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I INTRODUCTION 

High efficiency power conversion research aims either to mitigate PWM hard switching and 

magnetic leakage losses or to discover new topologies inherently free of these issues. Following the first 

direction resonant switches have been obtained in [1]. However, being applied to the well-known PWM 

converters, they change and complicate the input-output conversion ratio M =
VO

VG
. In [2,4] passive and 

active fixing cells do not change the PWM’s M but the complexity of the circuit increases. In general, this 

approach can improve efficiency but the number of components increases so that, if not carefully designed, 

the adjusted circuit results in larger overall losses. Non-PWM circuits are more attractive for the highlighted 

goal. 

The family of resonant converters [5] naturally achieves ZVS on its switches but conversion ratio 

and voltage regulation capability via frequency modulation strongly depend on the load; moreover, high 

rms currents circulate in the circuit increasing conduction loss. The Ćuk-Buck converter [6] comes instead 

from the switched-capacitor family; by means of added resonant inductors it solves the main problems that 

afflict this category i.e. fixed conversion ratio and high current spikes. Ćuk’s circuit allows very high 

efficiency by avoiding inductive energy storage (in the form of DC current) and by exploiting the resonant 

current waveform to achieve ZCS during three of the four possible active switching moments. The resonant 

hybridization of the otherwise 2to1 switched-capacitor circuit causes a not so important load dependency 

in M but benefits of fast output current transients at load changes: this is an important feature when 

supporting a digital circuit. Voltage regulation is achieved by fixing the off time of the input switch and 

varying the on time i.e. by frequency control. The main limitation is the duty ratio being constrained by 

design with a not so high step-down at minimum D (which is here considered being D = 0.15). 

This introduces the second goal of this research, high step-down, to be achieved while maintaining 

high efficiency. Classic solutions for high step-down include cascaded PWM converters [7] and quadratic 

PWM converters [8]. Cascading stages results in an overall efficiency η which decreases fast with the 

number of stages; with m stages 𝜂 = 𝜂1 ∙ 𝜂2 ∙ … ∙ 𝜂𝑚. Moreover, even if the energy storing magnetics can 

share the same core, the increasing number of components affects the reliability of the converter. On the 

other hand, quadratic PWM converters, which are a clever extension of cascaded PWM stages, reach high 

step-down with moderate duty cycles (M = D2 for the Quadratic Buck) but use only one active switch. Still 

the efficiency is not very high due the hard switching inherited by the PWM family.  

A new variable may be introduced along with D to enhance the step-down ratio. In [9] m ≜
N1

N2
 is 

adopted, being the winding ratio of a tapped-inductor used in place of the classic Buck inductor. For the 



 
 

same D the conversion ratio M(D, m) highly decreases but the non-perfect coupling between primary and 

secondary causes large voltage spikes at one end of the switch compromising its life besides the efficiency 

of the converter. In order to protect the switch a snubber is needed but the energy stored by the leakage 

inductance is lost unless an energy recovering cell is designed as in the approach of [2-4]. 

The leakage problem of the tapped-inductor is solved by Ćuk in [10] with the Ćuk-Buck 2 being a 

mix of his previous Ćuk-Buck converter [6] and, indeed, the tapped-inductor Buck converter: energy is 

now stored in the circuit both in the capacitive and inductive form. The focus is on the well management 

of the coupled inductors’ leakages which become functional part of the energy transfer mechanism. 

Moreover, only one diode is needed and both the input and output switches may achieve ZVS resulting in 

an optimized load independent fast transient high step-down circuit. This converter can easily perform the 

48V to <12V direct conversion needed by the most recent server racks such as those of the Open Computer 

Project. 

The present work starts from highlighting the less precise M control of the Ćuk-Buck 2 and presents 

a solution which brings back the fixed off time of the Ćuk-Buck, resulting in a slightly more complex circuit 

which takes the best of the two patents [6], [10]. 

 

 

 

 



 
 

II DERIVATION OF THE PROPOSED CIRCUIT 

The Ćuk-Buck Converter 

 

 

 

 

 

 

Fig. 1 pictures Ćuk's 2012 patent [6] and Fig. 2, 3 show its on, off circuits. Unless explicitly noted, 

in all following analyses the output node is considered at fixed voltage Vo = VO (Co big enough). 

 

 

 

During the on-phase (𝜙 = 1, S1 on, S2 off) Cr charges through the Cr-Lr1 resonance started by 

voltage ripple Vrp = VG− (Vcr + VO) > 0V since Cr was (little) discharged by R in the previous phase. In 

Figure 1 

Figure 2 Figure 3 



 
 

order to get voltage regulation, the resonance stops at Ton < π√Lr1 Cr = Tres

2
= Tonmax; not doing so, with 

Ton ≥ π√Lr1 Cr, would fix M = 0.5 since D1 would interrupt negative current in any case for t ≥ π√Lr1 Cr  

and thus the input current in Ton then delivered in Toff would be always the same independently on D 

with IO = 2IG. 

Toff (𝜙 = 0, S1 off, S2 on) is instead fixed at Toff = π√Lr2 Cr: during this time interval the 

resonant capacitor Cr releases the charged stored during Ton and Lr1 linearly discharge through D2, D1 

until negative current is blocked by D1 which turns off before Toff ends1. As shown in Fig. 4, at t = DT, 

since Lr1 current can’t flow through Lr2, iCr = i drops to 0A, becomes negative through Lr2-Cr resonance 

and it’s finally blocked at 0A by D2 while iLr1 discharges linearly from iLr1(DT) = i(DT−) to 0A.  

 

 

 

 

 

 

 

 

 

It follows that M =
IG

IO
  is controlled by varying Ton = DT with fixed Toff i.e. by frequency control 

of the switches S1, S2. It results (see [6]) M ≈
D

2D+D2
  with D2T being the duration of the linear discharge of 

Lr2 in Toff. The expression of D2 is not straightforward to get with D2 = D2(D, Lr1, Lr2, Cr, T, 𝐑): M is not 

load independent. 

In [6] the converter is designed with Dmax = 0.67: Lr1-Cr resonance lasts twice that of Lr2-Cr 

(symmetrical resonances are obtained with Dmax = 0.5). The experimental M of a 750W 100V to 48V Ćuk-

Buck converter is shown in Fig. 5: 

                                                             
1 This is why diode D1 in Fig. 3 is pictured black: it means that it is both biased and un biased during Toff. 

Figure 4 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is apparent that the step-down of [6] is not much greater than that of a Buck converter. Still the 

importance of this converter lays in its small dimensions, because of the purely resonant inductors, and in 

its very high efficiency (>99% for M = 0.5, VO = 50V, PO ≈ 300W). 

 

Figure 5 



 
 

Towards the Ćuk-Buck 2 converter 

In order to achieve higher step-down Lr1 can be transformed into an energy storing tapped-

inductor; since it maintains a DC current its series diode is not needed anymore (Fig. 6); 

 

 

Knowing that during Toff  vLr2̅̅ ̅̅ ̅̅ = VLr2 = 0V it is: 

 𝑉𝐶𝑟 = 𝑉𝑂 (1 +
𝑁1

𝑁2
) = 𝑉𝑂 (1 +𝑚) (1) 

Flux balance on the primary referred magnetizing inductance Lm and (1) bring 

 (𝑉𝐺 − 𝑉𝐶𝑟 − 𝑉𝑂) 
𝑁1

𝑁1+𝑁2
 𝐷 =

𝑁1

𝑁2
𝑉𝑂 (1 − 𝐷)  

 (𝑉𝐺 − 𝑉𝑂 (1 +𝑚)− 𝑉𝑂) 
𝑁1

𝑁
 𝐷 = 𝑚 𝑉𝑜 (1 − 𝐷)  

from which the conversion ratio M is obtained 

 𝑀 =
𝑉𝑂

𝑉𝐺
=

𝐷 𝑁2

𝑁2 (1+𝐷)+𝑁1
 (2) 

Even if very high step-down can be achieved with reasonable duty ratio and winding ratio (M = 0.021 ≈

1

50
  with D = 0.2 and m = 8) the circuit doesn’t manage at all the leakage inductances of the coupled 

inductors. 

Figure 6 



 
 

During Ton the windings add together resulting in the inductor L = Lm (N1+N2)
N12

2
+ Llk where Llk 

is the series of primary and secondary leakages of the coupled inductors model: both L and Llk are being 

charged at i. At t = DT the inductors’ only available discharge path is through S2 (Fig. 7) thus the resonant 

inductor Lr2 experiences a high di/dt causing a voltage spike across S2.  

 

 

 

 

 

 

The Ćuk-Buck 2  

The problem wouldn’t occur if at t = DT Lr2 had the same current of L and Llk. This is obtained 

by moving Lr2 in series with Cr resulting in [10] as shown in Fig. 8a. 

 

 

Figure 7 

Figure 8a 



 
 

Fig. 8b shows the ideal coupled inductors model which eases the understanding of the next lines. 

The shape of current i = iLr is shown in Fig. 9. i(0) = i(T) = 0A  or equivalently Lr ends its resonance at 

t = 𝑇 when its current tries to become positive (negative w.r.t. D1). This wanted behavior is ensured for if 

D1 is no more biased by iLm and thus blocks positive iLr. In general, however,  iLm(T) > 0A still biases 

D1 and iLr can resonate negatively through it unless the period is stopped exactly at the zero crossing of 

the resonance. If this does not happen, iLr becomes positive during Toff and at the beginning of the next 

period (t > T) Lr continues charging (but with Vg) and Lm discharging through D1 until, at t = T + Γ, D1 

goes off: 

 𝑖𝐷1 = 𝑖𝑠𝑒𝑐 − 𝑖𝐿𝑟 = 𝑖𝑠𝑒𝑐 − (𝑖𝐿𝑚 − 
𝑖𝑠𝑒𝑐

𝑚
) = 0𝐴 → 𝑖𝐿𝑚 = 𝑖𝑠𝑒𝑐 (1 +

1

𝑚
) (3) 

Figure 8b 



 
 

 

 

 

 

 

 

 

 

 

 

It follows that Toff should end when i reaches 0A with Lm ideally operating in CRitical conduction 

Mode (CRM)2: if the resonant current becomes positive before the new period starts it causes useless 

internal circulation since that current is being drawn from the output capacitor increasing conduction losses. 

A precise Toff duration is then needed but unfortunately its duration is load dependent. In fact, looking at 

Fig. 9, it’s clear that Lr in series with L makes Cr charging during T2 after S1 is switched off so that Toff 

only approximately can be known and considered fixed at π√Lr Cr. At design time Toff may be decided 

considering the range of considered loads knowing that if R decreases imax and Toff − π√Lr Cr ≜ T2 

increases.  

Moreover, the presence of T2 also means that, differently from Lr2 in [6], stating vLr̅̅̅̅̅ = VLr = 0V 

during Toff is an approximation since positive/negative flux is accumulated by Lr during Ton/Toff: this in 

turn results in an approximation of VCr and then of M in (2).  

                                                             
2 If instead Lm operates in Continuous Conduction Mode (CCM), as Ton begins D1 is still biased by Lm until (3) is 
satisfied. No current would be drawn from the output in this case but the behavior of the circuit is not the one 
wanted for a short amount of time (D1 still on during Ton). There is also the possibility that during Toff iLm becomes 
negative through D1, biased by iLr, if Lm discharges faster than Lr and thus drawing current from the output. This 
should never happen in a correct design since the tapped-inductor would store little to none DC current becoming 
a resonant inductor itself. 

Figure 9 



 
 

The proposed circuit (Fig. 10) can achieve simultaneously the high step-down of [10] and fixed 

Toff of [6] resulting in a more flexible and non-parametric design. Since it mixes the two Ćuk’s patents it 

has been called Ćuk-Buck 1.5. 

 

 

 

 

 

 

Figure 10 



 
 

III ANALYSIS OF THE ĆUK-BUCK 1.5 

Leakages-free analysis 

First, a leakage-free analysis is performed. The on-circuit (S1 on, S2 off) is shown in Fig.11.  

 

 

 

 

 

 

 

 

As in [10] Cr is charged by i through a slow quasi linear L-Cr resonant circuit with L = Lm (N1+N2)2

N12
, 

Lm being the energy storing magnetizing inductance referred to the primary side N1.  

The off-circuit is shown in Fig. 12. For t > DT Cr discharges through resonance with Lr whose half 

period π√Lr Cr defines the duration of Toff: this is similar to [6] with Lr-Cr instead of Lr2-Cr. At the same 

time Lm discharges linearly to the output since VO lays across the primary winding: the same happens in 

[10] while in [6] this was performed by the resonant Lr1. As in [10] the resonance current which discharges 

Cr additionally sums to the output current through the secondary to primary contribution of the ideal 

transformer in the coupled inductors model. 

 

 

 

 

 

 

 

 

 

Figure 12 

Figure 11 



 
 

Overall the capacitor current shape in one period is reported in Fig. 13.  It is a mix of [6] and [10]; 

from the latter it takes the quasi linear on-phase while from the former the fixed Toff duration. 

 

 

 

 

 

 

 

 

Differently from the Ćuk-Buck 2, it makes no difference if Lm is operating in CCM or CRM since 

the resonance inductor Lr is not in series with L anymore: when S1 closes D1 is for sure unbiased. Notice 

that the on and off circuits are the same of those in schematic Fig. 6: it follows that the conversion ratio is 

the same: 

 𝑀 =
𝑉𝑂

𝑉𝐺
=

𝐷 𝑁1

𝑁1 (1+𝐷)+𝑁2
  

with N2 and N1 swapped w.r.t. (2) because of author’s preference (m ≜
N2

N1
). 

Leakages-inclusive analysis 

The addition of D3 on top of the presented topological changes is justified by the required 

management of magnetic leakages whose effect is investigated in the following lines. 

Figure 13 

Figure 14 



 
 

 

Fig. 14 shows the on circuit with magnetic leakages being considered at primary and secondary 

winding. As in [10] Llk = Llkp + Llks charges in series with Cr and L with the sole effect of slowing down 

the already long resonance. 

Fig. 15 explains the function of the added D3: as S1 goes off D3 ensures Llkp and Llks a discharge 

path through S2. As it happens in [10] the stored current in L + Llk can discharge Cds of S2 and bias its 

body diode to let the switch turn on at zero voltage. 

 

 

 

 

 

 

 

 

Notice that the circuit in Fig. 15 exists solely for few time instants after t = DT+; it is in fact a fast 

transient during which Cr is still little charged by i and D1 turns on due to the voltage vCr being vCr > VCr. 

It follows a second circuit which ends with the beginning of the Lr-Cr resonance: it is that of Fig. 

16 and lasts for the time necessary to discharge the leakage Llks so that i reaches 0A and becomes negative. 

 

 

 

 

 

 

 

 

 

 

It’s the T2 moment of Fig. 9 in [10] with the main difference that since Llks is small its resonant 

discharge with Cr is fast so that little charge coming from the output is stored in Cr which in practice can 

be considered fully charged at the end of Ton. In other words, T2 is here negligible because dependent 

on Cr-Llks and not on Cr-Lr resonance. This is visible in Fig. 17: after t > DT, i drops fast to 0A and it’s 

blocked by D3 so that Cr discharges through Lr and the half resonance can start (Toff). 

Figure 16 

Figure 15 



 
 

 

 

 

 

 

 

 

 

 

 

 

To sum things up, the two transitions represented by Fig. 15, 16 don’t occur if leakages are not 

present, differently by [10] in which they always occur because of Lr.   

Regarding Toff, even if Llks will slightly change the resonance half period from  π√Lr Cr to 

π√(Lr + Llks) Cr this duration is close to the ideal fixed Toff obtained when T2 = 0s: the actual off-circuit 

is that of Fig. 18.  

 

 

 

 

 

 

 

 

 

 

 

Since Llks can be considered small and so is T2, it is in good approximation 

 𝑀 =
𝑉𝑂

𝑉𝐺
=

𝐷 𝑁1

𝑁1 (1+𝐷)+𝑁2
 (4) 

Figure 18 

Figure 17 



 
 

 𝑇𝑜𝑓𝑓 ≈  𝜋√𝐿𝑟 𝐶𝑟 (5) 

Voltage-bidirectional D3-S3 

As final note, the switch 3 may be needed voltage-bidirectional to ensure the wanted behavior of 

the circuit; S3 may be added as shown in Fig. 19. 

In fact, during Toff the current iLr = −i is sinusoidal and vLr(t) = Lr diLr(t)
dt

 is cosinusoidal: after 

Toff

2
=

π√Lr Cr

2
 the voltage vLr becomes negative and could bias D3: the added S3 doesn’t allow any current 

flow if it is already off at that moment. Thus, S3 needs to be switched off at least T2 seconds after S1 and 

before vLr becomes negative: driving it with a delay w.r.t. S1 of  π√Lr Cr
2

  solves the problem.  

In the following analysis S3 will be included but still D3 alone is sufficient under certain conditions 

which will be derived in chapter V. 

 

 

 

 

 

Figure 19 



 
 

IV WAVEFORMS AND STRESSES 

The Ćuk-Buck 1.5 is shown again in Fig. 20 with the main currents oriented along the positive 

direction. 

In the following analysis the on-phase slow resonance is approximated as linear i.e. the voltage 

which drops on Lm is considered constant; moreover, unless specified otherwise, diodes are treated as ideal, 

their forward voltage being VD = 0V.  

Relevant expressions 

Starting from the output, the current io is sum of two contributions, a PWM-like current ioPWM 

coming from the inductance Lm during Ton and Toff (comprised in io’) and a resonant current iores which 

is eventually sum of the current generated during Toff by the Lr-Cr resonance (io’’) with its primary to 

secondary contribution (in io’); ioPWM, iores and io are shown in Fig. 21, 22 and 23 respectively. 

Figure 20 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Knowing that the area ∫ io dt
DT

0
= ∫ ioPWM dt

DT

0
 represents the charge Qg absorbed from the input and stored 

in Cr during Ton, it is: 

 𝐼𝐺 =
𝑄𝑔

𝑇
=

1

𝑇
∫ 𝑖𝑜𝑃𝑊𝑀  𝑑𝑡
𝐷𝑇

0
= 𝛼(𝑖𝐿𝑚𝑚𝑖𝑛 + 𝑖𝐿𝑚𝑚𝑎𝑥)

𝐷

2
= 𝛼 ∙ 𝐼𝐿𝑚 ∙ 𝐷 (6) 

with α ≜ N1

N1+N2
=

1

1+
N2 

N1

=
1

1+m
. 

Since the net charge accumulated by Cr over a period must be zero, Qg coincides with the charge released 

by Cr during Toff i.e. Qg = ∫ iLr dt
T

DT
. Knowing that Qoon = Qg, the total output charge is then 

Figure 21 Figure 22 

Figure 23 



 
 

 𝑄𝑜 = 𝑄𝑜𝑜𝑛 + 𝑄𝑜𝑜𝑓𝑓 = 𝑄𝑔 + ∫ (𝑖𝑜𝑟𝑒𝑠 + 𝑖𝑜𝑃𝑊𝑀) 𝑑𝑡
𝑇

𝐷𝑇
= 𝑄𝑔 + (1 +𝑚)𝑄𝑔 +𝑄𝐿𝑚𝑜𝑓𝑓 (7) 

The overall charge flowing in Lm is 

 𝑄𝐿𝑚 = 𝑄𝐿𝑚𝑜𝑛 + 𝑄𝐿𝑚𝑜𝑓𝑓 = (1 +𝑚)𝑄𝑔 +𝑄𝐿𝑚𝑜𝑓𝑓 (8) 

From (7), (8) the first important relationship is obtained: 

 𝑄𝑜 = 𝑄𝑔 +𝑄𝐿𝑚 

 𝐼𝑂 = 𝐼𝐺 + 𝐼𝐿𝑚 (9) 

(9) tells that by increasing the step-down ratio and thus increasing IO − IG, the amount of DC current which 

flows in Lm increases. 

The expressions of voltage ripple on Cr and current ripple in Lm are now evaluated. 

 ∆𝑣𝐶𝑟 =
1

𝐶𝑟
∫ 𝑖𝐶𝑟(𝑡)𝑑𝑡 =

1

𝐶𝑟
𝑄𝑔 =

𝛼 ∙ 𝐼𝐿𝑚 ∙ 𝐷 ∙ 𝑇

𝐶𝑟
 

𝐷𝑇

0
 (10) 

 ∆𝑖𝐿𝑚 =
1

𝐿𝑚
∫ 𝑣𝐿𝑚(𝑡)𝑑𝑡 = −

1

𝐿𝑚
∫ 𝑣𝐿𝑚(𝑡)𝑑𝑡 =

𝑉𝑂

𝐿𝑚
 (1 − 𝐷) 𝑇

𝑇

𝐷𝑇
   

𝐷𝑇

0
 (11) 

One last important quantity remains to be defined and that’s the maximum resonant current iLrpeak during 

Toff. Knowing that the resonant charge under iLr equals Qg, it is: 

 𝑄𝑔 = ∫ 𝑖𝐿𝑟(𝑡)𝑑𝑡 = 𝑖𝐿𝑟𝑝𝑒𝑎𝑘  𝑇𝑜𝑓𝑓  
2

𝜋

𝑇

𝐷𝑇
→ 𝐼𝐺 = 𝑖𝐿𝑟𝑝𝑒𝑎𝑘  (1 − 𝐷) 

2

𝜋
 

from which 

 𝑖𝐿𝑟𝑝𝑒𝑎𝑘 =
𝐼𝐺 ∙ 𝜋

2(1−𝐷)
= 𝐼𝐿𝑚 ∙

𝛼 𝜋

2
∙
𝐷

1−𝐷
 (12) 

Knowing (6), (9), (10), (11) and (12) along with the waveforms of Fig. 21, 22 and 23, the stresses of Cr, 

Cg, Co, Lr, Lm, D1, D2, D3, S1, S2, S3 can be analyzed. 

Stresses’ equations 

Cr: vCrmax, iCrrms 

 𝑣𝐶𝑟𝑚𝑎𝑥 = 𝑉𝐶𝑟 +
∆𝑣𝐶𝑟

2
= 𝑉𝑂(1 +𝑚) +

𝛼∙𝐼𝐿𝑚∙𝐷∙𝑇

2 𝐶𝑟
  (13) 



 
 

Fig. 24 shows iCr: 

 

 

 

 

 

 

 

  

  

 𝑖𝐶𝑟𝑟𝑚𝑠
2 =

1

𝑇
∫ (𝑖𝐶𝑟𝑜𝑛 + 𝑖𝐶𝑟𝑜𝑓𝑓)

2
𝑑𝑡 =

1

𝑇
∫ 𝑖𝐶𝑟𝑜𝑛

2 + 𝑖𝐶𝑟𝑜𝑓𝑓
2  𝑑𝑡 =

𝑇

0

𝑇

0

𝐷𝑇

𝑇
𝛼2

𝑖𝐿𝑚𝑚𝑎𝑥
2 +𝑖𝐿𝑚𝑚𝑖𝑛

2

2
+ 

 +
1

𝑇
∫ 𝑖𝐿𝑟𝑝𝑒𝑎𝑘

2 sin(2𝜋𝑓𝑟𝑒𝑠𝑡)
2 𝑑𝑡

𝑇

𝐷𝑇
= 𝐷𝛼2

𝑖𝐿𝑚𝑚𝑎𝑥
2 +𝑖𝐿𝑚𝑚𝑖𝑛

2

2
+
𝑖𝐿𝑟𝑝𝑒𝑎𝑘

2 (1−𝐷)

2
≈  

 ≈ 𝐷𝛼2𝐼𝐿𝑚2 +
𝑖𝐿𝑟𝑝𝑒𝑎𝑘

2 (1−𝐷)

2
= 𝐷𝛼2𝐼𝐿𝑚2(1 +

𝐷𝜋2

8(1−𝐷)
) 

 𝑖𝐶𝑟𝑟𝑚𝑠 ≈ 𝛼 ∙ 𝐼𝐿𝑚√𝐷(1 +
𝐷𝜋2

8(1−𝐷)
) (14) 

with fres =
1

2Toff
. 

Cg: vCgwork, iCgrms 

 𝑣𝐶𝑔𝑤𝑜𝑟𝑘 = 𝑉𝐺 (15) 

Fig. 25 shows iCg: 

Figure 24 



 
 

 

 

 

 

 

 

 

 

 

 

 

If Cg filters all the AC part of the current going through S1 while the input source provides its DC only, the 

“quadratic KCL” holds: 

 𝑖𝑆1𝑟𝑚𝑠
2 = 𝐼𝐺2 + (−𝑖𝐶𝑔𝑟𝑚𝑠)

2 

Knowing that iS1 coincides with ioPWMon
, it is: 

 𝑖𝑆1𝑟𝑚𝑠
2 = 𝐷𝛼2

𝑖𝐿𝑚𝑚𝑎𝑥
2 +𝑖𝐿𝑚𝑚𝑖𝑛

2

2
≈ 𝐷𝛼2𝐼𝐿𝑚2 

so that 

 𝑖𝐶𝑔𝑟𝑚𝑠 ≈ √𝐷𝛼2𝐼𝐿𝑚2 − 𝐼𝐺2 (16) 

Co: vCowork, iCorms 

 𝑣𝐶𝑜𝑤𝑜𝑟𝑘 = 𝑉𝑂 (17) 

If Co filters ioAC while the load current is purely IO = ioDC, at the output node it is: 

 𝑖𝑜𝑟𝑚𝑠
2 = 𝐼𝑂2 + 𝑖𝐶𝑜𝑟𝑚𝑠

2  

iorms needs to be derived. 

 𝑖𝑜𝑟𝑚𝑠
2 =

1

𝑇
∫ 𝑖𝑜2
𝑇

0
𝑑𝑡 =

1

𝑇
∫ 𝑖𝑜𝑃𝑊𝑀𝑜𝑛

2 𝑑𝑡 +
1

𝑇

𝐷𝑇

0 ∫ (𝑖𝑜𝑃𝑊𝑀𝑜𝑓𝑓 + 𝑖𝑜𝑟𝑒𝑠)
2

𝑑𝑡
𝑇

𝐷𝑇
  

Figure 25 



 
 

In order to simplify calculations, the flat top approximation of the ioPWM is performed since now both for 

its on and off part: 

 𝑖𝑜𝑟𝑚𝑠
2 ≈

1

𝑇
∫ 𝛼2 ∙ 𝐼𝐿𝑚2 𝑑𝑡 +

1

𝑇

𝐷𝑇

0 ∫ (𝐼𝐿𝑚 + (1 + 𝑚) ∙ 𝑖𝐿𝑟𝑝𝑒𝑎𝑘 sin(2𝜋𝑓𝑟𝑒𝑠𝑡))
2
𝑑𝑡

𝑇

𝐷𝑇
=  

 = 𝛼2 ∙ 𝐼𝐿𝑚2 ∙ 𝐷 +
8𝐼𝐿𝑚∙𝑖𝐿𝑟𝑝𝑒𝑎𝑘(1+𝑚)+2𝐼𝐿𝑚

2𝜋+𝑖𝐿𝑟𝑝𝑒𝑎𝑘
2 (1+𝑚)2𝜋

2𝜋
∙ (1 − 𝐷)  (18) 

Finally, 

 𝑖𝐶𝑜𝑟𝑚𝑠 = √𝑖𝑜𝑟𝑚𝑠
2 − 𝐼𝑂2 (19) 

Lr: iLrmax, iLrrms 

Since iLron = 0A and iLroff = −iCroff (see Fig. 24), it is: 

 𝑖𝐿𝑟𝑚𝑎𝑥 = 𝑖𝐿𝑟𝑝𝑒𝑎𝑘 (20) 

 𝑖𝐿𝑟𝑟𝑚𝑠 = √
1

𝑇
∫ 𝑖𝐿𝑟𝑝𝑒𝑎𝑘

2 sin(2𝜋𝑓𝑟𝑒𝑠𝑡)
2 𝑑𝑡

𝑇

𝐷𝑇
= 𝑖𝐿𝑟𝑝𝑒𝑎𝑘√

1−𝐷

2
 (21) 

Lm: iLmmax, iPrimrms, iSecrms 

 𝑖𝐿𝑚𝑚𝑎𝑥 = 𝐼𝐿𝑚 +
∆𝑖𝐿𝑚

2
 (22) 

 𝑖𝑃𝑟𝑖𝑚𝑟𝑚𝑠 ≈ 𝛼
2 ∙ 𝐼𝐿𝑚2 ∙ 𝐷 +

8𝐼𝐿𝑚∙𝑖𝐿𝑟𝑝𝑒𝑎𝑘 ∙𝑚+2𝐼𝐿𝑚
2𝜋+𝑖𝐿𝑟𝑝𝑒𝑎𝑘

2 ∙𝑚2𝜋

2𝜋
∙ (1 − 𝐷)  ≈ 𝑖𝑜𝑟𝑚𝑠  (23) 

 𝑖𝑆𝑒𝑐𝑟𝑚𝑠 = 𝑖𝐶𝑟𝑟𝑚𝑠 ≈ 𝛼 ∙ 𝐼𝐿𝑚√𝐷(1 +
𝐷𝜋2

8(1−𝐷)
) (24) 

D1: vD1rev, iD1max, ID1 

 𝑣𝐷1𝑟𝑒𝑣 = −
𝑁2 𝑉𝑂+𝑁1(𝑉𝐺−𝑣𝐶𝑟𝑚𝑖𝑛)

𝑁1+𝑁2
 (25) 

 𝑖𝐷1𝑚𝑎𝑥 = 𝐼𝐿𝑚 +𝑚 ∙ 𝑖𝐿𝑟𝑝𝑒𝑎𝑘 (26) 

 𝐼𝐷1 = (1 − 𝐷) ∙ 𝐼𝐿𝑚 + 𝑚 ∙ 𝐼𝐺 (27) 

D2: vD2rev, iD2max, ID2 



 
 

 𝑣𝐷2𝑟𝑒𝑣 = −
𝑁2 𝑉𝑂+𝑁1(𝑉𝐺−𝑣𝐶𝑟𝑚𝑖𝑛)

𝑁1+𝑁2
= 𝑣𝐷1𝑟𝑒𝑣  (28) 

 𝑖𝐷2𝑚𝑎𝑥 = 𝑖𝐿𝑟𝑝𝑒𝑎𝑘 (29) 

 𝐼𝐷2 = 𝐼𝐺 (30) 

D3: vD3rev, iD3max, ID3 

In order to understand vD3 and then vD3rev, vLr is required and it is shown in Fig. 26. As Toff starts, vD3 =

−vLr, D3 blocks negative voltage while the body diode of S3 is biased; this holds until vLr ≥ 0V and vD3 ≤

0V. Then, at t = DT + Toff

2
, vD3 can’t block positive voltage while S3 does. 

 

 

 

 

 

  

 

 

 

 

 

 

 𝑣𝐷3𝑟𝑒𝑣 = −𝑣𝐶𝑟𝑚𝑎𝑥 + (1 +𝑚) ∙ 𝑉𝑂 (31) 

 𝑖𝐷3𝑚𝑎𝑥 = 𝛼 ∙ 𝑖𝐿𝑚𝑚𝑎𝑥 = 𝛼 ∙ (𝐼𝐿𝑚 +
∆𝑖𝐿𝑚

2
) (32) 

 𝐼𝐷3 = 𝐼𝐺 (33) 

Figure 26 

Figure 27 



 
 

S1: vds1max, is1max, is1rms 

 𝑣𝑑𝑠1𝑚𝑎𝑥 = 𝑉𝐺 − 𝑉𝑂 (34) 

 𝑖𝑠1𝑚𝑎𝑥 = 𝛼 ∙ 𝑖𝐿𝑚𝑚𝑎𝑥 = 𝛼 ∙ (𝐼𝐿𝑚 +
∆𝑖𝐿𝑚

2
) = 𝑖𝐷3𝑚𝑎𝑥  (35) 

 𝑖𝑠1𝑟𝑚𝑠 = 𝛼√
𝑖𝐿𝑚𝑚𝑎𝑥

2 +𝑖𝐿𝑚𝑚𝑖𝑛
2

2
𝐷 ≈ 𝛼 ∙ 𝐼𝐿𝑚 ∙ √𝐷 (36) 

S2: vds2max, is2max, is2rms 

 𝑣𝑑𝑠2𝑚𝑎𝑥 = 𝑉𝐺 − 𝑉𝑂 (37) 

 𝑖𝑠2𝑚𝑎𝑥 = 𝑖𝐿𝑟𝑝𝑒𝑎𝑘 (38) 

 𝑖𝑠2𝑟𝑚𝑠 = 𝑖𝐿𝑟𝑝𝑒𝑎𝑘√
1−𝐷

2
= 𝑖𝐿𝑟𝑟𝑚𝑠  (39) 

S3: vds3max, is3max, is3rms 

In order to understand vds3 it is necessary to look at Fig. 26 and 27: when, at t ≥ DT + Toff

2
, D3 is biased by 

the Lr-Cr resonance, S3 blocks positive voltage across D3-S3 so that vds3 = −vLr ≥ 0V drops on S3. 

 𝑣𝑑𝑠3𝑚𝑎𝑥 = 𝑣𝐶𝑟𝑚𝑎𝑥 − (1 + 𝑚) ∙ 𝑉𝑂 = −𝑣𝐷3𝑟𝑒𝑣  (40) 

 𝑖𝑠3𝑚𝑎𝑥 = 𝛼 ∙ (𝐼𝐿𝑚 +
∆𝑖𝐿𝑚

2
) = 𝑖𝐷3𝑚𝑎𝑥  (41) 

 𝑖𝑠3𝑟𝑚𝑠 = 𝑖𝑠1𝑟𝑚𝑠 ≈ 𝛼 ∙ 𝐼𝐿𝑚 ∙ √𝐷 (42) 

 

 

 

 

 



 
 

V DESIGN 

Converter specifications 

The chosen specifications of the dc-dc conversion are reported in Tab. 1. 

 

 

 

The nominal step down is 

 𝑀 =
𝑉𝑂

𝑉𝐺
=

2

48
= 0.0417 [1] 

Components design 

Windings’ turns ratio m 

Fixing 

 𝑚 =
𝑁2

𝑁1
= 6 [2] 

in order to limit the unlinked flux of coupled inductors and solving (4) in D gives 

 𝐷 =
𝑀(1+𝑚)

1−𝑀
 (43) 

With [1], [2] 

 𝐷 = 0.3043 ≈ 0.3 [3] 

Switching frequency fsw 

Since an open-loop version of the circuit is being built with no frequency control of the switches, the 

switching period T is chosen once for all. In order to minimize magnetic losses, hard switching loss of the 

input switch and to keep possible radiated waves at low frequency (EMI concerns) it is decided 

 𝑓𝑠𝑤 = 𝑓 = 70𝑘𝐻𝑧 [4] 

 𝑇𝑠𝑤 = 𝑇 = 14.286µ𝑠 

VG 48 ± 2 V 
VO 2 V 
∆vo ≤ 5%VO = 100 mV 
IO 1 to 4 A 

Table 1 



 
 

Maximum duty ratio Dmax 

Lr, Cr are decided according to Toff. Since T is fixed, the design must ensure that the off-phase half 

resonance is always completed. Lr and Cr are chosen according to Toffmin which happens when VG =

VGmin = 46V so that D = Dmax, Ton = Tonmax and Toff = Toffmin. If instead Toff is chosen when D = Dmin, 

Toff = Toffmax then an increase of D for lower step-down would “erode” the off-phase length preventing the 

half resonance to complete. On the other hand, when D < Dmax the on-phase gets shorter and the off-phase 

lasts longer than the designed Lr-Cr half resonance; this is not a problem since D2 will stop it anyways. 

Following the above considerations, the maximum duty ratio occurs for VGmin: 

 𝑀𝑚𝑎𝑥 =
𝑉𝑂

𝑉𝐺𝑚𝑖𝑛
=

2

46
= 0.0435 

 𝐷𝑚𝑎𝑥 =
𝑀𝑚𝑎𝑥(1+𝑚)

1−𝑀𝑚𝑎𝑥
= 0.3182 ≈ 0.32 [5] 

Notice that there is little difference between Dmax and D = Dnom because of the high step-down around 

VG = 48V. In general, if moderate conversion ratios are used, that difference widens. 

Effect of diodes’ forward drop on Dmax 

It is now an opportune time to consider the effect of diodes’ forward voltage on conversion ratio. 

If [2], [3] are used VO would be smaller and, in order to compensate, D should to increase possibly above 

Dmax found in [5], resulting in an interrupted Toff half resonance. Calling VD1, VD2, VD3 the nominal 

forward voltages of D1, D2, D3, it is (see Appendix B): 

 𝑉𝑂 =
𝑉𝐷1(𝑁1(𝐷𝑟−1)−𝑁2)−𝐷𝑟𝑁1(𝑉𝐷2+𝑉𝐷3)

𝑁1(1+𝐷𝑟)+𝑁2
+

𝐷𝑟𝑁1

𝑁1(1+𝐷𝑟)+𝑁2
𝑉𝐺 (44) 

where the term which multiplies VG coincides with M in (3). Solving for Dr gives 

 𝐷𝑟 =
(𝑁1+𝑁2)(𝑉𝐷1+𝑉𝑂)

𝑁1(𝑉𝐷1−𝑉𝐷2−𝑉𝐷3+𝑉𝐺−𝑉𝑂)
 (45) 

The actual value of VD1, VD2, VD3 depends on the chosen diodes and currents flowing in them. 

Stresses formulas of chapter IV can be used but, while it remains true that IGr = IO − ILmr, IG ≠ M ∙ IO. In 

fact, since PO+PD
PG

= 1, for the same output power PO and same input voltage VG, IG increases w.r.t. 

previous case  PO
PG
= 1, where the power PD dissipated by diodes is neglected. In particular: 

 𝑃𝑂+𝑃𝐷

𝑃𝐺
=

𝐼𝑂∙𝑉𝑂+𝐼𝐷1∙𝑉𝐷1+𝐼𝐷2∙𝑉𝐷2+𝐼𝐷3∙𝑉𝐷3

𝐼𝐺𝑟∙𝑉𝐺
=

𝐼𝑂∙𝑉𝑂+((1−𝐷)(𝐼𝑂−𝐼𝐺𝑟)+𝑚∙𝐼𝐺𝑟)∙𝑉𝐷1+𝐼𝐺𝑟∙𝑉𝐷2+𝐼𝐺𝑟∙𝑉𝐷3

𝐼𝐺𝑟∙𝑉𝐺
= 1 (46) 



 
 

IGr can be obtained once VD1, VD2, VD3 are known. Because of the circular nature of the problem, the 

same diodes’ forward voltage is chosen as VD = 0.4V, IGr and stresses are obtained, diodes are picked and 

their nominal VD from datasheet used to reevaluate IGr. The stresses are updated and if the chosen diodes 

still suffice, those are the definitive ones. 

From (43)  

 𝐷𝑟𝑚𝑎𝑥 = 0.3853 ≈ 0.39 [6] 

Solving (44) for IG gives 

 𝐼𝐺𝑟 = 𝐼𝑂
𝑉𝐷1(𝐷−1)−𝑉𝑂

𝑉𝐷1(𝐷+
𝑁2

𝑁1
 −1)+𝑉𝐷2+𝑉𝐷3−𝑉𝐺

 (47) 

When VG = 46V, R = 0.5Ω  

 𝐼𝐺𝑟𝑚𝑎𝑥 ≈ 0.21𝐴 [7] 

 𝐼𝐿𝑚𝑟𝑚𝑖𝑛 = 𝐼𝑂 − 𝐼𝐺𝑟𝑚𝑎𝑥 ≈ 3.79𝐴 [8] 

Without considering diodes’ voltage it was IGmax = IOmax ∙ Mmax = IOmax ∙
VO

VGmin
= 4 ∙

2

46
≈ 0.17A: diodes 

cause a 20% increase of the average input current. D1, D2, D3 current stresses are evaluated with [7], [8] 

and are reported in Tab. 23. 

 iDmax [A] ID [A] 

D1 6.99 3.58 

D2 0.53 0.21 

D3 0.6 0.21 

 

A VSB2045Y can be used as D1 (VD1 ≈ 0.4V @ ID1 ≈ 3.5A), two ZHCS400 as D2, D3 (VD2,3 ≈ 0.25V 

@ ID1,2 ≈ 0.2A). For these forward voltages it is: 

𝐼𝐺𝑟𝑚𝑎𝑥 = 0.207𝐴 ≈ 0.21𝐴 

similar to that found in [7]: there is no need to recompute the current stresses on diodes. Similarly, the 

maximum duty ratio doesn’t change much being 

                                                             
3 Current stresses are evaluated with IGmax and ILmmin; it is the worst case since using IGmin  and ILmmax results in 
more relaxed conditions. 

Table 2 



 
 

𝐷𝑟𝑚𝑎𝑥 = 0.3827 

The maximum duty cycle is chosen as Dmax = max([5], [6]) = [6] = Drmax: not considering the forward drop 

of diodes and thus picking [5] wouldn’t have allowed the half resonance to complete during Toffmin. From now 

one the subscript “real” will be dropped with Dmax = Drmax ≈ 0.39. 

Output capacitor Co, magnetizing inductance Lm 

The design can proceed with the evaluation of the minimum off-phase:  

 𝑇𝑜𝑓𝑓𝑚𝑖𝑛 = (1 − 𝐷𝑚𝑎𝑥)𝑇 = 8.71µ𝑠 =
𝑇𝑟𝑒𝑠

2
 

from which Tres and so Lr, Cr can be designed.  

It was previously stated Tres = 2π√LrCr which is indeed obtained during off-phase considering the 

output voltage fixed at VO or in other words considering an ideal infinite output capacitor Co. This 

statement is of course false and a better approximation of the resonant period is given by 

 𝑇𝑟𝑒𝑠 = 2𝜋√𝐿𝑟𝐶𝑟 ∙ √
𝐶𝑜

𝐶𝑜+𝐶𝑟(1+𝑚)2
 (48) 

obtained considering a finite Co but still neglecting the effects of R and Lm (see Appendix A); 

unfortunately, by refining the model and including also these variables, Wolfram Mathematica doesn’t 

provide an analytical solution. From (48) Co may be chosen such that Co ≫ Cr(1 + m)2 and Tres ≈

2π√LrCr or the actual expression (48) can be considered without imposing such a constraint on Co. 

According to the type of capacitor, electrolytic or ceramic, either way can be pursuit.  

In the first case, Co being an electrolytic capacitor, the voltage output ripple is decided by ESRCo: 

 ∆𝑣𝑜𝑒𝑙𝑒 = ∆𝑖𝐶𝑜 ∙ 𝐸𝑆𝑅𝐶𝑜  (49) 

∆iCo being the peak to peak current flowing in Co. Since iCo is the ac part of io (Fig. 23) its peak to peak 

value is 

 ∆𝑖𝐶𝑜 = ∆𝑖𝑜 = 𝐼𝐿𝑚 + (1 + 𝑚)𝑖𝐿𝑟𝑝𝑒𝑎𝑘 − 𝛼 ∙ 𝑖𝐿𝑚𝑚𝑖𝑛 (50) 

ESRCo must be 

 𝐸𝑆𝑅𝐶𝑜 ≤
∆𝑣𝑜𝑚𝑎𝑥

∆𝑖𝐶𝑜
 (51) 



 
 

∆vomax  being the maximum output voltage ripple from specifications. Coele can be chosen to satisfy (51) 

and to provide a capacitance Coele ≫ Cr(1 + m)2. To solve (51), ∆iCo and thus iLmmin is needed: Lm must 

be designed.  

Since it is a filter inductor, hysteresis losses are negligible if current ripple is small enough: 

∆iLmmax = 25%ILm is here used as requirement. It has to be: 

 ∆𝑖𝐿𝑚 =
𝑉𝑂+𝑉𝐷1

𝐿𝑚
(1 − 𝐷)𝑇 ≤ ∆iLm𝑚𝑎𝑥 (52) 

 𝐿𝑚 ≥
𝑉𝑂+𝑉𝐷1

∆iLm𝑚𝑎𝑥
(1 − 𝐷)𝑇 (53) 

(53) must be evaluated in the worst-case scenario, when D = Dmin = 0.3507 (and ILm = ILmmax): 

 𝐿𝑚 ≥ 23.4µ𝐻 [9a] 

Moreover, iLm needs to be always greater than zero so that no current is drawn from the output capacitor; 

Lm must work in CCM or CRM: 

 𝑖𝐿𝑚𝑚𝑖𝑛 ≥ 0𝐴 → 𝐼𝐿𝑚 −
∆𝑖𝐿𝑚

2
≥ 0𝐴 → 𝐼𝐿𝑚 −

𝑉𝑂+𝑉𝐷1

2𝐿𝑚
(1 − 𝐷)𝑇 ≥ 0𝐴 

from which 

 𝐿𝑚 ≥
𝑉𝑂+𝑉𝐷1

2𝐼𝐿𝑚
(1 − 𝐷)𝑇 (54) 

Again, with D = Dmin: 

 𝐿𝑚 ≥ 2.92µ𝐻 [9b] 

Lm is chosen as  

 𝐿𝑚 ≥ 𝑚𝑎𝑥([9𝑎], [9𝑏]) → 𝐿𝑚 = 25µ𝐻 [9] 

resulting in 

 ∆𝑖𝐿𝑚𝑚𝑎𝑥 = 0.89𝐴  

 𝑖𝐿𝑚𝑚𝑎𝑥 = 4.25𝐴 

 𝑖𝐿𝑚𝑚𝑖𝑛 = 3.36𝐴 



 
 

Going back to the design of the output capacitor, (50) can be maximized with D = Dmax so that 

iLrpeak = iLrpeakmax = 0.53A: 

 ∆𝑖𝐶𝑜𝑚𝑎𝑥 = 7𝐴 

Then, 

 𝐸𝑆𝑅𝐶𝑜 ≤
100𝑚𝑉

7𝐴
= 0.0143𝛺 

 𝐸𝑆𝑅𝐶𝑜 ≈ 0.014𝛺 = 14𝑚𝛺 [10a] 

If instead a ceramic capacitor is chosen, the equality Co ≫ Cr(1 +m)2 may be not easy to satisfy 

due to the lower capacitance of ceramic components. The actual resonance period (48) is considered and 

again Co is designed according to ∆vomax specification with the output voltage ripple determined now by 

the amount of positive/negative charge that charges/discharges Co and thus on the capacitance itself: 

∆𝑣𝑜𝑐𝑒𝑟 =
1

𝐶𝑜𝑐𝑒𝑟
∫ 𝑄𝐶𝑜

+
𝑇

0

𝑑𝑡 = −
1

𝐶𝑜𝑐𝑒𝑟
∫ 𝑄𝐶𝑜

−
𝑇

0

𝑑𝑡 

Fig. 28 shows iCo for given loads IO = 1, 2, 3, 4A; considering for example IO = 1A (light blue line) ∆vocer 

can be approximated considering as QCo−  the green negative charge for t < DT, the red area being neglected. 

The consequent error on ∆vocer is acceptable. 

 

 

 

 

 

 

 

 
 

With this approximation it becomes: 

Figure 28 



 
 

 ∆𝑣𝑜𝑐𝑒𝑟 ≈ −
(𝛼∙𝐼𝐿𝑚−𝐼𝑂)

𝐶𝑜𝑐𝑒𝑟
𝐷𝑇 ≤ ∆𝑣𝑜𝑚𝑎𝑥 (55) 

 𝐶𝑜𝑐𝑒𝑟 ≥ −
(𝛼∙𝐼𝐿𝑚−𝐼𝑂)

∆𝑣𝑜𝑚𝑎𝑥
𝐷𝑇  

With D = Dmax 

 𝐶𝑜𝑐𝑒𝑟 ≥  189µ𝐹 

Between Coele and Cocer it’s here preferred the second solution due to reliability concerns about electrolytic 

capacitors. It is chosen 

 𝐶𝑜𝑐𝑒𝑟 =  200µ𝐹 [10b] 

resulting in 

 ∆𝑣𝑜𝑐𝑒𝑟 = 94.5𝑚𝑉 < 0.1𝑉 

Resonant capacitor Cr 

Regarding Cr, its design doesn’t depend on the given specifications since it’s an internal resonant 

capacitor. Still, choosing it too small would require Lr to increase but more importantly its large voltage 

ripple would compromise the correct behavior of the circuit. In fact, as announced in chapter III, the aim is 

to have D3 alone without the need of active S3; during off-phase vD3 follows vLr which depends on ∆vCr 

and so on Cr. In order to correctly pick Cr, the time evolution of vD3 during Toff is needed: 

 𝑣𝐷3(𝑡) = 𝑉𝐷1 − 𝑉𝐷2 − 𝑣𝐿𝑟(𝑡) (56) 

vLr(t) analytical solution is obtainable from (A10) in Appendix A as vLr(t) = −L d

dt
iCr(t):  

 𝑣𝐿𝑟(𝑡) = (𝑣𝐶𝑟𝑚𝑎𝑥 − 𝑣𝑂𝑚𝑖𝑛 −𝑚(𝑣𝑂𝑚𝑖𝑛 + 𝑉𝐷1) − 𝑉𝐷2) ∙ 𝑐𝑜𝑠 (𝑤𝑟𝑒𝑠𝑡) =
∆𝑣𝐿𝑟

2
∙ 𝑐𝑜𝑠(𝑤𝑟𝑒𝑠𝑡) (57) 

What is important is the peak voltage ∆vLr > 0V which at the end of the half resonance will add positively 

to vD3(t): 

 𝑣𝐷3𝑚𝑎𝑥 = 𝑉𝐷1 − 𝑉𝐷2 +
∆𝑣𝐿𝑟

2
= 𝑉𝐷1 − 2𝑉𝐷2 + 𝑣𝐶𝑟𝑚𝑎𝑥 − 𝑣𝑂𝑚𝑖𝑛 −𝑚(𝑣𝑂𝑚𝑖𝑛 + 𝑉𝐷1) 

 = 𝑉𝐷1 − 2𝑉𝐷2 + 𝑉𝐶𝑟 +
∆𝑣𝐶𝑟

2
− 𝑣𝑂𝑚𝑖𝑛 −𝑚(𝑣𝑂𝑚𝑖𝑛 + 𝑉𝐷1) (58) 



 
 

with vOmin = VO−
∆vocer

2
. 

It must be  

 𝑣𝐷3𝑚𝑎𝑥 < 𝑉𝐷3 

from which 

 ∆𝑣𝐶𝑟

2
=

𝛼∙𝐼𝐿𝑚∙𝐷∙𝑇

2𝐶𝑟
< 𝑉𝐷3 − 𝑉𝐷1 + 2𝑉𝐷2 − 𝑉𝐶𝑟 + 𝑣𝑂𝑚𝑖𝑛 +𝑚(𝑣𝑂𝑚𝑖𝑛 + 𝑉𝐷1) 

 𝐶𝑟 >
𝛼∙𝐼𝐿𝑚∙𝐷∙𝑇

2(𝑉𝐷3−𝑉𝐷1+2𝑉𝐷2−𝑉𝐶𝑟+𝑣𝑂𝑚𝑖𝑛+𝑚(𝑣𝑂𝑚𝑖𝑛+𝑉𝐷1))
 (59) 

Notice that by increasing Co and thus vOmin the minimum Cr lowers. Evaluating (59) with D = Dmax gives 

∆𝑣𝐶𝑟

2
< −0.23𝑉 

𝐶𝑟 > −6.41µ𝐹 

This means that for the given VD1, VD2, VD3 the half resonance will always bias D3 at a certain point, 

independently on the chosen Cr. There are two solutions: 1) use active switch S3 to block negative voltage; 

2a) decrease VD1 by using two parallel diodes for D1 or 2b) increase VD2, VD3 by using two series diodes 

for D2 and D3. 

Apparently 2) looks like a patch-up but, while 2a) is not convenient because of low reduction in D1 forward 

voltage for the range ID1
2
→ ID1, 2b) adds little power dissipation because of the small average current 

flowing in D2, D3. On the other hand, 1) will for sure guarantee the correct behavior of the converter using 

one added switch instead of two added diodes at the expense of complicating the switching control.  

Both 1) and 2) will be tested. Since 1) doesn’t imply any requirement on Cr, 2b) will be used for 

its design, hypothesizing two ZHCS400 in place of D2 and D3: later, if not reliable, this method can be 

dropped in favor of 1). In principle, all the analysis starting from (45) should be repeated with the updated 

VD2 = VD3 = 0.5V but, since D would change from Drmax = 0.3853 to Drmax = 0.3871, it’s useless to do 

so since it is considered Drmax ≈ 0.39 from [6]. Jumping then to (59), the required Cr to avoid D3 bias during 

Toff becomes 

 𝐶𝑟 > 5.64µ𝐹 

It is chosen 



 
 

 𝐶𝑟 = 6.8µ𝐹 [11] 

Resonant inductor Lr 

Now that Tres, Co and Cr are known, Lr is obtained from (48) as 

 𝐿𝑟 = (
𝑇𝑟𝑒𝑠

2𝜋
)
2 𝐶𝑜+𝐶𝑟(1+𝑚)2

𝐶𝑜 𝐶𝑟 
 (60) 

With Tres
2
= 8.71µs, Co = Cocer = 200µF, Cr = 6.8µF 

 𝐿𝑟 = 3.02µ𝐻 ≈ 3µ𝐻 [12] 

Input capacitor Cg 

The only remaining component to be designed is the input capacitor Cg. Since it will be electrolytic 

to sustain VGmax = 50V , what matters is its ESR, low enough to filter all the pulsing current going through 

S1. A typical input capacitance can be chosen as 

 𝐶𝑔 = 100µ𝐹 [13] 

Theorical numerical stresses 

To sum up, all designed components and relative stresses are reported in Table 3 (S3 included). 

Stresses have been evaluated according to formulas of chapter IV except for vD3rev (and vDS3 = −vD3rev 

if D3 accidentally biases during Toff) which includes now diodes’ forward drop according to (58). In order 

to get maximum stresses RL = 0.5Ω is used and both VG = 46V and VG = 50V are considered; starred values 

result from VG = 50V.  

 

 

 

 

 

 

 

 

 

 

 



 
 

 

Expected efficiency 

At this point, the efficiency can be evaluated:  

 𝜂 =
𝐼𝑂 𝑉𝑂

𝐼𝐺 𝑉𝐺
=

𝐼𝑂

𝐼𝐺
𝑀 

One may be tempted to say that ηmax occurs for Mmax forgetting that when VG = 46V IG increases as well 

while IO remains constant. Turns out that, for all considered loads, little changes: 

 𝜂46𝑉 = 0.8297 ≈ 0.83 

 𝜂50𝑉 = 0.83 

The converter can’t reach a better efficiency since diodes’ forward voltage is taken in account but other 

sources off loss are not (switches, copper losses, etc.). Even so, looking at Tab. 3, it’s clear that D1 is a 

non-negligible cause of power loss w.r.t. the power level treated by the converter, dissipating PD1 = ID1 ∙

VD1 ≈ 1.4W when PO = 8W. If VD1 cannot be reduced, an active switch S4 may be used in place of D1; a 

STN3NF06L satisfies stresses with ron ≈ 70𝑚𝛺 @ IS1 = ID1 ≈ 3.6A: since iD1rms ≈ iPrimrms it 

dissipates the average power 

 𝐢𝐫𝐦𝐬[𝐀]  𝐯𝐰𝐨𝐫𝐤[𝐕]  

𝐂𝐫 = 𝟔.𝟖µ𝐅 0.45 17 

𝐂𝐠 = 𝟏𝟎𝟎µ𝐅 0.26   50* 

𝐂𝐨 = 𝟐𝟎𝟎µ𝐅 2.89 2 

  𝐢𝐦𝐚𝐱[𝐀] 

𝐋𝐫 = 𝟑µ𝐇 0.30 0.54 

𝐋𝐦 = 𝟐𝟓µ𝐇 4.65, 0.45   4.25* 

   𝐯𝐝𝐬[𝐕] 

𝐒𝟏 0.34   0.61*  48* 

𝐒𝟐 0.30 0.54  48* 

𝐒𝟑 0.34   0.61* 0→0.65 

 𝐈 [𝐀]  𝐯𝐫𝐞𝐯[𝐕]  

𝐃𝟏 (𝐕𝐃𝟏 = 𝟎. 𝟒𝐕)   3.61* 7   -6.47* 

𝐃𝟐 (𝐕𝐃𝟐 = 𝟎. 𝟓𝐕) 0.21 0.54   -6.47* 

𝐃𝟑 (𝐕𝐃𝟑 = 𝟎. 𝟓𝐕) 0.21   0.61* -0.65 

Table 3 



 
 

𝑃𝑆4 ≈ 𝑖𝑃𝑟𝑖𝑚𝑟𝑚𝑠
2 ∙ 𝑟𝑜𝑛 = 4.65

2 ∙ 0.07𝑊 = 1.51𝑊 

which is slightly more than what D1 dissipates. A switch with ron < 70mΩ should be chosen to replace D1.  

Regarding the switching losses, S2 ideally switches on and off both at ZCS, its current being the 

discussed half resonance. Moreover, it can be switched on at ZVS if the command that turns S1 off and 

which is inverted and forwarded to S2 is delayed: the current flowing in L starts discharging the parasitic 

Cds of S2 and eventually biases its body diode. Similarly, is off-phase resonance is prematurely interrupted, 

the current flowing in Lr can bias the body diode of S1 to let it turn on at ZVS; its turn off is hard-switched 

anyways.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

VI SIMULATIONS 

In order to verify the behavior of the circuit and the correctness of the found analytical formulas, simulations 

have been run through PLECS software. The Ćuk-Buck 1.5 schematic is shown in Fig. 29. 

 

 

 

For all following simulations voltages/currents will be in blue/red; continuous/dotted lines mean heavy/light 

load condition. 

VG = 46V, light and heavy load 

The first simulation is for VG = 46V and IO = 4, 1A. Fig. 30 shows vCr, iCr, iLr at cycle-stationary 

condition of the converter. As S1 goes on the input current, approximately constant around α ∙ ILm, charges 

Cr and vCr ramps up practically linearly. Once Ton ends S1 opens and S2 closes: Lr-Cr resonance starts 

and Cr is discharged of Qg. Notice that the half resonance duration coincides, if not for a negligible time 

interval, with the designed Toff, meaning that (48) is a good approximation of the resonance period.  

Fig. 31 displays vo, io, iLm. Looking at iLm it’s clear that most of the dc output current comes from 

ILm: as see in chapter II, Ćuk-Buck 2 and then Ćuk-Buck 1.5 are evolutions of the tapped-inductor Buck 

converter with the magnetic leakage management more and more refined. 

 

 

 

 

 

 

Figure 29 



 
 

 

Figure 30 



 
 

 

Figure 31 



 
 

It is interesting to look at the discussed vD3(t) during Toff: as designed, D3 remains unbiased but S3 may 

be used to give better robustness to the real converter. 

Figure 32 



 
 

 

VG = 50V, light and heavy load 

The same waveforms are shown for VG = 50V. 

 

Figure 33 



 
 

 
Figure 34 



 
 

 
Figure 35 



 
 

As expected, since D = Dmin due to VG = 50V = VGmax, Toff increases allowing more time for the Lr-Cr 

half resonance which is stopped by D2 anyways. 

Simulated numerical stresses 

Exploiting PLECS automatic average, rms and maximum measurements of the plotted waveforms, worst 

case stresses are obtained in Tab. 4 which can be confronted with the theorical ones in Tab. 3 (chapter V). 

 

 𝐢𝐫𝐦𝐬[𝐀]  𝐯𝐰𝐨𝐫𝐤[𝐕]  

𝐂𝐫 = 𝟔.𝟖µ𝐅 0.45 17 

𝐂𝐠 = 𝟏𝟎𝟎µ𝐅  0.264   50* 

𝐂𝐨 = 𝟐𝟎𝟎µ𝐅 2.89 2 

  𝐢𝐦𝐚𝐱[𝐀] 

𝐋𝐫 = 𝟑µ𝐇 0.29 0.53 

𝐋𝐦 = 𝟐𝟓µ𝐇 4.64, 0.45   4.24* 

   𝐯𝐝𝐬[𝐕] 

𝐒𝟏 0.34   0.61*   48* 

𝐒𝟐 0.29 0.53   48* 

𝐒𝟑 0.34   0.61* 0 

 𝐈 [𝐀]  𝐯𝐫𝐞𝐯[𝐕]  

𝐃𝟏 (𝐕𝐃𝟏 = 𝟎. 𝟒𝐕)   3.61* 6.98   -6.43* 

𝐃𝟐 (𝐕𝐃𝟐 = 𝟎. 𝟓𝐕) 0.21 0.53   -6.93* 

𝐃𝟑 (𝐕𝐃𝟑 = 𝟎. 𝟓𝐕) 0.21   0.61* -0.69 

 

 

Notice that vD2 accounts here for D3 forward drop VD3 = 0.5V, that’s why it differs of about half Volt from 

the theorical value in Tab. 3.  

Since simulated stresses are almost identical to the theorical ones, the correctness of chapter IV 

expressions is verified.  

                                                             
4 The input capacitor current has been obtained through a dedicated simulation hypothesizing an equivalent 
source resistance Rg = 5Ω. 
 

 
 

Table 4 



 
 

Leakages management  

Until now no delay is present between on and off-phase (T2 = 0s) in agreement with what has been 

highlighted in chapter III. In order to demonstrate the main purpose of the Ćuk-Buck 1.5 converter, a 

leakage inductance Llks is added at the secondary side of the coupled-inductors model so that a direct 

comparison with the Ćuk-Buck 2 can be done: in the original converter it was Lr which, even in a leakage-

free scenario, ended up in series with Cr. 

In order to pick  Llks, the effect of coupling coefficient k = 0.99 is first analyzed. Supposing 

symmetrical primary and secondary leakages Llk = Llks = Llkp it is: 

 𝐿𝑙𝑘 =
−𝑘(1+𝑚2)+√4𝑚2+𝑘2(𝑚2−1)2

2𝑘
 𝐿𝑚 = 0.02𝐿𝑚 = 0.5µ𝐹 

Figure 36 shows the schematic with Llks included: 

The resonance period becomes 

 𝑇𝑜𝑓𝑓𝑚𝑖𝑛𝑛𝑒𝑤 =
𝑇𝑟𝑒𝑠 𝑛𝑒𝑤

2
= 𝜋√(𝐿𝑟 + 𝐿𝑙𝑘)𝐶𝑟 ∙ √

𝐶𝑜

𝐶𝑜+𝐶𝑟(1+𝑚)2
= 9.41µ𝑠 > 8.71µ𝑠 = 𝑇𝑜𝑓𝑓min  (61) 

with Toffmin being the previously design off-phase duration. 

As expected, the Lr-Cr resonance doesn’t complete as shown in Fig. 37 where VG = 46, 50V is being tested  

(V = 50V → D = Dmax in dotted lines). 

 

 

 

Figure 36 



 
 

 
Figure 37 



 
 

Still, as explained in III, the transition between on and off-phase is very fast, iCr dropping to 0A almost 

instantaneously right after t = DT.  

In this case, because of the short cut-off of the half resonance, the output voltage is not affected but 

in general worse coupling factors (k ≈ 0.9) must be taken in account. The design can fix Toffmin for the 

expected worst-case coupling i.e. for the largest leakage inductance so that Dmax is capable of ensure the 

half resonance to always complete. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

APPENDIX A: time description of the Ćuk-Buck 1.5 

First, constant VO (infinite Co) is assumed during Ton and Toff. 

ON-PHASE: 0 ≤ t < DT 

 

{
 

 
 

𝑖𝐶𝑟(𝑡) = 𝐶𝑟
𝑑

𝑑𝑡
𝑣𝐶𝑟(𝑡)

𝑣𝐶𝑟(𝑡) = 𝑉𝐺 − 𝑉𝑂 − 𝑣𝐿(𝑡)

𝑣𝐿(𝑡) = 𝐿
𝑑

𝑑𝑡
𝑖𝐶𝑟(𝑡)

 

Initial conditions on state variables: 

 {
𝑣𝐶𝑟(0) = 𝑣𝐶𝑟𝑚𝑖𝑛

𝑖𝐿(0) = 𝑖𝐶𝑟(0+) = 𝑖𝐿𝑚𝑖𝑛
 

with iLmin = α ∙ iLmmin. Variable of interests are vCr(t), iCr(t) = iL(t) = io(t): 

 𝑣𝐶𝑟(𝑡) = 𝑉𝐺 − 𝑉𝑂 + (𝑣𝐶𝑚𝑖𝑛 − 𝑉𝐺 + 𝑉𝑂)𝐶𝑜𝑠 (
𝑡

√𝐿 𝐶𝑟
) + 𝑖𝐿𝑚𝑖𝑛√

𝐿

𝐶𝑟
𝑆𝑖𝑛 (

𝑡

√𝐿 𝐶𝑟
) 

 𝑖𝐶𝑟(𝑡) = −(𝑣𝐶𝑚𝑖𝑛 − 𝑉𝐺 + 𝑉𝑂)√
𝐶𝑟

𝐿
𝑆𝑖𝑛 (

𝑡

√𝐿 𝐶𝑟
) + 𝑖𝐿𝑚𝑖𝑛𝐶𝑜𝑠 (

𝑡

√𝐿 𝐶𝑟
) 

Since L = (N1+N2)2

N12
Lm ≈ 50Lm ≫ Lr, wreson =

1

√L Cr
≪

1

√Lr Cr
 and thus the cosine and sine terms can be 

approximated with their first order Taylor expansion: 

 𝑣𝐶𝑟(𝑡) ≈ 𝑉𝐺 − 𝑉𝑂 + (𝑣𝐶𝑚𝑖𝑛 − 𝑉𝐺 + 𝑉𝑂) +
𝑖𝐿𝑚𝑖𝑛

𝐶𝑟
𝑡 = 𝑣𝐶𝑚𝑖𝑛 +

𝑖𝐿𝑚𝑖𝑛

𝐶𝑟
𝑡 (A1) 

 𝑖𝐶𝑟(𝑡) ≈ 𝑖𝐿𝑚𝑖𝑛 +
𝑉𝐺−𝑣𝐶𝑚𝑖𝑛−𝑉𝑂

𝐿
𝑡 (A2) 

(A1), (A2) translates in the linear approximation made for the on-phase: Cr is charged at constant current 

iLmmin while constant voltage vCmin − VG+ VO drops on L, building it’s flux linearly in time. 

 

 

 

 

 

 



 
 

OFF-PHASE: DT ≤ t < T 

 

{
 

 
 

𝑖𝐶𝑟(𝑡) = 𝐶𝑟
𝑑

𝑑𝑡
𝑣𝐶𝑟(𝑡)

𝑣𝐶𝑟(𝑡) = (𝑚 + 1)𝑉𝑂 + 𝑣𝐿𝑟(𝑡)

𝑣𝐿𝑟(𝑡) = −𝐿𝑟
𝑑

𝑑𝑡
𝑖𝐶𝑟(𝑡)

 

 𝑣𝐿𝑚(𝑡) = −𝑉𝑂 = 𝐿𝑚
𝑑

𝑑𝑡
𝑖𝐿𝑚(𝑡) 

Initial conditions on state variables: 

 {
𝑣𝐶𝑟(𝐷𝑇) = 𝑣𝐶𝑟𝑚𝑎𝑥

𝑖𝐿𝑟(𝐷𝑇) = −𝑖𝐶𝑟(𝐷𝑇+) = 0𝐴
 

 𝑖𝐿𝑚(𝐷𝑇) =
𝑖𝐶𝑟(𝐷𝑇−)

𝛼
= 𝑖𝐿𝑚𝑚𝑎𝑥 

Variable of interests are vCr(t), iCr(t), iLm(t): 

 𝑣𝐶𝑟(𝑡) = (1 +𝑚)𝑉𝑂 + (𝑣𝐶𝑚𝑎𝑥 − (1 + 𝑚)𝑉𝑂)𝑆𝑖𝑛 (
𝑡

√𝐿 𝐶𝑟
) 

 𝑖𝐶𝑟(𝑡) = −((1 + 𝑚)𝑉𝑂 − 𝑣𝐶𝑚𝑎𝑥)√
𝐶𝑟

𝐿𝑟
𝐶𝑜𝑠 (

𝑡

√𝐿 𝐶𝑟
) 

 𝑖𝐿𝑚(𝑡) = 𝑖𝐿𝑚𝑚𝑎𝑥 −
𝑉𝑂

𝐿𝑚
𝑡 

In the following, the model is refined considering the effect of finite Co. 

ON-PHASE (Co ≠ ∞): 0 ≤ t < DT 

 

{
 
 

 
 

 

𝑖𝐶𝑟(𝑡) = 𝐶𝑟
𝑑

𝑑𝑡
𝑣𝐶𝑟(𝑡)

𝑣𝐶𝑟(𝑡) = 𝑉𝐺 − 𝑣𝑜(𝑡) − 𝑣𝐿(𝑡)

𝑣𝐿(𝑡) = 𝐿
𝑑

𝑑𝑡
𝑖𝐶𝑟(𝑡)

𝑖𝐶𝑟(𝑡) = 𝐶𝑜
𝑑

𝑑𝑡
𝑣𝑜(𝑡)

 

Initial conditions on state variables: 

 {

𝑣𝐶𝑟(0) = 𝑣𝐶𝑟𝑚𝑖𝑛
𝑖𝐿(0) = 𝑖𝐶𝑟(0+) = 𝑖𝐿𝑚𝑖𝑛

𝑣𝑜(0) = 𝑣𝑜𝑚𝑖𝑛

 

Variable of interests are vo(t), vCr(t), iCr(t) = iL(t) = io(t): 



 
 

 𝑣𝑜(𝑡) =
(𝐶𝑟 𝑉𝐺+𝐶𝑜 𝑣𝑜𝑚𝑖𝑛−𝐶𝑟 𝑣𝐶𝑟𝑚𝑖𝑛)+𝐶𝑟(𝑣𝐶𝑟𝑚𝑖𝑛+𝑣𝑜𝑚𝑖𝑛−𝑉𝐺)𝐶𝑜𝑠(√

𝐶𝑜+𝐶𝑟

𝐿 𝐶𝑜𝐶𝑟 
 𝑡)

𝐶𝑜+𝐶𝑟
+ 𝑖𝐿𝑚𝑖𝑛√

𝐿 𝐶𝑟

𝐶𝑜(𝐶𝑜+𝐶𝑟) 
 𝑆𝑖𝑛 (√

𝐶𝑜+𝐶𝑟

𝐿 𝐶𝑜𝐶𝑟 
 𝑡) (A3) 

 𝑖𝐶𝑟(𝑡) = 𝐶𝑜 𝑑

𝑑𝑡
𝑣𝑜(𝑡) =

−𝐶𝑜𝐶𝑟(𝑣𝐶𝑟𝑚𝑖𝑛+𝑣𝑜𝑚𝑖𝑛−𝑉𝐺)√
𝐶𝑜+𝐶𝑟

𝐿 𝐶𝑜𝐶𝑟 
 𝑆𝑖𝑛(√

𝐶𝑜+𝐶𝑟

𝐿 𝐶𝑜𝐶𝑟 
 𝑡)

𝐶𝑜+𝐶𝑟
+  𝑖𝐿𝑚𝑖𝑛𝐶𝑜𝑠 (√

𝐶𝑜+𝐶𝑟

𝐿 𝐶𝑜𝐶𝑟 
 𝑡) = 

            = −(𝑣𝐶𝑟𝑚𝑖𝑛 + 𝑣𝑜𝑚𝑖𝑛 − 𝑉𝐺)√
𝐶𝑜 𝐶𝑟

𝐿 (𝐶𝑜+𝐶𝑟)
 𝑆𝑖𝑛 (√

𝐶𝑜+𝐶𝑟

𝐿 𝐶𝑜𝐶𝑟 
 𝑡) + 𝑖𝐿𝑚𝑖𝑛𝐶𝑜𝑠 (√

𝐶𝑜+𝐶𝑟

𝐿 𝐶𝑜𝐶𝑟 
 𝑡) (A4)

 𝑣𝐿(𝑡) = 𝐿 𝑑

𝑑𝑡
𝑖𝐶𝑟(𝑡) = −𝐿(𝑣𝐶𝑟𝑚𝑖𝑛 + 𝑣𝑜𝑚𝑖𝑛 − 𝑉𝐺)

1

𝐿
𝐶𝑜𝑠 (√

𝐶𝑜+𝐶𝑟

𝐿 𝐶𝑜𝐶𝑟 
 𝑡) − 𝐿 𝑖𝐿𝑚𝑖𝑛√

𝐶𝑜+𝐶𝑟

𝐿 𝐶𝑜𝐶𝑟 
 𝑆𝑖𝑛 (√

𝐶𝑜+𝐶𝑟

𝐿 𝐶𝑜𝐶𝑟 
 𝑡) = 

           = −(𝑣𝐶𝑟𝑚𝑖𝑛 + 𝑣𝑜𝑚𝑖𝑛 − 𝑉𝐺)𝐶𝑜𝑠 (√
𝐶𝑜+𝐶𝑟

𝐿 𝐶𝑜𝐶𝑟 
 𝑡) −  𝑖𝐿𝑚𝑖𝑛√

𝐿(𝐶𝑜+𝐶𝑟)

 𝐶𝑜𝐶𝑟 
  𝑆𝑖𝑛 (√

𝐶𝑜+𝐶𝑟

𝐿 𝐶𝑜𝐶𝑟 
 𝑡) (A5) 

 𝑣𝐶𝑟(𝑡) = 𝑉𝐺 − 𝑣𝑜(𝑡) − 𝑣𝐿(𝑡) = 

                   = 𝑉𝐺 −
(𝐶𝑟 𝑉𝐺+𝐶𝑜 𝑣𝑜𝑚𝑖𝑛−𝐶𝑟 𝑣𝐶𝑟𝑚𝑖𝑛)+𝐶𝑟(𝑣𝐶𝑟𝑚𝑖𝑛+𝑣𝑜𝑚𝑖𝑛−𝑉𝐺)𝐶𝑜𝑠(√

𝐶𝑜+𝐶𝑟

𝐿 𝐶𝑜𝐶𝑟 
 𝑡)

𝐶𝑜+𝐶𝑟
− 𝑖𝐿𝑚𝑖𝑛√

𝐿 𝐶𝑟

𝐶𝑜(𝐶𝑜+𝐶𝑟) 
 𝑆𝑖𝑛 (√

𝐶𝑜+𝐶𝑟

𝐿 𝐶𝑜𝐶𝑟 
 𝑡) + 

                      +(𝑣𝐶𝑟𝑚𝑖𝑛 + 𝑣𝑜𝑚𝑖𝑛 −𝑉𝐺)𝐶𝑜𝑠 (√
𝐶𝑜+𝐶𝑟

𝐿 𝐶𝑜𝐶𝑟 
 𝑡) +  𝑖𝐿𝑚𝑖𝑛√

𝐿(𝐶𝑜+𝐶𝑟)

 𝐶𝑜𝐶𝑟 
  𝑆𝑖𝑛 (√

𝐶𝑜+𝐶𝑟

𝐿 𝐶𝑜𝐶𝑟 
 𝑡) = 

               =
𝐶𝑜

𝐶𝑜+𝐶𝑟
𝑉𝐺 +

𝐶𝑟 𝑣𝐶𝑟𝑚𝑖𝑛−𝐶𝑜 𝑣𝑜𝑚𝑖𝑛

𝐶𝑜+𝐶𝑟
+

−𝐶𝑟(𝑣𝐶𝑟𝑚𝑖𝑛+𝑣𝑜𝑚𝑖𝑛−𝑉𝐺)+(𝑣𝐶𝑟𝑚𝑖𝑛+𝑣𝑜𝑚𝑖𝑛−𝑉𝐺)(𝐶𝑜+𝐶𝑟)

𝐶𝑜+𝐶𝑟
𝐶𝑜𝑠 (√

𝐶𝑜+𝐶𝑟

𝐿 𝐶𝑜𝐶𝑟 
 𝑡) + 

               +𝑖𝐿min (√
𝐿(𝐶𝑜+𝐶𝑟)

 𝐶𝑜𝐶𝑟 
 − √

𝐿 𝐶𝑟

𝐶𝑜(𝐶𝑜+𝐶𝑟)
 ) 𝑆𝑖𝑛 (√

𝐶𝑜+𝐶𝑟

𝐿 𝐶𝑜𝐶𝑟 
 𝑡) =  

               = 𝐶𝑜

𝐶𝑜+𝐶𝑟
𝑉𝐺 +

𝐶𝑟 𝑣𝐶𝑟𝑚𝑖𝑛−𝐶𝑜 𝑣𝑜𝑚𝑖𝑛

𝐶𝑜+𝐶𝑟
+

(𝑣𝐶𝑟𝑚𝑖𝑛+𝑣𝑜𝑚𝑖𝑛−𝑉𝐺)𝐶𝑜

𝐶𝑜+𝐶𝑟
𝐶𝑜𝑠 (√

𝐶𝑜+𝐶𝑟

𝐿 𝐶𝑜𝐶𝑟 
 𝑡)+ 𝑖𝐿min√

𝐿 𝐶𝑜

𝐶𝑟(𝐶𝑟+𝐶𝑜) 
 𝑆𝑖𝑛(√

𝐶𝑜+𝐶𝑟

𝐿 𝐶𝑜𝐶𝑟 
 𝑡)

 (A6) 

In order to verify these expressions, they should become similar to those with infinite Co once it is considered that 

Co = 200µF ≫ Cr = 6.8µF. In this case Co

Co+Cr
≈ Co , Co+Cr

 CoCr 
≈

1

Cr
 are valid approximations and vo(t), iCr(t), 

vCr(t) become: 

 𝑣𝑜(𝑡) ≈
(𝐶𝑟 𝑉𝐺+𝐶𝑜 𝑣𝑜𝑚𝑖𝑛−𝐶𝑟 𝑣𝐶𝑟𝑚𝑖𝑛)+𝐶𝑟(𝑣𝐶𝑟𝑚𝑖𝑛+𝑣𝑜𝑚𝑖𝑛−𝑉𝐺)𝐶𝑜𝑠(

1

√𝐿 𝐶𝑟 
𝑡)

𝐶𝑜
+ 𝑖𝐿𝑚𝑖𝑛

√𝐿 𝐶𝑟 

𝐶𝑜
𝑆𝑖𝑛 (

1

√𝐿 𝐶𝑟 
𝑡) 

 𝑖𝐶𝑟(𝑡) ≈ −(𝑣𝐶𝑟𝑚𝑖𝑛 + 𝑣𝑜𝑚𝑖𝑛 − 𝑉𝐺)√
 𝐶𝑟

𝐿 
 𝑆𝑖𝑛 (

1

√𝐿 𝐶𝑟 
𝑡) + 𝑖𝐿𝑚𝑖𝑛𝐶𝑜𝑠 (

1

√𝐿 𝐶𝑟 
𝑡) 



 
 

 𝑣𝐶𝑟(𝑡) ≈ 𝑉𝐺 +
𝐶𝑟 𝑣𝐶𝑟𝑚𝑖𝑛−𝐶𝑜 𝑣𝑜𝑚𝑖𝑛

𝐶𝑜
+
(𝑣𝐶𝑟𝑚𝑖𝑛+𝑣𝑜𝑚𝑖𝑛−𝑉𝐺)𝐶𝑜

𝐶𝑜
𝐶𝑜𝑠 (

1

√𝐿 𝐶𝑟 
𝑡) + 𝑖𝐿min√

𝐿 

𝐶𝑟 
 𝑆𝑖𝑛 (

1

√𝐿 𝐶𝑟 
𝑡) 

 

Then, since 1

√L Cr
≪

1

√Lr Cr
, vo(t), iCr(t), vCr(t) can be approximated with their first order Taylor expansion: 

 𝑣𝑜(𝑡) ≈
𝑣𝑜𝑚𝑖𝑛(𝐶𝑜+𝐶𝑟)

𝐶𝑜
−

𝑖𝐿𝑚𝑖𝑛

𝐶𝑜
𝑡 ≈ 𝑣𝑜𝑚𝑖𝑛 +

𝑖𝐿𝑚𝑖𝑛

𝐶𝑜
𝑡 (A7) 

 𝑖𝐶𝑟(𝑡) ≈
𝑉𝐺−𝑣𝐶𝑟𝑚𝑖𝑛−𝑣𝑜𝑚𝑖𝑛

𝐿
𝑡 + 𝑖𝐿𝑚𝑖𝑛 (A8) 

 𝑣𝐶𝑟(𝑡) ≈
𝑣𝐶𝑟𝑚𝑖𝑛(𝐶𝑜+𝐶𝑟)

𝐶𝑜
−

𝑖𝐿min

𝐶𝑟
𝑡 ≈ 𝑣𝐶𝑟𝑚𝑖𝑛 +

𝑖𝐿min

𝐶𝑟
𝑡 (A9) 

(A3) tells that the output capacitor is being charged with constant current iLmin: this would be true if no 

load is present which in reality draws some of the slow resonant current. Since A8/A9 coincide with A2/A1 

(if not for VO ≠ vomin since the output voltage is now a state variable) the expressions A3→6 are verified. 

OFF-PHASE (Co ≠ ∞): DT ≤ t < T 

 

{
 
 
 

 
 
 

 

𝑖𝐶𝑟(𝑡) = 𝐶𝑟
𝑑

𝑑𝑡
𝑣𝐶𝑟(𝑡)

𝑣𝐶𝑟(𝑡) = (1 + 𝑚)𝑣𝑜(𝑡) + 𝑣𝐿𝑟(𝑡)

𝑣𝐿𝑟(𝑡) = −𝐿𝑟
𝑑

𝑑𝑡
𝑖𝐶𝑟(𝑡)

−(1 + 𝑚)𝑖𝐶𝑟(𝑡) + 𝑖𝐿𝑚(𝑡) = 𝐶𝑜
𝑑

𝑑𝑡
𝑣𝑜(𝑡)

−𝑣𝑜(𝑡) = 𝐿𝑚
𝑑

𝑑𝑡
𝑖𝐿𝑚(𝑡)

  

Initial conditions on state variables: 

 

{
 
 

 
 

𝑣𝐶𝑟(𝐷𝑇) = 𝑣𝐶𝑟𝑚𝑎𝑥
𝑖𝐿𝑟(𝐷𝑇) = −𝑖𝐶𝑟(𝐷𝑇+) = 0𝐴

𝑣𝑜(𝐷𝑇) = 𝑣𝑜𝑚𝑖𝑛

𝑖𝐿𝑚(𝐷𝑇) =
𝑖𝐶𝑟(𝐷𝑇−)

𝛼
= 𝑖𝐿𝑚𝑚𝑎𝑥

  

Unfortunately, the author is not able to get a solution of the system. Not considering iLm(t) (and R) makes 

it possible but, since the expressions would be quite approximate, only iCr(t) is reported, whose resonance 

frequency is used for the design of the converter: 

 𝑖𝐶𝑟(𝑡) ≈ √
𝐶𝑜

𝐶𝑜+𝐶𝑟(1+𝑚)2
√
𝐶𝑟

𝐿𝑟
((1 +𝑚)𝑣𝑜𝑚𝑖𝑛 − 𝑣𝐶𝑚𝑎𝑥)𝑆𝑖𝑛 (√

𝐶𝑜+𝐶𝑟(1+𝑚)2

𝐶𝑜

1

√𝐿𝑟 𝐶𝑟 
𝑡) (A10) 



 
 

APPENDIX B: conversion ratio inclusive of diodes’ forward voltage 

The average voltage on Lm during on/off-phase is 

 𝑉𝐿𝑚𝑜𝑛 = (𝑉𝐺 − 𝑉𝐶𝑟 − 𝑉𝑂 − 𝑉𝐷3)
𝑁1

𝑁1+𝑁2
 

 𝑉𝐿𝑚𝑜𝑓𝑓 = −(𝑉𝑂 + 𝑉𝐷1) 

with 

 𝑉𝐶𝑟 = 𝑉𝑂 + 𝑉𝐷2 +𝑚(𝑉𝑂 + 𝑉𝐷1) 

Flux balance on Lm brings 

 𝑉𝐿𝑚𝑜𝑛𝐷 + 𝑉𝐿𝑚𝑜𝑓𝑓(1 − 𝐷) = 0𝑉 

 (𝑉𝐺 − (𝑉𝑂 + 𝑉𝐷2 +𝑚(𝑉𝑂 + 𝑉𝐷1)) − 𝑉𝑂 − 𝑉𝐷3)
𝑁1

𝑁1+𝑁2
𝐷 = (𝑉𝑂 + 𝑉𝐷1)(1 − 𝐷) 

from which 

 𝑉𝑂(1 −𝐷 +
𝑁1

𝑁1+𝑁2
𝐷(2 +𝑚)) = −𝑉𝐷1(1− 𝐷) +

𝑁1

𝑁1+𝑁2
𝐷(−𝑉𝐷3− 𝑉𝐷2 −𝑚 𝑉𝐷1) +

𝑁1

𝑁1+𝑁2
𝐷 𝑉𝐺 

 𝑉𝑂(𝑁1+𝑁2 −𝐷𝑁2 +𝐷𝑁1 +𝑚 𝐷 𝑁1) = 𝑉𝐷1(𝑁1+𝑁2)(𝐷 − 1) − 𝐷 𝑁1(𝑉𝐷3+ 𝑉𝐷2 +𝑚𝑉𝐷1) + 𝐷 𝑁1 𝑉𝐺  

 𝑉𝑂(𝑁1(1+ 𝐷) +𝑁2) = 𝑉𝐷1(𝑁1(𝐷 − 1) −𝑁2) − 𝐷 𝑁1(𝑉𝐷2+ 𝑉𝐷3) + 𝐷 𝑁1 𝑉𝐺 

 𝑉𝑂 =
𝑉𝐷1(𝑁1(𝐷−1)−𝑁2)−𝐷 𝑁1(𝑉𝐷2+𝑉𝐷3)

𝑁1(1+𝐷)+𝑁2
+

𝐷 𝑁1 

𝑁1(1+𝐷)+𝑁2
𝑉𝐺 (44) 
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