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Summary

The following document is the summary of six months of work and experiments
conduced at Brown University Engineering Research Center under the weekly revi-
sion of the professor Iris R. Bahar. Hardware acceleration offers great flexibility in
terms of data reuse and algorithm implementation. This thesis proposes to import
into the FPGA world a high-level algorithm used to improve the reliability of the
convolutional neural network for robotics, in particular in the area of the object and
pose recognition. The thesis topic is to transpose the high level algorithm proposed
in the paper GRIP[1] in to a synthesizable circuit that can run on FPGA, especially
on Xilinx® Virtex UltraScale FPGA ZCU102 board, thanks to the Vivado® suite.
First of all, the original algorithm will be analysed to highlight the defects, in terms
of parallel computing, and the possible improvements. Secondly, a new computing
architecture will be proposed and developed to maximise the performance, pointing
out the data reuse inside the algorithm.

iv



Acknowledgements

I would like to offer my special thanks to Professor Andrea Calimera, my thesis
advisor at the Polytechnic of Turin, for giving me the opportunity to connect to this
project and to be always available for any reason.
I would like to thank Professor Iris R. Bahar, my thesis advisor at Brown University,
for accepting me, for the material she provided and for her infinite friendliness and
good sense.
A special thanks goes to my parent, who have always looked after me and given
me the opportunity to have great experiences during my life. Moreover, they have
always supported me in my decisions allowing me to grow day by day.
I am deeply grateful to my girlfriend Carla for the support she has offered me in
these almost seven years of relationship. She is a key point of my life and without
her I could not have discovered different realities and made difficult decisions.
I would like to thank the rest of my family which always believed in me and for their
unconditional love.
I would like all the fantastic people that I known during my university path that
actively contribute to let me be what I am now and who I will be.

Special thanks to :

Edoardo, Antongiulio and Marco to be the best roommates ever.

Beatrice, Valentina, Alessia and Daniele to the strong bond we have.

Andrea L., Andrea P. and Riccardo to be the perfect "guest" family.

Enrico, Francesco R. and Gregorio to the great memories we share.

Bruno, Nino and Martina, to be fantastic as they are.

Alessandra, Danilo, Diego e Nicola to the time, friendship, successes and trust
we shared.

Andrea C., Francesco S. , Manuel, Marvin and Massimiliano, to be the best
friends I could ever ask for.

v



Federico, Gabriele, Marco Ca., Marco Co. and Lorenzo, to share great time
spent together and to mutual support during this hard university career.

I would like to thank all my american’s friends Elahe, Yanqi Liu, Felipe, April,
Chris,Adriana,Eren Jiwon, Jarod , Jasmine and Brennan for the real good time spent
together and the friendly atmosphere. I am particularly grateful for the assistance
given by Yanqi Liu (J.), especially for the time and the afford that she gave for this
project, to Elahe for being so helpful even when we didn’t know each other.

Giuseppe Calderoni

vi



Contents

Summary iv

Acknowledgements v

I Introduction 3

1 Introduction 5
1.1 The problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 The paper aim . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.3 The main algorithm explained . . . . . . . . . . . . . . . . . . 7
1.1.4 This project goal . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.5 GANTT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Preliminary work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1 Where we can improve . . . . . . . . . . . . . . . . . . . . . . 11
1.2.2 New hardware architecture . . . . . . . . . . . . . . . . . . . 13

II Thesis background 15

2 Data driven algorithms 17
2.1 AI, artificial intelligence . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.1 ML, machine learning . . . . . . . . . . . . . . . . . . . . . . 19
2.1.2 DL, deep learning . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.3 CNN, Convolutional Neural Network . . . . . . . . . . . . . . 22

2.2 Particle filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 FPGA, field programmable gate array 27
3.1 Why choose it . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 What is it made of . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

vii



4 Hardware Description Language and High Level Synthesis 33
4.1 Vivado HLS vs software development . . . . . . . . . . . . . . . . . . 34
4.2 Vivado HLS Workflow and Synthesis . . . . . . . . . . . . . . . . . . 35

4.2.1 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 # pragma HLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.1 PIPELINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.2 Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.3 Loop merging, flattening and latency . . . . . . . . . . . . . . 38
4.3.4 Unroll, allocation and function instantiate . . . . . . . . . . . 39
4.3.5 Array partition, reshape and map . . . . . . . . . . . . . . . . 40
4.3.6 Dataflow and stream class . . . . . . . . . . . . . . . . . . . . 41
4.3.7 Custom FSM . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 I/O handshakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.1 Block-level interface . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.2 Basic port-level interface . . . . . . . . . . . . . . . . . . . . 46
4.4.3 AXI4 port-level interface . . . . . . . . . . . . . . . . . . . . . 47

5 Random number generators 49
5.1 Linear feedback shift register . . . . . . . . . . . . . . . . . . . . . . . 50
5.2 Box Muller Transformation . . . . . . . . . . . . . . . . . . . . . . . . 52

6 3D Graphic Pipeline 55
6.1 Rigid body transformation . . . . . . . . . . . . . . . . . . . . . . . . 58

6.1.1 Three dimensional translation . . . . . . . . . . . . . . . . . . 58
6.1.2 Three dimensional rotation . . . . . . . . . . . . . . . . . . . . 59
6.1.3 Three dimensional scaling . . . . . . . . . . . . . . . . . . . . 62
6.1.4 The camera matrix . . . . . . . . . . . . . . . . . . . . . . . . 62
6.1.5 The projection stage . . . . . . . . . . . . . . . . . . . . . . . 62
6.1.6 Back-face culling and clipping . . . . . . . . . . . . . . . . . . 64

6.2 Rasterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2.1 Depth Interpolation . . . . . . . . . . . . . . . . . . . . . . . . 70

III Thesis implementation and results 73

7 Hardware Implementation 75
7.1 Essential memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.1.1 Fixed point . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.1.2 Design Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.2 Neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.2.1 DPU MODULE . . . . . . . . . . . . . . . . . . . . . . . . . . 80

viii



7.3 Post-process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.4 Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.5 Render, Inlier and Re-sampling all together . . . . . . . . . . . . . . . 96

7.5.1 Optimisations inside the architecture . . . . . . . . . . . . . . 97
7.5.2 The full transformation matrix chain . . . . . . . . . . . . . . 101
7.5.3 GPU and INLIER . . . . . . . . . . . . . . . . . . . . . . . . 103
7.5.4 Re-sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.6 Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.7 Hardware and power consumption . . . . . . . . . . . . . . . . . . . . 118
7.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Bibliography 123

A CNN with tensorflow 125

B Second stage full algorithm 127

C Second Stage Code 129

ix



Listings

4.1 Pipeline example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 FSM TOP example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 FSM example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4 enum example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5 enum example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.1 LFSR example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Box Muller example . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.1 Simple Bresenham algorithm . . . . . . . . . . . . . . . . . . . . . . . 65
7.1 Model memory addressing . . . . . . . . . . . . . . . . . . . . . . . . 76
7.2 BoundGenerator example . . . . . . . . . . . . . . . . . . . . . . . . 89
7.3 Bound Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.4 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.5 Sample Memory fill . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.6 Angle generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.7 Depth distribution pseudo code . . . . . . . . . . . . . . . . . . . . . 105
7.8 Weight merger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
A.1 CNN example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
B.1 Complete Second Stage algorithm . . . . . . . . . . . . . . . . . . . . 127
C.1 CSN initialiser example . . . . . . . . . . . . . . . . . . . . . . . . . . 129

x



Water is fluid, soft, and yielding. But
water will wear away rock, which is rigid
and cannot yield. As a rule, whatever is
fluid, soft, and yielding will overcome
whatever is rigid and hard. This is
another paradox: what is soft is strong.

-Lao Tzu



Thesis structure
This short summary has the aim to describe briefly the content of each part :

1. In this first part the original paper is presented and explained. The main
goals of the thesis will be described , the organisation to reach them will be
developed and from the analysis of a simple version of the algorithm the main
bottlenecks will be pointed out.

2. Background research : artificial intelligence, random number generation, 3D
graphics, tools and FPGA.

3. The last part shows the hardware implementation, with a description of all
the sub-modules, and the main results will be presented.

Acronym

• NN : Neural Networks.

• CNN : Convolutional Neural Network.

• SMC : Sequential Monte Carlo Method.

• 3D : Three-dimensional.

• FPGA : Field Programmable Gate Array.

• HW: Hardware.

• IC: Integrated Circuit.

• ASIC: Application specific integrated circuit.

• NRE: Non-recurring engineering cost, which refers to the one-time engineering
cost, as research, design, develop and test a new product.

• CDF : Cumulative density functions
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Introduction





Chapter 1

Introduction

1.1 The problem
Nowadays, thanks to machine learning, robots are even more integrated into our
lives. The demand for an autonomous scene understanding, even in complex envi-
ronments, is considerably increasing.

To get a reliable understanding of the scene and, consequently, a right manipu-
lation of robots in unstructured environments, according to the state of the art for
artificial intelligence, is still a challenging problem.

The main cause of error in these systems lies precisely in unconditional trust to
neural networks and specifically due to their inability to recover from false positives.
In a real scenario, complex and adversarial environments, such as poor lighting
conditions, opacity, occlusion and noise, makes them more vulnerable to errors.
There are neural networks, like PoseCNN, able to guess the position of the object and
its pose, but they suffer from the same problems described above. This weakness,
instead, is the main ability of the probabilistic inference. Combining both methods
it is possible to strengthen the robot’s perception of the surrounding environment
and correct the errors produced by CNN.

1.1.1 The paper aim

The paper GRIP[1] proposes to correct the weak points of NN problem with a
two-stage approach, combining and getting the best from both generative and dis-
criminative inference.

The input , coming from a RGB-Depth camera with a resolution of 640x480,
is directly feed to the first stage, a convolutional network. The latter provides, as
output, the probability, for each object class, for a specific bounding box . The
latter is transformed through a post-process algorithm to a bidimensional heatmap
of likelihood. Moreover, to reduce false-negative cases the output of the network
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1 – Introduction

is also not hard thresholded. After, the second stage, which is a SCM or better
known as Particle Filter, has the task to find the 6DoF of the object under test, by
comparing the object’s point cloud to the depth one. Although the second stage has
the capability to find the pose of the object without the help of first, the execution
time and the computational cost increase dramatically. The process is iterative and
its ending is defined by the reaching of a certain number of iterations or a specific
level of confidence. A further characteristics, which reduces the false positive, of the
second stage is that it does not restrict its searching space only on the result of the
first one.

As it is possible to notice from what described before, the main task of the first
stage is to restrict the research area by locating them in the image and generate
information, probability, about which objects are inside the scene.

In the original paper, the code was written to be executed partially on a GPU
thanks to the API Nvidia® CUDA. To find the final pose a realistic model, in terms
of physical dimensions, of the object under test is used to be compared with the
depth scene. The architecture SIMD allowed the executions of multiple particles,
625, to improve the processing speed.

1.1.2 Taxonomy

Across the thesis, some words can show a specific or slight different meaning respect
to its common one. To provide a clear understanding of the process is important to
explicitly describe the sense of special keywords :

• Bounding Box: is a rectangle, defined in pixels, which bounds a portion of
the input image

• Heuristic: It is the corresponding volume for a bounding box. In the algo-
rithm, it is used to reduce the possible space in which the object could be.

• Heatmap: Two-dimensional probability distribution organised as an image,
in which each "pixel" represent a bounding box in the original image. In this
project the number of layers used is three, as like the image scale used.The
first stage produces a raw version of the heatmap, which will be refined before
starting the second stage.

• Pose : In robotics, or broadly speaking in computer vision, the position in
the space of a body can be described by three angles (roll, pitch, yaw) and
three space coordinates (x, y, z).

• Sample or particle: It is a specific pose of the current object under test.

6



1.1 – The problem

• Base frame : It is the point of view of the robotic arm in the rest position.
This reference system is different respect to the camera frame, our input point
of view.

• Point cloud: A collection of point in the space, which describes an object or
a scene.

• Inlier: It is a value that specifies how much a object’s rendered pixel is close
to the depth information, inside the scene.

• Weight: It is a the final value that characterises how similar is a sample
respect to the depth image and it is used to classify the particles during the
particle filter.

• Absolute index: it refers to the index of the heatmap memory.

• Relative index: it refers to the index of the sample memory.

• Diffusion: It means to generate new poses close to the most plausible by
adding a noise in their parameters.

1.1.3 The main algorithm explained

Since the final purpose is to identify the presence of specific objects and their spatial
position respect to the robot a double analysis stage is used. Figure 1.1 represents
the particle filter operations in detail:

1. The a preliminary step consist to feed the input frame to a pyramid convolution
neural network, which will analyse the image in several scales and provide, for
each of them a raw heatmap.

2. The output from the first stage is transformed into a bi-dimensional probability
distribution by applying a normalisation across the three heatmaps.

3. The bounding boxes with the depth image are used to generate the heuristics.
After, the heatmap is sampled with an importance sampling, to pick “high”
confidence bounding boxes. the latter are used to generate the samples in the
right location thanks to the heuristics.

4. Now that the samples are defined, the second stage can starts by comparing the
particles with the depth image and classified them according to the similarity.

5. According to the output weights, the particles are sorted and filtered out from
the particle filter.

7



1 – Introduction

6. If the most likely sample triggers the output condition of the algorithm every-
thing finish, if not a new iteration is executed. For the latter condition before
restart there is the need to repopulate the sample array with diffused particles.

Figure 1.1: Flowchart of the second stage used in the GRIP paper.

1.1.4 This project goal

The programmable logic allows reaching the same performance or higher than GPUs
thanks to the higher flexibility in terms of fast architecture exploration and easy
testing. Unfortunately, the clock frequency is drastically different and to compensate
this problem custom parallelism, concurrent modules, custom pipeline, special data
type design and strong local data usage must be adopted to increase the performance
keeping lower the power dissipation. The main goal will be to rethink the algorithm
itself instead of a classical transposition to archive better results.

1.1.5 GANTT

A GANTT diagram is a specific type of diagram used to organise and represent the
evolution of a project. Planning the time slots for each topic is essential in real
projects, and this approach will be also applied to this paper.

• 15th - 16th May :Arrival in Boston and accommodation

8



1.2 – Preliminary work

• 17th - 20th May: Getting to know the city, the professor and the various
colleagues.

• 21st - 31st May: Understand the status of the project, begin to analyze it and
become familiar; with various tools.

• 1st - 30th June : Study the potential of the Vivado HLS compiler and perform
experiments.

• 1st - 20th July: Complete the basic version of the program and analyse possible
problems.

• 21st - 31st : July: Complete a first module in two different versions to un-
derstand the potential and the differences (one performed with finite state
machines optimised and the other through Dataflow).

• 1st - 13rd August : break.

• 14th - 31st August : Bibliographical research.

• 1st - 30th September : Creation and optimisation of the individual modules .

• 1st - 24th October : Implementation and testing of the individual modules
with an incremental approach.

• 25th - 27th October : Return to Italy.

• 28th October - 15th November : Thesis writing.

• 16th October - 20th November : Presentations and refinements.

1.2 Preliminary work
As said before, paragraph 1.1.4 , this thesis aims to rethink the algorithm initially
developed to run on a PC/GPU platform. To attack the problem the algorithm
will be deconstructed in small independent modules and reassembled in a complex
architecture. To reach the goal a first hardware architecture was developed to un-
derstand and analyse which data, including their type, and operations truly matters
and which partial results can be "recycled" among the same and across different
mathematical operations, to reduce redundant calculations.

The base version was able to execute the same algorithm proposed by the GRIP
paper. Even if both of them are realised in C++, the original one uses a very high
level of abstraction and custom libraries, while the newer version does not. To find

9



1 – Introduction

Figure 1.2: GANTT of this 6 months project

the shareable resources and bottlenecks the project was decomposed in a hierar-
chical view and analysed individually. The decomposition made the preliminary
analysis easier and gave a broad view of which processes can happen concurrently.
Furthermore, this modular approach, instead of a monolithic one, made easier the
incremental testing, upgradability and individual optimisation.

The FPGA model used is Xilinx® Virtex UltraScale+ FPGA ZCU102 board,
which include a external micro-controller supported by a OS, based in Linux, in
which the data transmission is assisted and the interfacing with the robot is sup-
ported. The tool used to develop the system will be the followings :

1. Vivado HLS : a tool provided Xilinx® capable to convert C/C++ code to
HDL, especially VHDL and Verilog.

2. Vivado : a tool provided by Xilinx® capable to interface with the FPGA,
generate the bit-stream, route and program it.

3. Vivado SDK : a sub-tool used to program the micro-controller inside the
FPGA, Zynq.

Difference respect to the GPU implementation
The preliminary version was developed with the following differences respect to

the original :
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1.2 – Preliminary work

• To execute the inlier function a slimmed-down rendering stage was developed
to perform the object rasterization on the FPGA.

• The current algorithm do not more generates point clouds from depth image
of the observed scene and the object model separately and then thresholds the
Euclidean distance between the points in the two point clouds but analyse just
the depth difference for all the useful pixels, if it is less than 5 mm that pixel
is count as an inlier and increase its score by one.

• The generation of random numbers happen inside the FPGA

A more complete view for the second stage can be seen in the appendix B.

Computational complexity of the second stage

Fig.1.3 shows a summary of the computational complexity in terms of loops.

1.2.1 Where we can improve

From the base implementation of the basic version is possible to state that the
algorithm itself is a bottleneck for FPGA implementation :

1. Only one object at time

2. Only one Sample at time

3. Only one Triangle at time

4. No Pipeline or effective structure for rasterization

5. No Pipeline for objects

6. No back-face culling in the rasterization

7. A lot of data transfers

8. No optimisation on packing the information

9. No optimisation for speed and area

10. Monolithic Design hard to reuse

11. Serial approach in most of the operations

11



1 – Introduction

Figure 1.3: The algorithmic point of view with top computational complexity.

12. Current implementation uses C standard library to generate uniform random
number

13. ROMwith 1000 samples of normal is distribution is indexed by random number
from the uniform random number to emulate random number generation from
normal distribution

14. Floating point calculations

After performing the tests needed on the basic version, the major delays occur
due to the sorting algorithm, the rendering, the comparison with the depth map

12



1.2 – Preliminary work

and finally the resampling stage. Even if the mathematical operation happens in
parallel, this algorithm will not implement well in HW because the flows needs
specific information before continue. The design is running on a 100MHz clock.
The FPGA performs poorly in comparison in the rendering because it processes

cycles Rendering Inlier Function
GPU 3600000 31830000.0
FPGA 19000000 5451062.5

FPGA/GPU 5.278 0.171

Table 1.1: Performance GPU vs FPGA

each sample sequentially while the GPU renders all 625 samples in parallel. It does
better calculating the Inlier function because it’s only going over the bounding box
and the calculation is reduced to a 1D analysis.

1.2.2 New hardware architecture

As a first step the problem was broken down in a hierarchical manner and con-
sequently each sub-module was analysed individually, broken down again and re-
elaborated with a specific architecture to archive minimum delay, less computations
and lower memory usage, when possible. Since the algorithm itself is iterative, its
not possible to parallel macro operations, the architecture development will focus
on merging the operations and the creation of a set of systems that are self-sufficient
and optimised. Moreover, the architecture is developed for architectural flexibility,
which means that modules can be deployed and called independently. This ap-
proach allows a RTL level system construction and makes easier the testing inside
the board.

A general view of the architecture developed is shown in Figure 1.4.
To achieve real-time processing the rendering process and the inlier functions are

merged and a multi core rendering system. The transposition from floating point to
custom fixed point reduced the hardware and power consumption with the decrease
of the II. A faster, pipelined fixed-point matrix multiplication unit, reduction in
memory on the FPGA used for particle-wise comparisons in the inlier function, and
developing a new diffusion step to process samples quicker each iteration. About the
sorting a custom, small memory usage, sorting network was developed and divided
in individual modules to sort in the real-time as output for the inlier function is
performed.

Broadly speaking, the whole project was developed in terms of data packets. Like
in serial transmission, each data packet is redirected to the correspondent module
and processed online while the processing element reads the next input. The figure

13



1 – Introduction

Figure 1.4: General architecture

7.1 shows the design flow used during the project design and testing. Image 1.6 and
1.5 are the result of the stage.

Figure 1.5: Scene and object model in the right pose, part 1

Figure 1.6: Scene and object model in the right pose, part 2
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Chapter 2

Data driven algorithms

In an increasingly evolved world, full of complicated requests is necessary to have
systems capable of interacting with non-standard and evolving environments. In
recent years a gradual return to the use of neural networks, and more generally to
artificial intelligence, was possible thanks to the availability of computational power,
investments, by great giants of the SMART world, and by the improvement of the
base algorithms used to built up this type of system.

Figure 2.1: Performance of Deep Learning vs traditional algorithms according to
the input size[5].

Being a data driven system means that the problem does not need a real for-
mulation, rather it needs consistent data, which have to contain a good amount of

17



2 – Data driven algorithms

content and quality of information, to be processed. Artificial intelligence, in its
more generic view, is able to solve strongly non-linear problems typical of the mod-
ern world, like " Big Data " or biological mechanisms . What will follow is a brief
description of the concept that stands behind this argument.

2.1 AI, artificial intelligence
It is a generic term that indicates any program that can imitate the cognitive abil-
ities, often associated with human beings. These skills are extremely important in
the field of problem solving and learning. In general, therefore, an artificial intelli-
gence builds in itself a set of generalised concepts that are used to solve a specific
task according to the scenario. Although the possibilities and the results that can

Figure 2.2: This figure shows the hierarchical order of the groups under the AI
concept.

be archive with the use of AI surprise, they are not perfect yet. The type of arti-
ficial intelligence that the scientific community is mainly developing is also called
"weak or narrow AI"[2]. This kind of AI is able to recognise patterns similar to the
ones given during training period and classify the new ones in predefined categories.
While, true artificial intelligence, the one specifically called "strong AI" is able to
use "association" to process data, resulting to be more robust when subjected to
adverse scenes, such as changes in light, opacity and occlusions. For the narrow AI
this lack prohibits / restricts intensive use in complex environments.
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2.1.1 ML, machine learning

Also known as Automatic Learning, it is a system capable of performing an oper-
ation without having been explicitly programmed, but it uses statistical methods,
such as inference, to progressively improve the quality of execution. Each input is
characterised by attributes, which can make sense to humans : " height ", "weight",
"forecast conditions" and etc... and the system learn how to classify them. The pro-
cess of feature extraction is often performed by humans, and is fundamental for the
classification stage, 2.3. At the end of the development the aim is to built inside the
machine an efficient mathematical model of the process under test, just by looking
at the data. The general approach to create this type of machine usually consist to
take the available data set and split it in two parts : training, supervised or not, and
testing. The first is used to adjust the relative importance of each characteristic,
while the second one is used to measure the performance and accuracy. Since the
technique used to extract of characteristics and quality of a population is the sta-
tistical inference , the training set should contains non-redundant and informative
data.

Figure 2.3: ML : features are extracted separately from the elaboration engine

What follows is a brief overview on how some of the ML models look for the
"classification" :

• Logical models It’s a type of module that use logical expressions to divide
the input into segments and construct group models. Logical models can be
listed in two major class:

– Tree models : a tree graph is constructed to provide the relative proba-
bility according to a certain classification.

– Concept learning : each attribute has a weight, without giving the sense
of bad and good and the machine learn to recognise them by itself.

• Geometrical modelsDifferently from logical expressions a geometrical model
look at the features inside a geometrical dimensions, even if the attribute is
not intrinsically geometric the importance is that it can be modelled to be
like. With this kind of system the classification can be done with curves, 2D
plane, surfaces, 3D space or distance measurement.
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• Probabilistic models and deep learning These models use the probability
of an event to classify new inputs. Broadly speaking exists two classes of
probabilistic models :

– Predictive : uses the conditional probability to predict an output accord-
ing to a certain input.

– Generative : estimate the joint distribution between the input and the
output.

2.1.2 DL, deep learning

It is a subclass of machine learning, which means that everything mentioned above
is also related to this subset. The peculiarity of this class is its ability to obtain the
feature extraction of the objects during the training phase. These features, almost
completely obscure to the programmer, will be used for classifying the input during
the test phase. To emphasise the difference with machine learning, we can say that
deep learning finds by itself the characteristic that serves to classify an element,Fig
2.4, while the machine learn needs an "external body" to indicate it,Fig 2.3. There
is also a great difference in the number of data needed to grow and generalise a
deep learning algorithm respect the case of machine learning. A further important
information belongs to the taxonomy, because a neural network class is defined
according to its depth, the number of hidden layers. If the latter is greater than one
its name becomes DNN, deep neural network.

Figure 2.4: DL : the feature extraction happens intrinsically

The main tool of deep learning is the ANN, Fig 2.5 and eq 2.1, the artificial
neural network, which has the ability to imitate / approximate any equation, f(xi) ≡
ANN(xi) .

outk = φ(
∑N

i=0wi ini),
φ Activation Function

(2.1)

This ability can be interpreted as a derivation of the universal approximation theo-
rem [6] or can be related to the study of probability, in particular Bayesian inference
[7]. In the probabilistic case, the behaviour of the neural network can be interpret
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Figure 2.5: Structure of a neuron

as a hypothesis generator, with a certain level of trust, conditioned by the current
level of knowledge. This value changes according to the data in possession and can
be described precisely by the Bayes theorem, eq.2.2.

P (A|B) =
P (B|A)P (A)

P (B)
(2.2)

A probability distribution generated by the available data makes possible to formu-
late hypotheses on a given subgroup of phenomena. This value converges to the
real value if the number of elements used to create the distribution contains a rep-
resentative number of the entire population. Anyway in order to try to avoid the
over-fitting of a characteristic exists several methods as the Dropout. During the
training process in order to avoid the over-fitting of a batch, randomly across the
epochs, some neurons are disabled. This method mimic the ability of our brain to
have only a part of the overall neuron specialised to execute a certain function or
recognise specific features.

The DL class has other very special property respect to a generic element of
the AI world. Neural networks are capable of processing unstructured data such
as sounds and images, respectively RNN (Recurrent Neural Network) and CNN
(Convolutional Neural Network), extracting relevant information about them. Un-
fortunately, this capacity is offset by the power consumed due to the huge amount
of computations.
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2.1.3 CNN, Convolutional Neural Network

A particular interest in this project lies precisely in the convolutional of neural
network, since it is capable of extracting information from extremely dense objects
of information such as images, in fact it is extremely used in the area of computer
vision. The model itself is developed based on the biological process that occurs
in the visual cortex : edge detection and space localisation. Unlike a classic neural
network, where each neuron is connected to all the others to form the next layer
(fully connects layer), in CNN only sub-portions of neurons are connected to each
other. The structure consists in four key elements : Convolutional layer, Non-linear
calculation unit, pooling and Classification or/and segmentation.

• Convolutional layer: It has the task of dividing the image into small frag-
ments and transforming the input them thanks to the presence of specific
filters, better known as kernels. In itself, if the mathematical convolution op-
eration consists in the integral of the product between two signals, in which
one of them is translated within the integration domain. What really hap-
pens in this level is more like a cross correlation, which is extremely similar
to convolution but conceptually different. In fact, the correlation represents
a signal filtering operation while the cross-correlation represents a measure of
similarity between the two signals, [8].

Convolution : (f ∗ g)(t) =

∫ +∞

−∞
f(τ) g(t− τ) dτ (2.3)

Cross− Correlation : (f ∗ g)(t) =
∫ +∞
−∞ f ∗(τ) g(t− τ) dτ,

f ∗(τ) is the complex conjugate of f(τ)

(2.4)

In the two-dimensional case, cross-correlation occurs through the use of a
reference matrix called the relatively small N ∗ N kernel, like a Sobel one,
that is scrolled on the image under analysis with a specific step, also called
stride. In itself though this stage consists of a scalar product stage between
matrices,fig 2.6.
Each kernel, which scans the input image, produces a matrix called "feature
map".
The difference with the convolution in 2D is just that or the kernel or the
output image is flipped, increasing the overall complexity.

• Non-linear calculation unit: Represents in itself the learning unit, the
neuron, which calculate a "weighted sum" of its input and apply an activation
function. This functions serves as a decision-making module. Selecting one
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Figure 2.6: Creation of the feature map, cross-correlation operation.

type of activation function with respect to another alters the computational
cost during the image analysis process. The most common are ReLU, Sigmoid,
softmax and hyperbolic tangent.The neuron is capable of recognising complex
patterns.

• Sub-sampling unit : It is also known as Pooling layer, makes the machine
tolerant to geometric variations. This level reduces the size of the cross-
correlation output matrix by combining multiple results from the same region.
There are different methods of compression but the two simplest and most
famous are the average and the maximum, where respectively the average is
performed or the maximum is taken.

Figure 2.7: Feature matrix compression.
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• Classification or/and segmentation The last stage of a CNN can be an
FCL, a fully connected layer, which classifies the image within a series of pre-
defined classes or a convolution layer,in which the kernel used is a 1x1 matrix.
In the latter case, each pixel is classified by generating a mask that segments
the various objects recognised in the input image. Due to the use of only con-
volutional layers the network takes the name "fully convolutional network".
An example can be found in appendix A, it’s a CNN with two layer of convo-

Figure 2.8: Difference in the output according to the last layer.

lution, two non linear calculation, two dense layer of neurons that converge in
ten classes of classification. This method of visual recognition already in 2015
exceeded the human capabilities as can be seen from the image 2.9.

Figure 2.9: Neural network across the time versus human ability[9].
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Pyramid Network: This particular type of CNN simply analyses the image in
different resolutions. Changing the resolution involves a compression and therefore
a loss / alteration of the information contained in the initial image. This means
that some features are deleted, while others continue and persist becoming more
pronounced. The neural network generates a series of bi-dimensional output , which
contains the probability for each element in each bounding box for the different
scales.

2.2 Particle filter
The Particle Filter is a method based on a predictive analysis and the estimation of
internal stages in a dynamic system, when only partial information is available on
it. This method can be applied if the process in question is a Markovian one, its
future state depends only on the stage immediately present and not on the entire
history of the system,[10]. In general particle filter can be used for a several task
like localisation, SLAM or Fault Diagnosis. The goal of this stage in this thesis will
be to determine the position in space (6DoF) through the following steps.

1. Initialisation of the samples/particles From the multiple probability den-
sity maps coming from the first stage the "importance sampling" method is
applied,[11]. This sampling technique is a method for estimating the properties
of a specific distribution having information from other distributions related
to them. In this case the process consists in the creation of the normalised
cumulative sum among all the distributions in possession. Once this new dis-
tribution is found, a uniform sampling is used to select the initial samples.
Importance sampling is often used in Monte Carlo methods to reduce vari-
ance, since if a sample is more important with this method it will be selected
more often in the sampling phase.

2. weight calculation In this stage the wanted object is rendered within the
scene. In the paper version, this process takes place in 3D with the ICP
algorithm, while in the HW version the analysis is reduced to the evaluation
of a single dimension, the depth. In general, this stage calculates the geometric
distance between the rendered object and the one present in the scene and if
this value is less than a certain value we consider this measure satisfactory
and assign a value. Each sample subjected to this stage will be assigned a
"weight" related to the number of matches with the actual depth.

3. Importance Resampling For the selection of the sample to be introduced
in the next cycle the same sampling process used in the initialisation stage is
used with the only difference that in this case each sample is ordered according
to its weight.
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4. Diffusion To get more information from the next cycle we introduce some
disturbances on the current samples, thus removing the redundancy in the
set of samples. The types of noise introduced are of Gaussian type with zero
mean and variable time variance and are applied to the position of the 3D
model, partially alternating its 6DoF. Furthermore, the disturbance to the
pose reduces

5. Check the convergence The process iterate till we found a value with an ac-
ceptable level of confidence, customisable, after that a new object is processed.
In order to avoid endless run a maximum number of iterations is set.
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Chapter 3

FPGA, field programmable gate
array

The field programmable gate array is a specific type of IC able to be "programmed"
according to the algorithm wanted. The FPGA , instead of using a fixed system ar-
chitecture to perform predefined commands or operation as like the CPU, it consists
in a grid of programmable logic connected via re-configurable connections, allowing
the IC to be whatever needed: microprocessor, mathematical accelerator, graphic
unit, digital filter or all of them concurrently.
Nowadays, the develop of a FPGA system takes always less time also thanks to the
integration of third part cores.

3.1 Why choose it

The FPGA design compared to the ASIC for the production of a system shows dif-
ferent pros and drawbacks.
Referring to image 3.1 the FPGA in terms of entry cost, prototyping, time to mar-
ket and NRE it drastically overcame the ASIC production. The main reason why
it allows faster prototyping is that the synthesizable logic can be tested and imple-
mented in the short term, allowing to work on the analogue and "software" parts
concurrently
On the other hand, in terms of power consumption, analogue customizability, per-
formance, clock speed, size and high volumes production the ASIC design provides
the best.
As final consideration, with the programmable architecture is possible, differently
form the ASIC design, updated the machine with new algorithms to solve bugs not
visible in the test phase, to adapt to new standards or to reconvert it to execution
different tasks.

27



3 – FPGA, field programmable gate array

Figure 3.1: FPGA and ASIC cost vs volume, from [3] .

3.2 What is it made of

The fundamental building blocks of any FPGA architecture are LUTs, FF, I/O and
programmable interconnections. In modern systems, there are also other compo-
nents such as BRAM, High-Speed serial Transceiver, Off-chip Memory controller
and DSP. These elements have been introduced to improve the interfacing and per-
formance of the IC.

Figure 3.2: Modern architecture from Xilinx ®[15].
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• LUT (look up table) and DSP

It is the basic building block and therefore simpler block that can be found
in architecture. The implementation of this block occurs through the use of
multiplexers and re-configurable bits. In general, data x input the number of
addressable cells is equal to 2x and consequently, the number of representable
logic functions is equal to 2(xx).
FPGA, due to its degree of elasticity and parallelism, lends itself very well
to running signal processing algorithms. These methods use elements called
MAC intensively, that is multiply and accumulate, and logic functions/pattern
detector. For this reason, in modern FPGAs, there are specific blocks capable
of performing this operation called DSPs,[14].
They are characterised by a pre-adder, a multiplier, a second logic lock that
can function as an adder/logical operator and a pattern detector.

Figure 3.3: DSP48E2 functionality, from [14].

• FlipFlop, slice and BRAM

The flip-flop is the simplest synchronous memory block that can be found in-
side an FPGA. If grouped together to contain information whose number of
bits is greater than one, the FF vector, takes the name of Register.
Flip-flops coupled with LUTs and multiplexers form a slice, which is the funda-
mental block of the FPGA. These modules provide the elasticity in the pipeline
and storing processes, typical of these ICs.
Furthermore, inside the FPGA, there are blocks of integrated memory, with
random access, called Block RAM (BRAM). In the specificity, the type of
BRAM present in the architecture of the VCU102 is a re-configurable 18K
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block formed by two 9K blocks.
The 18K module, therefore, has 4 ports and can be configured to store infor-
mation in the following sizes and access types: 16K x 1, 8K x2, 4K x 4, 2K x
9, 1K x 18 (M cells x bits) as True Dual port (RW / RW for each port) or 512
x 36 as Simple Dual-port (RO / WO),[13].

Figure 3.4 is a screenshot of a real floorplan, in which are present several slices,
DSP and BRAM.

Figure 3.4: Floorplan FPGA ZCU 102.

• Connections and Partial Reconfiguration

The re-programmable connections are the second strong point of the FPGA
because through a series of programmable channels and exchange centres/n-
odes, implemented as pass transistors, it is possible to arbitrarily connect the
various slices.
Another capability of the modern FPGA is partial reconfiguration. If an ex-
ternal/internal processor is connected to the PL is possible to load/substitute
part of the logic inside the module, these changes can be made without stop
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the current ones.
This is possible just by load pre-compiled partial bit-stream files, exist certain
design criteria to respect to use this property as like that the clock in that
region must be static and not change between the various interchangeable
modules.

Figure 3.5: Reconfiguration process.
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Chapter 4

Hardware Description Language and
High Level Synthesis

In the past, when the digital design was very simple due to the low number of
transistors inside the silicon portion, routing between the various components was
done manually. Today, due to the needs of the market and the drastic reduction in
the size of transistors, the digital design requires the development of devices that
consume and cost less, but able to integrate and do more, making it impossible to
perform routing manually. To contain this problem, hardware description languages
, HDL, have been invented, such as VHDL and Verilog, provided to transform this
process into a simple, clear, precise and formal language. This type of description
allows the creation of a "netlist" that can be used by other programs, such as the
engine of the place and the path.

HDL provides to design an RTL block, record the transfer level, in three ways:

• behavioural: describing the behaviour of the RTL block through the descrip-
tion of the process

• dataflow: describes the behaviour of the RTL block describing the logic circuit
at the level of logic gates

• structural: describes the behaviour of the RTL block through the connection
between blocks

This hardware description makes possible to create increasing complex and per-
forming architectures, also, thanks to the possibility of reusing elementary blocks
for multiple projects.

As mentioned above there are many engines capable of taking the netlist pro-
duced by the compiler and performing an auto routing or simply helping the designer
during this phase. In general HDL languages can be used both for the description of
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hardware for ASIC or FPGA. Precisely for this latter, thanks to its re-configurable
architecture, HDL lends itself perfectly to prototyping making it an increasingly
widespread system.

With the introduction of high-level synthesis, HLS, a subsequent step of abstrac-
tion is made, with respect to an HDL project. This step makes hardware design
even simpler because it allows the designer to focus on the algorithm to be imple-
mented and not only on the single register. However, HLS makes it possible to
maintain extremely customizable hardware, through the use of a compiler instruc-
tion and consequently maintain a high efficiency from the circuit, shortening, even
more, the design and testing. The supported languages are multiple C / C ++,
System C, Matlab and Open-CL and most of their functions are synthesizable. This
tool, therefore, brings with it a greater speed in architecture exploration, portability,
simplicity in renewal and greater ease in debugging and post-analysis, thanks to the
availability of C / RTL simulators integrated into the system. What will follows is a
partial description of the functionalities used in the project, that are fully described
in the [4]

4.1 Vivado HLS vs software development

Vivado HLS developed and tested by Xilinx® allows to transform C, C++, or
SystemC projects in HDL code and simulate its RTL behaviour for most of the
common application. The purpose of this tool is to be able to describe a HW circuit
in a more flexible and maintainable way, which means that it has several limitation
respect to a simple program written for processor, as dynamic memory , pointer
limitation, recursion , system calls and virtual functions in C++ classes. As an
example Vivado HLS during the synthesis needs to now exactly which is the size of
every array because the concept of a dynamic memory has no meaning in hardware.
On the other hand, some of the constraints introduced by the C++ language, as
the fixed bits per type (int, char, etc ...), are useless and only degrade the possible
performance of a logic circuit. For this reason, Vivado HLS provides two libraries
to manage the arbitrary precision types of integers and fixed points so as to be able
to maintain the desired calculation resolution and manage the required hardware,
such as the number of DSP used or low level bit manipulation. What follows is a
list of optimised libraries provided by Xilinx®:

• Stream: describes the stream class that will be analysed later

• Math: contains synthesizable mathematical functions and this library is used
during C and C / RTL simulation to obtain accurate results.
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• xfopencv/video: it is a set of kernels optimised for FPGA based on OpenCV
and the Line-Buffer class for raster scanner algorithms typical of video pro-
cessing.

• IP: contains the C equivalents of the IP cores provided by Xilinx® such as
FFT, SSRFFT, FIR, DDS and shift register class

• Linear Algebra: like the IP library it contains a series of functions optimised
for the linear tree.

• DSP: contains mathematical functions optimised for intensive DSP use

• SQL: contains optimised functions the stream class to execute SHA224 / 256
and bitonic sorting.

4.2 Vivado HLS Workflow and Synthesis
The way of designing with Vivado HLS generally follows the following steps:

1. Pre-design: behavioural/algorithmic description of the module to implement,
set the timing constrains and consequently define the I / O and a possible
high-level structure.

2. Set the three fundamental constraints of the project: clock frequency, FPGA
model and frequency uncertainty.

3. Write, compile, execute and verify the behaviour of the program written in
C++ or high supported languages.

4. Apply directives to improve current the design, making it similar to the one
thought at the beginning.

5. Synthesizer the design and check the timing.

6. Check the conformity of the synthesised system through a C/RTL test bench,
if possible and in case of error correct the design.

7. Create the IP package and import it in Vivado.

To produce a correct design it is very important to understand how the compiler
creates the synthesizable code, because, although many processes are intrinsically
controlled and optimised, it is up to the designer to provide the right directives/in-
puts to the compiler. By default, what is produced by the tool is a data-path
controlled by an FSM, which reflects the behaviour of the code written in C++.
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The number of states varies according to the frequency of clk and as a consequence
also the generated data-path. By default, the type of coding for the finite state ma-
chine is "one hot", but it can also be set to graycode, binary and auto-optimisation,
which starts from one hot and performs optimisation of the states. Vivado HLS has
the ability to switch from FSM to micro-architecture if the number of states exceeds
a certain number and as every micro-architecture, it also will perform the optimisa-
tion of the lifetime of the variables to recycle hardware. These synthesizable codes
follow very specific standards:

• VHDL uses the IEEE 1076-2000 standard

• Verilog uses the IEEE 1364-2001 standard

Another feature of the tool consists in the creation of a set of drivers to con-
figure/interface with the generated module, also called IP block, from a micro-
controller.

4.2.1 Performance metrics

Almost all the synthesised logic is described by a series of fundamental parameters:

• Latency: how many clk strokes it takes to show the last value leaves the
function

• Initiation interval: indicates after how many clk strokes the synthesised ma-
chine is available to process another set of input

In addition to this RTL top level view information we have information on the
behaviour of internal logic such as:

• Complete loop latency: that is, how many clk it takes to place a loop let
go of its last value

• Cycle latency: that is, how many clock cycles it takes for a loop to be
complete

• Cycle initiation interval: i.e. how many clock cycles it takes for a loop to
accept a new data

Sometimes these parameters are replaced by "?", if special directives, as TRIP-
COUNT or LATENCY, are not added. For example in a loop with variable
length will not have defined the latency because it depends on a variable.
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4.3 # pragma HLS
After having described the behaviour of the circuit in c, it is important to proceed to
the optimisation of the circuit in terms of access to memory, dependency declaration,
throughput and parallelism. Each processing element generated in the top view can
be optimised independently of the others. To reach the wanted design Xilinx®

proposes a series of #pragma, or compilation directives, which serve precisely for
this purpose.

4.3.1 PIPELINE

It is a digital design technique similar to that used in modern processors to maximise
the throughput. Instead of waiting for II, the system will add in the correct position
a block called buffer, which is a register, across or among the code operations, to
process more inputs concurrently. This pragma can be applied both to at function
and at loops level, with the only difference that in the first case the pipeline is
executed forever while in the second case it lasts until the loop loads the last input.
Note for the function pipelined, if there are no more valid data the chain stops until
a new valid data arrives. To avoid unwanted pipeline stall we can specify the II to
be different from one.

• II : is a parameter of the pipeline pragma which allows us to control how
many clock cycles must pass before load a new value. This value is the most
important in a chain, because it guarantee that the chain is always full. If the
external world does not provide the correct timing for the function, bubbles
were introduced. These bubbles are just useless calculations and strongly
degrade the performance of a pipeline chain.

• Rewind: is an option of the pragma applicable if the function is called several
times, as in a loop, to superimpose different iterations so as not to have to
wait for the pipeline chain to empty.

• Flushing: This function, applied on a function, allows to become empty and
therefore to produce the desired results even if there are no valid input data.
This function is used extensively in the creation of state machines in vivado.

1 void burst_memory(volatile int * in){
2 #pragma HLS INTERFACE m_axi depth=depth_array port=in
3 #pragma HLS INTERFACE s_axilite port=return
4

5 int BRAM[depth_array ];
6 // creates a burst access to memory
7 //if the location is sequential
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8 for(i=0; i < depth_array; i++){
9 #pragma HLS PIPELINE II=1

10 BRAM[i] = in[i] + 100;
11 }
12 }
13 void adder(a_Data_T & a, b_Data_T & b , c_Data_T & c){
14 #pragma HLS PIPELINE II=1
15 c = a + b;
16 }

Listing 4.1: Pipeline example

4.3.2 Dependencies

This pragma is strongly correlated to the pipeline, because as in a processor, in
the moment a pipeline exist, will exist a dependence in the data inside the chain.
To have a working chain is very important tell to the compiler if exists or not the
dependence between several iteration or among the same. Typical dependencies
occurs if read and write operations are executed.

• Read After Write , RAW, a value calculated in the previous instruction is
used in the current.

• Write After Read , WAR, a value is overwritten in the current instruction,
but its original value was used in the previous operation.

• Write After Write, WAW, among different instructions the the value is
written and read, so that the chronological order matter.

The compiler can understand most of the time if exists and which type of de-
pendence occurs, but sometimes it can be too strict, creating false dependencies.
In case of loops if the dependencies belongs to different cycles, the selector "inter"
must be used, while if belongs to the same loop iteration "intra" must be adopted.
If the pragma dependence is used you must also specify if it the correlation is "true"
or "false".

4.3.3 Loop merging, flattening and latency

Loops are very used in logic, because allows to execute tasks in a periodic and
bounded way. By default to access and exit from a loop one clock cycle is wasted,
so two pragma exist to take care about that.
The pragma merging will merge different loops to decrease the number of clock
cycles. To merge two or more loops they must have bounded values, there must no
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FIFO access and multiple execution of the same loop must generate the same result.
If these requirements are fulfilled the compiler will generate a unique FSM with a
unique loop, which bounds depends on the longest loop.
As we said to pass from one loop to another a clock cycle is wasted, and this is also
valid for nested loops. Assume three loops nested named L3, L2 and L1 with the
same length N and assume that the inner loop operation takes only one clock cycle
to execute its body. We have for each loop one clock cycle to enter and one to exit,
that means that to enter in L1 and exit from L1 we lose 2N cycles. The same value is
also valid to enter and exit from L2, over all 4N2+2 are used to exit and enter in the
loops while only N3 were effectively useful.If the compiler is not able to merge the
loops code must be restructured or manually merged. The pragma flattening will
automatically collapse the three loops in just one. To respect timing and avoiding
to create bottleneck the latency of a function or a loop must be controlled. To take
this role is the pragma latency, which forces the compiler to archive the latency
wanted. The pragma can set to archive at max or at min a certain number of clock
cycles and can be applied both to functions and to loops with the only difference
that if it is applied in the function all the region stays under this rule while if it’s
inside a loop body only the latter is subjected to this rule.

4.3.4 Unroll, allocation and function instantiate

Controlling the hardware instantiate from the synthesizer is very important because
allows the designer to reach better performances. The pragma "unroll" is used to
create multiple instances of a body region, act like a "GENERATE" in VHDL. This
directive, used most commonly inside the loops, allows to reach lower latency at
the cost of more area, which means that must be used carefully. The parameter
that can be configured is the factor, which states how many instances must be
created, and according to its value we can have a loop that it is partially unrolled, if
factor is different from the number of iteration, or fully unrolled, in which factor is
equal to the number of iteration. As said before it can also act like "GENERATE" in
VHDL, which means that we can use it to force the compiler to produce the hardware
wanted, like connections or modules. In the same way, that we want have the ability
to instantiate more hardware, we would like to control the number of operators or
functions instantiate, for this purpose the directive "allocation" must be used. This
pragma allows to control the number of functions, core or mathematical operator by
setting its limit number, it is very useful when a "if-else" statement is present or we
want limit partially the hardware when the unroll pragma is present. The "if-else"
is mapped in two independent modules which shares the output, example if a DSP
is used in both the compiler will synthesizer two of them, even if only one will work.
Another case in which the number of functions wants to be controlled is when the
"inline" pragma is applied. This directive dissolve the external barrier created from
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the function, allowing the compiler to optimise the logic. A further optimisation can
be applied to the functions with the pragma "function instantiate", which allows
to simplify the logic inside a function according to a input variable and the pragma
"resource", which allows the developer to choose the core and the latency/pipeline
stages for that specific variable.

4.3.5 Array partition, reshape and map

To maximise the performances, i.e to not be stuck due to the memory I/O, or
optimise the memory allocation, without modify the code a series of pragma exists :
Array partition: Normally the vectors are stored within BRAM, which have only
two I/O ports. This could be a bottle neck if the algorithm needs multiple accesses
for continuous readings and writes. therefore Vivado HLS gives the possibility to
re-partition our array in several ways. The vector from the point of view of C++ is
not divided but gains in terms of access during the synthesis, obviously this pragma
increases the number of resources used. There are three basic partition parameters:

• Block: the vector is divided into K elements of equal size, in this version the
cells that were originally consecutive remain consecutive

• Cyclic: the vector is divided into K elements of equal size, in this version the
cells that were originally consecutive are distributed in the new memories

• Complete: the array is divided into its elements. In the case of multidimen-
sional arrays we can specify which dimension is subject to this partitioning
through the parameter dim, example array [N] [Q] [T] can be divided into four
dimensions:

– 0 → divided into registers,

– 1 → array [N] [Q] [T] is partitioned into N vectors of size [Q] [T],

– 2 → array [N] [Q] [T] is partitioned into Q vectors of size [N] [T]

– 3 → array [N] [Q] [T] is partitioned into T vectors of size [N] [Q].

Array map : This pragma has the function to merge two or more array in only
one. The need advantage of this pragma is that the designer do not need to merge
manually the arrays, manipulate them in a bit level. The best use of this pragma
happens when an array doesn’t not fill an entire BRAM, but only a part, instead of
wasting that space the developer can concatenate two array of the right dimensions
to archive only one that fits better in the memory. Due the variable size of the
inputs, two methods of concatenation exist :
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• horizontal : concatenate, sequentially, the arrays in only one which depth is
the sum of the arrays and the width is the maximum between the ones.

• vertical : concatenate, in parallel , the arrays in only one which depth is the
maximum between the ones and the width is the sum of of the bits concate-
nated.

Exist another parameter called offset, which introduces N empty cells , according
to the parameter value, to distanced the two consecutive arrays.

Array reshape : combine the vertical mode of the array map pragma with the
array partition to concatenate elements. This pragma if well used can increase the
parallel data access and decrease the number of (B)RAM needed.

4.3.6 Dataflow and stream class

As most of digital design, made of several functions, in order to produce the final
value sub-operations are needed. These sub-operations create temporary results
that will be used in the following stages to provide the the final value. In general,
the temporary results are available in different time slots and the next module, that
will use the temporary value, don’t need to wait the previous module to end before
start to work. The dataflow pragma allows to create concurrent processes able to
start working in the same moment that a valid input is available. This kind of task
level pipeline allows to archive higher throughput and reduce the latency.

Quote [4] pg 148 from line one :
"Dataflow optimisation potentially improves performance over a stati-
cally pipelined solution. It replaces the strict, centrally-controlled pipeline
stall philosophy with more flexible and distributed handshaking archi-
tecture using FIFOs and/or ping-pong buffers."

• Dataflow canonical region Xilinx® recommends to add the directive inside
a region, that will be called "canonical region" . The latter can be the body
of a loop or can be the a simple body of a function. The connections between
the functions will be called channels and they are modelled as FIFOs or Ping-
Pong buffers. The dataflow pragma respect the boundaries of the function,
unless the directive "inline" is present in the function inside dataflow region,
because it will inline the function to the top one. Since the dataflow respect the
function limit, each module can be designed and optimise to archive the time
constrains wanted. Notice : If the dataflow is used in a loop and the functions
inside the dataflow region are pipelined, the pragma "rewind" will allows to
overlap several external iterations, reducing even more the final latency. To
use this directive a series of constrains must be respected :
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1. In the code, the connection channels must be a local, intended in the
canonical region, non-static scalar / array / pointer or static stream
class variable.

2. In the canonical region no feedback is allowed, only data forward algo-
rithms.

3. Arrays can be read and write in only one process, one producer one
consumer rule with the writer before the reader.

4. Functions must be void, the information must pass through channels.

5. No loop-carried dependencies among different processes via variables.

Disable start propagation
It is an additional statement that can be added to allow an unbounded slack
between producer and consumer, having process inside the canonical region
running forever only driven by data. Xilinx® at page 156 specify that this
statement is at user’s risk.

• Stream class
It is an optimised class provided by Xilinx® able to simulate a stream of data,
like a serial transmission. In the high level code it can be interpreted as a
FIFO of infinite depth, having all of its constrains : sequential read and only
one read. This class is the most suitable to model data transfer timing, each
stream<type> variable can be read or write only in one process as happen for
the dataflow arrays. Exist two types of reading and writing :

– Blocking : stall the process if the input is empty or the output is full.
Optimum to be used if no data wants to be lost and the data coherency
is important.

– Non-blocking : this allows the execution of the process even if a read or
a write is attempted and failed. In this mode is very important to archive
the II programmed and correctly size the depth of the channel, to avoid
the lost of information. This mode differently from the Blocking is not
possible to validate through C/RTL simulation.

This kind of class can be used in non-Dataflow region or in Dataflow region,
the difference is that if it’s used in the first one to ensure a correct working
the depth must be specified and correctly sized, otherwise the c simulation
will stuck in a deadlock situation. The vantage in the non-dataflow region is
to avoid the address request during sequential access, typical of a BRAM. The
depth in the dataflow region should be sized according to the II and latency
of the modules, otherwise deadlock. In general, the dataflow pragma allows to
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have lower depth because the channel is filled and depleted continuously from
the producer and consumer. Note* is mandatory that all the stream channels
inside the same project have different names.

4.3.7 Custom FSM

In several case a full control of the FSM is necessary, i.e. to drive custom data-path
created in VHDL or Verilog or to create/manage custom or standardised protocols.
Large protocol system which manage data-packets maybe need more than one simple
FSM to archive the final computation. Also in this case, the use of an HLS tool-
chain allows faster development and architecture exploration, thanks to the higher
abstraction control flow. The final FSM will contain extra logic respect to the base
one because of the handshake between modules and starts and ending signals, which
are almost transparent to the developer. The directive dataflow can be applied to
execute all the FSM concurrently and the stream class can be used to simulate also
in this case the connection channel. The structure of a FSM must be able to trigger
a change in the input each clock cycle, which means that the II of each module
inside the dataflow region must be one and the depth of each channel must be sized
according to the latency of the module.

1 void FSM_Complete (hls::stream <struct > &PackT_In ,hls::stream <type >
&PackT_Out) {

2 #pragma HLS dataflow
3 // Interface is an axi4 stream
4 #pragma HLS INTERFACE port=PackT_In axis
5 #pragma HLS INTERFACE port=PackT_Out axis
6 // Declare the channels and their depth
7 static hls::stream <struct_One2Two > One2Two_stream
8 #pragma HLS STREAM variable = One2Two_stream depth = 4;
9 static hls::stream <struct_Two2Thr > Two2Thr_stream

10 #pragma HLS STREAM variable = Two2Thr_stream depth = 10;
11 // Declare the connections
12 FSM_1(PackT_In , One2Two_stream);
13 FSM_2(One2Two_stream , Two2Thr_stream);
14 FSM_3(Two2Thr_stream , PackT_Out);
15 }

Listing 4.2: FSM TOP example

1 void FSM_1(hls::stream <struct > &PackT_In , hls::stream <
struct_One2Two > & One2Two_stream) {

2 #pragma HLS INLINE off // must respect the boundaries
3 #pragma HLS pipeline II=1 enable_flush // archive II=1 to be able

to change state each clock and read input
4 // enable_flush is needed otherwise the FSM will stall if no new

input is present
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5 //...
6 }

Listing 4.3: FSM example

The FSM can be constructed with a switch construct, most common and clear
way, or with if else statement, the tool will synthesise the same circuit with the
only difference in the readability of the C++ code. Vivado HLS intrinsically assume
that the condition IF-ELSE are uncorrelated and so it will create two independent
different functions, and this can be a waste of resource especially if the function has
II = 1. The pragma allocation can help to solve the problem, but must take into
account of this problem when a custom FSM with embedded data-path is designed.
Another trick that can be used to better explicate the current state is through the
keyword "enum", which allows to associate a name to an integer.

1 static enum FSM_1_States{M_IDLE = 0, M_LOAD} FSM_Curr_Status;

Listing 4.4: enum example

With this keyword the readability of the code is improved. Since the stream class
is used in this case the use of non blocking is, advisable.

1 void FSM(stream <typeIN > IN , stream <typeOUT > OUT) {
2 // all the declarations needed
3 ...
4 // The body of the function
5 typeIN IN_fill;
6 // the read can be performed also inside the switch condition
7 if (!IN.empty()) {
8 inData.read(IN_fill);
9 switch(currStatus) {

10 case IDLE:
11 memory = IN_fill;
12 counter = 0;
13 // SELECT THE NEXT STATUS
14 currStatus = LOAD;
15 break;
16 case LOAD :
17 memory += IN_fill;
18 // SELECT THE NEXT STATUS
19 if (counter < 9){
20 currStatus = LOAD;
21 counter ++
22 } else {
23 currStatus = IDLE;
24 }
25 break;
26 default:
27 currStatus = IDLE;
28 break;
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29 }
30 }

Listing 4.5: enum example

4.4 I/O handshakes
Each system can be described as a black box in which only the behaviour is known
and how it transmits/receives information and commands. This description is neces-
sary when creating a complex system and wanting to introduce it into the processing
chain. Vivado HLS creates three types of ports:

• Clock and reset: ap_clk and ap_rst respectively. There is also the possibility
of a Chip enable, which can be configured in the config_interface entry

• Block-level interface protocol: ap_start, ap_done, ap_ready and ap_idle.

• Port Level interface protocols: ap_return plus all inputs and outputs

4.4.1 Block-level interface

This type of interface describes when the IP can begin to execute the operation
when it ends and when it is ready or inactive. This type of handshake can also
be specified if the IP block we are designing is of the empty type. if the return
command is not specified in the C code, it will not be synthesised. The three types
of Block Handshake available are :

• ap_ctrl_hs: it’s a classical hand-shake between modules. The start is asserted,
the module is triggered by the signal asserting the idle signal to indicate that
it is operating. The ready line become assert when all the inputs have been
read, and the done signal become assert when the module finish leading to the
de-asserting of the idle signal.

• ap_ctrl_chain : it’s the same as ap_ctrl_hs with the exception of an extra
handshake wire ap_continue, which states to the previous module if the next
module is ready for a new data or not, preventing the previous module to
generate extra data . This kind of block level I/O is useless in dataflow region
because is the availability of the data will lead to the synchronisation or stall.

• ap_ctrl_none: will not create any of the synchronisation in the ports. This
mode is very useful if the project contains a series of blocks inside a region
where the dataflow pragma is declared, not allowed if the dataflow is inside a
for loop or contains sequential or pipelined FSM , because it reduces its rigid
synchronisation.

45



4 – Hardware Description Language and High Level Synthesis

4.4.2 Basic port-level interface

As the modules also the signals, whether they are variable or other type, the ex-
change of information about their status is needed to act consequently. Vivado HLS
provides a complete set of protocols for the I/O, in order to give to the designer
a better control of how the information pass through the modules. At page 82 of
[4] Xilinx® provides a table to explicit which handshake is available according to
the type and which is the default I/O handshake. The port level interface can be
reduced to the following classes:

• No I/O protocol : in this class no I/O protocol is present.

1. ap_none : is the default for the scalar, do not require extra hardware
because it has no signal that states if the value is read or written. This
lack of overhead can be useful if the information is provided at the correct
time and held for the correct time

2. ap_stable : is to be used only for parameter that change in the reset
status. From the hardware I/O point of view is the same of the above
with the implicit condition that its value is guaranteed stabled for all the
function time

• Wire handshake

1. ap_hs : is a intra-module basic handshake based on the signal acknowl-
edge and valid. the valid is asserted when the value is ready to be read
or written and the acknowledge signal will be asserted when it is read
leading to the de-assertion of the valid signal.

2. ap_vld : Act as ap_hs without the ack signal.
3. ap_ack : Act as ap_hs without the vld signal.
4. ap_ovld : Act as ap_hs without the ack signal but can be used only for

output.

• Memory interface

1. ap_memory : this protocol is used to implement array in memories
in block memories (BRAM) with data, address, write-enable and chip-
enable signals. The interface is implemented with discrete ports

2. bram : same as ap_memory with the only difference that the signals are
grouped inside a single port

3. ap_fifo : act as like as bram memory interface with less hardware over-
head, instead of address, write enable and chip-enable the ports imple-
mented are full and empty, useful during the read an write access. The
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access is only sequential, no address generation is needed, and the as-
signed port can be used only to read or write, not both. This is the
default implementation for stream connections in the top level interface.

4. ap_bus : is a specific interface that do not follows a standard protocol.
This can be connected to a bus bridge if a standardised communication
is needed. This is the default interface for pointers and pass by reference
and can allow normal r/w process or burst.

4.4.3 AXI4 port-level interface

Advanced Micro-controller Bus Architecture, AMBA, designed by ARM includes
the Advanced Extensible Interface, AXI, since 2003. This open-standard protocol
is mostly used in system on chip architecture to connect between themselves the
different functional modules. Xilinx® encourages the use of this protocol to connect
in the proper way the IP cores.

1. stream : It’s a point to point connection, in which the data transfer happens in
a sequential way and can be written from one function and read from only one
function, if there are no present crossbars. The information is always extended
to the next byte, registered to avoid combinational feedback and can be with
or without side channels.

• without side channels : it means that what you are transmitting is just
an array.

• with side channels : it means that what you are transmitting is a struc-
ture. Being extended bytes the structure can be compressed in just
one channel with the pragma data_packet, which allows or a bit field
padding or a structure padding. This directive also reduce the number of
handshake signals. Often this interface is coupled with a DMA to directly
write and read from memory without interrupt the micro-controller.

Moreover, the handshake of this kind of port I/O can be also registered com-
pletely, partially or not.

2. light : It allows the IP core to be controlled by an external Interface, often
used with CPUs or micro controllers. For the latter a special set of C drivers
are provided by the Vivado HLS to control the module directly from the C
code of the micro-controller.

3. master : This interface allows to write directly into DDR memory without
pass through a DMA or Micro-controller. It can allows single or burst data
transfer up to 256 data transfer cycles with just one address request. This
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kind of interface needs also the base address to read and write from memory
and the maximum size of the depth of the vector, the default base address
is 0x00000000. The keyword offset can be applied to the pragma to add an
offset.

(a) off : no offset is applied to the base address

(b) direct : 32 bit port is added in order to let the module apply the offset

(c) slave : thanks to the axi4 light interface is possible to set a registered
offset information.

Notice that this kind of interface allows the module to access to any of the
address location, and if the access is done with pointer in the Vivado HLS
code the keyword volatile must be added. The burst mode is reauthorized by
several parameters

(a) latency : which allows the design to initialise a bus request a certain
number clock cycles before the r/w expected.

(b) max read burst length : specify the max number of data read during the
transfer

(c) max write burst length : specify the max number of data write during
the transfer

(d) num read outstanding : max of number read request to the bus without
a response. If the number is exceeded the design will stall.

(e) num write outstanding : the same as for reading but for writing request
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Random number generators

In the Monte Carlo methods, security, cryptography and several other functions
and discipline use intensively random numbers. By definition a random number
generator can belongs to two different families :

• Real random number : In this class no prediction about the next number
can be done according to the current value, neither if the structure of the
generator is known.Real random numbers are preferable from pseudo ones but
they are not always available because a specific hardware is needed to generate
them. This hardware is capable to measure and sample a physical phenomena,
as thermal noise, and correct external biases due to the environment or the
circuit itself. One way to generate real random number is to lead a transistor
in its metastability point, by violating its setup and holding time during the
switch, and let the thermal noise decide the direction of the switching action.

• Pseudo random number : This class called pseudo because it is a determin-
istic series of number that looks random, and once known the current value
and the structure of the generator is possible to determine the next and the
followings. This set of algorithms can generate directly pseudo random num-
ber, as LFSR, with a precise distribution or can use several distribution and
mathematical operations to generate the wanted distribution.

Thanks to its use a series of tests are available to check the type and the con-
formity of random number series. The easiest is the histogram, which shows infor-
mation about the frequency of the numbers, but also more complex methods can be
used, as [17].
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5.1 Linear feedback shift register
It is a shift register, with N registers, in which the next input is evaluated through a
combinational feedback. The input of the feedback are the output of some registers,
called also taps. The most common way to create the feedback network is to use a
xor or xnor port to collect all the taps and the output will feed the new input. The
maximum length of the sequence follows the maximum number representable 2N − 1
, the zero or one is removed, respectively in the XOR and XNOR implementation,
because it would stop the feedback chain. From the mathematical point of view a
LFSR is a polynomial, binary, in which the taps represent the equation. The number
of register can be counted starting from one, the input, till N, the last element. In
order to get a polynomial of N grade the feedback must include always the N th

register.
p(x) = 1 + b1 x + b2 x

2 + b3 x
3 + ... + bN x

N , bi

can be 0 or 1 in order to mark the presence or not of the ith grade

In general to produce the maximum number of combination the taps must respect

Figure 5.1: Register’s numeration

the following rules :

1. the number of tap is even.

2. The greatest common divider between them must be one, they must be mu-
tually prime.

According to the grade of the polynomial there must be more than one combination
that gives the maximum number of combination. A table with the taps can be
found in [18] . This LFSR is used in several modules in the second stage, like in the
resampling stage. An example with eighteen bits is provided.

p(x) = 1 + x11 + x18
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Figure 5.2: LFSR for 18bit

Inside the following example code the indexing in the array is flipped respect to
the standard cell numeration and both the load of the input seed and the output is
parallel. To not produce all zeros, a preliminary checks for the input seed is applied,
if it does not respect the non zero condition a default seed is used. Fig 5.3 represent
a simple cell.

Figure 5.3: LFSR cell
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Moreover, the generation of the random number is described as a process of a
bounded length. This fixed number allows the system to consume less power, since
the LFSR does not continuously produce uniform random numbers .

1 void LFSR18_init(u18_Data_T & seed , stream <u18_Data_T > &
RAND_stream) {

2 u18_Data_T lfsr; // u stands for unsigned and 18 stands the bit
width

3 if (!seed.or_reduce ()){
4 lfsr = seed_default;
5 }else{
6 lfsr = seed;
7 }
8 for (u10_Data_T i = 0; i < NUM_PARTICLES; i++) {
9 u1_Data_T b_18 = lfsr.get_bit (18 - 18);

10 u1_Data_T b_11 = lfsr.get_bit (18 - 11);
11 u1_Data_T new_bit = b_18 ^ b_11;
12 lfsr = lfsr >> 1;
13 lfsr.set_bit (17, new_bit);
14

15 RAND_stream.write(lfsr);
16 }
17 }

Listing 5.1: LFSR example

5.2 Box Muller Transformation

Developed, by George Edward Pelham Box and Mervin Edgar Muller in 1958 [19],
to produce a couple of independent number distributed in a normal way, Gaussian
with zero mean and one as variance.

The method has been chosen to its flexibility in terms of mean and variance
modulation and for the fact that a lot of operations can be reused. Furthermore,
the Box Muller generate two independent Gaussian numbers as need by the diffusion
module.

Z1 =
√
−2 log(U1) sin(2πU2) , Ui ∈ Uniform(0,1]

Z2 =
√
−2 log(U1) cos 2πU2 , Ui ∈ Uniform(0,1]

(5.1)

From equation 5.1 the generic Zi ∈ Normal(0,1).

Z ′i = µ+ σZi (5.2)

With the transformation applied in equation 5.2 Z ′i ∈ Normal(µ, σ2) A more
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suitable form to evaluate the cosine, instead of using another CORDIC module,
from the sine can be using the trigonometric functions

cos 2πU2 =
√

1− sin(2πU2) ∗ sin(2πU2) (5.3)

In this way we can recycle the square root module and have a fixed delay, differ-
ently from the CORDIC,[16], using less hardware. Moreover, if the algorithm needs
only the positive half of the Gaussian distribution is possible to merge the square
roots and reduce overall the computational cost.

1 void Box_Muller(stream <Usquare_Data_T > & U_square , stream <
angle_Data_T > & angle_stream ,

2 stream <Gauss_Data_T > & Gauss_number ,stream <Gauss_Data_T > &
Gauss_number_2) {

3 for (u11_Data_T i = 0; i < Gauss_number_needed; i++) {
4 angle_Data_T angle_fill = angle_stream.read();
5 ap_fixed <23, 5> U_square_fill = U_square.read();
6 ap_fixed <23, 5> U01_log;
7 if (U_square_fill != 0) {
8 U01_log = hls::log(U_square_fill);
9 } else {

10 U01_log = 0;
11 }
12 ap_ufixed <18, 4> U01_fix = -U01_log;
13 trigono_Data_T U01_sin = hls::sin(angle_fill);
14 ap_ufixed <18, 4> U01_log_radical = hls::sqrt(U01_fix);
15 trigono_Data_T U01_cos = hls::sqrt(1-U01_sin*U01_sin) ;
16 ap_fixed <21, 4> Gauss_fill_h = U01_log_radical * U01_sin;
17 ap_fixed <21, 4> Gauss_fill_h_2 = U01_log_radical * U01_cos;
18 Gauss_Data_T Gauss_fill = Gauss_fill_h;
19 Gauss_Data_T Gauss_fill_2 = Gauss_fill_h;
20 Gauss_number.write(Gauss_fill);
21 Gauss_number_2.write(Gauss_fill_2);
22 }
23 }

Listing 5.2: Box Muller example
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Chapter 6

3D Graphic Pipeline

The main part of this algorithms makes its fundamentals in 3D graphics. The
algorithm in the inlier function needs to compare each object model, in a specific
pose, with a depth portion. To archive this task the 3D model, of the object under
test, have to be rendered and projected in the correct spatial location In modern
GPU the operation to transform object models from 3D to 2D space is implemented
in a "3D graphic pipeline". The latter is a sequence of mathematical operations
to represent correctly a 3D object in a 2D space, like an image. The GPU graphic
pipeline is made mainly from the following steps:

• Point Transformation : each object point is subject to a transformation, trans-
lation, rotation or/and scaling.

• Triangle setup : three point that are designed to make a face of the object are
called.

• Clipping and back-face culling : cut the part of the triangles out of the field
of view and the same direction of the camera view.

• Rasterizer : the triangle is filled to give the idea of a solid object.

• Depth buffer creation: a second frame in which the object is define by its
distance from the camera.

• Fragment Processor : unify different fragments to create the final image.

Some steps like the texture mapping are not essential in this project, due to this
they will be not analysed. The pipeline optimised for hardware implementation will
be proposed later, chapter 7.

The object model To understand how the graphic pipeline works an intro-
duction on how the objects can be stored and represented can be meaningful. In
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general, an object, as every other shape in the space, can be seen just as a collections
of surfaces connected, which can be represented in several ways :

• The perfect description of that surface can be obtained by the explicit equation
but is not the best in terms of mathematical and computational complexity.

• Another way to represent a model is use basic polygons to construct an ap-
proximated version of the object, and as every approximation, if the number
of polygons to describe the object grows the difference respect to the original
model reduces to zero.

In computer graphics the most common way is the polygon representation.
Across all the possible polygons the most dynamic is the triangle, because it is
the simplest 2D shape. Each triangle or face is described by three vertices or points
in the space, the bounded area represent one of the face of the model. According to
the resolution needed the model can be adapted, by reducing the number of triangle
needed, to reduce the memory consumption and make faster the chain. To have a
realistic match with the depth information the object model and the object in the
scene must be the same.

Figure 6.1: Object model space

The reference systems In 3D graphics usually are define several reference
systems : the world space , object local space,The Camera space, NDC and the
screen space. The first is the absolute reference for all the object in the scene,
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camera included, while the fourth defines the portion of the space, visible related to
the camera field of view.

• The Local/Object space : each object, described in a separate file is de-
signed in its reference system. Its origin is in (0,0,0) and all of your object
points refer to it, figure 6.1 .

• The World space : all the object models that compose the scene after the
transformation,belongs to the same origin. In this place the scene is con-
structed.

• The Camera space : the world coordinate are transformed in to the view
space, the point of view of the camera

• The Clip space : after the applying of the projection matrix the frustum is
remapped in the Normalized Device Coordinates (NDC), this is called clipping
space because it’s very convenient clip in this space , special algorithms exists
. Once we decide the frustum size and shape each point out will have a value
higher than one, so easy to clip.

Figure 6.2: Some of the reference systems in the 3D graphic pipeline
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6.1 Rigid body transformation

Since the object model is described with the real dimension, to match the camera
view, a rigid body transformation is needed. A rigid transformation is a transforma-
tion that preserve the original shape of the object. In general the object model, to
be rigid transformed, needs its origin in the (0,0,0) and exists three possibles modi-
fications that can be applied to a body to change its space location and orientation.

• Translation, Fig 6.4.

• Rotation, Fig 6.6

• Scaling

To position the body in the wanted position the operation must be performed
in a fixed order : the rotation, the translation and scaling. If the object is non
zero centred it is not guarantee that the final pose is in the wanted location. To
solve the problem the object model must be multiplied by the inverse matrix of
the original position, to recenter it, rotate and translate again adding the extra
translation needed.

Figure 6.3: The object in the space with the two main reference systems

6.1.1 Three dimensional translation

To perform a translation in the space an offset vector must be added to the generic
point in the space :

~V′ = ~V + ~Tr (6.1)

More in general, since an object is described by multiple coordinates it correspond
to add to each of them this offset vector. This will move the barycentric of the
object from the origin to the offset point and in a homogeneous way all the other
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6.1 – Rigid body transformation

points will be moved and without deforming the object. Since a matrix form will
be useful in the future is better to define it now :

~V′ = Tr~V =


1 0 0 xo
0 1 0 yo
0 0 1 zo
0 0 0 1



x
y
z
1

 =


x+ xo
y + yo
z + zo

1

 (6.2)

Figure 6.4: An entire object translated from its origin.

6.1.2 Three dimensional rotation

As the name can suggest this type of transformation rotate the object body according
to a certain axis. A simple explanation how to rotate can be provided just by writing
the point in the space in its polar (2D) case or spherical (3D) coordinate. The
rotation around (x, y, z) axis are also called (roll, pitch, yaw) rotation.

x = rsin(θz)cos(θx)

y = rsin(θz)sin(θx)

z = rcos(θz)

(6.3)
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To apply a rotation around z is equivalent to add that angle to the current x
angle as shown in Fig. 6.5

x′ = rsin(θz)cos(θx + β) = rsin(θz)(cos(θx)cos(β)− sin(θx)sin(β))

y′ = rsin(θz)sin(θx + β) = rsin(θz)(cos(θx)sin(β) + sin(θx)cos(β))

z′ = rcos(θz)

(6.4)

Equation 6.4 can be rewritten as shown in equation 6.5

x′ = rsin(θz)cos(θx)cos(β)− rsin(θz)sin(θx)sin(β) = xcos(β)− ysin(β)

y′ = rsin(θz)cos(θx)sin(β) + rsin(θz)sin(θx)cos(β) = xsin(β) + ycos(β)

z′ = z

(6.5)

Equation 6.5 can be expressed in the following matrix form:

~V′ = Rz~V =


cos(βz) −sin(βz) 0 0
sin(βz) cos(βz) 0 0

0 0 1 0
0 0 0 1



x
y
z
1

 (6.6)

Figure 6.5: 3D rotation of a point around the Z axis
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6.1 – Rigid body transformation

The rotation according to a the other two axis can be performed by multiplying
by the following matrices, which can be proved in always in the previous way :

Rx =


1 0 0 0
0 cos(βx) −sin(βx) 0
0 sin(βx) cos(βx) 0
0 0 0 1

 Ry =


cos(βy) 0 sin(βy) 0

0 1 0 0
−sin(βy) 0 cos(βy) 0

0 0 0 1

 (6.7)

The overall effect to the object body is shown in the figure 6.6.

Figure 6.6: Object rotated in the space, showing the difference between the implicit
axes to the world ones
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6.1.3 Three dimensional scaling

The scaling matrix is the following

~V′ = Tr~V =


sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1



x
y
z
1

 =


sxx
syy
szz
1

 (6.8)

In this project this transformation is not applied,since the size of the object must
be preserved

6.1.4 The camera matrix

This matrix identify the position and the orientation of the camera in the space
respect to the world origin.

C =


rx ry rz tx
ux uy uz ty
wx wy wz tz
0 0 0 1

 (6.9)

In the matrix camera matrix, equation 6.9, the r,u and w represent the equivalent
rotation while the t represents the translation respect the word origin.

(a) Scene, camera and base. (b) Point of view from the camera.

6.1.5 The projection stage

This stage aims to correct the view of the object, modulating its size according to
the its distance respect to the camera. Intrinsically farther is an object smaller it
is, but it is also valid for each point that made up the same object.

Exists two main ways of projection :

• In the orthographic the object keeps its aspect ratio regardless the distance
from the near plane.
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6.1 – Rigid body transformation

• In the perspective the body is deformed according to its distance from the
near plane, equation 6.10.

In the orthographic projection the shape of the frustum is a rectangle, so the
far and near plane has the same dimension, while in perspective one the near and
far plane have different size, which means that what is in the back is compressed
while what is in the front is enlarged. The difference between the two is the shape
of the frustum will lead to a two different deformation when the object model is
transformed to the normalised coordinate device system, as shown in the figure 6.8
.

Figure 6.8: Difference in final NDC’s object according to the frustum’s shape, from
[21].

Since the camera has the same type of visual deformation given by the perspective
projection, the latter one is the the right one to be used.

P =



2∗FX
Width

0 1− 2∗CX
Width

0

0 2∗FY
Height

2∗CY
Height

− 1 0

0 0 −Far+Near
Far−Near

−2∗Far∗Near
Far−Near

0 0 −1 0


(6.10)

Since the object model must be projected in the same way that the camera see
the world intrinsic parameters of the camera have to be used. Camera intrinsic
parameters :
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• FX : 542.556

• FY : 537.666

• CX : 325.065

• CY : 224.214
Differently from the transformation described above the projection is not an

"affine" transformation so w value can change and consequently a normalisation to
go back to homogeneous coordinated is needed.

6.1.6 Back-face culling and clipping

Both of them are common technique in computer graphic to judge if a polygon
have to be or not rasterised. The back face culling removes triangles that are not
intrinsically visible from the camera prospective, while the clipping removes the
faces out of the camera field of view. Both of them are executed when the triangle
is transformed in the NDC system.

The back-face culling look at the normal direction of the model face and un-
derstand if it points in the same direction to the camera, Fig 6.9. If the face has
the same direction means that it is not visible, because covered from other faces
pointing towards the camera .

Figure 6.9: Back-face culling

~Cdirection · ~Ndirection > 0
C is the camera

N is the triangle normal
(6.11)
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The clipping is another algorithm is another important algorithm inside the graphic
pipeline. It removes the triangles out from the normalised cube, because they are not
visible when transformed in the screen space. There are more complex algorithms
where instead of removing the triangle, if partially out, they go to interpolate the
edge to have a better visual effect.

6.2 Rasterization
This stage aims to fill the triangle, projected in 2D, in the screen space. The
vertices of the triangle can be anywhere in the pixel area and the triangle shape
can be whatever. A fixed algorithm and rules to define the filling of the triangle are
needed to correctly fill the screen space. In literature there are a lot of rasterization
algorithms, like the Bresenham specialised to draw lines and optimised to consume
very few resources, no floating point calculations,[20]. The idea is to store the
derivative value, since it is constant, and have a fixed step of increment, the following
code is a very simple version.

1 void DrawLine_BR(int x1,int y1 ,int x0,int y0){
2 // since a line has a fixed derivate
3 // we can store per partial results
4 dy = x1 - x0;
5 dx = y1 - y0;
6 //value to judge
7 d = -dx + 2*dy;
8 // starting coordinate
9 x = x0;

10 y = y0;
11 fill(x, y) ;// fill the starting coordinate
12 while x < x1 {
13 if (d >= 0) {
14 // overcome the mid point , the pixel to draw
15 // is in the next line
16 d = d - 2*dx +2*dy;
17 y = y + 1;
18 x = x + 1;
19 }
20 else {
21 d = d + 2*dy;
22 x = x + 1;
23 }
24 // each cycle I draw a pixel
25 fill(x, y);
26 }
27 }

Listing 6.1: Simple Bresenham algorithm
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Since the triangle needs to be interpolate and it is defined three lines using Bre-
senham algorithm is not the most suitable choice. Another very famous and light,
in terms of hardware consumption , algorithm to rasterize triangles is the one from
proposed by Pineda [22]. The basic idea is to used the direction between two points
to create two signed regions, positive and negative, according to the sign of the cross
product between a generic point in the relative side side,Fig 6.11. Notice that for
Pineda the cross product is also called edge function, equation 6.12 , in which there is
a centre, a fixed point and moving point. For a clockwise winding triangle, between
the point zero and one, the zero point act like a centre and the one as a fixed point.
If P, the generic point, belongs to the edge the output of the edge function is zero,
if it is on the right it is positive, while if it is in the left it is negative. Furthermore,
in order to not waste operations a smaller box, which contains the triangle, is used
to reduce the searching space.

EdgeFC = (Px − Cx)(Fy − Cy)− (Py − Cy)(Fx − Cx) (6.12)

C is the centre, F is the fixed point , P is the moving point.

Figure 6.10: Normal direction direction according to the side of the line

By applying this idea among all the points 7 areas are obtained in which the
only one inside the triangle have all of the cross products positive, Fig6.12a.
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Figure 6.11: Edge function applied to the whole triangle

As in Bresenham, the middle point is the one tested. As shown in figure 6.12b,
the pixel grid can be overlapped to the triangle and the centre of the pixel tested. For

(a) Triangle’s bounding box area, signed (b) Pixel grid overlapped to the triangle

a generic point can be defined three edge equations, equation 6.13. The graphical
meaning is shown in figure 6.13

E10(P ) = (Px − V 0x)(V 1y − V 0y)− (Py − V 0y)(V 1x − V 0x)
E21(P ) = (Px − V 1x)(V 2y − V 1y)− (Py − V 1y)(V 2x − V 1x)
E02(P ) = (Px − V 2x)(V 0y − V 2y)− (Py − V 2y)(V 0x − V 2x)

(6.13)

Since the step applied is constant, the value of the next pixel can be constructed by
the previous value. First a generic step can be described by the following equation
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6.14.

∆EFC(Pi+1 − Pi) = (Pxi+1
− V Cx)(V Fy − V Cy)+

−(Pyi+1
− V Cy)(V Fx − V C.x)− (Pxi

− V Cx)(V Fy − V Cy)+
+(Pyi − V Cy)(V Fx − V Cx) =
= (Pxi+1

− Pxi
)(V Fy − V Cy)− (Pyi+1

− Pyi)(V Fx − V C.x)

(6.14)

Figure 6.13: Three cross product for a generic point P

Equation 6.14 can decompose by two independent increment of the in the x and
y direction, equation 6.15

dy10 = (V 1y − V 0y), (Pyi+1
− Pyi) = 0 ∧ (Pxi+1

− Pxi
) = 1

dx10 = (V 1x − V 0x), (Pyi+1
− Pyi) = 1 ∧ (Pxi+1

− Pxi
) = 0

dy21 = (V 2y − V 1y)
dx21 = (V 2x − V 1x)
dy02 = (V 0y − V 2y)
dx02 = (V 0x − V 2x)

(6.15)

The decomposition in equation 6.15 allows equation 6.13 to be rewritten as 6.16.

E10(P ) = (Px − V 0x)dy10 − (Py − V 0y)dx10
E21(P ) = (Px − V 1x)dy21 − (Py − V 1y)dx21
E02(P ) = (Px − V 2x)dy02 − (Py − V 2y)dx02

(6.16)

To have a lighter notation equation 6.17 can be substituted to equation 6.16 to
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obtain equation 6.18

dyP0 = (Py − V 0y)
dxP0 = (Px − V 0x)
dyP1 = (Py − V 1y)
dxP1 = (Px − V 1x)
dyP2 = (Py − V 2y)
dxP2 = (Px − V 2x)

(6.17)

In this way each point can be the starting point.

W10(ys, xs) = E10(Pstart) = dxPs0dy10 − dyPs0dx10
W21(ys, xs) = E21(Pstart) = dxPs1dy21 − dyPs1dx21
W02(ys, xs) = E02(Pstart) = dxPs2dy02 − dyPs2dx02

(6.18)

The main advantage with this approach is that all of the coefficients needs to be
evaluated only once and when the rasterization algorithm moves inside the bound-
ing box to test the pixels only additions and subtraction can be used. The three
coefficients WFC must be positive to have a pixel inside the triangle, the use of
additions or subtractions is defined by the rasterization direction and most of these
coefficients can be reused to interpolate the depth between the vertices.

W10(yk+1, xk) = W10(yk, xk)− dx10
W21(yk+1, xk) = W21(yk, xk)− dx21
W02(yk+1, xk) = W21(yk, xk)− dx02
W10(yk−1, xk) = W10(yk, xk) + dx10
W21(yk−1, xk) = W21(yk, xk) + dx21
W02(yk−1, xk) = W21(yk, xk) + dx02

(6.19)

W10(yk, xk+1) = W10(yk, xk) + dy10
W21(yk, xk+1) = W21(yk, xk) + dy21
W02(yk, xk+1) = W21(yk, xk) + dy02
W10(yk, xk−1) = W10(yk, xk)− dy10
W21(yk, xk−1) = W21(yk, xk)− dy21
W02(yk, xk−1) = W21(yk, xk)− dy02

(6.20)

Note* : Since all the partial values are evaluated, calculating the normal sign
is very easy. From a mathematical point of view the area of the triangle is equal to
the length and direction of the output vector. Since the area will be also useful later
for the interpolation of the depth, necessary for equation 6.21 can be evaluated in
the following way :

2Areaface = (V 2x − V 0x)(V 1y − V 0y)− (V 2y − V 0y)(V 1x − V 0x).
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(a) Pixel analysed. (b) Pixel rasterized.

That can be rewritten in the following form "recycling" the previous calculations:

2Area = (dy02 ∗ dx10)− (dx02 ∗ dy10)

By looking at the sign is possible to understand if the face have to be or not ras-
terised, since in the transformation chain each point is also multiplied by the camera
matrix. If the sign is lower or equal to zero the triangle is not visible.

6.2.1 Depth Interpolation

Each triangle is described by three tuple of points. From the latter an interpola-
tion, to all of the points in between is needed, to correctly shade the object. The
most common way to interpolate the depth of a triangle is by using the barycentric
coordinate[23], used also to shade colours. The barycentric coordinate is a type of
homogeneous coordinate system defined by the points of the triangle. The main
idea is to weight the three information, coming from the vertices, according to the
distance with each point.

zp = λ0zV0 + λ1zV1 + λ2zV2

λi = Areai
AreaTot

λ0 + λ1 + λ2 = 1

(6.21)

The coefficients λi inside the triangle are lower or equal to 1 and their value
change according to the distance. For example if the point that is under evaluation
is in one vertex, the correspondent λj will be one and the other two will be zero. In
an analogue way if the point is lying in the edge a certain vertex does not touch λj
becomes zero. Intuitively the depth weight is directly related to the importance of
the portion of area contained, figure 6.15.

Since all lambda coefficients defined in 6.21 are the relative area over the overall,
by using equation 6.18, the same equation can be reinterpreted as shown in equation
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Figure 6.15: Barycentric coordinates

6.22.
2Area01(P ) = W01(P )
2Area12(P ) = W12(P )
2Area20(P ) = W20(P )

zp =
W10zV0+W12zV1+W20zV2

2Areaface

zp =
Area01(P )zV0+Area12(P )zV1+area20(P )zV2

Areaface

(6.22)
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Figure 6.16: Example took from the algorithm implemented
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Chapter 7

Hardware Implementation

In this chapter the complete hardware architecture will be proposed and described.
Note* in this project the HEATMAPsize is equal to 6300, formed by the sum of
the three level of heatmap and NUMparticles is equal to 510.

7.1 Essential memories
To maximise the speed and reduce the power consumption the number of external
memory request was minimise and the delay "hidden" between possible operations.

The information needed to start the second stage are the following :

• Depth Scene (480x640) : It is in a floating point format, due to the camera
standard. The depth was clipped to 4 meters keeping the maximum resolution
of the camera , 1 mm, and stored in a BRAM of the size of 12 bits : 2 bit of
int and 10 bit of fractional part.

• Raw Heatmap (26* HEATMAPsize ) : This is the first stage raw heatmap,
which will be converted directly to the final one without storing it. The number
26 is composed by 21 probabilities, 4 raw bounding boxes and one confidence
score. Image 7.2b shows how for each "pixel" of a generic level of the pyramid
CNN the information are distributed.

The post-processing module will produce :

• probability (21* HEATMAPsize ) : It contains the probability distribution
after the post-process module. The number of bit for the integer part is 0,
while 8 bit are used to describe the fractional part. This truncation shows
enough precision for the calculation.

• bounding box ( HEATMAPsize ) : It contains (x, y) of the centre, 10 bit
due to the image size and (width, height) relative for that specific bounding
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box, 8 bit due to clipping. These informations are often used together, so in
order to reduce the memory access and compact the informations they can be
merged in a single information of 18 bit.

Aside the original informations other arrays are needed :

• The current object model is stored in a file with the extension .obj contain
the 3D models of the possible object inside the scene. These rendered objects
are obtained with the same camera and after downsampled. Each file contains
a header, which gives information about the number of vertices and faces. Is
also important to point out that only the vertices with "v" will be used, not
in vn, which is the vertex normal in (x,y,z) form. Vertices are described in
(x, y, z) coordinate and the information are written in the same order. Faces
instead provide information on the vertices’ connections. A face is made of
three vertices, like a triangle for FEM modelling. v1//v1 v2//v2 v3//v3. The
object model is stored in the following way inside the FPGA :

– 3 array containing the information about each geometric vertices : 3 bit
of integer part and 10 of fractional one. This passage from floating point
to fixed means that the object model is also quantized.

– 1 array of 30 bits to contain the information about the faces. Since
the model used is a downsampled one the maximum number of vertices
is bounded to 1024, which means that we need only 10bit to correctly
address them. With this packing the number of request to the face index
array is reduced.

1 switch (case_select) {
2 case 0:
3 Vert_address = Tri_Mem[ext_select ];
4 Vert.x = V_Mem [0][ Vert_address.range(9, 0)];
5 Vert.y = V_Mem [1][ Vert_address.range(9, 0)];
6 Vert.z = V_Mem [2][ Vert_address.range(9, 0)];
7 case_select = 1;
8 break;
9 case 1:

10 Vert.x = V_Mem [0][ Vert_address.range(19, 10)];
11 Vert.y = V_Mem [1][ Vert_address.range(19, 10)];
12 Vert.z = V_Mem [2][ Vert_address.range(19, 10)];
13 case_select = 2;
14 break;
15 case 2:
16 Vert.x = V_Mem [0][ Vert_address.range(29, 20)];
17 Vert.y = V_Mem [1][ Vert_address.range(29, 20)];
18 Vert.z = V_Mem [2][ Vert_address.range(29, 20)];
19 case_select = 0;
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20 break;

Listing 7.1: Model memory addressing

• Sample Memory (2xNUMparticles) : The need of two sample memory is due
to the dataflow pragma and the implementation of the diffusion stage. Broadly
speaking, in each iteration one of the two sample memory is select as input
and the other as output memory. Each sample element is composed by :

– Three coordinate in the space (x, y, z) : 3 bit of integer part and 10
of fractional one.

– Three angles (roll, pitch, yaw) : 4 bit of integer part and 8 of fractional
one.

– Absolute index: it connects a sample to a specific bounding box in the
array, 13 bits are needed to address up to 6300.

• Heuristics Memory (6300): It must describe a volume in the space respect
to the base of the robot. The information needed are the following :

– (xmin, xmax) : 3 bit of integer part and 10 of fractional one.

– (ymin, ymax) : 3 bit of integer part and 10 of fractional one.

– (zmin, zmax) : 3 bit of integer part and 10 of fractional one.

A quick review can found in the table 7.1
Due to dataflow constrains a second sample memory and relative index memory

are needed, this memory overhead allows to reduce the data movements and allows
the sample memory to be treat like a ping-pong memory across two different itera-
tions. The introduction of the concept of relative and absolute index reduce the data
movement. For example, in the sorting instead of moving all the characteristics of
a sample, the sorting module can just sort a memory of relative indices. The latter
during the resampling is just read a used to pick the original information, transform
and diffuse it in the output sample memory.

7.1.1 Fixed point

Differently from the GPU and base version this project is transformed to work in
fixed point representation, because the DSP inside the FPGA are optimised for
fixed point calculation and more in general because they consume less power[24].
The fixed point representation is usually expressed in the format QI.F where I
stands for the number of integer bits and the F for the fractional ones. Anyway, it
can be interpreted just as binary number in which an imaginary dot is placed after
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Size xyz_Data_T bit angle_Data_T bit
Sample Memory 2x510 xS, yS, zS 13 rollS, pitchS, yawS 12

Size xyz_Data_T bit
Heuristic Memory 6300 xmin, ymin, zmin 13

xmax, ymax, zmax

Size BB_Data_T bit
Bounding Box 6300 xc + widthi 18

Memory yc + height
hindx + windx

Size Prob_Data_T bit
Probability 21x6300 probabilityi 8

Size Abs_Indx_Data_T bit
Absolute Index Memory 2x510 indexi 13

Size Depth_Data_T bit
Depth Memory 480x680 pixeli 12

Table 7.1: Memory table

I bits. For this reason operation like the division or multiplication for power of two
can be reduced to dot shifting or expansion.

In this thesis the convention that will be used is the following

• uint<N> : N bits of integer part

• int<N> : N-1 bits of integer part and 1 bit of sign

• ufixed<N,I> : N bits of total bits and I bits of integer part

• fixed<N,I> : N bits of total bits , I-1 bits of sign and 1 bit of sign

7.1.2 Design Flow

Since this project was developed through the tools provided by Vivado the following
design flow was used :

• Organise the ideas and understand how to optimise a module by evaluating
its pros and cons.
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• Generate a possible pseudo-code to validate the solution and the timing to
accomplish the result.

• Write the equivalent code to represent the wanted .algorithm with HLS and
generate the synthesised version

• Test-bench the hardware and validate the design with a simulation. If a fail
occurs by checking the code, the pseudo one and the timing generated act
properly.

• Export the IP core, create a Vivado project, program the micro-controller and
generate the bit-stream.

• Validate the design. If the it is not a good design restart from the beginning
with the acquired knowledge.

Figure 7.1
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7.2 Neural network
To execute the first stage, the convolutional neural network, the Deep neural network
Development kit, DNNDK [25], provided by Xilinx® is used. This kit provides a
series of functionalities, as quantization, optimisation and compression for the most
common structure of CNN. The specific module, which is designed to accelerate in
hardware the CNN, is called DPU[26], deep learning processor unit. The latter is
highly customizzable because it can allows classification, segmentation, detection
and tracking of the various object’s classes specified by the input. To map the NN
algorithm Xilinx® provides a compiler called DNNC, deep neural network compiler,
to maximise the performance of the algorithm for the DPU.

The tool-chain provided by the DNNDK follows these steps :

1. Compression : This stage, executed by the DECENT, Deep Compression Tool,
consist to reduce the number of parameters for the network and consequently
re-tune them. After, the network’s parameters are quantized from the usual 32
bit floating point to 8 bit integer, transforming the overall NN from a floating
to a fixed one. The main reason is that in this way the network itself reduce
the computational cost, increase the power efficiency and it’s faster. Notice
that also the output activation functions will be fixed point.

2. Compiling : executed by the DNNC, deep neural network compiler, transform
the reduced neural network in to an intermediate IR, instruction set register,
and the latter will be optimised to the DPU module.

3. Create the API

4. Compile the API for DPU IP core

5. Run the DPU module

7.2.1 DPU MODULE

As said before the DPU, is a module very customizable, capable to execute the more
common CNN as VGG, ResNet, YOLO, etc. The configurable options are

• The number of DPUs : instantiate up to three DPU core inside one IP reaching
higher performances but consuming more area.

• The type of Arch : this parameter vary the type of convolutional engine inside
the architecture allowing to choose the pixel and channel parallelism.

• The type of clock mode for the AXI input connection : common or indepen-
dent.
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• The maximum number of DSP48 in cascade, higher means less logic and worse
timing. The quote comes from PG338 v1.2 March 26,2019 by Xilinx®

Xilinx® recommends selecting the mid-value, which is 4, in the first
iteration and adjust the value if the timing is not met.

• DSP usage : low or high and changes according to the arch of the DPU.

• Ultra-RAM usage

The module itself just compute the network and cannot work alone, so it needs
a application processing unit, as a micro-controller, that serve interrupts and mange
the data transfer. The hardware architecture is similar to a micro code architecture.
The instructions, generated from the DNNDK, are loaded in the module and read.

7.3 Post-process

In version of the neural network the heatmap used has three layers or levels, the first
15x20 , the second 30x40 and the third 60x80, to produce an overall size of 6300.
Due to the output format, described in subsection 7.1, means that it cannot be used
directly to generate a bi-dimensional probability distribution and furthermore the
real bounding boxes must be evaluated from the raw parameters and the anchor box
of the original image, image 7.2a. The architecture developed is shown in the figure
7.3.

(a) Each level of heatmap has an ancorbox :
a fixed grid to the original image.

(b) First stage output graphical representa-
tion.

Figure 7.2

Since the algorithm to convert the first stage output to a probability distribution
needs the use of exponential, quite expensive in hardware, the design uses , to reduce
the computational delay of this stage, a ROM to store the exponential function

81



7 – Hardware Implementation

values. The implementation is possible because the input is bounded to 8 bit, 256
cells with a range that goes from 1.12 ∗ 10−7 up to 8.8 ∗ 106.

At the beginnin of the post-process module, the "splitter" module reads the
input probability, pick from the memory the corresponding exponential value and
transmit it into an accumulator and into a delay buffer.

Confidencescore = 1 + ec = 1 +ROMexp(c) (7.1)

Probabilityj =
epj∑21

i=1 e
pi(1 + ec)

(7.2)

Once the overall sum is evaluated is possible to execute the soft-max. The latter

Figure 7.3: Post process to extract probability heatmap and bounding boxes infor-
mations.

is necessary to find the normalise probabilities across all the object ones, per each
bounding box. Instead of executing 21 division a single reciprocal module is added
after the accumulator stage, figure 7.4. The reciprocal of the overall sum will speed
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up the normalisation process since the division is substituted by a multiplication,
faster. To archive the correct timing a FIFO is added in parallel to the accumulator
and reciprocal module according to the delay of both modules. This approach,
used also in other modules, lets the architecture to archive a good speed up during
any normalisation processes. Moreover, since the next macro module, Initialisation
module, needs the new sum of probabilities, it is evaluated concurrently to the
output probability. In the same way also the final bounding boxes are composed
and clipped to a maximum size 200x200.

Figure 7.4: Zoom in to the normalisation algorithm.
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7.4 Initialisation

The initialisation module generates the random samples used inside the iterative
process, the particle filter. The proposed architecture is shown in figure 7.5.

Figure 7.5: Architecture proposed for the sample initialisation.

The architecture can be divided in three main parallel processes :

• The random number generators : It has the purpose to produce as output
random angles between ±π and the random values used for the sampling.

• The generation chain : It evaluate and select according to the first stage weight
the most likely absolute index , or equivalently bounding boxes.
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• The Heuristic generator : It fills the heuristic memory from the depth image
and transmit the relative heuristic information to generate the sample in the
correct space location.

The module has two inputs :

• The bi-dimensional distribution extracted from the first stage by the post-
process module .

• The overall sum of the probabilities of the heatmap is used to evaluated the
normalisation coefficient to calculate the cumulative normalised distribution.

Once the Cumulative sum and normalisation module will start producing, in a se-
quential way, the output values the Threshold tracker module will analyse them
and re-transmitted to a temporary memory. The BRAM stores the cumulative nor-
malised density function used by the sampling stage. Once the threshold tracking
finished to analyse the normalised values it will pass the information collected to the
bound generator. The latter will use the data received to produce custom addresses,
according to the random number used. The sampling module module receives each
iteration from the latter module two addresses and a random number. Once read
the temporary array is scanned to find the right value and the correspondent index
used to pick the bounding box and the heuristic. Now that the area is selected a
sample is constructed from the heuristic informations and stored in the "starting"
memory.

Each sub-block is described in the following list:

1. Evaluation of the normalised cumulative sum

wni
=
wi +

∑i−1
q=1wq∑N

k=1wk

, N number of probabilities from the first stage (7.3)

This module is designed in a fully parametric way with full precision inner cal-
culations. The output is truncated, to reduce the size of the storing memory,
according to the precision wanted. In the current version the number of bit
kept are 18. This module as like the post process does not store any infor-
mation, aside the normalisation coefficient and the full resolution cumulative
sum. Furthermore, an alternative version of this module was developed pre-
viously, in which the overall sum of probabilities is calculated by the module,
by reading twice the probability memory. The architecture proposed and its
timing are shown respectively in figure 7.7 and 7.6.

By giving a general consideration, since the module is designed in a parametric
way also the bit-width for all the local variables are calculated in the same
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Figure 7.6: Timing Cumulative Sum and normalisation.

Figure 7.7: Datapath Cumulative Sum and normalisation.

way. The probabilities of the heatmap are unsigned and strictly lower than
one, they can be represented as fixed point with ufixed<I,Q> = ufixed<N,0>
zero bit for integer part and N for fractional part. The full precision sum bit
size depends on the full size of the heatmap, because this parameter set the
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number of addition.

PyramidSize =

Nlevels−1∑
q=0

Heightq ∗ Widthq

The number of bit in a sum growth with the K = ceil(log2(PyramidSize))
and it is possible to state that the overall sum fits in ufixed<K+N,K>. Once
this value is found is possible to calculate its normalised value by multiply for
the normalisation coefficient, the final bit width will be K +N +Z. The final
output can be reduced to ufixed<T,0>, stricty lower than 1. To compensate
the finite precision of the reciprocal module the last element of the sum is
saturated to the maximum representable. Note* : the reciprocal bit size is
not defined, because ,although the reciprocal of fractional part has a fixed
dimension

1

2−N
= 2N

The reciprocal of the integer part has no boundaries, for example 1
3

= 0.3
needs infinite precision. According to [12] a practical solution to this problem
is to take into account the maximum integer and approximate it.

1

2K − 2−N
≈ 1

2K
= 2−K

This solution of course has its limitations, precision-speaking, but allows to not
increase the number of bit from the sum stage and get all the range. Another
possible solution is to look at the actual value of the sum, since the max and
min values are known, and create different paths. During the experiment was
discovered that for our calculations two bit extra for the reciprocal value is
necessary.

In our case the input is 8 bit for the fractional part and the overall size is 6300.
As consequence the overall sum can be represented in ufixed<13+8,8>, the
normalisation coefficient in ufixed<13+8+2,13> and the full precision final
multiplication needs ufixed<31,0>. After the truncation the result will be
ufixed<18,0> and it is transmitted to the next module, 18 bits are kept in order
to have a satisfactory resolution during the sampling and use all the possible
bits in a 18K BRAM, which number will be ceil(PyramidSize/1024) = 5.
The full code can to synthesised the circuit can be found in appendixC.

2. Threshold tracker

To select a random bounding box, the sampling stage wastes a lot of time
because it scan from the zero cell up to the Qth to pick the index of the first
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value, of normalised probability , which overcome the random value, generated
by a LFSR. The threshold tracker module is a new stage respect the GPU
implementation. The purpose of this module is to reduce number of reading,
as a consequence both the power consumption of the sampling stage and the
search time for the new sample. To reduce the re-scan problem, the module
stores values and indices at specific interval, to minimise the overall number
of reading to the current distribution. The step during the default operation
is kept constant, unless the difference between two adjacent values exceeds
the fixed distance. In the non standard condition, the module create in an
adaptive way the next thresholds value to overcame.

The threshold analysis occurs concurrently to the output of the cumulative
normalised sum, the proposed architecture and the timing are shown in figure
7.8 and 7.9.

Figure 7.8: Timing Threshold tracker .

The threshold tracker outputs in the bound generator the value concatenated
to the index.

vthr[Q] = THR(wn[N ]) , Q number of threshold stored

At the beginning 2P thresholds are supposed to be filled with an inner step of
2−P . The counter that keep the information about the probabilities normalised
have L bit, while the truncated version of the probabilities have P bits. The
threshold information,to be transmitted, is packet as following :

Thrinformation.range(L+ P − 1, L) = V alueTrunc

Thrinformation.range(L− 1,0) = counterWn
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Figure 7.9: Datapath Threshold tracker.

Since all the modules are data driven a fixed number of transmission is needed.
If the number of useful threshold is lower than the maximum the module out-
puts a fixed value, all zeros, to the bound generator to complete the trans-
mission. The code used to synthesise the hardware implementation is the
following :

1 void Thr_Analizer(stream <Norm_weights_Data_T > & Norm_weights ,
2 stream <Norm_weights_Data_T > & Norm_weights_out ,
3 stream <THR_INFO_Data_T > & THR_INFO) {
4

5 THR_Data_T past_thr = 0;
6 THR_P_Data_T Sent_cnt = 0;
7 Init_wr_weights: for (u13_Data_T norm_ind = 0; norm_ind <

PYRAMID_PIXELS;
8 norm_ind ++) {
9 #pragma HLS PIPELINE II=1

10 Norm_weights_Data_T weights2nsgen_fill;
11

12 // Just copy temporary the information
13 Norm_weights.read(weights2nsgen_fill);
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14 Norm_weights_out.write(weights2nsgen_fill);
15

16 THR_Data_T curr_thr = weights2nsgen_fill.range(
BIT_WEIGHT_NORM - 1,

17 BIT_WEIGHT_NORM - BIT_THR);
18 if (curr_thr - past_thr >= 1) {
19

20 THR_INFO_Data_T THR_INFO_fill = curr_thr.concat(norm_ind)
;

21 THR_INFO.write(THR_INFO_fill);
22 past_thr = curr_thr;
23 Sent_cnt ++;
24 }
25

26 }
27

28 for (; Sent_cnt < SIZE_ARR_THR; Sent_cnt ++) {
29 #pragma HLS PIPELINE II=1
30 #pragma HLS LOOP_TRIPCOUNT min=1 max=32 avg =16
31 THR_INFO.write (0);
32 }
33

34 }

Listing 7.2: BoundGenerator example

3. Generation of the sampling bounds

The module has the task to select the right starting and ending indices ac-
cording to the random value. All the informations will be transmitted to the
sampling stage. To not waste time between two samples, the module works
in parallel to the sampling memory reading end evaluate the boundaries. The
code used to synthesise the hardware is the following :

1

2 void Init_gen_rand_bound(stream <THR_INFO_Data_T > & THR_INFO ,
3 stream <u18_Data_T > & RAND_stream ,
4 stream <BOUNDS_RAND_Data_T > & Bounds_stream) {
5

6 // CURRENT THR concat to the address ( 5 + 13 )
7 THR_INFO_Data_T thr_array[SIZE_ARR_THR ];
8 #pragma HLS ARRAY_PARTITION variable=thr_array cyclic factor =2

dim=1
9

10 THR_P_Data_T zero_thr_counter;
11 for (THR_P_Data_T counter = 0; counter < SIZE_ARR_THR;

counter ++) {
12 #pragma HLS PIPELINE II=1
13 THR_INFO_Data_T THR_INFO_fill;
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14 THR_INFO.read(THR_INFO_fill);
15 thr_array[counter] = THR_INFO_fill;
16 // THE FIRST THR CAN HAPPEN IN THE ZERO POSITION BUT NOT

THE ZERO THR
17 if (! counter.or_reduce ()) {
18 zero_thr_counter = 0;
19 } else if (! THR_INFO_fill.or_reduce ()) { // THIS IS THE

CONDITION TO MARK
20 zero_thr_counter ++;
21 }
22

23 }
24 Init_new_sampl_generation: for (u10_Data_T i = 0; i <

NUM_PARTICLES; i++) {
25 #pragma HLS PIPELINE II=1
26

27 u18_Data_T rand_numb_fill;
28 u13_Data_T bottom_stream_fill;
29 u13_Data_T top_stream_fill;
30 rand_numb_fill = RAND_stream.read();
31

32 THR_Data_T thr_local = rand_numb_fill.range(BIT_WEIGHT_NORM
- 1,

33 BIT_WEIGHT_NORM - BIT_THR);
34 if (! thr_local.or_reduce ()) { // this fix the lower

intervall
35 bottom_stream_fill = 0;
36 top_stream_fill = thr_array [0]. range(BIT_SUM_INIT - 1, 0)

;
37 } else if (thr_local == 31) { // this fix the upper

intervall
38 bottom_stream_fill =
39 thr_array[SIZE_ARR_THR - 1 - zero_thr_counter ].range(
40 BIT_SUM_INIT - 1, 0); //from 31 downto
41 top_stream_fill = PYRAMID_PIXELS - 1;
42 } else {
43

44 Init_gen_rand_bound_trk: for (THR_P_Data_T counter = 2;
45 counter < SIZE_ARR_THR; counter ++) {
46 #pragma HLS UNROLL
47 THR_INFO_Data_T temporaneo_Prec = thr_array[counter -

1];
48 THR_INFO_Data_T temporaneo_act = thr_array[counter ];
49 if (thr_local < temporaneo_act.range(BIT_THR +

BIT_SUM_INIT - 1,
50 BIT_SUM_INIT)) {
51 bottom_stream_fill = temporaneo_Prec.range(
52 BIT_SUM_INIT - 1, 0);
53 top_stream_fill = temporaneo_act.range(
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54 BIT_SUM_INIT - 1, 0);
55 break;
56 } else if (counter == SIZE_ARR_THR - zero_thr_counter -

1) {
57 break;
58 }
59

60 }
61 }
62 BOUNDS_RAND_Data_T FIll;
63 FIll.range(BIT_RANDOM_NUMBER + BIT_SUM_INIT + BIT_SUM_INIT

- 1,
64 BIT_RANDOM_NUMBER + BIT_SUM_INIT) = top_stream_fill;
65 FIll.range(BIT_RANDOM_NUMBER + BIT_SUM_INIT - 1,

BIT_RANDOM_NUMBER) =
66 bottom_stream_fill;
67 FIll.range(BIT_RANDOM_NUMBER - 1, 0) = rand_numb_fill;
68 Bounds_stream.write(FIll);
69 }
70

71 }

Listing 7.3: Bound Generator

As a first step the module loads all the Thresholds, after it starts iteratively
to load from the LFSR a random value, looking for the relative position inside
the threshold array and transmit all the informations .

4. Sampling stage

The module has the purpose to sample from the current distribution. Since
the input CDF is bounded to 1, the random number generator output can
also be bounded to 1. The way to pick a sample index consist in the following
mathematical description.

NewSamplei = wni
| [(wni

≥ Ui ) ∧ (wni
< wnj

, i < j)]

Ui Uniform random number

The new sample is the first element that has a normalised probability higher
than the random number. The code used to synthesise the hardware is the
following :

1 void Init_gen_sampleindx(stream <Norm_weights_Data_T > &
Norm_weights ,

2 stream <BOUNDS_RAND_Data_T > & Bounds_stream ,
3 stream <u13_Data_T > & sample_indx_stream ,
4 Norm_weights_Data_T acc_norm_weights_ [6300]) {
5
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6 u10_Data_T saver_counter = 0;
7 Init_wr_weights: for (u13_Data_T norm_ind = 0; norm_ind <

PYRAMID_PIXELS;
8 norm_ind ++) {
9 #pragma HLS PIPELINE II=1

10 Norm_weights_Data_T Norm_weights_fill;
11 Norm_weights.read(Norm_weights_fill);
12 acc_norm_weights_[norm_ind] = Norm_weights_fill;
13 }
14

15 Init_new_sampl_generation: for (u10_Data_T i = 0; i <
NUM_PARTICLES; i++) {

16 BOUNDS_RAND_Data_T Bounds_stream_fill;
17 Bounds_stream.read(Bounds_stream_fill);
18

19 ap_uint <BIT_SUM_INIT > TOP = Bounds_stream_fill.range(
20 BIT_RANDOM_NUMBER + BIT_SUM_INIT + BIT_SUM_INIT - 1,
21 BIT_RANDOM_NUMBER + BIT_SUM_INIT);
22 ap_uint <BIT_SUM_INIT > BOTTOM = Bounds_stream_fill.range(
23 BIT_RANDOM_NUMBER + BIT_SUM_INIT - 1, BIT_RANDOM_NUMBER);
24 ap_ufixed <BIT_RANDOM_NUMBER , 0> RAND;
25 RAND.range () = Bounds_stream_fill.range(BIT_RANDOM_NUMBER -

1, 0);
26

27 for (u13_Data_T index = BOTTOM; index <= TOP; index ++) {
28 #pragma HLS PIPELINE II=1
29 #pragma HLS LOOP_TRIPCOUNT min=1 max =6300 avg =16
30

31 Norm_weights_Data_T temp_value = acc_norm_weights_[index
];

32 if (temp_value >= RAND) {
33 saver_counter ++;
34 sample_indx_stream.write(index);
35 break;
36 }
37 }
38 }
39 for (; saver_counter < NUM_PARTICLES; saver_counter ++) {
40 sample_indx_stream.write (0);
41 }
42

43 }

Listing 7.4: Sampling

5. Sample generation

The module task is to fill the sample memory with random pose. The module
receives from the sampling stage an absolute index, which will be used to pick
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the heuristic informations and from three different channels the angles. The
code used to synthesise the hardware is the following :

1 #include "GenSample.hpp"
2 void Gen_Sample(stream <u13_Data_T > & sample_indx_stream ,
3 stream <angle_Data_T > & x_angle_stream ,
4 stream <angle_Data_T > & y_angle_stream ,
5 stream <angle_Data_T > & z_angle_stream ,
6 Mem_SAMPLE Samples[NUM_PARTICLES],
7 Sample_abs_indx_Data_T Sample_abs_indx[NUM_PARTICLES],
8 Sample_abs_indx_Data_T Sample_abs_indx_CPY[NUM_PARTICLES],
9 BBOX all_box [6300] , Mem_Heuristic Heuristics [6300] ,

10 stream <randZ01 > & random_z01) {
11

12 // NOW I LOAD THE NEW ADDRESS
13 for (u10_Data_T y = 0; y < Num_Particles; y++) {
14 u13_Data_T sample_indx_fill = sample_indx_stream.read();
15 ap_ufixed <18, 0> rand01 = random_z01.read();
16 Sample_abs_indx[y] = sample_indx_fill;
17 Sample_abs_indx_CPY[y] = sample_indx_fill;
18 Mem_Heuristic curr_Heuristics = Heuristics[sample_indx_fill

];
19

20 Samples[y].x_S = (ap_fixed <18 + BIT_POSE_INT , BIT_POSE_INT
+ 1>(

21 curr_Heuristics.x_min + curr_Heuristics.x_max) >> 1);
22 Samples[y].y_S = (ap_fixed <18 + BIT_POSE_INT , BIT_POSE_INT

+ 1>(
23 curr_Heuristics.y_min + curr_Heuristics.y_max) >> 1);
24 Samples[y].z_S = (ap_fixed <18 + BIT_POSE_INT , BIT_POSE_INT

+ 1>(
25 curr_Heuristics.z_min
26 + (curr_Heuristics.z_max - curr_Heuristics.z_min)
27 * rand01));
28 Samples[y]. xroll_S = x_angle_stream.read();
29 Samples[y]. ypitch_S = y_angle_stream.read();
30 Samples[y]. zyaw_S = z_angle_stream.read();
31 }
32 }

Listing 7.5: Sample Memory fill

The body is fixed in the centre of the bounding box, while the depth is selected
randomly in the heuristic interval. The angles are generated with three dif-
ferent LFSR, which output value bounded to ±0.5 and multiplied by π. The
code to synthesise a generic angle is the following :

1 void Angle_Genx(stream <angle_Data_T > & angle_stream , u15_Data_T
seed) {

2 static u15_Data_T lfsr = seed;
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3 for (u10_Data_T i = 0; i < Num_Particles; i++) {
4 #pragma HLS PIPELINE II=1
5 u1_Data_T b_15 = lfsr.get_bit (15 - 15);
6 u1_Data_T b_14 = lfsr.get_bit (15 - 14);
7 u1_Data_T new_bit = b_15 ^ b_14;
8 lfsr = lfsr >> 1;
9 lfsr.set_bit (14, new_bit);

10 ap_fixed <15, 1> rand_angle_temp;
11 rand_angle_temp.range () = lfsr;
12 angle_Data_T rand_angle_fill = (angle_Data_T) angle_Data_T(
13 3.14159265359) * rand_angle_temp;
14

15 angle_stream.write(rand_angle_fill);
16 }
17 }

Listing 7.6: Angle generator

Results

The image collection number 7.10 shows the input data from the first stage and
all the passages up to the sampling. Image 7.10a shows a real heatmap, flattened,
which is converted to the image 7.10b and normalised to 7.10c. The image 7.10d
shows which indices of the original distribution are selected during the initialisation.

The experimental result of the threshold analyser are shown in image 7.11c and
7.11d. The average of number of readings without the threshold tracker is 2520.27
versus 61.51 with it, leading to a speed up of 40.97 times. Note* The data shown
are specific for the banana object inside the scene 1.6.
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(a) Distribution from the first stage (b) Cumulative sum of the distribution

(c) Normalised cumulative sum of the distri-
bution

(d) Sample selected from the distribution

Figure 7.10: Data collected from the initialisation module

7.5 Render, Inlier and Re-sampling all together
The rendering, Inlier computation and Re-sampling functions are the core of the
algorithm in terms of complexity, size and information elaborated. The transforma-
tion module generates the transformation matrices, for each sample, used by GPU
module to correctly rasterize and shade object model. The image will be compared
to the depth scene producing a output weight forwarded to the resampling stage.
Since these three cores are strictly related a complex architecture was developed to
reduce the data storage and speed up the overall operations, top RTL view can is
shown in the image 7.12.

In figure 7.13 is shown the computational pipeline of the GPU and FPGA im-
plementation for the weight calculation. The main difference between the two im-
plementation is that each core inside instead of render and only after compare it
to the image in the FPGA implementation this happen directly without storing the
rendered image.
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(a) (b)

(c) (d)

Figure 7.12: Top view of the particle filter.

7.5.1 Optimisations inside the architecture

In the preliminary version, the algorithm was working on one sample at time, storing
the transformed object model in a temporary memory, rendering the sample in a
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Figure 7.13: Particle filter dataflow difference between GPU and FPGA

memory of the same size as the original frame and to evaluate the inlier the entire
depth image was scanned.

The new architecture as like the rest of the project was developed in terms of
small computational modules. The main difference respect to the base version are
the following differences :

• Fast, chained and low latency transformation matrix calculator

• No storing the transformed object model

• Reduced the size of the rasterisation space to the maximum bounding box size

• Sharing the same object model to more than one rasterization core.

• No Z-buffer

• Back face culling

• direct inlier evaluation

Soft inlier
The GPU original algorithm render an entire object, generates its point cloud and

only after compare it to the point cloud of the scene with a 3D distance comparison.
Each point difference lower than 5 mm is consider as an inlier and summed to the
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previous values.

weighti = α Inlieri
Nraster

+ β Inlieri
Ndepth

+ γρFirstStage

Inlieri =
∑Nraster

i=0 χ(||pi − pscenei ||)

χ(x) =

{
1 x ≤ 0.005
0 x > 0.005

(7.4)

As shown in 7.4 final weight is equal to the number of inlier over the valid render
pixels plus inlier over the valid depth plus the probability of the first stage. All of
these coefficients are multiplied by specific values in order to maximise the overall
wight to one and redistribute the importance. In the hardware implementation the
first step was to simplify the inlier evaluation by approximate the computation using
the assumption that the (x, y) coordinate of the rasterized and scene point were the
same if they belongs to the same image pixel.

||pi − pscenei || =
√

(xp − xs)2 + (yp − ys)2 + (zp − zs)2 (7.5)

||pi − pscenei || ≈ |zi − zscenei |, (xp − xs)2 ≈ 0 and (yp − ys)2 ≈ 0

With the approximation 2 subtractions, 2 additions , 3 multiplications and one
square root are removed and the need of a point cloud for the object.

Furthermore, to extract more informations about the object the χ(|∆di|) func-
tion was transformed to a discontinuous function to a continuous one by selecting
two distance thresholds and interpolated them. Since this computation should not
increase both hardware and time only shifting and additions wants to be used. First
step to design the soft-inlier calculation was to find two reasonable powers of two
close to 5 mm.

Thr1 = 0.00390625 = 2−8 ≈ 4mm

Thr2 = 0.0078125 = 2−7 ≈ 8mm

To map this information from zero to one we need to find the slope that remap the
input to that specific interval

α =
χ(Thr2)− χ(Thr1)

Thr2 − Thr1
=

0− 1

2−7
= −128

which is actually 8 point shift to the depth difference value. the final χ(|∆di|) uses
only one adder more but gives us a more precise value to describe the object.

χ(x) =


1 x ≤ Thr1

1 + αx Thr1 < x < Thr2
0 x ≥ Thr2
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Memory sharing and reduction Once the system was implemented to a
multi-core architecture a problem was noticed. The depth fragment distribution
was adding a huge delay was due to the huge amount of data transfer and to the
low clock speed. However, some correlation between the inner cores/particles arise,
like that all them needs the same :

• Depth image : Each core needs to compare the rendered object with the
corresponding depth.

• Object model : Each core needs to render the body its mathematical descrip-
tion.

If a copy of all of these information is provided to each core is quite easy to
running out of memory and consequently the number of core cannot increase. To
have a flexible and scalable system the modules can share :

• Depth image : It is possible to reduce the depth memory inside the render-
ing module to the max bounding box possible and thanks to a specific engine
the time to fill all of them can be drastically reduced. This external mod-
ule reads, assemble all the depth fragment and distribute the depth pixel to
corresponding rendering core, reading the depth memory only once.

• Object model : It is possible thanks to an external process that read the
original object model, collect the triangle and send a copy to all of them.

Furthermore, an extra reduction in terms of memory consumption was made
in the project. Thanks to the back face culling almost of the fifty percent of the
triangles are removed, because intrinsically occluded. The proposed architecture
exploits this propriety to calculate online the weight, without storing the rendered
body, by directly compare the pixel value to the correspondent depth pixel. The
approximation done with the back face culling is not perfect since it removes only
the faces pointing in the same direction of the camera, and this can be a problem
in the edge of the objects and in the one which has not fully convex shape.

This inconvenient alters the value of the weight by increasing or decreasing it
bit, but it also reduces a lot the number of memory consumption for each module,
since there is no need to store the rasterised object . Figure 7.14 shows the FPGA
and GPU rendering dataflow.
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Figure 7.14: Rendering pipeline, FPGA and GPU differences

7.5.2 The full transformation matrix chain

The module has the task to produce the transformation matrix to be used inside
the rendering core FT = PCTrRzRyRx , and to improve the latency and the
hardware consumption this module chains all the matrix multiplication across the
samples. As a first step is possible to notice that full expression of the final matrix
is FT = PCTrRzRyRx can be grouped in partial multiplications FT = (PC) ∗
(TrRz) ∗ (RyRx) and each of that multiplications can be optimised independently :

• The camera times the projection matrix is not worth to optimise it because
the camera one is mostly different from zero and it have to be calculate only
once whereas it is common to all the samples.

• The translation with the rotation on the z axis can be joined without the need
for multiplication, as shown in equation 7.6.

TrRz =


cos(βz) −sin(βz) 0 x0
sin(βz) cos(βz) 0 y0

0 0 1 z0
0 0 0 1

 (7.6)

• The rotation matrix around y and x can be merged just with four multiplica-
tion, as shown in equation 7.7.

RyRx =


cos(βy) sin(βy)sin(βx) sin(βy)cos(βx) 0

0 cos(βx) −sin(βx) 0
−sin(βy) cos(βy)sin(βx) cos(βy)cos(βx) 0

0 0 0 1

 (7.7)
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Applying this consideration the overall number of multiplication is reduced to
zero for the TrRz matrix and to four for the RyRx one. The architecture developed
was the one the transformation matrix generator, figures 7.16 and 7.15 show the
RTL view and the timing diagram. The module itself has only one output, there
will be a next module with the task to redirect the data flow.

Figure 7.15: Timing for the full transformation matrix

The architecture in the image 7.16 was designed to archive high throughput. The
only input is the BRAM containing all of the information about the current samples
and the output is the matrix element provided one by one. The matrix pipeline can
be stalled and reactivated only when need, in this way there is no reason to store
all the transformation matrix, just the one currently used by the rendering cores.
The improvements is possible since the TrRz and RyRx can be produced without
any matrix multiplication and independently evaluated. The output element is
constructed by multiply an element of the PC times the TrRz , row by row. The
output is in the form of a row which multiply by the column of RyRx results in the
final transformation matrix. The has the advantage that the multiplication between
the two trigonometric function can be hidden during the transmission of the first
column and the reading of the second angle.
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Figure 7.16: RTL view for the full transformation matrix pipeline

7.5.3 GPU and INLIER

The architecture proposed, shown in figure 7.17, is composed by the following mod-
ules:

• Vertex Multiplier : It load the points, assemble a face for the object model
and transmit a copy of it to all the rendering cores.

• Distribute FT : This module reads the output of the full transformation
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matrix module an redirect the element to the correspondent rendering core.

• Depth fragment and Sample Info Distribute : It collect all the bounding
box informations, create a map of the depth pixel that have to be transmitted
and send them with the equivalent bounding box information.

• Raster Core (partial inlier) : It transforms and rasterize the triangle di-
rectly on the depth portion outputting the numerator and denominator of the
final weight.

• Weigh/Inlier merger and final composition: This module reads all the
outputs from all the raster cores, generates the final weight, concatenate it
to the corresponding relative index and send this information to the sorting
network. Furthermore, the module was implemented to use reduce the number
of division module because otherwise each rasterization core needs one.

Depth Distribution

As previously described, now that the system is multi-core, the depth information
must be redistributed in an efficient way because inside each rasterization core it is
not stored the entire image but only a fragment of it and the time for the distribution
of the information is directly proportional to the number of cores. For example in
this project case with five rasterization cores ,a the clock frequency of 200MHz
and a depth fragment of 200x200 the overall time will be 1ms, if distributed with
a sequential approach, per sample in raster core. Moreover, is important to point
out that this is the time only for the writing and do not consider the reading time,
1ms, leading to an overall delay for all the sample :

Timeiteration = DH ∗DW ∗ (#Clkread + #Clkwrite) ∗ Tclk Nsample

Mcore
=

200 ∗ 200 ∗ 2 ∗ 5510
5
ns = 204ms

(7.8)

To reduce the number of readings, memory access delay, and the overall latency
an algorithm was designed to join the information from each raster core, as shown
in figure 7.18.

The implemented algorithm was inspired by the assumption that more channels
are present in the design more likely is that exist a depth fragment portion shares.
The assumption at the beginning was supported also from the neural network predic-
tions, almost right, and from the certain certainty that going on with the iterations
the bounding boxes converge to the same depth area. All of these assumptions al-
lows to create an algorithm which read the depth image only one time for many
particles reducing both the time and power consumption.
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Figure 7.17: GPU and INLIER architecture

To archive the proposed algorithm the bounding box centre was stored, saturated
to the image limits, sorted by the row coordinate and merged by the column one.
Since the centre is related to the bounding box size could be different respect to
the one of the depth fragment. The saturation transform the middle point if its
distance respect to the edge of the image is lower than the depth fragment half. The
following pseudo code is a small description of the actual algorithm :

1 for (u7_Data_T x = 0; x < Num_sample_x_raster_core; x++) {
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Figure 7.18: Depth distribution with information sharing.

2 for(u4_Data_T indice = 0; indice < Num_Core_Raster; indice ++) {
3 Centre = read(Centre_BB);
4 Saturate(Centre ,WIDTH , HEIGHT);
5 //this insertion sort limits its sortind dimension according to

the current size
6 Limited_Insertion_Sort(Centre_rowSort , Centre , indice);
7 }
8 Create_Rowinterval(Centre_rowSort ,row_interval ,

row_interval_size);
9 //FIND WHICH CHANNEL BELONGS TO A SPECIFIC INTERVAL

10 Find_channel(Centre_rowSort ,row_interval_list ,
row_interval_list_size ,Ch_list);

11 Merge_Xinterval(col_interval_size , col_interval_list , Ch_list ,
row_interval_list ,

12 row_interval_list_size , Centre_rowSort)
13

14 for (int index = 0; index < row_interval_list_size; index ++) {
15 for (int row = row_interval_list[index];
16 row < row_interval_list[index + 1]; row ++) {
17 for (int interval_index = 0;
18 interval_index < col_interval_size[index];
19 interval_index ++) {
20 for (int col = col_interval_list[index][ interval_index ].

min;
21 col < col_interval_list[index ][ interval_index ].max;
22 col ++) {
23 // load the temporary depth
24 Depth_Data_T temp_depth = Depth_scene[row][col];

106



7.5 – Render, Inlier and Re-sampling all together

25 for (int ch_counter = 0; ch_counter < Num_Core_Raster;
26 ch_counter ++) {
27 // CHECK FOR ALL THE CHANNELS
28 if (row >= Centre[ch_counter ]. y_begin
29 && row < Centre[ch_counter ]. y_final
30 && col >= Centre[ch_counter ]. x_begin
31 && col < Centre[ch_counter ]. x_final) {
32 Depth_stream[ch_counter ].write(temp_depth);
33 }
34 }
35 }
36 }
37 }
38 }
39 }

Listing 7.7: Depth distribution pseudo code

Results The data collected, figure 7.19a and 7.19b, show that the assumption
made at the design stage was right and figure 7.19c states the overall speed up
obtained.

(a) # of pixel read from the
Depth BRAM

(b) Time to fill all the raster
cores

(c) Overall speed up respect
the version without the pro-
cessing

core Run Time
1 204 ms
5 85 ms
10 55 ms

Table 7.2: Run time collected from the board

Note* the results provide are evaluated with ten rasterization cores.

Rasterization

The architecture, shown in figure 7.20, can be analysed in four main modules :
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• Triangle transformation : This module load the transformation matrix and
transform all triangle of an object model.

• Depth recovery : This module recover the exact depth from the distortion
introduced by the projection matrix

• Depth comparison : This module compare the input pixel with the correspond-
ing depth one. This module outputs the numerator and denominator needed
for the weight calculator.

The rasterization module implements also the back-face culling,which perfor-
mances are shown in image 7.21. The Overall Faces over Rendered ones is equal to
2.06 .
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Figure 7.20: Rasterization architecture

Weight merger

The module is just a division core that evaluates the final weight for each particle
and outputs to the resampling stage the value with the relative index concatenated.
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Figure 7.21

1 void weight_merger(stream <Raster_Core_Output > (& Serial_weights)
[10],

2 Sample_abs_indx_Data_T Sample_abs_indx_CPY[NUM_PARTICLES],
3 FS_W_fix_Data_T all_prob [6300] , stream <Inlier_Output > & Inl_Out

) {
4 for (int x = 0; x < Num_sample_x_raster_core; x++) {
5 for (int core = 0; core < Num_Core_Raster; core ++) {
6 #pragma HLS PIPELINE
7 weight_address_Data_T address = core + x * Num_Core_Raster;
8 Sample_abs_indx_Data_T curr_abs_index = Sample_abs_indx_CPY[

address ];
9 Raster_Core_Output Serial_weights_fill =

10 Serial_weights[core].read();
11 FS_W_fix_Data_T curr_probability = all_prob[curr_abs_index ];
12 Inlier_Output Outfill;
13 Outfill.weight =
14 Numerator_Data_T(
15 (( Serial_weights_fill.Numerator)
16 / Serial_weights_fill.Denominator
17 + curr_probability) >> 2);
18 Outfill.address = address;
19 Inl_Out.write(Outfill);
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20 }
21 }
22 }

Listing 7.8: Weight merger
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7.5.4 Re-sampling

The architecture developed, shown in figure 7.22 to sample the particles is quite sim-
ilar to the one developed for the object pose initialisation. The information arrives
sequentially, they are accumulated and sorted through a sequential sorting network.
Only after all the samples are arrived the normalisation coefficient is calculated and
the normalisation process started. The final distribution pass through a threshold
tracker and stored in a temporary variable, the one used in the initialisation core.
The module will pick some samples and write their relative index to a memory,
which will be used later to generate the diffused poses.

Sorting network The sorting module in the original version took a lot of time
and data movement. The architecture proposed in figure 7.23b is able to sort online
the weights and produce an array of relative memory indices in the diffusion stage.
The sorting network is subdivided in smaller modules called macro sorting cells,
which is feed with the information coming from the inlier function, which outputs
the weights in a sequential manner . The macro sorting cell is a shift register with
conditional insertion, as shown in 7.23a, designed to contain an array always sorted.
The basic idea is that every time an element go inside the macro sorting cell another
value must go out and pass to the next cell or to the final output. This algorithm
is very similar to an insertion sort, and the division in macro cells allows us to
customise the number of elements to be effectively stored.

The approach with the macro cell allows to modify the number of particles to be
sorted, because in each cell is possible to store M weights. According to the ratio
of particles that wants to be used during the re-sample stage is possible to increase
or decrease the number of cells needed. In this way is possible to archive a sorting
of N elements concurrently to the inlier evaluation.

Re-sampling and threshold tracker
The type of resampling used is an importance sampling, which means to gener-

ate a random number from a uniform distribution and pick the first element that
overcome that value. As was happening in the initialisation also here to find the
value the array must be scanned from the zero address. Also in the resampling
architecture is possible to add the threshold tracker module to reduce the number
of readings, figure 7.24a and 7.24b.

From the data shown in 7.25b and 7.25a, the average of number of readings
without the threshold tracker is 375 versus 8.34 ,with it. The overall speed up is
44.93 times.
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Figure 7.22: Re-sampling architecture

7.6 Diffusion

The diffusion stage has the task to modifies the re-sampled elements to produce a
new batch with similar position of the most likely. In order to avoid problem of
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(a) Sorting network, general datapath

(b) RTL view of the serial sorting net-
work

(a) Threshold indices positions respect to
the CSN

(b) Threshold value positions respect to
the CSN

overwrite, since the original original array is not sorted, the particle filter works
with two sample memories, which alternate during the iteration as start and ending
point.

Figure 7.26 shows the RTL view of the diffusion module. From a set of LFSR
uniform random numbers are produced, these can be divided in two main channels.
The first group goes to the diffuse type generator, which select a type of diffusion
between :

• Translation for x,y,z or all of them.
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(a) Number of readings needed without
the Threshold tracker

(b) Number of readings needed with the
Threshold tracker

Figure 7.26: Diffusion architecture.

• Rotation for rho,pitch,yaw or all of them

• Add 180 degree to one of rho,pitch and yam

• Moving the bounding box across and among the original heatmap

The second group goes to the Box-Muller algorithm, which generate a couple of
number distributed in normal distribution starting from two uniform ones. The box
Muller works independently from the diffusion stage and is able to produce a couple
of Gaussian numbers each clock cycle. The output noise is modulated always inside
the same core to change the final variance. The distortion’s effect decrease linearly
if the maximum weight increase.

translationvar = (1− winner.weight)var0
rotationvar = (1− winner.weight)var1
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Furthermore, respect to the original algorithm this decay was changed to a linear
decay, easier than an exponential one, directly proportional to the maximum prob-
ability of the sample.

Results
In this small paragraph some distribution of random number will be proposed

to validate the design. Figure 7.27a and 7.27b are two histograms of the random
number used in one iteration of the particle filter. Since the number used is not
infinite is possible to notice a distortion in the envelope.

(a) Uniform distribution from initialisa-
tion

(b) Uniform distribution from resam-
pling

Figure 7.28a shows a the histogram of one variable generated by the box Muller
transformation. The characteristic of the distribution are :

• Mean: 0.006161

• STD: 0.958241

• Skewness: 0.049544 (asymmetry parameter, unbalanced distribution)

• Kurtosis: 0.139801 (how much of the distribution is in the tail)

To test if the null hypothesis cannot be rejected two test were executed :

1. D’Agostino K2 Test : uses the Skewness and Kurtosis to understand if it
is a Gaussian distribution. This tests generates stat = 1.35169 , p-value =
0.508726. The understand if the samples looks Gaussian distributed the p-
value should be greater than alpha, 1e-3.

2. Shapiro-Wilk Test : is characterised by the statistics : 0.997846 and p-value :
0.224071, with a chosen alpha of 0.05.

With both tests the samples look Gaussian. Figure 7.28b shows the same distribu-
tion modified by mean and variance.
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• Blue : Mean: 0.006161 and STD: 0.958241

• Mean: 1.018485 and STD: 2.874723

(a) (b)
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7.7 Hardware and power consumption
In this section are shown two example of design. Respectively with five and ten
rasterization core. Legend of image 7.31:

• BLUE: 5 GPU and INLIER CORE

• PINK: SORTING NETWORK

• YELLOW: INIT

• DARK PINK: POST-PROCESSING

• ORANGE: AXI

• DARK GREEN: FT CREATE

• LIGHT GREEN: DIFFUSION

Legend of image 7.34

• PINK: 10 GPU + INLIER CORE

• BLUE: SORTING NETWORK

5 Cores
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Figure 7.29

Figure 7.30

10 Cores
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Figure 7.31

Figure 7.32
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Figure 7.33

Figure 7.34

7.8 Conclusions

This thesis aimed to create from the high level algorithm a complete architecture for
FPGA. Based on the final design is possible to state that develop individual cores
from an RTL prospective was quite useful. The flexibility also from the architectural
point of view was reached since the number of inlier core can be changed according
to the FPGA size. Furthermore, thanks to the low power consumption the execution
of this specific particle filter inside any embedded platform. Time performances

The GPU used to compare is a NVIDIA Titan Xp, high power GPU not designed
for embedded systems. By comparing the performances, shown in 7.3, is possible
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core Frequency[MHz] 1st iteration[ms] 50th iteration[s] Average time[ms]
5 (FPGA) 200 177 6.31 120
10 (FPGA) 200 115 4 80
625 (GPU) 1770 30 1.5 30

Table 7.3: Time performance FPGA and GPU

to notice that even if the FPGA uses only 10 cores, respect to 625 of the GPU, the
final slow down is only 2.66. By looking at image 7.35 is also possible to notice that
the execution time, in the FPGA, decrease as the iteration increase, while the GPU
one is always constant.

Figure 7.35: Iteration time vs number of iteration for five cores
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Appendix A

CNN with tensorflow

1 def cnn(features , labels , mode):
2 # THIS IS A CNN IN TENSORFLOW
3 In_layer = tf.reshape(features["x"], [-1, 28, 28, 1])
4

5 # Convolutional Layer #1
6 convolutional_L1 = tf.layers.conv2d(
7 inputs=In_layer ,
8 filters =32,
9 kernel_size =[5, 5],

10 padding="same",
11 activation=tf.nn.relu)
12

13 # Pooling Layer #1
14 Pooling_L1 = tf.layers.max_pooling2d(inputs=convolutional_L1 ,

pool_size =[2, 2], strides =2)
15

16 # Convolutional Layer #2 and Pooling Layer #2
17 convolutional_L2 = tf.layers.conv2d(
18 inputs=Pooling_L1 ,
19 filters =64,
20 kernel_size =[5, 5],
21 padding="same",
22 activation=tf.nn.relu)
23 Pooling_L2 = tf.layers.max_pooling2d(inputs=convolutional_L2 ,

pool_size =[2, 2], strides =2)
24

25 # Dense Layer of neurons 1024
26 Pooling_L2_flat = tf.reshape(Pooling_L2 , [-1, 7 * 7 * 64])
27 dense = tf.layers.dense(inputs=Pooling_L2_flat , units =1024 ,

activation=tf.nn.relu)
28

29 # Add dropout for a training
30 dropout = tf.layers.dropout(
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A – CNN with tensorflow

31 inputs=dense , rate =0.4, training=mode == tf.estimator.
ModeKeys.TRAIN)

32

33 # Classification Layer 10
34 Classification = tf.layers.dense(inputs=dropout , units =10)
35

36 likelyhood = {
37 # Generate likelyhood
38 "classes": tf.argmax(input=Classification , axis =1),
39 "probabilities": tf.nn.softmax(Classification , name="

softmax_tensor")
40 }

Listing A.1: CNN example
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Second stage full algorithm

1 for each OBJECT : {
2 SETUP : {
3 load object model
4 load scene
5 reset depth buffer (z-buffer reset to far)
6 load heuristics and Probability
7 }
8 INIT_POSE : {
9 for each SAMPLE {

10 do:{
11 importance sampling from first stage
12 } while (check_pose () == bad)
13 Initialize the pose
14 }
15 }
16 EVAL_LOOP :{
17 do:{
18 INLIER :{
19 for each sample{
20 transform object
21 for each face{
22 load triangle
23 depth evaluation
24 Rasterization and Depth substitution
25 }
26 for BB_size {
27 load scene point
28 load depth point (z - buffer)
29 compute inlier
30 }
31 evaluate weights
32 }
33 }
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34 COMP_WEIGHTS: {
35 for each sample{
36 calculate final weight
37 }
38 Sort samples
39 }
40 Resample :{
41 Calculate SUM
42 normalize all samples
43 Cumulative sum
44 Resample keeping the most likely
45 Transfer new samples
46 }
47 Diffusion :{
48 for each sample{
49 diffuse randomly
50 }
51 }
52 } while(check_convergency () == bad)
53 } // End evaluation loop
54 AFTER CONVERGECE : {
55 INLIER : { ... }
56 COMP_WEIGHTS : { ... }
57 }
58 } // End for each object

Listing B.1: Complete Second Stage algorithm
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Second Stage Code

1

2 /*
3 *
4 *
5 * TYPES FOR INITIALIZER
6 *
7 */
8

9 // THESE ARE FOR THE DISTRIBUTION CREATION
10 #define MAX_INIT_BIT BIT_WEIGHT_FS // MAX BETWEEN BIT_WEIGHT_FS

and BIT_SUM_INIT
11 #define BIT_WEIGHT_FS 16 // FOR AXI MUST BE A MULTIPLE OF 8
12

13 // /////////////////////////////
14 // WARNING !!! if you change this you must change also the index of

the loop
15 // OTHERWISE ENDLESS LOOP
16 #define BIT_SUM_INIT 13 // 13 for the pyramid 4938
17 // WARNING !!!
18 // /////////////////////////////
19

20 #define BIT_WEIGHT_NORM 18 // the truncated version
21

22 #define ONE_TRUNC_INIT 262143 // 2^18 -1
23

24 //256 isthe max 8 bits
25 // 1/4938 = 0.000202511 -> 13 bit
26 #define BIT_NORM_COEFF_FS (BIT_SUM_INIT+BIT_WEIGHT_FS)
27

28 // THE PRODUCT OF TWO VARIABLE NEEDS IN EXACT CALUCLUS THE SUM OF
THE BITS

29 #define BIT_FULL_RES_NORM (BIT_NORM_COEFF_FS + BIT_WEIGHT_FS)
30
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31

32 typedef ap_uint <BIT_WEIGHT_FS > FS_Weight_Data_T;
33 typedef ap_ufixed <BIT_WEIGHT_FS ,0> FS_W_fix_Data_T;
34

35 typedef ap_ufixed <BIT_SUM_INIT + BIT_WEIGHT_FS + 1, BIT_SUM_INIT >
Full_Res_Sum_Data_T; // need 13 bit to the sum 4938 is bounded
with 13 bit

36 // I need one extra for the LSB
37 //
38

39 typedef ap_ufixed <BIT_NORM_COEFF_FS , BIT_WEIGHT_FS >
Norm_coeff_Data_T;

40

41 typedef ap_ufixed <BIT_FULL_RES_NORM , BIT_WEIGHT_FS >
Full_Res_Norm_Sum_Data_T;

42

43 typedef ap_ufixed <BIT_WEIGHT_NORM , 0> Norm_weights_Data_T;
44

45

46 void Init_Crt_Distr(const volatile FS_Weight_Data_T * weights ,
47 stream <Norm_weights_Data_T > & Norm_weights) {
48

49 //#pragma HLS INTERFACE m_axi depth =4938 port=weights offset=
slave bundle=weights

50 //#pragma HLS INTERFACE s_axilite register port=return bundle=
CRTL_BUS

51

52 #pragma HLS DATAFLOW
53 static stream <FS_W_fix_Data_T > weights2acc_stream;
54 #pragma HLS STREAM variable=weights2acc_stream depth =1
55

56 Init_splitter(weights , weights2acc_stream);
57 Init_load_sum_prob(weights2acc_stream , Norm_weights);
58

59 }
60 /*
61 *
62 * Init_splitter (1)
63 *
64 */
65

66 void Init_splitter(const volatile FS_Weight_Data_T * weights ,
67 stream <FS_W_fix_Data_T > & weights2acc_stream) {
68 Init_rd_ram_weights_1: for (u13_Data_T c = 0; c < PYRAMID_PIXELS;

c++) {
69 #pragma HLS PIPELINE II=1
70 FS_W_fix_Data_T out_fill;
71 FS_Weight_Data_T temp = weights[c];
72 out_fill.range() = temp;
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73 weights2acc_stream.write(out_fill);
74 }
75 Init_rd_ram_weights_2: for (u13_Data_T c = 0; c < PYRAMID_PIXELS;

c++) {
76 #pragma HLS PIPELINE II=1
77 FS_W_fix_Data_T out_fill;
78 FS_Weight_Data_T temp = weights[c];
79 out_fill.range() = temp;
80 weights2acc_stream.write(out_fill);
81 }
82 }
83

84 /*
85 *
86 * Init_load_sum_prob (2)
87 *
88 */
89

90 void Init_load_sum_prob(stream <FS_W_fix_Data_T > & weights_in_stream
,

91 stream <Norm_weights_Data_T > & Norm_weights) {
92

93 #ifdef PRINT_INIT
94 double full_resCalc = 0;
95 #endif
96 Full_Res_Sum_Data_T full_res_sum;
97

98 Initialize_cum_stmem: for (u13_Data_T c = 0; c < PYRAMID_PIXELS;
c++) {

99 #pragma HLS PIPELINE II=1
100

101 FS_W_fix_Data_T new_weight;
102 weights_in_stream.read(new_weight);
103

104 #ifdef PRINT_INIT
105 std::cout << c << std::endl;
106 if (!c.or_reduce ()) {
107 std::cout << "\tw_prec : " << 0 << " \t +" << std::endl;
108 } else {
109 std::cout << "\tw_prec : " << full_res_sum << " \t +" << std

::endl;
110 }
111 #endif
112 //with this condition we limits the lower bound of the sum to

0.0753632 = 2^-16 * PYRAMID_PIXELS
113

114 FS_W_fix_Data_T new_add = new_weight;
115

116 if (!c.or_reduce ()) { // if we are in the first iteration
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117

118 #pragma HLS PIPELINE II=1 // no need of power on initialization
119 full_res_sum = new_add;
120 } else {
121 full_res_sum += new_add;
122 }
123

124 #ifdef PRINT_INIT
125 std::cout << "\tw_new : " << new_weight << " \t =" << std::

endl;
126 std::cout << "\t---------------------------- " << std::endl;
127 std::cout << "\tRes fx : " << full_res_sum << std::endl;
128 std::cout << "\tRes ui : " << full_res_sum.range() << std::endl
129 << std::endl;
130 std::cout << "---------------------------- " << std::endl;
131 #endif
132 }
133

134 //256 is the max 8 bits
135 // 1/4938 = 0.000202511 -> 13 bit
136 ap_ufixed <BIT_SUM_INIT + MAX_INIT_BIT + 1, MAX_INIT_BIT + 1>

norm_bef_fill =
137 full_res_sum;
138 norm_bef_fill = hls:: recip(norm_bef_fill);
139 // the norm coeff will be 0,13 fixed
140 Norm_coeff_Data_T norm_fill = norm_bef_fill;
141

142 Initialize_Norm: for (u13_Data_T c = 0; c < PYRAMID_PIXELS; c++)
{

143 #pragma HLS PIPELINE II=1
144

145 FS_W_fix_Data_T new_weight;
146 weights_in_stream.read(new_weight);
147 //with this condition we limits the lower bound of the sum to

0.0753632 = 2^-16 * PYRAMID_PIXELS
148

149 FS_W_fix_Data_T new_add;
150

151 new_add = new_weight;
152

153 if (!c.or_reduce ()) { // if we are in the first iteration
154 // no need of power on initialization
155 full_res_sum = new_add;
156 } else {
157 full_res_sum += new_add;
158 }
159

160 Full_Res_Norm_Sum_Data_T full_res_norm = full_res_sum *
norm_fill;
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161 Norm_weights_Data_T weights2nsgen_fill;
162 if (c == PYRAMID_PIXELS - 1) {
163 weights2nsgen_fill.range() = ONE_TRUNC_INIT; // set to one
164 } else {
165 weights2nsgen_fill = full_res_norm;
166 }
167

168 Norm_weights.write(weights2nsgen_fill);
169

170 #ifdef PRINT_INIT
171 std::cout << c << std::endl;
172 std::cout << "\tw_curr : " << full_res_sum << " \t *" << std

::endl;
173 std::cout << "\tnorm : " << norm_fill << " \t =" << std::

endl;
174 std::cout << "\t---------------------------- " << std::endl;
175 std::cout << "\tRes full : " << full_res_norm << std::endl;
176 std::cout << "\tRes trun : " << weights2nsgen_fill << std::endl

;
177 std::cout << "---------------------------- " << std::endl;
178 #endif
179 }
180

181 }

Listing C.1: CSN initialiser example
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