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Summary

Predictive maintenance has always been a difficult problem in real word mod-
ern industries. With the new Industry 4.0 the manufacturing environments
are becoming digital factories and this context produce vast volumes of raw
data.

Enhancing manufacturing intelligence brings a wide range of benefits, pre-
dictive diagnostics is one of the most important. To sustain this well known
issue, this work present the design and development of a semi-supervised
data-driven methodology, to characterize multi-cycle processes and support
robot cycle labelling.

The latter exploits the best developed clustering algorithms, discovering
automatically clusters of production cycles through time-independent com-
mon properties.

Later, a self-tuning strategy has been integrated to help the selection of
the best approach, input data and parameter.

Finally, each cluster is locally characterized from a set of most relevant
features.
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Chapter 1

Introduction

With the new Industry 4.0, the manufacturing environments are evolving
in digital factories and this context produce enormous volumes of raw data.
Leading the data will help managers on making better-informed business
decision, improving production processes and bringing advantages to who
will lead this fundamental knowledge.

Predicting and avoiding equipment and devices malfunctioning or poten-
tial failure, bring several advantages in terms of efficiency and production
line maintenance costs.

This work introduce a supporting approach for predictive maintenance
challenges, which represent a big task still mainly to be explored and ex-
ploited for the incoming Industrial 4.0 revolution, applying semi-supervised
data-drive methodologies.

The objective of the presented study is to identify the proper configuration,
in terms of clustering algorithms and parameters, and data pre-processing
criterias, that better represent the original dataset and better support the
predictive maintenance analysis, through the evaluation of cluster quality
indices. Moreover, from the produced clusters with the selected configuration
will be extracted the most relevant properties that characterize them.

The presented analysis are based on a robot (for industrial production
needs) manufacturing dataset. Several robot cycles production processes has
been monitored, which are often repeated periodically and characterized by
an individual duration.

All the experiments has been produced by developing semi-supervised al-
gorithms in Python language, over a dataset imported as a Json file, partially
processed with the support of Google Collaboratory notebooks.

The developed semi-supervised approach consists of various subsequent
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1 – Introduction

steps, in particular: data pre-processing, data aggregation, clusters validation
and clusters characterization.

In chapter 2 we will see the current state of art in Industry 4.0, having
a first preview of the industrial context under analysis in this work. In
particular, each monitored cycle, after having collected the correspondents
electrical signals value, has been splitted over the time domain, to simpler
extract the variability independently for each sub-cycle.

This features collection is later subjected to a correlation selection through
the Pearson index. The obtained features for each cycle compose the so
called Smart Data, used by the subsequent steps from the analytical process
for predicting each cycle outcome.

Later, in chapter 3, the various implementation steps are exposed. The
data pre-processing phase consists on producing various starting Smart Data
through different splittings criteria of the original electrical signals. Since
this phase stays on top of the analysis procedure, is fundamental to under-
stand how the initial parameters influence the produced Smart Data and
consequently the obtained further analysis, with the aim of maximize the
clustering quality and possibly, reduce the features amount. The subsequent
data-aggregation phase consist on applying various unsupervised machine
learning algorithms, like K-Means, DbScan, Agglomerative and Gaussian
Mixture. Each of them has been applied with several different input param-
eters, useful for a later model comparison.

These evaluations are performed by the clustering validation blocks, con-
sisting on comparing the previously generated models through a wide set of
validation indices, both supervised and unsupervised. The aim of this step
is therefore to identify with which algorithms and parameters is possible to
maximize the clustering quality.

The last phase is the so called Clustering characterization. Once selected
the best clustering configuration from the previous steps, this block is de-
manded to extract the main relevant features and segments that more influ-
ence the production cycles, helping the domain experts to better understand
a specific meaning for every group.

Chapter 4 list the platforms, procedures and programming instruments
adopted for developing the aforementioned work.

Finally, chapter 5 shows experimental results got following the previously
proposed methodology, followed by a chapter listing the possible future de-
velopment.
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Chapter 2

State of the art

2.1 Industry 4.0
The previous three industrial revolutions were all triggered by mechanical
innovations: the introduction of water powered and steam powered mechani-
cal manufacturing at the end of the 18th century, the division of labor at the
beginning of the 20th century and the introduction of PLC (programmable
logic controllers) for automation purposes in manufacturing in the 1970s [1].

According with industry and research experts, the upcoming industrial
revolution will be triggered by the Internet (and IoT), which allows com-
munication between humans as well as machines in Cyber-Physical-Systems
(CPS) throughout large networks.

Industry 4.0 put focus on the creation of intelligent products and produc-
tion processes. Manufacturing, factories have to cope with the need of really
rapid product development, flexible industrial chain of production as well as
complex environment [2].

The introduction of sensor in the manufacturing environment leads com-
panies to a completely new scenario, where new approaches are needed to
cope with a new huge amount of informations, that need to be analyzed to
get new knowledge.

Step by step, more and more production equipment and industrial ma-
chineries (with the real-time sensorization) are continuously increasing the
industrial data collecting: as a consequence, a methodology need to be de-
veloped to extract useful information from this amount of data to better
support the decision-making [3].
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Cyber-Physical Systems are pushing modern industries in transforming
data into valuable knowledge. However, this new scenario is far away from
being well explored, instead, represents a difficult challenge. Leading the data
will help managers on making better-informed business decision, improving
production processes and bringing advantages to who will lead this important
knowledge.

Predictive maintenance has always been a difficult problem in real word
modern industries. With the new Industry 4.0 the manufacturing environ-
ments are becoming digital factories and this context produce vast volumes
of raw data.

Different solutions [4], [5], [6], [7] exploit Big Data frameworks to cope
with this modern industrial scenario. In particular, in [4], authors show a
scalable solution exploiting free licensed technologies (i.e. Apache Kafka and
Spark) for offline and online processing. In [5] is instead presented a Big Data
analytics framework to improve health monitoring services, useful also for
different application on an aerospace and aviation industrial. An integrated
Self-Tuning Engine for Predictive maintenance for Industry 4.0 is instead
presented in [6], getting advantages from Big Data technologies and systems
(i.e. Cassandra, Spark, Kafka) and running on top contenerized Docker
environment. Moreover, in [7] a further solution for predictive maintenance
is proposed, tailored to wind turbines monitoring, presenting a data-drive
solution deployed for predictive model generation.

Enhancing manufacturing intelligence brings a wide range of benefits, pre-
dictive diagnostics is one of the most important. To sustain this well known
issue, this work present the design and development of a semi-supervised
data-driven methodology, to characterize multi-cycle processes and support
robot cycle labelling.

The majority of the previously cited articles doesn’t consider the perfor-
mance degradation of their model that the upcoming of new unknown data
distributions can cause over a prediction process.

2.1.1 A Smart Data
As mentioned before, this work is based on a robot (for industrial production
needs) manufacturing dataset, to support robot cycle labelling, evaluation
and as a consequence, to support predictive maintenance.

Nowadays Industrial sensor, monitor several production processes, that
are often repeated periodically and characterized by a individual duration.
This new scenario gives the opportunity to produce a Smart Data, which is in
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charge of processing and transforming raw data for extracting main features
describing the whole signal. Each monitored cycle, after having collected
the electrical signals values, is splitted over the time domain, to simpler ex-
tract the variability indipendently for each sub-cycle. Every split is therefore
represented by several statistical features (i.e. standard deviation, mean,
Kurtosis, quartiles, skewness, sum of absolute values, root mean squared
error, absolute energy, number of elements over the mean, mean absolute
change, and much more..).

This features collection is the so called Smart Data, used by subsequent
steps from the analytical process for predicting each cycle outcome.

2.1.2 Experimental context
The real experimental context use case on which this work has been tested on
consists in predicting the suitable tensioning level (in electric signal terms)
of the installed belts in a robot axis, evaluating the consumed electricity by
the engines and actuators.

To discretize this belt tensioning levels, in this use case washers has been
used. Each different number of washers correspond to a different label, know-
ing this means having the ground truth knowledge. A lower belt tensioning
consumption correspond to an higher number of washers.

The needed washers number represent the assigned label at each measured
electricity cycle. The objective is to predict the right number of washer, cor-
responding to the most suitable belt tensioning for each incoming electricity
cycle.

NumWashers # of cycles Dataset %
0 6395 20,206 %
1 19915 62,926 %
2 5338 16.868 %

Total cycles 31648 100 %

Table 2.1: Washers dataset distribution

Table 2.1 shows robot cycles distribution related to washers number, di-
vided so by class. The correct precision and functioning of the robot is
assured by choosing the best tensioning of the belt.

An uncorrect configuration will lead to different malfunctioning: low ten-
sion values cause premature belt’s and pulley’s wear and slippage, while, in
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the other hand, an over tensioning lead to excessive strain on belts, which
correspond into components overheating.

Figure 2.1: Electric signal of a single robot cycle

In the above Figure 2.1 is shown instead an example of the electricity
consumption value trend for different washer numbers required to tensioning
the belts.

2.1.3 Data preparation
Later, all incoming electrical signals has been splitted, and each single split
has been characterized by several statistical features. More splitting config-
urations have been applied for better evaluating and comparing this phase.

Since for every split an high number of features has been generated (i.e.
std, mean, Kurtosis, quartiles, skewness) up to almost 350, a feature selec-
tion approach has been applied. Through the Pearson index correlation, the
number of features is reduced according to a choosen threshold.

From this step, quality and performance of the next model will be affected,
from here the need to try different configuration to compare. Also, since the
amount of features generated depend on the number of splits (being the total
amount equal to the sum of features of each split), reducing this parameter
lead to a lower total features amount and lower computing complexity as a
natural consequence.
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In [8], a solution taking into account 24 splits is proposed. In this work,
different splitting configuration will be proposed and compared, again, with
the objective of having lighter computation with not considerable precision
looses.

Number of Split # of features [8] Features %
4 30 12,82 %
6 50 21,35 %
8 63 26,92 %
10 87 37,17 %
12 110 47,00 %
18 172 73,50 %
24 234 100 %

Table 2.2: Dataset features distribution over splitting configurations

In Table 2.2 is shown the amount of generated features with different
splitting configuration, compared, in the last column with the amount used
in the solution [8].

Choosing a lower number of split would lead to a comparable computation
complexity reduction to the shown percentage.

Later in this work, in chapter 5, splitting configurations will be analyzed,
compared and presented.

Next sections are dedicated to understand a fast overview of the main
machine learning techniques: supervised, unsupervised and semi-supervised
learning.

Other techniques like reinforcement learning will not be discussed in this
document.

The main difference that characterize them is the a priori knowledge of
the ground truth.

2.2 Supervised data analytics
Supervised learning is usually done in the classification context, when the
objective is to map input to output labels, or regression, when is need to
connect input to a continuous output. Most used algorithms in supervised
learning contain naive bayes, logistic regression, artificial neural networks,
support vector machines, and random forests. In both classification and
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regression, the objective is to find specific structure or connections in the
input data which allow us to properly produce correct output data.

Considering that “correct” output is determined completely by the train-
ing data, having a ground truth considered true from our model, it isn’t direct
to conclude that data labels in real-world situations are always correct.

Incorrect or noisy data labels will obviously decrease the effectiveness of
the built model.

When applying supervised learning, the model complexity and bias-variance
trade-off are the main considerations. Moreover, both of these are interre-
lated.

Model complexity relate to the function complexity to learn — similar to
the polynomial degree. A proper model complexity level is generally deter-
mined by the training data nature. A low-complexity model is more suitable
to a small amount of data, or not uniformly spread data among different pos-
sible scenarios. An high-complexity model will overfit if applied on a small
dataset. Overfitting refers to a function that fits very well the training data,
but doesn’t generalize with other data points.

Bias-variance trade-off also relate to model generalization. In every model,
there is a trade-off between bias, which correspond to the constant error
term, and variance. The latter is the variance amount that the error may
get between different training sets.

Therefore, high bias and low variance correlate to a model mainly wrong
at 20% of the time, while a low bias and high variance bring to a model
that may be wrong from 5%-50% of the time, depending on the used data
for training. Bias and variance usually move in opposite directions of each
other; decreasing bias will usually lead to higher variance, and vice versa.

When developing a model, the nature of your data and the specific problem
should support on making an informed choose on where to fall on the bias-
variance spectrum. In general, decreasing bias (and increasing variance)
corresponds in models with relatively guaranteed baseline performance levels,
which can be critical in specific tasks.

Moreover, in order to create well generalized models, the model variance
should scale with the dimension and complexity of the training data — large,
complex data-sets will usually request higher-variance models to completely
learn the data structure, and simple, small data-sets should generally be
learned with low-variance models.
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2.3 Unsupervised data analytics
As already mentioned before, in unsupervised data analytics there isn’t a
ground truth knowledge.

The most frequent unsupervised learning tasks are clustering, density es-
timation, and representation learning. In each of these cases, the objective is
to learn the correspondent structure of the dataset without beforehand pro-
vided labels. Since labels are not provided, comparing models performance
in unsupervised learning methods is a difficult task.

Two frequent unsupervised learning use cases are dimensionality reduction
and exploratory analysis.

Unsupervised learning is really helpful in exploratory analysis, since it can
directly recognize data structures. If an analyst try to segment consumers,
unsupervised clustering methods represent a good starting point for analysis.
In conditions where it is hard or impractical for humans to guess data trends,
unsupervised learning provides initial insights that can then be exploited to
test single hypotheses.

Dimensionality reduction, which relate to represent data exploiting less
columns or features, can be conducted through unsupervised approaches.
In representation learning is need to find relationships between individual
features, permitting to represent data with the latent features that interrelate
initial features. Having far fewer features than the starting set, it can makes
possible to do further data processing much less intensive, and eliminating
redundant features.

supervised learning Unsupervised learning
Discrete Classification Clustering
Continous Regression Dimensionality reduction

2.4 Semi-supervised data analytics
Semi-supervised learning is mainly just what it sounds like: a training dataset
with both labeled and unlabeled data. Think to it as happy medium between
the previously illustrated solutions.

In this work, this will be the main applied method, comparing with and
without using labels the obtained solutions. This approach is particularly
helpful when recognizing relevant features from the data is hard, and labeling
examples is a time-intensive task for experts.
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Chapter 3

Proposed methodology

3.1 Overview

The main blocks of the industrial context on which this work is based and
tested is presented in Figure 3.1. An Event Hub gather the sensor values
from the production line, being in our case an international robotics in-
dustry, from industrial robot arms. As explained in 2.1.3, the electricity
consumption needed from the engines in each single robot cycle represent
the main information on which to apply data analysis and produce valuable
knowledge.

The Event Hub, after having collected the data from the various sensors,
submit the values to the factory monitoring block and to the semi-supervised
analysis block.

The real-time factory monitoring provides through KPI (Key Performance
Indicators) informative dashboards computed on data collected from produc-
tion lines. The outcome of this generated statistics could be of interest for
two roles in production floors: shift supervisors on production lines and pro-
duction managers. From the moment that production managers are mainly
interested on evaluating and guarantee an optimal production level, the OEE
(Overall Equipment Effectiveness) index is evaluated. From the other side,
the production shift supervisors need the OEE for unforeseen problematic
issues and suddenly react to solve the causes.

Production managers are interested also to asses the conceptual and real
context aspects that can contribute to factory inefficiency like equipment
and device conditions. Unfortunately, the majority of predictive mainte-
nance methods relates on supervised algorithms, needing a-priori ground
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truth knowledge (i.e. labels) on the scenario under analysis that is com-
monly not available.

Figure 3.1: Production and Data collection Architecture

For addressing this issue, the proposed approach include semi-supervised
labelling methods, aimed to infer labels automatically.

This work has been developed with the objective to develop specifically
this semi-supervised labelling and analysis block shown in Figure 3.1.

Experts of the domain will manually control only a small subset of repre-
sentative samples of every group of data.

The overall process followed when developing this semi-supervised learning
model can be summarized in the following chart 3.2.

The aim of this study is therefore focused on the subsequent processes, in
particular:

• Data pre-processing

• Smart Data computation

• Clustering

• Cluster validation

• Cluster characterization
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• Result interpretation and valuable Knowledge extraction

Figure 3.2: Semi-supervised learning architecture

For what concern data pre-processing and smart data computation, the
work developed in [8] will be exploited and re-adapted to this use case anal-
ysed context. In particular, this two first blocks are demanded to detect
outliers and noise, align cycles, compute features time series and select fea-
ture.

Figure 3.3: Pre-Processing architecture

Data pre-processing and Smart Data computation block are demanded to
develop the task explained in section 2.1.3, they will be adapted from [8]
for this specific approach: different starting splitting configuration will be
evaluated and compared between each other.

For making things clear, diagram 3.3 illustrate the different configurations
applied to pre-procesing block after having received the row data from the
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event hub. For each pre-processed dataset, the Smart Data is consequently
produced.

3.2 Clustering

In basic terms, the objective of clustering is to find different groups within
the elements aggregating the data. To do so, clustering algorithms find the
structure in the data so that elements of the same cluster (or group) are more
similar to each other than to those from different clusters. In this work, many
different algorithm has been applied, with the aim to evaluate the various
properties of the dataset and detect the one that best fit the starting dataset.

For each previously Smart Data produced, clustering algorithms has been
applied producing the correspondent labelled data models.

Figure 3.4: Clustering architecture

Since clustering algorithms taken into consideration are various, as will
be possible to see in chapter 5 first of all a selection of a good algorithms
and paramenters configuration will be executed, applying therefore less data
aggregations to each Smart Data.

3.3 Clustering algorithms

In this section, a full list of the applied clustering algorithms is presented
and explained, heightening their advantages and disadvantages.
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3.3.1 K-means
K-Means [9] algorithms are extremely easy to implement and very efficient
computationally speaking.

Those are the main reasons that explain why they are so popular. But
they are not very good to identify classes when dealing with in groups that
do not have a spherical distribution shape.

The K-Means algorithms aims to find and group in classes the data points
that have high similarity between them. In the terms of the algorithm, this
similarity is understood as the opposite of the distance between data points.

The closer the data points are, the more similar and more likely to belong
to the same cluster they will be.

Key Concepts

• Squared Euclidean Distance

The most commonly used distance in K-Means is the squared Euclidean
distance. An example of this distance between two points x and y in m-
dimensional space is:

d(x, y)2 =
mØ

j=1
(xj − yj)2 = ëx − yë2

2

Here, j is the jth dimension (or feature column) of the sample points x and
y.

• Cluster inertia or SSE

Cluster inertia is the name given to the Sum of Squared Errors within the
clustering context, and is represented as follows:

SSE =
nØ

i=1

kØ
j=1

w(i,j)
...x(i) − µ(j)

...2
2 (3.1)

Where µ(j) is the centroid for cluster j, and w(i,j) is equal to 1 if the
sample x(i) is in cluster j, 0 otherwise. K-Means can be understood as an
algorithm that will try to minimize the cluster inertia factor.
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Algorithm Steps

1. First, we need to choose k, the number of clusters that we want to be
generated

2. Then, the algorithm will select randomly the centroids of each cluster

3. It will be assigned each datapoint to the closest centroid (using euclidean
distance)

4. It will be computed the cluster inertia

5. The new centroids will be calculated as the mean of the points that
belong to the centroid of the previous step. In other words, by calculating
the minimum quadratic error of the datapoints to the center of each
cluster, moving the center towards that point

6. Back to step 3

K-Means parameters

• Number of clusters: The number of clusters and centroids to generate

• Maximum iterations: Of the algorithm for a single run

• Number initial: The number of times the algorithm will be run with
different centroid seeds. The final result will be the best output of the
number defined of consecutive runs, in terms of inertia

How to choose the right number of clusters

Selecting the right number of K (number of clusters) is one of the key points
of the K-Means. To find it there are some methods:

• field knowledge

• business decision

• Elbow method

As being aligned with the Data Science methodology, the Elbow method
is the preferred one, as it relies on a mathematical method backed with data,
to choose a decision.
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Elbow Method

The Elbow method is applied for choosing the best number of clusters in a
data set. It works by plotting the ascending values of K versus the total error
obtained when using that K.

%V ariance = V ariance between groups

Total V ariance
(3.2)

The objective is to select the K that for each cluster will not significantly
increase the variance, that correspond to the obtained curve’s elbow.

K-Means limitations

Although K-Means is a great clustering algorithm, it’s most useful when
the exact number of clusters is beforehand known and when dealing with
spherical-shaped distributions.

3.3.2 DbScan
Density-Based Spatial Clustering of Applications with Noise, or DBSCAN
[10], [11] , is another clustering algorithm specially useful to correctly identify
noise in data.

DbScan assigning criteria

It is based on a number of points with a specified radius Ô and there is a
special label assigned to each data point. The process of assigning this label
is the following:

• There is a specified number MinPts (minimum points) of neighbour
points. A core point will be assigned if there is this MinPts number
of points that fall in the Ô radius

• A border point will fall in the Ô radius of a core point, but will have less
neighbors than the MinPts number

• Every other point will be noise points, the so called outlier

Algorithm steps

The algorithm follows this logic:
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1. Identify a core point and create a group for each one, or for each group
of connected core points (if they satisfy the criteria to be core point)

2. Identify and assign border points to their correspondent core points

3.3.3 Hierarchical Clustering
Hierarchical clustering [12] is a wide group of clustering algorithms that gen-
erate nested clusters by merging or splitting them. This clusters hierarchy is
shown as a tree (or dendrogram).

The root of this tree is the unique cluster that contains all the samples,
at the bottom, the leaves gather only a single sample.

Kinds of Hierarchical Clustering

There are two different approaches to this type of clustering:

• Divisive: this solution starts by collecting all data points in one single
cluster. Then, the latter will be splitted iteratively into smaller ones
until each one contains just a single sample

• Agglomerative: this other solution starts with each sample belonging to
a different cluster and then merging them by the ones that are closer
from each other until there is only one cluster, using therefore a bottom-
up approach

In this study we will use only agglomerative ones. The linkage criteria
determines the metric used for the merge strategy, in particular it can be
single, complete, ward or average.

• Single Linkage

Single linkage starts by considering that each data point is a different clus-
ter. After, it evaluate the distances between each pair of clusters and merge
the cluster pair for which the computed distance is the smallest, putting
together the most similar members.

• Complete Linkage

Although being really similar to the single linkage, its metric is exactly
the opposite, comparing the most dissimilar data points of a cluster pair and
performing the merge with the highest distance computed.
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• Ward Linkage

Minimizes the sum of squared differences within all clusters. It is a
variance-minimizing approach and in this sense is similar to the k-means
but tackled with an agglomerative hierarchical approach.

• Average Linkage

It merge pair of cluster minimizing the average distance between points of
the clusters

Advantages of Hierarchical Clustering

• The resulting hierarchical representations can be very informative

• Dendrograms provide an interesting and informative way of visualization

• They are specially powerful when the dataset contains real hierarchical
relationships

Disadvantages of Hierarchical Clustering

• They are really sensitive to outliers and, with their presence, the ob-
tained model performance decreases significantly

• They are really expensive, computationally speaking

3.3.4 Gaussian Mixture
A Gaussian mixture [12] model is a probabilistic model that consider all data
points generated from a mixture of a finite number of Gaussian distributions
with unknown parameters.

One can suppose mixture models as generalizing K-Means clustering to
collect information about the covariance structure of the data as well as the
centers of the latent Gaussians.

It implements the expectation-maximization (EM) algorithm, fitting mix-
ture of Gaussian models. It can even draw confidence ellipsoids for multi-
variate models, and compute the Bayesian Information Criterion to evaluate
the number of clusters in the data.
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Advantages of Gaussian Mixture

• It is the lightest algorithm for generating mixture models

• As this algorithm only maximizes the likelihood, it will not bias the
means towards zero, or the cluster sizes to have specific structures that
may or may not apply

Disadvantages of Gaussian Mixture

• When not enough points per mixture are provided, evaluating the co-
variance matrices becomes difficult, and the Gaussian Mixture is known
to diverge, finding solutions with infinite likelihood unless one regularize
the covariances manually

• This algorithm will always apply all the components it has access to,
needing information theoretical criteria to decide how many components
to use in the absence of external cues

3.4 Clustering validation
Clustering validation is the process of evaluating the result of a cluster ob-
jectively and quantitatively. We will do this validation by applying cluster
validation indices. There are two main categories, supervised (or external)
indices, who use labeled data and unsupervised (or internal) indices, who use
instead unlabeled data.

Figure 3.5: Clustering Validation architecture
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Evaluating the quality of a clustering algorithm is not as simple as counting
the amount of errors or the precision of a supervised classification algorithm.

Moreover, any evaluation metric shouldn’t take the absolute values of
the cluster labels into account but rather, if this clustering define a good
separations of the data according to a ground truth set of classes or satisfying
some internal assumption according to some similarity metric, like belonging
to the same class means having more similar members than in a different
classes.

As mentioned in the previous section, the clustering block produce a la-
belled data model, according to Figure 3.5, Clustering Validation is evaluated
in that upcoming model from the preceding data aggregation block.

In the following subsections a complete list of supervised and unsupervised
indices that has been evaluated on the data models, highlighting their positive
and negative aspects.

3.4.1 Supervised indices
As mentioned before, this class of indices makes use of the ground truth (the
original labelling), which not often is known. The clustering structure is so
matched with before hands known informations. In some application is also
possible to match clustering structure between them, making the following
indices working in an unsupervised context. In this work are by the way
applied in supervised mode only.

Adjusted Rand Index

The adjusted Rand index [13] is a metric that measures the similarity of two
assignments, ignoring permutations and with chance normalization.

To understand it we should first define its components:

RandIndex = a + b1
n
2

2 (3.3)

where:

• a : is the number of points that are in the same cluster both in C and
in K

• b: is the number of points that are in the different cluster both in C and
in K
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• n: is the total number of samples

The adjusted Rand Index is instead defined as:

ARI = RI − Expected Index

Max(RI) − Expected Index
(3.4)

The ARI can get values ranging from -1 to 1. The higher the value, the
better it matches the original data. A completely uniform random label
assignment will score an ARI close to zero.

This index is really good to compare dissimilar clustering algorithm, since
no assumption is made on the clustering structure.

Mutual Info

Like the Rand Index score, Mutual Information [14] is a function that eval-
uate the agreement of the two assignments, ignoring permutations. Two
different versions are available, Normalized Mutual Information (NMI) and
Adjusted Mutual Information (AMI). NMI is more used in the literature,
while AMI was proposed more recently and is normalized against chance.

A good advantage of this metric is again being bounded between 0 and 1,
a uniform random labelling with lead the mutual info to zero.

Assume two label assignments (of the same N objects), U and V. Their
entropy is the amount of uncertainty for a partition set, defined by:

H(U) = −
|U |Ø
i=1

P (i)log(P (i)) (3.5)

H(V ) = −
|V |Ø
j=1

P Í(j)log(P Í(j)) (3.6)

where P(i) and P(j) is the probability that an object picked at random
from U and V falls into class Ui and Vi.

The mutual information (MI) between U and V is calculated by:

MI(U, V ) =
|U |Ø
i=1

|V |Ø
j=1

P (i, j)log

A
P (i, j)

P (i)P Í(j)

B
(3.7)
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Normalized Mutual Info

The Normalized version is expressed as:

NMI(U, V ) = MI(U, V )
mean(H(U), H(V )) (3.8)

Since, like the normal Mutual Info metric is not adjusted for chance, its
value will tend to increase as the K (number of cluster) increase.

Adjusted Mutual Info

To solve this latter issue, an expected value E is introduced [15]. Using the
expected value, the adjusted mutual information can then be calculated using
a really similar form to the adjusted Rand index previously mentioned:

AMI = MI − E[MI]
mean(H(U), H(V )) − E[MI] (3.9)

Homogeneity, Completeness and V-mesaure

Those metrics are again bounded between 0 and 1 and no assumption are
made on the cluster structure, this will come really helpful when comparing
different metrics on different algorithm.

In particular they are defined as desirable objectives, using conditional
entropy analysis:

• Homogeneity: each cluster contains only members of a single class

h = 1 − H(C|K)
H(C) (3.10)

• Completeness: all members of a given class are assigned to the same
cluster

c = 1 − H(K|C)
H(K) (3.11)

where H(C|K) is the conditional classes entropy given the cluster assign-
ments, defined as:

H(C|K) = −
|C|Ø
c=1

|K|Ø
k=1

nc,k

n
· log

A
nc,k

nk

B
(3.12)
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and H(C) is the classes entropy:

H(C) = −
|C|Ø
c=1

nc

n
· log

3nc

n

4
(3.13)

in the end the V-measure [16] is simply define as the harmonic mean of
the two above metrics:

v = 2 · h · c

h + c
(3.14)

Fowlkes-Mallows Score

The Fowlkes-Mallows [17] score FMI is defined as the geometric mean of the
pairwise precision and recall:

FMI = TPñ
(TP + FP )(TP + FN)

(3.15)

where:

• TP = true positive: the pair belonging to the same cluster before and
after clustering

• FP = false positive: the pair belonging to the same cluster before clus-
tering and in different cluster after

• FN = false negative: the pair belonging to the same cluster after clus-
tering but in different ones before clustering

Again the advantages of this metric is being bounded between 0 and 1,
with no assumption of the cluster structure.

With this metric finish the section of the used supervised indices in this
work.

3.4.2 Unsupervised indices
In unsupervised learning, we will work with unlabeled data and this is when
internal indices are more useful.

If the ground truth labels are not known, and this is the most frequent case
in industrial environments, evaluation must be performed using the model
itself.

31



3 – Proposed methodology

Silhouette

One of the most used and common indices is the Silhouette Coefficient [18]
and its derivations that are later exposed.

The Silhouette value for a single sample is defined as:

si = bi − ai

max(ai, bi)
(3.16)

where:

• a: is the mean distance between a point and all other points in the same
cluster

• b: is the mean distance between a point and all other points in the
nearest cluster

Again also this coefficient is bounded, between -1 and 1, good for com-
paring clustering with different K, not being affected to number of cluster
increasing.

In poor words it represent the good cohesion between points of the same
cluster and the good separation between different cluster.

ASI - Average Silhouette Index

The ASI index is simply the average silhouette value of a specific label as-
signment between the silhouette values of all sample.

ASI =
q|N |

i=1 si

N
(3.17)

where N is the data set cardinality

GSI - Global Silhouette Index

The GSI is an index that tend to give equal wight between all cluster evalu-
ating the silhouette.

This, for giving relevance to local dataset behaviour that wouldn’t be
noticeable with only the ASI index.

For each generated cluster, the ASI is separately computed, and then, the
average between each cluster ASI is finally calculated, getting in this way the
GSI.
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Simply:

GSI =
qK

i=1 ASIi

K
(3.18)

were K is the number of clusters.

HSI - Harmonic Silhouette Index

In the end, the HSI represent the average between the ASI and the GSI
indices. As will be possible to see later, this will be in this work the most
used index for comparing clustering techniques.

The advantages of this index are multiples:

• no need of ground truth knowledge

• being the mean between GSI and ASI put in evidence different aspect
of the dataset

• bounded between 1 and -1

• value is higher when clusters are dense and well separated, which corre-
spond to a standard concept of a cluster

One of its disadvantages is surely the heavy computational load needed
for evaluating it.

HSI = ASI + GSI

2 (3.19)

In Figure 3.6 a comparison between HSI, GSI and ASI is shown, HSI
obviously laid between the ASI and GSI, being their average value, both ASI
and GSI highlight different properties and aspects, making the harmonic
silhouette a more overall complete indicator despite the simple silhouette.
GSI gives the same weight to all clusters independently from their cardinality,
this is importance since small cluster may contains important informations
that could be not visible in the normal silhouette..
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Figure 3.6: HSI, GSI, ASI Comparison

Davies-Bouldin Index

This long but useful list of indices terminate here with this last unsupervised
index. Like the previous one, it always evaluate the goodness of a labelling
assignment, showing up proprieties such density and separation among clus-
ters.

The Davies-Bouldin Index [19], [20], is defined as the mean similarity
between clusters. A value close to zero represent so a better clustering.

DB = 1
K

KØ
i=1

maxi /≡jRij (3.20)

where:
Rij = si + sj

dij
(3.21)

• si: is the mean distance between cluster points i and their centroid of
that cluster – also know as cluster diameter

• dij: the distance between the cluster i and j centroids

The main advantage of this last index is surely its computing efficiency,
much more lighter than silhouette.
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3.5 Cluster characterization
Cluster characterization helps domain expert on simpler identifying data la-
belling to robot cycles, and in general to production cycles. How will be
possible to see later in this work, each group will be locally characterized
from the 10 most relevant data features, to support the domain attention
through the most relevant features that more influence each group.

To this aim, a Decision Tree Classifier (better explained in 3.5.1) has been
used, the top 10 used features in the tree classifier correspond to the most
relevant features characterising the root-leaves path of the tree.

After selecting these most relevant features, their distribution has been
shown through the use of boxplots, which will help to better recognise the
most characterizing features of a cluster in terms of relevant properties and
content.

That additional knowledge may help domain expert to better understand
a specific meaning for every group. For humans would be impossible to man-
ually inspect all samples, having so, a small representative group of features
is an important support.

Figure 3.7: Clustering Characterization architecture

According to Figure 3.7, the characterization stage operate over the pre-
viously elaborated indices, with the final goal of generate useful output for a
clear and representative dashboard.

3.5.1 Decision Tree Classifier
A Decision Tree Classifier is a simple representation for classifying samples.
It is a Supervised Machine Learning technique where the data is continuously
splitted according to certain parameters.
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Decision Tree consists of:

• Nodes: check the value of certain attribute by some condition;

• Edges: connection between outcome of a node to the next node;

• Leaf nodes: terminal nodes that predict the outcome

The objective of a classification tree is so to classify the input data. Given
an input, it will be assigned to a specific class/label.

Is female or male?

height > 180 cm?

male weight > 80 kg?

male female
A Decision Tree Classifier example

Such a tree is created through a process known as binary recursive parti-
tioning. This is an iterative process of splitting the data into partitions, and
then again splitting it up further on each branch.
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Chapter 4

Implementation details

In this chapter a fast recap of the main instruments and approaches I used
to develop this work.

A first Hardware section followed from the Software section where I report
the main code features developed.

4.1 Hardware
Since the clustering elaboration has been a heavy computational task, has
been splitted and pipelined between different elaboration system. The heav-
ier part has been processed with the support of Google Colab, leaving so the
lighter computational part to a less powerful working station.

4.1.1 Google Colab
Colaboratory is a free service provided by Google, consist in a Jupyter note-
book environment in the cloud that requires no setup.

With Colaboratory you can write and execute code, save and share your
analyses for free from your browser. It provided high computational re-
sources, in particular:

• 12 GB GDDR5 VRam Memory

• 360 GB Hard Disk

• GPU: 1xTesla K80 with 2496 CUDA cores

• CPU: Intel(R) Xeon(R) CPU @ 2.20GHz, 56MB cache memory, 1xsingle
core hyper threaded
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4.2 Software
Because of the long processing time needed to apply clustering algorithm and
because of the large dimension of the dataset, especially in terms of feature,
I decided to apply some improvement at the code with the aim to optimize
it.

For what concern the structure of the code I have modulized it, bringing
it at a really high number of splitted modules, where each of them produce
a job and dump it, in a chain way with the other modules.

Thanks to this the whole process has been processed in separeted portions
in parallel, launching each portion in a separated Google Colab session, with
the possibility to restore the processing at the last successfully elaborated
dump, and being able to continue the processing in local terminals later.

Figure 4.1: Software structure

I considered as a dump each single cluster configuration. After this step,
each previous dump is evaluated with all cluster validation indices previously
reported, and each index validation is an other dump, being possible to
restart from each step without needing to reprocess all the previous steps.

Thanks to this, it has been possible to process the heavy part on Google
Colab, and let the lighter processing part possible on a laptop.

In the end, a third block is able to identify for each algorithm and for each
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validation index the first max local pick value, and later the best local pick
value among all the algorithm, selecting in the end the best algorithm and
input parameter.

Figure 4.1 show an illustration of the above discussed structure of the
developed code.

4.2.1 PyCharm

PyCharm has been choosed as IDE (Integrated Development Environment)
since provide high support for Python, the programming language choosed
for this work. Moreover, is cross platform and the community edition is
under the Apache Licence, therefore free to use.

4.2.2 Python 3.0

Python [21]is an extremely high level programming language that is easily
available to the most disparate programming paradigms, from the object-
oriented to the functional one.

It is a language that is simple to use and understand, since the code blocks
are delimited by indentation, the increase or reduction of the indention lead
to entering or leaving a given code block respectively.

Python, in a similar way to C #, is a managed language, which means
that it also enjoys a greater intrinsic code robustness than other programming
languages and an automatic memory management.

Python is also a language with dynamic typing of variables, which means
that variables in a python script can be considered simply as names assigned
to objects that reside in memory. The same object can be associated with
multiple names and a name can be associated with different objects, changing
type depending on the associated object.

Although Python is an interpreted language, therefore slightly slower than
compiled languages, such as C or C ++, or semi-compiled, like C # and Java,
it is possible to extend it with compiled code calls, where greater efficiency
is needed, which makes Python an extremely versatile language.

Moreover Python has a very active community and a large number of ad-
ditional modules to the language, making it an extremely powerful language,
which I chose to use during this work due to the ease with which you can
manage json files, csv files, datasets and much more.
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4.2.3 Libraries
Since an high number of libraries has been used for developing this work, just
a few selection are here shown since their help on speeding up the processes
was fundamental.

Pandas

pandas[22] is an open source, BSD-licensed library providing high-performance,
easy-to-use data structures and data analysis tools for the Python program-
ming language.

• A fast and efficient DataFrame object for data manipulation with inte-
grated indexing;

• Tools for reading and writing data between in-memory data structures
and different formats: CSV and text files, Microsoft Excel, SQL databases,
and the fast HDF5 format;

• Intelligent data alignment and integrated handling of missing data: gain
automatic label-based alignment in computations and easily manipulate
messy data into an orderly form;

• Flexible reshaping and pivoting of data sets;

• Intelligent label-based slicing, fancy indexing, and subsetting of large
data sets;

• Columns can be inserted and deleted from data structures for size mu-
tability;

• Aggregating or transforming data with a powerful group by engine al-
lowing split-apply-combine operations on data sets;

• High performance merging and joining of data sets;

• Hierarchical axis indexing provides an intuitive way of working with
high-dimensional data in a lower-dimensional data structure;

• Time series-functionality: date range generation and frequency conver-
sion, moving window statistics, moving window linear regressions, date
shifting and lagging. Even create domain-specific time offsets and join
time series without losing data;
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• Highly optimized for performance, with critical code paths written in
Python or C.

• Python with pandas is in use in a wide variety of academic and commer-
cial domains, including Finance, Neuroscience, Economics, Statistics,
Advertising, Web Analytics, and more.

Json

A usefull library for converting, reading, writing, loading, econding, decoding
and formatting json [23] file in easy way. Since the original provided dataset
was a json file I decided to use this helpfull library.

MatPlotLib

All the graphics shown on this work are generated with this efficient and easy
to use library. MatPlotLib [24] provide several 2D plotting solution for all
the scientific needs.

NumPy

NumPy [25] is the fundamental package for scientific computing with Python.
It contains among other things:

• a powerful N-dimensional array object

• sophisticated (broadcasting) functions

NumPy can be used also as a container of generic data-type. This allows
NumPy to seamlessly and speedily integrate with a wide variety of databases.

SkLearn

This is one of the most used libraries for this work. SkLearn [26], [12], pro-
vides all the algorithm used for clustering, cluster validation, cluster char-
acterization, feature selections and much more. It is completely compatible
with other libraries such NumPy and MatPlotLib and provide many useful
API [27].
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JobLib

Joblib [28]is a set of tools to provide lightweight pipelining in Python. In
particular:

• transparent disk-caching of functions and lazy re-evaluation (memoize
pattern)

• easy simple parallel computing

• Avoid computing the same thing twice

• Persist to disk transparently

Joblib is optimized to be fast and robust on large data in particular and
has specific optimizations for numpy arrays. It is BSD-licensed.
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Experimental results

The experimental results chapter is organized in the following manner. A first
section evaluates the benefits and goodness of the proposed semi-supervised
data labelling methodologies in section 3.2, comparing them with the differ-
ent metrics previously illustrated (section 3.4), in respect of the state-of-the-
art approach. Therefore, the objective of this section will be to identify the
best configuration, in terms of algorithm and algorithm inputs that better
suite the starting dataset.

Clustering algorithms has been applied, as already mentioned with differ-
ent parameters, in particular:

for K-Means, Agglomerative ones and Gaussian mixture:

• K = [2, 30]: the clusters number has been processed for all values be-
tween 2 and 30;

• n_init: each configuration has been tested for 10 iterations, and the best
run in terms of inertia has been selected and saved;

• max_iter: the maximum number of algorithm iterations for a single run;

for DbScan:

• Ô: a clustering solution has been processed of each eps radius value in
range [1,30];

• MinPts: for each Ô value, values (50, 100, 150, 200, 250) has been com-
puted;
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Later, in the next section, different pre-processing of the initial Smart
Data will be analysed according to previously discussed section 2.1.3, with
the aim to recognize a possibly lighter starting data set with no relevant
negative effect in validation terms.

Finally, a last section, once identified the best configurations, is demanded
to present the characterization of the previously obtained clusters, again
according to already discussed principle in section 3.5. A most relevant
feature selection will be presented, and the same will be done with most
relevant segments too.

For formatting and layout reason, some indices will be referred using ini-
tials, in particular:

– AMI : Adjusted Mutual Info
– MI : Mutual Info
– NMI : Normalized Mutual Info
– FMS : Fowlkes Mallows Score

– ASI : Average Silhouette Index

– GSI : Global Silhouette Index

– HSI : Harmonic Silhouette In-
dex

5.1 Clustering evaluations

5.1.1 The Elbow Method

One of the first evaluation is the Elbow method, useful to identify the most
appropriate K value or K range on which compute clustering. As already
discussed in section 3.2, the goal is to find the proper k that for each cluster
will not rise significantly the variance.

%V ariance = V ariance between groups

Total V ariance
(5.1)

To this aim, the sum of squared error has been plotted using the K-means
algorithm on the original dataset, for all K values in range [0, 50].

44



5 – Experimental results

Figure 5.1: Sum of squared error on K-Means over K values

In this case, as is possible to see from Figure 5.1, values in interval [5,10]
contains the curve’s elbow and represent therefore a good choose for K, by
the way, clustering will be computed up to greater values for further analy-
sis. Instead, from higher k value than 30, no interesting information can be
obtained.

From these observation we can consider, as beforehand mentioned, [2,30]
a good range for computing next clustering analysis.

5.1.2 Supervised and Unsupervised indices compari-
son

Therefore, after having computed all the validation indices previously ex-
plained in section 3.4, since a sighting comparison was difficult due to the
high amount of graphs and data, a validation block has been developed.

The validation block, is able for each computed index to extract the first
local max value and its corresponding configuration input value (k or Ô)
shown in brackets close to it.

In the next tables, all the first local max values are shown, separately for
algorithm that use k and Ô and separated by supervised and unsupervised
indices.
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Index k-Means Aggl-wrd Aggl-sgl Aggl-cpt Aggl-avg Gauss-mix
Rand Index 0.169(5) 0.231(5) 0.001(7) 0.032(7) 0.088(7) 0.364(5)

AMI 0.233(5) 0.319(5) 0.01(7) 0.128(6) 0.198(7) 0.46(5)
MI 0.407(7) 0.528(7) 0.002(7) 0.170(7) 0.197(7) 0.704(6)
NMI 0.308(5) 0.422(5) 0.004(7) 0.154(6) 0.207(7) 0.592(5)

V-measure 0.297(5) 0.406(5) 0.005(7) 0.152(6) 0.207(7) 0.574(5)
Completeness 0.233(5) 0.319(5) 0.098(3) 0.128(6) 0.199(7) 0.460(5)

FMS 0.449(3) 0.489(5) 0.682(3) 0.491(4) 0.671(4) 0.595(5)
Homogeneity 0.445(7) 0.578(7) 0.002(7) 0.186(7) 0.215(7) 0.770(6)

Table 5.1: First local max pick for each algorithm in k for the various super-
vised indices

Index k-Means Aggl-wrd Aggl-sgl Aggl-cpt Aggl-avg Gauss-mix
ASI 0.302(3) 0.249(5) 0.601(3) 0.208(6) 0.266(3) 0.213(3)
GSI 0.305(3) 0.279(3) 0.2(3) 0.264(3) 0.292(3) 0.219(3)
HSI 0.303(3) 0.263(3) 0.401(3) 0.215(3) 0.279(3) 0.216(3)

Davies 1.107(5) 1.092(3) 0.247(3) 1.075(4) 0.603(4) 1.755(3)

Table 5.2: First local max pick for each algorithm in k for the various unsu-
pervised indices

Index DbScan-50 DbScan-100 DbScan-150 DbScan-200 DbScan-250
Rand Index 0.276(11) 0.258(12) 0.259(13) 0.264(14) 0.248(5)

AMI 0.367(11) 0.349(12) 0.348(13) 0.353(14) 0.336(5)
MI 0.497(11) 0.48(12) 0.476(13) 0.478(14) 0.445(7)
NMI 0.447(11) 0.428(12) 0.426(13) 0.429(14) 0.405(5)

V-measure 0.439(11) 0.419(12) 0.417(13) 0.421(14) 0.398(5)
Completeness 0.368(11) 0.349(12) 0.348(13) 0.353(14) 0.337(5)

FMS 0.682(29) 0.682(29) 0.682(29) 0.682(9) 0.682(3)
Homogeneity 0.544(11) 0.525(12) 0.521(13) 0.522(14) 0.487(7)

Table 5.3: First local max pick for each algorithm in eps for the various
supervised indices
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Index DbScan-50 DbScan-100 DbScan-150 DbScan-200 DbScan-250
ASI 0.135(11) 0.192(13) 0.199(14) 0.21(15) 0.187(3)
GSI 0.58(8) 0.666(9) 0.648(10) 0.771(10) 0.67(3)
HSI 0.222(11) 0.259(13) 0.266(14) 0.272(15) 0.27(3)

Davies 1.739(8) 1.983(9) 1.962(10) 1.836(10) 1.949(5)

Table 5.4: First local max pick for each algorithm in eps for the various
unsupervised indices

For what concern DbScan, an important properties is the presence and
amount of outliers in the clusters produced. As explained in section 3.2,
outliers are the data points that doesn’t satisfy the density paradigms of the
DbScan algorithm, representing potential noise or anomalous samples.

MinPts Epsilon Number of Clusters Rand Index Outliers
50 11 3 0.2759 9374
100 12 5 0.2580 11031
150 13 4 0.2587 10583
200 14 3 0.2639 9585
250 14 3 0.2483 12226

Table 5.5: Outliers with various DbScan configurations

Table 5.5 report the outliers amount for DbScan clusters produced with
the correspondent parameters. In this table are reported just the best so-
lutions found with DbScan (evaluated on Rand Index, which is the best
performed index from the latter), but even in this case, outliers represent a
significant percentage of the original dataset, about 30%. This can be an
input parameters problem or DbScan can not be suitable to issue this task.

As a further investigation, a comparison between DbScan SSE values and
a non DbScan algorithm is shown in Figure 5.2.
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Figure 5.2: SSE Comparison on DbScan

Comparing algorithms K-driven with algorithms Ô-driven is not simple.
For giving an idea of the results, in 5.2 the SSE values of all clusters obtained
with DbScan is compared with clusters obtained with an Agglomerative al-
gorithms and is evident how them all laid above the Agglomerative curve,
corresponding so to an higher SSE and a worst solution.

The next step that the validation block is demanded to compute, is to
select from the previously generated tables, the best algorithm (in terms of
first local max pick value) for each proposed index and of course, its value
and configuration inputs. The first table is dedicated to supervised indices
and the second to unsupervised ones.

Index Value Algorithm k/eps
Rand Index 0.3643 Gaussian Mixture 5

AMI 0.4604 Gaussian Mixture 5
MI 0.7045 Gaussian Mxture 6
NMI 0.5927 Gaussian Mixture 5

V-mesaure 0.5743 Gaussian Mixture 5
completeness 0.4605 Gaussian Mixture 5

Fowlkes Mallows score 0.6821 DbScan (250MinPts) 10
Homogeneity 0.7701 Gaussian Mixture 6

Table 5.6: Supervised indices algorithm comparison
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Index Value Algorithm k/eps
ASI 0.6014 Agglomerative single 3
GSI 0.7713 DbScan (200MinPts) 10
HSI 0.4009 Agglomerative single 3

Davies Bouldin Index 0.2469 Agglomerative single 3

Table 5.7: Unsupervised indices algorithm comparison

From a first look at Table 5.6 and Table 5.7, two winners emerge, in
particular, Gaussian Mixture seems to lead the supervised indices selection
and Agglomerative (with "single" linkage) leads on the unsupervised ones.

For a better inspection the next figures show a comparison between the
various clustering algorithms for the most representative index in both learn-
ing categories.

Figure 5.3: Rand Index Comparison

From the above Figure 5.3, where is shown a comparison between the
Rand Index evaluated among the different clustering, is highly noticeable
how the Gaussian Mixture is predominant in the K range of interest: [5-10].

This clustering adopted, present the same behaviour among whole super-
vised indices, seeming the most suitable for the specific used original dataset.
But, having a look at next Figure 5.4, where a comparison between harmonic
silhouette among all clustering techniques is shown, the Gaussian Mixture
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generated clusters produce the worst values, seeming the less appropriate
algorithm taking unsupervised validations into account.

Again, considering the Agglomerative (with single linkage), which is the
best selected algorithm between unsupervised indices from Table 5.7 by the
validation block, shows the same behaviour of the Gaussian Mixture, but in
the opposite sense. Good results among all unsupervised indices, while, in
this case, extremely negative results in supervised context.

Figure 5.4: Harmonic Silhouette Comparison

Since the objective of this work is to support predictive maintenance mod-
els, with the aim to find solutions that apply in as much as possible industrial
cases, it’s important to take into account the behaviour in different conditions
and not simply finding a single local context were a specific configuration
produce the best solution but with not appreciable results overall.

In generic predictive maintenance context, the model need to auto detect
degeneration, exclude anomalous inputs, and auto-trigger model updates.
This means that parameters and configurations of the model can change
over the time in a certain range, where the model need to produce stable and
consistent evaluations.

For instance, the Agglomerative (single linkage) clustering algorithm has
been selected by the validation block as the best one based on unsupervised
indices, since his first local pick is the highest between all the proposed
solutions. According by the selection this value is in correspondence to K =
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3.

Supposing that at a certain point in the time, new unlabeled data income
in the dataset highly degrading the model in short time, the new produc-
tion samples, if not recognized as anomalous cases, will be assigned to new
properly created labels, and, as a consequence, the model will be re-trained.

Considering for example K = 5 as new parameter of the model after the
auto-triggered retraining, using the Agglomerative solution will lead to highly
decreased validation values as it is possible to see from Figure 5.4. The Ag-
glomerative with single linkage is inherently affected from number of cluster
increasing.

Each solution and configuration brings its own properties, that need to
be balanced and taken into account for the various conditions and contexts.
Instead of considering just the best local maximum pick value, a better in-
spection for configuration selection would be to properly balance the overall
behaviour.

(a) ASI comparison (b) GSI comparison

Figure 5.5: ASI and GSI comparison

(a) AMI comparison (b) V-Measure comparison

Figure 5.6: AMI and V-Measure comparison
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(a) Completeness comparison (b) Homogeneity comparison

Figure 5.7: Completeness and Homogeneity comparison

In the Figures 5.5,5.6,5.7, a fast overview of other different plotted indices
is shown.

Since in a real-industry use-case labeled data is rare and not a common
situation, unsupervised indices must be taken into account with more weight
for selecting the best configuration. Comparing algorithms among all indices
in the figures above, is evident how K-Means produce stable results (over pa-
rameters range of interest) and high values in the average, in both supervised
and unsupervised indices, and in the latter ones, the best average values.

(a) K-Means Silhouette compari-
son

(b) Agglomerative-single compar-
ison

Figure 5.8: ASI, GSI and HSI comparisons between K-Means and
Agglomerative-single

As a further inspection, Figure 5.8 shows a comparison of the different
silhouette trends, evidencing how the two different clustering solutions pro-
duce different group formations. In particular, is clear how the Agglomerative
solution is highly affected from number of cluster increasing, Instead of K-
Means which offer a stable solution over different parameters, and groups
really well distributed.

In the next analysis section, different dataset pre-processing will be eval-
uated, therefore, the amount of computation proportionally increase at the
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square of number of dataset configurations. From this point just the K-Means
and the Agglomerative-single (for further analysis) will be considered.

For each different dataset pre-processing configuration, clustering has been
re-executed and all the indices re-computed and plotted.

5.1.3 Different dataset pre-processing evaluation

As already partially discussed in section 2.1.3 , all new incoming produc-
tion cycles signals has been splitted into partitions, and each single split has
been characterized by several statistical features. Therefore, an higher split-
ting configurations has been applied for better comparing and validating this
phase.

Since for every split an big number of features has been generated (i.e. std,
mean, Kurtosis, quartiles, skewness) up to almost 350, a feature selection
approach has been applied. Exploiting the Pearson index correlation, the
features amount is decreased according to a certain threshold.

From this step, quality and performance of the next model is highly af-
fected, hence the need to try different configuration to compare. Also, since
the features amount generated depend on the number of splits (being the to-
tal amount equal to the sum of features of each split), reducing this parameter
lead to a lower total features amount and lower computing complexity as an
obviously natural consequence.

In [8], a solution taking into account 24 splits is proposed. In this work,
different splitting configuration will be proposed and compared, again, with
the objective of having lighter computation workload with not considerable
quality looses.

Number of Split # of features [8] Features %
4 30 12,82 %
6 50 21,35 %
8 63 26,92 %
10 87 37,17 %
12 110 47,00 %
18 172 73,50 %
24 234 100 %

Table 5.8: Features distribution over different splittings criteria

53



5 – Experimental results

In the upper Table 5.8, the correspondence between splits number, amount
of features produced and percentage despite [8] solution is shown.

Being clustering algorithm computation highly related to features amount,
is evident how choosing a lower number of splits can benefit the overall
computation workload.

Figure 5.9: HSI over K-Means comparison between different splitting

After having computed clustering (K-Means and Agglomerative-single)
and validation indices over all the different pre-processed dataset, graphics
like the one presented in the above Figure 5.9 has been plotted.

(a) K-Means HSI comparison over
splits

(b) Aggl-single HSI comparison
over splits

Figure 5.10: HSI over K-Means and Agglomerative for the different splitting
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(a) K-Means SSE comparison
over splits

(b) Aggl-single SSE comparison
over splits

Figure 5.11: SSE over K-Means and Agglomerative for the different splitting

(a) K-Means Rand Index compar-
ison over splits

(b) Aggl-single Rand Index com-
parison over splits

Figure 5.12: Rand Index over K-Means and Agglomerative for the different
splitting

From the above Figures 5.10, 5.11, 5.12, a first comparison between K-
Means and Agglomerative-single put in evidence the better results, in terms
of stability over different parameters and absolute values, obtained by K-
Means solution.

Moreover, is noticeable how the different splittings criteria doesn’t affect
negatively the results obtained. In particular, for what concern a number of
splits equal to 6, in the HSI comparison seems to give even better results,
a bit lower results in SSE comparison and an average results in the Rand
Index comparison.

In the end, summing up all the results previously taken into consideration,
a possible good configuration, suitable for different parameters, and with a
good trade-off between computation workload and indices result quality can
be:

• Algorithm: K-Means

• K: 5

55



5 – Experimental results

• Number of splits = 6

5.1.4 Clustering characterization evaluations

As already partially explained in section 3.5 cluster characterization helps
domain expert on simpler identifying data labelling to robot cycles, and
in general to production cycles. How will be possible to see later in this
work, each group will be locally characterized from the 10 most relevant data
features, to support the domain attention through the most relevant features
that more influence each group.

To this aim, a Decision Tree Classifier (better explained in 3.5.1) has been
used, the top 10 used features in the tree classifier correspond to the most
relevant features characterising the root-leaves path of the tree.

After selecting these most relevant features, their distribution has been
shown through the use of boxplots, wich will help to better recognise the
most characterizing features of a cluster in terms of relevant properties and
content.

That additional knowledge may help domain expert to better understand
a specific meaning for every group. For humans would be impossible to man-
ually inspect all samples, having so, a small representative group of features
is an important support.

Figure 5.13: Cluster 0
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(a) Cluster 1 (b) Cluster 2

(c) Cluster 3 (d) Cluster 4

Figure 5.14: Top-10 relevant features data distribution separately for each
cluster. The description of the feature reported on the x axis is in the format:
<feature_name>_<segment_id>

Figure 5.13, 5.14 shows boxplot of the most peculiar selected features
(listed for each plot in the x axis) for each cluster. From the above boxplots
is possible to observe how clusters are well cohesive and well separated.

In the feature name is also signed the correspondent belonging segment,
hence, the selection of the most relevant segments. In poor words, these
segments are mainly affected, in terms of belt tensioning, by the top 10
features.

Looking at figure 5.14, the most relevant segments correspond to n = 3,5.

Finally, figure 5.15 shows the original electric signal of a single production
cycle splitted into 6 segments with segments 3 and 5 highlighted in red.

The engine axis is positioned parallel to the floor, and the production
cycle is set as follow. In the start, the initial angle engine position is -500
degrees, after, at 20 % of max speed reaches +90 degrees and it maintains
that position for 5 seconds. Then, it return back to -500 degrees at maximum
speed. In the last phase it keep the position for other 5 seconds.
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Figure 5.15: Electric signal with relevant segments highlighted

Figure 5.15 represent the current consumption during a single engine cy-
cle, highlighting the most relevant production cycles segments in the semi-
supervised data labelling block. The selected segments 3 and 5 by the block
correspond to the electricity consumed when the motor reaches and main-
tains +90 degrees before and -500 degrees after a fast return back to start
position.
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Chapter 6

Conclusion and future
work

This presented work introduce a supporting solution to predictive mainte-
nance challenges, which, as already deeply discussed in previous chapters,
represent a big task still mainly to be discovered and exploited for the In-
dustrial 4.0 benefits.

The objective here was to help the parameters and configurations choose
in the semi-supervised context, in both clustering and data pre-processing
task, since represent an important block that is able to influence the rest of
the entire predictive-model block.

Experiments have highlighted the most suitable algorithms and parame-
ters for this industrial context, pointing out how some solution were giving
local better solution but with high variance in other and not predicted con-
ditions (e.g. Agglomerative Single) and other were giving slightly lower local
picks values, but a more stable trend in possibly different conditions (e.g.
K-Means).

Moreover, the comparison between different data pre-processing shown
how a different splitting criteria from [8], in particular with a lower splits
amount, brings to a way lower computational workload related to lower fea-
tures amount and not considerable negative affects in term of validations.

Future works of this research surely include the predictive model itself,
being able to identify when new incoming unlabeled data doesn’t fit anymore
the trained model with the initial distribution, triggering in this way a model
retraining with different paramenters. Also, being able to recognize whether
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new input data causing important model degradation can be assigned to a
new on purpose created label, or they correspond to anomalous production
cycle that need to be excluded.

Moreover, degradation of model performance is also a task that need to
be implemented, being able to trigger model updates in different scenarios
and contexts, with the aim to generalize the model in as much as possible
Industry 4.0 cases.

As already deeply and widely discussed in section 2.1, predictive mainte-
nance has always been a difficult problem in real word modern industries.
With the new Industry 4.0, the manufacturing environments are evolving in
digital factories and this context produce enormous volumes of raw data.

Leading the data will help managers on making better-informed business
decision, improving production processes and bringing advantages to who
will lead this important knowledge.
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