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Summary

Quantum Computing is a new and mostly unexplored research field that promises
to revolutionize the way of computing information for those problems that still need
a lot of time and resources for classical computers to resolve them. An example
of such problems is Genome Sequencing and Alignment, in which genomes are
sequenced by means of sequencers machines, obtaining short reads that are then
assembled together to obtain the whole genome. In particular, Grover’s algorithm is
a quantum search algorithm that could find application in the context of sequence
alignment. In this thesis we analyzed the most important and recent Quantum
Pattern Matching algorithms developed for Genome Sequencing, all based on the
fundamental Grover’s algorithm, implementing them in Python 3 by means of the
Qiskit library (developed by IBM and giving free access to the IBM Quantum
Computing cloud platform). So, we did some testing on the algorithms and did some
final considerations about them and on the current and future status of Quantum
Computing.
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Chapter 1

Introduction

1.1 Scope of the thesis

In this thesis we will talk about the basic concepts of Quantum Computing and its
application to a specific field, that is Genome Sequencing. Quantum Computing is
a new and potentially revolutionary way of computing information, that finds its
strongest advantage in the concept of Quantum Parallelism. Thanks to the peculiar
characteristics offered by Quantum Computing, a wide variety of problems requiring
a lot of time to be resolved (even to the point of becoming practically unapproach-
able with classical computation) becomes approachable. Genome Sequencing is one
of the fields that could benefit a lot from the application of Quantum Computing:
it requires the computation of a very big amount of data coming from genomes
belonging to a wide variety of living beings, so it’s an important and interesting
field for Quantum Computing application (for medical and biological reasons).

In order to talk in more depth about Quantum Computing applied to Genome
Sequencing, we examined some Quantum Pattern Matching algorithms, choosing
the most recent and, in our opinion, promising ones; we implemented these algo-
rithms using the Qiskit library in Python 3, developed by IBM for free access to
the IBM Quantum Experience cloud platform and giving us the chance for testing
these algorithms and doing some considerations about the obtained results. In the
end, some final considerations about the current and future status of Quantum
Computing field will be given.
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1 – Introduction

1.2 Organisation of the thesis

The thesis is organised in chapters as follows:

• in Chapter 2 we will talk about the idea of Quantum Compunting and the
companies involved in this mostly unexplored research field; after that, we
will give some basic concepts about Quantum Computing;

• in Chapter 3 we will talk about the problem of Genome Sequencing, giving
an historical perspective and mentioning the most famous classical algorithms
for pattern matching used in the Genome Sequencing and Alignment field;

• in Chapter 4 we will introduce the chosen Quantum Pattern Matching al-
gorithms for implementation and testing, giving some mathematical insights
about them;

• in Chapter 5 we will introduce the obtained results, doing also an important
consideration about noise in Quantum Computing;

• in Chapter 6 we will give some final considerations about the future of Quan-
tum Computing.
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Chapter 2

Why Quantum Computing?

2.1 A new way of computing information

“Nature isn’t classical, dammit, and if you want to make a simulation
of nature, you’d better make it quantum mechanical, and by golly it’s a
wonderful problem, because it doesn’t look so easy.”

With these words, pronounced in 1981 during a conference co-organized by MIT
and IBM [1], Richard Feynman encouraged the scientific community to exploit the
peculiar characteristics of quantum mechanics in order to give birth to a new way
of computing information. Today’s computing platforms are called classical com-
puters, to distinguish them from quantum computers. The interest towards this
unexplored branch of computer science is big and is growing: why is Quantum
Computing so fascinating? To answer this question, we need to briefly give some
examples of the potentially disruptive performance of a quantum computer, com-
paring it to a classical computer. We will also talk about the reasons not to be
over-hyped about Quantum Computing: important physical obstacles are yet to be
overcame if we want to build powerful quantum computers with a big number of
qubits and capable of doing error correction. After that, we will introduce some
basic concepts of Quantum Computing.
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2 – Why Quantum Computing?

2.1.1 Shor’s algorithm

Shor’s algorithm is maybe the best example to give an idea of the potential of
Quantum Computing. This algorithm is used to find the prime factorization of a
number: given a number, it can find efficiently two prime integers which, when
multiplied, give the original number. It’s important to remark that many modern
cryptography systems (like RSA) rely on the fact that, while computing the product
of two very large prime numbers is quick, figuring out which very large prime
numbers multiplied together yield to a certain product is time consuming: RSA
picks prime numbers so large that it would take more than a quadrillion years on
a classical computer to discover them. On the other hand, Shor’s algorithm can
run on a quantum computer in polynomial time, with O(d3) complexity (where d

is the number of decimal digits of the integer to factor), against the O(exp(d
1
3 )) of

the best-known classical algorithm [2].

2.1.2 Grover’s algorithm

Grover’s algorithm is an example of quantum algorithm used for unstructured
searching of data. Suppose you have a list of N items: between these items, there
is one that has a unique property and that we wish to locate. To find this item
with classical computation, one would have to check an average of N/2 items, or N
items in the worst case. On the other hand, with Grover’s algorithm running on a
quantum computer, we can find the desired item in

√
N steps: this is a quadratic

speed-up that captures our interest. This algorithm will be discussed in more depth
in later chapters of this thesis [2].

2.1.3 Deutsch-Jozsa algorithm

This algorithm is an example of how Quantum Parallelism can be exploited to re-
solve a problem better than a classical computer. It resolves the following problem:
suppose we are given a function f : {0, ..., 2n − 1} → {0,1}, which takes as input a
number x from 0 to 2n−1 and outputs 0 or 1. The function itself could be constant
for all values of x or balanced, i.e. equal to 1 for exactly half of all the possible x
and 0 for the other half. Our goal is to discover the nature of the function itself,
i.e. if it is constant or balanced. A quantum computer can solve this problem with
one evaluation of the function f , compared to the classical counterpart that needs
2n/2 + 1 evaluations [3].

10



2 – Why Quantum Computing?

2.1.4 Obstacles that separates us from quantum supremacy

Quantum supremacy is when a Quantum Computing algorithm offers better per-
formance compared to the best possible algorithm on a classical computer, and
the speed-up offered by the quantum algorithm is demonstrated on a real quantum
computer. Attempts were made to demonstrate quantum supremacy: it’s worth to
mention the contribution that came from Google, that published a research paper
in 2019 in which the efficiency of a quantum computer with 53 qubits in execut-
ing a task that on a classical computer would take approximately 10000 years is
demonstrated [4][5]; a few weeks after Google’s research was published, IBM had
some criticism to do about it, saying that “an ideal simulation of the same task
can be performed on a classical system in 2.5 days and with far greater fidelity”
[6]. However, some problems are yet to be resolved: to be able to demonstrate
quantum supremacy, we need better hardware. When talking about real quantum
computers, we need two distinguish them in two categories:

• Universal gate quantum computers : they can be used for general purpose
computation; an example is the IBM Quantum Experience platform, acces-
sible via cloud, that offers up to 14 qubits for free; it’s worth to notice that
the most powerful quantum computer by IBM offers 53 qubits, but it’s not
freely accessible at the time of writing this thesis; Google also is involved in
this field and has built a quantum computer with 72 qubits;

• Quantum Annealing : it’s a metaheuristic for finding the global minimum of
a given objective function over a given set of candidate solutions by a process
using quantum fluctuations; Quantum Annealing is used mainly for problems
where the search space is discrete (combinatorial optimization problems) with
many local minima [7]; quantum annealers like those built by D-Wave offer a
larger number of qubits (even 5000 qubits), but they are optimized for special
tasks (they are an example of Special Purpose Quantum Computing).

Many ways are exploited in order to realize a qubit. For example, D-Wave uses
superconducting qubits (also called SQUID, Superconducting QUantum Interfer-
ence Device): a superconducting qubit is organized as a structure that encodes two
states as tiny magnetic fields, which either point up or down [8]. Another way to
physically realize qubits is with optical techniques, that is electromagnetic radia-
tion: simple devices like mirrors and beam splitters can be used to do elementary
manipulations of photons, but a major difficulty is encountered when we want to
produce single photons on demand. A way to produce photons “every now and
then” at random moments was found by scientists and waiting for such an event
to happen is necessary. Alternative techniques were developed, like schemes based
upon methods for trapping different types of atoms or based upon Nuclear Magnetic
Resonance. As we can see, we need to develop and optimize physical techniques to
realize qubits.

A first achievement that we desire to reach is to have more stable qubits in
order to exploit the possibility of a qubit to be in entanglement with other qubits.
We want the power to choose which qubits are involved in an entanglement and
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2 – Why Quantum Computing?

which are not, but it’s necessary to isolate our computation from outside influences.
Entanglement is a property we will talk about in more depth in the next paragraph;
here we will talk about coherence as a measure of how well a quantum system is
isolated and the problem of decoherence. Coherence is a property of waves: if
two waves are coherent with each other, they can in some senses “work together”.
Coherence can be any correlation between the physical quantities of a wave, or a
group of waves, and this correlation proves that they are “working together”. This is
important in Quantum Computing as quantum mechanics helps us understand that
the physical nature of a qubit can also be represented by a wave, and so, if we want
different qubits to “work together”, they will need to be coherent; coherent waves
have the same frequency and a constant phase difference. Unfortunately, there is
a problem: if we start out with coherent qubits in a real quantum computer, they
will not remain coherent forever. Qubits interact with the environment and this
process causes the correlations they had due to coherence (which we could need to
represent the results of our computation) to be lost, so the information from our
computation degrades or is lost. This loss of information due to noise from the
environment is also called decoherence [2].

Also, we need to address the noise problem: the theory of quantum error-
correcting codes suggests that quantum noise is a practical problem that needs to
be resolved. On the other hand, quantum noise is not a fundamental problem of
principle: in particular, there is a threshold theorem for quantum computation that,
roughly speaking, states that provided the level of noise in a quantum computer can
be reduced below a certain constant “threshold” value, quantum error-correcting
codes can be used to push it down even further, in exchange of a small overhead
in the complexity of computation. This theorem makes some broad assumptions
about the nature and magnitude of the noise occurring in a quantum computer and
the architecture available for performing quantum computation but, provided those
assumptions are satisfied, the effects of noise can be made essentially negligible for
quantum information processing [3].

As we can see, Quantum Computing represents an exciting and mostly unex-
plored field of research, although we need not to be over-hyped: we have reasons
to be optimistic about Quantum Computing, but important problems need to be
addressed.

2.2 Quantum Computing: basic concepts

Now the basic concepts of Quantum Computing will be introduced: we will start
from the concept of qubit, then we will be able to talk about superposition and
measurement of qubits, the Bloch Sphere representation, quantum gates, quantum
circuits, quantum states and entanglement.

12



2 – Why Quantum Computing?

2.2.1 Qubits and quantum states

The qubit is the quantum equivalent of a classic bit. A classic bit is a binary piece
of information that can assume two possible values: 0 or 1. On the other hand, a
qubit can be expressed as follows:

|ψ〉 = α|0〉+ β|1〉 (2.1)

We can see that Dirac notation is used to mathematically express the qubit:
this notation is a common notation for quantum states, i.e. vectors in a complex
Hilbert space [9]. A Hilbert space is a complex inner product space that is also a
complete metric space with respect to the distance function induced by the inner
product [10]. Dirac notation is also known as bra-ket notation. An example of
complete bra-ket notation is the following:

〈φ|ψ〉 (2.2)

|ψ〉 represents the ket part of the notation and denotes a vector in an abstract
(usually complex) vector space V , while 〈φ| represents the bra part of the notation
and denotes a co-vector in the dual vector space V ν . A complete bra-ket notation
denotes an inner product. To denote a quantum state, only the ket part of the
notation is used. For example, to represent the classical values of 0 and 1 in a
quantum state, we can write the following:

|0〉 =

(
1
0

)
(2.3)

|1〉 =

(
0
1

)
(2.4)

The elements inside the column vector represent the amplitudes of the quantum
state. The number of amplitudes inside a vector that represents a quantum state
are 2n, where n is the number of qubits representing the quantum state. In a more
general form, we can write the following for a single qubit:

|ψ〉 =

(
α
β

)
= α|0〉+ β|1〉 (2.5)

The coefficients α and β are the amplitudes, and their squared values represent
the probability of obtain 0 or 1 when we measure the qubit. It’s important to
understand that the qubit assumes a value only when we decide to measure it:
until then, it exists in a superposition of different states. This is the first important
difference from a classic bit, that can be only 0 or 1. As already seen, we can express
classic bits as qubits: |1〉 represents the classic 1 bit, with 100% probability of
measuring 1, and |0〉 represents the classic 0 bit, with 100% probability of measuring
0. In Equation 2.5, |0〉 and |1〉 represent the computational basis states, and the sum
of the squared absolute values of the amplitudes is equal to one: |α|2+|β|2 = 1. One

13



2 – Why Quantum Computing?

or more qubits form a quantum state, that can be represented as a column vector
containing all the amplitudes associated with each computational basis state (as
already seen). We can illustrate another example with a quantum state composed
by two qubits:

|ψ〉 =


α
β
γ
δ

 = α|00〉+ β|01〉+ γ|10〉+ δ|11〉 (2.6)

A qubit that lives in a perfect superposition between |0〉 and |1〉 states can be
expressed as follows:

1√
2
|0〉+

1√
2
|1〉 (2.7)

In this situation, the probability of measuring 0 or 1 are identical (50% for
both). The best way to visualize graphically a qubit is the Bloch Sphere (Figure
2.1).

Figure 2.1. Bloch Sphere [3].

With the Bloch Sphere we can see the position of a single qubit, but it cannot
be used in case of multi-qubit states. It is still useful to understand the nature
of a qubit and the effects that quantum gates have on it. As already said, the
states |1〉 and |0〉 are the quantum representation of the classic 1 and 0 and they
are positioned on the z axis of the sphere (that has a radius equal to 1), but there

14



2 – Why Quantum Computing?

are other important basis states that need explanation, like the |+〉 and |−〉 states,
that can be mathematically expressed as follows:

|+〉 =
|0〉+ |1〉√

2
(2.8)

|−〉 =
|0〉 − |1〉√

2
(2.9)

These states are positioned on opposite sides of the x axis of the sphere and they
represent the perfect superposition between |0〉 and |1〉. The last two computational
basis that is useful to explain are the | �〉 and | 	〉 basis state. They can be
expressed as follows (i represents the imaginary unit):

| �〉 =
|0〉+ i|1〉√

2
(2.10)

| 	〉 =
|0〉 − i|1〉√

2
(2.11)

These states are positioned on opposite sides of the y axis of the sphere. It’s
worth to mention a set of interesting quantum states that are responsible for some
interesting consequences in Quantum Computing. These states are called Bell
states, or EPR states, or EPR pairs : they can be expressed as follows:

|β00〉 =
|00〉+ |11〉√

2
(2.12)

|β01〉 =
|01〉+ |10〉√

2
(2.13)

|β10〉 =
|00〉 − |11〉√

2
(2.14)

|β11〉 =
|01〉 − |10〉√

2
(2.15)

Let’s take as example |β00〉 to show an interesting phenomenon: upon measuring
the first qubit, one obtains two possible results, i.e. 0 with probability 50%, leaving
the post-measurement state |ϕ′〉 = |00〉, and 1 with probability 50%, leaving |ϕ′〉 =
|11〉. As a result, a measurement of the second qubit always gives the same result
as the measurement of the first qubit. That is, the measurement outcomes are
correlated. Indeed, it turns out that other types of measurements can be performed
on the Bell states, by first applying some operations to the first or second qubit,
and that interesting correlations still exist between the result of a measurement
on the first and second qubit. These correlations have been the subject of intense
interest ever since a famous paper by Einstein, Podolsky and Rosen, in which they
first pointed out the strange properties of states like the Bell states. EPR’s insights
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2 – Why Quantum Computing?

were taken up and greatly improved by John Bell, who proved an amazing result:
the measurement correlations in the Bell states are stronger than could ever exist
between classical systems. These results were the first intimation that quantum
mechanics allows information processing beyond what is possible in the classical
world and are an emblematic example of the entanglement phenomenon [3].

Now, suppose we are interested in a composite quantum state made up of two
(or more) distinct states. To know how we should describe the composite state, we
can rely on the following postulate that describes how the state space of a composite
system is built up from the state spaces of the component systems.

“The state space of a composite physical system is the tensor product
of the state spaces of the component physical systems. Moreover, if we
have systems numbered 1 through n, and system number i is prepared in
the state |ψi〉, then the joint state of the total system is |ψ1〉 ⊗ |ψ2〉 ⊗
. . .⊗ |ψn〉.”

The tensor product is a way of putting vector spaces together to form larger vector
spaces. Suppose V and W are vector spaces of dimension m and n respectively. We
also suppose that V and W are Hilbert spaces. Then V ⊗W is an mn dimensional
vector space. The elements of V ⊗W are linear combinations of tensor products
|v〉 ⊗ |w〉 of elements |v〉 of V and |w〉 of W [3]. For example, we can compute the
tensor product of two generic quantum states as follows:

|ψ〉 =

(
α
β

)
= α|0〉+ β|1〉 (2.16)

|φ〉 =

(
γ
δ

)
= γ|0〉+ δ|1〉 (2.17)

|ψ〉⊗|φ〉 =

(
α
β

)
⊗
(
γ
δ

)
=

α
(
γ
δ

)
β

(
γ
δ

)
 =


αγ
αδ
βγ
βδ

 = αγ|00〉+αδ|01〉+βγ|10〉+βδ|11〉

(2.18)

Another example is given by computing the tensor product of states |0〉 and |1〉:

|0〉 ⊗ |1〉 =

(
1
0

)
⊗
(

0
1

)
=

1

(
0
1

)
0

(
0
1

)
 =


0
1
0
0

 = |01〉 (2.19)

There are infinite points on the Bloch sphere, so paradoxically we could store
the entire text of The Divine Comedy into a single qubit, but this is a misleading
statement because of the behaviour of a qubit when it is measured: when observed,
it collapses to 0 or 1. Nobody knows the reason why this happens and this behaviour
is simply one of the fundamental postulates of quantum mechanics, but we can still
manipulate qubits in order to exploit qubits for computation. We can do this with
quantum gates [3].
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2 – Why Quantum Computing?

2.2.2 Quantum gates and quantum circuits

As in classic computing, also in Quantum Computing we can use a variety of
quantum gates to manipulate qubits. Since a quantum state can be represented
as a vector, these gates can be represented as matrices and we can mathematically
visualize the effects of these gates with the product between the matrix and the
column vector representing the quantum state. We can start from single qubit gates
and describe their effects using the Bloch Sphere as reference.

The Hadamard gate (H gate) rotates the initial qubit by 180 degrees around the
x axis and then 90 degrees around the y axis. An example of applying Hadamard
gate is given by the following relations:

H|0〉 = |+〉 (2.20)

H|1〉 = |−〉 (2.21)

The Pauli gates are the X, Y and Z gates and they rotate the qubit they act
on by 180 degrees. The rotation of the X gate is around the x axis, the rotation
of the Y gate is around the y axis and the rotation of the Z gate is around the z
axis. It’s worth considering that the X gate is the quantum analogue of the classic
NOT gate, and you can see it when applying this gate on |1〉 or |0〉:

X|1〉 = |0〉 (2.22)

X|0〉 = |1〉 (2.23)

The Phase gate (S gate) and the π/8 gate (T gate) rotate the qubit around the
z axis about 90 degrees and 45 degrees respectively (why the π/8 gate isn’t simply
called π/4 gate it’s for historical reasons). There are also the “dagger” gates S†

and T † that rotate the qubit around the z axis by the same amount of degrees of
S and T gates, but in the opposite direction.

The gates mentioned so far are single qubit gates. There are also multi-qubit
gates that take more than one qubit as input. An important multi-qubit gate is the
Controlled NOT gate (also known as CNOT ): it takes two qubits as input, with
one that is called control and the other target. When the control qubit is equal to
|1〉, the target is subjected to a X gate. It is represented by the symbols in Figure
2.2.

The upper wire represents the control qubit, while the lower wire represents the
target qubit. The CNOT is also called Quantum XOR, since the target can be
viewed as the result of a XOR between control and target. This is an important
gate, since is the building block for other gates: an example is the SWAP gate,
that realizes the swapping between two qubits and is composed by three CNOT
gates as illustrated in Figure 2.3.
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2 – Why Quantum Computing?

Figure 2.2. Controlled NOT gate [3].

Figure 2.3. SWAP gate [3].

Another important multi-qubit gate that it’s worth to mention is the Toffoli
gate (also known as Quantum AND), that is a CNOT with two control qubits
instead of only one. It is represented as illustrated in Figure 2.4.

There are other single-qubit and multi-qubit gates that we can summarize in
Tables 2.1 and 2.2, together with the gates we have talked about so far: they contain
their name, unitary matrix and circuit symbol. A square matrix U is unitary when
the following relation is respected [11]:

UU † = I (2.24)

It means that the matrix product between the square matrix U and its transpose
and complex conjugate U † is equal to the identity matrix I. Tables 2.1 and 2.2 also
contain some equations representing the existing relations between some of these
gates.

These quantum gates are the building blocks for quantum circuits as classic
gates are for classic logic circuits. An important characteristic of quantum gates
(and of quantum computation) is that their effects are reversible: while classic
gates are mostly irreversible (from the output of a AND gate we cannot recover
the original inputs), with quantum gates we can reverse the computation. Applying
the H gate to |0〉 gives us the |+〉 state and applying again the same gate gives
us back the |0〉 state. This feature can be easily verified also with other quantum
gates. Every quantum gate can be represented by a matrix that has the property
to be unitary. For a generic single qubit gate U is possible to demonstrate that
there exist real numbers α, β, γ and δ such that is possible to write the following
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Figure 2.4. Toffoli gate [3].

(R gates are the Rotation gates, as shown in Table 2.1):

U = eiαRz(β)Ry(γ)Rz(δ) (2.25)

In classical computing, a small set of gates (AND, OR, NOT ) can be used to
compute an arbitrary classical function, so we can refer to it as a universal set of
gates for classical computation. As in classical computing, in Quantum Computing
we can obtain a similar universality result for a set of quantum gates: we say that a
set of quantum gates is universal for quantum computation if any unitary operation
may be approximated to arbitrary accuracy by a quantum circuit involving only
those gates. It’s possible to demonstrate that H, CNOT , S and T gates form a
universal set for quantum computation [3].

2.3 Real quantum computers and quantum

simulators

Many companies are working on improving the technologies involved in the building
of a real quantum computer. IBM has built a universal quantum computer with
a 53 qubits capability. Another company is D-Wave, that builds special purpose
quantum computers and has announced Advantage, a quantum computer with 5000
qubits. These computers have the size of a mainframe and they need to be kept
in special conditions, like low temperatures. Although these companies are used to
announce every little step towards a better Quantum Computing, the technologies
are still young and need refinement. In this situation, quantum simulators are useful
tools to simulate the behaviour of a quantum algorithm on a classic computer in
order to have an idea of how the execution on a real quantum computer could
be. It’s worth to warn the reader that the term “quantum simulator” has two
meanings: the first denotes a quantum machine that permits the study of quantum
systems that are difficult to study in the laboratory and impossible to model with
a supercomputer (so, they are special purpose devices designed to provide insight
about specific physics problems); the second denotes a software running on a classic
computer for simulating the behaviour of a quantum computer. In this thesis, when
we refer to quantum simulators, we mean a software for Quantum Computing
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Name Unitary Circuit Relations

Identity I =

(
1 0
0 1

)

Hadamard H = 1√
2

(
1 1
1 −1

)

Pauli-X X =

(
0 1
1 0

)
X = iZY = HZH

Pauli-Y Y =

(
0 −i
i 0

)
Y = iZH

Pauli-Z Z =

(
1 0
0 −1

)
Z = iY H = HXH

Rotation-X Rx(θ) =

(
cos θ

2
−i sin θ

2

−i sin θ
2

cos θ
2

)

Rotation-Y Ry(θ) =

(
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

)
Rotation-Z Rz(θ) =

(
e−i

θ
2 0

0 ei
θ
2

)

T T =

(
1 0
0 ei

π
4

)
T † T † =

(
1 0
0 e−i

π
4

)
TT † = I

S S =

(
1 0
0 i

)
S = T 2

S† S† =

(
1 0
0 −i

)
SS† = I

Table 2.1. Common single-qubit gates.

simulation. Now we will talk more extensively about the technologies involved in
real Quantum Computing and we will also talk about quantum simulators.
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Name Unitary Circuit Relations

SWAP SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 SWAP = CX01CX10CX01

Controlled-NOT CX =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


CX01 =

H0H1CX10H1H0X1CX01 =
CX01X1Z0Z1CX01 =

CX01Z0

Controlled-Phase CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 CZ = H1CX01H1

Toffoli CCX =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


CCX012 =

H2CX12T
†
2CX02T2CX12T

†
2CX02T2T

†
1

H2CX01T
†
1CX01S1T0

Controlled-SWAP CSWAP =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1


Table 2.2. Common multi-qubit gates.

2.3.1 Technologies for real quantum computers

Ion trap qubits

Ion trap qubits technology uses radio-frequencies to confine ions. The ionic qubit
corresponds to the two lowest electronic energy levels of an ion. Quantum gates are
realized manipulating the ions with laser beams. A quantum algorithm starts with
ions at grounded state, then single and two qubits gates are executed and finally the
algorithm finishes with readout. During readout, the ion is hit with optical pulses:
in this way, |0〉 state corresponds to a state that does not glow, while the |1〉 state
becomes excited and corresponds to a state that does glow. A glowing ion is read
as 1, while not glowing ion is read as 0. Ion trap qubits is the most remarkable
technology for Quantum Computing: preparation and readout both can be done
with fidelities of better than 0.999 where a fidelity of 1 signifies perfection [12].

Superconducting qubits

The idea behind Superconducting qubits technology is to create a network of con-
nected artificial atoms, where each of them is realized as a nonlinear inductor-
capacitor circuit. A superconductor enables an electric current in a circuit loop to
circulate without resistance. A clockwise supercurrent generates a downward mag-
netic flux, while a counter clockwise supercurrent generates an upward magnetic
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flux: superposing clockwise and counter clockwise supercurrents creates a superpo-
sition of up and down magnetic fields. This technology is used by both IBM and
D-Wave for their quantum computers [12].

Photonic qubits

Photons can act as qubits and we can use various ways to represent two logical
states (e.g., presence or absence of the photon, polarization state of the photon,
which path the photon is travelling, time of arrival of the photon). A way to prepare
photonic qubits is Spontaneous parametric down conversion, in which a correlated
pair of photons is produced simultaneously, but at random time (this means that
when and where the photons are must be treated as being indeterminate). This
indeterminacy determines errors in quantum computation that need fixing. This
technology still needs a lot of refinement to be practical in Quantum Computing,
but fortunately some improvements have been developed in the optical Quantum
Computing field, with some small companies that are working in this segment (e.g.
Sparrow Quantum, Fathom Computing, Single Quantum, Quantum Opus [13]) [12].

Topological qubits

Particles can be bosons or fermions. Fundamental matter (e.g., electrons, quarks)
are fermions, while bosons are responsible for fundamental quantum fields (e.g.,
electromagnetism, nuclear forces). In two-dimensional space, a third type of par-
ticle can exist that is called anyon, that is a generalization of fermion and boson
concepts. In a topological quantum computer, qubits are constructed from anyons.
A big actor that is investing in this direction for Quantum Computing is Microsoft.
Building a quantum computer with this technology requires semiconductor and
superconductor components plus a magnetic field to produce a topological super-
conductor. Developing this technology still needs a big effort, which is compensated
by the fact that topological Quantum Computing is expected to be especially robust
against errors [12].

2.3.2 Quantum simulators

Though real quantum computers still need improvements in the technologies used to
build them, we have seen that many big actors are researching in this field and they
have been able to build interesting quantum computers that gave us the chance to
experiment with running quantum algorithms on them and to carry on the research:
we already mentioned IBM and Google with their state-of-the-art real quantum
computers with 53 and 72 qubits respectively. Also, it’s possible for any user to
start experimenting with quantum computers via cloud for free: for example, IBM
offers its Quantum Experience platform with freely accessible quantum computers
up to 14 qubits and a quantum simulator up to 32 qubits. Speaking of quantum
simulators, though we can experiment with real quantum computers, they still
play an important role in testing quantum algorithms: we have to consider the
fact that is not possible to access to certain data useful for testing purposes (like
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the vector state of a quantum state) on a real quantum computer (any kind of
measurement on qubits would cause collapsing). Another problem is that we would
like to test a quantum algorithm that needs a number of qubits still unreachable
for real hardware machines. Quantum simulators can simulate quantum states and
quantum gates on a classical computer: realizing them could seem an easy task,
since we can easily model interactions between quantum states and quantum gates
in a mathematical way with vector and matrices, but it isn’t if we take into account
testing needs like observing the vector state or even simulate the noise, that in a
real quantum computer would be present. It’s important to remark that running
quantum algorithms on simulators allow us to test them from an accuracy point of
view: an evaluation from an execution time point of view would be possible only
considering real quantum computers [14].

2.3.3 Quantum Assembly

Quantum assembly is the low-level language used by machines and simulators to
apply quantum gates on qubits. Every actor working on the Quantum Computing
field has its own version of quantum assembly. A common Quantum Assembly
was proposed (cQASM [15]) to set a standard between quantum computers, so
that every quantum computer could translate this intermediate QASM into its
own executable QASM version (it is important to remark that it is just a proposal,
not a totally accepted standard). An example of QASM language could be the
following code, written in OpenQASM (IBM version of QASM).

OPENQASM 2.0;

include "qelib1.inc";

qreg q[12];

creg c[12];

h q[2];

cx q[1],q[2];

tdg q[2];

cx q[0],q[2];

t q[2];

cx q[1],q[2];

tdg q[2];

cx q[0],q[2];

t q[1];

t q[2];

cx q[0],q[1];

h q[2];

t q[0];

tdg q[1];

cx q[0],q[1];
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measure q[0] -> c[0];

measure q[1] -> c[1];

measure q[2] -> c[2];

This is an example of OpenQASM language that realizes a Toffoli (Quantum
AND) gate and then measures the first three qubits. First, a new quantum register
and classical register are declared, using quantum and classical bits respectively;
after that, a series of gates is applied to the first three qubits to realize the Toffoli
gate (that is not directly implemented in OpenQASM, but it is possible to decom-
pose it with these gates and realize it anyway); finally, the first three qubits are
measured and the result stored in the first three bits of the previously declared
classical register. The corresponding circuit is the following.

Figure 2.5. Toffoli gate decomposed.

2.4 Tools used

Nowadays it is possible to access to real quantum computers and quantum sim-
ulators developed by the companies that decided to give access to them as cloud
services [16]. Between these companies, we can find:

• Forest by Rigetti Computing;

• LIQUi| > by Microsoft (and its successor Q#);

• IBM Q Experience by IBM;

• Quantum in the Cloud by University of Bristol;

• Quantum Playground by Google;

• Quantum in the Cloud by Tsinghua University;

• Quantum Inspire by QuTech.

In this thesis, we decided to work with the IBM platform for cloud Quantum
Computing. The reasons for this choice are to be found in the variety of tools that
IBM give access to:
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• We can use a simple circuit composer online with a quantum register of 5
qubits (it is also possible to construct the desired circuit directly in Open-
QASM and the online tool will draw the corresponding circuit);

• We can have access to real quantum computers up to 14 qubits and also to
the IBM QASM simulator running on IBM servers;

• Using Qiskit (a library for Quantum Computing by IBM) we can write our
programs in Python 3 and have access to the IBM Quantum Experience plat-
form by simply using an access token, which will be given after creating an
account on IBM website;

• It is also possible to use a local quantum simulator running on your local
machine;

• Qiskit is an easy-to-use library that can count on good support by its devel-
opers and receives many updates (its documentation is also very good);

• Thanks to Qiskit, is easy to plot histograms of the results obtained by the
execution of quantum algorithms and to draw the desired quantum circuit
(using matplotlib, another Python library);

• It is possible to add a noise model when using quantum simulators, obtaining
results that are closer to reality;

Together with Qiskit and the cloud Quantum Computing platform by IBM,
Jupyter Notebook [17] was used as IDE to write our code from an Internet browser
and run it; it was installed (together with Qiskit) using Anaconda [18] to create a
new virtual environment where it was possible to install it.
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Chapter 3

An overview of Genome
Sequencing

3.1 An introduction to the problem

In this chapter we will talk about the problem of Genome Sequencing and some of
the classical methods used to approach it; before talking about it, a few theoretical
hints about DNA will be given in order to give a better understanding of the
context.

3.2 DNA Structure

Figure 3.1. DNA Structure [19].

DNA stands for Deoxyribonucleic Acid and is a molecule with a double helix
structure (as depicted Figure 3.1); it is made up by nucleotides, which are formed
by three components: sugar, phosphate groups, and nitrogen bases. Sugar and
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phosphate groups link the nucleotides together to form DNA strands, while Adenine
(A), Thymine (T ), Guanine (G) and Cytosine (C ) are the four types of nitrogen
bases. Inside the DNA structure the nitrogen bases are paired as follows: Adenine
with Thymine (A-T ) and Cytosine with Guanine (C -G). As we can see in Figure
3.1, these pairs link the two strands together. The order of the nitrogen bases
encodes the genetic information inside DNA. Two important rules about DNA
were discovered by Erwin Chargaff [20]; they are known as Parity Rules :

1. A double-stranded DNA molecule globally has percentage base pair equality:
%A = %T and %G = %C;

2. Both %A = %T and %G = %C are valid for each of the two DNA strands:
this describes a global feature of the base composition in a single DNA strand.

As already said, DNA is responsible for transmitting the genetic information and
it coils up to form a chromosome. Chromosomes are contained inside the nucleus.
The necessary number of chromosomes to carry all the genetic information may vary
with the considered species: e.g., for human beings 46 chromosomes are needed.

Figure 3.2. From DNA to cell [19].

3.3 Genome Sequencing

Genome sequencing is the process of determining the sequence of nucleotide bases
(A, T, C, G) in a piece of DNA [21]. Sequencing an entire genome is not an
easy task: human genome was completely sequenced only in 2003 with great in-
ternational effort, ending a research project that started in 1990 (Human Genome
Project [22]). Why would we want to sequence DNA? A reason could be a bet-
ter treatment of human health: nowadays, researchers can compare long strings
of DNA (even more than one million bases) from various individuals; with these
comparisons, we could know an incredible amount of information about the role of
inheritance in susceptibility to disease and in response to environmental influences
[23]. Also, the ability to do these comparisons in the fastest, most accurate and
cheapest way possible can give us more potential to diagnose diseases and propose
therapies. Another field of application for genome sequencing is biology: we can
use sequencing techniques in order to compare the genomes of different types of
animals and organisms.
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3.3.1 Sequencing methods: an historical perspective

DNA was first discovered by J. Watson and F. Crick in 1953, but at that time we
weren’t able to do sequencing on it: there were some strategies to infer the sequence
of protein chains but they seemed not to apply well to DNA molecule, that is much
longer and made of fewer units that were more similar to one another (which means
that distinguish between them is harder). New strategies were needed to approach
to the new problem. First attempts of sequencing were done on RNA (that is the
acronym for Ribonucleic acid : like DNA, it is assembled as a chain of nucleotides,
but unlike DNA it is more often found in nature as a single-strand folded onto
itself, rather than a paired double-strand [25]), but the progress was slow: re-
searchers were applying techniques used in analytical chemistry that could give the
nucleotide composition, not the order. In 1965 Robert Holley, together with his
colleagues, combined the above-mentioned techniques with selective ribonuclease
treatments to obtain the first RNA fragments. At that time, also other researchers
were working on the problem: Fred Sanger (together with its colleagues) developed
a technique that was based on the detection of radiolabelled partial-digestion frag-
ments after two-dimensional fractionation; it was with this technique that Walter
Fiers obtained the first complete protein-coding gene sequence in 1972. From that
moment, improvements followed and in 1975 Alan Coulson and Fred Sanger se-
quenced the first DNA genome using their “plus and minus” technique. However,
also other two researchers, Allan Maxam and Walter Gilbert, were developing a
new technique, called “chemical cleavage” technique, that was different from the
“plus and minus” technique: it used chemicals to break the DNA chain at specific
bases, instead of relying on DNA polymerase. Maxam and Gilbert’s technique was
the first to know large diffusion: this moment marked the birth of the so-called
“first generation” genome sequencing.

Two years later, in 1977, an important improvement in the field came from the
development of Sanger’s “chain-termination” technique (or “dideoxy technique”): it
had the advantages of being accurate, robust and easy to use, which determined its
widespread diffusion and it was further improved in the following years. With these
improvements, it was possible to develop and build the first genome sequencing
machines, that could produce reads slightly less than one kilobase (kb) in length:
this meant that researchers had to use auxiliary techniques together with these
machines in order to analyse longer fragments.

In the following years, another technique was developed that became important
for the birth of the second generation of DNA sequencers: it used a recently discov-
ered luminescent method for measuring pyrophosphate synthesis. It was developed
by Pal Nyren and colleagues and it had the advantages of being performed using
natural nucleotides and observed in real time. This new technique was later licensed
to 454 Life Sciences (a biotechnology company founded by Jonathan Rothberg),
that translated it into the first major successful commercial “Next Generation Se-
quencing” (NGS ) technology. The sequencing machines produced by 454 had the
main feature of greatly increasing the amount of DNA that could be sequenced in
one run; they could produce reads around 400-500 base pairs (bp) long. The great
sequencing power of these machines was the main reason behind the increased se-
quencing efforts that caused the completion of a single human’s genome sequencing,
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in a faster and cheaper way than previous sequencing methods.

After the success of 454 machines, other sequencing techniques were developed
but it’s worth to mention the contribution of Solexa (later acquired by Illumina)
with its Genome Analyzer (GA) machines: they initially were able only of produc-
ing very short reads (up to 35 bp long) but also able to produce paired-end data
(meaning that the sequence at both ends of each DNA cluster is recorded). This
allowed to have better accuracy when mapping reads to reference sequences. After
the standard Genome Analyzer version, HiSeq machine was developed, which had
even bigger read length and depth. After HiSeq, MiSeq came, which had a lower
throughput (but it was also cheaper) and longer read length.

Many actors appeared and disappeared on second generation genome sequenc-
ing machines market, in which the two major players were 454 and Solexa/Illu-
mina. Together with these two companies, the third major role was played by Ap-
plied Biosystems (later known as Life Technologies after a merge with Invitrogen),
that developed a sequencing technique by oligonucleotide ligation and detection
(SOLiD); this technique wasn’t able to produce the same read length and depth
of Illumina machines, but had a better cost per base. The last technology of sec-
ond generation that deserved attention was developed by Jonathan Rothberg after
leaving 454: Ion Torrent was the first “post-light sequencing” technology, as it uses
neither fluorescence nor luminescence.

All these improvements in the technologies and techniques used in genome se-
quencing allowed to change its cost and ease: the growth of power and capabilities
of DNA sequencers had a very fast rate. Illumina machines were the most successful
and gave the biggest contribution to second generation DNA sequencers.

Looking into the next generation genome sequencing, it’s worth to mention
the “single molecule” technology (SMS ) developed at Stephen Quake’s lab and
commercially exploited by Helicos BioSciences. Helicos went into bankruptcy in
2012 but other companies continued to work on the next generation sequencers. A
very diffused technology is the “single molecule real time” (SMRT ) from Pacific
Biosciences, available on PacBio machines) [24].

3.3.2 From Sequencing to Reconstruction

The sequencing process, executed through the sequencers we talked about in the
previous paragraph, gives us a set of DNA reads in output that need to be assembled
together in order to obtain the complete genome in one piece. There are two
approaches to this matter:

• de-novo assembly : short reads are assembled in a full-length sequence without
using a template;

• reference-based assembly : a previously assembled genome is used as a ref-
erence and sequenced reads are independently aligned against this reference
sequence.
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In terms of complexity and time requirements, de-novo assemblies are orders
of magnitude slower and more memory intensive than mapping assemblies: this is
mostly due to the fact that the assembly algorithm needs to compare every read
with every other read (an operation that has a naive time complexity of O(n2) [26].
Two types of algorithms are commonly used by de-novo assemblers:

• Greedy algorithm assemblers : they find local optima in alignments of smaller
reads; early de novo sequence assemblers, such as SEQAID (1984) and CAP
(1992) used greedy algorithms, such as overlap-layout-consensus (OLC ) al-
gorithms; these algorithms find overlap between all reads, use the overlap to
determine a layout (or tiling) of the reads, and then produce a consensus
sequence; some programs that used OLC algorithms featured filtration (to
remove read pairs that will not overlap) and heuristic methods to increase
speed of the analysis;

• Graph method assemblers : these assemblers were introduced at a DIMACS
workshop in 1994 by Michael Waterman and Gene Myers; these methods
represented an important step forward in sequence assembly, as they both
use algorithms to reach a global optimum instead of a local optimum; the
De Bruijn graph method has become the most popular in the age of next-
generation sequencing [27].

3.4 DNA Alignment

Sequence alignment is useful in order to arrange sequences of DNA, RNA or protein
to identify regions of similarity that may be of interest. There are two types of
alignment:

• Global alignment : it attempts to align every residue in every sequence, which
is most useful when the sequences in the query set are similar and of roughly
equal size; it’s worth to notice that such an approach could be time consuming
and infeasible for very long sequences (e.g., for two sequences of 100 residues
there are more than 10 alternative alignments); a known and diffused algo-
rithm for global alignment is the Needleman-Wunsch algorithm (named after
their creators) [28];

• Local alignment : it is more useful for dissimilar sequences that are suspected
to contain regions of similarity or similar sequence resides within their large
sequence; for protein sequences, the most commonly used local alignment
algorithm that allows gaps is described by Smith and Waterman (it is called
the Smith-Waterman algorithm, after their names) [28].

These types of alignments realize an approximate matching, that differs from
exact matching:

• Exact matching : Find all positions in a sequence (called text) where another
sequence (pattern) occurs [29];
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• Approximate matching : as exact matching but allows some differences be-
tween the pattern and its occurrence in the text [29].

Another categorization could be done if we distinguish between alignment be-
tween two sequences and more than two sequences:

• Pairwise alignment : it is the alignment between two sequences [29];

• Multiple sequence alignment : it is the simultaneous alignment of at least
two sequences, usually displayed as a matrix with multiple rows, each row
corresponding to one sequence [29].

In the following paragraphs, we will briefly talk about some of the most impor-
tant methods for exact and approximate matching.

3.4.1 Exact matching methods

Näıve algorithm

Before talking about modern methods for exact matching, it’s a good idea to focus
our attention on the näıve algorithm. Figure 3.3 shows the Python code for this
algorithm.

Figure 3.3. Python code for the näıve algorithm [30].

The parameters of this function are the search pattern (p) and the reference
string (t); they both are made up from characters belonging to a chosen alphabet
Σ. The possible alignments are N − M + 1, where N and M are the length of
reference string and search pattern respectively. The search pattern is shifted along
the reference string and, at each shift, the comparisons between the characters of
the search pattern and the corresponding characters of the reference string begin:
if a matching occurs, the index is stored in the occurrences array. Clearly, this is
the simplest matching method possible, as the least optimized: in the worst case,
the number of comparisons if equal to M(N −M + 1)A, where A is the number of
binary digits necessary to represent a character from the alphabet Σ.
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Boyer-Moore algorithm

Boyer-Moore algorithm uses knowledge gained from character comparisons to skip
future alignments that definitely won’t match; it is based upon the following three
rules:

• if we mismatch, use knowledge of the mismatched text character to skip
alignments (Bad character rule);

• if we match some characters, use knowledge of the matched characters to skip
alignments (Good suffix rule);

• Try alignments in one direction, then try character comparisons in opposite
direction (useful for longer skips) [31].

Figure 3.4. Bad character rule [31].

In Figure 3.4 there is an example that illustrates how the bad character rule
works; a pattern P is compared with the first set of characters from reference T
(notice that the comparison order is opposite to the pattern shifting over reference
order); when a character mismatch occurs (in the example the mismatching is at
character labelled with b) characters are skipped until b matches its opposite in P
(Case a) or P moves past b (Case b). Thanks to this optimization, we skipped 8
unnecessary alignments in the example above.

In Figure 3.5 another example illustrates the good suffix rule. Here, t is a sub-
string of reference T that matched a suffix of search pattern P ; alignments are
skipped until t matches opposite characters in P (Case a) or a prefix of P matches
a suffix of t (Case b) or P moves past t, whichever happens first.

Thanks to the applications of all these optimizations together, this algorithm
has the interesting feature of having a sub-linear average case (while it has a linear
worst-case search time). Figure 3.6 illustrates an interesting comparison between
näıve algorithm and Boyer-Moore algorithm over two references: human genome
and all Shakespeare’s works.
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Figure 3.5. Good suffix rule [31].

Figure 3.6. Näıve algorithm vs. Boyer-Moore algorithm [31].

Knuth-Morris-Pratt algorithm

Let P and q be a search pattern and an integer variable respectively. The main idea
behind this algorithm is to build a partial match table pm that, for each proper
suffix of P [0 : q], tells us the length of the longest match between this suffix and a
proper prefix of P [0 : q]. Figure 3.7 illustrates an example of partial matching table
for a given pattern. The algorithm progresses as follows, assuming that P [0 : q− 1]
matches T [i− q : i− 1] (where i is another integer variable for algorithm iterations
and T is the reference):

1. if P [q] = T [i], then if q < m (where m is the length of P ) we extend the
length of the match, otherwise we’ve found a match and set q = pm[q − 1];

2. else if P [q] /= T [i], then if q = 0 we increment i, otherwise we shift the pattern
by pm[q − 1] and set q = pm[q − 1].
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The algorithm has a linear time complexity given by O(n + m) time, where m
and n are the search pattern length and the reference length respectively [32].

Figure 3.7. Partial matching table [32].

3.4.2 Approximate matching methods

Needleman-Wunsch algorithm

Needleman-Wunsch algorithm is an algorithm for global alignment, and it can be
summarized in five steps:

1. consider all the possible pairs of residues from two sequences : to do so, we
can build two bidimensional matrices (traceback matrix for the sequences and
score matrix for scores);

2. initialize the score matrix : it will be used to determine the relative score
made by matching two characters in a sequence alignment; this alignment
will then be used to determine the likelihood of one character being at the
same position in the sequence as another character;

3. assign gap penalties : usually there are high chances of insertions and deletions
(indels) in biological sequences but one large indel is more likely rather than
multiple small indels in a given sequences; two kind of penalties are assigned
to take the issue into consideration, called gap opening penalty (relatively
higher) and gap extension penalty (relatively lower);

4. calculate scores and fill the traceback matrix ;

5. deduce the alignment from the traceback matrix.

The last step of the algorithm is also called traceback. The traceback always
begins with the last cell to be filled with the score (the bottom right cell). One moves
according to the traceback value written in the cell. There are three possible moves:
diagonally (toward the top-left corner of the matrix), up or left. The traceback is
completed when the first cell of the matrix (top-left) is reached (“done” cell).
Figure 3.8 shows an example of score matrix and traceback matrix, while Figure
3.9 shows the traceback performed on the completed traceback matrix [33].
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Figure 3.8. Score matrix and Traceback matrix [33].

Figure 3.9. Traceback performed on the completed traceback matrix [33].

Smith-Waterman algorithm

Smith-Waterman algorithm is an algorithm for local alignment based on Needleman-
Wunsch that implements a technique called dynamic programming. Dynamic pro-
gramming computes optimal local alignments of two sequences: this means it iden-
tifies the two sub-sequences that are best preserved, i.e. their alignment shows the
maximal similarity scoring. In order to find such a local alignment, the original
Needleman-Wunsch algorithm is extended with an additional case “0”. This lower
bound on the similarity score excludes “too bad” alignments that are eventually
“not similar” (score < 0).

Si,j = max


Si−1,j−1 + s(ai, bj)

Si−1,j + s(ai,−)

Si,j−1 + s(−, bj)
0

= max



Si−1,j−1 + 1 ai = bj

Si−1,j−1 − 1 ai /= bj

Si−1,j − 2 bj = −
Si,j−1 − 2 ai = −
0

(3.1)
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The dynamic programming approach tabularizes optimal sub-solutions in ma-
trix S, where an entry Si,j represents the maximal similarity score for any local
alignment of the (sub)prefixes ax...i with by...j, where x, y > 0 are so far unknown
and have to be identified via traceback. The above example is valid for a matching
score equal to +1, a mismatching score equal to -1 and a gap score equal to -2 [34].

Figure 3.10. Smith-Waterman score matrix [34].

3.5 DNA Big Data

It’s worth to spend a few words about the size of genome data, taking human
genome as example. The complete genetic information of a human being is stored
inside 46 chromosomes, containing about 6× 109 base pairs. In order to represent
a DNA sequence on a computer, we need to be able to represent all 4 base pairs
possibilities in a binary format: we can denote each base pair using a minimum of
2 bits, which yields 4 different bit combinations (00, 01, 10, and 11). Since each
2-bit combination would represent one DNA base pair, a single byte (or 8 bits) can
represent 4 DNA base pairs. In order to represent the entire human genome in
terms of bytes, we can perform the following calculations:

6× 109 base pairs

genome
× 1

4

byte

base pairs
= 1.5× 109 bytes or 1.5 Gigabytes (3.2)

This simple example is useful to understand that the amount of data involved
in sequence alignment could be big, so it shouldn’t be surprising that we tried to
optimize this task with various methods (as those previously seen in this chapter),
but classical algorithms have their limitations and our desire is to speed up this
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process. This is the main reason behind our interest in applying quantum comput-
ing in this context: when we will be able to build better quantum computers, they
could be a true game changer [35].
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Chapter 4

Quantum Pattern Matching
algorithms

4.1 Quantum search applied to Pattern Matching

We have seen in the previous chapter that Genome Sequencing is an important prob-
lem for biological and medical reasons needing a lot of computational resources in
order to be treated by classical algorithms running on classical computers: search-
ing for matching patterns between two genomic sequences is time consuming and
our desire is to find a speed-up that can make this problem more approachable.

In this chapter we will talk about Quantum Pattern Matching algorithms that
could find an application in the context of Genome Sequencing. We will start
talking about the fundamental Grover’s algorithm, which is the main base all the
other quantum search algorithms we will talk about in this thesis started from.
After that, we will talk about some interesting quantum search algorithms, some
of which have been developed in recent years.

4.2 The fundamental Grover’s Algorithm

Grover’s algorithm is a quantum algorithm used for database search. In order to
understand its importance, we can illustrate the following example: let’s suppose
we are given a large list of N items and among them there is one particular item
with unique characteristics that we desire to locate; we can call this item s. If we
choose to use classical computation to search s, we would have to check on average
N/2 items, and all of them in the worst case. On a quantum computer it’s possible
to find s in roughly

√
N steps running Grover’s algorithm: this is an important

speed-up in the search process that captures our attention. Before illustrating the
algorithm’s steps, we will talk about some preliminary concepts that are needed in
order to fully understand what the algorithm does.
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4.2.1 The Oracle

Let’s keep focusing on the N -sized search space that was given to us: rather than
search the elements directly, we concentrate on the indices of those elements, which
are between 0 and N − 1. For convenience we assume N = 2n, where n is the
number of bits used to store an index. Also, we assume that our search problem
has exactly M solutions, with 1 ≤ M ≤ N . A particular instance of the search
problem can conveniently be represented by a function f which takes as input an
integer x in the range between 0 and N − 1. We assume that f(x) = 1 denotes
that x is a solution to the search problem and f(x) = 0 denotes it isn’t. In this
situation we introduce a quantum oracle: it is defined as a black box that can
recognize solutions to the search problem. Denoting with O the oracle operator,
we can express its action on a quantum state |x〉 as follows:

|x〉 O−→ (−1)f(x)|x〉 (4.1)

We say that the oracle marks the solutions to the search problem by shifting the
phase of the solution. For an N item search problem with M solutions, it turns out
that we need to apply the search oracle only O(

√
N/M) times in order to obtain a

solution on a quantum computer. At this point, the reader could be confused about
the nature of the oracle: from our explanation, it could seem that the oracle already
knows the solutions to the search problem, but this is an incorrect statement. We
have to distinguish between knowing the solution to a search problem and being
able to recognize the solution to a search problem: the crucial point is that it is
possible to do the latter without necessarily being able to do the former [3].

4.2.2 The Algorithm

At this point, we can start talking about how the algorithm works: let’s suppose to
start with a quantum register containing n qubits. The algorithm starts with the
quantum register in the state |0〉⊗n (this notation means that all n qubits in the
quantum register are in the |0〉 state). We use Hadamard gates on all qubits to put
the quantum register in a uniform superposition state, obtaining the following:

|ψ〉 =
1√
N

N−1∑
x=0

|x〉 (4.2)

Supposing N = 4, Figure 4.1 illustrates graphically the situation of linear su-
perposition at this stage of the algorithm, with item at index 3 being the solution
state.

At this point the algorithm iteratively applies a subroutine composed of the
following two steps (t denotes a generic iteration of the algorithm):

1. oracle O is applied to the quantum state: |ψt′〉 = O|ψt〉 (Figure 4.2);

2. operator G is applied to the quantum state: |ψt′′〉 = G|ψt′〉 (Figure 4.3).
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Figure 4.1. Uniform superposition of states [36].

Figure 4.2. Oracle O marks the solution state [36].

Looking at Figure 4.3, we can see that operator G has increased the amplitude of
the solution state; at this point, it’s necessary to explain the nature of this operator
to fully understand how the algorithm is capable to find the solution state. Operator
G implements the inversion about mean, that is another key concept of Grover’s
algorithm. To understand better, we can illustrate the following example: let’s
suppose that our search space is composed by eight possible states and that the
quantum register (with a size of three qubits) is already in the situation of linear
superposition:

1√
8

(|000〉+ |001〉+ |010〉+ |011〉+ |100〉+ |101〉+ |110〉+ |111〉) (4.3)

40



4 – Quantum Pattern Matching algorithms

Figure 4.3. Operator G is applied [36].

Let’s suppose that the solution to our search problem is the state |110〉. Apply-
ing the oracle operator O to the linear superposition, we obtain the following:

1√
8

(|000〉+ |001〉+ |010〉+ |011〉+ |100〉+ |101〉 − |110〉+ |111〉) (4.4)

The oracle has marked the solution with a minus sign before |110〉. Now we
are ready for the inversion about mean: this step will move all the chances of the
other states down, while moving the chance for |110〉 up; it will do this by taking
the average of the amplitudes out in front of each individual state. Since most of
them are 1/

√
8, this will be very close to 1/

√
8 but not exactly. The average is

calculated as follows:

1√
8

+ 1√
8

+ 1√
8

+ 1√
8

+ 1√
8

+ 1√
8
− 1√

8
+ 1√

8

8
=

6√
8

8
(4.5)

The average is ≈ 0.265 compared to 1/
√

8, which is ≈ 0.35; then, this average
is taken and each state’s amplitude is flipped over it. Twice 0.265 is 0.53, so every
state but the solution state changes its amplitude to the following:

2×
6√
8

8
− 1√

8
≈ 0.53− 0.35 = 0.18 (4.6)

Then, the solution state changes its amplitude to the following:

2×
6√
8

8
− −1√

8
≈ 0.53 + 0.35 = 0.88 (4.7)
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So, our new state after one application of the oracle O and the G operator is
the following:

(
2×

6√
8

8
− 1√

8

)
× (|000〉+ |001〉+ |010〉+ |011〉+ |100〉+ |101〉+ |111〉)+

+

(
2×

6√
8

8
− −1√

8

)
× |110〉

(4.8)

Alternatively, we can write the following:

0.18× (|000〉+ |001〉+ |010〉+ |011〉+ |100〉+ |101〉+ |111〉) + 0.88× |110〉 (4.9)

Now, we can clearly see that, with just one iteration of the Grover’s subroutine,
we have 0.882 ≈ 0.77 or about 77% chance of obtaining the correct input |110〉 and
0.182 ≈ 0.03 or about 3% chance of obtaining each of the other inputs when we
measure the qubits in the quantum register (since there are seven other inputs, we
have about 21% chance of seeing one of the other outputs in total) [2]. This simple
example highlights the efficiency of this quantum search algorithm. The optimal
number of iterations of the Grover’s subroutine would increase to the maximum
the chance of obtaining solution states from the measurement of qubits. Which
is the optimal number of iterations? It turns out that with M solutions to the
search problem, roughly

√
N/M iterations suffice, so Grover’s algorithm has a

O(
√
N/M) time complexity: this is a quadratic improvement over the O(N/M)

time complexity in the classical case. If we go further the optimal number of
iterations, we would find ourselves straying from the correct solutions.

Now we will express the algorithm’s steps from a more mathematical perspec-
tive. Grover’s algorithm has two registers: n qubits in the first and one qubit in
the second. We start by creating the linear superposition of all the N = 2n possible
states in the first quantum register. This is done by applying the operator H⊗n to
the first register that starts from the state |0〉⊗n:

|ψ〉 = H⊗n|0〉⊗n = (H|0〉)⊗n =

(
|0〉+ |1〉√

2

)⊗n
=

1√
N

N−1∑
x=0

|x〉 (4.10)

Now we define a function f : {0, ..., N − 1} → {0, 1} capable of recognizing the
solution to the search problem:

f(x) =

{
1 if x is the searched element (s),

0 otherwise
(4.11)

Let’s suppose the existence of a unitary operator O, called oracle:

O(|x〉|y〉) = |x〉|y ⊕ f(x)〉 (4.12)
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|x〉 is a state of the first register (x ∈ {0, ..., 2n− 1}), |y〉 is a state of the second
register (y ∈ {0, 1}) and the ⊕ symbol denotes the sum in modulo 2. Thanks to
the sum in modulo 2, we can exploit the following:

1⊕ f(x) =

{
0 for x = s

1 for x /= s
(4.13)

So, we can easily check the following:

O(|x〉|−〉) =
O(|x〉|0〉)−O(|x〉|1〉)√

2
=

|x〉|f(x)〉 − |x〉|1⊕ f(x)〉√
2

=

(−1)f(x)|x〉|−〉

(4.14)

Let’s apply the O operator on the initial superposition denoted by |ψ〉, with
the second single-qubit register in the |−〉 state: we can see that the state of the
second register doesn’t change. To put the second register in the |−〉 state, we can
start with |1〉 and apply a Hadamard gate:

|ψ1〉|−〉 = O(|ψ〉|−〉) =
1√
N

N−1∑
x=0

(−1)f(x)|x〉|−〉 (4.15)

As expected, the amplitude of the searched element is negative, while all other
amplitudes are positive, so the solution state has been marked by the oracle.

Now we can see in more depth the G operator, that realizes the inversion about
mean. Knowing that |ψ〉 represents the initial superposition state, the G operator
can be expressed as follows (I represents the identity matrix):

G = 2|ψ〉〈ψ| − I (4.16)

We can rewrite |ψ1〉 as follows:

|ψ1〉 = |ψ〉 − 2√
2n
|s〉 (4.17)

So, applying G to |ψ1〉, we can obtain the following:

|ψG〉 = (2|ψ〉〈ψ| − I)|ψ1〉 =
2n−2 − 1

2n−2
|ψ〉+

2√
2n
|s〉 (4.18)

|ψG〉 is the state of the first register after applying the G operator. The second
register is still in the |−〉 state: this realizes the inversion about mean [37].
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Figure 4.4. One Grover iteration [37].

Summarizing all the algorithm’s steps in mathematical notation, we can write
the following:

|ψfinal〉 =

(
T∏
t=1

GO

)
|ψ〉 (4.19)

T represents the optimal number of Grover’s iterations. This number is calcu-
lated as follows (M represents the number of solution states) [3]:

T =

⌈
π

4

√
N

M

⌉
(4.20)

The algorithms we will discuss about in the following paragraphs adopt the
Grover’s algorithm as main base, trying to reach better performance.

4.3 Quantum Associative Memory

The concept of Quantum Associative Memory (QAM ) has been developed by D.
Ventura and T. Martinez [38][39][40]. The same authors have written an impor-
tant research paper where they explain how to initialize an arbitrary amplitude
distribution for a quantum state (where arbitrary means that the distribution is
not necessarily linear) [41]: this nonlinear initialization is used in the context of
Quantum Associative Memory, so we will spend some words about it.

4.3.1 Arbitrary amplitude distribution initialization

Supposing we are given a set T of m examples of a function f , we want to produce
the following as the quantum state of n qubits:

|f̃〉 =
1√
m

∑
z̄∈T

f(z̄)|f̄〉 (4.21)
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We suppose that f : z̄ → s with z̄ ∈ {0, 1}n and s ∈ {−1, 1}. |f̄〉 represents a
computational basis state. As we can see, the goal is to produce a superposition with
only the amplitudes of the m states we are interested in being not zero (remember
that the number of all the possible states is equal to 2n). The algorithm proposed
by Ventura and Martinez uses 2n+1 qubits for the initialization, organized in three
registers x, g and c with n, n− 1 and 2 qubits respectively. The quantum state of
all the three registers together can be expressed as |x, g, c〉. The algorithm’s steps
are illustrated in Figure 4.5.

Figure 4.5. Initialization algorithm by Ventura and Martinez [41].

The operators used in the algorithm are all unitary:

• F̂q is the NOT operator;

• F̂ 1
q1q2

is the CNOT operator with q1 as control and q2 as target;

• F̂ 0
q1q2

is the CNOT operator with NOT (q1) as control and q2 as target;

• Â00
q1q2q3

flips q3 if q1 and q2 are both 0;

• Â01
q1q2q3

flips q3 if q1 is 0 and q2 is 1;

• Â10
q1q2q3

flips q3 if q1 is 1 and q2 is 0;

• Â11
q1q2q3

flips q3 if q1 and q2 are both 1;

• Finally, Ŝs, pq1q2
is a 2-qubit unitary operator that can be expressed as follows:

Ŝs,pq1q2 =


1 0 0 0
0 1 0 0

0 0
√

p−1
p

−s√
p

0 0 s√
p

√
p−1
p

 (4.22)

45



4 – Quantum Pattern Matching algorithms

Thanks to this initialization algorithm, we can obtain an arbitrary amplitude
distribution.

4.3.2 The Algorithm

We are now ready to talk about the Quantum Associative Memory algorithm for
pattern matching by Ventura and Martinez. Let’s suppose we are given a set P of
m binary patterns of length n that we want to store in a quantum register using
superposition. In order to use the initialization algorithm seen before, we need a
total of 2n + 1 qubits. If we denote all the steps needed for initialization with the
P̂ operator, we can express the initialization step as follows:

|ψ〉 = P̂ |0̄〉 (4.23)

In this way, we have correctly memorized the set P of patterns in out quantum
register of length n. Now, suppose we know n− 1 bits of a pattern and we want to
recall the entire pattern: in order to achieve this, we can simply apply the following:

|ψ′〉 = GOPGOτ |ψ〉 (4.24)

|ψ′′〉 =

(
T∏
i=0

GOτ

)
|ψ′〉 (4.25)

τ denotes the target pattern, Oτ the corresponding oracle, OP is the oracle that
marks all the stored patterns and T the optimal number of Grover’s iterations [40].
In this way, we were able to store up to 2n patterns in O(mn) steps [39]. The only
problem that still needs to be resolved is calculating the optimal number of Grover’s
iterations: we are able to do this calculation for a linear amplitude distribution,
but this is not our case. This problem is approached by Ventura and Martinez on
the base of a research paper by E. Biham, O. Biham, D. Biron, M. Grassl and D. A.
Lidar [42][40]: they calculated T for an arbitrary amplitude distribution as follows:

T =

π
2
− arctan

(
k̄
l̄

√
r0+r1

N−r0−r1

)
arccos

(
1− 2 r0+r1

N

) (4.26)

k̄ and l̄ represent the average of the amplitudes of marked states and non-marked
states after applying Equation 4.24, while r0 and r1 are the number of marked states
that do not correspond to stored patterns and the number of marked states that
correspond to stored patterns respectively. N represents the size of search space.
To obtain the correct number of Grover’s iterations, T has to be rounded to the
nearest integer. This algorithm can be used for pattern completion, where the input
query is a pattern with some missing characters that we can represent with the ?
symbol (for example 100?? could be an input query).
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4.4 Fast Quantum Search based on

Hamming distance

Another interesting algorithm was developed by L. C. L. Hollenberg, explicitly
proposed for the context of Protein Sequence Comparison [43]. The paper illustrates
the following example: suppose that an entire genome is stored in a database D
as a continuous list of N residues, D = {R0, R1, ... , RN−1}. Also, a sample
sequence S composed by m residues is given, S = {r0, r1, ... , rm−1}. In the
original paper an example is made by supposing that each residue denotes a letter
from the amino acid alphabet (which has a size equal to 20), so dlog2 20e = 5 bits
are needed for each residue, but we can generalize the algorithm for every alphabet
size by considering l = dlog2 |A|e bits for each character, with A being the alphabet
set and |A| the number of alphabet’s characters. So, each residue Ri and ri from
D and S is represented by bit strings of length l and we can write the following,
with B ∈ {0, 1} and b ∈ {0, 1}:

Ri =
l∏

α=0

Biα ri =
l∏

α=0

biα (4.27)

A couple of quantum registers Q1 and Q2 are used. The entire database is
represented by a quantum superposition over the two registers as follows:

|ψD〉 =
1√

N −m+ 1

N−m∑
i=0

|φi〉 ⊗ |i〉 (4.28)

All the consecutive sub-sequences in the database of length m are encoded in
the first register Q1 with size equal to lm as follows:

|φi〉 =
i+m−1∏
α=i

l∏
β=0

|Bαβ〉 =
lm−1∏
α=0

|qiα〉 (4.29)

This means that N − m + 1 sub-sequences of length m are extracted from D
by moving along from the first position (allowing overlapping between the sub-
sequences). The starting index of the sub-sequence is encoded by binary numbers
|i〉 in the second register. Since 0 ≤ i ≤ N −m, the second register Q2 must have
an adequate number of qubits to be able to encode the index of a sub-sequence,
given by dlog2(N −m + 1)e. We can express the sample sequence state |S〉 by its
individual qubits, too:

|S〉 =
m−1∏
α=0

l∏
β=0

|bαβ〉 =
lm−1∏
α=0

|sα〉 (4.30)

Now, in order to complete the initialization process, we need to evolve the stored
sub-sequences in Hamming distances, calculated by comparing with the sample
sequence S. The Hamming distance between two strings of equal length is the
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number of positions at which the corresponding symbols are different [44]. We can
encode the Hamming distances in the quantum database in a surprisingly easy way
applying a CNOT operation with respect to the sample sequence state:

|ψH〉 = UCNOT (s)|ψD〉 =
1√

N −m+ 1

N−m∑
i=0

|φ̄i〉 ⊗ |i〉 (4.31)

|φ̄i〉 encodes the Hamming distance of the i-th sub-sequence with respect to the
sample sequence, and can be expressed by its individual qubits as follows:

|φ̄i〉 =
lm−1∏
α=0

|q̄iα〉 with q̄iα =

{
1 if qiα /= sα,

0 otherwise
(4.32)

At this point, to obtain the Hamming distance for the i-th sub-sequence we can
simply calculate Ti =

∑lm−1
α=0 q̄iα

Now that we have successfully initialized Q1 and Q2, we can express the oracle
OS and the operator G s follows:

OS = 1− 2|S〉〈S| (4.33)

G = 1− 2|ψH〉〈ψH | (4.34)

The oracle OS will mark the solution states as follows:

OS|φ̄i〉 =

{
−|φ̄i〉 if Ti = 0,

|φ̄i〉 otherwise
(4.35)

At the start of each search it is not known how many solutions exist, or if there
exist matches at all, meaning that Grover’s algorithm cannot be used directly.
However, an extension of Grover’s algorithm proposed by M. Boyer, G. Brassard,
P. Hoyer and A. Tapp can be used, which performs a search with an a priori

unknown number of solutions Nt, and finds a match (if it exists) in O(
√

N
Nt

) [45].

4.5 Quantum indexed Bidirectional Associative

Memory

This algorithm has been proposed in 2019 by A. Sarkar, Z. Al-Ars, C. G. Al-
mudever and K. Bertels [46]. It is presented by the authors as a “novel quantum
pattern matching algorithm specifically designed for the context of genome sequence
reconstruction” and has been called “Quantum indexed Bidirectional Associative
Memory” (QiBAM ). The algorithm is partially based on the previously illustrated
algorithms and the research papers at [47][48] that introduced the model of Quan-
tum Associative Memory with distributed queries, so we will briefly illustrate it
before talking of the QiBAM algorithm in more depth.
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4.5.1 Quantum Associative Memory with
Distributed Queries

This model was first introduced by A. A. Ezhov, A. V. Nifanova and D. Ventura
in 2000 [47] and then enhanced by a research paper in 2013 [48]. To introduce this
new model, we can refer to the example made in [47].

Name Code Number Code
A 00001 3 11
B 00010 0 00
C 00011 2 10
D 01010 1 01

Table 4.1. Phone-book database example [47].

The database in Table 4.1 contains some data organized as a phone-book, with a
name and a number for each entry. The entries are ordered by name and unordered
by number. While the direct problem of finding the number with given name is
easy, the inverse problem of finding the name with a given number is difficult:
the most efficient classical solution is random search which demands in the worst
case N − 1 queries and on average N/2 queries. On the other hand, using the
Quantum Associative Memory approach, we can setup a quantum state |ψ〉 which
is the superposition of all the entries in the phone-book database:

|ψ〉 =
1√
P

∑
x∈M

|x〉 (4.36)

P is the number of records in the database M that have been stored in memory,
and |x〉 = |name, number〉 is a memorized state which is composed by the two sets
of qubits encoding name and number. At this point we can apply the oracle O
and the operator G in Grover’s iterations: we want to find the name with a given
number. For a solution state |s〉 we can write the following:

Oname|x〉 =

{
−|x〉 if |x〉 = |s〉,
|x〉 otherwise

(4.37)

The operator G realizes the inversion about mean as follows (ax denotes the
amplitude of a state |x〉):

G : ax →
2

P

∑
x∈M

ax − ax (4.38)

The model described so far represents the Quantum Associative Memory model
that we have already discussed in previous paragraphs, capable of doing pattern
completion. However, this model does not actually take into account the distance
between states but only uses information about the presence of some prescribed bit
values in the memory state. We would like to introduce a metric into the quantum
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search algorithm in the form of distributed queries. Distributed query means that a
query, or stimulus to the system, has the form of a superposition, just as a quantum
memory does:

|bp〉 =
2d−1∑
x=0

bpx|x〉 (4.39)

The query includes in general all basis states (with d being the number of
qubits encoding a phone number). The state |p〉 is the center of distribution. The
introduction of distributed queries demands the modification of the phone-book
memory in such a way that it has every possible basis state, despite the fact that
most of them have no corresponding name. Such a memory can be represented by
the example in Table 4.2.

Record Name Phone
1 not used 000
2 not used 001
3 Alice 010
4 not used 011
5 not used 100
6 not used 101
7 not used 110
8 Bob 111

Table 4.2. Example of Quantum Associative Memory with Distributed Queries [47].

At this point, we need to modify the oracle O such that it defines not a single
query or a finite set of queries, but rather a fuzzy query. We already said that |p〉
is the center of the distribution described by Equation 4.39: we want the maximal
value of that distribution to occur for some definite state |x〉 = |p〉, while the
amplitudes of the other basis states decrease monotonically with the Hamming
distance with respect to |p〉 (from now on, we will refer to |p〉 as the query center). In
order to satisfy this requirement, we can write the following binomial distribution:

|bpx|2 = q|p−x|(1− q)d−|p−x| (4.40)

|p − x| denotes the Hamming distance between |p〉 and |x〉, while 0 < q <
1
2

is a number arbitrarily chosen in order to tune the width of the distribution.
Introducing a distributed query with Hamming distance-dependent amplitudes for
the basis states incorporates a metric into the model which permits comparison
of the similarity of the stimulus and the retrieved memory. At this point we can
express the oracle Ob and the operator G as follows [47]:

Ob = I − 2|bp〉〈bp| (4.41)
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G : ax →

{
2
P

∑
x∈M ax − ax if x ∈M,

−ax otherwise.
(4.42)

This model has been improved by a research paper in 2013 [48] that proposed
the algorithm in Figure 4.6: the operators O and D correspond to the oracle Ob and
the inversion about mean G that we have already discussed, while IM is another
oracle that marks all the stored patterns in memory M .

Figure 4.6. Quantum Associative Memory with Improved Distributed Queries [48].

IM is defined as follows:

IM = I − (1− eiπ)|ϕ〉〈ϕ| with |ϕ〉〈ϕ| =
∑
x∈M

|x〉〈x| (4.43)

IM : ax →

{
−ax if |x〉 ∈M,

ax otherwise.
(4.44)

Figure 4.7 illustrates the steps of the model of Quantum Associative Memory
with Distributed Queries (the “not improved” version) in order to compare it with
the improved version: in this case, the IM operator doesn’t appear.

Figure 4.7. Quantum Associative Memory with Distributed Queries [48].
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4.5.2 The QiBAM model

Now we are ready to talk about the Quantum index Bidirectional Associative Mem-
ory model: the scheme in Figure 4.8 helps us to understand the various steps. The
algorithm tries to do an approximate matching between the reference string (called
T ) with length N and the pattern we are searching (called P ) with length M :

Figure 4.8. Diagram for QiBAM [46].

1. we start from a n-qubit quantum register prepared at |0〉⊗n state;

2. the quantum register is initialized as follows, with TM(i) denoting the sub-
sequence of length M from reference T at index i:

|ψ0〉 =
1√

N −M + 1

N−M∑
i=0

(|TM(i)〉 ⊗ |i〉) (4.45)

It’s worth to notice that this initialization is the same of Equation 4.28 from
the model proposed by Hollenberg [43];

3. the qubits encoding the sub-sequences are evolved into their Hamming dis-
tances with respect to the search pattern P . This step also is proposed by
Hollenberg after the initialization step [43], so we can refer to Equations 4.31
and 4.32;

4. after the initialization of quantum database, a distributed query with 0 as
query center is performed, with oracle O being the same of Equation 4.41 and
|bp〉 calculated with p = 0;

5. inversion about mean is performed, with G operator being the same as Equa-
tion 4.42;

6. operator IM from Equations 4.43 and 4.44 to mark all the memory states is
applied;

7. operator G is applied again;

8. Grover’s iterations are performed, with Grover’s subroutine being made up
of applications of oracle O and inversion about mean G;

9. finally, the qubits encoding the index are measured in order to obtain the
final result.
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4.6 Quantum Pattern Recognition

The final algorithm we will talk about was proposed in 2018 by K. Prousalis and
N. Konofaos [49] and it was partially based on a previous research by R. Zhou
and Q. Ding [50]. A recurrence dot matrix approach for sequence alignment is
combined with a known quantum multi-pattern recognition method in order to
improve the problem of sequence alignment. The recurrence dot matrix method
is the most simple and qualitative one, though it is time-consuming in analyzing
on a large scale: certain sequence features (such as insertions, deletions, repeats
or inverted repeats of the elements of the sequence) can easily become identified
by vision when a dot plot is formed for two sequences. A generic element aij of
the matrix is marked with a dot if the corresponding characters i and j from two
sequences s1 and s2 forming the dot matrix match. We can express this approach
in mathematical notation:

aij =

{
1 if s1i = s2j,

0 otherwise.
(4.46)

In Figure 4.9 an example of recurrence dot matrix for two DNA sequences is
defined. When a matching character occurs, the spot in the matrix is marked with
a black square. This is a qualitative method to have an idea of the similarities
between two given sequences: a black diagonal in the matrix denotes the presence
of equal patterns between the two sequences. If the vertical sequence is much
shorter than the horizontal one, we could use this method to spot a search pattern
in a given reference: a full black diagonal means that at a certain index the search
pattern could be found in the reference. However, this is only a qualitative method
and we must take into account the fact that it could be time-consuming to build
such a matrix classically. So, in order to obtain the recurrence dot matrix more
efficiently than the classical way, a spatial light modulator (SLM ) is used.

Figure 4.9. An example of recurrence dot matrix.
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Now, we want to initialize a quantum register with the data coming from the
recurrence matrix. We want to memorize all the diagonal binary patterns coming
from the dot matrix with the corresponding indices. To understand better, we can
illustrate an example in Figure 4.10. Together with the sequences, the correspond-
ing indices are shown. Each diagonal of the matrix forms a binary pattern that
can be considered as a “matching bit map”, with 1 for matching characters and 0
otherwise. The red framed area denotes the full-length diagonals that appear be-
tween the indices 0 and 3075 of the horizontal (XL23808 ) sequence and the overall
vertical (XLRHODOP) sequence. For the remaining unframed areas (with shorter
diagonal’s length) some extra paddings are added. Hence, the plot in Figure 4.10
has a total of 4750 diagonal data-sets, each of 1625 elements.

Figure 4.10. DNA sequence dot plot for the XL23808 and XL-
RHODOP sequences [49].

Supposing that we can obtain N diagonal data-sets from the dot matrix, we
can write our initial superposition state as follows:

|ψ〉 =
1√
N

N−1∑
i=0

|i〉 ⊗ |di〉 (4.47)

di denotes the diagonal at index i. For a correct initialization of the quantum
register we can rely on the algorithm from [41] and already discussed in previous
paragraphs. At this point we can perform queries using binary diagonal patterns
as input. We can define a query set Q containing the M binary patterns we want
to search. The oracle OQ marking solution states is defined as follows:

OQ = I − (1− j)
∑
d∈Q

|d〉〈d| (4.48)

j denotes the imaginary unit and I the identity matrix. The inversion about
mean G is defined as follows:

G = (1 + j)|ψ〉〈ψ| − jI (4.49)
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OQ and G are applied inside Grover’s iterations. The number of Grover’s itera-
tions is calculated as follows (the obtained result has to be rounded to the nearest
integer):

T =
π

4

√
N

M
(4.50)

We can summarize the algorithm’s steps as follows:

1. form and encode |ψ〉 into a linear superposition state by learning the diagonal
data-sets from recurrence dot matrix, together with their indices;

2. apply the oracle OQ;

3. apply the inversion about mean G;

4. steps 2 and 3 are executed iteratively T times.
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Chapter 5

Implementation and Testing

5.1 A brief introduction to the implementation

and testing work

In this chapter we will illustrate the work that was done in order to test some of
the algorithms explained in the previous chapter on the IBM Quantum Experience
platform. First of all, we will briefly talk about the tools used, then we will talk
about how we tested the chosen algorithms.

5.1.1 Tools used

We used Jupyter Notebook [17] as IDE for writing code in Python 3. Jupyter
Notebook can be used from any Internet browser; in order to install it, we in-
stalled Anaconda [18] and setup a new Conda environment; in this environment
we installed Python 3, Jupyter Notebook and other needed libraries. Among the
installed libraries, the most important one is Qiskit [51], that is developed by IBM
and gives us all the functions needed in order to setup and simulate (locally or
remotely) or execute on a remote quantum computer the quantum circuits that we
have built.

5.1.2 How testing was done

In order to test the algorithms, we have chosen the HIV genome. Some important
considerations must be done in order to understand the testing results.

Judgment parameters

It’s worth to warn the reader that one of the adopted judgment parameters is the
accuracy of the results : we will run the chosen algorithms on quantum simulators,
so judging them from a time execution point of view wouldn’t make sense; also,
another important parameter we must take into account is the number of gates
used to build the quantum circuit, since higher is the number of gates, greater is the
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probability of obtaining noisy results due to decoherence (we have briefly introduced
the concept of decoherence in Chapter 2, and we will talk about it again in more
depth later on in this chapter). The total required number of qubits also could be a
judgment parameter: lower the number of qubits needed, the better (it’s important
to remember that today’s real quantum computers are limited in the number of
qubits they offer).

A brief note about HIV genome

The entire HIV genome has a total length that’s greater than 9000 characters [52]:
it’s important to remark this because our test will be done on small pieces of the
HIV genome, since doing testing on the entire HIV genome at once would require
too many qubits (for example, the encoding of a character’s index only would
require at least 14 qubits).

It’s worth to spend a few words on how the HIV genome for testing was obtained.
We relied upon ART [60], that is a set of simulation tools to generate synthetic
next-generation sequencing reads. ART simulates sequencing reads by mimicking
real sequencing process with empirical error models or quality profiles summarized
from large recalibrated sequencing data. ART is freely available to public and its
binary packages are available for three major operating systems: Linux, Macintosh,
and Windows. We used ART-MountRainier-2016-06-05 (that is the latest version).
We input the following commands from terminal to setup the system on a Linux
PC and put ourselves in the folder containing the binaries.

wget https://www.niehs.nih.gov/research/resources/assets/

docs/artbinmountrainier2016.06.05linux64.tgz

tar -xzf artbinmountrainier2016.06.05linux64.tgz

cd art_bin_MountRainier/

At this point, we run the following command.

./art_illumina -ss HS25 -i ../../HIVepi/HIVgenome/HIVgenome.fa

-p -l 150 -c 1000000 -m 200 -s 10 -o pair_dat

• -p specifies pair ended;

• -c specifies 1 million pair end reads;

• -l specifices length of 150 bp;

• -m specifies mean fragment size;

• -s specifies std deviation in fragment size;

• -o specifies the output prefix;
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• -ss specifies the name of Illumina sequencing system of the built-in profile
used for simulation (we used HS25 that stands for HiSeq2500 ).

The output of this process is a set of files with extensions .fq and .aln (.fq files
contain the synthetic raw data, .aln files contain the sequences’ original positions).
At this point, we used these files as input for Bowtie2 [60] in order to align the
reads, obtaining a .fa file as output, containing the whole HIV genome; since this
file can be opened as a common .txt file with Notepad, we easily converted the file
in .txt format in order to use it easily in Python with the open(), read() and
close() functions.

A brief note about the nature of the obtained results

We already said that we will judge the obtained results from an accuracy point of
view and for the number of quantum gates needed by the algorithm. In order to
understand better the obtained results that will be illustrated to the reader in this
chapter, we must underline the fact that the obtained results are statistical : thanks
to the Qiskit library, we can build a quantum circuit and specify the number of
shots (i.e., the number of times the algorithm is executed); the results obtained at
every single shot are used to build an histogram where each column indicates the
probability of obtaining the corresponding computational basis state after qubits
measurement.

5.1.3 Chosen algorithms

We have chosen three algorithms for implementation and testing on the IBM Quan-
tum Experience platform. The reasons we have chosen the following three algo-
rithms are to be found in the fact that are the latest and better performing quan-
tum algorithms for Pattern Matching available today. It’s worth to warn the reader
that we will test these algorithms but we cannot do a direct comparison since the
meaning of the results given by them is slightly different.

• Quantum Associative Memory with index measurement : we implemented with
Qiskit the QAM algorithm with a slight modification suggested by [46], in
which the measurement is executed on the qubits encoding the index of a
sub-sequence from the reference string; given an incomplete search pattern
with wildcard characters as input, we can obtain the index of a corresponding
sub-sequence from the reference; as already said, the algorithm tries to do
pattern completion.

• Quantum indexed Bidirectional Associative Memory : it’s the algorithm pro-
posed by [46]; the obtained results are to be interpreted differently from the
previous algorithm; given a search pattern (this time wildcard characters are
not used), the algorithm tries to find the indices of the sub-sequences that are
most similar to the given input ; the meaning of the results is different from
the previous algorithm and a direct comparison is not possible.
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• Quantum Pattern Recognition: it’s the algorithm proposed by [49]; again,
the results obtained with this algorithm are to be interpreted differently from
the previous two algorithms; given a recurrence dot matrix obtained from
reference and search pattern by means of a spatial light modulator, a quantum
database is built, in which the binary diagonals from the matrix (with the
corresponding indices) are encoded; so, given a binary search pattern (that we
could see as a “matching bit map”), the algorithm tries to find the indices of
corresponding diagonals from the recurrence dot matrix (that correspond to
the indices of the sub-sequences from the reference that match with the search
pattern as specified by the diagonals of the recurrence dot matrix).

5.1.4 Decoherence and number quantum of gates

The results that will be illustrated in this chapter are (for the most part) obtained
by simulating the behaviour of an ideal quantum computer, so decoherence is not
taken into account. However, decoherence is an important factor that affects the
performance of a real quantum computer, so it’s worth to spend some words to talk
about it in more depth.

To quantify decoherence, we can introduce two parameters T1 and T2.

• T1 helps to quantify how quickly the qubits experience energy loss due to
environmental interaction (energy loss would result in a change in frequency,
which would make coherent qubits experience decoherence);

• T2 helps to quantify how quickly the qubits experience a phase change due to
interaction with the environment (again, causing decoherence).

Energy relaxation is the loss of energy from the system, for example the process
of a state with more energy decaying into another state with less energy. For
example, T1 measures the time for a state |1〉 with higher energy to become a state
|0〉 with lower energy. Energy relaxation will always happen in a real quantum
computer, and this process happens via exponential decay from the more energetic
state to the less energetic state. In the illustrated example, we initially have 100%
probability of being in state |1〉, but after some time t this probability has decreased

exponentially to a value e
− t
T1 , where T1 is a constant. Summarizing, we can write

the following:

Probability in state |1〉 = e
− t
T1 (5.1)

So, T1 is a measurement of how long energy relaxation takes to occur. As for T2,
it affects only superposition states, since decoherence results from phase difference
between two or more qubits that are coherent (that is, they are in superposition).
Any environmental disturbance that causes phase changes can cause this sort of
decoherence. Like T1, T2 also is measured in terms of the exponential decay of our
expected result over a period of time [2].
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At this point, it should be clear to the reader that having bigger T1 and T2 is
fundamental in order to have a more reliable quantum computation and that a quan-
tum algorithm that executes its task with the lowest possible number of quantum
gates (for executing the computation in the lowest time possible) is surely apprecia-
ble; on the other hand it should be noted that quantum computation needs time,
particularly computations that require many steps (and many quantum gates). It
is exactly the algorithms that require many steps which will enable Quantum Com-
puting to be practically useful, so advancement in Quantum Computing hardware
technology is fundamental.

5.2 Quantum Associative Memory

Python code for this algorithm is illustrated in Appendix A. In the example illus-
trated here, we tested the algorithm on the first 32 characters of the HIV genome,
but other tests are illustrated in Appendix A. The following is the obtained output.

Reference genome: 32200222130033101311100020020100

Chosen pattern for testing: 2?3

Total number of qubits: 19

Number of ancilla qubits: 8

shots = 8192

Grover’s algorithm had 1 iteration

Number of gates: 9295

Circuit depth: 7049

Tag: 00000 - Data: 322

Tag: 00001 - Data: 220

Tag: 00010 - Data: 200

Tag: 00011 - Data: 002

Tag: 00100 - Data: 022

Tag: 00101 - Data: 222

Tag: 00110 - Data: 221

Tag: 00111 - Data: 213

Tag: 01000 - Data: 130

Tag: 01001 - Data: 300

Tag: 01010 - Data: 003

Tag: 01011 - Data: 033

Tag: 01100 - Data: 331

Tag: 01101 - Data: 310

Tag: 01110 - Data: 101

Tag: 01111 - Data: 013

Tag: 10000 - Data: 131

Tag: 10001 - Data: 311

Tag: 10010 - Data: 111

Tag: 10011 - Data: 110

Tag: 10100 - Data: 100
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Tag: 10101 - Data: 000

Tag: 10110 - Data: 002

Tag: 10111 - Data: 020

Tag: 11000 - Data: 200

Tag: 11001 - Data: 002

Tag: 11010 - Data: 020

Tag: 11011 - Data: 201

Tag: 11100 - Data: 010

Tag: 11101 - Data: 100

These data illustrate important information about this particular execution of
the algorithm:

• the first 32 characters of HIV genome and the adopted search pattern with
numeric encoding (0 for A, 1 for C, 2 for G and 3 for T );

• the total number of qubits (with ancilla qubits included in the calculation:
they are used as support qubits by mct(), a Python function from Qiskit
library that implements the multi-controlled NOT );

• the number of shots is the number of times the algorithm was executed in
order to obtain a statistical result;

• the number of Grover’s iterations;

• the total number of gates used in the built quantum circuit;

• the circuit depth;

• the database obtained from the reference genome, with sub-sequences and
corresponding indices in binary.

It’s worth to spend a few words about the number of gates and the circuit depth.
The total number of gates applied in the quantum circuit does not correspond to
the circuit depth: the circuit depth is the length of the longest path from the input
(or from a preparation) to the output (or a measurement gate), moving forward in
time along qubit wires. The stopping points on the path are the gates, the allowed
paths that must be considered can enter and exit those gates on any input or output,
and the length is the number of jumps from each gate to the next gate along the
path. In alternative, we could say that circuit depth is the maximum time from
input to output assuming all gates take 1 unit of time [53]. Our desire is to keep
circuit depth as low as possible. Later on in this chapter, we will spend a few words
about the existing correlation between circuit depth and noise in a real quantum
computer.

Figure 5.1 shows the histogram obtained from the algorithm execution on HIV
genome from 0 to 31 and search pattern equal to “2?3” over 8192 shots. We must
warn the reader that the basis states reported on the x axis of the histogram are
written in Little Endian notation (since Qiskit has adopted it). However, the output
is correct: in the reference used for testing, only the sub-sequence at index 7 (in
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binary 00111, that becomes 11100 in Little Endian) can satisfy the search pattern
“2?3”, so the peak in the histogram occurs at the right index.

In Appendix A, we illustrate other two examples of execution of the algorithm
over other small pieces of HIV genome. In the first example, a small piece of
genome from 1000 to 1031 is taken, with two possible sub-sequences satisfying
the search pattern “2?3” at indices 0 and 15. The algorithm correctly identifies
them, with two peaks at the corresponding indices (look at Figure A.1). In the
second example HIV genome from 2000 to 2031 is taken, with two possible sub-
sequences satisfying the search pattern “2?3” at indices 23 and 26. In this case
also the algorithm correctly identifies them with two peaks at the corresponding
indices (look at Figure A.2). In both examples, we have obtained a total number of
gates and a circuit depth not so different from those obtained in the first example
illustrated in this paragraph with HIV genome from 0 to 31. If we would increment
the length of the reference genome and/or the length of the search pattern, the
number of qubits would increase (making the simulation more difficult due to the
higher computational resources needed), and also the number of gates (together
with the circuit depth) would increase. However, the algorithm is always capable
of identifying the correct solutions in all the proposed examples

Figure 5.1. QAM execution: obtained probability histogram for HIV genome
from 0 to 31 and search pattern equal to 2?3 over 8192 shots.
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5.3 Quantum indexed Bidirectional Associative

Memory

Python code for this algorithm is illustrated in Appendix B. In this case also, we
tested the algorithm on the first 32 characters of the HIV genome (other tests are
illustrated in Appendix B). The following is the obtained output.

Reference genome: 32200222130033101311100020020100

Chosen pattern for testing: 203

Total number of qubits: 19

Number of ancilla qubits: 8

shots = 8192

Grover’s algorithm had 2 iterations

Number of gates: 53801

Circuit depth: 42510

Tag: 00000 - Data: 322 - Hamming distance: 3

Tag: 00001 - Data: 220 - Hamming distance: 3

Tag: 00010 - Data: 200 - Hamming distance: 2

Tag: 00011 - Data: 002 - Hamming distance: 2

Tag: 00100 - Data: 022 - Hamming distance: 3

Tag: 00101 - Data: 222 - Hamming distance: 2

Tag: 00110 - Data: 221 - Hamming distance: 2

Tag: 00111 - Data: 213 - Hamming distance: 1

Tag: 01000 - Data: 130 - Hamming distance: 6

Tag: 01001 - Data: 300 - Hamming distance: 3

Tag: 01010 - Data: 003 - Hamming distance: 1

Tag: 01011 - Data: 033 - Hamming distance: 3

Tag: 01100 - Data: 331 - Hamming distance: 4

Tag: 01101 - Data: 310 - Hamming distance: 4

Tag: 01110 - Data: 101 - Hamming distance: 3

Tag: 01111 - Data: 013 - Hamming distance: 2

Tag: 10000 - Data: 131 - Hamming distance: 5

Tag: 10001 - Data: 311 - Hamming distance: 3

Tag: 10010 - Data: 111 - Hamming distance: 4

Tag: 10011 - Data: 110 - Hamming distance: 5

Tag: 10100 - Data: 100 - Hamming distance: 4

Tag: 10101 - Data: 000 - Hamming distance: 3

Tag: 10110 - Data: 002 - Hamming distance: 2

Tag: 10111 - Data: 020 - Hamming distance: 4

Tag: 11000 - Data: 200 - Hamming distance: 2

Tag: 11001 - Data: 002 - Hamming distance: 2

Tag: 11010 - Data: 020 - Hamming distance: 4

Tag: 11011 - Data: 201 - Hamming distance: 1

Tag: 11100 - Data: 010 - Hamming distance: 4

Tag: 11101 - Data: 100 - Hamming distance: 4
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Figure 5.2. QiBAM execution: obtained probability histogram for HIV genome
from 0 to 31 and search pattern equal to 203 over 8192 shots.

The obtained histogram is very different from the one obtained for QAM, and
the reason is to be found in the goal that this algorithm wants to reach: it tries
to find the indices of the sub-sequences most similar to the given search pattern.
This similarity is evaluated by means of the Hamming distance with respect to
the search pattern. Looking at the database obtained from the reference genome,
the sub-sequences with lower Hamming distance are at index 7 (00111 in binary),
at index 10 (01010 in binary) and at index 27 (11011 in binary). Looking at the
histogram, the basis states with higher probability are the following (the indices
are reported in binary and in decimal):

1. 01110→ 14, Hamming distance = 3, 3.7%;

2. 11110→ 30, Spurious State, 3.7%;

3. 00111→ 7, Hamming distance = 1, 3.4%;

4. 01010→ 10, Hamming distance = 1, 3.4%;

5. 11011→ 27, Hamming distance = 1, 3.3%;

6. 01111→ 15, Hamming distance = 2, 3.3%;

7. 10001→ 17, Hamming distance = 3, 3.3%;

8. 10110→ 22, Hamming distance = 2, 3.3%.

We already explained in the previous chapter that this algorithm, in its initial-
ization process, allows the presence of spurious states in the quantum database:

64



5 – Implementation and Testing

that’s why in this execution of the algorithm a spurious state has appeared. We
can also see that the algorithm fulfills its goal, although it is not perfect: not only a
spurious state has appeared, but the highest probability came from a sub-sequence
with Hamming distance equal to 3, while states with Hamming distance equal to 1
are immediately after.

In Appendix B we propose other two examples over other two small HIV genome
pieces (taking 203 as search pattern in both cases). In the first example HIV
genome from 1000 and 1031 is taken: looking at the output data (available in the
appendix) there are some sub-sequences with Hamming distances equal to 0 and
1, so we would expect to have peaks in the final histogram at the corresponding
indices (for example at indices 0, 15, 21, 23 and 26). Looking at Figure B.1, the
highest peaks are (from highest to lowest) at indices 15, 30, 11, 0, 21 and 6. In this
example also the identification of the solution states is not perfect: we would expect
the indices denoting sub-sequences with zero Hamming distance to have the highest
peaks, but only some of them are identified and in some cases they are surpassed
by other states with higher Hamming distances or even spurious states (index 30
denotes in this example a spurious state). In the second example proposed in the
appendix, HIV genome from 2000 and 2031 is taken: looking at the output data,
the sub-sequence with the lowest Hamming distance (equal to 1) is at index 23.
Other sub-sequences with lower Hamming distances are at indices 5, 6, 7, 12, 15,
19, 21, 22, 25 and 26 (all with Hamming distances equal to 2). Looking at the final
histogram illustrated in Figure B.2, the highest peaks are (from higher to lower)
at indices 3, 30, 29, 20, 6, 5, 7, 15. In this example also, the behaviour of the
algorithm seems to be the same: the state denoting the index corresponding to the
sub-sequence with the lowest Hamming distance is not even between the highest
peaks, while some states with Hamming distance equal to 2 appear between the
highest peaks, but surpassed by other states with higher Hamming distances or
even spurious (like index 30).

In general, the algorithm seems not to behave always correctly. Also, we should
highlight an interesting fact: the goal of the algorithm is to find the sub-sequences
that are most similar to the adopted search pattern, but in order to do so it adopts
Hamming distance as metric. We already said that Hamming distance is the number
of places where two strings of equal length are different; the algorithm calculates the
Hamming distances between the sub-sequences from reference and the search pattern
considering their binary encoding, but this does not correspond to a biological simi-
larity but only to an encoding similarity, so biology is not taken into consideration
in measuring similarity between sub-sequences and search pattern.

It’s worth to spend a few words about the number of gates and the circuit depth
that was output in the first proposed execution of this algorithm. The original im-
plementation proposed in [46] by the authors for the QX Simulator (a quantum
simulator by QuTech, another company involved in the Quantum Computing field)
uses the Quantum Shannon Decomposition for decomposing arbitrary unitary ma-
trices, as described in [54] by V. V. Shende, S. S. Bullock and I. L. Markov. In
the Qiskit implementation proposed in Appendix B, we were able to use the needed
unitary matrix implementing the oracle() function directly, without decompos-
ing it. However, this means that the number of gates and the circuit depth that
was output by the algorithm needs to be corrected, since Qiskit considers a given
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arbitrary unitary matrix as a single gate.

We can mention the following theorem about Quantum Shannon Decomposition
from [54].

“An arbitrary n-qubit operator can be implemented by a circuit contain-
ing three multiplexed rotations and four generic (n− 1)-qubit operators,
which can be viewed as co-factors of the original operator.”

Figure 5.3. Quantum Shannon Decomposition [54].

Figure 5.4. Corresponding circuit for multiplexed rotation gate [54].

Figure 5.3 shows the corresponding circuit for an arbitrary n-qubit operator,
while Figure 5.4 shows the corresponding circuit for a multiplexed rotation gate
(formed by two ordinary rotation gates and two CNOT s). This theorem gives us
a hint to calculate an estimation of the number of gates needed to implement the
oracle() function that we applied directly in our implementation by means of its
unitary matrix. In this particular execution of the QiBAM algorithm, the oracle()
function applies an 4-qubit operator to the circuit, and the oracle() function was
called 3 times in total (1 time before Grover’s iterations and 2 times inside them).
According to the QSD theorem, to decompose an arbitrary 4-qubit gate we should
need the following number of gates:

N4−qubit
g = 3Nmr + 4(3Nmr + 4(3Nmr + 4Nzyz)) (5.2)

Nmr is the number of gates needed for a multiplexed rotation gate and is equal
to 4 (2 CNOT s gates plus 2 ordinary rotation gates); Nzyz is the number of gates
needed to decompose an arbitrary single qubit gate by means of the ZYZ Decompo-
sition [54] and is equal to 3. Doing the calculation, we will obtain N4−qubit

g = 444.
We can recalculate the total number of gates as follows:

Total number of gates = 53801− 3 + 3N4−qubit
g = 55130 (5.3)
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As for the circuit depth, we can assume that it can be estimated as the sum of
the CNOT gates from the multiplexed rotation gates and the rotation gates due
to the ZYZ Decomposition. We can estimate the circuit depth in the QSD for an
arbitrary 4-qubit gate as follows:

Estimated circuit depth = 3
Nmr

2
+ 4

(
3
Nmr

2
+ 4

(
3
Nmr

2
+ 4Nzyz

))
(5.4)

Doing the calculation (and remembering that Nmr = 4 and Nzyz = 3) we obtain
that, for an arbitrary 4-qubit gate, the estimated circuit depth is 318. So, we can
estimate the total circuit depth for this particular QiBAM execution as follows:

Total estimated circuit depth = 42510− 3 + 3 · 318 = 43461 (5.5)

The other two example proposed in Appendix B have total number of gates and
circuit depth not so different from those obtained in the example considering HIV
genome from 0 to 31.

5.4 Quantum Pattern Recognition

Python code for this algorithm is illustrated in Appendix C. In this case, we tested
the algorithm on the recurrence dot matrix formed by the first 32 characters of the
HIV genome as horizontal sequence and the pattern GAT as vertical sequence. We
searched for 4 binary patterns: 111, 110, 011 and 101 (other tests done by searching
the same patterns but on recurrence dot matrices formed with different pieces of
HIV genome are illustrated in Appendix C ). The following is the obtained output.

|TGGAAGGGCTAATTCACTCCCAAAGAAGACAA

----------------------------------

G|-XX--XXX----------------X--X----

A|---XX-----XX---X-----XXX-XX-X-XX

T|X--------X--XX---X--------------

Total number of qubits: 18

qr = |t, x, g, c, a>

Size of t: 5

Size of x: 3

Size of g: 7

Size of c: 2

Size of a: 1

shots = 1024

Grover’s algorithm had 2 iterations

Number of gates: 1577

Circuit depth: 685
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Size of Learning Set: 32

Chosen patterns for testing: [1 1 1], [1 1 0], [0 1 1], [1 0 1]

0->00000: [0 0 0]

1->00001: [1 0 0]

2->00010: [1 1 0]

3->00011: [0 1 0]

4->00100: [0 0 0]

5->00101: [1 0 0]

6->00110: [1 0 0]

7->00111: [1 0 1]

8->01000: [0 0 0]

9->01001: [0 1 0]

10->01010: [0 1 1]

11->01011: [0 0 1]

12->01100: [0 0 0]

13->01101: [0 0 0]

14->01110: [0 1 0]

15->01111: [0 0 1]

16->10000: [0 0 0]

17->10001: [0 0 0]

18->10010: [0 0 0]

19->10011: [0 0 0]

20->10100: [0 1 0]

21->10101: [0 1 0]

22->10110: [0 1 0]

23->10111: [0 0 0]

24->11000: [1 1 0]

25->11001: [0 1 0]

26->11010: [0 0 0]

27->11011: [1 1 0]

28->11100: [0 0 0]

29->11101: [0 1 0]

30->11110: [0 1 0]

31->11111: [0 0 0]

In the output of the algorithm, we can see the built recurrence dot matrix. It’s
worth to warn the reader that in the original paper [49] this matrix is built by
means of a spatial light modulator (that allows to obtain recurrence dot matrices
quicker than the classical way, even for long sequences), but we hadn’t such a tool
for testing, so we decided to build a little matrix classically in order to do some
testing. Since we have built the recurrence dot matrix classically for the sake of
testing, the time cost for doing it shouldn’t be included in the total time cost of the
algorithm.

The quantum register (|t, x, g, c, a〉) is organized in different portions: t
contains the index of a diagonal from the recurrence dot matrix; x contains the
elements of the diagonal itself, organized as a linear array; g and c are used as
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Figure 5.5. QPR execution: obtained probability histogram for recurrence dot
matrix between HIV genome from 0 to 31 and pattern GAT, searching patterns
111, 110, 011 and 101 over 1024 shots.

support by the initialization phase; finally, a is used as support by mct().

The Learning Set in the output data corresponds to the set formed by the ex-
tracted diagonals from the recurrence dot matrix together with their corresponding
indices. Since the horizontal sequence length is 32, the size of the learning set is
32.

The results histogram in Figure 5.5 shows five peaks, while all the other basis
states have practically zero probability: the five peaks correspond to 11000, 00010,
01010, 11011 and 00111; in decimal, they correspond to indices 24, 2, 10, 27 and
7. Looking at the learning set database, we can verify that the obtained indices
correspond to the solutions.

Other two examples are proposed in Appendix C, taking into consideration HIV
genome from 1000 to 1031 and from 2000 to 2031. In these two examples also,
the adopted search patterns were 111, 110, 011 and 101, with obtained histograms
illustrated in Figure C.1 and C.2. In both cases the algorithm correctly identifies the
solutions, while other non-solution states have practically zero probability, which
means that the algorithm seems to work very well.

In this case also, we need to recalculate the total number of gates and the
circuit depth as seen in the previous paragraph. In the first proposed execution
of this algorithm, the oracle() and inversionAboutMean() functions build two
unitary matrices acting on 3 qubits and 8 qubits respectively. Knowing this, we
can calculate the number of gates needed to decompose arbitrary unitary 8-qubit
and 3-qubit operators by means of QSD as follows (remembering that Nmr = 4 and
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Nzyz = 3):

N8−qubit
g = 3Nmr + 4(3Nmr + 4(3Nmr + 4(3Nmr + 4(3Nmr + 4(3Nmr+

+4(3Nmr + 4Nzyz))))))
(5.6)

N3−qubit
g = 3Nmr + 4(3Nmr + 4Nzyz) (5.7)

Doing the calculation, we obtain N8−qubit
g = 114684 and N3−qubit

g = 108. The
two unitary matrices built by oracle() and inversionAboutMean() are applied
inside Grover’s iterations, which were equal to 2 in this execution of this algorithm,
so we can say that the two unitary matrices are applied 2 times each. Knowing
this, we can calcuate the following:

Total number of gates = 1577− 4 + 2N8−qubit
g + 2N3−qubit

g = 231157 (5.8)

As we can see, the result is radically different (a lot higher) than the previ-
ous one. As for the circuit depth, we can estimate it as follows (doing the same
assumptions that we made in the previous paragraph):

Estimated circuit depth8−qubit operator = 3
Nmr

2
+ 4

(
3
Nmr

2
+ 4

(
3
Nmr

2
+

+4

(
3
Nmr

2
+ 4

(
3
Nmr

2
+ 4

(
3
Nmr

2
+ 4

(
3
Nmr

2
+ 4Nzyz

)))))) (5.9)

Estimated circuit depth3−qubit operator = 3
Nmr

2
+ 4

(
3
Nmr

2
+ 4Nzyz

)
(5.10)

Doing the calculation, we obtain Estimated circuit depth8−qubit operator = 81918
and Estimated circuit depth3−qubit operator = 78. At this point we can estimate the
total circuit depth as follows:

Total estimated circuit depth = 685− 4 + 2 · 81918 + 2 · 78 = 164673 (5.11)

The total estimated circuit depth also is a lot higher than what was output by
the algorithm’s Qiskit implementation. In terms of needed gates, this is the most
demanding algorithm between those examined in this thesis. The examples proposed
in Appendix C have a total number of gates and circuit depth not so different from
those obtained in the example considering HIV genome from 0 to 31.
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5.5 A brief summary about analyzed algorithms

In this paragraph we try to summarize the considerations we have done about
the analyzed algorithms. Quantum Associative Memory and Quantum Pattern
Recognition are the two algorithms that work better considering their initial goals:
they always identify (in the considered examples) the right solutions. If we take
into account the total number of gates and the circuit depth, QPR algorithm is,
without any doubt, the most demanding in terms of resources: this is an important
consideration that must be highlighted and that could denote a disadvantage of
QPR (the next paragraph will talk in more depth about this argument, highlighting
a correlation between noise, total number of gates and circuit depth in real quantum
computation); also, we need to consider that QPR needs a spatial light modulator
in order to obtain the recurrence dot matrix, while the other analyzed algorithms
do not need any additional tool. QAM was the “lightest” algorithm in terms
of resources, since it requires a much lower number of gates than the other two
algorithms, and in our testing always performed well.

Quantum indexed Bidirectional Associative Memory was the algorithm that pre-
sented some problems during testing: its initial goal was to find the most similar
sub-sequences to the search pattern from reference genome, considering Hamming
distances between them, but we have seen that the algorithm not always gave us
the correct results, with states having higher Hamming distances or even spurious
surpassing solutions states. Also, we need to consider that calculating Hamming
distance between binary encoding of sub-sequences from reference and search pat-
tern gives us a similarity measure only from an encoding point of view, since biology
is totally ignored in this process.

5.6 An example of noisy quantum computation

In this paragraph we will illustrate an example of quantum computation affected
by noise; in order to do so, we have run the QAM algorithm on the first 16 char-
acters of HIV genome, in order to lower the number of needed qubits below the
threshold of 14 qubits; we have chosen this threshold because the highest num-
ber of qubits freely offered by the IBM Quantum Experience cloud platform for
real quantum computation is 14, from the ibmq_16_melbourne backend. We have
executed the computation on the remote ibmq_qasm_simulator, applying a noise
model obtained from the available data about ibmq_16_melbourne (Python code
is available at Appendix A).

Reference genome: 3220022213003310

Chosen pattern for testing: 2?

Total number of qubits: 13

Number of ancilla qubits: 5

shots = 1024

Grover’s algorithm had 1 iteration

Number of gates: 3031

71



5 – Implementation and Testing

Circuit depth: 2275

Tag: 0000 - Data: 32

Tag: 0001 - Data: 22

Tag: 0010 - Data: 20

Tag: 0011 - Data: 00

Tag: 0100 - Data: 02

Tag: 0101 - Data: 22

Tag: 0110 - Data: 22

Tag: 0111 - Data: 21

Tag: 1000 - Data: 13

Tag: 1001 - Data: 30

Tag: 1010 - Data: 00

Tag: 1011 - Data: 03

Tag: 1100 - Data: 33

Tag: 1101 - Data: 31

Tag: 1110 - Data: 10

Figure 5.6. QAM: ideal computation for HIV genome from 0 to 15 and search
pattern 2? over 1024 shots.

Figure 5.6 shows the ideal computation of this algorithm, where the solution
states are correctly identified (peaks at 0001, 0010, 0101, 0110 and 0111). Executing
again the algorithm with the mentioned noise model applied gives us the histogram
in Figure 5.7: the peaks are no more clearly distinguishable and the noise caused a
loss of information. Figure 5.8 shows the comparison between the two histograms,
with ideal computation in red and real (noisy) computation in orange. We will
now talk in more depth about this phenomenon, in relation to the total number of
gates and the circuit depth parameter (that in this execution were equal to 3031
and 2275 respectively).
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Figure 5.7. QAM: real computation (with noise) for HIV genome from 0 to 15
and search pattern 2? over 1024 shots.

Figure 5.8. QAM: ideal computation vs. real computation comparison.

73



5 – Implementation and Testing

5.6.1 Noise, number of gates and circuit depth

Suppose we want to execute a generic quantum computation by means of a quan-
tum circuit composed by 300 gates (a much lower number than those obtained in
the testing of the algorithms in the previous paragraphs). From the public data
available about IBM Q16 Melbourne, we can mention the following two parameters:

• Mean gate error : 2.14× 10−3;

• Mean measure error : 2.68× 10−2.

If our circuit contains 300 gates, then the probability that at least one gate fails
is given by the following:

P (at least 1 gate fails) = 1− P (all gates succeed)

= 1− P (1 gate succeed)300

= 1− P (1− 2.14× 10−3)300

≈ 0.474

(5.12)

This means that, without accounting for decoherence errors, our circuit fails
nearly one time over two (47%). This is a first important piece of information that
gives us an idea of the problem of noise in quantum computation.

Now, speaking about the errors due to decoherence, we can try to compute the
time needed by the IBM Q16 Melbourne to finish the execution of our circuit. The
basis gates set used by the IBM Q16 Melbourne to realize quantum circuits and
translate more complicated gates into simpler ones is composed by U1, U2, U3
and CNOT (more information about U gates can be found at [56]). From public
data about the IBM Q16 Melbourne available at [57] and [58], we can obtain the
required data to calculate the following:

• time needed for U1: 0ns;

• time needed for U2: 100ns+ 20ns = 120ns;

• time needed for U3: 100ns+ 20ns+ 100ns+ 20ns = 240ns;

• rough average time needed for CNOT : 100ns+20ns+360ns+20ns+100ns+
20ns+ 360ns+ 20ns = 1000ns.

Now, suppose we have a quantum circuit with a depth equal to 90 (a much
lower number than those obtained in the testing of the algorithms in the previous
paragraphs) with gates from Qiskit (i.e., I, X, Y , Z, H, S, S†, T , T † and CNOT ).
Since these gates will be translated by means of the gates in the IBM Q16 Melbourne
basis gates set, we can say that the real circuit depth is approximately equal to
90. Now, let’s suppose that this circuit depth is composed for 80% by CNOT
gates, 15% by U3 gates and 5% U2 gates: this means that we have 72 CNOT
gates, 14 U3 gates and 4 U2 gates. By doing the necessary calculation, we can
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find that our circuit will take approximately 75.84µs. Knowing that the coherence
times for Melbourne are T1 = 71.5µs and T2 = 21.4µs, we can infer that we have a
relatively low probability to execute the whole circuit without at least one error due
to decoherence. In conclusion, we could say that without accounting for decoherence
errors we have approximately a 50% chance of executing successfully the circuit; on
the other hand, with decoherence errors this probability would probably be greatly
reduced [55].

It’s worth to notice that the example made above stands for a total number of
gates equal to 300 and a circuit depth of approximately 90 gates. The algorithms
that we have seen in this thesis have both the total number of gates and circuit
depth a lot higher than those in the example above: it shouldn’t be surprising that
trying the QAM algorithm with the IBM Q16 Melbourne noise model gave us a
final results histogram greatly affected by noise and a resulting loss of information.
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Chapter 6

Conclusions and future
developments

6.1 Present and Future of Quantum Computing

In this thesis we talked about the current status of the research in the Quan-
tum Computing field and we have seen a practical application of it to a very im-
portant field for medicine and biology, that is Genome Sequencing, implementing
and testing some existing quantum algorithms developed for pattern matching in
the genome alignment context. We have seen that Quantum Computing seems a
promising field of research, that could possibly revolutionize various fields where
it could be applied. Not only Genome Sequencing could benefit from Quantum
Computing: we can mention the following potential applications [59]:

• Artificial Intelligence: AI is based on the principle of learning from experi-
ence, becoming more accurate as feedback is given; this feedback is based
on calculating the probabilities for many possible choices, so AI is an ideal
candidate for quantum computation;

• Molecular Modeling : the goal of precision modeling of molecular interactions
is to find the optimal configurations for chemical reactions; this task is so
complex that only the simplest molecules can be analyzed by today’s digital
computers; on the other hand, chemical reactions are quantum in nature as
they form highly entangled quantum superposition states, so fully-developed
quantum computers would not have any difficulty evaluating even the most
complex processes;

• Cryptography : in Chapter 2 we briefly talked about Shor’s algorithm and
the fact that it can factorize large numbers into primes much more efficiently
than a classical computer; this means that with Quantum Computing today’s
methods for security could quickly become obsolete; it’s worth to mention that
in August 2015 the NSA began introducing a list of quantum-resistant cryp-
tography methods that would resist quantum computers, and in April 2016
the National Institute of Standards and Technology began a public evaluation
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process lasting four to six years; Quantum Computing gives us the chance to
develop new quantum encryption methods ;

• Financial Modeling : modern markets are some of the most complicated sys-
tems in existence; we have developed scientific and mathematical tools to
approach them, but one major disadvantage affecting them is the absence of
a controlled setting in which to run experiments; to solve this, investors and
analysts have turned to Quantum Computing, since the randomness inherent
to quantum computers is congruent to the stochastic nature of financial mar-
kets ; investors would like to evaluate the distribution of outcomes under an
extremely large number of scenarios generated at random;

• Weather Forecasting : some researchers have studied the existing relation be-
tween weather and the GDP (Gross Domestic Product) of a State, high-
lighting the fact that an important amount of GDP is directly or indirectly
affected by weather, impacting food production, transportation and retail
trade, among others; the ability to better predict the weather would have
enormous benefit to many fields, not to mention more time to take cover
from disasters; on the other hand, the equations governing weather processes
contain many variables, making classical simulation lengthy; quantum com-
puters could help in building better climate models that could give us more
insight into how humans are influencing the environment ; these models can
help us in estimating future warming and determining what steps need to be
taken now to prevent disasters;

• Particle Physics : models of particle physics are often extraordinarily complex,
making pen-and-paper solutions not suitable and requiring much computing
time for numerical simulation; this makes them ideal for Quantum Computing
and researchers have already been taking advantage of this.

The above list is by no means exhaustive, and many more applications could
be mentioned. However, we have seen that current real quantum computers are af-
fected by some important limitations, like the maximum number of available qubits
and the noise affecting computations involving many quantum gates. Many actors
are involved in the Quantum Computing research, like Google, IBM and Microsoft
(to mention the most important ones). Also, we have seen that anyone who wishes
to experiment with Quantum Computing and real quantum computers can rely
on cloud platforms, like IBM Quantum Experience (used in this thesis). Although
current Quantum Computing is affected by the above mentioned limitations, it re-
mains an exciting research field for physicists, engineers and computer scientists.
Nobody can now make reliable predictions about the future of Quantum Comput-
ing, but the potential benefits that could come from it are a big push to the research
and maybe, one day, Quantum Computing could become the revolution that will
change the future of mankind.
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Appendix A

Quantum Associative Memory

A.1 Python code

### Quantum Associative Memory by D. Ventura, T. Martinez

### Repository reference: https://gitlab.com/prince-ph0en1x/QaGs

(by A. Sarkar)

## Importing libraries

%matplotlib inline

import qiskit

from qiskit import IBMQ

from qiskit import Aer

from qiskit import QuantumCircuit, ClassicalRegister,

QuantumRegister, QiskitError

from qiskit.tools.visualization import circuit_drawer

from qiskit.tools.visualization import plot_histogram

from qiskit.providers.aer import noise

import random

import matplotlib

import math

from math import *

## Defining some auxiliary functions

def convertToNumEncoding(genome_str):

bin_str = ""

for i in range(0, len(genome_str)):

if genome_str[i] == ’A’:

bin_str = bin_str + "0"

elif genome_str[i] == ’C’:

bin_str = bin_str + "1"

elif genome_str[i] == ’G’:
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bin_str = bin_str + "2"

elif genome_str[i] == ’T’:

bin_str = bin_str + "3"

return bin_str

## Initializing global variables

# Alphabet set (0, 1, 2, 3) := {A, C, G, T} for DNA Nucleotide

bases

AS = {’00’, ’01’, ’10’, ’11’}

A = len(AS)

genome_file = open("HIVgenome.txt", "r")

RG = genome_file.read()

genome_file.close()

RG = convertToNumEncoding(RG)

RG = RG[0:32]

N = len(RG)

# Short Read search string

SR = "2?3"

M = len(SR)

Q_A = ceil(log2(A))

# Data Qubits

Q_D = Q_A * M

# Tag Qubits

Q_T = ceil(log2(N - M + 1))

# Ancilla Qubits

Q_anc = 8

# Ancilla qubits ids

anc = []

for qi in range(0, Q_anc):

anc.append(Q_D + Q_T + qi)

# Total number of qubits

Q = Q_D + Q_T + Q_anc

## Initialization of IBM QX

IBMQ.enable_account(’INSERT TOKEN HERE’)
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provider = IBMQ.get_provider()

# Choose a real device to simulate

device = provider.get_backend(’ibmq_16_melbourne’)

properties = device.properties()

coupling_map = device.configuration().coupling_map

# Generate an Aer noise model for device

noise_model = noise.device.basic_device_noise_model(properties)

basis_gates = noise_model.basis_gates

# Pick an available backend

# If this isn’t available pick a backend whose name containes

’_qasm_simulator’ from the output above

backend = provider.get_backend(’ibmq_qasm_simulator’)

# Uncomment if you want to use local simulator

#backend= Aer.get_backend(’qasm_simulator’)

## Defining functions

def QAM():

print(’Reference genome:’, RG)

print(’Chosen pattern for testing:’, SR)

print(’Total number of qubits:’, Q)

print(’Number of ancilla qubits:’, Q_anc)

qr = qiskit.QuantumRegister(Q)

cr = qiskit.ClassicalRegister(Q_T)

qc = qiskit.QuantumCircuit(qr, cr)

# Patterns are stored

generateInitialState(qc, qr)

# Patterns are turned into Hamming Distances

evolveToHammingDistances(qc, qr)

# Marking the zero Hamming Distance states

markZeroHammingDistance(qc, qr)

inversionAboutMean(qc, qr)

# Applying again this funcions turns back the Hamming

Distances into the original patterns

evolveToHammingDistances(qc, qr)

# Marking the stored patterns

markStoredPatterns(qc, qr)
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# From patterns to Hamming Distances again

evolveToHammingDistances(qc, qr)

inversionAboutMean(qc, qr)

# Grover’s iterations

it = 0

for i in range(0, 1):

markZeroHammingDistance(qc, qr)

inversionAboutMean(qc, qr)

it = it + 1

print("Grover’s algorithm had {} iterations.".format(int(it)))

finalGroverMeasurement(qc, qr, cr)

return qc

# Initialization as suggested by L. C. L. Hollenberg

def generateInitialState(qc, qr):

for qi in range(0, Q_T):

qc.h(qr[qi])

control_qubits = []

for ci in range(0, Q_T):

control_qubits.append(qr[ci])

ancilla_qubits = []

for qi in anc:

ancilla_qubits.append(qr[qi])

for qi in range(0, N - M + 1):

qis = format(qi, ’0’ + str(Q_T) + ’b’)

for qisi in range(0, Q_T):

if qis[qisi] == ’0’:

qc.x(qr[qisi])

wMi = RG[qi:qi + M]

print("Tag: {} - Data: {}".format(qis, wMi))

for wisi in range(0, M):

wisia = format(int(wMi[wisi]), ’0’ + str(Q_A) + ’b’)

for wisiai in range(0, Q_A):

if wisia[wisiai] == ’1’:

qc.mct(control_qubits, qr[Q_T + wisi * Q_A +

wisiai], ancilla_qubits)

for qisi in range(0,Q_T):

if qis[qisi] == ’0’:

qc.x(qr[qisi])

return

# Hamming Distances
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def evolveToHammingDistances(qc, qr):

for pi in range(0, M):

if SR[pi] == ’?’:

continue

ppi = format(int(SR[pi]), ’0’ + str(Q_A) + ’b’)

for ppii in range(0, Q_A):

if ppi[ppii] == ’1’:

qc.x(qr[Q_T + pi * Q_A + ppii])

return

# Oracle to mark zero Hamming Distance

def markZeroHammingDistance(qc, qr):

for qi in range(0, Q_D):

qc.x(qr[Q_T + qi])

control_qubits = []

for mi in range(0, M):

if SR[mi] != ’?’:

for ai in range(0, Q_A):

control_qubits.append(qr[Q_T + mi * Q_A + ai])

ancilla_qubits = []

for qi in anc:

ancilla_qubits.append(qr[qi])

target = control_qubits.pop()

qc.h(target)

qc.mct(control_qubits, target, ancilla_qubits)

qc.h(target)

for qi in range(0, Q_D):

qc.x(qr[Q_T + qi])

return

# Inversion about mean

def inversionAboutMean(qc, qr):

for si in range(0, Q_D + Q_T):

qc.h(qr[si])

qc.x(qr[si])

control_qubits = []

for qi in range(1, Q_D + Q_T):

control_qubits.append(qr[qi])

ancilla_qubits = []

for qi in anc:

ancilla_qubits.append(qr[qi])
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qc.h(qr[0])

qc.mct(control_qubits, qr[0], ancilla_qubits)

qc.h(qr[0])

for si in range(0, Q_D + Q_T):

qc.x(qr[si])

qc.h(qr[si])

return

# Oracle to mark stored patterns

def markStoredPatterns(qc, qr):

control_qubits = []

for qi in range(1, Q_D + Q_T):

control_qubits.append(qr[qi])

ancilla_qubits = []

for qi in anc:

ancilla_qubits.append(qr[qi])

for qi in range(0, N - M + 1):

qis = format(qi, ’0’ + str(Q_T) + ’b’)

for qisi in range(0, Q_T):

if qis[qisi] == ’0’:

qc.x(qr[qisi])

wMi = RG[qi:qi + M]

for wisi in range(0, M):

wisia = format(int(wMi[wisi]), ’0’ + str(Q_A) + ’b’)

for wisiai in range(0, Q_A):

if wisia[wisiai] == ’0’:

qc.x(qr[Q_T + wisi * Q_A + wisiai])

qc.h(qr[0])

qc.mct(control_qubits, qr[0], ancilla_qubits)

qc.h(qr[0])

for wisi in range(0,M):

wisia = format(int(wMi[wisi]), ’0’ + str(Q_A) + ’b’)

for wisiai in range(0, Q_A):

if wisia[wisiai] == ’0’:

qc.x(qr[Q_T + wisi * Q_A + wisiai])

for qisi in range(0, Q_T):

if qis[qisi] == ’0’:

qc.x(qr[qisi])

return

# Final measurement

def finalGroverMeasurement(qc, qr, cr):
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for qi in range(0, Q_T):

qc.measure(qr[qi], cr[qi])

return

## Main function

if __name__ == ’__main__’:

# Printing some data for testing

qc = QAM()

print("Circuit depth: {}".format(qc.depth()))

# Total number of gates

print("Number of gates: {}".format(len(qc.data)))

gate_num = 1

for item in qc.data:

qb_list = ""

for qb in item[1]:

qb_list = qb_list + str(qb.index) + ", "

qb_list = qb_list[:len(qb_list)-2]

print("#{}: {}, {}".format(gate_num, item[0].name,

qb_list))

gate_num = gate_num + 1

# Drawing circuit

#qc.draw()

# Showing histogram

# BE CAREFUL!

# Qiskit uses a LSB ordering, meaning the first qubit is all

the way to the right!

# For example, a state of |01> would mean the first qubit is

1 and the second qubit is 0!

sim = qiskit.execute(qc, backend=backend, shots=8192)

result = sim.result()

final = result.get_counts(qc)

print(final)

plot_histogram(final)

# Showing histogram (noisy simulation)

noisy_sim = qiskit.execute(qc, backend=backend, shots=8192,

coupling_map=coupling_map,

noise_model=noise_model,

basis_gates=basis_gates)

noisy_result = noisy_sim.result()

noisy_final = noisy_result.get_counts(qc)

print(noisy_final)

plot_histogram(noisy_final)
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# Ideal vs. noisy comparison

plot_histogram([final, noisy_final], color=[’red’, ’orange’])

A.2 Other tests

Reference genome: 20310200200133020310330303003010

Chosen pattern for testing: 2?3

Total number of qubits: 19

Number of ancilla qubits: 8

shots = 8192

Grover’s algorithm had 1 iteration

Number of gates: 9719

Circuit depth: 7425

Tag: 00000 - Data: 203

Tag: 00001 - Data: 031

Tag: 00010 - Data: 310

Tag: 00011 - Data: 102

Tag: 00100 - Data: 020

Tag: 00101 - Data: 200

Tag: 00110 - Data: 002

Tag: 00111 - Data: 020

Tag: 01000 - Data: 200

Tag: 01001 - Data: 001

Tag: 01010 - Data: 013

Tag: 01011 - Data: 133

Tag: 01100 - Data: 330

Tag: 01101 - Data: 302

Tag: 01110 - Data: 020

Tag: 01111 - Data: 203

Tag: 10000 - Data: 031

Tag: 10001 - Data: 310

Tag: 10010 - Data: 103

Tag: 10011 - Data: 033

Tag: 10100 - Data: 330

Tag: 10101 - Data: 303

Tag: 10110 - Data: 030

Tag: 10111 - Data: 303

Tag: 11000 - Data: 030

Tag: 11001 - Data: 300

Tag: 11010 - Data: 003

Tag: 11011 - Data: 030

Tag: 11100 - Data: 301

Tag: 11101 - Data: 010
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Figure A.1. Obtained probability histogram for HIV genome from 1000 to 1031
and search pattern equal to 2?3 over 8192 shots.

Reference genome: 33210222111130220000022213233220

Chosen pattern for testing: 2?3

Total number of qubits: 19

Number of ancilla qubits: 8

shots = 8192

Grover’s algorithm had 1 iteration

Number of gates: 10143

Circuit depth: 7804

Tag: 00000 - Data: 332

Tag: 00001 - Data: 321

Tag: 00010 - Data: 210

Tag: 00011 - Data: 102

Tag: 00100 - Data: 022

Tag: 00101 - Data: 222

Tag: 00110 - Data: 221

Tag: 00111 - Data: 211

Tag: 01000 - Data: 111

Tag: 01001 - Data: 111

Tag: 01010 - Data: 113

Tag: 01011 - Data: 130

Tag: 01100 - Data: 302

Tag: 01101 - Data: 022

Tag: 01110 - Data: 220

Tag: 01111 - Data: 200

Tag: 10000 - Data: 000
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Tag: 10001 - Data: 000

Tag: 10010 - Data: 000

Tag: 10011 - Data: 002

Tag: 10100 - Data: 022

Tag: 10101 - Data: 222

Tag: 10110 - Data: 221

Tag: 10111 - Data: 213

Tag: 11000 - Data: 132

Tag: 11001 - Data: 323

Tag: 11010 - Data: 233

Tag: 11011 - Data: 332

Tag: 11100 - Data: 322

Tag: 11101 - Data: 220

Figure A.2. Obtained probability histogram for HIV genome from 2000 to 2031
and search pattern equal to 2?3 over 8192 shots.

A.3 Verifying the validity of the implementation

We implemented in Qiskit a QAM version proposed by [46] in which the measuring
is done on the qubits encoding the index of a sub-sequence. In order to check
if our implementation was valid, we compared the results of our implementation
with those obtained from the execution of a compiled QASM code found on https:

//gitlab.com/prince-ph0en1x/QaGs (a repository by A. Sarkar), representing the
execution of QAM on a default reference genome equal to 3020310213 with search
pattern equal to 2?3 and 13 Grover’s iterations. Figure A.3 shows the comparison
between the obtained histograms: red columns denote the results obtained from our
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implementation, while orange columns denote the results obtained from execution
of compiled QASM code from https://gitlab.com/prince-ph0en1x/QaGs. The
two histograms practically coincide, highlighting the validity of our implementation.

Figure A.3. Comparison of the results obtained from our Qiskit imple-
mentation of QAM and from execution of compiled QASM code from
https://gitlab.com/prince-ph0en1x/QaGs.
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Appendix B

Quantum indexed Bidirectional
Associative Memory

B.1 Python code

### Quantum indexed Bidirectional Associative Memory by A.

Sarkar, Z. Al-Ars, C. G. Almudever, K. Bertels

### Repository reference: https://gitlab.com/prince-ph0en1x/QaGs

(by A. Sarkar)

## Importing libraries

%matplotlib inline

import qiskit

from qiskit import IBMQ

from qiskit import Aer

from qiskit import QuantumCircuit, ClassicalRegister,

QuantumRegister, QiskitError

from qiskit.quantum_info.operators import Operator

from qiskit.tools.visualization import circuit_drawer

from qiskit.tools.visualization import plot_histogram

from qiskit.providers.aer import noise

from qiskit.providers.aer.noise import NoiseModel, errors

import random

from math import *

import os

import re

import sys

import math

import matplotlib.pyplot as plt

import numpy as np

## Defining some auxiliary functions
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def hamming_distance(str1, str2):

count = sum(c1 != c2 for c1, c2 in zip(str1, str2))

return count

def convertToNumEncoding(genome_str):

bin_str = ""

for i in range(0, len(genome_str)):

if genome_str[i] == ’A’:

bin_str = bin_str + "0"

elif genome_str[i] == ’C’:

bin_str = bin_str + "1"

elif genome_str[i] == ’G’:

bin_str = bin_str + "2"

elif genome_str[i] == ’T’:

bin_str = bin_str + "3"

return bin_str

def convertReadToBin(read):

bin_read = ""

for i in range(0, len(read)):

if read[i] == ’0’:

bin_read = bin_read + "00"

elif read[i] == ’1’:

bin_read = bin_read + "01"

elif read[i] == ’2’:

bin_read = bin_read + "10"

elif read[i] == ’3’:

bin_read = bin_read + "11"

return bin_read

## Initializing global variables

# Alphabet set {0, 1, 2, 3} := {A, C, G, T} for DNA Nucleotide

bases

AS = {’00’, ’01’, ’10’, ’11’}

A = len(AS)

################# Default Test #################

# Reference Genome: "AATTGTCTAGGCGACC"

#w = "0033231302212011"

#N = len(w)

# Short Read: "CA"

#p = "10"

# Distributed query around zero Hamming distance

#pb = "0000"
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################################################

############## Test on HIV genome ##############

genome_file = open("HIVgenome.txt", "r")

w = genome_file.read()

genome_file.close()

w = convertToNumEncoding(w)

w = w[0:32]

N = len(w)

# Short read: "GA"

p = "203"

# Distributed query around zero Hamming distance

pb = "000000"

################################################

# Short Read size

M = len(p)

# Number of qubits to encode one character

Q_A = ceil(log2(A))

# Number of data qubits

Q_D = Q_A * M

# Tag Qubits

Q_T = ceil(log2(N-M))

# Ancilla Qubits

Q_anc = 8

# Ancilla qubits ids

anc = []

for qi in range(0, Q_anc):

anc.append(Q_D + Q_T + qi)

total_qubits = Q_D + Q_T + Q_anc

## Inizializing Oracle O Matrix

gamma = 0.25

SS = 2**Q_D

bp = np.empty([1, SS])

for i in range(0, SS):
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i_binary = format(i, ’0’+str(Q_D)+’b’)

hd = hamming_distance(i_binary, pb)

bp[0][i] = sqrt((gamma**hd)*((1 - gamma)**(Q_D - hd)))

BO = np.identity(SS) - 2*np.dot(np.conjugate(np.transpose(bp)),

bp)

orc = Operator(BO)

qbsp = []

for qi in range (0, Q_D):

qbsp.append(Q_T+qi)

qbsp.reverse()

## Initialization of IBM QX

IBMQ.enable_account(’INSERT TOKEN HERE’)

provider = IBMQ.get_provider()

# Pick an available backend

# If this isn’t available pick a backend whose name containes

’_qasm_simulator’ from the output above

backend = provider.get_backend(’ibmq_qasm_simulator’)

# Uncomment if you want to use local simulator

#backend= Aer.get_backend(’qasm_simulator’)

## Defining functions

def QIBAM():

print(’Reference genome:’, w)

print(’Chosen pattern for testing:’, p)

print(’Total number of qubits:’, total_qubits)

print(’Number of ancilla qubits:’, Q_anc)

qr = qiskit.QuantumRegister(total_qubits)

cr = qiskit.ClassicalRegister(Q_T)

qc = qiskit.QuantumCircuit(qr, cr)

# Initialise

generateInitialState(qc, qr)

# Transform to Hamming distance

evolveToHammingDistances(qc, qr)

# Oracle call

oracle(qc)

# Inversion about mean

inversionAboutMean(qc, qr)
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# Memory Oracle

markStoredStates(qc, qr)

# Inversion about mean

inversionAboutMean(qc, qr)

it = 0

for r in range(0, 2):

# Oracle call

oracle(qc)

# Inversion about mean

inversionAboutMean(qc, qr)

it = it + 1

print("Grover’s algorithm had {} iterations.".format(int(it)))

# Measurement

finalGroverMeasurement(qc, qr, cr)

return qc

# Initialization as suggested by L. C. L. Hollenberg

def generateInitialState(qc, qr):

for qi in range(0, Q_T):

qc.h(qr[qi])

control_qubits = []

for ci in range(0,Q_T):

control_qubits.append(qr[ci])

ancilla_qubits = []

for qi in anc:

ancilla_qubits.append(qr[qi])

for qi in range(0, N - M + 1):

qis = format(qi, ’0’ + str(Q_T) + ’b’)

for qisi in range(0, Q_T):

if qis[qisi] == ’0’:

qc.x(qr[qisi])

wMi = w[qi:qi + M]

print("Tag: {} - Data: {} - Hamming distance:

{}".format(qis, wMi,

hamming_distance(convertReadToBin(wMi),

convertReadToBin(p))))
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for wisi in range(0, M):

wisia = format(int(wMi[wisi]), ’0’ + str(Q_A) + ’b’)

for wisiai in range(0, Q_A):

if wisia[wisiai] == ’1’:

qc.mct(control_qubits, qr[Q_T + wisi * Q_A +

wisiai], ancilla_qubits)

for qisi in range(0, Q_T):

if qis[qisi] == ’0’:

qc.x(qr[qisi])

wMi = p

for qi in range(N - M + 1, 2**Q_T):

qis = format(qi, ’0’ + str(Q_T) + ’b’)

for qisi in range(0, Q_T):

if qis[qisi] == ’0’:

qc.x(qr[qisi])

for wisi in range(0, M):

wisia = format(int(wMi[wisi]), ’0’ + str(Q_A) + ’b’)

for wisiai in range(0, Q_A):

if wisia[wisiai] == ’0’:

qc.mct(control_qubits, qr[Q_T + wisi * Q_A +

wisiai], ancilla_qubits)

for qisi in range(0, Q_T):

if qis[qisi] == ’0’:

qc.x(qr[qisi])

return

# Calculate Hamming Distance

def evolveToHammingDistances(qc, qr):

for pi in range(0, M):

ppi = format(int(p[pi]), ’0’ + str(Q_A) + ’b’)

for ppii in range(0, Q_A):

if ppi[ppii] == ’1’:

qc.x(qr[Q_T + pi * Q_A + ppii])

return

# Oracle to mark zero Hamming distance

def oracle(qc):

qc.unitary(orc, qbsp, label=’orc’)

return

# Inversion about mean

def inversionAboutMean(qc, qr):

for si in range(0, Q_D + Q_T):

qc.h(qr[si])
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qc.x(qr[si])

control_qubits = []

for sj in range(0, Q_D + Q_T - 1):

control_qubits.append(qr[sj])

ancilla_qubits = []

for qi in anc:

ancilla_qubits.append(qr[qi])

qc.h(qr[Q_D + Q_T - 1])

qc.mct(control_qubits, qr[Q_D + Q_T - 1], ancilla_qubits)

qc.h(qr[Q_D + Q_T - 1])

for si in range(0,Q_D + Q_T):

qc.x(qr[si])

qc.h(qr[si])

return

# Oracle to mark Memory States

def markStoredStates(qc, qr):

control_qubits = []

for qsi in range(0, Q_T + Q_D - 1):

control_qubits.append(qr[qsi])

ancilla_qubits = []

for qi in anc:

ancilla_qubits.append(qr[qi])

for qi in range(0, N - M + 1):

qis = format(qi, ’0’ + str(Q_T) + ’b’)

wMi = w[qi:qi + M]

wt = qis

for wisi in range(0, M):

hd = int(format(int(wMi[wisi]), ’0’+str(Q_A)+’b’), 2)

^ int(format(int(p[wisi]), ’0’+str(Q_A)+’b’), 2)

wisia = format(hd, ’0’ + str(Q_A) + ’b’)

wt = wt + wisia

for qisi in range(0, Q_T + Q_D):

if wt[qisi] == ’0’:

qc.x(qr[qisi])

qc.h(qr[Q_D + Q_T - 1])

qc.mct(control_qubits, qr[Q_D + Q_T - 1],

ancilla_qubits)

qc.h(qr[Q_D + Q_T - 1])
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if wt[qisi] == ’0’:

qc.x(qr[qisi])

return

# Final measurement

def finalGroverMeasurement(qc, qr, cr):

for qi in range(0, Q_T):

qc.measure(qr[qi], cr[qi])

return

## Main function

if __name__ == ’__main__’:

# Printing some data for testing

qc = QIBAM()

print("Circuit depth: {}".format(qc.depth()))

# Total number of gates

print("Number of gates: {}".format(len(qc.data)))

gate_num = 1

for item in qc.data:

qb_list = ""

for qb in item[1]:

qb_list = qb_list + str(qb.index) + ", "

qb_list = qb_list[:len(qb_list)-2]

print("#{}: {}, {}".format(gate_num, item[0].name,

qb_list))

gate_num = gate_num + 1

# Drawing circuit

#qc.draw()

# Showing histogram

# BE CAREFUL!

# Qiskit uses a LSB ordering, meaning the first qubit is all

the way to the right!

# For example, a state of |01> would mean the first qubit is

1 and the second qubit is 0!

sim = qiskit.execute(qc, backend=backend, shots=8192)

result = sim.result()

final=result.get_counts(qc)

print(final)

plot_histogram(final)
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B.2 Other tests

Reference genome: 20310200200133020310330303003010

Chosen pattern for testing: 203

Total number of qubits: 19

Number of ancilla qubits: 8

shots = 8192

Grover’s algorithm had 2 iterations

Number of gates: 54245

Circuit depth: 42886

Tag: 00000 - Data: 203 - Hamming distance: 0

Tag: 00001 - Data: 031 - Hamming distance: 4

Tag: 00010 - Data: 310 - Hamming distance: 4

Tag: 00011 - Data: 102 - Hamming distance: 3

Tag: 00100 - Data: 020 - Hamming distance: 4

Tag: 00101 - Data: 200 - Hamming distance: 2

Tag: 00110 - Data: 002 - Hamming distance: 2

Tag: 00111 - Data: 020 - Hamming distance: 4

Tag: 01000 - Data: 200 - Hamming distance: 2

Tag: 01001 - Data: 001 - Hamming distance: 2

Tag: 01010 - Data: 013 - Hamming distance: 2

Tag: 01011 - Data: 133 - Hamming distance: 4

Tag: 01100 - Data: 330 - Hamming distance: 5

Tag: 01101 - Data: 302 - Hamming distance: 2

Tag: 01110 - Data: 020 - Hamming distance: 4

Tag: 01111 - Data: 203 - Hamming distance: 0

Tag: 10000 - Data: 031 - Hamming distance: 4

Tag: 10001 - Data: 310 - Hamming distance: 4

Tag: 10010 - Data: 103 - Hamming distance: 2

Tag: 10011 - Data: 033 - Hamming distance: 3

Tag: 10100 - Data: 330 - Hamming distance: 5

Tag: 10101 - Data: 303 - Hamming distance: 1

Tag: 10110 - Data: 030 - Hamming distance: 5

Tag: 10111 - Data: 303 - Hamming distance: 1

Tag: 11000 - Data: 030 - Hamming distance: 5

Tag: 11001 - Data: 300 - Hamming distance: 3

Tag: 11010 - Data: 003 - Hamming distance: 1

Tag: 11011 - Data: 030 - Hamming distance: 5

Tag: 11100 - Data: 301 - Hamming distance: 2

Tag: 11101 - Data: 010 - Hamming distance: 4

97



B – Quantum indexed Bidirectional Associative Memory

Figure B.1. Obtained probability histogram for HIV genome from 1000 to 1031
and search pattern equal to 203 over 8192 shots.

Reference genome: 33210222111130220000022213233220

Chosen pattern for testing: 203

Total number of qubits: 19

Number of ancilla qubits: 8

shots = 8192

Grover’s algorithm had 2 iterations

Number of gates: 54689

Circuit depth: 43265

Tag: 00000 - Data: 332 - Hamming distance: 4

Tag: 00001 - Data: 321 - Hamming distance: 3

Tag: 00010 - Data: 210 - Hamming distance: 3

Tag: 00011 - Data: 102 - Hamming distance: 3

Tag: 00100 - Data: 022 - Hamming distance: 3

Tag: 00101 - Data: 222 - Hamming distance: 2

Tag: 00110 - Data: 221 - Hamming distance: 2

Tag: 00111 - Data: 211 - Hamming distance: 2

Tag: 01000 - Data: 111 - Hamming distance: 4

Tag: 01001 - Data: 111 - Hamming distance: 4

Tag: 01010 - Data: 113 - Hamming distance: 3

Tag: 01011 - Data: 130 - Hamming distance: 6

Tag: 01100 - Data: 302 - Hamming distance: 2

Tag: 01101 - Data: 022 - Hamming distance: 3

Tag: 01110 - Data: 220 - Hamming distance: 3

Tag: 01111 - Data: 200 - Hamming distance: 2

Tag: 10000 - Data: 000 - Hamming distance: 3
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Tag: 10001 - Data: 000 - Hamming distance: 3

Tag: 10010 - Data: 000 - Hamming distance: 3

Tag: 10011 - Data: 002 - Hamming distance: 2

Tag: 10100 - Data: 022 - Hamming distance: 3

Tag: 10101 - Data: 222 - Hamming distance: 2

Tag: 10110 - Data: 221 - Hamming distance: 2

Tag: 10111 - Data: 213 - Hamming distance: 1

Tag: 11000 - Data: 132 - Hamming distance: 5

Tag: 11001 - Data: 323 - Hamming distance: 2

Tag: 11010 - Data: 233 - Hamming distance: 2

Tag: 11011 - Data: 332 - Hamming distance: 4

Tag: 11100 - Data: 322 - Hamming distance: 3

Tag: 11101 - Data: 220 - Hamming distance: 3

Figure B.2. Obtained probability histogram for HIV genome from 2000 to 2031
and search pattern equal to 203 over 8192 shots.

Please note: Number of gates and Circuit depth need to be recalculated
as seen in Paragraph 5.3 (take a look where Quantum Shannon Decomposition is
discussed).

B.3 Verifying the validity of the implementation

As for the QAM case, we have checked our Qiskit implementation of the QiBAM
algorithm by comparing its results with those obtained from the execution of a
compiled QASM code found on https://gitlab.com/prince-ph0en1x/QaGs, rep-
resenting an execution of QiBAM on a default reference genome 0033231302212011
with search pattern 10 and 3 Grover’s iterations. Figure B.3 shows the comparison
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between the obtained histograms: red columns denote the results obtained from our
implementation, while orange columns denote the results obtained from execution
of compiled QASM code from https://gitlab.com/prince-ph0en1x/QaGs.

Figure B.3. Comparison of the results obtained from our Qiskit imple-
mentation of QiBAM and from execution of compiled QASM code from
https://gitlab.com/prince-ph0en1x/QaGs.

Figure B.4. Quantum database containing sub-sequences, corresponding indices
and Hamming distances with respect to 10 from reference 0033231302212011 [46].

Figure B.4 shows the Hamming distances of the sub-sequences taken from the
above mentioned reference with respect to the above mentioned search pattern.
Looking at the table, sub-sequences at indices 0, 7, 11 and 14 have the lowest
Hamming distances. The histograms in Figure B.3 have their peaks at the right
indices, so this is a positive check of the validity of our implementation.
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Appendix C

Quantum Pattern Recognition

C.1 Python code

### Original articles:

###

### (1) "Improving the Sequence Alignment Method by Quantum

Multi-Pattern Recognition"

### Konstantinos Prousalis & Nikos Konofaos

### Published in: SETN ’18 Proceedings of the 10th Hellenic

Conference on Artificial Intelligence, Article No. 50

### Patras, Greece, July 09 - 12, 2018

###

### (2) "Quantum Pattern Recognition with Probability of 100%"

### Rigui Zhou & Qiulin Ding

### Published in: International Journal of Theoretical Physics,

Springer

### Received: 3 August 2007, Accepted: 11 September 2007,

Published online: 4 October 2007

###

### (3) "Initializing the amplitude distribution of a quantum

state"

### Dan Ventura & Tony Martinez

### Revised 2nd November 1999

## Importing libraries

%matplotlib inline

import qiskit

from qiskit import IBMQ

from qiskit import Aer

from qiskit import QuantumCircuit, ClassicalRegister,

QuantumRegister, QiskitError

from qiskit.quantum_info.operators import Operator
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from qiskit.tools.visualization import circuit_drawer

from qiskit.tools.visualization import plot_histogram

from qiskit.tools.visualization import plot_state_city

from qiskit.providers.aer import noise

import random

from math import *

import math

import matplotlib

import numpy as np

## Initializing global variables

# Quantum register is organized like the following:

# |t, x, g, c, a>, with (t+x) having n qubits (index+pattern), g

having (n-1) qubits and c having 2 qubits

# Also, ancilla qubits (a) as support for mct gate

genome_file = open("HIVgenome.txt", "r")

seq_x = genome_file.read()

genome_file.close()

seq_x = seq_x[0:32]

seq_y = "GAT"

Q_t = ceil(log2(len(seq_x)))

Q_x = len(seq_y)

Q_g = Q_t + Q_x - 1

Q_c = 2

Q_anc = 1

total_qubits = Q_t + Q_x + Q_g + Q_c + Q_anc

## Initialization of IBM QX

IBMQ.enable_account(’INSERT TOKEN HERE’)

provider = IBMQ.get_provider()

# Pick an available backend

# If this isn’t available pick a backend whose name containes

’_qasm_simulator’ from the output above

backend = provider.get_backend(’ibmq_qasm_simulator’)

# Uncomment if you want to use local simulator

#backend= Aer.get_backend(’qasm_simulator’)

## Functions for recurrence dot matrix

def delta(x, y):
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return 0 if x == y else 1

def M(seq1, seq2, i, j, k):

return sum(delta(x, y) for x, y in zip(seq1[i : i+k],seq2[j :

j+k]))

def makeMatrix(seq1, seq2, k):

n = len(seq1)

m = len(seq2)

return [[M(seq1, seq2, i, j, k) for j in range(m - k + 1)]

for i in range(n - k + 1)]

def plotMatrix(M, t, seq1, seq2, nonblank = chr(0x25A0), blank =

’ ’):

print(’ |’ + seq2)

print(’-’ * (2 + len(seq2)))

for label, row in zip(seq1, M):

line = ’’.join(nonblank if s < t else blank for s in row)

print(label + ’|’ + line)

return

def convertMatrix(M):

for i in range(0, len(M)):

for j in range(0, len(M[i])):

if M[i][j] == 0:

M[i][j] = 1

elif M[i][j] == 1:

M[i][j] = 0

return M

def dotplot(seq1, seq2, k = 1, t = 1):

if len(seq1) > len(seq2):

raise Exception("Vertical sequence cannot be longer than

horizontal sequence!")

M = makeMatrix(seq1, seq2, k)

plotMatrix(M, t, seq1, seq2)

M = convertMatrix(M)

return M

def getAllDiagonalsFromMatrix(M):

D = np.array([])

d_size = -1

for i in range(0, len(M[0])):

d = np.diag(M, k=i)

if d_size == -1:

d_size = len(d)

D = d
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elif d_size > len(d):

z = np.zeros((1, (d_size-len(d))), dtype=int)

d = np.append(d, z)

D = np.vstack((D, d))

else:

D = np.vstack((D, d))

return D

def convertBinArrayToStr(array):

string = ""

for bin_digit in array:

if bin_digit == 0:

string = string + ’0’

elif bin_digit == 1:

string = string + ’1’

return string

## Functions for Quantum Pattern Recognition

def generateInitialState(qc, qr, dot_matrix):

D = getAllDiagonalsFromMatrix(dot_matrix)

m = len(D)

print("Size of Learning Set: {}".format(len(D)))

idx = 0

for d in D:

print("{}->{}: {}".format(idx, format(idx,

’0’+str(Q_t)+’b’), d))

idx = idx + 1

z_values = convertBinArrayToStr(np.zeros(Q_t+Q_x))

ancilla_qubits = []

for qi in range(0, Q_anc):

ancilla_qubits.append(qr[Q_t + Q_x + Q_g + Q_c + qi])

for p in range(m, 0, -1):

bin_diagonal = convertBinArrayToStr(D[len(D)-p])

index = format((len(D)-p), ’0’ + str(Q_t) + ’b’)

instance = index + bin_diagonal

#print("Instance #{}, z={}".format(p, instance))

for j in range(1, Q_t + Q_x + 1):

if z_values[j-1] != instance[j-1]:

#print("F_0 #{} Applied to circuit with ctrl={}

and target={}".format(j, Q_t+Q_x+Q_g+Q_c-1,

j-1))

qc.x(qr[Q_t+Q_x+Q_g+Q_c-1])

qc.cx(qr[Q_t+Q_x+Q_g+Q_c-1], qr[j-1])

qc.x(qr[Q_t+Q_x+Q_g+Q_c-1])
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z_values = instance

#print("F_0 Applied to circuit with ctrl={} and

target={}".format(Q_t+Q_x+Q_g+Q_c-1,

Q_t+Q_x+Q_g+Q_c-2))

qc.x(qr[Q_t+Q_x+Q_g+Q_c-1])

qc.cx(qr[Q_t+Q_x+Q_g+Q_c-1], qr[Q_t+Q_x+Q_g+Q_c-2])

qc.x(qr[Q_t+Q_x+Q_g+Q_c-1])

#print("S_{},{} Applied to circuit with ctrl={} and

target={}".format(1, p, Q_t+Q_x+Q_g+Q_c-2,

Q_t+Q_x+Q_g+Q_c-1))

theta = 2*np.arcsin(1/sqrt(p))

qc.cry(theta, qr[Q_t+Q_x+Q_g+Q_c-2],

qr[Q_t+Q_x+Q_g+Q_c-1])

if instance[0]==’0’ and instance[1]==’0’:

#print("A_00 #1 Applied to circuit with ctrl={},{} and

target={}".format(0, 1, Q_t+Q_x))

qc.x(qr[0])

qc.x(qr[1])

qc.mct([qr[0], qr[1]], qr[Q_t+Q_x], ancilla_qubits)

qc.x(qr[1])

qc.x(qr[0])

elif instance[0]==’0’ and instance[1]==’1’:

#print("A_01 #1 Applied to circuit with ctrl={},{} and

target={}".format(0, 1, Q_t+Q_x))

qc.x(qr[0])

qc.mct([qr[0], qr[1]], qr[Q_t+Q_x], ancilla_qubits)

qc.x(qr[0])

elif instance[0]==’1’ and instance[1]==’0’:

#print("A_10 #1 Applied to circuit with ctrl={},{} and

target={}".format(0, 1, Q_t+Q_x))

qc.x(qr[1])

qc.mct([qr[0], qr[1]], qr[Q_t+Q_x], ancilla_qubits)

qc.x(qr[1])

elif instance[0]==’1’ and instance[1]==’1’:

#print("A_11 #1 Applied to circuit with ctrl={},{} and

target={}".format(0, 1, Q_t+Q_x))

qc.mct([qr[0], qr[1]], qr[Q_t+Q_x], ancilla_qubits)

for k in range(3, Q_t+Q_x+1):

if instance[k-1]==’0’:

#print("A_01 #{} Applied to circuit with

ctrl={},{} and target={}".format(k-1, k-1,

Q_t+Q_x+k-3, Q_t+Q_x+k-2))

qc.x(qr[k-1])
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qc.mct([qr[k-1], qr[Q_t+Q_x+k-3]],

qr[Q_t+Q_x+k-2], ancilla_qubits)

qc.x(qr[k-1])

elif instance[k-1]==’1’:

#print("A_11 #{} Applied to circuit with

ctrl={},{} and target={}".format(k-1, k-1,

Q_t+Q_x+k-3, Q_t+Q_x+k-2))

qc.mct([qr[k-1], qr[Q_t+Q_x+k-3]],

qr[Q_t+Q_x+k-2], ancilla_qubits)

#print("F_1 Applied to circuit with ctrl={} and

target={}".format(Q_t+Q_x+Q_g-1, Q_t+Q_x+Q_g))

qc.cx(qr[Q_t+Q_x+Q_g-1], qr[Q_t+Q_x+Q_g])

for k in range(Q_t+Q_x, 2, -1):

if instance[k-1]==’0’:

#print("A_01 #{} Applied to circuit with

ctrl={},{} and target={}".format(k-1, k-1,

Q_t+Q_x+k-3, Q_t+Q_x+k-2))

qc.x(qr[k-1])

qc.mct([qr[k-1], qr[Q_t+Q_x+k-3]],

qr[Q_t+Q_x+k-2], ancilla_qubits)

qc.x(qr[k-1])

elif instance[k-1]==’1’:

#print("A_11 #{} Applied to circuit with

ctrl={},{} and target={}".format(k-1, k-1,

Q_t+Q_x+k-3, Q_t+Q_x+k-2))

qc.mct([qr[k-1], qr[Q_t+Q_x+k-3]],

qr[Q_t+Q_x+k-2], ancilla_qubits)

if instance[0]==’0’ and instance[1]==’0’:

#print("A_00 #1 Applied to circuit with ctrl={},{} and

target={}".format(0, 1, Q_t+Q_x))

qc.x(qr[0])

qc.x(qr[1])

qc.mct([qr[0], qr[1]], qr[Q_t+Q_x], ancilla_qubits)

qc.x(qr[1])

qc.x(qr[0])

elif instance[0]==’0’ and instance[1]==’1’:

#print("A_01 #1 Applied to circuit with ctrl={},{} and

target={}".format(0, 1, Q_t+Q_x))

qc.x(qr[0])

qc.mct([qr[0], qr[1]], qr[Q_t+Q_x], ancilla_qubits)

qc.x(qr[0])

elif instance[0]==’1’ and instance[1]==’0’:

#print("A_10 #1 Applied to circuit with ctrl={},{} and

target={}".format(0, 1, Q_t+Q_x))

qc.x(qr[1])
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qc.mct([qr[0], qr[1]], qr[Q_t+Q_x], ancilla_qubits)

qc.x(qr[1])

elif instance[0]==’1’ and instance[1]==’1’:

#print("A_11 #1 Applied to circuit with ctrl={},{} and

target={}".format(0, 1, Q_t+Q_x))

qc.mct([qr[0], qr[1]], qr[Q_t+Q_x], ancilla_qubits)

#print("F Applied to circuit at

qubit={}".format(Q_t+Q_x+Q_g+Q_c-1))

qc.x(qr[Q_t+Q_x+Q_g+Q_c-1])

return

def getIndices(mySet):

indices = []

for i in range(0, len(mySet)):

tmp = ""

for j in range(0, len(mySet[i])):

tmp = tmp + str(int(mySet[i][j]))

indices.append(int(tmp, 2))

return indices

def oracle(query_set):

I = np.identity(2**Q_x)

b_sum = np.zeros((2**Q_x, 2**Q_x))

indices = getIndices(query_set)

for i in indices:

vs = np.zeros((1, 2**Q_x))

for j in range(0, 2**Q_x):

if j == i:

vs[0][j] = 1

b_sum = b_sum + np.dot(np.conjugate(np.transpose(vs)), vs)

U = I - (1-1j)*b_sum

return U

def inversionAboutMean(dot_matrix):

I = np.identity(2**(Q_t+Q_x))

b_sum = np.zeros((2**(Q_t+Q_x), 1))

D = getAllDiagonalsFromMatrix(dot_matrix)

mySet = np.empty([len(D), Q_t+Q_x])

for i in range(0, len(D)):

bin_arr = np.concatenate((convertIntToBinArray(i, Q_t),

D[i]))

mySet[i] = bin_arr

indices = getIndices(mySet)
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for i in indices:

vs = np.zeros((2**(Q_t+Q_x), 1))

for j in range(0, 2**(Q_t+Q_x)):

if j == i:

vs[j][0] = 1

b_sum = b_sum + vs

phi_zero = (1/sqrt(len(D))) * b_sum

phi_mtrx = np.dot(phi_zero,

np.conjugate(np.transpose(phi_zero)))

U = (1 + 1j) * phi_mtrx - 1j * I

return U

def convertIntToBinArray(j, dim):

if not isinstance(j, int):

raise Exception("Number of bits must be an integer!")

elif (j == 0 or j == 1) and dim < 1:

raise Exception("More bits needed to convert j in

binary!")

elif j > 1 and dim <= log2(j):

raise Exception("More bits needed to convert j in

binary!")

bin_arr = np.array([], dtype=int)

j_bin = format(int(j), ’0’ + str(dim) + ’b’)

for k in j_bin:

if k == ’1’:

bin_arr = np.append(bin_arr, 1)

elif k == ’0’:

bin_arr = np.append(bin_arr, 0)

return bin_arr

def QPR(dot_matrix):

qr = qiskit.QuantumRegister(total_qubits)

cr = qiskit.ClassicalRegister(Q_t)

qc = qiskit.QuantumCircuit(qr, cr)

print("Total number of qubits: {}".format(total_qubits))

print("Size of t register: {}".format(Q_t))

print("Size of x register: {}".format(Q_x))

print("Size of g register: {}".format(Q_g))

print("Size of c register: {}".format(Q_c))

print("Number of ancilla qubits: {}".format(Q_anc))

# A query set is manually defined

query_set = np.array([[1,1,1],
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[0,1,1],

[1,1,0],

[1,0,1]])

O_mtrx = oracle(query_set)

U_phi_mtrx = inversionAboutMean(dot_matrix)

O = Operator(O_mtrx)

U_phi = Operator(U_phi_mtrx)

O_qubits = []

for qi in range(Q_x-1, -1, -1):

O_qubits.append(Q_t + qi)

U_phi_qubits = []

for qi in range(Q_t+Q_x-1, -1, -1):

U_phi_qubits.append(qi)

generateInitialState(qc, qr, dot_matrix)

#simulateStateVector(qc)

T = round((math.pi/4)*sqrt(len(dot_matrix[0])/len(query_set)))

it = 0

for i in range(0, T):

print("Grover Iteration #{}".format(it+1))

qc.unitary(O, O_qubits, label=’O’)

#simulateStateVector(qc)

qc.unitary(U_phi, U_phi_qubits, label=’U_phi’)

#simulateStateVector(qc)

it = it + 1

print("Grover’s algorithm had {} iterations.".format(int(it)))

finalGroverMeasurement(qc, qr, cr)

return qc

def simulateStateVector(qc):

result = qiskit.execute(qc,

backend=Aer.get_backend(’statevector_simulator’)).result()

state = result.get_statevector(qc)

print("Number of states in vector: {}".format(len(state)))

it = 0

for item in state:

bin_str = format(it, ’0’+str(total_qubits)+’b’)

bin_str_rev = bin_str[len(bin_str)::-1]

if (item.real != 0 or item.imag != 0):

print("{}->{}: {}".format(it,

bin_str_rev[Q_t:Q_t+Q_x], item))
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it = it + 1

return

# Final measurement

def finalGroverMeasurement(qc, qr, cr):

for qi in range(0, Q_t):

qc.measure(qr[qi], cr[qi])

return

## Main function

if __name__ == ’__main__’:

# Printing some data for testing

M = dotplot(seq_y, seq_x)

qc = QPR(M)

print("Circuit depth: {}".format(qc.depth()))

# Total number of gates

print("Number of gates: {}".format(len(qc.data)))

gate_num = 1

for item in qc.data:

qb_list = ""

for qb in item[1]:

qb_list = qb_list + str(qb.index) + ", "

qb_list = qb_list[:len(qb_list)-2]

print("#{}: {}, {}".format(gate_num, item[0].name,

qb_list))

gate_num = gate_num + 1

# Drawing circuit

#qc.draw()

# Showing histogram

# BE CAREFUL!

# Qiskit uses a LSB ordering, meaning the first qubit is all

the way to the right!

# For example, a state of |01> would mean the first qubit is

1 and the second qubit is 0!

sim = qiskit.execute(qc, backend=backend, shots=1024)

result = sim.result()

final=result.get_counts(qc)

print(final)

plot_histogram(final)
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C.2 Other tests

|GATCAGAAGAACTTAGATCATTATATAATACA

----------------------------------

G|X----X--X------X----------------

A|-X--X-XX-XX---X-X--X--X-X-XX-X-X

T|--X---------XX---X--XX-X-X--X---

Total number of qubits: 18

Size of t register: 5

Size of x register: 3

Size of g register: 7

Size of c register: 2

Size of a register: 1

Size of Learning Set: 32

shots = 1024

Grover’s algorithm had 2 iterations

Number of gates: 1615

Circuit depth: 730

0->00000: [1 1 1]

1->00001: [0 0 0]

2->00010: [0 0 0]

3->00011: [0 1 0]

4->00100: [0 0 0]

5->00101: [1 1 0]

6->00110: [0 1 0]

7->00111: [0 0 0]

8->01000: [1 1 0]

9->01001: [0 1 0]

10->01010: [0 0 1]

11->01011: [0 0 1]

12->01100: [0 0 0]

13->01101: [0 1 0]

14->01110: [0 0 0]

15->01111: [1 1 1]

16->10000: [0 0 0]

17->10001: [0 0 0]

18->10010: [0 1 1]

19->10011: [0 0 1]

20->10100: [0 0 0]

21->10101: [0 1 1]

22->10110: [0 0 0]

23->10111: [0 1 1]

24->11000: [0 0 0]

25->11001: [0 1 0]

26->11010: [0 1 1]
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27->11011: [0 0 0]

28->11100: [0 1 0]

29->11101: [0 0 0]

30->11110: [0 1 0]

31->11111: [0 0 0]

Figure C.1. Obtained probability histogram for recurrence dot matrix between
HIV genome from 1000 to 1031 and pattern GAT, searching patterns 111, 110,
011 and 101 over 1024 shots.
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|TTGCAGGGCCCCTAGGAAAAAGGGCTGTTGGA

----------------------------------

G|--X--XXX------XX-----XXX--X--XX-

A|----X--------X--XXXXX----------X

T|XX----------X------------X-XX---

Total number of qubits: 18

Size of t register: 5

Size of x register: 3

Size of g register: 7

Size of c register: 2

Size of a register: 1

Size of Learning Set: 32

shots = 1024

Grover’s algorithm had 2 iterations

Number of gates: 1571

Circuit depth: 682

0->00000: [0 0 0]

1->00001: [0 0 0]

2->00010: [1 0 0]

3->00011: [0 1 0]

4->00100: [0 0 0]

5->00101: [1 0 0]

6->00110: [1 0 0]

7->00111: [1 0 0]

8->01000: [0 0 0]

9->01001: [0 0 0]

10->01010: [0 0 1]

11->01011: [0 0 0]

12->01100: [0 1 0]

13->01101: [0 0 0]

14->01110: [1 0 0]

15->01111: [1 1 0]

16->10000: [0 1 0]

17->10001: [0 1 0]

18->10010: [0 1 0]

19->10011: [0 1 0]

20->10100: [0 0 0]

21->10101: [1 0 0]

22->10110: [1 0 0]

23->10111: [1 0 1]

24->11000: [0 0 0]

25->11001: [0 0 1]

26->11010: [1 0 1]

27->11011: [0 0 0]

28->11100: [0 0 0]

29->11101: [1 0 0]
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30->11110: [1 1 0]

31->11111: [0 0 0]

Figure C.2. Obtained probability histogram for recurrence dot matrix between
HIV genome from 2000 to 2031 and pattern GAT, searching patterns 111, 110,
011 and 101 over 1024 shots.

Please note: Number of gates and Circuit depth need to be recalculated
as seen in Paragraph 5.3 (take a look where Quantum Shannon Decomposition is
discussed).

114



Bibliography

[1] Dario Gil, “The Dawn of Quantum Computing is Upon Us”, IBM Think Blog,
May 2016, https://www.ibm.com/blogs/think/2016/05/the-quantum-age-
of-computing-is-here/.

[2] Dr. Christine Corbett Moran, “Mastering quantum computing with IBM QX”,
Packt Publishing, 2019, ISBN: 978-1-78913-643-2.

[3] Michael A. Nielsen, Isaac L. Chuang, “Quantum Computation and Quantum
Information: 10th Anniversary Edition”, Cambridge University Press, 2010,
ISBN: 978-1-107-00217-3.

[4] Jon Porter, “Google confirms “quantum supremacy” breakthrough”, The
Verge, October 2019, https://www.theverge.com/2019/10/23/20928294/
google-quantum-supremacy-sycamore-computer-qubit-milestone.

[5] “Quantum supremacy using a programmable superconducting processor”, Na-
ture, Vol. 574, 2019, pp. 505-510, DOI 10.1038/s41586-019-1666-5.

[6] E. Pednault, J. Gunnels, D. Maslov, J. Gambetta, “On “Quantum
Supremacy””, IBM Research Blog, October 2019, https://www.ibm.com/
blogs/research/2019/10/on-quantum-supremacy/.

[7] Quantum annealing, Wikipedia, https://en.wikipedia.org/wiki/
Quantum annealing.

[8] “Introduction to the D-Wave Quantum Hardware”, D-Wave Tutori-
als, https://www.dwavesys.com/tutorials/background-reading-series/
introduction-d-wave-quantum-hardware.

[9] Bra-ket notation, Wikipedia, https://en.wikipedia.org/wiki/Bra%E2%80%
93ket notation.

[10] Hilbert space, Wikipedia, https://en.wikipedia.org/wiki/Hilbert space.
[11] Unitary Matrix, Wolfram MathWorld, http://mathworld.wolfram.com/

UnitaryMatrix.html.
[12] Barry C. Sanders, “How to Build a Quantum Computer”, IOP Publishing,

November 2017, ISBN: 978-0-7503-1536-4, DOI 10.1088/978-0-7503-1536-4.
[13] “Quantum Computing - 73 Companies that are Changing the Com-

puting Landscape”, Medium, August 2019, https://medium.com/
datadriveninvestor/quantum-computing-73-companies-that-are-

changing-the-computing-landscape-f39ebf0ccfee.
[14] “Classical Simulators for Quantum Computers”, Medium, Febraury

2019, https://medium.com/qiskit/classical-simulators-for-quantum-
computers-4b994dad4fa2.

[15] N. Khammassi, G. G. Guerreschi, I. Ashraf, J. W. Hogaboam, C. G. Almude-
ver, K. Bertels, “cQASM v1.0: Towards a Common Quantum Assembly Lan-
guage”, https://arxiv.org/abs/1805.09607v1.

115

https://www.ibm.com/blogs/think/2016/05/the-quantum-age-of-computing-is-here/
https://www.ibm.com/blogs/think/2016/05/the-quantum-age-of-computing-is-here/
https://www.theverge.com/2019/10/23/20928294/google-quantum-supremacy-sycamore-computer-qubit-milestone
https://www.theverge.com/2019/10/23/20928294/google-quantum-supremacy-sycamore-computer-qubit-milestone
https://doi.org/10.1038/s41586-019-1666-5
https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/
https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/
https://en.wikipedia.org/wiki/Quantum_annealing
https://en.wikipedia.org/wiki/Quantum_annealing
https://www.dwavesys.com/tutorials/background-reading-series/introduction-d-wave-quantum-hardware
https://www.dwavesys.com/tutorials/background-reading-series/introduction-d-wave-quantum-hardware
https://en.wikipedia.org/wiki/Bra%E2%80%93ket_notation
https://en.wikipedia.org/wiki/Bra%E2%80%93ket_notation
https://en.wikipedia.org/wiki/Hilbert_space
http://mathworld.wolfram.com/UnitaryMatrix.html
http://mathworld.wolfram.com/UnitaryMatrix.html
https://doi.org/10.1088/978-0-7503-1536-4
https://medium.com/datadriveninvestor/quantum-computing-73-companies-that-are-changing-the-computing-landscape-f39ebf0ccfee
https://medium.com/datadriveninvestor/quantum-computing-73-companies-that-are-changing-the-computing-landscape-f39ebf0ccfee
https://medium.com/datadriveninvestor/quantum-computing-73-companies-that-are-changing-the-computing-landscape-f39ebf0ccfee
https://medium.com/qiskit/classical-simulators-for-quantum-computers-4b994dad4fa2
https://medium.com/qiskit/classical-simulators-for-quantum-computers-4b994dad4fa2
https://arxiv.org/abs/1805.09607v1


Bibliography

[16] Cloud-based Quantum Computing, Wikipedia, https://en.wikipedia.org/
wiki/Cloud-based quantum computing.

[17] Jupyter Notebook, https://jupyter.org/.
[18] Anaconda, https://www.anaconda.com/distribution/.
[19] “DNA: Structure, Function and Discovery”, BIJU’S, https://byjus.com/

biology/dna-structure/.
[20] Chargaff’s rules, Wikipedia, https://en.wikipedia.org/wiki/Chargaff%

27s rules.
[21] DNA sequencing, Khan Academy, https://www.khanacademy.org/science/

high-school-biology/hs-molecular-genetics/hs-biotechnology/a/

dna-sequencing.
[22] Human Genome Project, Wikipedia, https://en.wikipedia.org/wiki/

Human Genome Project.
[23] “DNA Sequencing Fact Sheet”, National Human Genome Research Institute,

https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-
Fact-Sheet.

[24] J. M. Heather, B. Chain, “The sequence of sequencers: The history of se-
quencing DNA”, Genomics, Vol. 107, No. 1, January 2016, pp. 1-8, DOI
10.1016/j.ygeno.2015.11.003.

[25] RNA, Wikipedia, https://en.wikipedia.org/wiki/RNA.
[26] Sequence assembly, Wikipedia, https://en.wikipedia.org/wiki/

Sequence assembly.
[27] De novo sequence assemblers, Wikipedia, https://en.wikipedia.org/wiki/

De novo sequence assemblers.
[28] C. B. Abhilash, K. Rohitaksha, “A Comparative Study on Global and Lo-

cal Alignment Algorithm Methods”, International Journal of Emerging Tech-
nology and Advanced Engineering, Vol. 4, No. 1, January 2014, http://

citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.589.9514.
[29] “Sequence Analysis, Lecture notes”, Bielefeld University, Faculty of Technol-

ogy, Winter 2015/2016, http://profs.scienze.univr.it/~liptak/FundBA/
files/sequence analysis ws1516.pdf.

[30] Ben Langmead, “Strings and Exact Matching”, Johns Hopkins Whiting School
of Engineering, Department of Computer Science, http://www.cs.jhu.edu/

~langmea/resources/lecture notes/03 strings exact matching v2.pdf.
[31] Ben Langmead, “Strings, matching, Boyer-Moore”, Johns Hop-

kins Whiting School of Engineering, Department of Computer Sci-
ence, http://www.cs.jhu.edu/~langmea/resources/lecture notes/

strings matching boyer moore.pdf.
[32] “Computational Biology, Exact String Matching”, Stony Brook University,

https://rob-p.github.io/CSE549F17/lectures/Lec03.pdf.
[33] Needleman-Wunsch Algorithm, Bioinformatics Guide, https:

//bioinfoguide.com/index.php/algorithms-and-methods/10-needleman-
wunsch-algorithm.

[34] Smith-Waterman Algorithm, Freiburg RNA Tools, University of Freiburg, De-
partment of Computer Science, http://rna.informatik.uni-freiburg.de/
Teaching/index.jsp?toolName=Smith-Waterman.

[35] Yevgeniy Grigoryev, “How Much Information is Stored in the Hu-
man Genome?”, BiteSizeBio, https://bitesizebio.com/8378/how-much-

116

https://en.wikipedia.org/wiki/Cloud-based_quantum_computing
https://en.wikipedia.org/wiki/Cloud-based_quantum_computing
https://jupyter.org/
https://www.anaconda.com/distribution/
https://byjus.com/biology/dna-structure/
https://byjus.com/biology/dna-structure/
https://en.wikipedia.org/wiki/Chargaff%27s_rules
https://en.wikipedia.org/wiki/Chargaff%27s_rules
https://www.khanacademy.org/science/high-school-biology/hs-molecular-genetics/hs-biotechnology/a/dna-sequencing
https://www.khanacademy.org/science/high-school-biology/hs-molecular-genetics/hs-biotechnology/a/dna-sequencing
https://www.khanacademy.org/science/high-school-biology/hs-molecular-genetics/hs-biotechnology/a/dna-sequencing
https://en.wikipedia.org/wiki/Human_Genome_Project
https://en.wikipedia.org/wiki/Human_Genome_Project
https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Fact-Sheet
https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Fact-Sheet
https://doi.org/10.1016/j.ygeno.2015.11.003
https://en.wikipedia.org/wiki/RNA
https://en.wikipedia.org/wiki/Sequence_assembly
https://en.wikipedia.org/wiki/Sequence_assembly
https://en.wikipedia.org/wiki/De_novo_sequence_assemblers
https://en.wikipedia.org/wiki/De_novo_sequence_assemblers
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.589.9514
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.589.9514
http://profs.scienze.univr.it/~liptak/FundBA/files/sequence_analysis_ws1516.pdf
http://profs.scienze.univr.it/~liptak/FundBA/files/sequence_analysis_ws1516.pdf
http://www.cs.jhu.edu/~langmea/resources/lecture_notes/03_strings_exact_matching_v2.pdf
http://www.cs.jhu.edu/~langmea/resources/lecture_notes/03_strings_exact_matching_v2.pdf
http://www.cs.jhu.edu/~langmea/resources/lecture_notes/strings_matching_boyer_moore.pdf
http://www.cs.jhu.edu/~langmea/resources/lecture_notes/strings_matching_boyer_moore.pdf
https://rob-p.github.io/CSE549F17/lectures/Lec03.pdf
https://bioinfoguide.com/index.php/algorithms-and-methods/10-needleman-wunsch-algorithm
https://bioinfoguide.com/index.php/algorithms-and-methods/10-needleman-wunsch-algorithm
https://bioinfoguide.com/index.php/algorithms-and-methods/10-needleman-wunsch-algorithm
http://rna.informatik.uni-freiburg.de/Teaching/index.jsp?toolName=Smith-Waterman
http://rna.informatik.uni-freiburg.de/Teaching/index.jsp?toolName=Smith-Waterman
https://bitesizebio.com/8378/how-much-information-is-stored-in-the-human-genome/
https://bitesizebio.com/8378/how-much-information-is-stored-in-the-human-genome/


Bibliography

information-is-stored-in-the-human-genome/.
[36] “Grover’s algorithm and its Qiskit implementation”, IBM Quantum Ex-

perience, https://quantum-computing.ibm.com/support/guides/quantum-
algorithms-with-qiskit?page=5cc0d9fd86b50d00642353ca#.

[37] C. Lavor, L. R. U. Manssur, R. Portugal, “Grover’s Algorithm: Quantum
Database Search”, https://arxiv.org/abs/quant-ph/0301079v1.

[38] D. Ventura, T. Martinez, “Quantum associative memory with exponential ca-
pacity”, Proceedings of the International Joint Conference on Neural Networks,
May 1998, pp. 509-13, DOI 10.1109/IJCNN.1998.682319.

[39] D. Ventura, T. Martinez, “A Quantum Associative Memory Based on Grover’s
Algorithm”, Proceedings of the International Conference on Artificial Neural
Networks and Genetic Algorithms, 1999, pp. 22-27, DOI 10.1007/978-3-7091-
6384-9 5.

[40] D. Ventura, T. Martinez, “Quantum Associative Memory”, Information
Sciences, Vol. 124, No. 1-4, May 2000, pp. 273-296, DOI 10.1016/S0020-
0255(99)00101-2.

[41] D. Ventura, T. Martinez, “Initializing the Amplitude Distribution of a Quan-
tum State”, https://arxiv.org/abs/quant-ph/9807054v1.

[42] E. Biham, O. Biham, D. Biron, M. Grassl and D. A. Lidar, “Grover’s Quantum
Search Algorithm for an Arbitrary Initial Amplitude Distribution”, https:

//arxiv.org/abs/quant-ph/9807027v2.
[43] L. C. L. Hollenberg, “Fast Quantum Search Algorithms in Protein Sequence

Comparison: Quantum bioinformatics”, Physical Review E, Vol. 62, No. 5,
November 2000, DOI 10.1103/PhysRevE.62.7532.

[44] Hamming distance, Wikipedia, https://en.wikipedia.org/wiki/
Hamming distance.

[45] M. Boyer, G. Brassard, P. Hoyer, A. Tapp, “Tight bounds on quantum search-
ing”, Fortschritte der Physik - Progress of Physics, Vol. 46, No. 4-5, June
1998, pp. 493-505, DOI 10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-
PROP493>3.0.CO;2-P.

[46] A. Sarkar, Z. Al-Ars, C. G. Almudever, K. Bertels, “An algorithm for
DNA read alignment on quantum accelerators”, https://arxiv.org/abs/
1909.05563v1.

[47] A. A. Ezhov, A. V. Nifanova, D. Ventura, “Quantum associative memory with
distributed queries”, Information Sciences, Vol. 128, No. 3-4, October 2000,
pp. 271-293, DOI 10.1016/S0020-0255(00)00057-8.

[48] J.-P. Tchapet Njafa, S.G. Nana Engo, Paul Woafo, “Quantum associative
memory with improved distributed queries”, International Journal of Theo-
retical Physics, Vol. 52 No. 6, June 2013, pp. 1787-1801, DOI 10.1007/s10773-
012-1237-0.

[49] K. Prousalis, N. Konofaos, “Improving the Sequence Alignment Method by
Quantum Multi-Pattern Recognition”, Proceeding SETN ’18 Proceedings of
the 10th Hellenic Conference on Artificial Intelligence, Patras (Greece), July
9-12, 2018, Article No. 50, DOI 10.1145/3200947.3201041.

[50] R. Zhou, Q. Ding, “Quantum Pattern Recognition with Probability of 100%”,
International Journal of Theoretical Physics, Vol. 47, No. 5, May 2008, pp.
1278-1285, DOI 10.1007/s10773-007-9561-5.

[51] Qiskit, https://qiskit.org/documentation/index.html.

117

https://bitesizebio.com/8378/how-much-information-is-stored-in-the-human-genome/
https://bitesizebio.com/8378/how-much-information-is-stored-in-the-human-genome/
https://quantum-computing.ibm.com/support/guides/quantum-algorithms-with-qiskit?page=5cc0d9fd86b50d00642353ca#
https://quantum-computing.ibm.com/support/guides/quantum-algorithms-with-qiskit?page=5cc0d9fd86b50d00642353ca#
https://arxiv.org/abs/quant-ph/0301079v1
https://doi.org/10.1109/IJCNN.1998.682319
https://doi.org/10.1007/978-3-7091-6384-9_5
https://doi.org/10.1007/978-3-7091-6384-9_5
https://doi.org/10.1016/S0020-0255(99)00101-2
https://doi.org/10.1016/S0020-0255(99)00101-2
https://arxiv.org/abs/quant-ph/9807054v1
https://arxiv.org/abs/quant-ph/9807027v2
https://arxiv.org/abs/quant-ph/9807027v2
https://doi.org/10.1103/PhysRevE.62.7532
https://en.wikipedia.org/wiki/Hamming_distance
https://en.wikipedia.org/wiki/Hamming_distance
https://doi.org/10.1002/(SICI)1521-3978(199806)46:4/5%3C493::AID-PROP493%3E3.0.CO;2-P
https://doi.org/10.1002/(SICI)1521-3978(199806)46:4/5%3C493::AID-PROP493%3E3.0.CO;2-P
https://arxiv.org/abs/1909.05563v1
https://arxiv.org/abs/1909.05563v1
https://doi.org/10.1016/S0020-0255(00)00057-8
https://doi.org/10.1007/s10773-012-1237-0
https://doi.org/10.1007/s10773-012-1237-0
https://doi.org/10.1145/3200947.3201041
https://doi.org/10.1007/s10773-007-9561-5
https://qiskit.org/documentation/index.html


Bibliography

[52] Structure and genome of HIV, Wikipedia, https://en.wikipedia.org/wiki/
Structure and genome of HIV.

[53] “How to calculate circuit depth properly?”, StackExchange - Quantum Com-
puting, https://quantumcomputing.stackexchange.com/questions/5769/
how-to-calculate-circuit-depth-properly.

[54] V. V. Shende, S. S. Bullock, I. L. Markov, “Synthesis of Quantum Logic
Circuits”, IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, Vol. 25, No. 6, June 2006, pp. 1000-1010, DOI 10.1109/T-
CAD.2005.855930.

[55] “What is maximum circuit depth and size IBM Q5 and Q16
could handle?”, StackExchange - Quantum Computing, https:

//quantumcomputing.stackexchange.com/questions/5747/what-is-
maximum-circuit-depth-and-size-ibm-q5-and-q16-could-handle.

[56] “Overview of Quantum Gates”, IBM Quantum Experience, https:

//quantum-computing.ibm.com/support/guides/gate-overview?section=
5d00d964853ef8003c6d6820#

[57] IBM Q 16 Melbourne V1.x.x, GitHub, https://github.com/Qiskit/ibmq-
device-information/tree/master/backends/melbourne/V1.

[58] IBM Q 16 Melbourne V1.x.x Version Log, GitHub, https://github.com/
Qiskit/ibmq-device-information/blob/master/backends/melbourne/

V1/version log.md.
[59] Mark Jackson, “6 Things Quantum Computers Will Be Incredibly Useful

For”, SingularityHub, June 2017, https://singularityhub.com/2017/06/
25/6-things-quantum-computers-will-be-incredibly-useful-for/.

[60] ART, https://www.niehs.nih.gov/research/resources/software/
biostatistics/art/index.cfm.

[61] Bowtie 2, http://bowtie-bio.sourceforge.net/bowtie2/index.shtml.

118

https://en.wikipedia.org/wiki/Structure_and_genome_of_HIV
https://en.wikipedia.org/wiki/Structure_and_genome_of_HIV
https://quantumcomputing.stackexchange.com/questions/5769/how-to-calculate-circuit-depth-properly
https://quantumcomputing.stackexchange.com/questions/5769/how-to-calculate-circuit-depth-properly
https://doi.org/10.1109/TCAD.2005.855930
https://doi.org/10.1109/TCAD.2005.855930
https://quantumcomputing.stackexchange.com/questions/5747/what-is-maximum-circuit-depth-and-size-ibm-q5-and-q16-could-handle
https://quantumcomputing.stackexchange.com/questions/5747/what-is-maximum-circuit-depth-and-size-ibm-q5-and-q16-could-handle
https://quantumcomputing.stackexchange.com/questions/5747/what-is-maximum-circuit-depth-and-size-ibm-q5-and-q16-could-handle
https://quantum-computing.ibm.com/support/guides/gate-overview?section=5d00d964853ef8003c6d6820#
https://quantum-computing.ibm.com/support/guides/gate-overview?section=5d00d964853ef8003c6d6820#
https://quantum-computing.ibm.com/support/guides/gate-overview?section=5d00d964853ef8003c6d6820#
https://github.com/Qiskit/ibmq-device-information/tree/master/backends/melbourne/V1
https://github.com/Qiskit/ibmq-device-information/tree/master/backends/melbourne/V1
https://github.com/Qiskit/ibmq-device-information/blob/master/backends/melbourne/V1/version_log.md
https://github.com/Qiskit/ibmq-device-information/blob/master/backends/melbourne/V1/version_log.md
https://github.com/Qiskit/ibmq-device-information/blob/master/backends/melbourne/V1/version_log.md
https://singularityhub.com/2017/06/25/6-things-quantum-computers-will-be-incredibly-useful-for/
https://singularityhub.com/2017/06/25/6-things-quantum-computers-will-be-incredibly-useful-for/
https://www.niehs.nih.gov/research/resources/software/biostatistics/art/index.cfm
https://www.niehs.nih.gov/research/resources/software/biostatistics/art/index.cfm
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

	Introduction
	Scope of the thesis
	Organisation of the thesis

	Why Quantum Computing?
	A new way of computing information
	Shor's algorithm
	Grover's algorithm
	Deutsch-Jozsa algorithm
	Obstacles that separates us from quantum supremacy

	Quantum Computing: basic concepts
	Qubits and quantum states
	Quantum gates and quantum circuits

	Real quantum computers and quantumsimulators
	Technologies for real quantum computers
	Quantum simulators
	Quantum Assembly

	Tools used

	An overview of Genome Sequencing
	An introduction to the problem
	DNA Structure
	Genome Sequencing
	Sequencing methods: an historical perspective
	From Sequencing to Reconstruction

	DNA Alignment
	Exact matching methods
	Approximate matching methods

	DNA Big Data

	Quantum Pattern Matching algorithms
	Quantum search applied to Pattern Matching
	The fundamental Grover's Algorithm
	The Oracle
	The Algorithm

	Quantum Associative Memory
	Arbitrary amplitude distribution initialization
	The Algorithm

	Fast Quantum Search based onHamming distance
	Quantum indexed Bidirectional Associative Memory
	Quantum Associative Memory with Distributed Queries
	The QiBAM model

	Quantum Pattern Recognition

	Implementation and Testing
	A brief introduction to the implementation and testing work
	Tools used
	How testing was done
	Chosen algorithms
	Decoherence and number quantum of gates

	Quantum Associative Memory
	Quantum indexed Bidirectional Associative Memory
	Quantum Pattern Recognition
	A brief summary about analyzed algorithms
	An example of noisy quantum computation
	Noise, number of gates and circuit depth


	Conclusions and future developments
	Present and Future of Quantum Computing

	Quantum Associative Memory
	Python code
	Other tests
	Verifying the validity of the implementation

	Quantum indexed Bidirectional Associative Memory
	Python code
	Other tests
	Verifying the validity of the implementation

	Quantum Pattern Recognition
	Python code
	Other tests

	Bibliography

