
Politecnico Di Torino

MASTER THESIS

DUAL CONSISTENCY STORE BUFFER FOR OUT
OF ORDER PROCESSORS

Student:
SINGH SAWAN
sawan.singh@studenti.polito.it

Supervisors:
ALBERTO ROS (UM)

aros@um.es
GUIDO MASERA (POLITO)

guido.masera@polito.it

CAPS VLSI Lab
Computer Engineering Department of Electronics
Department, UM Spain and Telecommunications,

POLITO Italy

December 3, 2019

1 SINGH SAWAN

Politecnico Di Torino

Acknowledgement

I would like to thank Prof. Alberto for allowing me to work with him.
It was a pleasure to work with him. He provided a lot of motivation and
guidance without which this work would be impossible to achieve. He was
always there to help when I’m stuck with some problems. Apart from work
he helped in every possible way to help me with my stay in Murcia.

I would also like to thank Prof. Masera at POLITO. He was very sup-
portive when I approached him to be a supervisor from POLITO for my
thesis. He is always so kind to me.

In the end, I would like to thank all the people in the lab I was working
with Ashkan and Paco who made my time so comfortable.

SINGH SAWAN

2 SINGH SAWAN

Politecnico Di Torino

Abstract

Store-buffer is an important part of a modern-day out of order processor.
Store-buffer allows stores to retire in program order. The store is executed
and moved to store queue from where they commit and then finally move to
store-buffer, where they are written in the cache in program order. Once the
store-buffer is full the store requests have to wait until a place is available
in the store-buffer. This generates a stall thus not allowing other stores to
enter the store-buffer. This gets worse if there is a miss at the head of the
store buffer. Thus until the miss is resolved no operation in the store buffer
is allowed to perform in the memory to maintain the program order. We
address this problem in this work.

Our work leads to an approach where we can reorder the operations in
the store buffer and perform them out of order without violating the pro-
gram order. We took the help of compiler to help us identify the stores we
can perform out of order and we designed a new store buffer with performs
according to the information provided by the compiler. Other optimizations
and configuration are also performed and checked to give a bigger picture.

3 SINGH SAWAN

Politecnico Di Torino

Contents

1 Background 6
1.1 Why this matters? . 6

1.1.1 Sequential Consistency 7
1.1.2 TSO . 7

1.2 What are we focusing on? . 10

2 How did we generate the workload? 13
2.1 Sniper . 14
2.2 Instruction Modeling in SNIPER 15
2.3 Function Calls In SNIPER . 17
2.4 Trace Configuration . 21

3 How does our processor identify DRF regions? 25

4 How does these DRF are defined? 30

5 How do we process stores in different DRF regions? 33

6 System Specifications 41

7 Results 42
7.1 Execution time . 43
7.2 Processor Stalls . 44
7.3 Loads forwarded from stores 46
7.4 Sensitivity Analysis . 46
7.5 xDRF fences . 48
7.6 More complex compiler support 48

8 Related work 49

9 Conclusion 51

A Configuration File 56

4 SINGH SAWAN

Politecnico Di Torino

List of Figures

1 Memory Consistency Example 6
2 Memory Hierarchy . 8
3 Memory Hierarchy Example 8
4 TSO Memory Model . 9
5 Store Buffer . 11
6 xDRF region . 12
7 Mechanism of passing DRF information to processor 27
8 Mechanism of passing NDRF information to processor 27
9 Memory operations in SPLASH-3. 43
10 Normalized execution time with respect to an SB with 56 en-

tries that implements TSO. 44
11 Processor stalls. 45
12 Percentage of Loads Forwarded from stores. 46
13 Normalized execution time for different Store Buffer sizes. . . 47
14 Normalized execution time for SPLASH-3. 48
15 % of xDRF fences in various benchmarks 49

List of Tables

1 System parameters . 42

5 SINGH SAWAN

Politecnico Di Torino

1 Background

1.1 Why this matters?

Memory consistency is a big problem that we are dealing with and still, we
have not reached a stage where we can say we solved it. Memory consistency
refers to a problem of how parallel threads use there shared space of memory
with other threads. To explain it better let us take an example[1].

Figure 1: Memory Consistency Example

To understand what this program can output, we should think about
the order in which its events can happen. Intuitively, there are two obvious
orders in which this program could run:

(1)− > (2)− > (3)− > (4) : The first thread runs both its events before
the second thread, and so the program prints 01.
(3)− > (4)− > (1)− > (2) : The second thread runs both its events before
the first thread. The program still prints 01.
There are also some less obvious orders, where the instructions are inter-
leaved with each other.

(1)− > (3)− > (2)− > (4) : The first instruction in each thread runs
before the second instruction in either thread, printing 11.
(1)− > (3)− > (4)− > (2) : The first instruction from the first thread runs,
then both instructions from the second thread, then the second instruction
from the first thread. The program still prints 11. and a few others that
have the same effect.

This is what we never want, we always want consistency behavior. This
leads us to develop a memory model where the hardware promise programmer

6 SINGH SAWAN

Politecnico Di Torino

a particular execution order and the programmer promise to write programs
keeping that order in mind.

At this stage, we are ready to discuss 2 main memory models. The
sequential consistency and the Total Store Ordering (TSO)

1.1.1 Sequential Consistency

One nice way to think about sequential consistency is as a switch. At
each time step, the switch selects a thread to run and runs its next event
completely. This model preserves the rules of sequential consistency: events
are accessing a single main memory, and so happen in order; and by always
running the next event from a selected thread, each thread’s events happen
in program order.

The problem with this model is that it’s terribly, disastrously slow. We
can only run a single instruction at a time, so we’ve lost most of the benefit
of having multiple threads run in parallel. Worse, we have to wait for each
instruction to finish before we can start the next one—no more instructions
can run until the current instruction’s effects become visible to every other
thread.

1.1.2 TSO

Modern processors contain a different layer of memories the closest to
the core is the registers which are the fastest then we have an L1 Cache then
L2 Cache and then L3 Cache. Generally, the memories close to the core
are exclusive for each core and the memory far from the core is generally
shared[2].

7 SINGH SAWAN

Politecnico Di Torino

Figure 2: Memory Hierarchy

So for example, if we have the following operations to perform:-

Figure 3: Memory Hierarchy Example

A = 1 is a long process as its a write and thus it has to go all the way
till L3 which is a shared cache. So till then, the print(B) will have to wait.
This is a huge drawback as a print(B) has nothing to do with the A = 1 and
still, it has to wait.

One intuitive solution can be to store the result of A=1 in a local register
and let the print(B) execute. This is the TSO memory model. The register is
called the store buffer, All the work is done to develop this thesis is performed
in the TSO memory model.

8 SINGH SAWAN

Politecnico Di Torino

Figure 4: TSO Memory Model

So, the result is stored in a local register called store buffer which is a
very fast operation thus the next operation which is print(B) does not have
to wait much. Also if we have some other operation in place of print(B)
which is dependent on A can look for the updated value of A in the store
buffer. If the value is not found in the store buffer it goes to the lower mem-
ory hierarchy.

The problem with TSO is that the store buffers are exclusive for each
core so if one other operation in some other thread for example in the figure
3 the print(A) will not be able to access the latest value of A as it is stored
in the local store buffer which is not accessible to thread 2. Thus it will go
to the lower memory hierarchy searching for A and will get the value 0 which
is stored in the L3 cache rather than the updated one. To solve this the
concept of DRF comes into existence. All modern-day processor has some
kind of store buffer. Here they take the help of a compiler which introduces
fences to reduce these kinds of situations.

9 SINGH SAWAN

Politecnico Di Torino

1.2 What are we focusing on?

CPU’s with OOO processor requires few units to maintain the program
order. In the case of the memory operation, the first 2 steps are common for
both the store and the load. The first step is the memory address generation.
The register or the main memory can be accessed by an-bit address. Unlike
the registers, the main memory is not accessed using a specified address that
might be stored at some location. This is because mainly the main memory
is huge and thus storing an individual address for each location is not a
good solution. The address is generally calculated based on a register and an
offset. This takes place in the first cycle and is the same for both the store
and load. In the second cycle, this address is translated to the real hardware
address. Each program has a part of the main memory that it uses as a
private memory. So a translation is required from this virtual address to the
real physical address. This is also the same for both the memory operation
and is done in the second cycle. The third cycle differs for both of them. In
this work, we focus on stores only. For the store operation after the address
translation, they are considered performed form the architectural point of
you as they are moved to the Store queue. This is because if the speculation
was wrong we need to squash and thus keeping the store in a buffer and not
moving it to memory is a better choice. From the store queue, the store
moves to the store buffer. In real processor, the SQ and SB are the same
registers so it just shifting the stores toward the head.

In a multi-core processor, each core has its unit of store queue and store
buffer for managing store operations. In a real processor, the store queue
and store buffer are unified. Unified in the sense that they have the same
physical register and the partition is done logically. The store queue is needed
to manage the dynamic out of order executions inside the core. Once the
store is committed it is moved to the store buffer. As stated above they share
the same physical register. The buffer is generally a FIFO. The requests are
inserted from the tail are performed then dequeue from the head making a
place for other stores.

Once the buffer is full all other stores have to wait. This generates a stall
and reduces performance. It gets even worse if the store at the head which
is writing to the memory is a miss. A Nobel way would be to start the other
stores to perform in the memory if one gets a miss. But this will change the
program order.

10 SINGH SAWAN

Politecnico Di Torino

Suppose we have the following store operations:-

Store A
Store B
Store C
Store D

At some point out store buffer will look like this :-

Figure 5: Store Buffer

According to the program order, then A will be at the head as compared
to another store. Suppose A gets a miss and we start B then what we are
doing is storing B then A and then C and D which is the wrong behaviors
as according to programmer we should store A first then B. Now we at a
point to discuss our solution. What if we can identify the stores that we can
re-order which means we can perform them even if they are not at the head
as we know they will not disturb the program order. This is already a field
of research and we can find many solutions to this. Most of them use the
word data race free or DRF which means these store does not depend on the
program order.

In the parallel programming, some part of the code is visible or we can
say are shared with the other codes and this region which is shared between
different codes are called critical section. To simplify reasoning about the
correctness of parallel executions, mainstream languages such as C++ and
Java have already adopted data-race-free (DRF) as a standard and provide
none or weak guarantees in the presence of data races.

The DRF confirms that this region will not be shared with the other
threads. These regions are also called as synchronization-free regions. In

11 SINGH SAWAN

Politecnico Di Torino

c++ multi-thread programming is implemented by using Mutex. Mutex
provides different functions that can be used to control the part of the code
you want to share with the other threads. Once you figure out the region you
want to share all the variable which are been used in that regions will affect
the other threads output. All the variables which are not in the part of the
critical section are not shared between the threads. This allows us to apply
an optimization change which is to re-order the variables which are not in
the critical section and before starting the critical section we wait for all the
memory operations from the non-critical sections to complete.
The image above shows the regions, the middle region is the critical section

Figure 6: xDRF region

which is been visible to the other threads.[3]

So, in conclusion, we can re-order the stores that are in the xDRF region
and other stores should be performed in the program order. Also, all the
stores which belong to a DRF region should be performed before re-ordering
any other store from other DRF region. This is to maintain the program

12 SINGH SAWAN

Politecnico Di Torino

order.

2 How did we generate the workload?

Our workload is a trace file that is generated using a binary file gener-
ated by real hardware. The binary file already contains all the information
regarding DRF’s by the compiler. But for our processor, we need to add a
flag or any instruction that will tell him that this is the boundary of XDRF
or NDRF. Our final workload look like the following:-

404e42

S0d15m129 7ffd95ad8e50 8

1d130 3 L1d132 7ffd95ad8e50 8

L1d133 7ffd95ad8e58 8

0d1 -9956 BEGIN_iNDRF 7 5d1 L2 607998 8

7 END_iNDRF 7 5d1 2d3 4d4 4d5 7d4 2d7 2 S0d1m146 7ffd95ad8e58 8

-4204429

END_XDRF 0

4214337 L1d149 7ffd95ad8e58 8

0d1 -9904d8 2d8 2 S0d1m154 7ffd95ad8e58 8

-4204438

BEGIN_NDRF 0

4214289 L1d157 7ffd95ad8e58 8

0d1 -9847d19 3d18 3d20 3 S0d1m163 7ffd95ad8e58 8

-4204452

END_XDRF 1

BEGIN_NDRF 1

END_XDRF 2

BEGIN_NDRF 2

END_XDRF 3

BEGIN_NDRF 3

END_XDRF 4

BEGIN_NDRF 4

END_XDRF 5

BEGIN_NDRF 5

END_XDRF 6

BEGIN_NDRF 6

13 SINGH SAWAN

Politecnico Di Torino

END_XDRF 7

BEGIN_NDRF 7

END_XDRF 8

BEGIN_NDRF 8

END_XDRF 9

BEGIN_NDRF 9

END_XDRF 10

BEGIN_NDRF 10

END_XDRF 11

BEGIN_NDRF 11

.

.

.

We can see it contain all the information about store the address the
data and also include the DRF information. To generate these traces we
used Sniper tool[4]. We used Splash-3 as a benchmark for this project[5].
Splash-3 is an improved version of a very famous benchmark called Splash-
2. Splash-3 provides a better and bug-free benchmark. Overall the Splash
benchmark is the most popular in the field of multi-thread application. It is
composed of eleven workloads, three of which come in two implementations
that feature different optimizations.[6] The majority of workloads belong to
the High-Performance Computing domain.

2.1 Sniper

Sniper [4] is a next-generation parallel, high-speed and accurate x86 sim-
ulator. This multi-core simulator is based on the interval core model and the
Graphite simulation infrastructure, allowing for fast and accurate simulation
and for trading off simulation speed for accuracy to allow a range of flexible
simulation options when exploring different homogeneous and heterogeneous
multi-core architectures.

The Sniper simulator allows one to perform timing simulations for both
multi-program workloads and multi-threaded, shared-memory applications
with 10s to 100+ cores, at a high speed when compared to existing simulators.
The main feature of the simulator is its core model which is based on interval
simulation, a fast mechanistic core model. Interval simulation raises the level
of abstraction in architectural simulation which allows for faster simulator

14 SINGH SAWAN

Politecnico Di Torino

development and evaluation times; it does so by ’jumping’ between miss
events, called intervals. Sniper has been validated against multi-socket Intel
Core2 and Nehalem systems and provides average performance prediction
errors within 25 percent at a simulation speed of up to several MIPS.

This simulator and the interval core model is useful for unicore and
system-level studies that require more detail than the typical one-IPC mod-
els, but for which cycle-accurate simulators are too slow to allow workloads
of meaningful sizes to be simulated. As an added benefit, the interval core
model allows the generation of CPI stacks, which show the number of cycles
lost due to different characteristics of the system, like the cache hierarchy
or branch predictor, and leads to a better understanding of each compo-
nent’s effect on total system performance. This extends the use for Sniper
to application characterization and hardware/software co-design.

The xDRF and NDRF regions are introduced in the binary by 2 things:-

• Introducing XCHG

• Introducing Function calls

The XCHG instruction is only used to mark the NDRF region while
the function call is used for both the NDRF and DRF region. The XCHG
instruction just exchanges the values between two registers and thus XCHG
%EDI, %EDI will be an NOP instruction. The values of the register define
whether it is a begin or an end of the NDRF region. EDI register with value
-7 represents the end of the NDRF region while the +7 represents the begin
of the NDRF region.

While the XCHG just used for NDRF the function calls are used for both
the regions DRF and the NDRF. Several other functions are also inserted at a
particular point like Barrier, lock acquire, etc for compiler information. The
functions also return certain integer values to differentiate between several
xDRF and NDRF.

2.2 Instruction Modeling in SNIPER

The sniper models instructions in two separate ways one is static and
one is dynamical. The static instruction just searches for the particular in-
struction already modeled in the PIN tool by INTEL [7]. While the dynamic
instruction contains the data like branch target etc. For finding whether an
instruction is XCHG or not can be done directly in the instruction modeling

15 SINGH SAWAN

Politecnico Di Torino

file. The SNIPER uses an interface of the PIN tool provided to model the
binaries. For searching whether the instruction is an XCHG instruction or
not we can use the following piece of code.

if (INS_IsXchg(ins)) {

assert(INS_OperandCount(ins) == 2);

if (INS_OperandReg(ins, 0) == INS_OperandReg(ins, 1)

&& INS_OperandReg(ins, 0) == REG_EDI) {

INSTRUMENT_PREDICATED(

INSTR_IF_DETAILED(inst_mode),

trace, ins, IPOINT_BEFORE, (AFUNPTR)handleXchg,

IARG_CONST_CONTEXT,

IARG_THREAD_ID,

IARG_END);

}

}

The INS IsXchg is the function provided in the PIN tool API which
allows us to check whether the instruction we are modeling is XCHG or not.
Once we get the XCHG instruction we were looking for we jump to a function
that is handleXchg.

16 SINGH SAWAN

Politecnico Di Torino

The function definition is given below:-

static void handleXchg(const CONTEXT *ctxt, THREADID thread_id) {

REG reg = REG_EDI;

assert(!REG_is_gr8(reg) && !REG_is_gr16(reg));

ADDRINT regVal;

regVal = PIN_GetContextReg(ctxt, REG_FullRegName(reg));

if (int(regVal) > 0) {

//cerr << thread_id << " BEGIN_iDRF " << int(regVal) << endl;

} else {

//cerr << thread_id << " END_iDRF " << 0 - int(regVal) << endl;

}

assert(localStore[thread_id].dynins);

localStore[thread_id].dynins->setXchgRegValue(int(regVal));

}

Once we get the XCHG instruction we will take the register value of EDI
register as this will be used to check weather its an END or BEGIN of the
region. The value +7 is the begin of the region while -7 represent the end
of the region. Once the value is obtained, a function which is been defined
in the Dynamic Instruction class is called and the values are passed to that
class. The register values should be passed dynamically just like the branch
target as it can change according to the execution of the code.

Later from Dynamic Instruction, the values are passed to the Dynam-
icMicroOp class and from DynamicMicroOp it is finally passed to the Trace
Generator.

2.3 Function Calls In SNIPER

All the function call in the SNIPER are modeled in the routine replace
the file in the pin/lite. Here we have to look for the function which is XDRF
and NDRF and is introduced by the compiler to mark the regions. So here
our task was to search for that specific function calls and then pass the
information to the Trace file where we can finally print them in the trace file.

else if (name.find("begin_XDRF") != string::npos){

RTN_InsertCall(rtn, IPOINT_BEFORE, (AFUNPTR)sendTraceInsn, IARG_THREAD_ID,

IARG_ADDRINT, 19,

IARG_FUNCARG_ENTRYPOINT_VALUE, 0,

IARG_ADDRINT, 0,

17 SINGH SAWAN

Politecnico Di Torino

IARG_ADDRINT, 0,

IARG_END);

} else if (name.find("end_XDRF") != string::npos){

RTN_InsertCall(rtn, IPOINT_BEFORE, (AFUNPTR)sendTraceInsn, IARG_THREAD_ID,

IARG_ADDRINT, 20,

IARG_FUNCARG_ENTRYPOINT_VALUE, 0,

IARG_ADDRINT, 0,

IARG_ADDRINT, 0,

IARG_END);

} else if (name.find("end_NDRF_BARRIER") != string::npos){

RTN_InsertCall(rtn, IPOINT_BEFORE, (AFUNPTR)sendTraceInsn, IARG_THREAD_ID,

IARG_ADDRINT, 21,

IARG_ADDRINT, 0,

IARG_ADDRINT, 0,

IARG_ADDRINT, 0,

IARG_END);

} else if (name.find("begin_NDRF") != string::npos) {

RTN_InsertCall(rtn, IPOINT_BEFORE, (AFUNPTR)sendTraceInsn, IARG_THREAD_ID,

IARG_ADDRINT, 22,

IARG_FUNCARG_ENTRYPOINT_VALUE, 0,

IARG_ADDRINT, 0,

IARG_ADDRINT, 0,

IARG_END);

} else if (name.find("end_NDRF") != string::npos){

RTN_InsertCall(rtn, IPOINT_BEFORE, (AFUNPTR)sendTraceInsn, IARG_THREAD_ID,

IARG_ADDRINT, 23,

IARG_FUNCARG_ENTRYPOINT_VALUE, 0,

IARG_ADDRINT, 0,

IARG_ADDRINT, 0,

IARG_END);

} else if (name.compare("pthread_join") == 0

|| name.compare("pthread_mutex_lock") == 0

|| name.compare("__pthread_mutex_lock") == 0

|| name.compare("pthread_mutex_unlock") == 0

|| name.compare("__pthread_mutex_unlock") == 0

|| name.compare("pthread_cond_signal") == 0

|| name.compare("pthread_cond_broadcast") == 0

18 SINGH SAWAN

Politecnico Di Torino

|| name.compare("pthread_cond_wait") == 0

|| name.compare("sem_post") == 0

|| name.compare("sem_wait") == 0){

RTN_InsertCall(rtn, IPOINT_BEFORE, (AFUNPTR)sendTraceInsn, IARG_THREAD_ID,

IARG_ADDRINT, 24,

IARG_ADDRINT,0,

IARG_ADDRINT, 0,

IARG_ADDRINT, 0,

IARG_END);

Once we get our function we call a function which is sendTraceInsn which
passes all the values to the current MicroOp class. The RTN InsertCall is a
function provided by the PIN tool which inserts a call between the instruction
and thus allows us to do some specific tasks. The arguments are explained
below:-

• rent is the routine to the instrument which means the routine we want
to examine.

• IPOINT BEFORE This means to call the function which is AFUNPTR
before.

• (AFUNPTR)sendTraceInsn This is the function that is being called.

• IARG THREAD ID This passes the current thread

• IARG FUNCARG ENTRYPOINT VALUE This passes the value which
is being passed by the function call.

• IARG ADDRINT This is a simple int argument we can pass any value
using this. In our case, we pass different values for different cases. For
example, for Begin XDRF we pass 19 and for the end, we pass 20 and
so on.

• IARG END This means that no more arguments will be passed.

19 SINGH SAWAN

Politecnico Di Torino

The definition of the function called by the above are given below:-

VOID sendTraceInsn(THREADED id, ADDRINT type, ADDRINT arg0,

ADDRINT arg1, ADDRINT arg2)

{

//std::cerr << __FUNCTION__ << " called! type=" << type << "\n";

OperandList list;

Instruction *inst = new GenericInstruction(list);

inst->setAddress(0xffffffffffffffff);

inst->setSize(15);

inst->setDisassembly("RMS");

MicroOp *currentMicroOp = new MicroOp();

currentMicroOp->makeExecute(0 /*offset*/, 0 /*num_loads*/, XED_ICLASS_NOP

/*instructionOpcode*/, "RMS", false /*isBranch*/);

currentMicroOp->setInstruction(inst);

currentMicroOp->setFirst(true);

currentMicroOp->setLast(true);

currentMicroOp->is_trace = true;

currentMicroOp->trace_data[0] = type;

currentMicroOp->trace_data[1] = arg0;

currentMicroOp->trace_data[2] = arg1;

currentMicroOp->trace_data[3] = arg2;

std::vector<const MicroOp *> * uops = new std::vector<const MicroOp*>();

uops->push_back(currentMicroOp);

inst->setMicroOps(uops);

InstructionModeling::handleInstruction(id, inst);

}

In the definition, we save the value passed by the arguments in type, arg0,
arg1, arg2. Later these are passed to the current micro-op using:-

currentMicroOp->trace_data[0] = type;

currentMicroOp->trace_data[1] = arg0;

currentMicroOp->trace_data[2] = arg1;

currentMicroOp->trace_data[3] = arg2;

Thus till this stage, we have passed all the information we needed to the
trace file. Now we need to change the trace file and print the values we want.

20 SINGH SAWAN

Politecnico Di Torino

2.4 Trace Configuration

The trace is generated in the rob timer.cc in the rob trace folder. The
trace contains all the information about the instruction fetched and there
address, dependencies and the size of the instruction. A sample of the trace
is given below:-

4214321 L1d219 7ffd95ad8e58 8

0d1 L-9146 607984 4

6d1 4d1 3d1 4 S0d1m226 7ffd95ad8e58 8

L-7768 607098 8

0d1 S139885341901344m229 7ffd95ad8e48 8

S5d9m230 7ffd95ad8e38 8

5d7 S3d10m232 7ffd95ad8e40 8

S5m233 7ffd95ad8e50 8

5d234 L4 7f3998908ea0 8

L7d1 7f3998909700 8

3d1 b3d1t490 L6 7f3998908d20 8

L7d1 7f39984626c0 8

4d1 b3d1t340 6 5d5 L2 7f399890f1b4 4

0d1 b7d1t14 L2d8 7f3998909720 4

0d1d5d6 S0d1m10 7f3998909720 4

b4d2t8924 6 11d13 3d23 3d2 3 S0d1m23 7ffd95ad8e28 8

S-11504m24 7ffd95ad8e20 8

S2m25 7ffd95ad8e18 8

S2m26 7ffd95ad8e10 8

2d7 S3d31m28 7ffd95ad8e08 8

S2d41m29 7ffd95ad8e00 8

S1d11m30 7ffd95ad8df8 8

For example, let’s take the 1st line L1d219 7ffd95ad8e58 8, L and S represent
the load and store operation. L1d219 represents that the load is dependent
on the instruction at 1d219 memory ahead of the current instruction pointer.
7ffd95ad8e58 represents the address at which the load or store operation is
performed. While at the last the 8 represents the size of the instruction.
The trace can be generated over several threads and contain the traces of
individual threads.

For tracing the instructions we used the following code :-

21 SINGH SAWAN

Politecnico Di Torino

if (dmo.isXchg()) {

if (dmo.getRegValue() > 0)

deptrace_f << "BEGIN_iNDRF " << dmo.getRegValue() << " ";

else

deptrace_f << "END_iNDRF " << 0 - dmo.getRegValue() << " ";

}

We call the function from the Dynamic MicroOp class which tells us to
weather the instruction is the XCHG instruction we are looking for if its true
we take the register value and print accordingly the end and begin of the
NDRF region.

For tracing the function call:-

case 19:

if (deptraceRMSIsActive(thread_id))

{

if (deptrace_last_was_newline)

deptrace_last_was_newline = false;

else

deptrace_f << "\n";

deptrace_f << "BEGIN_XDRF " << (*it)->getMicroOp()->trace_data[1] << "\n";

deptrace_last_was_newline = true;

}

break;

// BEGIN_XDRF

case 20:

if (deptraceRMSIsActive(thread_id))

{

if (deptrace_last_was_newline)

deptrace_last_was_newline = false;

else

deptrace_f << "\n";

deptrace_f << "END_XDRF " << (*it)->getMicroOp()->trace_data[1] << "\n";

deptrace_last_was_newline = true;

}

break;

22 SINGH SAWAN

Politecnico Di Torino

// BEGIN_NDRF_BARRIER

case 21:

assert(false); // Not tested

break;

// BEGIN_N92.2DRF

case 22:

if (deptraceRMSIsActive(thread_id))

{

if (deptrace_last_was_newline)

deptrace_last_was_newline = false;

else

deptrace_f << "\n";

deptrace_f << "BEmcGIN_NDRF " << (*it)->getMicroOp()->trace_data[1]

<< "\n";

deptrace_last_was_newline = true;

}

break;

// END_NDRF

case 23:

if (deptraceRMSImcsActive(thread_id))

{

if (deptrace_last_was_newline)

deptrace_last_was_newline = false;

else

deptrace_f << "\n";

deptrace_f << "END_NDRF " << (*it)->getMicroOp()->trace_data[1]

<< "\n";

deptrace_last_was_newline = true;

}

break;

We use the switch(type) at the starting and as shown in the previous
section we send some particular value fro different function calls. Then we
simply print our data. The deptraceRMSActive() check whether the printing
in the trace is allowed on not this is done as some of the functions are printed
at there END calls and at there begin to call only the values passed by the

23 SINGH SAWAN

Politecnico Di Torino

functions are stored. mc
After this, the SNIPER can generate traces by checking the XDRF and

the NDRF regions which we inserted using our compiler.

24 SINGH SAWAN

Politecnico Di Torino

3 How does our processor identify DRF re-

gions?

Every execution starts by reading the instruction and then processing
them and making memory operation if required. Generally, these instructions
in collective are called Instruction Set that defines a bunch of Instructions
generally used to program any kind of code. Each Instruction has its hex-
adecimal representation that is what we called machine code. The compiler
does the work to transfer the code from human-readable form to machine
code.

Reading the instructions in our simulator is done is file TraceRecordPThreads.C
in the folder recorder. Each instruction is modeled by a user-defined data
type. All the operations are declared in the file OperationType.h in the
system folder.

enum OperationType {

OperationType_None,

OperationType_FIRST = OperationType_None,

OperationType_Instruction,

OperationType_Memory,

OperationType_Branch,

OperationType_Memory_Func,

OperationType_Branch_Func,

OperationType_Clear_Stats,

OperationType_Lock_Acquire,

OperationType_Lock_Release,

OperationType_Barrier,

OperationType_Cond_Signal,

OperationType_Cond_Broadcast,

OperationType_Cond_Wait,mc

OperationType_Sem_Signal,

OperationType_Sem_Wait,

OperationType_Spin,

OperationType_Fence,

OperationType_xDRF_Begin,

OperationType_xDRF_End,

OperationType_nDRF_Begin,

OperationType_nDRF_End,

25 SINGH SAWAN

Politecnico Di Torino

OperationType_Parallel_Begin,

OperationType_Parallel_End,

OperationType_NUM

};

This shows all the operation types we have in our simulator. You can notice
that we have OperationType xDRF Begin, OperationType xDRF End, Op-
erationType nDRF Begin, OperationType nDRF End and not OperationType xDRF
as there is no operation like XDRF, XDRF, and NDRF and just a represen-
tation of the region where we can reorder and regions where we can not
reorder. That is why we decided to put the operation type with the end and
begin that represent the regions. All the instructions falling in between Op-
erationType xDRF Begin and OperationType xDRF End are in the region
where we can allow reordering of instructions. In our case, we are focusing
on store operations. Once we know that the operation is of XDRF begin we
can pass that information to the processor by activating a special flag. All
stores then copy this bit with them that help processor identify weather the
sotres are DRF or NDRF(shown in figure ??). In our simulator we call the
following functions:-

m_proc_ptr->setndrf(true);

m_proc_ptr->setxdrf(false);

These two functions are defined to set the regions to true or false according
to the instruction read from the trace.

Alongside, this instruction we also use different fencing that helps us to
define DRF regions these fences are generally put by the compiler. One
such example is Lock, so when we see an operation with lock acquire all the
operations after that is NDRF until we find the release for the lock. Another
fencing is a barrier. The implementation is provided below:-

else if (m_current_func.operation == OperationType_Lock_Acquire) {

assert(isAccessAligned(m_current_func.data_address, SYNC_VAR_SIZE));

m_request_finished = m_lock_ptr->acquire(m_current_pc,

m_current_func.data_address);

if (FENCING_STRATEGY == 7){

if(m_proc_ptr->isndrf() == false){

if (count_drf == 0){

m_proc_ptr->setndrf(true);

m_proc_ptr->setxdrf(false);

26 SINGH SAWAN

Politecnico Di Torino

Figure 7: By default, stores are considered unsafe to reorder, until a Opera-
tionType xDRF Begin instruction is executed. Stores A, B, C, D, and E copy
the region flag 0 and thus belong to a sync region (Mode bit 0). Once a Opera-
tionType xDRF Begin operation reaches the RoB commit head, the processor
sets the region flag and inserts a logical SB fence, marking the beginning of
a DRF region. Store F that enters after OperationType xDRF Begin copies
in its Mode bit the region flag’s value, which is now 1.

Figure 8: Operation OperationType xDRF End marks the end of a DRF re-
gion: it resets the region flag and triggers the insertion of an SB fence. As
seen before, store J copies the current value of the region flag in its Mode bit.
Value 0 indicates it is a sync store. (Stores F, G, H and I copied the value
of the region flag at the moment the stores entered the SB, marking them as
DRF.)

27 SINGH SAWAN

Politecnico Di Torino

}

}

if (m_request_finished)

count_drf++;

}

} else if (m_current_func.operation == OperationType_Lock_Release) {

assert(isAccessAligned(m_current_func.data_address, SYNC_VAR_SIZE));

m_request_finished = m_lock_ptr->release(m_current_pc,

m_current_func.data_address);

if (FENCING_STRATEGY == 7){

if(m_request_finished) count_drf--;

if(count_drf == 0){

assert(m_proc_ptr->isndrf() == true);

m_proc_ptr->setndrf(false);

m_proc_ptr->setxdrf(true);

}

assert(count_drf >= 0);

}

} else if (m_current_func.operatmcion == OperationType_Barrier) {

assert(isAccessAligned(m_current_func.cond_address, SYNC_VAR_SIZE));

assert(isAccessAligned(m_current_func.count_address, SYNC_VAR_SIZE));

assert(isAccessAligned(m_current_func.lock_address, SYNC_VAR_SIZE));

m_request_finished = m_barrier_ptr->barrier(m_current_pc,

m_current_func.cond_address,

m_current_func.count_address,

m_current_func.lock_address);

if (FENCING_STRATEGY == 7){

if (m_proc_ptr->isndrf() == false){

assert(count_drf == 0);

m_proc_ptr->setndrf(true);mc

m_proc_ptr->setxdrf(false);

}//begin

if (m_request_finished) {

m_proc_ptr->setndrf(false);

m_proc_ptr->setxdrf(true);

} //end

}

28 SINGH SAWAN

Politecnico Di Torino

One confusing word at this stage is FENCING STRATEGY but that is
what we are discussing in the next section.

29 SINGH SAWAN

Politecnico Di Torino

4 How does these DRF are defined?

Overall there are 2 ways to define these regions one is doing it manually
the other option is to take the help of compiler to add this information. In our
system, we implement several different strategies to identify these regions.
The manual is done by putting fencing while the compiler work is done based
on this paper [3].

All modern-day programming languages proved DRF support[8]. But
passing that information to the processor is not that easy. A solution is to
track loads and stores per region. But this has two key issues. Store order
and load-to-store forwarding. That is reorderings to the same variable lead
to incorrect program behavior for example if we have 2 requests of the store
to the same address according to the programmer the value in the memory
should be the of the store which is near to the tail in the store buffer. But
if we do reordering we may end up performing the wrong store request. But
this can be easily solved by inserting fences that do not allow any store to
perform until all the store before that fence is performed in the memory.

The other issue of load-to-store forwarding arises as if we have two re-
quests of the same address and we reorder then and thus one is performed
but when the load will scoop the store buffer for data it will take the data
from the other store of the same address thus the results will not be valid
anymore, but if we are sure that the reordering only happens when we have
an exclusive access to the particular memory address that means no other
requests such load or store will access that memory we can solve this issue.
As we only recorder in DRF regions thus we are sure there will be no load
trying to access the same memory location thus keeping the results accurate
and still giving some opportunities to optimize.

We exploit this with a simple technique, by adding fences (xDRF fences)
in reordering phases. Thus getting a lot of space to reorder things thus hiding
the timing of cache miss. Our observation is that compilers can easily detect
this (potential violation) and then insert fences. These fences can easily be
used to pass the DRF information to the store buffer. Once this information
is passed to the store buffer the memory model of the processor can be relaxed
to a great extent. Relaxing the memory model helps us reduce the stalls and
hide the timing of writing to the cache of a xDRF store.

In our system following are the different strategies. All are defined in a
ruby default file in the config folder.

In our traces, all the fencing are already implemented and we can choose

30 SINGH SAWAN

Politecnico Di Torino

which fencing strategy to use every time using our config file. The type of
fencing is represented by the number as we discussed earlier. For a quick ex-
ample consider BEGIN NDRF 10 where the value 10 determines the fencing
strategy. In our system, we check for the fencing strategy with all the fencing
strategies from the traces.

else if (type.compare("BEGIN_XDRF") == 0) {

m_current_func.operation = OperationType_xDRF_Begin;

int value_fence;

in >> value_fence;

assert(value_fence <= 12);

m_current_func.size = getXDRFVersion(value_fence);mc

As we can see above once we match the BEGIN XDRF we set the oper-
ation type as begin and we put the value of the integer at value fence. Then
the getXDRFVersion function is called which match the number with the list
of fencing strategies. The code is shown below:-

int TraceRecordPThreads::getXDRFVersion(int value) const {

switch (value) {

case 0:

return FENCING_STRATEGY_xDRF_MANUAL;

case 1:

return FENCING_STRATEGY_xDRF_LLVM_MAYALIAS;

case 2:

return FENCING_STRATEGY_xDRF_SVF_MAYALIAS;

case 3:

return FENCING_STRATEGY_xDRF_USECHAIN_MAYALIAS;

case 4:

return FENCING_STRATEGY_xDRF_LLVM_MUSTALIAS;

case 5:

return FENCING_STRATEGY_xDRF_SVF_MUSTALIAS;

case 6:

return FENCING_STRATEGY_xDRF_USECHAIN_MUSTALIAS;

case 7:

return FENCING_STRATEGY_xDRF_LLVM_MAYALIAS_CONF;

case 8:

return FENCING_STRATEGY_xDRF_SVF_MAYALIAS_CONF;

case 9:

return FENCING_STRATEGY_xDRF_USECHAIN_MAYALIAS_CONF;

31 SINGH SAWAN

Politecnico Di Torino

case 10:

return FENCING_STRATEGY_xDRF_LLVM_MUSTALIAS_CONF;

case 11:

return FENCING_STRATEGY_xDRF_SVF_MUSTALIAS_CONF;

case 12:

return FENCING_STRATEGY_xDRF_USECHAIN_MUSTALIAS_CONF;

default:

cout<<"Fencing value "<<value<<"\n";

ERROR_MSG("Invalid range for type xDRF\n");

return -1;

}

Once we have the fencing strategy from the trace we compare it with the
fencing strategy we set in our simulator and only begin the DRF regions
when it matches.

else if (m_current_func.operation == OperationType_xDRF_Begin) {

if (FENCING_STRATEGY == m_current_func.size){

m_proc_ptr->setxdrf(true);

m_proc_ptr->set_begin_xdrf();

The manual DRF which is being represented by fencing strategy number
7 is done without the help of compiler and thus the fencing that is present
in the trace is used to define the DRF regions. These are done as follows:-

if (FENCING_STRATEGY == 7){

if (m_proc_ptr->isndrf() == false){

assert(count_drf == 0);

m_proc_ptr->setndrf(true);

m_proc_ptr->setxdrf(false);

}//begin

if (m_request_finished) {

m_proc_ptr->setndrf(false);

m_proc_ptr->setxdrf(true);

} //end

}

So at the start of the fence, we set the NDRF to true and the XDRF to
false, which means all the instructions from this point will be considered at
NDRF and thus no store will re-ordered. Once the fence is ended we set the
NDRF back to false and the XDRF back to true.

32 SINGH SAWAN

Politecnico Di Torino

In the result section, you can see the graphs that show the number of
stores committed in the XDRF regions and as predicted the compiler does a
much better job as compared to manual.

5 How do we process stores in different DRF

regions?

Once the processor has the information about the regions we created a
new type of store buffer which we called Hybrid store buffer as it can re-order
and also can order things in order depending on the region.

All the stores once committed and put in the store buffer where they
wait to perform finally in the memory. A function called consumeCycle is
called that tries to write the stores in the memory. The function can be seen
below:-

void HybridStoreBuffer::consumeCycle(bool atomic_decoded) {

int number_of_writes = 0;

head_xdrf = m_store_buffer_ptr->peekHead().m_xdrf;

if (m_issue_policy == ASAP_head

|| (m_issue_policy == Delay_Sentinel

&& m_store_buffer_ptr->peekHead().m_Sentinel == 0)) {

for (int i = m_store_buffer_ptr->fromHeadBegin();

m_store_buffer_ptr->more();

i = m_store_buffer_ptr->fromHeadNext(i)) {

if(m_store_buffer_ptr->getEntry(i).m_xdrf != head_xdrf){

g_system_ptr->getProfiler()->drffence();

}

if(m_store_buffer_ptr->getEntry(i).m_xdrf != head_xdrf

&& m_sequencer_ptr->isStoreFree())break;

if(m_store_buffer_ptr->getEntry(i).m_ndrf == false

&& m_store_buffer_ptr->getEntry(i).m_Locked == false){

//can be reordered

//print(cerr);

if(tryToBeginWriteToCache(m_store_buffer_ptr->getEntry(i))){

number_of_writes++;

break;

}

33 SINGH SAWAN

Politecnico Di Torino

}

if(m_store_buffer_ptr->getEntry(i).m_ndrf == true

&& m_store_buffer_ptr->getEntry(i).m_Locked == false

&& m_pending == false){ //can not be reordered

//print(cerr);

if(tryToBeginWriteToCache(m_store_buffer_ptr->getEntry(i))){

number_of_writes++;

}

else

break;

}

}

}

while(!isEmpty() && m_store_buffer_ptr->peekHead().m_Locked

&& m_store_buffer_ptr->peekHead().m_IsPerformed) {

m_store_buffer_ptr->dequeue(); // remove from head

}

assert(number_of_writes <= CACHE_WRITE_PORTS);

// Try to prefetch

for (int i = m_store_buffer_ptr->fromHeadBegin(); m_store_buffer_ptr->more();

i = m_store_buffer_ptr->fromHeadNext(i)) { // From head to tail

StoreBufferEntry& entry = m_store_buffer_ptr->getEntry(i);

if (entry.m_TryPrefetch) {

if(tryToPrefetch(entry)){

return; // One prefetch per cycle

}

}

}

return;

}

Once a function is called we look for each store from Head to Tail and
the oldest request will be at the head and the newest will be towards the tail.
Also, we always dequeue from the head so we always start from the head and
try to write the request at the head to the memory.

for (int i = m_store_buffer_ptr->fromHeadBegin(); m_store_buffer_ptr->more();

i = m_store_buffer_ptr->fromHeadNext(i)) {

Each store already has information about the DRF. The DRF information

34 SINGH SAWAN

Politecnico Di Torino

of whether the store was in the NDRF region or XDRF region is attached to
them when they are pushed into the pipeline.

PipelineElement(const Instruction &i, bool n_flag,

bool x_flag, bool atomic, bool m_begin_xdrf,

bool m_end_xdrf) : instr(i) {

stage = PipelineStage_FETCH;

// phy_addr initialized later

prefetch_issued = false; non_prefetch_issued = false;

Dspeculatively_executed = false; Mspeculatively_executed = false;

is_Dspeculative = false; is_Mspeculative = false; mem_resolved = false;

conflict_store_positions.clear();

needs_reexec = false; seen_write = false;

committed_OoO = false; has_lockdown_table_entry = false;

locks_cache_entry = false; locks_sb_entry = false;

rob_position = 0; sentinel = 0; clear_sentinels = false;

sync_type.clear(); ndrf_bit = n_flag; xdrf_bit = x_flag;

atomic_bit = atomic; begin_xdrf = m_begin_xdrf; end_xdrf = m_end_xdrf;

}

Before issuing any store we check for the DRF boundary that means we
wait until the specific DRF that is being executed is finished as if we don’t
wait we will break the consistency rule. For this, we just check the changes
in the DRF bit. So if the DRF bit is 1 1 1 1 that means they all belong
to the region where we can reorder then while if the bits are something like
1 1 1 1 0 0 that means at the change from 1 to 0 we have to wait until all
the requests having DRF bit 1 finish their process of writing the data to the
memory. To ensure this we have to do 2 steps:-

• Don’t allow any store request in store buffer to try writing to memory.

• Wait until all the ongoing request to write into the memory is finished.

For the first one we just take the Head’s DRF bit and check it with all
the upcoming requests if they are the same we allow them to process the
operation based on there DRF bit but if they are not equal we break the
loop and thus does not allow them to process any more request until they
are done.

if(m_store_buffer_ptr->getEntry(i).m_xdrf != head_xdrf &&

m_sequencer_ptr->isStoreFree())break;

35 SINGH SAWAN

Politecnico Di Torino

The function instore free tells us whether there are any pending or on-
going memory request or not. It is implemented in the Sequencer and the
implementation is given below:-

bool Sequencer::isStoreFree(){

int total_demand = 0;

Vector<Address> keys = m_readRequestTable_ptr->keys();

keys = m_writeRequestTable_ptr->keys();

for (int i=0; i< keys.size(); i++) {

CacheMsg& request = m_writeRequestTable_ptr->lookup(keys[i]);

if (!isPrefetch(request)) {

total_demand++;

}

}

if(m_l0controller.countActualWrites() == 0 && total_demand == 0){

return true;}

else{

return false;}

Once we are sure we can allow stores to start trying to write to the
memory we just check the DRF bit and allow them to try either in order or
in out of order.

if(m_store_buffer_ptr->getEntry(i).m_ndrf == false

&& m_store_buffer_ptr->getEntry(i).m_Locked == false){

//can be reordered

//print(cerr);

if(tryToBeginWriteToCache(m_store_buffer_ptr->getEntry(i))){

number_of_writes++;

break;

}

}

The DRF bit we discussed before is m NDRF so if it is true that means
that store belongs to the NDRF region and thus can not be re-ordered but
if its false that means its DRF as all stores except m NDRF false are DRF
and are called XDRF(Extended Data Race Free). So once we see that the
store has a m ndrf bit false and the locked bit is false as well we can al-

36 SINGH SAWAN

Politecnico Di Torino

low them to start writing to the memory. The locked bit tells us whether
the store is being already issued or not. So we only issue the stores that
are not issued yet. Once these both conditions are satisfied we try to write
by calling the function tryToBeginWriteToCache if its a success it will re-
turn true and we will increase the number of writes. Then we move to the
other store and try to start writing to memory. Suppose due to some reason
tryToBeginWriteToCache function return false then also we will break the
if(tryToBeginWriteToCache(m store buffer ptr− > getEntry(i))) and
try to execute the next store thus reordering them.

While if you look at the code below you will find that once the tryToBe-
ginWriteToCache returns false it will break and will try to write the same
request again until it returns true thus saving the order of the requests.

if(m_store_buffer_ptr->getEntry(i).m_ndrf == true

&& m_store_buffer_ptr->getEntry(i).m_Locked == false

&& m_pending == false){ //can not be reordered

//print(cerr);

if(tryToBeginWriteToCache(m_store_buffer_ptr->getEntry(i))){

number_of_writes++;

}

else

break;

}

After discussing how we issue the requests the next thing is to remove
them one by one once they are done. For this, the callback function is called.

void HybridStoreBuffer::callback(const Address& addr) {

int entry_pos = markAsPerformed(addr);

assert(line_address(addr) == addr);

assert(m_store_buffer_ptr->getEntry(entry_pos).m_Address == addr);

assert(!isEmpty());

endWriteToCache(addr);

if(m_store_buffer_ptr->getEntry(entry_pos).m_ndrf == true){

m_pending = false;

}

if (!isEmpty() && m_store_buffer_ptr->peekHead().m_Locked == true

&& m_store_buffer_ptr->peekHead().m_IsPerformed == true){

m_store_buffer_ptr->dequeue();

}

37 SINGH SAWAN

Politecnico Di Torino

}

When this function is called with the address of the request we can be sure
that the request is completed and we can remove them from the store buffer.
So the first thing we do is to mark the request as performed. intentry pos =
markAsPerformed(addr); function checks all the requests and match it with
the address and return the positing of the store.

int HybridStoreBuffer::markAsPerformed(const Address& addr) {

for (int i = m_store_buffer_ptr->fromHeadBegin(); m_store_buffer_ptr->more();

icommited = m_store_buffer_ptr->fromHeadNext(i)) { // From head to tail

if (m_store_buffer_ptr->getEntry(i).m_Address == addr

&& m_store_buffer_ptr->getEntry(i).m_Locked == true

&& m_store_buffer_ptr->getEntry(i).m_IsPerformed == false) {

m_store_buffer_ptr->getEntry(i).m_IsPerformed = true;

// cout<<" ADDRESS markasperform" << addr <<" " <<m_node_num<<endl;

return i;

}

}

//cout<<" ADDRESS markasperform" << addr <<" " <<m_node_num<<endl;

assert(false); // There should be at least one match

}

All the requests which are performed and locked are removed from the
head one by one. We can also remove them many at once but that will need
extra hardware and thus removing one by one make more sense.

if (!isEmpty() && m_store_buffer_ptr->peekHead().m_Locked == true

&& m_store_buffer_ptr->peekHead().m_IsPerformed == true){

m_store_buffer_ptr->dequeue();

}

Now, let’s discuss what happens when we have a miss. So when an XDRF
store misses we don’t need to wait until it tries again and we can just remove
it as XDRF are safe to perform out of order and they will be performed after
some time in case of miss and thus we can continue our operation without
waiting for XDRF miss to resolve. Thus in sequence, if the store operation
is XDRF we mark it performs and then remove it from the store buffer.

While in the case of NDRF store the case is little different as in case
of miss we have to wait until its resolved completely as they are not safe to
perform out of order thus at each miss a function is called from the Sequencer

38 SINGH SAWAN

Politecnico Di Torino

that change the locked bit from true to false of the next request from the
head and thus all the request will be issued again. This will keep on repeating
until we get a hit.

void HybridStoreBuffer::informNDRFRequestMissed(const Address& addr) {

stringstream ss;

ss << "\n" << setw(7) << g_eventQueue_ptr->getTime()

<< setw(4) << m_node_num << setw(60)

<< "Write miss / stores canceled"

<< setw(16) << addr;

DEBUG_MSG(STOREBUFFER_COMP, MedPrio, ss.str());

assert(!isEmpty());

bool NDRF_store_detected = false;

for (int i = m_store_buffer_ptr->fromHeadBegin();

m_storecommited_buffer_ptr->more();

i = m_store_buffer_ptr->fromHeadNext(i)) {

if (m_store_buffer_ptr->getEntry(i).m_ndrf && NDRF_store_detected &&

!m_store_buffer_ptr->getEntry(i).m_IsPerformed){

m_store_buffer_ptr->getEntry(i).m_Locked = false;

//m_store_buffer_ptr->getEntry(i).m_IsPerformed = false;

}

else if(m_store_buffer_ptr->getEntry(i).m_ndrf && !NDRF_store_detected &&

!m_store_buffer_ptr->getEntry(i).m_IsPerformed){

NDRF_store_detected = true;

//cout<<"address "<<m_store_buffer_ptr->getEntry(i).m_Address<<endl;

assert(m_store_buffer_ptr->getEntry(i).m_Address == addr);

}

}

m_pending = true;

// print(cerr);

}commited

I the code above we can notice that the first time the function is called
we don’t do anything except changing NDRF store detected variable value
from false to true. While the next time, it will change all the requests which
are NDRF and having locked bit true to locked bit false. Thus forcing them
to issue again and thus maintaining the consistency.

In the sequence at the time of miss, we delete all the entries with NDRF
bit as true from the store buffer as they should try again. While in the case

39 SINGH SAWAN

Politecnico Di Torino

of XDRF request we keep them in the store buffer.

else if (m_store_buffer_ptr->enforcesStoreStoreOrderOnlyOnVersion()) {

if(request.getVersion()){

m_l0commitedcontroller.removeNDRFActualWritesExceptFirst();

// Delete only NDRF entries.

m_store_buffer_ptr->informNDRFRequestMissed(request.getAddress());

// Unlock the NDRF entries

}

}

We already discussed the informNDRFRequestMissed function. The re-
moveNDRFActualWritesExceptFirst function deletes all the NDRF entries
except the first one as if its a miss all the NDRF before that store should
wait until it gets a hit.

void removeNDRFActualWritesExceptFirst() {

CacheMsg request = *(m_pending.begin());

//assert(request.getVersion() == 1);

m_pending.erase(remove_if(m_pending.begin(commited) + 1, m_pending.end(),

[](const CacheMsg& request) {

return request.getType() == CacheRequestType_ST

&& request.getPrefetch() == PrefetchBit_No

&& request.getVersion() == 1;

}), m_pending.end());

};

So you can see we start from the second request and check all the pa-
rameters like the request type which should be store the prefetch bit and
the version, the variable we used to pass the NDRF information from the
pipeline to the request class. So getVersion() = 1 means we delete the com-
mitted requests who are NDRF bit is true.

This completes the main modifications we made. Although there are
many other small changes we made to make the overall system more efficient
and some for other tests. We add all the DRF data to the profiler so that it
can be printed in the stats file. For this, we define a new function which is
called to count the DRF related stats.

void addNDRF() { m_NDRF++; }

void addXDRF() { m_XDRF++; }

40 SINGH SAWAN

Politecnico Di Torino

void addLDNDRF() { m_LDNDRF++; }

void addSTNDRF() { m_STNDRF++; }

void addATNDRF() { m_ATNDRF++; }

void addLDXDRF() { m_LDXDRF++; }

void addSTXcommitedDRF() { m_STXDRF++; }

void addATXcommitedDRF() { m_ATXDRF++; }

void addMNDRF() { m_MNDRF++; }

void addMXDRF() { m_MXDRF++; }

While for dumping the stats to the output file.

out << "Number Of Instruction Fetched with NDRF region: "

<< m_NDRF << endl;

out << "Number Of Instruction Fetched with XDRF bit region: "

<< m_XDRF << endl;

out << "Number Of Load Instructions commited with NDRF region: "

<< m_LDNDRF << endl;

out << "Number Of Store Instruction commited with NDRF region: "

<< m_STNDRF << endl;

out << "Number Of Atomic Instruction commited with NDRF region: "

<< m_ATNDRF << endl;

out << "Number Of Load Instruction commited with XDRF region: "

<< m_LDXDRF << endl;

out << "Number Of Store Instruction commited with XDRF region: "

<< m_STXDRF << endl;

out << "Number Of Atomic Instruction commited with XDRF region: "

<< m_ATXDRF << endl;

out << "Number Of Memory Operation commited with NDRF region: "

<< m_MNDRF << endl;

out << "Number Of Memory Operation commited with XDRF region: "

<< m_MXDRF << endl;

out << "Number Of DRF fences: " << m_drffence << endl;

6 System Specifications

We used a modified version of the cycle-accurate GEMS simulator [9]
for multi-core systems. We simulate a multi-core processor providing TSO
consistency and consisting of 8 out-of-order cores. Our processor mimics an

41 SINGH SAWAN

Politecnico Di Torino

Intel Skylake micro-architecture employing macro-op and micro-op fusion.
The L1 caches are fully pipelined L1 caches and employ a stride prefetcher
of degree 3. Our processor employs a single circular queue for both the store
queue and Store Buffer that utilizes better the resources. GARNET [10] is
used to model the interconnect. The most relevant system characteristics are
displayed in Table 1.

We run all applications from the Splash-3 [5] parallel benchmark suite
which is a data-race-free version of the original Splash-2 [6] benchmark suite.
Splash-3 benchmark suite also includes a variety of programs with different
access patterns.

Table 1: System parameters

Processor
Processor Model Intel Skylake
Fetch Width 5 instructions
Issue Width 8 ports
Allocation Queue 97 entries
Reorder Buffer 224 entries
Load Queue 72 entries
Store Queue + Store Buffer 56 entries
Memory
Private L1 I&D caches 32KB, 8 ways, 4 hit cycles, pipelined
Private L2 cache 256KB, 8 ways, 12 hit cycles
Shared L3 cache 1MB per bank, 8 ways, 35 hit cycles
Directory 8 ways, 200% coverage of L2
Memory access time 160 cycles
Network Topology 2D Mesh

The full configuration file in attached in the appendix A.

7 Results

Figure 9 shows that the number of stores executed in DRF regions are
significant. In what follows, we analyze the performance benefits of perform-
ing the DRF stores out-of-order, the impact on the time the processor stalls,
and the performance improvements of employing the SB as a cache. More-
over, we report the outcome of a study on the performance sensitivity with

42 SINGH SAWAN

Politecnico Di Torino

 b
ar

ne
s-

p8
 c

ho
le

sk
y-

p8
 ff

t-p
8

 fm
m

-p
8

 lu
-p

8
 lu

nc
-p

8
 o

ce
an

-p
8

 o
ce

an
nc

-p
8

 ra
di

os
ity

-p
8

 ra
di

x-
p8

 ra
yt

ra
ce

-p
8

 v
ol

re
nd

-p
8

 w
at

er
ns

q-
p8

 w
at

er
sp

-p
8

 A
ve

ra
ge

0.0

20.0

40.0

60.0

80.0

100.0

%
 o

f M
em

or
y

In
st

ru
ct

io
ns

DRF NDRF

Figure 9: Memory operations in SPLASH-3.

respect to the SB size, and finally the impact of inserting the logical xDRF
fences on every transition between regions.

7.1 Execution time

Processor stalls degrade performance considerably and are therefore an
important target for speeding up applications. The more stalls the appli-
cations encounter running on the baseline SB (TSO, 56 SB/SQ entries),
the higher the benefits of applying our technique). In figure 10 we can see
that programs LU-nc, ocean-nc and radix show improvements in execution
time(by 63.36%, 19.16% and 20.40% respectively) because of less overall
stalls as shown in figure 7.2. In particular, LU-nc shows an impressive im-
provement due to 19.70% less stalls in RoB and 77.48% less in the SB/SQ
as shown in figure 7.2. All programs except Barnes, FMM and FFT show
an improvement. FFT suffers from high processor stalls compared to the
baseline – 6% more SB/SQ stalls due to many xDRF fences, on average after

43 SINGH SAWAN

Politecnico Di Torino

every 2.229 DRF instructions as can be seen in figure 15. This variation in
regions does not allow us to fully utilize the potential of DRF as we have
to wait at each xDRF fence.) Barnes the prefetcher does not perform well,
Useful prefetches decreases by 8.84%. For FMM, the performance does not
improve because of a significant increase in resource stall(5.96%).
Overall, DCSB achieves 10.24% speedup compared to the baseline Store
Buffer with 56 entries that implements TSO. Further increases in perfor-
mance can be obtained with more complex compiler support, such as the
technique proposed by Jimborean et al [3] (subsection 7.6). We provide a
more in-depth analysis of the performance variation with respect to the SB
size using our DC(Dual Consistency) technique in subsection 7.4.
A more accurate branch predictor, a more effective prefetcher, or RoB can
further improve performance, but we leave this analysis for future research.

 b
ar

ne
s-

p8

 c
ho

le
sk

y-
p8

 ff
t-p

8

 fm
m

-p
8

 lu
-p

8

 lu
nc

-p
8

 o
ce

an
-p

8

 o
ce

an
nc

-p
8

 ra
di

os
ity

-p
8

 ra
di

x-
p8

 ra
yt

ra
ce

-p
8

 v
ol

re
nd

-p
8

 w
at

er
ns

q-
p8

 w
at

er
sp

-p
8

 G
eo

m
ea

n
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

DC
TSO

Figure 10: Normalized execution time with respect to an SB with 56 entries
that implements TSO.

7.2 Processor Stalls

Figure 11 compares three versions:

44 SINGH SAWAN

Politecnico Di Torino

(1) The baseline: a 56-entry SB with TSO. (2) An oracle version (DRF All)
that sets the Mode bit to true permanently. That means, all stores belong
to a DRF region and can be performed fully out-of-order. (3) DCSB: our
proposal. We provide a breakdown of the stalls in the RoB, LQ, and SQ/SB.
SB/SQ stalls are significantly reduced in both DCSB and oracle versions
for programs such as LU-nc, ocean-nc and radix, while in other cases the
bottleneck moves to either RoB or to LQ. For example, in ocean-nc and LU-
nc, despite reducing the SB/SQ stalls, we observe higher LQ stalls stemming
from speculative loads due to miss-branch prediction[11]. In contrast, in radix
and water-nsq, RoB becomes the bottleneck (due to a higher number of in-
struction squashes, 5.4% more squashes for radix and 0.0012% less squashes
in water-nsq). Other applications, such as barnes, radiosity, raytrace and vol-
rend show less RoB stalls (due to fewer instructions being squashed, 2.08%,
1.1%, 1.79% and 2.38% respectively) along with less SB/SQ stalls. FMM,
cholesky and water-nsq perform similarly in terms of stalls in all three ver-
sions. FFT is the only program that suffers more stalls then TSO, due to
the high number of fences, which translates to a slight performance loss, as
seen in figure 10. Overall DCSB achieves 8.8% less processor stalls compared
to TSO and is almost on par with the oracle, with 8.9% less stalls in DCSB
and 8.95% in DRF-All.

 b
ar

ne
s-

p8

 c
ho

le
sk

y-
p8

 ff
t-p

8

 fm
m

-p
8

 lu
-p

8

 lu
nc

-p
8

 o
ce

an
-p

8

 o
ce

an
nc

-p
8

 ra
di

os
ity

-p
8

 ra
di

x-
p8

 ra
yt

ra
ce

-p
8

 v
ol

re
nd

-p
8

 w
at

er
ns

q-
p8

 w
at

er
sp

-p
8

 A
ve

ra
ge

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

Pr
oc

es
so

r S
ta

lls

RoB LQ SQ-SB1. TSO 2.All-DRF 3.DCSB

Figure 11: Processor stalls.

45 SINGH SAWAN

Politecnico Di Torino

7.3 Loads forwarded from stores

Keeping the stores in the Store Buffer even after completion increases
the number of loads-forwarded-from-store, making the Store Buffer act as a
cache. Figure 12 reveals significant improvements in the number of loads-
forwarded-from-store in DCSB compared to the baseline. DCSB provides
outstanding increments in the number of loads-forwarded-from-store, namely
14.83% loads-forwarded-from-store compared to 5.71% in the baseline. The
highest percentage is observed in Barnes from 11.03% to 44.72% while lowest
in FFT from 0.0143% to 0.0144%. This finding can be employed in reducing
the energy consumption, as showed in the work done by Alves et al [12] where
their solution avoids the parallel search in both SB and the cache. We leave
this evaluation for future work.

 b
ar

ne
s-

p8

 c
ho

le
sk

y-
p8

 ff
t-p

8

 fm
m

-p
8

 lu
-p

8

 lu
nc

-p
8

 o
ce

an
-p

8

 o
ce

an
nc

-p
8

 ra
di

os
ity

-p
8

 ra
di

x-
p8

 ra
yt

ra
ce

-p
8

 v
ol

re
nd

-p
8

 w
at

er
ns

q-
p8

 w
at

er
sp

-p
8

 G
eo

m
ea

n
0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0
18.0
20.0
22.0
24.0
26.0
28.0
30.0

%
 o

f L
oa

ds
 fo

rw
ar

de
d

fro
m

 S
B

DC TSO44.7

Figure 12: Percentage of Loads Forwarded from stores.

7.4 Sensitivity Analysis

Larger SB/SQ buffers do not automatically guarantee performance im-
provements as data forwarding takes more cycles. If the trend towards higher
processor clock, wider pipelines, more execution units and large programs

46 SINGH SAWAN

Politecnico Di Torino

Figure 13: Normalized execution time for different Store Buffer sizes.

continues, the latency of search in SB/SQ will become critical for perfor-
mance. Along with increasing the latency in forwarding data, larger SB/SQ
also increases the energy expenditure.

In contrast, a small SB brings numerous benefits such as low power con-
sumption and less hardware overhead, but it affects the overall performance
as it increases the SB/SQ stalls. All modern-day processor is a result of a
trade-off between energy expenditure and speed. Our analysis shows that
we can achieve low energy expenditure without degrading performance, by
boosting performance even with a small SB. Figure 13 shows the normalized
execution time (average of all applications from the SPLASH-3 benchmark
suite) when varying the SB size. The baseline is a Store Buffer of 56 entries
implementing TSO (as before). Figure 14 shows the performance of each
benchmark from SPLASH-3. Even with a Store Buffer as small as 16 entries,
DCSB leads to performance improvements of 8.4%. Overall, a Store Buffer
with 32 entries gives the highest performance of 10.64%.

DCSB becomes particularly attractive in the context of a growing demand
for low power and high performance, especially since it requires minimal
modifications of the mainstream SB implementations.

47 SINGH SAWAN

Politecnico Di Torino

16 20 24 28 32 36 40 44 48 52 56
Store Buffer size

0.7

0.8

0.9

1.0

1.1

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

barnes-p8
cholesky-p8
fft-p8
fmm-p8

lu-p8
lunc-p8
ocean-p8
oceannc-p8

radiosity-p8
radix-p8
raytrace-p8
volrend-p8

waternsq-p8
watersp-p8

Figure 14: Normalized execution time for SPLASH-3.

7.5 xDRF fences

DCSB relies on xDRF fence to ensure correctness. Figure 15 shows the
percentage of xDRF fences with respect to the total number of memory op-
erations. Overall, the compiler inserts 9.39% instructions that are fenced to
provide the TSO guarantees of sequential semantic and consistency. Radix
exhibits the highest percentage of xDRF fences, 56.34%. Being logical fences,
the xDRF fence does not require any special resource or hardware to exe-
cute. Although, for performance reasons, a lower number of xDRF fences, i.e.
larger DRF regions, provides higher potential for store reordering. Each fence
imposes waiting until all ongoing memory operations are finished, to avoid
inter-region reordering, which can also lead to performance degradations, as
in the case of FFT in figure 10.

7.6 More complex compiler support

xDRF which stands for Extended Data Race Free is a compiler tech-
nique developed by Jimborean et al [13]. xDRF are sets of DRF regions

48 SINGH SAWAN

Politecnico Di Torino

 b
ar

ne
s-

p8
 c

ho
le

sk
y-

p8
 ff

t-p
8

 fm
m

-p
8

 lu
-p

8
 lu

nc
-p

8
 o

ce
an

-p
8

 o
ce

an
nc

-p
8

 ra
di

os
ity

-p
8

 ra
di

x-
p8

 ra
yt

ra
ce

-p
8

 v
ol

re
nd

-p
8

 w
at

er
ns

q-
p8

 w
at

er
sp

-p
8

 A
ve

ra
ge

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0

%
 D

R
F

fe
nc

e

Figure 15: % of xDRF fences in various benchmarks

extend across synchronization points, function calls, loops, etc while pro-
viding the same guarantee as a synchronization-free region. DCSB applied
on larger DRF regions leads to improvements of about 1% compared to
synchronization-free regions (DRF as described in this paper) and improve-
ment of 11.72% compared to the baseline SB (TSO with 56 entries). More
complex compiler support can increase performance with minimal or zero
hardware costs.

8 Related work

A plethora of techniques have been proposed for efficient hardware de-
signs that provide Sequential Consistency guarantees [14] [15] [16] [17] [18].
They rely on speculation to enable a more efficient TSO model and require
support to recover upon SC violations. Speculation occurs before the stores
leave the RoB. The same technique is also used in commercial processors

49 SINGH SAWAN

Politecnico Di Torino

like x86 [19]. This optimization alone is insufficient to obtain high perfor-
mance, thus more aggressive speculation techniques are proposed [15] [18].
The more aggressive the speculation, the more costly becomes to check and
recover from SC violations. The required mechanism is quite complex and
increases the hardware overhead (e.g. through extra registers to track the
speculation). In consequence, none of these techniques is implemented in any
real processor because of the added complexity.

We detail in what follows a selection of the most relevant techniques.
Singh et al. [20] proposes a software-hardware co-design in which the

compiler provides information about which accesses can be reordered. Their
design implements two Store Buffers (out-of-order for safe stores and in-order
for unsafe ones, respectively) and store operations are allocated in one or the
other depending on their type. This design with two Store Buffers increases
the complexity of the solution and adds a very high hardware overhead (e.g.
for the logic unit that selects the Store Buffer to scoop for the forwarded
data). Also, if a program consists of numerous shared stores or vice-versa
(unshared stores), this design can lead to under-utilization of the hardware
along with generating numerous stalls in the corresponding Store Buffer.
Since in our design the processor uses the same Store Buffer, the hardware
is always utilized effectively and more efficiently. Our design also has con-
siderably less overhead in terms of added hardware, yielding DCSB ready
to be easily integrated into current processors’ design, a key feature of our
solution.

Moreover, the compiler support employed by Singh et al. [20] forces all
accesses to the same memory address to be classified as having the same type
and to be assigned the same Store Buffer to solve the notorious store-store
reordering and store-to-load forwarding problems. Due to this limitation,
this approach only enables reordering of 75% of the stores, on average. For
example, they reorder 50% of the stores in Barnes, while DCSB enables the
reordering of more than 90% of the stores, thanks to exploiting the DRF
semantics of the code.

Ros and Kaxiras [21] propose coalescing stores in the SB and avoid break-
ing the store order by performing stores in atomic groups. In contrast to our
approach where DRF stores can perform completely out of order, stores in
an atomic group perform following a globally defined order. On the other
hand, coalescing stores can be applied to DCSB (either for DRF stores or
NDRF stores). This can further improve our performance as coalescing may
reduce the occupancy of the SB. The counterpart of this approach is that it

50 SINGH SAWAN

Politecnico Di Torino

requires a separate store queue and Store Buffer to fully get the benefits of
coalescing.

Another interesting research proposal was done by Alves et al. [12], for
using the Store Buffer as a cache. This significantly increases the number of
loads forwarded from stores. In DCSB we archive the same without using any
extra hardware for this specific purpose. Alves et al. [12] predict in advance
the hits, thus reducing the number of L1 accesses resulting in less energy
consumption. In our design, we increase the number of loads forwarded
from stores significantly by storing the stores in the SB as long as possible
(until the Store Buffer is full or until an atomic operation is encountered.
One simple extension to predict the hit can be used to reduce the power
consumption along with an increase in speedup.

9 Conclusion

Relaxed Stores can go out of order thus reducing the stall drastically.
Before issuing the store we start from the head and move to tail while trying
to perform store. If we are unable to issue to store due to some reason then
we check whether it is NDRF or DRF if its NDRF we try to issue the same
store again and again until its issued. While in the case of DRF we try to
issue the next store to the head and so on. If our store buffer has xDRF fences
we stop issuing store and thus we wait for all the stores to performed to start
issuing them again. This helps us to maintain consistency as if there are
DRF stores after the xDRF fence and somehow they are performed earlier.
This will break the consistency as there are stores that should be performed
earlier because no store should be reordered outside the fence. In the case
of miss we unlock, remove all the NDRF stores except the one at the head.
All the unlocked stores will be issued again. While once the DRF is issued
they are marked performed and are ready to dequeue from the store buffer
as even if they give a miss they can be reordered so they will try again and
will perform in the end. While at every xDRF fence we wait until all the
stores including the NDRF and DRF are done performing the cache thus this
keeps these sequential properties. This concludes our overall work and in the
result, we can see the improvement. It is a win-win situation as the overall
hardware overhead will be just one bit per entry in the store buffer to keep
the DRF information which will be in few bits.

Overall improvements are, 10.24% more performance(11.72% using xDRF

51 SINGH SAWAN

Politecnico Di Torino

compiler), 8.95% fewer stalls, loads forwarded from stores increased from
5.71% to 14.83% and the most important, achieving a speedup of 8.4% with
very small store buffer of size 16 entries.

52 SINGH SAWAN

Politecnico Di Torino

References

[1] J. Bornholt, “Memory Consistency Models: A Tutorial,”
https://www.cs.utexas.edu/ bornholt/post/memory-models.html,
Feb. 2016.

[2] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen, “x86-
TSO: A rigorous and usable programmer’s model for x86 multiproces-
sors,” Communications of the ACM, vol. 53, no. 7, pp. 89–97, Jul. 2010.

[3] A. Jimborean, J. Waern, P. Ekemark, S. Kaxiras, and A. Ros, “Auto-
matic detection of extended data-race-free regions,” in 15th Int’l Symp.
on Code Generation and Optimization (CGO), Feb. 2017, pp. 14–26.

[4] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the
level of abstraction for scalable and accurate parallel multi-core simula-
tions,” in Conf. on Supercomputing (SC), Nov. 2011, pp. 52:1–52:12.

[5] C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros, “Splash-3: A prop-
erly synchronized benchmark suite for contemporary research,” in Int’l
Symp. on Performance Analysis of Systems and Software (ISPASS),
Apr. 2016, pp. 101–111.

[6] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: Characterization and methodological consider-
ations,” in 22nd Int’l Symp. on Computer Architecture (ISCA), Jun.
1995, pp. 24–36.

[7] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized pro-
gram analysis tools with dynamic instrumentation,” in 2005 Conf. on
Programming Language Design and Implementation (PLDI), Jun. 2005,
pp. 190–200.

[8] S. V. Adve and M. D. Hill, “Weak ordering – a new definition,” in 17th
Int’l Symp. on Computer Architecture (ISCA), Jun. 1990, pp. 2–14.

[9] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood, “Multifacet’s
general execution-driven multiprocessor simulator (GEMS) toolset,”

53 SINGH SAWAN

Politecnico Di Torino

ACM SIGARCH Computer Architecture News, vol. 33, no. 4, pp. 92–99,
Sep. 2005.

[10] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “GARNET: A de-
tailed on-chip network model inside a full-system simulator,” in Int’l
Symp. on Performance Analysis of Systems and Software (ISPASS),
Apr. 2009, pp. 33–42.

[11] A. Ros and S. Kaxiras, “The superfluous load queue,” in 51st
IEEE/ACM Int’l Symp. on Microarchitecture (MICRO), Oct. 2018.

[12] R. Alves, A. Ros, D. Black-Schaffer, and S. Kaxiras, “Filter caching for
free: The untapped potential of the store buffer,” in 46th Int’l Symp. on
Computer Architecture (ISCA), Jun. 2019, pp. 436–448.

[13] A. Jimborean, P. Ekemark, J. Waern, S. Kaxiras, and A. Ros, “Au-
tomatic detection of large extended data-race-free regions with con-
flict isolation,” IEEE Transactions on Parallel and Distributed Systems
(TPDS), vol. 29, no. 3, pp. 527–541, Mar. 2018.

[14] W. Ahn, S. Qi, M. Nicolaides, J. Torrellas, J.-W. Lee, X. Fang, S. Mid-
kiff, and D. Wong, “BulkCompiler,” in Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture - Micro-42.
ACM Press, 2009.

[15] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas, “Bulksc: Bulk en-
forcement of sequential consistency,” in 34th Int’l Symp. on Computer
Architecture (ISCA), Jun. 2007, pp. 278–289.

[16] K. Gharachorloo, A. Gupta, and J. Hennessy, “Two techniques to en-
hance the performance of memory consistency models,” in 20th Int’l
Conf. on Parallel Processing (ICPP), Aug. 1991, pp. 355–364.

[17] M. D. Hill, “Multiprocessors should support simple memory-consistency
models,” IEEE Computer, vol. 31, no. 8, pp. 28–34, Aug. 1998.

[18] T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos, “Mechanisms
for store-wait-free multiprocessors,” in 34th Int’l Symp. on Computer
Architecture (ISCA), Jun. 2007, pp. 266–277.

[19] “Intel Corporation,” http://www.intel.com, [Online; accessed Jan-2016].

54 SINGH SAWAN

Politecnico Di Torino

[20] A. Singh, S. Narayanasamy, D. Marino, T. Millstein, and M. Musuvathi,
“End-to-end sequential consistency,” in 39th Int’l Symp. on Computer
Architecture (ISCA), Jun. 2012, pp. 524–535.

[21] A. Ros and S. Kaxiras, “Non-speculative store coalescing in total store
order,” in 45th Int’l Symp. on Computer Architecture (ISCA), Jun. 2018,
pp. 221–234.

55 SINGH SAWAN

Politecnico Di Torino

A Configuration File

Ruby Configuration

protocol: MESI_CMP_directory_inclusive

compiled_at: 12:57:49, Nov 20 2019

RUBY_DEBUG: true

hostname: ng11

SIMULATION_COMMENT: s

SIMULATION_BENCHMARK: fft-p8

g_RANDOM_SEED: 1

g_DEADLOCK_THRESHOLD: 500000

RANDOMIZATION: false

g_SYNTHETIC_DRIVER: false

g_DETERMINISTIC_DRIVER: false

g_FILTERING_ENABLED: false

g_DISTRIBUTED_PERSISTENT_ENABLED: true

g_DYNAMIC_TIMEOUT_ENABLED: true

g_RETRY_THRESHOLD: 1

g_FIXED_TIMEOUT_LATENCY: 300

g_trace_warmup_length: 1000000

g_bash_bandwidth_adaptive_threshold: 0.75

g_tester_length: 0

g_synthetic_locks: 2048

g_deterministic_addrs: 1

g_SpecifiedGenerator: DetermGETXGenerator

g_NUM_COMPLETIONS_BEFORE_PASS: 0

g_NUM_SMT_THREADS: 1

g_think_time: 5

g_hold_time: 5

g_wait_time: 5

PROTOCOL_DEBUG_TRACE: true

PROTOCOL_DEBUG_TRACE_MESSAGES: false

TRACE_TYPE: pthreads

DEBUG_FILTER_STRING: none

DEBUG_VERBOSITY_STRING: none

DEBUG_START_TIME: 0

DEBUG_OUTPUT_FILENAME: none

56 SINGH SAWAN

Politecnico Di Torino

TRANSACTION_TRACE_ENABLED: false

USER_MODE_DATA_ONLY: false

PROFILE_HOT_LINES: false

PROFILE_ALL_INSTRUCTIONS: false

PRINT_INSTRUCTION_TRACE: false

INSTRUCTIONS_SIMULATED: 0

VIRTUAL_L1CACHES: false

PROFILE_SYNONYMS: false

CLEAR_PROFILE_SYNONYMS: true

g_DEBUG_CYCLE: 0

PERFECT_MEMORY_SYSTEM: false

PERFECT_MEMORY_SYSTEM_LATENCY: 0

DATA_BLOCK: false

REMOVE_SINGLE_CYCLE_DCACHE_FAST_PATH: true

PROCESSOR_MODEL: OoO

PROCESSOR_FETCH_WIDTH: 5

PROCESSOR_DECODER: 1_1_1_1_4|6

PROCESSOR_COMMIT_WIDTH: 10

PROCESSOR_ALLOCATION_QUEUE_SIZE: 97

PROCESSOR_ROB_SIZE: 224

PROCESSOR_LOAD_QUEUE_SIZE: 72

PROCESSOR_STORE_QUEUE_SIZE: 0

PROCESSOR_STORE_BUFFER_SIZE: 56

PROCESSOR_EXECUTION_PORTS: 8

PROCESSOR_ALU_LATENCY: 1

PROCESSOR_ALU_RECIPROCAL_THROUGHPUT: 0.25

PROCESSOR_AGU_LATENCY: 1

PROCESSOR_AGU_RECIPROCAL_THROUGHPUT: 0.25

PROCESSOR_FP_ADDSUB_LATENCY: 4

PROCESSOR_FP_ADDSUB_RECIPROCAL_THROUGHPUT: 0.5

PROCESSOR_FP_MUL_LATENCY: 4

PROCESSOR_FP_MUL_RECIPROCAL_THROUGHPUT: 0.5

PROCESSOR_FP_DIV_LATENCY: 14

PROCESSOR_FP_DIV_RECIPROCAL_THROUGHPUT: 8

PROCESSOR_FP_SQRT_LATENCY: 16

PROCESSOR_FP_SQRT_RECIPROCAL_THROUGHPUT: 8

PROCESSOR_BRANCH_LATENCY: 1

PROCESSOR_BRANCH_RECIPROCAL_THROUGHPUT: 0.5

57 SINGH SAWAN

Politecnico Di Torino

PROCESSOR_STORE_BUFFER_AS_CACHE: true

PROCESSOR_CONSISTENCY: TSO

PROCESSOR_IMPLEMENTS_UOP_FUSION: true

PROCESSOR_IMPLEMENTS_MACRO_FUSION: true

PROCESSOR_BRANCH_PREDICTOR: LTAGE

PROCESSOR_MEMORY_DISAMBIGUATION: SpeculateAndSnoop

PROCESSOR_MEMORY_DEPENDENCE_PREDICTOR: TaglessCHT

PROCESSOR_MEM_DEP_PRED_BITS_PC: 12

PROCESSOR_MEM_DEP_PRED_BITS_COUNTER: 2

PROCESSOR_MEM_DEP_PRED_MAXCYCLES: 100000

PROCESSOR_MEM_DEP_PRED_BITS_LFST: 9

PROCESSOR_ONLY_REEXEC_DSPEC_ON_ALIAS: true

PROCESSOR_STORE_ATOMICITY_SPECULATIVE: No

PROCESSOR_EAGER_SQUASH: true

PROCESSOR_EAGER_REEXEC: true

PROCESSOR_REEXEC_DO_SQUASH: false

PROCESSOR_STORE_BUFFER_TYPE: Hybrid

PROCESSOR_STORE_BUFFER_ISSUE_POLICY: ASAP_head

PROCESSOR_STORE_BUFFER_ISSUE_TIMEOUT: 2000

PROCESSOR_STORE_BUFFER_ISSUE_OCCUPANCY: 16

PROCESSOR_STORE_BUFFER_KEEP_L0_ENTRIES: false

PROCESSOR_STORE_BUFFER_IS_COLLAPSIBLE: false

PROCESSOR_STORE_PREFETCH: OnCommit

PROCESSOR_STORE_PREFETCH_FILTER_CSPEC: false

PROCESSOR_UNIFIED_STORE_QUEUE_AND_BUFFER: true

PROCESSOR_COMMIT_TYPE: IO

PROCESSOR_OOO_COMMIT_RESPECT_UNKNONW_STORE_ADDRESS: true

PROCESSOR_ALLOW_REEXEC_IN_NONREEXEC_PROTOCOLS: false

PROCESSOR_LOCKDOWN_TABLE_ENTRIES: 16

CSB_CACHE_NUM_SETS_BITS: 6

CSB_CACHE_ASSOC: 8

CSB_NUM_CACHES: 2

g_NUM_PROCESSORS: 8

g_NUM_L2_BANKS: 8

g_NUM_MEMORIES: 8

g_NUM_L1S_BANKS: 8

g_PROCS_PER_CHIP: 8

g_NODES_PER_FPGA: 1

58 SINGH SAWAN

Politecnico Di Torino

L0_CACHE_ENABLE: true

L0_CACHE_ASSOC: 8

L0_CACHE_NUM_SETS_BITS: 6

L0_CACHE_ACCESS_LATENCY: 4

L0_CACHE_PREFETCHER: Stride

L0_CACHE_PREFETCH_THROTTLING: 3

L0_CACHE_PREFETCH_QUEUE_SIZE: 8

L1_CACHE_ASSOC: 8

L1_CACHE_NUM_SETS_BITS: 9

L2_CACHE_ASSOC: 16

L2_CACHE_NUM_SETS_BITS: 10

L3_CACHE_ASSOC: 4

L3_CACHE_NUM_SETS_BITS: 16

PF_CACHE_ASSOC: 4

PF_CACHE_NUM_SETS_BITS: 16

EPF_CACHE_ASSOC: 16

EPF_CACHE_NUM_SETS_BITS: 16

DIR_CACHE_ASSOC: 16

DIR_CACHE_NUM_SETS_BITS: 9

DIR_CACHE_STORE_NULLS: false

CBDIR_CACHE_ASSOC: 16

CBDIR_CACHE_NUM_SETS_BITS: 2

L1_TLB_ASSOC: 32

L1_TLB_NUM_SETS_BITS: 8

L1_SDS_ASSOC: 4

L1_SDS_NUM_SETS_BITS: 8

L1_SDS_STORE_NULLS: false

L1_SHARED_CACHE_ASSOC: 4

L1_SHARED_CACHE_NUM_SETS_BITS: 5

L2_INCLUSIVE: true

g_MEMORY_SIZE_BYTES: 4294967296

g_DATA_BLOCK_BYTES: 64

g_PAGE_SIZE_BYTES: 4096

g_REPLACEMENT_POLICY: LRU

L1D_INDEXING_POLICY: LSB

L1I_INDEXING_POLICY: LSB

L2_INDEXING_POLICY: LSB

g_L2BANKS_MAPPING_GRANULARITY: 0

59 SINGH SAWAN

Politecnico Di Torino

g_MEMORY_MAPPING_GRANULARITY: 0

g_SHARING_CODE: CoarseVector

g_SHARING_CODE_VALUE: 1

g_USE_SPECIAL_NODE_LAYOUT: false

TLB_CACHE_INCLUSION: true

DEACTIVATED_PAGES: None

TEMPORALITY_TLB_SUPPORT: None

DECAY_TIMEOUT: 10000

FAST_TLB_MISS_RESOLUTION: false

FENCING_STRATEGY: 28

g_THREAD_MIGRATION: true

g_THREAD_MIGRATION_TIMEOUT: 100

g_LOCK_TYPE: TATAS

g_BARRIER_TYPE: SRNoLock

g_COND_TYPE: Spin

g_EXPHW_TYPE: Spin

g_CALLBACK_MECHANISM: None

g_EXP_BACKOFF_LIMIT: 0

g_SLE_POLICY: All

DIRECTORY_CACHE_LATENCY: 2

NULL_LATENCY: 1

ISSUE_LATENCY: 2

CACHE_RESPONSE_LATENCY: 12

L2_RESPONSE_LATENCY: 36

L2_TAG_LATENCY: 6

L1_RESPONSE_LATENCY: 12

MEMORY_RESPONSE_LATENCY_MINUS_2: 98

DIRECTORY_LATENCY: 2

FPGA_LATENCY: 20

NETWORK_LINK_LATENCY: 1

COPY_HEAD_LATENCY: 4

ON_CHIP_LINK_LATENCY: 1

RECYCLE_LATENCY: 1

L2_RECYCLE_LATENCY: 5

TIMER_LATENCY: 10000

TBE_RESPONSE_LATENCY: 1

L1_SHARED_REQUEST_LATENCY: 4

L1_SHARED_RESPONSE_LATENCY: 4

60 SINGH SAWAN

Politecnico Di Torino

L2_DIRECTORY_REQUEST_LATENCY: 2

L2_DIRECTORY_RESPONSE_LATENCY: 2

TLB_MISS_LATENCY: 1000

POST_TLB_HIT_LATENCY: 0

SYNONYMS_CHECKING_LATENCY: 0

REVERSE_TRANSLATION_LATENCY: 0

PROFILE_EXCEPTIONS: false

PROFILE_XACT: true

PROFILE_NONXACT: false

XACT_DEBUG: true

XACT_DEBUG_LEVEL: 1

XACT_MEMORY: false

XACT_ENABLE_TOURMALINE: false

XACT_NUM_CURRENT: 0

XACT_LAST_UPDATE: 0

XACT_ISOLATION_CHECK: true

PERFECT_FILTER: true

READ_WRITE_FILTER: Perfect_

PERFECT_VIRTUAL_FILTER: true

VIRTUAL_READ_WRITE_FILTER: Perfect_

PERFECT_SUMMARY_FILTER: true

SUMMARY_READ_WRITE_FILTER: Perfect_

XACT_EAGER_CD: true

XACT_LAZY_VM: false

XACT_CONFLICT_RES: BASE

XACT_VISUALIZER: false

XACT_COMMIT_TOKEN_LATENCY: 0

XACT_NO_BACKOFF: false

XACT_LOG_BUFFER_SIZE: 0

XACT_STORE_PREDICTOR_HISTORY: 256

XACT_STORE_PREDICTOR_ENTRIES: 256

XACT_STORE_PREDICTOR_THRESHOLD: 4

XACT_FIRST_ACCESS_COST: 0

XACT_FIRST_PAGE_ACCESS_COST: 0

ENABLE_MAGIC_WAITING: false

ENABLE_WATCHPOINT: false

XACT_ENABLE_VIRTUALIZATION_LOGTM_SE: false

ATMTP_ENABLED: false

61 SINGH SAWAN

Politecnico Di Torino

ATMTP_ABORT_ON_NON_XACT_INST: false

ATMTP_ALLOW_SAVE_RESTORE_IN_XACT: false

ATMTP_XACT_MAX_STORES: 32

ATMTP_DEBUG_LEVEL: 0

L1_REQUEST_LATENCY: 12

L2_REQUEST_LATENCY: 36

CACHE_READ_PORTS: 2

CACHE_WRITE_PORTS: 1

L1CACHE_HIT_LATENCY: 12

L1CACHE_HIT2_LATENCY: 12

L1CACHE_MISS_LATENCY: 12

L1CACHE_MISS2_LATENCY: 12

L1_SHARED_CACHE_HIT_LATENCY: 12

L1_SHARED_CACHE_HIT2_LATENCY: 12

L1_SHARED_CACHE_MISS_LATENCY: 12

L1_SHARED_CACHE_MISS2_LATENCY: 12

L2CACHE_HIT_LATENCY: 36

L2CACHE_HIT2_LATENCY: 36

L2CACHE_MISS_LATENCY: 36

L2CACHE_MISS2_LATENCY: 36

L1CACHE_TRANSITIONS_PER_RUBY_CYCLE: 10000

L2CACHE_TRANSITIONS_PER_RUBY_CYCLE: 10000

DIRECTORY_TRANSITIONS_PER_RUBY_CYCLE: 10000

FPGA_TRANSITIONS_PER_RUBY_CYCLE: 10000

g_SEQUENCER_OUTSTANDING_REQUESTS: 64

NUMBER_OF_L1_TBES: 128

NUMBER_OF_L2_TBES: 128

NUMBER_OF_WRITTEN_BITS_ENTRIES: 16

BLOOM_FILTER_TYPE: Perfect_6

FINITE_BUFFERING: false

FINITE_BUFFER_SIZE: 3

PROCESSOR_BUFFER_SIZE: 32

PROTOCOL_BUFFER_SIZE: 32

g_NETWORK_MODEL: Garnet-fixed

g_NETWORK_TOPOLOGY: FILE_SPECIFIED

g_SICOSYS_CONFIG: M84-WH-H1-VC-2C

g_SICOSYS_UNICAST_NETWORK: true

g_SICOSYS_OFF_CHIP_LATENCY: 40

62 SINGH SAWAN

Politecnico Di Torino

g_SICOSYS_RUBY_NETWORK_MULTIPLIER: 1

g_CACHE_DESIGN: MESH_2D_3DMEM_1cycle

g_NETWORK_FILES_DIRECTORY: network/simple/Network_Files

g_endpoint_bandwidth: 1000

g_adaptive_routing: true

NUMBER_OF_VIRTUAL_NETWORKS: 5

FAN_OUT_DEGREE: 4

g_PRINT_TOPOLOGY: false

XACT_LENGTH: 2000

XACT_SIZE: 1000

ABORT_RETRY_TIME: 400

g_NETWORK_TESTING: false

g_FLIT_SIZE: 16

g_NUM_PIPE_STAGES: 4

g_VCS_PER_CLASS: 4

g_BUFFER_SIZE: 8

NETWORK_LINK_LATENCY_MULTIPLIER_IN: 1

NETWORK_LINK_LATENCY_MULTIPLIER_OUT: 1

NETWORK_LINK_LATENCY_MULTIPLIER_INTERNAL: 1

MEM_BUS_CYCLE_MULTIPLIER: 10

BANKS_PER_RANK: 8

RANKS_PER_DIMM: 2

DIMMS_PER_CHANNEL: 2

BANK_BIT_0: 8

RANK_BIT_0: 11

DIMM_BIT_0: 12

BANK_QUEUE_SIZE: 12

BANK_BUSY_TIME: 11

RANK_RANK_DELAY: 1

READ_WRITE_DELAY: 2

BASIC_BUS_BUSY_TIME: 2

MEM_CTL_LATENCY: 12

REFRESH_PERIOD: 1560

TFAW: 0

MEM_RANDOM_ARBITRATE: 0

MEM_FIXED_DELAY: 0

NUMBER_OF_TAGS: 32

NUMBER_OF_FULL_TAGS: 32

63 SINGH SAWAN

Politecnico Di Torino

EXTENDED_TAG_TABLE_ENTRIES: 64

g_USE_TIMEOUT: 50

g_CHECKRACE_TIMEOUT: 50

MANDATORY_DEQUEUES_PER_CYCLE: 999999999

L1_DEQUEUES_PER_CYCLE: 999999999

L2_DEQUEUES_PER_CYCLE: 999999999

DIRECTORY_DEQUEUES_PER_CYCLE: 999999999

MANDATORY_DEQUEUE_LATENCY: 0

L1_DEQUEUE_LATENCY: 0

L2_DEQUEUE_LATENCY: 0

DIRECTORY_DEQUEUE_LATENCY: 0

LINKED_DIR_ALWAYS_PREPEND: true

LINKED_DIR_SEND_DATA_FROM_SHARER: false

LINKED_DIR_ALLOW_SELF_REFERENCES: false

LINKED_DIR_TRY_DIRECT_PUTS: false

LINKED_DIR_OPORTUNISTIC_PUTS: true

LINKED_DIR_CONCURRENT_GETS_PUTS: true

SCD_REPLACEMENT_LEVELS: 2

SCD_LATENCY_PER_EXTRA_ACCESS: 2

SCD_REPLACEMENT_POLICY: LRU

WAYCOMB_MAX_COMBINED_WAYS: 0

WAYCOMB_REPLACEMENT_POLICY: CompactMRU

WAYCOMB_BROADCAST_FORCES_SILENT_S_REPLACEMENTS: false

SHARING_CODE_POINTERS_TO_COARSEVECTOR: true

SILENT_S_REPLACEMENTS: true

DIRECTORY_SNAPSHOT_PERIOD: 0

g_NUM_CHIPS: 1

g_NUM_CHIP_BITS: 0

g_MEMORY_SIZE_BITS: 32

g_DATA_BLOCK_BITS: 6

g_PAGE_SIZE_BITS: 12

g_NUM_PROCESSORS_BITS: 3

g_PROCS_PER_CHIP_BITS: 3

g_NUM_L2_BANKS_BITS: 3

g_NUM_L2_BANKS_PER_CHIP_BITS: 3

g_NUM_L2_BANKS_PER_CHIP: 8

g_NUM_L1S_BANKS_BITS: 3

g_NUM_L1S_BANKS_PER_CHIP_BITS: 3

64 SINGH SAWAN

Politecnico Di Torino

g_NUM_L1S_BANKS_PER_CHIP: 8

g_NUM_MEMORIES_BITS: 3

g_NUM_MEMORIES_PER_CHIP: 8

g_MEMORY_MODULE_BITS: 23

g_MEMORY_MODULE_BLOCKS: 8388608

g_NUM_FPGAS: 8

g_NUM_FPGAS_PER_CHIP: 8

g_BOARD_BITS_OFFSET: 29

g_NODE_BITS_OFFSET: 29

g_L2_BANK_MAPPING_TAG_INIT_BIT: 6

g_NUMBER_OF_BITS_LEX_ORDER: 9

65 SINGH SAWAN

