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Abstract

RISC-V is a free and open source Instruction Set Architecture, which has sparked
interest all over the community of computer architects, as it paves the way for a
previously unseen era of extensible software and hardware design freedom, being
based on modular and optional ISA extensions, that allow designers to tailor the
architecture to their specific needs.

LEN5 is an an open source RISC-V core implementing the RV64G instruction
set (integer, multiply and divide, floating point and atomic operations), based on
Tomasulo’s algorithm to schedule its out-of-order execution. This choice was made
based on the fact that many modern microprocessor feature a dynamically sched-
uled pipeline, which offers the best performance and ILP exploitation at the cost,
however, of high hardware complexity. This work in particular focuses on the fron-
tend of LEN5, that is the part of the core responsible of generating addresses,
predicting next directions and fetching instructions from memory to be issued to
the execution stages.

The Instruction Fetch Unit (IFU) receives the current PC and interfaces with
the instruction cache to read at the required address. Previously read cache lines
are saved into line registers which reduce the total number of memory accesses, by
allowing next sequential instructions to be immediately read from those registers.
Moreover, this unit features a controller which handles both normal fetch operations
and pipeline stalls in case of exceptional behavior, cache misses or busy issue queue.

Another significant part of the frontend is the Branch Prediction Unit (BPU),
which predicts the direction of branch instructions in order to continue fetching im-
mediately from the next predicted path of instructions. In order to accomplish that,
it features a gshare branch predictor, which employs a subset of bits of the current
PC and a global history of branch outcomes to perform a prediction. Furthermore,
along with branch direction, also the branch destination address is predicted thanks
to a Branch Target Buffer (BTB), which is a small direct mapped cache storing the
next address after taken branches, to allow for zero latency branch instructions.

This work is intended as an exploration of such complex out-of-order architec-
tures, to actually experience firsthand the main issues and tradeoffs designers must
face and to contribute to the growing panorama of open source cores. Moreover,
the common hope is for this project to serve as the basis for future in-house devel-
opment of a complete RISC-V-based platform here at Politecnico di Torino, which
could be relevant both in teaching and research. As mentioned before, the entire
work will be open sourced and available in a GitHub repository.
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Chapter 1

Introduction

Since their first development in the 1960s, out-of-order (also known as dynamic
scheduling) microprocessors have become the main architectural paradigm used in
high-performance CPUs, given their ability to hide pipeline latencies and allow for
a faster program execution. Along with that, another key role in achieving high
effective performance is played by the concept of speculation and in particular by
branch prediction techniques, which improve the pipeline throughput by maintain-
ing a constant instruction flow inside the processor.

Nowadays, almost every device of common use, from desktop computers, to
laptops, to smartphones and tablets, contains some kind of out-of-order core which
exploits such techniques to offer the computing power and pleasant user experience
that the modern world demands. Of course, these architectural design choices come
with the drawback of significant added hardware complexity, so there are still some
very low power or very low cost microprocessors which do not employ them.

In order to deeply understand such complex architectures and explore the design
choices that must be faced in order to achieve that final result, a very convenient
way is to make use of an open-source Instruction Set Architecture (ISA), namely
RISC-V, which in turn allows the design of open source hardware.

This is exactly the aim of this thesis work: to design a RISC-V core, featur-
ing out-of-order execution and speculation to face the issues that such a project
involves firsthand, and gain valuable experience in this field of computer architec-
tures. Given its complexity, this work has been carried out by the candidate along
with two other colleagues, each one developing a defined part of the core, to come
up with the complete design. It is common hope for this project to also serve
as the starting point for the future development of a RISC-V based platform at
Politecnico di Torino, which could be used for a many different research purposes.
For this reason, the entire design and its documentation will be open source and
available on a GitHub repository.
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Introduction

1.1 The RISC-V ISA

RISC-V started as a summer research project in 2010 at UC Berkeley by PhD
candidates Andrew Waterman and Yunsup Lee and professors Krste Asanović and
David Patterson, but soon developed into a fully featured ISA, presented several
years later in Waterman’s dissertation [1].

Today the goal of RISC-V is to become a universal ISA [2], able to suit all kinds
of processors, from small embedded ones to high-performance cores, from single
issue in-order to superscalar out-of-order microarchitectures. Moreover, it is also
designed to be implementation independent, in order to work on FPGAs, ASICs
and even future technologies, and to be compatible with a large number of popular
softwares and programming languages.

How RISC-V intends to achieve that is by leveraging its two main strengths:
first of all it is a completely open source ISA, meaning that no single company has
control over its development and future, and secondly it is modular, in the sense
that the base instructions are frozen and will stay the same, while new extensions
are available and will be developed to expand the capabilities of the ISA (see section
1.1.1).

RISC-V belongs to a non-profit foundation, composed of many different corpo-
rate members as well as other non-profits and academic institutions, which together
aim at maintaining the stability of the ISA, evolving it when necessary and trying
to make it ever more popular. For more information, refer to https://riscv.org/.

1.1.1 Extensions

Most ISAs are incremental, meaning that, in order to ensure compatibility, every
new processor must implement new ISA extensions as well as all the extensions
introduced in the past, which leads to an accumulation of very rarely used instruc-
tions and a subsequent waste of hardware complexity and area. A clear example
of this inflation is the growth of the number of instructions in the x86 ISA (figure
1.1).

One the other hand, as stated above, RISC-V is a modular ISA: a small number
of base instructions (called RV32I, RV64I or RV128I for 32, 64 and 128-bit proces-
sors respectively) must be implemented by all instances of RISC-V processors and
are guaranteed to never change in the future, while on top of that, designers can
freely choose to include support or not for each of the other optional extensions,
some of which have already been frozen, while others are still in development. Table
1.1 contains a list of available extensions at the time of writing.

10

https://riscv.org/


1.1 – The RISC-V ISA
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Figure 1.1: x86 instruction count over time. Data taken from [2, p. 3]

Name Description
I Base integer instruction set, including arithmetic and logic in-

structions, jump, branch and control transfer instructions and
some miscellaneous general management ones.

M Integer multiplication and division extension.
A Atomic extension for atomic memory operations, for process syn-

chronization.
F Single-precision floating point extension.
D Double-precision floating point extension.
G Shorthand for all the previous ones. LEN5 supports the RV64G

ISA.
Q Quad-precision floating point extension.
L Decimal floating point extension.
C Compressed instructions extension.
B Bit manipulation extension.
J Dynamically translated languages extension.
T Transactional memory extension.
P Packed-SIMD extension.
V Vector extension.
N User-level interrupts extension.
H Hypervisor extension.

Table 1.1: RISC-V ISA extensions [2]
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Introduction

1.1.2 Comparison with other ISAs
Arguably the two most popular ISAs at the present time are Intel x86 and ARM,
which are dominant in the personal computers/server and smartphones/tablets
markets respectively. The first significant difference between them and RISC-V
is that they are proprietary ISAs, which means that whoever wants to design a
processor based on such instruction sets is obliged to the payment of the required
royalties. On the other hand, RISC-V is free for everyone.

For what concerns the microarchitectural standpoint, another major difference
resides in the organization of the internal registers. First of all, RISC-V has 32 of
them, twice as much as ARM has, and four times as much as x86. A higher number
of registers greatly simplifies assembly language programming and compiler writing.
Moreover, the first of those registers, register x0, is hardwired to zero, which allows
for a significant reduction in instruction count, as many instructions present in
other ISAs, which do not have a zero register, can be synthesized using RISC-
V instructions with x0 as an operand. As an example, RISC-V does not need
a separate instruction in order to branch if the value of a register is zero: this
operation can be obtained with the beq (branch if equal) instruction using x0 as
the second operand. The Program Counter (PC) in the RISC-V ISA is a separate
register, and that prevents any instruction from being able to modify it and thus
become a branch instruction, as is instead the case of the ARM ISA, reducing the
complexity of the branch prediction hardware and avoiding the loss of one general
purpose register.

By keeping simplicity in mind, RISC-V does not provide direct support for byte
or half-word integer computation, which can be carried out using separate shift in-
structions, as they are not critical in terms of efficiency and energy consumption, as
are for instance reduced-size memory accesses [2, p. 20]. In addition, multiplication
and division are not present in the base ISA (they are comprised in the M exten-
sion), and that means that a full software stack can run even without them, which
helps reduce the size of embedded chips where such operations are not needed.

Other instructions that the designers of RISC-V chose not to include are, among
others, stack instructions, as the stack pointer is one of the general purpose registers
and so is accessed as any other register, delayed load, as it is deemed as useless in
modern deeply pipelined processors, and finally delayed branch and condition code
instructions, which complicate the dependencies checking in out-of-order processors
[2, p. 21].

It is quite clear that who conceived the RISC-V ISA adopted a philosophy of
keeping it simple and that less is more, by targeted choices made by learning from
the work achieved in the previous decades.

12



Chapter 2

State-of-the-art processor
architectures

The performance of a processor is defined by the the time it takes to execute a
program. This time span, called CPU time, can be expressed as:

CPU time =
Seconds
Program

=
Clock cycles
Program

· Tck

where Tck is the clock period.
The first term can be decomposed further by computing the total number of

instructions inside a program, called Instruction Count (IC), which is known given
the assembly code of the program. From this figure and the total number of clock
cycles, the average number of Clocks Per Instruction (CPI)1 can be derived. By
factoring in these quantities, the final expression of CPU time is as follows [3, p. 53]:

CPU time = IC · CPI · Tck (2.1)

Equation (2.1) shows that the processor performance is directly and equally
dependent on three factors:

• Clock period, which depends mainly on the implementation technology and
the microarchitectural choices (e.g. pipeline depth).

• IC, which is determined for the most part by the ISA (see section 1.1.2) and
compiler technology.

• CPI, which is dependant on both the ISA and the architecture.

1Sometimes, also the inverse figure can be used, that is Instructions Per Clock (IPC).
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State-of-the-art processor architectures

The goal is then to minimize each of these terms, but it is evident that none of these
parameters can be modified without affecting the others, as many design choices
influence many of them.

2.1 Instruction-level parallelism
Earliest processors executed instructions one at a time, fetching a new one only
after the previous has finished, leading to a number of clock cycles per instruction
greater than one, and in particular equal to the number of stages an instruction
must get through. These processors, where CPI > 1, are called subscalar. To
illustrate the situation, in the example of the classic 5-stage RISC pipeline (fetch,
decode, execute, memory access, write back), a subscalar processor would execute
three consecutive instructions as shown in figure 2.1, taking a total of 15 clock
cycles.

Figure 2.1: Subscalar processor2

Starting from the mid 80s, processor architects introduced pipelining to improve
performance by overlapping the execution of different instructions. This overlap
means that at any given point in time there can be multiple instructions running
in different stages of the processor, that is in parallel, hence the term Instruction-
Level Parallelism (ILP), which is a fundamental concept in developing techniques
to enhance processor performance. For the same example of figure 2.1, a pipelined
processor could theoretically achieve a CPI of 1, executing one instruction for each
clock cycle (see figure 2.2). Processors of this kind are called scalar.

In practice however, data and control dependencies between successive instruc-
tions could cause hazards and force the pipeline to stall, causing CPI to rise once
again at values greater than one. There are mainly three types of hazards that can
take place in a pipelined processor:

• Structural hazards arise when a hardware block is needed by two or more
instructions at the same point in time. For instance, if a processor features
only one memory block for both instructions and data, then two different
instructions executing in the fetch and memory access stages could generate a

1Taken from https://commons.wikimedia.org/wiki/File:Nopipeline.png under the license
Attribution-Share Alike 3.0 Unported
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Figure 2.2: Scalar processor3

structural hazard when trying to read from memory. Such hazards can either
be easily solved (e.g. separate instruction and data memory in this example) or
are known and accepted by the designers, given the limited hardware available.

• Data hazards in a simple pipelined processor occur when there is a data
dependence between instructions, that is one instruction needs to read a value
that provided by a previous instruction. For example, in

add x1,x2,x3
sub x4,x5,x1

the sub instruction needs the value of register x1 in the decode stage, but the
previous add has not yet reached the write back stage and a data hazard is
generated.

• Control hazards arise in the case of conditional flow changing instructions,
such as branches, that prevent following instructions to be fetched until the
new direction is resolved.

The real CPI a pipelined processor can achieve is then given by the sum of the
ideal CPI and all the delays introduced by pipeline stalls caused by hazards [3,
p. 168]:

CPI = Ideal CPI+ Structural stalls+Data hazard stalls+ Control stalls
= 1 + Structural stalls+Data hazard stalls+ Control stalls > 1

(2.2)

Those hazards become more frequent and more expensive to manage the more
pipeline stages are introduced and that is a clear example of a tradeoff between two
factors of the performance equation (2.1): a deeper pipeline shortens the critical

3Taken from https://commons.wikimedia.org/wiki/File:Fivestagespipeline.png under the
license Attribution-Share Alike 3.0 Unported
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path and thus reduces the clock period, but at the same time it increases the CPI.
That is the reason why designers at some point had to find other architectural
solutions to improve performance.

2.1.1 Multiple-issue processors
A processor featuring a single execution pipeline can only achieve a theoretical CPI
of 1, but by duplicating the pipeline to include multiple execution units more than
one instruction per clock cycle could be delivered. That is the idea that lies behind
multiple-issue processors, that exploit ILP by executing independent instructions
on separate execution pipelines.

Instructions that can be issued independently to the different pipelines are se-
lected among a so called basic block, that is a sequence of instructions comprised be-
tween single entry and exit points (i.e. with no branches or jumps in between). Re-
calling the examples of the previous section, figure 2.3 shows the execution scheme
for a multiple issue processor.

Figure 2.3: Multiple-issue processor with two pipelines4

Two main different approaches exist to multiple issue processors:

• Very Long Instruction Word (VLIW) processors, also known as static
multiple-issue, rely on software to discover ILP chances at compile time, thus
avoiding increased hardware complexity. The compiler groups instructions
that can be executed in parallel in a single long packet-like instruction (hence

4Taken from https://commons.wikimedia.org/wiki/File:Superscalarpipeline.png under
the license Attribution-Share Alike 3.0 Unported
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the name VLIW), that is then split and issued to the different execution units
at run time. Despite many efforts, however, such static techniques reveal
themselves efficient only for specific applications presenting a high level of
data parallelism [3, p. 168], mainly because the compiler software needs a
perfect knowledge of the underlying architecture in order to efficiently exploit
ILP.

• Superscalar processors, also known as dynamic multiple-issue, on the other
hand, rely on dedicated hardware to exploit ILP at run time. Instructions
belonging to a basic block are inserted into a Window Of Execution (WOE),
from where instruction that can run in parallel thanks to no data dependence
are selected and issued to the respective following pipeline stages. This dy-
namic approach has been shown to work better than a static one, at the cost
of a significant hardware complexity overhead.

Multiple-issue processors can achieve a CPI lower than 1 (usually expressed at
this point as Instructions Per Clock (IPC), greater than 1) thanks to duplicate hard-
ware units that also lower the impact of structural hazards, but they are nonetheless
subject to data and control hazards. Instructions belonging to the same basic block
are very likely to depend upon one another, as they are part of the same piece of
program, and as such the amount of ILP in contiguous instructions of a basic block
is usually very small, leading to a low usage of the additional pipelines, and that
is the reason why allowing multiple issues is not very useful by itself, but is almost
always paired with the techniques analyzed in the next section.

2.2 Dynamic scheduling
All the processors seen in the previous sections adopted a so called static scheduling
of the pipeline, meaning that instructions are issued and executed along the pipe
strictly in program order. To really extract the benefits of ILP, however, all mod-
ern high-end processor employ a dynamically scheduled pipeline, that can execute
instructions out-of-order with respect to the assembled program. As an example
consider the following code:

add x1,x2,x3
sub x5,x1,x4
mul x12,x18,x19

In a classic 5-stage statically scheduled pipeline, instructions are executed in-order,
and that means that the mul instruction cannot begin execution until the data de-
pendence between add and sub is resolved by stalling the pipeline, as the execution
takes place in program order. By using dynamic scheduling, on the other hand, if
there are no structural hazards (and we can safely assume that that is the case, as
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the multiplier is likely to be a separate block from the ALU), the mul can be exe-
cuted and maybe even completed before the sub. Instructions are then still issued
in-order to the execution stage from the window of execution, but they can begin
and complete execution out-of-order.

Dynamic scheduling is almost always used in conjunction with superscalar pro-
cessors, because the advantages given by the out-of-order execution and the avail-
ability of multiple functional units go hand in hand. This combination offers sev-
eral strengths compared to static scheduling or VLIW processors [3, p. 192]. For
instance, it allows compiled code to run in an efficient way on different microar-
chitectures, as the pipeline can manage itself and exploit ILP without needing the
help of the compiler. Moreover, it can handle cases where dependencies cannot be
found at compile time, such as memory operations or dynamic branches. But the
most important advantage of all is that an out-of-order processor is able to mask
the effect of unpredictable delays in the pipeline by executing later instructions
without stalling. Remember that cache misses can easily take hundreds of clock
cycles to resolve, which would turn into hundreds of wasted cycles in an in-order
processor, but are instead taken advantage of to carry out unrelated tasks in an
out-of-order one.

In order to do so, the WOE acts as a buffer between the fetch stages (called
frontend) and the execution and commit stages (called backend), that hopefully
always contains enough instructions to ensure a constant flow to the functional
units, even when earlier instructions are waiting for some event. This is obviously
possible only if the frontend is able to maintain a high enough bandwidth of fetched
instructions to the WOE.

2.2.1 Dependencies and hazards

Out-of-order processors are subject to all the dependencies listed in section 2.1,
but due to the reordering of instructions, other hazards can arise from so called
name dependencies. In this context, a useful taxonomy to categorize such hazards
is defined5. Let D(i) be the domain and R(i) be the range of instruction i, meaning
respectively the registers or memory locations read and written by instruction i,
and consider two instructions i and j, with j following i in the program order.
Then, there are three possible kinds of data hazards:

• Read-After-Write (RAW) hazards are the only true data hazards arising
from a data dependence and occur, as seen previously, when instruction j is
trying to read a piece of data before i writes it, leading to a wrong value read
by j, as in the following example:

5Structural and control hazards are not considered here, as they are the same as in an in-order
processor.
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add x1,x2,x3
sub x4,x5,x1

More formally, RAW hazards occur if:

R(i) ∩D(j) /= ∅

• Write-After-Read (WAR) hazards arise from the name dependence called
anti-dependence, that occurs when instruction j writes the same location that
i reads, causing i to read the wrong value if j is executed first, as in:

add x1,x2,x3
mul x2,x5,x6

More formally, WAR hazards occur if:

D(i) ∩R(j) /= ∅

• Write-After-Write (WAW) hazards arise from the name dependence called
output dependence, that occurs when instructions i and j write their outputs
on the same storage locations, leaving the final wrong value written by i, if j
is executed first, like in the following:

add x1,x2,x3
mul x1,x5,x6

More formally, WAW hazards occur if:

R(i) ∩R(j) /= ∅

It is hopefully clear that WAR and WAW hazards occur only in dynamically
scheduled processors where instruction order can be rearranged and that the de-
pendencies that cause them are called name dependencies, because it is only a
matter of storage location used and not an issue with the correct outcome of the
program. In the examples above, if the mul instruction could (temporarily) write
its output on a different register, until the add completes, then the semantics of the
program would respected and the hazards resolved without stalling. That is the
idea that lies behind register renaming, which is the technique used in out-of-order
processors at the decode stage to detect and solve WAR and WAW hazards by
converting the architectural registers that instructions refer to to different physical
registers hidden to the programmer and compiler.
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2.2.2 Scheduling techniques

Out-of-order execution needs dedicated hardware to select instructions inside the
WOE and detect and prevent hazards. For this purpose, several schemes and
algorithms exist, among which are scoreboarding and Tomasulo’s algorithm that
are described in the following.

Scoreboarding

Scoreboarding is a centralized scheduling technique first introduced in the CDC
6600 in the 60s [4] and still widely used today. The algorithm provides the following
stages for each instruction after the decoding:

• Issue: instructions stall in this stage until there are no structural hazards and
all the output dependencies with previously issued instructions are resolved,
to avoid WAW hazards.

• Read operands: instructions can proceed when their operands are available,
resolving RAW hazards, in an out-of-order fashion.

• Execute: operands are passed to the functional units that perform the re-
quested operations.

• Write result: the write back operation is stalled until all earlier instructions
that are anti-dependent have read the previous value, resolving WAR hazards.

Each of these stages can take an arbitrary number of cycles, thus, in order to
control the progress of all instructions, a set of three data structures is used as shown
in figure 2.4. The first one is the instruction status table, that keeps track of which
of the four stages each instruction is currently in. Then, there is the functional
unit status table, which has nine fields for each functional unit, indicating if that
unit is busy, what operation it has to perform, the destination register, the source
operands registers, the functional units that will produce the operands and two
flags indicating when those operands are ready. Finally, the register result status
table indicates for each register which functional unit will write its result to it.

The original scoreboarding algorithm did not include register renaming and so
WAW and WAR hazards could potentially cause the pipeline to stall in the issue
and write result stages respectively. For this reason, register renaming can still
be implemented, but it must be carried out in the issue stage, by a dedicated
renaming unit, like the one shown in figure 2.5, based on the one included in the
MIPS 10000. The rename table keeps track of the mapping between architectural
and physical registers, to maintain correct value references, while the register free
list contains the names of all available physical registers to be used for renaming.
As this unit renames two instructions in parallel, it has to check for RAW hazards
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Scoreboard
2. Read operands—wait until no data hazards, then read operands (ID2)

• All real dependencies (RAW hazards) resolved in this stage, since we wait for instructions to write 
back data.

3. Execution—operate on operands (EX)
• The functional unit begins execution upon receiving operands. When the result is ready, it notifies 

the scoreboard that it has completed execution. 
4. Write result—finish execution (WB)

• Stall until no WAR hazards with previous instructions
Three parts:
• Instruction status: which of 4 steps the instruction is in
• Functional unit status:—Indicates the state of the functional unit (FU). 9 fields for each 

functional unit Busy: Indicates whether the unit is busy or not
Op: Operation to perform in the unit (e.g., + or –)
Fi: Destination register
Fj,Fk: Source-register numbers
Qj,Qk: Functional units producing source registers Fj, Fk
Rj,Rk: Flags indicating when Fj, Fk are ready

• Register result status—Indicates which functional unit will write each register, if one 
exists. Blank when no pending instructions will write that register

Scoreboard Example
Instruction status: Read Exec Write

Instruction j k Issue Oper Comp Result
LD F6 34+ R2
LD F2 45+ R3
MULTD F0 F2 F4
SUBD F8 F6 F2
DIVD F10 F0 F6
ADDD F6 F8 F2

Functional unit status: dest S1 S2 FU FU Fj? Fk?
Time Name Busy Op Fi Fj Fk Qj Qk Rj Rk

Integer No
Mult1 No
Mult2 No
Add No
Divide No

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

FU

Instruction status: Read Exec Write
Instruction j k Issue Oper Comp Result
LD F6 34+ R2 1
LD F2 45+ R3
MULTD F0 F2 F4
SUBD F8 F6 F2
DIVD F10 F0 F6
ADDD F6 F8 F2

Functional unit status: dest S1 S2 FU FU Fj? Fk?
Time Name Busy Op Fi Fj Fk Qj Qk Rj Rk

Integer Yes Load F6 R2 Yes
Mult1 No
Mult2 No
Add No
Divide No

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

1 FU Integer

Scoreboard Example: Cycle 1

Onerowperdestarti

R2shirtcontainsinthebinaddress

Figure 2.4: Scoreboard structure

  Rename table

Op Src1 Src2Dest Op Src1 Src2Dest

Register
free list

Op PSrc1 PSrc2PDestOp PSrc1 PSrc2PDest

Update
mapping

Inst 1

Read addresses

Read data

W
ri

te

p
or

ts =?=?

ck for 
ards 

ns issuing 
ycle. 
one in 

with 
ookup

Inst 2

Figure 2.5: Renaming unit
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between them, and in case there is one, rename the second instruction with the
newly assigned physical registers to the other one.

Using this scheme, also known as explicit register renaming, WAW and WAR
hazards are completely avoided as early as an instruction is decoded and issued,
meaning that no further checks must be performed in the later stages of the algo-
rithm.

Tomasulo’s algorithm

Invented by Robert Tomasulo for the IBM 360/91 Floating Point Unit (FPU),
this algorithm offers a different approach to dynamic scheduling, by adopting a
distributed control instead of a centralized one, as present in scoreboarding. This
idea is based around the concept of reservation stations, which are buffers placed
in front of each functional unit, including load and store units, to store instruction
operands. A generic architecture based on Tomasulo’s approach is shown in figure
2.6.

From instruction unit

Floating-point
operations

FP registers

Reservation
stations

FP adders FP multipliers

3
2
1

2
1

Common data bus (CDB)

Operation bus

Operand
buses

Load/store
operations

Address unit

Load buffers

Memory unit
AddressData

Instruction
queue

Store buffers

Figure 2.6: FPU example architecture using Tomasulo’s algorithm [3, p. 198]
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Each reservation station contains several fields providing similar information
with respect to the functional unit status data structure used in scoreboarding:
which operation to perform, the reservation stations from which the source operands
will come, the value of the operands and the busy status. The key difference with
scoreboarding is, however, that the results of the functional units are broadcast to
the register file as well as to all the reservation stations through a Common Data
Bus (CDB), while the scoreboarding technique only writes results to registers. This,
in turn, provides the great advantage of allowing implicit register renaming at each
reservation station, because register names are discarded when an instruction is
issued to a reservation station, as operands will come from another reservation
station of from the CDB as soon as they become available. Moreover, if multiple
instructions are waiting on the same result, they can all be started simultaneously
when such result arrives because of the presence of multiple reservation stations,
while on the other hand, using scoreboarding, they would wait in turn for the
register file bus to be free, possibly wasting clock cycles [3, p. 201].

In the end, the steps that each instruction must get through are similar to the
one in scoreboarding, but the actions performed are different:

• Issue: instructions are fetched in-order from the issue queue stall in this stage
until there is a matching reservation station available (no structural hazards)
and then are issued to the reservation station with implicit renaming.

• Execute: the CDB is monitored until all operands are available (avoid RAW
hazards), at which point the functional unit executes the instruction.

• Write result: as soon as an operation completes, the result is written on the
CDB and from there to the register file and reservation stations.

Tomasulo’s algorithm is today used in many high-performance processors and it
has been chosen also for the design of LEN5.

2.3 Hardware-based speculation
For typical ISAs around 10–20% of instructions are branches, meaning that an
average basic block will not contain more than 5 to 10 instructions. This is obviously
a significant constraint, as the amount of ILP that can be exploited in such a
small set of instructions without incurring in control dependencies is quite limited.
From these reason the idea of hardware-based speculation was born, based on three
principles [3, p. 208]:

• Dynamic branch prediction, to fetch and issue instructions before the outcome
of a branch is determined (refer to section 3.2 for details).

• Speculative execution, to allow the execution of such instructions even if their
control dependencies are not resolved yet.
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• Dynamic scheduling, to schedule instructions crossing the boundary of a single
basic block.

This represents an important improvement over mere dynamic scheduling and
even branch prediction alone, because this way instructions are executed as if the
guesses on the taken direction were always correct, leading to a data flow execu-
tion of the program, where operations are executed as soon as their operands are
available, irrespective of control flow.

Of course, some precautions must be taken in order to handle the situation when
the speculated flow was predicted incorrectly, as to restore the original state of the
processor and proceed down the right path. For this reason, an additional stage
after the write result must be inserted in order to decouple the production of a
result by a functional unit and the actual irreversible update of the register file and
data memory, that can take place only when an instruction is no longer speculative.
This last step is called instruction commit and must always be performed in-order.

2.3.1 Reorder Buffer

In both scoreboarding and Tomasulo’s approach, instruction commit can be han-
dled using a dedicated hardware structure called Reorder Buffer (ROB). As the
name implies, the ROB acts as a buffer between the functional unit outputs and
the register file and memory, storing speculative results until the speculation is
resolved and thus effectively increasing the number of registers available, similarly
to reservation stations. A general scheme of an architecture using the ROB is
shown in figure 2.7, highlighting which parts of the pipeline are in-order and which
out-of-order.

Pipeline Design with Physical Regfile and ROB

Fetch
Decode & 
Rename

Reorder BufferPC Commit

Branch
Unit

ALU MEM
Store 
Buffer

D$

Execute

In-Order

In-OrderOut-of-Order

Physical Reg. File

Figure 2.7: An out-of-order pipeline featuring register renaming and ROB
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ROB with Tomasulo’s algorithm

As stated above, the ROB extends the number of available registers and thus pro-
vides renaming on its own by substituting the register file before instruction com-
mit. Moreover, alongside the reservation stations and the CDB, the ROB serves
as another source of operands, as figure 2.8 shows. Finally, for its intrinsic nature,
the ROB also serves almost the same purpose of the store buffer as a reservation
station before the data memory.

From instruction unit

FP registers

Reservation
stations

FP adders FP multipliers

3
2
1

2
1

Common data bus (CDB)

Operation bus

Operand
busesAddress unit

Load buffers

Memory unit

Reorder buffer

DataReg #

Store
data Address

Load
data

Store
address

Floating-point
operations

Load/store
operations

Instruction
queue

Figure 2.8: FPU example architecture using Tomasulo’s algorithm and ROB [3,
p. 210]

In terms of algorithm steps, what changes is that during execution the results are
broadcast on the CDB and to the ROB instead of to the register file. In addition,
during the added step of instruction commit, an instruction is removed when it
reaches the head of the ROB (which acts as a circular buffer) and, if it is a branch
with a wrong prediction to reach the commit stage, then the ROB gets flushed and
execution resumes at the correct target of the branch.
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2.4 Summary of ILP techniques
To summarize this overview of multiple-issue processors and techniques to exploit
ILP, table 2.1 provides all the important differences at a glance.

Name Issue
structure

Hazard
detection

Scheduling Relevant
features

Examples

Superscalar
(static)

Dynamic Hardware Static In-order
execution

Embedded MIPS
and ARM cores

Superscalar
(dynamic)

Dynamic Hardware Dynamic Out-of-order
execution, but
no speculation

None

Superscalar
(speculative)

Dynamic Hardware Dynamic Out-of-order
execution and
speculation

Intel Core i3, i5,
i7, AMD Ryzen

VLIW Static Software Static Hazards
detected by
the compiler

Signal processors
like the TI C6x

Table 2.1: Summary table of multiple-issue approaches [3, p. 219]
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Chapter 3

Branch prediction techniques

As stated throughout the previous chapter, as well as in equation (2.2), in order to
avoid stalls caused by control hazards and to ensure a steady flow of instructions
to issue to the execution stages, one of the most important features of almost any
modern high-performance processor is branch prediction. As seen for the multiple-
issue paradigm, branch prediction too can be implemented at compile time or at run
time, leading to two separate families of techniques, known as static and dynamic
branch prediction.

The overall performance of a certain branch prediction technique can be essen-
tially traced back to two factors:

• Accuracy: that is the percentage of correctly predicted branch instructions.
This figure depends only on the type of branch predictor used.

• Misprediction penalty: the CPU time lost in executing wrong path instruc-
tions in case of an incorrect prediction. This parameter is determined by the
architecture of the processor and not by the branch predictor.

3.1 Static branch prediction
In static branch prediction, the action to be taken for each branch instruction is
determined solely by the compiler and is then fixed at execution time. A number
of static techniques exists [6]:

• Predict always taken (not taken): the accuracy of this method depends greatly
on the program sensitivity to the number of taken (not taken) branches, so
results may vary according to the algorithm, the programmer and the compiler.

• Predict branches with certain opcodes as taken or not taken: as in [6], this
technique gives better results than the previous one but only if the predictions
are tailored to the benchmark algorithm.
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• Predict backward branches (to lower PCs) as taken and forward branches as
not taken: this strategy exploits the fact that in loops that iterate a large
number of times, the condition is checked at the end of the body and so
produces a backward branch if true. This can however introduce some delay
needed to compute whether the target of the branch is higher or lower than
the current PC.

• Delayed branch [7]: this is not actually a prediction technique, but a way to
reduce the branch penalty, with the compiler scheduling (usually) one instruc-
tion that would be executed regardless of the branch outcome in a so called
delay slot which masks the delay of a single cycle stall in simple pipelines.
In more complex out-of-order pipelines, however, this can have harmful side
effects, as mentioned in section 1.1.2.

Static prediction techniques have the advantage of adding no hardware com-
plexity whatsoever by relying only on software technology, but on the other hand
struggle to achieve satisfactory accuracy. For this reason, nowadays, they are used
only in application specific processors or as an assist to more complex and perform-
ing dynamic techniques.

3.2 Dynamic branch prediction

Dynamic strategies rely on the other hand on dedicated hardware to make predic-
tions based on the actual run-time past behavior of branches. The general scheme
of a dynamic branch predictor is shown in figure 3.1. An event source, that is the

Event source
Prediction

indexing

Prediction

method

Feedback/

recovery

Figure 3.1: General dynamic branch predictor scheme

actual branch instruction, indexes a table with information about the past behav-
ior of that branch (local history) or of all previous branches (global history). The
information read from that table is used to make the prediction and finally, when
the real outcome of the branch is resolved, the tables and the prediction method
are updated, taking countermeasures in case of misprediction. It is effectively a
feedback control system.
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3.2.1 Basic predictor structures
The most basic dynamic predictor consists of a table of 2k entries (flip-flops), called
Branch History Table (BHT), addressed using k bits from the branch PC, that
stores a single bit at each location to predict if the branch will be taken (value 1)
or not taken (value 0). When the branch outcome is resolved, the table is updated
so that it always predicts the direction that the branch took the last time. Figure
3.2 shows this scheme.

BHT

PC

k-bit address

n-bit address

Prediction

(to fetch)

Update

(from execute)

Figure 3.2: One-level branch predictor1

This one-bit model is however quite weak, especially with nested loops, as the
inner loop is mispredicted twice: at the last iteration when exiting and at the next
first iteration when entering again.

This predictor can be improved by introducing some hysteresis in the system
using two bits instead of one. This way, the BHT is composed by 2-bit entries that
work as saturating counters, with their value incremented saturating at 3 every
time the branch is taken and decremented saturating at 0 when the branch is not
taken. The most significant bit of the counter provides the prediction, that changes
only after two consecutive mispredictions. These 2-bit counters are nothing more
than simple state machines, that work as illustrated in figure 3.3. Table 3.1 shows
the list of the counter states and their description.

These designs, known as one-level or bimodal predictors, could be extended to n-
bit saturating counters, but solutions with more than two bits are rarely employed,

1Edited from https://commons.wikimedia.org/wiki/File:Two-level_branch_prediction.
svg under the license Attribution-Share Alike 3.0 Unported
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Figure 3.3: 2-bit counter FSM

State Counter value Prediction

Strongly not taken (SNT) 00 Not taken
Weakly not taken (WNT) 01 Not taken
Weakly taken (WT) 10 Taken
Strongly taken (ST) 11 Taken

Table 3.1: 2-bit counter state description

because the size of the table is the actual limiting factor, given that, by using
only a subset of PC bits, multiple branches could index the same BHT entry, thus
producing aliasing issues.

3.2.2 Two-level branch predictors

An improvement over the simple predictors of the previous section comes from the
concept of correlation between branches. Consider for example the following code:

if (x) // branch 1
a = 0;

if (y) // branch 2
b = 0;

if (a != b) // branch 3
...
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If the first two branches are taken, then the third one will be not taken for sure,
which means that these three branches are deterministically correlated.

A design that exploits such correlations was first proposed in [8] and it is called
two-level predictor, shown in figure 3.4. It features an k-bit BHT shift register
storing the outcome of the last k executed branches (first level), pointing to a
Pattern History Table (PHT) (second level) which stores 2k 2-bit counters, one for
each BHT pattern combination. In the example above, the two-level predictor

PHT

BHT

n-bit index Prediction

(to fetch)

Update

(from execute)

Figure 3.4: Two-level branch predictor2

would successfully predict as not taken the third branch if the global history stored
in the BHT indicated that the previous two branches were taken.

This scheme, however, has lost the local information about the current branch
instruction, relying only on the global history of branches for the prediction. Thus,
nine variants were proposed [9] that exploit either one or both the local and global
information (figure 3.5), by storing, for instance, multiple BHTs indexed by the
branch address.

2Taken from https://commons.wikimedia.org/wiki/File:Two-level_branch_prediction.
svg under the license Attribution-Share Alike 3.0 Unported
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Figure 3.5: Two-level predictor variations [5]
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3.3 – State-of-the-art branch predictors

3.3 State-of-the-art branch predictors
Building on the schemes described in the previous sections developed in the 90s,
nowadays modern high-performance processors use very advanced design for branch
predictors, that even occupy a significant area on the chip die. Two main classes
of state-of-the-art branch predictors are used today: TAGE-based predictors and
perceptron-based predictors.

3.3.1 Tagged Geometric predictor
Tagged Geometric (TAGE) predictors [10] use a series of global predictors indexed
with histories of different length, like in the scheme shown in figure 3.6. The

branch prediction while requiring fewer bits than a single level table with the same
prediction accuracy.

Tagged Hybrid Predictors

The best performing branch prediction schemes as of 2017 involve combining
multiple predictors that track whether a prediction is likely to be associated with
the current branch. One important class of predictors is loosely based on an algo-
rithm for statistical compression called PPM (Prediction by Partial Matching).
PPM (see Jim�enez and Lin, 2001), like a branch prediction algorithm, attempts
to predict future behavior based on history. This class of branch predictors, which
we call tagged hybrid predictors (see Seznec and Michaud, 2006), employs a
series of global predictors indexed with different length histories.

For example, as shown in Figure 3.7, a five-component tagged hybrid predictor
has five prediction tables: P(0), P(1), . . . P(4), where P(i) is accessed using a hash of
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Figure 3.7 A five-component tagged hybrid predictor has five separate prediction tables, indexed by a hash of
the branch address and a segment of recent branch history of length 0–4 labeled “h” in this figure. The hash can
be as simple as an exclusive-OR, as in gshare. Each predictor is a 2-bit (or possibly 3-bit) predictor. The tags are
typically 4–8 bits. The chosen prediction is the one with the longest history where the tags also match.
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Figure 3.6: TAGE predictor [3, p. 188]

base predictor can be as simple as a basic bimodal predictor, while the others are
variable-length two-level predictors that combine local and global branch informa-
tion by hashing part of the branch PC with the BHTs.

This predictor uses tagging to avoid aliasing by saving a subset of the bits of
the PC not used for indexing in a dedicated field in the PHT. All the predictors
are accessed simultaneously and if more than one two-level predictors have a match
between the branch address and the tag, then the prediction coming from the one
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with the longest global history is selected. If no two-level predictor hits, then the
base predictor is used as a fallback.

Variants of this TAGE predictor have been shown to win annual branch pre-
diction competitions without needing too much memory size [3, p. 189] and are
present in many high-end CPUs.

3.3.2 Perceptron predictor
These kinds of predictor take a completely different approach to the problem with
respect to previously analyzed designs. The idea is based around the concept of the
perceptron [11], a single-layer artificial neuron, whose structure is shown in figure
3.7. The perceptron receives a certain number of inputs x1 . . . xn, that in the case

The inputs to our perceptrons are bipolar, i.e., each xi is
either -1, meaning not taken or 1, meaning taken. A negative
output is interpreted as predict not taken. A non-negative
output is interpreted as predict taken.����1 ����x1 ... ����xi ... ����xn

����y
SSSSSSww0 BBBBBBNw1 ������ wi ������/ wn

Figure 1: Perceptron Model. The input values x1; :::; xn, are prop-
agated through the weighted connections by taking their respective
products with the weights w1; :::;wn. These products are summed,
along with the bias weight w0, to produce the output value y.

3.3 Training Perceptrons

Once the perceptron output y has been computed, the follow-
ing algorithm is used to train the perceptron. Let t be -1 if
the branch was not taken, or 1 if it was taken, and let � be
the threshold, a parameter to the training algorithm used to
decide when enough training has been done.

if sign(yout) 6= t or jyoutj � � then
for i := 0 to n dowi := wi + txi
end for

end if

Since t and xi are always either -1 or 1, this algorithm in-
crements the ith weight when the branch outcome agrees withxi, and decrements the weight when it disagrees. Intuitively,
when there is mostly agreement, i.e., positive correlation, the
weight becomes large. When there is mostly disagreement,
i.e., negative correlation, the weight becomes negative with
large magnitude. In both cases, the weight has a large influ-
ence on the prediction. When there is weak correlation, the
weight remains close to 0 and contributes little to the output
of the perceptron.

3.4 Linear Separability

A limitation of perceptrons is that they are only capable of
learning linearly separable functions [8]. Imagine the set of
all possible inputs to a perceptron as an n-dimensional space.
The solution to the equationw0 + nXi=1 xiwi = 0
is a hyperplane (e.g. a line, if n = 2) dividing the space into
the set of inputs for which the perceptron will respond false
and the set for which the perceptron will respond true [8]. A

Boolean function over variables x1::n is linearly separable if
and only if there exist values for w0::n such that all of the true
instances can be separated from all of the false instances by
that hyperplane. Since the output of a perceptron is decided
by the above equation, only linearly separable functions can
be learned perfectly by perceptrons. For instance, a percep-
tron can learn the logical AND of two inputs, but not the
exclusive-OR, since there is no line separating true instances
of the exclusive-OR function from false ones on the Boolean
plane.

As we will show later, many of the functions describing
the behavior of branches in programs are linearly separable.
Also, since we allow the perceptron to learn over time, it
can adapt to the non-linearity introduced by phase transitions
in program behavior. A perceptron can still give good pre-
dictions when learning a linearly inseparable function, but it
will not achieve 100% accuracy. By contrast, two-level PHT
schemes like gshare can learn any Boolean function if given
enough training time.

3.5 Putting it All Together

We can use a perceptron to learn correlations between partic-
ular branch outcomes in the global history and the behavior
of the current branch. These correlations are represented by
the weights. The larger the weight, the stronger the correla-
tion, and the more that particular branch in the global history
contributes to the prediction of the current branch. The input
to the bias weight is always 1, so instead of learning a corre-
lation with a previous branch outcome, the bias weight, w0,
learns the bias of the branch, independent of the history.

Figure 2 shows a block diagram for the perceptron pre-
dictor. The processor keeps a table of N perceptrons in
fast SRAM, similar to the table of two-bit counters in other
branch prediction schemes. The number of perceptrons, N ,
is dictated by the hardware budget and number of weights,
which itself is determined by the amount of branch history
we keep. Special circuitry computes the value of y and per-
forms the training. We discuss this circuitry in Section 6.
When the processor encounters a branch in the fetch stage,
the following steps are conceptually taken:

1. The branch address is hashed to produce an index i 20::N � 1 into the table of perceptrons.

2. The ith perceptron is fetched from the table into a vector
register, P0::n, of weights.

3. The value of y is computed as the dot product of P and
the global history register.

4. The branch is predicted not taken when y is negative, or
taken otherwise.

5. Once the actual outcome of the branch becomes known,
the training algorithm uses this outcome and the value
of y to update the weights in P .

6. P is written back to the ith entry in the table.

Figure 3.7: Perceptron

of branch prediction correspond to the entries of the global history register (the
previous outcomes), and computes the output y as a weighted sum of its inputs:

y = w0 +
n∑

i=1

xiwi

If the output turns out to be non-negative, then the branch is predicted as taken,
otherwise as not taken.

The weights express the degree of correlation between the current and previous
branches, specifically weight wi indicates how much the current branch is biased
toward the result of the last-but-i branch. The input corresponding to weight w0

is always 1, to indicate the intrinsic bias of the current branch (if it is more likely
to be taken or not regardless of previous history). These weights are updated with
a training algorithm that is executed every time a new branch resolution arrives.

The structure of the complete perceptron predictor is shown in figure 3.8 and
features a table of perceptrons indexed by the branch address, a block that computes
the prediction starting from the selected perceptron and the global history and a
training unit dedicated to updating the weights upon a new actual branch result.
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3.3 – State-of-the-art branch predictors

It may appear that prediction is slow because many
computations and SRAM transactions take place in steps 1
through 5. However, Section 6 shows that a number of arith-
metic and microarchitectural tricks enable a prediction in a
single cycle, even for long history lengths.

Branch Address History Register Branch Outcome

?����Select
Entry - Table

of
Perceptrons

?6Selected Perceptron

&%'$Computey?6 &%'$Training

?-6����> 06Prediction

6�
Figure 2: Perceptron Predictor Block Diagram. The branch ad-
dress is hashed to select a perceptron that is read from the table.
Together with the global history register, the output of the perceptron
is computed, giving the prediction. The perceptron is updated with
the training algorithm, then written back to the table.

4 Design Space

This section explores the design space for perceptron predic-
tors. Given a fixed hardware budget, three parameters need to
be tuned to achieve the best performance: the history length,
the number of bits used to represent the weights, and the
threshold.

History length. Long history lengths can yield more ac-
curate predictions [7] but also reduce the number of table en-
tries, thereby increasing aliasing. In our experiments, the best
history lengths ranged from 12 to 62, depending on the hard-
ware budget.

Representation of weights. The weights for the percep-
tron predictor are signed integers. Although many neural net-
works have floating-point weights, we found that integers are
sufficient for our perceptrons, and they simplify the design.

Threshold. The threshold is a parameter to the perceptron
training algorithm that is used to decide whether the predictor
needs more training. Because the training algorithm will only
change a weight when the magnitude of yout is less than the

threshold �, no weight can exceed the value of �. Thus, the
number of bits needed to represent a weight is one (for the
sign bit) plus blog2 �.
5 Experimental Results

We use simulations of the SPEC 2000 integer benchmarks to
compare the perceptron predictor against two highly regarded
techniques from the literature.

5.1 Methodology

Predictors simulated. We compare our new predictor
against gshare [17] and bi-mode [16], two of the best purely
dynamic global predictors from the branch prediction litera-
ture. We also evaluate a hybrid gshare/perceptron predictor
that uses a 2K byte choice table and the same choice mecha-
nism as that of the Alpha 21264 [14]. The goal of our hybrid
predictor is to show that because the perceptron has comple-
mentary strengths to gshare, a hybrid of the two performs
well.

All of the simulated predictors use only global pattern
information, i.e., neither per-branch nor path information is
used. Thus, we have not yet compared our hybrid against
existing global/per-branch hybrid schemes. Per-branch and
path information can yield greater accuracy [6, 14], but our
restriction to global information is typical of recent work in
branch prediction [16, 4].

Gathering traces. Our simulations use the instrumented
assembly output of the gcc 2.95.1 compiler with optimiza-
tion flags -O3 -fomit-frame-pointer running on an
AMD K6-III under Linux. Each conditional branch instruc-
tion is instrumented to make a call to a trace-generating pro-
cedure. Branches in libraries or system calls are not profiled.
The traces, consisting of branch addresses and outcomes, are
fed to a program that simulates the different branch predic-
tion techniques.

Benchmarks simulated. We use the 12 SPEC 2000 in-
teger benchmarks. All benchmarks are simulated using the
SPEC test inputs. For 253.perlbmk, the test run ex-
ecutes perl on many small inputs, so the concatenation of
the resulting traces is used. We feed up to 100 million branch
traces from each benchmark to our simulation program; this
is roughly equivalent to simulating half a billion instructions.

Tuning the predictors. We use a composite trace of the
first 10 million branches of each SPEC 2000 benchmark to
tune the parameters of each predictor for a variety of hard-
ware budgets. For gshare and bi-mode, we tune the history
lengths by exhaustively trying every possible history length
for each hardware budget, keeping the value that gives the
best prediction accuracy. For the perceptron predictor, we
find, for each history length, the best value of the threshold
by using an intelligent search of the space of values, prun-
ing areas of the space that give poor performance. For each

Figure 3.8: Perceptron-based branch predictor

Research [11] has shown that this new approach offers complementary strengths
to the previous ones and so that an optimal solution is developing a hybrid predictor
between the two. At the present time, high-end processors for both desktop and
mobile make use of some kind of perceptron-based prediction network, such as the
AMD Ryzen and Samsung Exynos families.
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Chapter 4

LEN5 frontend

4.1 General block diagram

PC sel
IFU

BPU

I$

Issue queue

I$ interface

misprediction from BU

flush from execution stage

PC gen stage Fetch stage Decode stage

Figure 4.1: LEN5 frontend

Figure 4.1 shows a top-level block diagram of the LEN5 frontend, with the
modules that were developed and that will be described in the following sections
shown in solid black color. Gray blocks are instead the ones the frontend interfaces
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with, that are the instruction cache, or equivalently the memory management unit,
and the issue queue.

The frontend is composed of two pipeline stages, namely the PC generation and
the fetch stages. Figure 4.1 also shows the decode stage, where the issue queue is
found. The latter is basically a FIFO that serves as a buffer interface between the
frontend and the backend of the processor by storing a queue of instructions to be
issued to the later stages of the pipeline.

4.1.1 PC gen stage

In the PC generation (PC gen) stage, the next PC is selected among a number
of different options by the PC sel block, using a predefined priority, and is then
written on the output register of the stage. This register also serves as the pipeline
register between the two stages, and that is why figure 4.1 shows a dashed gray line
crossing the PC sel block.

The selection of the new PC is carried out by a network of combinational logic,
so that this stage always takes exactly one clock cycle.

4.1.2 Fetch stage

In the fetch stage, the PC is used by the Instruction Fetch Unit (IFU) to select and
possibly read from memory the next instruction to be pushed to the issue queue.
At the same time, the Branch Prediction Unit (BPU) uses the current address to
predict the next direction in case of branch and passes such information back to
the PC gen stage. Memory accesses are performed through the instruction cache
interface which manages the control signals to the instruction cache.

The latency of this stage is at least two clock cycles (see section 4.4); in a normal
steady state the IFU can provide a throughput of one instruction each clock cycle
to the issue queue, but in case of cache miss the number of cycles to resolve the
stall can grow significantly, so the latency cannot be determined in advance. The
issue queue is there exactly to provide some elasticity to the pipeline, by buffering
already fetched instructions, masking at least in part this unpredictable latency.

4.1.3 Handshake signals

The communication between each stage is always bidirectional, because in case
of a stall, caused for instance by a cache miss, by a full issue queue or by some
other exceptional behavior down the pipeline, the PC generation process must be
interrupted along with the fetch. In order to do so, a handshake process handles
the communication between each stage as well as between the instruction cache
interface and the actual cache.
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4.1 – General block diagram

This handshake mechanism is based on the AXI valid/ready protocol described
below, even if it is not compliant with all the AXI specifications.

In each communication the source of data generates a valid signal to indicate
that the information is available, while the destination generates a ready signal to
indicate that it can accept such information [12, p. A3-41]. The handshake takes
place and the information is successfully exchanged only at the rising clock edge
when both valid and ready are asserted. For example, in figure 4.2, the handshake
happens at the third rising edge of the clock.

clk

information

valid

ready

Figure 4.2: AXI handshake protocol

When a source has information available (figure 4.3a), it must assert valid and
then wait until the corresponding ready is produced. It cannot wait for the ready
before asserting valid. On the other hand (figure 4.3b), a destination is allowed

clk

information

valid

ready

(a) Valid before ready

clk

information

valid

ready

(b) Ready before valid

Figure 4.3: Possible handshake timings

to wait for its valid before asserting ready and it can also deassert ready before a
corresponding valid arrives, which is necessary if the destination becomes busy for
other reasons.
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4.2 PC gen stage

The selection of the next PC is based on the following list of priorities, from highest
to lowest:

1. Exception1: if an exception occurs, the PC gen stage will receive the next
starting address as the base address present in the vector table provided by
the CSR unit.

2. Misprediction: if a resolved branch is discovered to have been mispredicted,
then the PC gen stage resumes execution from the correct target if the branch
was actually taken, or from the next sequential address from the branch PC if
it was actually not taken.

3. Branch prediction: if the BPU predicts a taken branch for the current PC
then it provides this stage with the predicted target address (see section 4.5.3),
which will be fetched at the next cycle, thus allowing for zero penalty branches
when predicted correctly.

4. Default assignment: if none of the conditions before occur, then the next
PC is selected as usual as the next sequential address, which corresponds to
the current PC+4 for word-aligned 32-bit instructions.

Figure 4.4 shows the diagram of this stage. This and all the following diagrams
in this document are color coded so that input signals are in blue and have the
suffix _i, output signals are in red and have the suffix _o, internal signals in black
and bit widths are in gray.

The heart of the PC gen stage is the pc_priority_enc block, which is an encoder
that takes as inputs all the status signals indicating a behavior different from the
default and all the corresponding potential next PCs. In behavioral SystemVerilog
(listing 4.1) it is described as an if-then-else chain, which gets synthesized as a list
of cascading multiplexers implementing the desired priority2.

1Or interrupt. The two terms can be used almost interchangeably in RISC-V.
2As opposed to the description using a case statement, which leads to a single parallel mux,

with no priority encoded.
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Figure 4.4: PC gen stage diagram

always_comb begin: pc_priority_enc
if (except_i) begin

next_pc = except_pc_i;
end else if (res_i.valid && res_i.mispredict) begin

if (res_i.taken) begin
next_pc = res_i.target;

end else begin
next_pc = adder_out;

end
end else if (pred_i.taken) begin

next_pc = pred_i.target;
end else begin

next_pc = adder_out;
end

end: pc_priority_enc

Listing 4.1: pc_priority_enc description
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In order to save resources, a single adder is used to generate both the next
sequential address and the next PC after a mispredicted not taken branch. A
multiplexer driven by the misprediction signals is used to select the right operand.

The final chosen next PC is fed into the pc_reg output register for the later
stages. The enable of this register is controlled by the signal fetch_ready which
comes from the fetch stage and disables the PC generation if a stall occurs. This
is part of the handshake mechanism described in section 4.1.3, even if there is no
valid signal from the PC gen stage, as it is redundant due to the fact that a valid
new PC is always present at the output register.

4.3 Instruction cache interface

icache_ifc
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read_done_opc_i

XLEN

read_req_i cache_out_o
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Figure 4.5: Instruction cache interface module ports

The instruction cache interface (figure 4.5) is responsible for translating the
fetch requests coming from the IFU into compliant valid/ready handshake signals
for both address and data to the instruction cache. This unit basically provides two
main benefits. First, it simplifies the control of the IFU, by delegating the hand-
shake process. Second, and more important, it provides an additional separation
layer between the core frontend and the instruction cache with modularity in mind
so that, should the cache block be modified, only this interface unit needs to be
updated, while the signals coming from the IFU module would remain unchanged.
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Figure 4.6: Instruction cache interface datapath

4.3.1 Datapath

For what concerns data signals, the line received from the instruction cache is
directly connected with the cache_out output, as it is the cache itself that is re-
sponsible for keeping its output valid until the handshake occurs. On the other
hand, no assumption can be done on the timing of the input address other than the
fact that it will be valid in the same cycle when read_req is asserted. For this rea-
son, given the possibility for the PC to change at the following cycle, the requested
address must be retained inside the interface by means of a register, as shown in
figure 4.6. The multiplexer selects the input address if the cache is ready to re-
ceive the address in the cycle the request is sent, otherwise it selects the registered
address in the following cycles.

4.3.2 Control FSM and timing

The control unit of this block is a simple Mealy FSM (figure 4.7) that after reset
waits for a read request from the IFU, then checks if the instruction cache is ready
to receive an address and finally waits for a valid cache line to be read.

Read requests can be accepted both in the idle WAIT_REQ state and in the
WAIT_DATA state, in order to ensure maximum throughput by initiating the next
memory access in the same clock cycle as the data handshake of the previous one.
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Figure 4.7: Instruction cache interface FSM

Figure 4.8 shows a normal cache read, where the instruction cache is immediately
ready to receive an address which hits and produces the requested data at the
next clock cycle. From this timing diagram it is also clear why a Mealy FSM is
needed: the signal addr_valid needs to be asserted combinationally in the same
clock cycle in which read_req arrives, so that the address handshake can take place
immediately. Otherwise, with a Moore machine, one clock cycle would be wasted at
each request, rendering impossible to sustain one instruction per clock cycle fetch.
Another possibility would have been not to include such signal as a Mealy output
of the machine and instead connect it with a wire outside the FSM, which would
lead to the same exact result, but was deemed as less readable.

Figure 4.9 shows another possibility when the instruction cache is not ready to
receive an address at the time when a request arrives. In this case the FSM waits
until the cache become ready in the ADDR_BUSY state. The state machine could
just as well wait in the WAIT_REQ state, but the additional state was introduced
for robustness with addr_valid as a Moore output, so that this way there is no
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Figure 4.8: Normal cache read

clk

state WAIT_REQ ADDR_BUSY WAIT_DATA

read_req

pc A0

saved_pc A0

addr_sel

addr_valid

addr_ready

data_valid

data_ready

data = cache_out L0

read_done

Figure 4.9: Cache not ready on address

need for the read_req signal to stay active until the cache is ready. This is another
point in favor of a Mealy FSM instead of the connection of combinational outputs
externally. Moreover, if the FSM loops in this waiting state, the registered address
is selected for the handshake, as the original program counter could have changed
by that point.
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clk

state WAIT_REQ WAIT_DATA                            

read_req
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Figure 4.10: Cache miss

Finally, figure 4.10 shows the case of a cache miss, in which the FSM waits while
keeping data_ready asserted. This state could potentially last for many clock
cycles.

From a description standpoint, this and all the following FSMs were coded in
SystemVerilog using three different always blocks, one for the state update register,
one for the state transition case and one for the output update case. This style,
as evidenced in [20], leads both to less lines of code and better synthesis results in
terms of timing and area.

4.4 Instruction Fetch Unit (IFU)
Figure 4.11 shows the top level diagram of the IFU, which has the ability to fetch
instructions from thee different locations. The first is the direct output of the
instruction cache, from which instructions are taken in case of a memory access.
Then, when a cache line containing multiple instructions is read, it is saved into a
line register along with a valid bit that indicates that such line is valid. Consecutive
instructions belonging to the same cache line are then fetched from this register,
thus reducing the total number of cache requests. Finally, this line register is in
turn saved into a line backup register every time that a fetch takes place (i.e. the
register is not updated during a stall). This additional location is used every time
that the current PC requires a cache access, but the next address refers to an
instruction that was present in the previously saved cache line. Without a backup,
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Figure 4.11: IFU diagram (inputs rst_n_i and flush_i are shown as module port
but are not connected with wires to avoid further clutter in the diagram, apart
from the output OR gate)

the line register would be overwritten by the line fetched at the current PC and
so the next address would require a new cache read. Using an additional register,
on the other hand, allows the IFU to read the next instruction from the previous
line. Evidently, this reasoning could be iterated to account for the second-oldest,
third-oldest, etc. saved cache line, leading to a longer FIFO of line registers among
which to select the current instruction. This is definitely a possible improvement,
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but including more than two registers was judged out of the scope of the frontend.
An actual improvement should on the other hand come from the memory system,
that could for instance include a trace cache, to account for subsequent instructions
frequently fetched from different cache lines. Should such a feature be included, no
other modifications would be needed on the IFU end.

Two blocks, namely the presence checker and the instruction selector are re-
sponsible of informing the fetch controller if the current PC points to an instruc-
tion already present in a saved line and of choosing the right source and the right
instruction in the cache line respectively. The fetch controller itself is responsible of
the orchestration of all the operations carried out inside the IFU and of interfacing
with the instruction cache interface as well as the PC gen stage before and the issue
queue after.

At the startup of the processor, the first fetch address will be the defined boot
address which it is safe to assume that is going to need a cache access, as no line
has been read and saved yet in the line register. This means that, even in the best
case scenario (i.e. cache hit), the first instruction will be pushed to the issue queue
one clock cycle after the corresponding PC has entered the fetch stage, leading to
a latency of a total of two clock cycles. In order to maintain the throughput of
one instruction per clock, however, the PC generation process must go on before
knowing if the cache will hit or miss and that means that the first PC must be saved
in a previous PC register in order to push the correct instruction to the queue at the
next cycle. In other words, at each clock cycle, the IFU is simultaneously checking
whether the current PC refers to a saved instruction or if a cache access is needed
and pushing the previous instruction to the issue queue. Actually, if the current
instruction is already present in a line register, then it could be potentially moved
to the queue in the same cycle as no cache latency must be accounted for. This,
however, would complicate significantly the timing of this unit, as the latency would
be variable according to the need of a cache read or otherwise. For this reason,
it has been chosen to maintain a one-cycle latency for every instruction, meaning
that each instruction pushed to the queue corresponds to the PC of the previous
cycle. This is effectively an additional pipeline stage, introduced to account for the
minimum cache latency and not to reduce the critical path.

Finally, in case of an exceptional behavior or a branch misprediction, the IFU
must be flushed and all pending cache requests aborted, in order to resume the
process at the next cycle when the new starting PC will be provided by the PC
gen stage. In order to do so, a flush signal that comes from the later execution
stages or from the top-level control is propagated to all the sequential elements of
the IFU. This acts as a synchronous reset for all the registers and reverts back all
the FSMs to their startup state [13], by acting directly on the state register. For
this latter case, the effect is the same of having a check on the flush signal in each
state of the machine, but leaving it as an external signal similar to the initial reset
simplifies significantly the state diagram and helps readability.
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4.4.1 Presence checker

presence_check
line_pc_i will_be_here_o

XLEN

prev_pc_i
XLEN

pc_i
XLEN

line_valid_i

here_o

Figure 4.12: Presence checker module ports
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XLEN-1 :
ICACHE_OFFSET+OFFSET

XLEN-1 :
ICACHE_OFFSET+OFFSET

Figure 4.13: Presence checker combinational network

The presence checker block (see figures 4.12 and 4.13) features a simple combi-
national network that performs two checks in parallel to determine the need of a
new cache access by the IFU, in particular:

• If the current address refers to an instruction present in the line register and
the saved line is valid, then the here signal indicates that no new cache read
is needed and that the instruction is to be selected inside the line register.

• If the current address refers to an instruction in the same cache line as the
previous address, then either that line is already present in the line register,
or it will be the next line read from the cache and so it will be saved as soon
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as the read completes. In this case a will_be_here signal tells the IFU not to
request the same line twice to the memory.

If none of these signals are asserted, then a new cache request is sent to the interface.
All the instructions belonging to the same cache line have the same most signif-

icant parts of the address, that is, only the N LSBs differ, where:

N = dlog2(Instructions/cache line)e+ dlog2(Bytes/instruction)e

So, to check whether two instructions belong to the same line, a comparison between
the 64 − N (or more generally XLEN − N , where XLEN is the parallelism of the
processor) most significant bits of their addresses is sufficient. That is what the
presence checker does as shown in figure 4.13.

4.4.2 Instruction selector

instr_sel
line_sel_i

2

pc_sel_i
2 instruction_o

ILEN

line_reg_i.pcprev_pc_ipc_i

ICACHE_OFFSET ICACHE_OFFSET ICACHE_OFFSET

line_bak_i.lineline_reg_i.linecache_out_i.line

ICACHE_INSTR*ILEN ICACHE_INSTR*ILEN ICACHE_INSTR*ILEN

Figure 4.14: Instruction selector module ports

The instruction selector takes as inputs all the three sources an instruction can
be fetched from, three program counter sources3 and the respective selection signals
(see figure 4.14). It outputs a single selected instruction to be pushed to the issue
queue.

Figure 4.15 shows the combinational selection network of the instruction selector,
which basically consists of two multiplexers selecting the desired cache line and

3The only source actually used, as stated above, is the previous PC, but the others were
included in the initial version of the design and have been kept should a future need arise. Given
that the synthesizer can optimize unused wires, this choice incurs no overhead.
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Figure 4.15: Selection network

the address pointing to that line and another multiplexer choosing the selected
instruction inside such line.

According to the number of instructions stored in a single cache line, the output
multiplexed can become quite large, nonetheless it should not be an issue in terms
of total area.

4.4.3 Fetch controller

The fetch controller module, whose interface is shown in figure 4.16, is the control
unit of the IFU which is responsible of receiving and generating control signals
both for internal blocks and for interfacing with the other stages and the instruction
cache. In particular, the controller receives information about saved instructions by
the presence checker block (here and will_be_here signals) and as a consequence
determines if a cache access is needed (read_req and read_done interface signals)
and drives the correct selection signals (pc_sel and line_sel) to the instruction
selector block.

Moreover, it handles the handshake signals issue_valid and issue_ready to
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fetch_controller
flush_i

rst_n_i

read_req_o read_done_i

fetch_ready_o

pc_sel_o

line_sel_o

issue_valid_o

issue_ready_i

here_i will_be_here_i

Figure 4.16: Fetch controller module ports

and from the issue queue. The valid is asserted every time that the fetched instruc-
tion is available, as the result of a cache hit or saved in the line registers, while the
ready signals that the issue queue is not full and has at least available room for one
more instruction.

Finally, the fetch_ready signal is used in the PC gen stage as the enable of
the output register (see figure 4.4) and in the fetch stage as the enable of the
previous PC register (see figure 4.11). This signal is deasserted in the case of a
stall, that in particular can occur if the cache misses on the requested address or
if the issue queue is full and cannot accept more instructions. Note that in case of
flush, however, this signal remains active, because the flush operation resets all the
data structures in one clock cycle and at the next the IFU is again ready to fetch,
so the PC gen stage must provide the new valid start address.

Control unit

The main difficulties reside in high number of possible combinations of events that
can occur simultaneously. For instance the issue queue could become full while a
memory access is being completed, or on the other hand while an instruction is
being selected in the line register. These different conditions must be handled in a
per-case manner and that is what the Mealy machine of figure 4.17 manages. Here
follows a summary of the purpose of each state:
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Figure 4.17: Fetch controller FSM

• STARTUP: this state can occur only after a reset or a flush. In both cases,
at that moment the PC corresponds to the starting address and all the line
registers have been reset to zero, so a new cache read is necessary and the
read_req signal is asserted as a Moore output. The reason why the PC is
already valid and correct at this cycle is due to the fact that, in case of reset,
the output register of the PC gen stage is not reset to zero, but to the a
constant BOOT_ADDRESS that initiates the program execution. In case of flush,
on the other hand, the PC is set to the next address in the following cycle with
respect to when the flush signal arrives, thanks to the OR gate (see figure 4.11)
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that enables the PC register in case of flush, even if the fetch_ready signal
would have prevented it. The latter is the other Moore output in this state and
is needed, as stated before, to ensure maximum throughput before knowing if
the cache will have a hit or miss (i.e. the next PC is generated nonetheless and
in case of miss the IFU is stalled at the following cycle).

• CACHE_REQ: in this state a memory access request is sent to the instruction
cache interface. In case the cache is not ready to receive the address or incurs
a miss, then the FSM loops in this state until the read_done signals is asserted,
stalling the frontend by deasserting fetch_ready.

When the miss is resolved or immediately in case of hit, the state machine
checks if the issue queue is ready. If it is, then the instruction is pushed and
according to the output of the presence checker in that cycle, the next state
transition is determined. If here is asserted, it means that the next instruction
is present in the previously saved cache line, so at the next cycle, when the
cache line just read will be saved in the line register and the old line register
will be saved into the line backup register, the instruction will be selected
from the backup register (move to SEL_IN_BACKUP state). If will_be_here is
asserted, it means that the next instruction belongs to the same line that was
just read, so it will be selected from the line register at the next cycle (move
to SEL_IN_LINE state). If otherwise none of these signals are active, the next
instruction belongs to a totally different cache line and so another memory
access is necessary and the FSM stays in this state.

If the issue queue is full or busy, on the other hand, the cache output will be
saved to the line register at the next cycle nonetheless, but the handshake with
the queue does not take place and the state machine transitions to SEL_IN_LINE
where it loops until the issue queue becomes ready again. During this time,
the line register will not be updated anymore as the fetch is stalled and no
new memory accesses can be performed.

• SEL_IN_LINE: as mentioned above, in case the issue queue is busy, the FSM
loops in this state waiting. On the contrary, if the queue is ready, an instruction
is pushed and then the state machine remains in this state if here is active,
signaling that the next instruction will be selected from the same saved line,
or moves to CACHE_REQ otherwise to initiate a new cache request.

• SEL_IN_BACKUP: this state is the dual of SEL_IN_LINE meaning that the FSM
loops here when the issue queue is full and goes to CACHE_REQ if the next
instruction is not saved anywhere, but with the difference that, if the here
signal is asserted, the next state is SEL_IN_LINE, where the instruction will be
selected in the line register.
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For the same reasons stated before, it should be easy to understand how a Moore
machine would not suit this particular control unit. As an example, with a Moore
machine, from the conclusion of a cache read to the push of the selected instruction
to the issue queue one clock cycle is bound to be wasted, which would hinder the
throughput of the IFU.

Timing diagrams

To better understand the behavior of the fetch controller FSM, a list of timing
diagrams covering a number of possible scenarios is now presented.

clk

state RESET STARTUP CACHE_REQ SEL_IN_LINE

fetch_ready

pc PC0 PC1 PC2 PC3

prev_pc_reg PC0 PC1 PC2

here

will_be_here

read_req

read_done

cache_out PC0|L0

line_reg PC0|L0

line_bak PC0|L0

selector_pc prev_pc

selector_line cache_out line_reg

issue_ready

issue_valid

instruction L0[PC0] L0[PC1] L0[PC2]

Figure 4.18: Startup and hit (PC0 is the BOOT_PC considered above)

Figure 4.18 shows the boot up after the reset, where the first PC needs a cache
access and then the next instructions are fetched consecutively from the same line,
now saved in the line register. This is the most ideal situation, with a cache hit and
the issue queue ready. It is clear from this timing diagram that the fetch_ready
signal must be active during STARTUP even if the outcome of the cache request is
not yet known. If this were not the case, there would be a one-cycle penalty every
time.
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clk

state RESET STARTUP CACHE_REQ SEL_IN_LINE

fetch_ready

pc PC0 PC1 PC2

prev_pc_reg PC0 PC1

here

will_be_here

read_req

read_done

cache_out PC0|L0

line_reg PC0|L0

line_bak

selector_pc prev_pc

selector_line line_reg cache_out line_reg

issue_ready

issue_valid

instruction L0[PC0] L0[PC1]

Figure 4.19: Startup and cache not ready/miss

Figure 4.19 shows what happens in the same situation if instead the cache is not
ready or has a miss. This timing also explains why the instruction cache interface
must save the address as soon as a read request is sent: if the address handshake
does not occur at the second cycle when the request is made, then the address
changes at the next clock and the read would happen at the new, wrong address.
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clk

state SEL_IN_LINE CACHE_REQ SEL_IN_LINE

fetch_ready

pc PC4 PC16 PC17 PC18 PC19

prev_pc_reg PC3 PC4 PC16 PC17 PC18

here

will_be_here

read_req

read_done

cache_out PC16|L1

line_reg PC0|L0 PC16|L1

line_bak PC0|L0 PC16|L1

selector_pc prev_pc

selector_line line_reg cache_out line_reg

issue_ready

issue_valid

instruction L0[PC3] L0[PC4] L1[PC16] L1[PC17] L1[PC18]

Figure 4.20: Saved line change

Figure 4.20 shows the situation of a cache line change. At first instructions are
read consecutively from the line register, then a branch for example makes the PC
jump to a location stored on a different cache line, so a read request is sent, the
cache hits and the current instruction is read from the cache output. After that,
fetch continues sequentially with the other instructions in the new saved line.
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clk

state SEL_IN_LINE CACHE_REQ SEL_IN_BACKUP SEL_IN_LINE

fetch_ready

pc PC4 PC16 PC5 PC17 PC18

prev_pc_reg PC3 PC4 PC16 PC5 PC17

here

will_be_here

read_req

read_done

cache_out PC16|L1

line_reg PC0|L0 PC16|L1

line_bak PC0|L0 PC16|L1

selector_pc prev_pc

selector_line line_reg cache_out line_bak line_reg

issue_ready

issue_valid

instruction L0[PC3] L0[PC4] L1[PC16] L0[PC5] L1[PC17]

Figure 4.21: Line backup register purpose

The purpose of the line backup register is demonstrated in the timing of fig-
ure 4.21, when there is a jump back and forth between two cache lines: the here
signal during the cache request makes the next instruction be selected from the
backup register. Of course, as already mentioned, the limitation of this solution is
that if the same jump were to happen just right after this scenario (e.g. if PC5 ar-
rived again instead of PC18 at the last shown cycle) even the backup register would
have been overwritten and so a new memory access would be needed anyway.
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clk

state SEL_IN_LINE CACHE_REQ

fetch_ready

pc PC4 PC16 PC32 PC48 PC64

prev_pc_reg PC3 PC4 PC16 PC32 PC48

here

will_be_here

read_req

read_done

cache_out PC16|L1 PC32|L2 PC48|L3

line_reg PC0|L0 PC16|L1 PC32|L2

line_bak PC0|L0 PC16|L1

selector_pc prev_pc

selector_line line_reg cache_out

issue_ready

issue_valid

instruction L0[PC3] L0[PC4] L1[PC16] L2[PC32] L3[PC48]

Figure 4.22: Cache read pipeline

Figure 4.22 illustrates the ability to reach a throughput of one instruction per
clock cycle in a pipeline fashion even while reading from the instruction cache, if
the memory hits on every address. In this case instructions are always selected
directly from the cache output.

Figures 4.23 and 4.24 show the issue queue being not ready at two different
instants. In figure 4.23 the stall happens when the instruction is selected inside the
line register and in this case no problem arises, as the fetch stage is simply stalled
and no register changes until the issue queue becomes ready again. If the queue is
busy when an address would require a cache read, as in figure 4.24, then the actual
memory access is delayed until this stall is resolved. In both cases, the fetch_ready
signal is deasserted to prevent the generation of new program counters.
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clk

state SEL_IN_LINE CACHE_REQ SEL_IN_LINE

fetch_ready

pc PC4 PC16 PC17 PC18

prev_pc_reg PC3 PC4 PC16 PC17

here

will_be_here

read_req

read_done

cache_out PC16|L1

line_reg PC0|L0 PC16|L1

line_bak PC0|L0

selector_pc prev_pc

selector_line line_reg cache_out line_reg

issue_ready

issue_valid

instruction L0[PC3] L0[PC4] L1[PC16] L1[PC17]

Figure 4.23: Issue queue not ready during selection

clk

state SEL_IN_LINE CACHE_REQ SEL_IN_LINE

fetch_ready

pc PC4 PC16 PC17 PC18

prev_pc_reg PC3 PC4 PC16 PC17

here

will_be_here

read_req

read_done

cache_out PC16|L1

line_reg PC0|L0 PC16|L1

line_bak PC0|L0

selector_pc prev_pc

selector_line line_reg cache_out line_reg

issue_ready

issue_valid

instruction L0[PC3] L0[PC4] L1[PC16] L1[PC17]

Figure 4.24: Issue queue not ready during request
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clk

state SEL_IN_LINE CACHE_REQ SEL_IN_LINE

fetch_ready

pc PC16 PC17 PC18

prev_pc_reg PC4 PC16 PC17

here
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read_req

read_done

cache_out PC16|L1

line_reg PC0|L0 PC16|L1

line_bak PC0|L0 PC16|L1

selector_pc prev_pc

selector_line line_reg

issue_ready

issue_valid

instruction L0[PC4] L1[PC16] L1[PC17]

Figure 4.25: Issue queue not ready when cache line arrives

Figure 4.25 shows the case for which the issue queue is not ready when the
cache hits and outputs a new line and the current address points to an instruction
in that line (will_be_here asserted). In this case, there is a stall when no new PC
is generated and during which the newly read line is saved into the line register,
so that when the issue queue becomes ready again the instruction will be selected
from the register and not from the cache output.

The situation shown in figure 4.26 is similar to the previous one, but this time the
issue queue is not ready when the output is a new line and the current instruction
refers to a line previously saved. In this case not even the line backup register can
manage it, because as soon as the fetch resume, it is updated with the content
of the line register, that is the last cache line read. Thus, for the old line a new
memory access is required.

Finally, figure 4.27 shows the last timing under analysis, that is the situation
in which the issue is not ready when the instruction has to be selected inside the
backup register. In similar manner to figure 4.23, here the stall does not cause any
issues and the fetch resumes exactly as before when the queue turns ready again.
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clk

state SEL_IN_LINE CACHE_REQ SEL_IN_LINE CACHE_REQ SEL_IN_BACKUP

fetch_ready

pc PC16 PC5 PC17 PC18

prev_pc_reg PC4 PC16 PC5 PC17

here

will_be_here

read_req

read_done

cache_out PC16|L1 PC5|L0

line_reg PC0|L0 PC16|L1 PC5|L0

line_bak PC0|L0 PC16|L1

selector_pc prev_pc

selector_line line_reg cache_out line_bak

issue_ready

issue_valid

instruction L0[PC4] L1[PC16] L0[PC5] L1[PC17]

Figure 4.26: Issue queue not ready and causing loss of backup

clk

state CACHE_REQ SEL_IN_BACKUP SEL_IN_LINE

fetch_ready

pc PC5 PC17 PC18

prev_pc_reg PC16 PC5 PC17

here

will_be_here

read_req

read_done

cache_out PC16|L1

line_reg PC0|L0 PC16|L1

line_bak PC0|L0 PC16|L1

selector_pc prev_pc

selector_line cache_out line_bak line_reg

issue_ready

issue_valid

instruction L1[PC16] L0[PC5] L1[PC17]

Figure 4.27: Issue queue not ready during backup
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4.5 Branch Prediction Unit (BPU)

As seen in figure 4.1, the BPU resides in the fetch stage and works in parallel with
the IFU on each address coming from the PC gen stage. This unit, as shown in the
high level scheme of figure 4.28, is composed of two main blocks:

Gshare

BTB

PC

taken?

hit?

taken

...from PC gen

to PC gen...

Figure 4.28: BPU general idea

• The gshare is the actual branch predictor and is a variation of the two-level
predictor described in section 3.2.2 featuring a table of 2-bit counters and
a global history register, of which a detailed explanation is provided in sec-
tion 4.5.2. Being a branch predictor, its output is the predicted direction of
the branch. Note that it outputs a prediction on every address, even those
who potentially do not correspond to branch instructions. That is where the
second block comes into play.

• The Branch Target Buffer (BTB), described in section 4.5.3, is a small
cache that contains the target address of taken branches only. This provides
the significant advantage of being able to fetch the instruction after the taken
branch with no additional delay, leading to zero overhead branches if the target
is correct.

A branch is predicted taken by the BPU if and only if the gshare predictor supposes
the branch is taken and the BTB contains an entry with a valid target for that
specific PC.
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Figure 4.29: BPU module ports

4.5.1 Top-level block diagram

Figure 4.29 shows the module interface of the BPU. Apart from reset and flush
signals, used respectively at startup and in case an exception requires the internal
data structures to be flushed, the module outputs a prediction based on the current
address, composed by a single bit indicating if the branch is supposed to be taken
or not, the predicted target and also the branch address, which is later needed to
update the predictor structures.

The inputs containing the res prefix, for resolution, are the just mentioned
branch PC to which the resolution refers, the actual target, the actual branch
direction, a bit indicating if there was a misprediction and a valid bit to signal that
the present one is a valid branch resolution coming from the execution stage.

This information, in particular the two bits about the actual branch direction
and the misprediction, is used to update the data structures and take further action
as listed in table 4.1. In case of correct prediction, it is only needed to update the
2-bit counters inside the gshare predictor according to the branch direction. A
misprediction, on the other hand, requires different actions to be taken depending
on which event caused it. If the branch was correctly predicted taken, but the
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Prediction Resolution Target Action

Taken Taken Correct Increment 2-bit counter

Taken Taken Incorrect
Increment 2-bit counter
Update BTB entry
Flush pipeline and restart from correct target

Taken Not taken –
Decrement 2-bit counter
Remove BTB entry
Flush pipeline and restart from branch PC+4

Not taken Not taken – Decrement 2-bit counter

Not taken Taken –
Increment 2-bit counter
Add BTB entry
Flush pipeline and restart from correct target

Table 4.1: Predictor update actions

target in the BTB was incorrect, then the BTB entry must be updated with the
correct one. If, instead, the branch was mispredicted taken, the target buffer entry
is deleted in order to prevent a potential further misprediction, in the case when the
2-bit counter was in the strongly taken state. Finally, if the branch was mispredicted
not taken, then the corresponding target is added to the BTB. This time, if the
2-bit counter was in the strongly not taken state, the second misprediction cannot
be prevented and the same entry will be written once again in the BTB.

In all the misprediction cases, the fetch and execution stages must be flushed
and the next PC must be set to the next sequential address after the branch PC
if the branch was actually not taken, or to the correct target if the branch was
actually taken. Note that this flush operation is different from the flush caused by
an exception because, obviously, it does not reset the branch predictor structures,
which are only updated with the correct branch result.

Figure 4.30 shows the internal organization of the BPU which is simply composed
of the gshare and BTB blocks, along with the AND gate of figure 4.28 and a
couple of other gates to decide the correct update action based on the results, as
in table 4.1.
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Figure 4.30: BPU block diagram
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4.5.2 Gshare branch predictor

gshareflush_i
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taken_o

XLEN

XLEN

Figure 4.31: Gshare module ports

The idea of the gshare predictor, whose interface is shown in figure 4.31, was
first proposed by Scott McFarling in a 1993 paper [14] and consists in a variation
of the two-level predictor that combines global information from the global branch
history and local information of the current branch address by hashing them with
the exclusive OR of the history register and the N least significant bits of the
PC, where N is the history length. The author noted that this hashed index
contains more information useful to identify the current branch than each of the
PC and global history alone and the experimental results confirmed this thesis, by
outperforming all previous variations of the two-level predictor.

The structure of this predictor is shown in figure 4.32 and is composed of a
BHT composed of a single shift register where branch resolutions are left shifted
in and a PHT that contains an array of 2-bit counters, organized as a register file,
so providing synchronous write and asynchronous read. This table is indexed by
the XOR of the history and the current PC4 in order to read the prediction for the
current branch, which comes from the most significant bit of the 2-bit counter.

To update the PHT when a branch is resolved the correct 2-bit counter has to be
selected using the same index as the one used for the prediction. As an architectural
choice, branches in LEN5 are resolved in-order during the execution stages, so that
in the time span between the prediction and the resolution of a branch, no other
resolution is generated and as such the branch history remains unchanged. This
means that the write index used to select the 2-bit counter to be updated can be
derived using the resolved branch address and the same current value of the history
register. This poses no timing issues, as demonstrated by figure 4.33, because the

4Actually, the 2 LSBs of the PC are excluded as are always zero for 32-bit instruction.
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Figure 4.32: Gshare branch predictor

history register is shifted only after the clock edge when the res_valid signal is
active, so at that edge the register still stores the unshifted value and the write
operation on the PHT occurs at the correct address.

If branches were resolved out-of-order, on the other hand, to restore the correct
address to the PHT the index at the moment of the prediction would need to be
passed along in the pipeline to return at the moment of the resolution. Resolving
branches in-order, on the other hand, not only allows a significant size reduction
of data structures like the issue queue and the branch reservation stations by not
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Figure 4.33: Update timing diagram

storing the prediction index, but also simplifies a great deal the instruction commit
stage.

The initial version of the design also accounted for a column of valid bits in the
PHT to indicate if the prediction coming from each 2-bit counter is valid (i.e. if that
2-bit counter has already been used at least once). This is useful to prevent taken
misprediction if the 2-bit counters are initialized in the weakly or strongly taken
state. However, if the counters are instead initialized in a not taken state, then the
first time they are accessed the prediction will always be “not taken” just as if the
valid bit was included, so this bit becomes redundant and only wastes area. After
a more thorough analysis, presented in section 5.2.1, it was decided to remove the
valid bits from the PHT.
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4.5.3 Branch Target Buffer (BTB)

btbflush_i

rst_n_i

pc_i

valid_i res_i.pc res_i.target

hit_o   target_o

XLEN

XLEN XLEN

XLEN

del_entry_i

Figure 4.34: BTB module ports

The purpose of the BTB (interface in figure 4.34) is to provide the target of a
predicted taken branch in order to eliminate the delay of the computation of the
destination address in the later execution stages and allow the fetch to proceed
immediately from the new address. The idea of a BTB was first introduced in [15]
and was since optimized and employed in a great number of processor designs.

Its structure shown in figure 4.35 is basically that of a direct mapped cache with
2BTB_BITS entries addressed using the the BTB_BITS least significant bits of the PC,
as always excluding the offset, where each of them contains the following fields:

• Valid: 1-bit field indicating if the selected entry is valid, that is if it has been
previously written with the correct target of a resolved branch.

• Tag: this field contains the remaining bits of the branch PC not used to
address the BTB. The final evaluation on the branch address is a hit only
if for the selected location the valid bit is set and the stored tag corresponds
to the upper part of the PC. This is done in order to eliminate the aliasing
phenomenon, for which multiple addresses could point to the same BTB entry
and thus produce incorrect results for the target.

• Target: the actual destination address of the branch. The 2 LSBs are not
stored as are they are useless for 32-bit instructions, but can save a significant
amount of area if the BTB contains many entries.

When the del_entry signal is asserted all three fields of the addressed entry are
reset to zero.

70



4.5 – Branch Prediction Unit (BPU)

btb

2
BTB_

BITS  ent
ries

valid targettag

1 XLEN-BTB_BITS-OFFSET XLEN-OFFSET

flush_i

rst_n_i

pc_i
BTB_BITS+OFFSET-1 :

OFFSET

XLEN

=
XLEN-1 :

BTB_BITS+OFFSET

hit_o

valid_i

res_i.pc

res_i.target

XLEN

XLEN

addr_r

tag_r

BTB_BITS+OFFSET-1 :

OFFSET

addr_w

XLEN-1 :

BTB_BITS+OFFSET

tag_w

  target_o

XLEN

del_entry_i

Figure 4.35: BTB diagram

The BTB is perhaps one of the blocks that can organized and optimized in the
most number of ways, starting from the mapping of the cache to the information
stored. Some variants of the design store the actual target instruction instead of the
address to allow for some advanced techniques such as branch folding [16]. Being
LEN5 an exploratory experiment on processor design, the choice has been made to
keep the organization simple and so implement the BTB as a direct mapped cache
described as a register file.

For this reason, the same principles presented in section 4.5.2 apply here, namely
that the BTB allows synchronous write and asynchronous read that in turn imply
that a prediction and an update can be completed during the same cycle.

71



LEN5 frontend

4.6 Branch unit

A unit that was not talked about until now and that is not shown in figure 4.1
because it resides in the backend is the branch unit, which is an execution unit
responsible of determining the actual outcome of branch instructions. Its main
tasks are the logic comparison between operand values in order to determine if the
branch is taken or not and the sum of the base branch address and its immediate
field to discover the target.
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Figure 4.36: Branch unit module ports

Figure 4.36 shows the interface ports of this unit. It receives the register operands
rs1 and rs2, the immediate field imm, the branch type, encoded on three bits, and
the prediction information from the corresponding reservation station, to and from
which it communicates via the handshake signals ops_valid and ops_ready as
usual.

Its outputs are the information on the branch resolution, which is passed forward
to the commit stage and back to the frontend to update the BPU and potentially
stall in case of misprediction.
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Figure 4.37: Branch unit datapath

4.6.1 Datapath
The datapath of the branch unit is shown in figure 4.37 and is composed of two
ALUs, which are actually a separate logic unit and an adder, operating in parallel
on the comparison and the target computation, which is performed, as per RISC-V
specifications, by adding the base address with the immediate left shifted. The
output of both units is compared with the predicted taken and target respectively
and the results are passed to the control unit.

There are six types of branches in the RISC-V ISA, namely:

• Branch if equal (BEQ)

• Branch if not equal (BNE)

• Branch if less than (BLT)

• Branch if greater than or equal (BGE)

• Branch if less than, unsigned (BLTU)
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• Branch if greater than or equal (BGEU)

At the following clock cycle after the ALUs have obtained the results, the control
unit outputs the correct prediction information and the branch PC and right target
are written to the output register.

4.6.2 Control unit

Figure 4.38: Branch unit control unit

The control unit of this module is a Moore machine that after reset starts waiting
for valid operands from the reservation station in the WAIT_OPS state. When they
arrive, in the same clock cycle the datapath performs the required computation, so
that according to the value of the control signals, the FSM can move to one of the
states named {GOOD,BAD}_{T,NT}, based on whether there was misprediction and
whether the branch was actually taken or not. In these states, the correct output
signals are driven and then the state machine moves back to the waiting loop.
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Chapter 5

Experimental results

This chapter presents the results obtained from the design, starting from func-
tional verification of the correctness of the implementation, to synthesis and bench-
marking. The entire design has been described in SystemVerilog using hierarchical
modules and behavioral constructs when possible. This both helps readability and
leaves to the EDA tools the freedom of performing optimizations.

Each module has been verified locally using Verilator1 for linting and Mentor
ModelSim Intel FPGA Starter Edition for simulation. Synthesis has been carried
out with Synopsys Design Compiler, on the the VLSI server provided by Politecnico
di Torino.

5.1 Simulation

The choice of tools mentioned above was made because one of the pros of Verilator is
that it has been found to be more verbose than ModelSim when performing syntax
check and lint, thus reducing the number of possible issues during compilation and
simulation. Moreover, it is completely free and open source, which nicely couples
with the philosophy of the LEN5 project.

ModelSim was in the end chosen as the main simulation tool, because it is much
more familiar to the designer and the limited time did not allow to learn Verilator for
simulation, given that it uses a completely different paradigm, based on translating
HDL to C language and using testbench templates in C as well.

The following sections focus on the test strategies used for the BPU, which is
almost as important as a standalone design, and the top-level frontend.

1https://www.veripool.org/wiki/verilator
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5.1.1 BPU
The testbench of the BPU is based on reading branch addresses from one file,
predicting the outcome and then comparing it with the correct branch resolutions
coming from a second file. One clock cycle passes between the prediction and the
resolution, as to simulate the execution delay, which always takes more cycles. Dur-
ing this time span, the PC is fictionally increased to simulate a normal sequential
fetch situation.

Given that the length of the history register in the gshare and the length of BTB
address lead to an exponential growth of the PHT and the BTB itself, simulations
were performed using a small number of bits for these data structures and in par-
ticular the following results refer to a configuration with a 4-bit history register
and a 4-bit BTB address. The simulation is needed to verify the correctness of the
design and not the prediction performances, so having fewer bits poses no issues.

In order to test the BPU as a singular unit, without all the surrounding processor
and in particular without a register file and execution units, some specific test cases
have been defined, where branch results could be derived manually without actually
executing the program. Loops, in particular, suit well such simple cases.

Single loop

The first test case corresponds to the following simple loop:
for (int i = 0; i < 10; i++)
{

/* loop body */
}

Here, the loop condition is tested ten times as true, so the branch is taken, and the
last time as false, so the branch is not taken.

Suppose that the instruction testing the loop condition is at address 10 and
the beginning of the loop body (i.e. the target of the branch instruction) is at
address 24. Figure 5.1 shows the simulation waveforms for this test case, with the
predictions contained in the pred_o signal, occurring each time the PC 10 is read
from the address file, and the resolutions read into res_i every time the valid
signal is asserted.

Here, the initialization of the predictor structures can be clearly noted. Given
that the history register is initialized to zero and the loop branch is always taken
at first, the gshare predictor will initially update 2-bit counters which do not corre-
spond to the actual branch history, until the BHT is filled with ones (4 iterations,
for the 4-bit register). Then the PHT index will remain the same and so the same
2-bit counter is incremented from the initial strongly not taken state to the weakly
taken state when it finally starts predicting correctly (2 iterations).

At the seventh iteration of the loop, the branch is predicted correctly as taken
(the mispredict signal is deasserted) and this situation lasts until the the loop
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condition is tested false at the last iteration, leading to a new misprediction.
Meanwhile, the BTB is updated with the correct target at the first iteration,

from which it gets a hit each following time.
This warm-up of the predictor is intrinsic of its design and cannot be avoided,

but anyway figure 5.1 demonstrates the correct and expected behavior of the BPU.

Nested loops

Next, the case of two nested loops was tested, as in the following code:

for (int i = 0; i < 20; i++)
{

for (int j = 0; j < 3; j++)
{

/* loop body */
}

}

This example, actually taken from [14], is intended to demonstrate that the gshare
predictor, after the warm-up, can correctly identify taken branches in nested loops,
where the outer loop is repeated many times.

Figure 5.2 shows the simulation results for this case, where the address of the
condition instruction of the outer loop is 10, the one of the inner loop (i.e. the
target of the outer loop) is 80 and the body of the inner loop starts at address 24.

At the beginning, the gshare continuously mispredicts the outer loop and the
first iterations of the inner loop, due to the initialization of the PHT as mentioned
in the previous case, but then after the warm-up it goes on to predict correctly
both loops, until the exit of the outer loop. In particular, the steady state situation
is shown in table 5.1, where each combination of address and history univocally
determines the prediction outcome.

Value Condition PC History Prediction

j = 0 j < 3 80 1101 Taken

j = 1 j < 3 80 1011 Taken

j = 2 j < 3 80 0111 Taken

j = 3 j < 3 80 1111 Not taken

i = n i < 20 10 1110 Taken

Table 5.1: Nested loops steady state predictions
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5.1.2 Frontend

The testbench designed for the whole frontend is composed of the following blocks
that drive its inputs:

• A PC jumper used to simulate exceptions and branches by modifying the
sequential generation of addresses.

• A dummy instruction cache which responds to memory access requests by sim-
ulating both hits and misses, with random delays. The fictional data line it
provides always contains the PC that generated the request and N instruc-
tion fields with the number from 1 to N in order to track the movement of
instructions.

• A dummy issue queue that simply simulates a busy issue queue by introducing
random delays on the issue_ready signal.

Using this setup, the frontend was simulated in a number of scenarios corre-
sponding to the different situations analyzed in section 4.4.3, of which the most
significant are described below.

Figure 5.3 shows the standard situation where subsequent instructions are se-
lected among the same line, saved in the line register after the first memory access
at startup (compare with figure 4.18).

Figures 5.4 and 5.5 show the situation of a cache not ready to receive the address
or a cache miss respectively, as in figure 4.19. Note also the current states of
the instruction cache interface FSM that correspond to the timing diagrams of
figures 4.9 and 4.102.

Figure 5.6 shows a sequence of cache reads in a pipeline fashion, just as in
figure 4.22. Note also how here there is a jump right after the boot address, which
is correctly handled by the instruction cache interface.

Figure 5.7, like figure 4.21, show the case when the instruction is selected among
the line backup register, due to a jump back and forth to the same cache line.

Finally as an example, figure 5.8 shows the situation in which the issue queue is
not ready during instruction selection (compare with figure 4.23).

2These simulation waveforms show WAIT_ADDR as the wrong old name for the WAIT_REQ state.
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5.2 BPU benchmarking

As mentioned before, the BPU is one of the most configurable units in the design,
where a number of parameters and design choices come into play. For this reason a
software model of this module written in C has been developed, to allow for fast and
simple exploration and benchmarking. The model implements the same functions
as the hardware and reads an input text file in the form

<BRANCH ADDRESS> <OUTCOME>

where the address is expressed in hexadecimal base and the outcome as 1 or 0 if
the branch is taken or not.

After significant efforts spent to find a way to extract branch traces (i.e. the
list of branch instructions and their result) from a compiled program, no feasible
solution was found and so a decision was made to rely on the trace files provided
by a laboratory exercise of the course Principles in Computer Architecture held by
Prof. Dean Tullsen of the University of California San Diego, available on GitHub3.
These traces come from a series of benchmarks taken from the SPEC suite, listed
in table 5.2.

Name Type Branches

fp_1 Floating point 1 546 797

fp_2 Floating point 2 422 049

int_1 Integer 3 771 697

int_2 Integer 3 755 315

mm_1 Matrix multiply 3 014 850

mm_2 Matrix multiply 2 563 897

Table 5.2: BPU benchmarks

Given that these trace files do not contain the target address associated with
each branch instruction, the main limitation of the software model is that it does
not account for mispredictions caused by the wrong target being stored in the BTB.
It takes into account, however, the case when a BTB too small causes entries to be
overwritten frequently, increasing the number of misses and thus mispredictions.

In the following sections, a series of tests is described to evaluate performance
and other design metrics on the BPU.

3https://github.com/prodromou87/CSE240A
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5.2.1 Gshare

For what concerns the gshare predictor, three main parameters can be analyzed:

• The length of the history register, which determines the number of 2-bit coun-
ters in the PHT.

• The initial value of those counters, which determines the first predictions for
each index.

• The presence or not of the valid bit, along with each counter.

2-bit counters initialization

In order to find the best initial value for the counters, each benchmark was run
on two different history register lengths (8 and 16 bits) at each possible initializa-
tion, including the alternate version even index/weakly not taken odd index/weakly
taken.

Initial value Benchmark

fp_1 fp_2 int_1 int_2 mm_1 mm_2

SNT 98.35% 88.62% 69.09% 98.75% 77.50% 82.37%
WNT 98.36% 88.55% 69.09% 98.75% 77.50% 82.37%
WT 98.36% 89.90% 69.09% 98.74% 77.49% 82.37%
ST 98.27% 89.90% 69.09% 98.74% 77.50% 82.37%
even/WNT, odd/WT 98.36% 88.65% 69.09% 98.74% 77.50% 82.37%

Table 5.3: Gshare accuracy on different initializations (8-bit history register)

Initial value Benchmark

fp_1 fp_2 int_1 int_2 mm_1 mm_2

SNT 99.15% 99.03% 89.24% 99.63% 96.05% 92.28%
WNT 99.17% 98.85% 88.26% 99.64% 95.86% 92.83%
WT 99.16% 99.04% 89.11% 99.64% 95.88% 92.87%
ST 99.15% 99.04% 89.23% 99.61% 95.97% 92.39%
even/WNT, odd/WT 99.17% 99.04% 88.65% 99.64% 95.88% 92.84%

Table 5.4: Gshare accuracy on different initializations (16-bit history register)
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The results are summarized in tables 5.3 and 5.4 for 8-bit and 16-bit history
registers respectively, where blue cells represent the best accuracy achieved for each
benchmark. It is clear that there is no single best initialization value for the 2-bit
counters, but it depends heavily on both the benchmark and the history length.
Even the most complex initialization to be performed in hardware, which is the
alternate one, results the best only in a single case. In any case, there is not much
of a difference among the various initial values, so the conclusion is to choose the
simplest one, namely the strongly not taken state (i.e. 2-bit counters at zero).

Valid bit

From the results of the previous analysis, it is obvious that the valid bit serves no
purpose whatsoever in this design. A valid bit would be used to indicate that the
indexed counter has been used before and so the prediction is valid. By initializing
the 2-bit counters to zero, however, the first (and second) time they are read, they
are always going to predict not taken, exactly like the case with the valid bit. In the
end, this bit would only increase by 50% the total PHT size, thus literally wasting
a significant amount of area.

History register length

In order to find the best trade-off between the predictor accuracy and the size of
the PHT, all the benchmarks were run at increasingly longer history length.

From the plot of figure 5.9, the majority of the benchmarks saturate at their
best accuracy value in the range between 13 and 20 bits, with only int_1 and mm_1
being the exceptions that continue to get better results the longer the history.

Given the exponential relation between the history register length and the area
of the PHT, this range of lengths corresponds to table sizes going from 2KB to
200KB. For this reason, the final value must be chosen by keeping in mind a clear
area budget for the final implementation. Having said that, a history length of 16
bits, corresponding to around 16KB of PHT, seems like a reasonable compromise
for which benchmark results are no more than 2% worse than the best.

5.2.2 BTB

The BTB on its own does not contribute to improving the overall prediction ac-
curacy, which only comes from the gshare predictor itself, but instead removes the
target computation latency from branch instructions. Thus, its presence can only
lower the prediction accuracy with respect to the baseline of the gshare alone, be-
cause additional mispredictions are inserted due to BTB misses, which occur when
the BTB does not have a valid entry for the selected address. Moreover, mispredic-
tions take place even when the stored target is then discovered as incorrect, but as
mentioned above the available branch traces do not contain the correct target, so

89



Experimental results

1 5 10 15 20
50%

60%

70%

80%

90%

100%

Global history length (bits)

P
re
di
ct
or

ac
cu
ra
cy

50

100

150

200

250

300

P
H
T

si
ze

(K
B
)

fp_1 fp_2 int_1 int_2 mm_1 mm_2 PHT size

Figure 5.9: History register length versus predictor accuracy

the software model does not take this kind of mispredictions into account, which
contribute only in small part anyway.

Figure 5.10 shows the results of the benchmarks with varying length of the
BTB index expressed as the number of mispredictions per a thousand instructions
(MPKI), where dashed lines represent the baseline without BTB for each bench-
mark. Some programs, like mm_1 and mm_2 suffer significantly with small BTB and
have unacceptably high misprediction rates, while other, notably int_2 seem al-
most unaffected by the presence of the BTB. Anyway, around 10 or 12 bits for the
BTB index, i.e. in the range 15KB to 60KB, most of the benchmark have reached
a MPKI very close to the baseline. Going past these values does not seem to offer
a significant improvement and thus becomes unadvisable, regardless of the area
constraints.
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Figure 5.10: BTB index size versus MPKI

5.3 Synthesis
Synthesis has been carried out using Synopsys Design Compiler on the UMC 65 nm
low leakage (L65LL) technology library. In order to get reproducible results, script-
ing was heavily used to input commands to the tool and some notable parameters
and settings used in the process are listed below:

• Top down compilation, to allow optimizations beyond module boundaries, even
if this means potentially longer compile times and higher memory usage, as
stated in [17, p.8-6].

• Ideal clock definition (set_ideal_network and set_dont_touch_network) in
order to avoid optimizations on the clock tree, which has to be defined in later
place and route stages, and remove warnings about its high fanout.

• Clock uncertainty (skew) 0.07 ns

• Maximum input and output delay 0.5 ns

• Output load of a buffer on all ports (BUFM10R, 2.1 fF)

• DC Expert compilation (compile command)
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5.3.1 BPU

The BPU was synthesized in different configurations of history register length and
BTB size, in order to evaluate the effect of these parameters variations on the
design metrics. In particular, from the considerations and the results obtained
during benchmarking, the aim was to vary the history length between 2 and 16 bits
and the BTB index length from 2 to 12 bits. However, when trying to go past 12
bits of history and 10 for the BTB index, Design Compiler could not sustain the
exponential size of the register files and gave up with errors about exceeding the
maximum loop iterations possible, nonetheless the results are still significant. Even
then, the syntheses, executed with a batch script, took several days to complete.

Area

The total area of the BPU depends almost exclusively on the size of the gshare
PHT and the BTB, which are determined by the history length and the BTB index
bits. More specifically, given that each entry of the BTB easily contains more than
100 bits compared to the 2 bits of a PHT entry, the effect of the BTB size will
weigh 100 times more than the history length on the overall result. In other words,
the length of the history register matters only with small BTBs, while it becomes
negligible alongside large buffers.

This effect is evident in figure 5.11, which shows the synthesized values of total
cell area, demonstrating the expected exponential growth (linear on this logarithmic
z axis) with respect to the length of the BTB index. The history length has the
effect of slightly increasing the cell area (bending the plane) for low values of the
BTB bits, but that effect vanishes for larger buffers and in the end the final area
in the case of large BTBs is constant regardless of history length.

Actually, for such large predictor structures, an implementation as register files
becomes infeasible and the better way to synthesize them would be to use a memory
compiler and a small SRAM to store the PHT and BTB.

Timing

For what concerns timing, the critical path was reported to be the BTB and in
particular the path going from the BTB address part of the PC to the hit signal, to
the taken output. Presumably, this corresponds to the decoding network inferred to
correctly select the BTB entry. For this reason, BTB size and thus the complexity
of such decoder was consistently reported as the only timing critical part of the
design, while no variation whatsoever was noted increasing the history bits.

Figure 5.12 shows the results of the maximum achievable clock frequency, ob-
tained by setting the target clock period to zero, with increasing BTB index bits
used. Between the two extremes, the critical path grows of about 0.6 ns, which
correspond to a non-negligible drop of about 200MHz in maximum frequency. The
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Figure 5.11: Total BPU area versus history length and BTB size

seemingly linear negative trend can be explained by reckoning that the decode net-
work to address the BTB is likely to be implemented as a balanced tree of logic
gates, whose number of levels thus depends on the base-2 logarithm of the number
of entries of the buffer, which in turn grows exponentially with the number of bits,
leading to a linear dependence.

In the end, the actual size of the BTB must be chosen by keeping into account
the design constraints both in terms of area budget and of target clock frequency,
trading them off with the prediction accuracy and hit rate. History bits, on the
other hand, do not influence timing at all.
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5.3.2 Frontend

Given the considerations of the previous section, the entire frontend was then syn-
thesized using 8 bits for both the BPU history length and the BTB, in order to
have a configuration of average complexity. Table 5.5 summarizes the results.

BPU only Whole frontend

Area 433 233µm2 451 526µm2

Maximum frequency 540MHz 537MHz

Table 5.5: Comparison of BPU and frontend synthesis results

It is evident that the BPU is by far the limiting element of the frontend, both
in terms of area and timing. Given its large data structures, the surrounding logic
of the rest of the frontend becomes almost negligible and represents only 4% of the
total area for this parameter configuration.

The same can be concluded for timing, as the decoding of the BTB is unfortu-
nately the critical path even in the whole frontend, which leads to almost the same
clock frequency in both situations.
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To solve this issue, which could really hinder the performance of the entire design,
a better implementation, as mentioned before, would employ a SRAM memory with
optimized decoding networks instead of a slow large register file. This synthesis
must be then only considered as indicative and preliminary, because more advanced
tools and compilers could lead to better results.

On a final note, the fact that the instruction selector multiplexer could become
quite large with many cache instructions per line, as anticipated in section 4.4.2,
does not incur any issue. This is because this multiplexer grows linearly with the
width of the cache line, so its effect is completely masked by the exponential growth
of the BPU structures.
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Chapter 6

Concluding remarks

This work provided a basic implementation of an out-of-order processor, based on
the RISC-V ISA. Although numeric results are not bad, for instance with the
branch predictor reaching easily over 99% accuracy, they are nowhere near the
ones provided by modern state-of-the-art processor architectures, which offer much
better performance for lower area. These processors, however, are the result of
many years of incremental optimizations and advancements in technical know-how
of industry leader companies.

The aim of LEN5 was never to compete with the giants, but to be an exploratory
experiment able to provide valuable insights on the challenges that such complex
designs pose and hopefully serve as the starting point for future RISC-V projects.

6.1 Future work

From an architectural standpoint, there are a number of improvements that the
frontend of LEN5 could benefit from, for example:

• A better but more complex branch predictor could be implemented. For ex-
ample, modern variations of the TAGE predictor, such as [18] and [19], can
achieve almost ten MPKI less than gshare for the same hardware budget.

• Avoid stalling and pausing cache requests when the issue queue is busy, in
order to save time on the next read and mask a potential cache miss latency.

• Push to the issue queue more than one instruction in parallel, to increase the
issue width.

In any case, the most important future developments concern putting together
the final design by merging the three parts developed separately. Then, LEN5
could be used for teaching advanced processor architectures hands on, allowing
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to see every detail of the internal organization, which usually are well hidden in
commercial products.

Moreover, thanks to the many ISA extensions of RISC-V, LEN5 could also
be improved for research applications, such as machine learning accelerators, by
implementing dedicated vector and possibly matrix units.

On a final personal note, my fellow designers and I hope that this first open
processor experiment carried out at Politecnico di Torino will be able to become
a relevant project within our university, with future students improving this basic
design and exploring future applications and developments.
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