduction to Neural Network
	Convolutional Neural Network
	AlexNet neural network
	Architecture model
	Local response Normalization layer
	Max-Pooling layer
	Dropout
	Softmax

	ZFNet
	LeNet-5
	GoogLeNet
	The 1x1 convolution
	Inception module
	Global Average Pooling

	VGGNet
	Residual Neural Network
	Other Neural Networks
	DenseNet
	Recurrent Neural Networks

	Logic-in-Memory

	AlexNet software implementation
	TensorFlow
	Python code
	AlexNet class
	Caffe class
	Data generator class
	Dataset class
	High level file
	How to select a GPU or a CPU to run the algorithm
	How to profile TensorFlow
	How to evaluate the inference time
	How to obtain power data of the GPU

	Comparison GPU vs CPU
	CPU structure
	GPU structure
	AlexNet implementation: GPU vs CPU

	Hardware implementation
	Convolutional layer
	Modified Baugh-Wooley
	LiM array
	Convolutional surrounding logic

	ReLU activation function
	Fully-Connected layer
	Max-Pooling layer
	Batch Normalization layer
	Rounding method
	Data and weight memory
	High-level scheme
	Chip parameters

	Software model of the designed accelerator
	Fully-precision floating-point model
	Fixed-point model
	LeNet-5 software model
	Weights and biases conversion
	Quantization function
	Accuracy results and fixed-point format selection

	Verification
	Synthesis and Place & Route
	Synthesis
	45 nm technology node
	28 nm technology node

	Place & Route

	State of the art comparison
	Parallelization technique

	Conclusions and future works
	Future work

	Bibliography

