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Abstract

The research field of virtual sensing looks for techniques to provide access to
difficult-to-measure quantities. This is done by combining existing measurement
data with model information. The presented work focuses on the estimation of the
vehicle sideslip angle and of the forces exchanged at road level. Accurate estimation
of vehicle motion during handling maneuvers can be achieved by the development of
model-supported testing. The presented approach uses both a fixed parameter lin-
ear tire model, and an adaptive linear tire model together in an Extended Kalman
Filter. The former model is used to provide an additional virtual measurement,
and a reliable reference during straight driving, whereas the latter accounts for
variable tire behavior. A phase error in the estimated sideslip angle, due to vehicle
motion being considered only on the horizontal plane, is corrected by considering
the contribution of the roll rate. The proposed approach provides deeper insight
in vehicle performance with a reduced test setup, through the enhancement of low
qualities responses and the estimation of additional quantities.
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Chapter 1

Introduction

1.1 General problem
The subject of "vehicle dynamics" is the study of the vehicle responses to driver in-
puts on a road surface. It has always been of paramount importance for automotive
companies since it has a central role in the design of the vehicle, with the purpose
of improving safety and comfort, as well as performance. This can be achieved by
analyzing quantities such as forces, velocities and accelerations at precise locations
of the automobile; such quantities are usually obtained with physical sensors. Al-
though current measurement methods are reliable and yield precise results in most
conditions, they have two major problems: the measurement equipment used, such
as force transducers, IMUs (Inertial Measurement Unit), optical sensors and strain
gauges, is very expensive, and the process of acquiring these data and analyzing
them is requires a long time. Moreover, in many practical applications, placing
the sensors at the desired location can be very challenging, if not impossible. In
order to overcome these issues, virtual sensors are developed to estimate the values
that were previously measured by physical sensors. Virtual sensing techniques are
based on the concept that, by combining a reduced amount of measured data with
model information, one can get access to a wider set of values or improve the qual-
ity of the data with reduced measurement effort. Virtual sensing can be applied
to different areas, such as computer science, wireless networking, remote sensing,
chemistry, aerospace or automotive. For example, aircraft, satellites or ship crafts
equipped with physical sensing devices that acquire information from a given area.
Virtual sensing techniques are broadly applicable and enable one to predict or es-
timate information at one location from the data measured at other locations. In
short, virtual sensing is to use physical sensing data and a suitable model to obtain
the desired values in the areas of interest without putting real sensors or directly
contacting the object [1]. In the automotive field, these methodologies can be used
to determine the tire contact forces with the road or other difficult to measure but
important quantities such as the vehicle sideslip angle.
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Introduction

1.2 State of the art

Virtual sensors, also known as soft sensors, estimator or observers, have been a
topic of interest in the past decades and have been used in practical applications
in different areas. In this section a review of some of the applications of virtual
sensors is given.
In [2], Cathey and Dailey developed a traffic management system with the ability
to create real-time traffic speed information by using virtual sensors that are based
on transit vehicle data. This project harvests existing automatic vehicle location
and transports the data to the University of Washington, where a series of oper-
ations converts it into roadway speed information, which is used to reflect traffic
congestion. The resulting traffic data product is then provided to the Washington
State Department of Transportation as a virtual sensor data source for roadways
where there are no physical sensors from which one can obtain information.
In process industries, virtual sensors are used to measure the concentration of cer-
tain components or in gas sensing systems with high sensitivity. A low power virtual
sensor array based on a micro-machined gas sensor for fast discrimination between
H2, CO and relative humidity, to be used for air quality control, explosion warning
or leak detection in chemical warehouses, is presented in [3]. In [4], Schütze and
Gramm propose a virtual multisensor system for the identification of organic sol-
vent to be used in leak detection systems.
In the field of mobile robots, virtual sensing techniques are used by Bellas et al. [5]
at the sensing level to increase the accuracy of sensing information. An Artificial
neural network is established, and it is used with time delays as virtual sensors.
The virtual sensor outputs are estimated through a temporal correlation of real
sensing values. This method can increase the response accuracy of mobile robots.
In the automotive field, estimators and observers have been widely used to estimate
variables which are not directly measurable. In [6], the velocity of the center of mass
of the vehicle is obtained via a fusion of the data from all rotational wheel velocities
and the longitudinal acceleration physical sensor using a Kalman filter approach.
An estimator for the yaw rate is also presented, to solve the issue of offset drift in
gyroscopes caused by temperature changes. In order to increase the accuracy of
the measured yaw rate, signals from different sensors are combined to obtain the
yaw rate. Their weights are determined according to the driving situation. In this
procedure, a fuzzy estimator based on heuristic knowledge is used. More recently,
Avino et al. [7] proposed an accident prevention system which, through the use of
virtual sensing, merges the output of on-board vehicles sensors and smart city sen-
sors to distribute real-time information to increase the awareness of the surrounding
environment.
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Introduction

1.3 Problem statement
This thesis work, which has been developed in collaboration with Siemens PLM
Software, aims to develop a modular vehicle estimator based on simplified models
and selected measurements. The estimator is based on an Extended Kalman Filter,
in which data measured at the center of gravity of the vehicle is combined with a
single track model to improve the quality of the signals as well as to obtain quantities
which are not directly measured. The most relevant outputs of the estimator are:

• Lateral velocity

• Vehicle body sideslip angle

• Axle lateral loads

• Wheel vertical loads

• Wheel lateral loads

• Tire slip angles

The objective of this project is to find an alternative to the current test-based
approaches which, although detailed, are too elaborate and expensive. Moreover,
it also aims to improve the quality of the signals obtained in challenging condi-
tions, such as low lateral acceleration maneuvers, in which the lateral acceleration
is below 0.1g. In this condition, most of the physical sensors used in automotive
companies, such as accelerometers and gyroscopes, should work in their noise band
[8]. Another issue that arises with low levels of lateral acceleration is that many
un-modeled non-linear phenomena, whose effect can be neglected at medium and
high level of lateral acceleration, make the estimation of vehicle parameters very
complicated. The study of a vehicle’s response for these type of maneuvers is very
important due to their effect on the driver’s perception of the vehicle motion and
on the precision and quickness of the reaction to inputs. The driving situations in
which the vehicle is subject to levels of lateral acceleration lower than 0.1g are also
known as on-center steering conditions. A typical situation is driving at high speed
on an highway on a straight road: the lateral acceleration in this scenario is close
to zero, and if the vehicle ha poor on-center handling behavior, steering inputs are
continuously needed [9].
The starting point for this thesis project is the estimator presented in [10], devel-
oped for control applications, which has been adapted for vehicle dynamics analysis
purposes and amplified. The work done at Siemens by previous students in [11] and
[8] has also been very useful and is referenced throughout the following chapters.
Particular emphasis has been put on the modular properties of the estimator: if
the number of inputs is increased by introducing additional parameters or measure-
ments, new signals are obtained and the quality of the signals already present is

3
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improved. The proposed approach has been tested with data from two commercial
vehicle and from the SimRod (figure 1.1), an electric vehicle developed by Siemens
for testing purposes.

Figure 1.1: SimRod vehicle

1.4 Thesis outline
Chapter 2 initiates the discussion of lateral dynamics by introducing the tire and
vehicle models, in order to provide the knowledge about the states and parameters
which are addressed in later chapters. The addressed vehicle models are the single-
track and the two-track models, while the linear tire model and the adaptive linear
tire model are presented as wheel models.

Chapter 3 provides the needed theoretical background about the estimation
techniques applied in the proposed approach. The two approaches discussed are
Kalman filters, used in the vehicle dynamics estimation, and the Linear Matrix
Inequalities approach, used to implement the steering angle estimator.

Chapter 4 introduces the complete structure of the estimator, illustrating which
inputs are needed and which outputs can be obtained. Then, a detailed explana-
tion of the development steps and characteristics is provided for each block of the
modular estimator.

Chapter 5 provides an overview of the track tests used to validate the estimator,
addressing the sensor equipment and the characteristics and parameters of the
vehicle used. The handling maneuvers and test conditions are also described.

The results obtained are presented and commented in Chapter 6. Different
handling maneuvers and conditions are used to validate the estimators and evaluate
the limits of its performance.

Chapter 7 contains the conclusions reached during the thesis work. Suggestions

4
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for future work are provided, along with possible directions to be taken to reach
new objectives, starting from the results obtained in this work.
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Chapter 2

Vehicle dynamics theory

Vehicle dynamics is studied through the use of mathematical models, which can
include the whole vehicle or only parts of it (tire, suspensions, power train, etc.).
For the purposes of this thesis project, only tire and vehicle models are discussed
here. Moreover, this chapter will focus on simplified models with only a few de-
grees of freedom. This is a well considered trade-off, because even though simplified
models lack the ability to capture complex non-linear phenomena, they only require
a limited number of easily obtainable parameters and, under some reasonable as-
sumptions, provide fairly accurate results.

2.1 Coordinate system
Many different coordinate systems are used in the automotive industry. In order
to avoid confusion, any future references to the X, Y or Z axis or to the rotations
about them is to be considered in the ISO 8855 intermediate system, shown in
figure 2.1. This frame is attached to the vehicle center of gravity, and rotates with
the yaw motion of the vehicle, but not with the roll and pitch motion. The three
axes are oriented as follows:

• The X axis is perpendicular to the gravity vector and points to the forward
direction of the vehicle, projected on the horizontal plane.

• The Y axis is perpendicular to the gravity vector and to the X axis and is
in the lateral direction of the vehicle, pointing to the left, projected on the
horizontal plane.

• The Z axis is parallel to the gravity vector and positive when pointing upwards.

The roll, pitch and yaw angles are the rotations about respectively the X, Y and
Z axes, with their direction being positive according to the right-hand rule. The
choice of a coordinate system in which the X-Y plane is not always parallel to the

6



Vehicle dynamics theory

Figure 2.1: ISO 8855 intermediate system reference frame

road, as in the condition of a banking or uphill road, has been made because the
modular estimator developed in this thesis is thought to be coupled with a vehicle
body and road angle estimator, which could decouple the road influences from the
sprung mass motion due to accelerations and lateral dynamics.

2.2 Tire model
When dealing with the dynamics of a vehicle, it is of paramount importance to have
knowledge on the forces that act on the wheels. To do so, numerous tire models
have been developed over the years. The most accurate ones (such as the Pacejka
"magic formulas") require up to 20 coefficients [12], whereas the simpler ones, such
as the linear tire model, require very few parameters. Tire models deal mostly with
the lateral dynamics phenomena that appear outside of straight driving scenarios.

When a vehicle is driving in a straight line, the direction in which a wheel is
traveling coincides with its heading direction. However, when the vehicle is subject
to lateral and/or yaw motion, the traveling direction of the wheel can be different
from its heading direction. The angle between the direction the wheel is pointing
and the direction in which it is actually moving, i.e. the angle between the velocity
vector of the tire vW and the heading direction of the wheel xW , is the tire slip
angle α (figure 2.2). This is a key parameter because it has a direct relation with
the wheel lateral force Fy.

As it can be seen in figure 2.3, the relationship between the lateral force and
the tire slip angle is linear for small values of the slip angles. After it exceeds a
certain value, the lateral force increases at a slower ratio before finally reaching a
saturation value [13].

The slope of the slip-force characteristic for low values of the tire slip angle is
the cornering stiffness Cα. In the linear tire model, the lateral force Fy is expressed
by the following equation:

Fy(α) = Cα · α (2.1)

7



Vehicle dynamics theory

Figure 2.2: Vehicle tire in motion with slip angle

Figure 2.3: Slip-Force characteristic

where Cα is the cornering stiffness. This equation models the entire slip-force
characteristic as if it were a linear relation. Due to this characteristic, the linear
tire model is only accurate when dealing with small tire slip angles. Since assuming
the tire slip angle to be small is reasonable in non-critical driving scenarios, this is
one of the most used tire models in literature.

However, to overcome the limitations of this model, Best et al. proposed in [14]
an adaptive linear model:

Fyi(α) = −2 · Cαi · αi
Ċαi = 0

for i ∈ {f,r} (2.2)

8



Vehicle dynamics theory

where Cαi is the adaptive cornering stiffness, whose variable behavior (due to non-
linear tire behavior, variations in the road friction coefficient, etc.), is modeled with
a random walk model.

Due to its simplicity and effectiveness even outside of the linear region of the
slip-force characteristic, the adatpive linear tire model has been adopted in this
thesis project.

2.3 Single track model
Several vehicle models have been developed over the years, with different degrees of
complexity and number of degrees of freedom. In this project, for the development
of the modular vehicle dynamics estimator the single track model is chosen (figure
2.4), also known as the bicycle model, in order to develop an observable system for
a common set of automotive sensors [10].

Figure 2.4: Bicycle model

In this model, the two wheels on each axle are condensed into one, with the
effect of reducing the degrees of freedom to three (motion along the X and Y axes,
and rotation about the Z axis), thus simplifying the state equations. The roll and
pitch motion are neglected. The considered variables are:

9



Vehicle dynamics theory

• vx and vy are respectively the longitudinal and lateral velocity of the center of
gravity (CoG) of the vehicle, projected into a vehicle-fixed reference frame

• vCoG is the direction of the CoG velocity

• ψ̇ is the yaw rate

• β is the vehicle CoG sideslip angle

• αf and αr are respectively the front and rear tire slip angles

• δ is the front wheel steering angle

• vwf and vwr are the front and rear wheel velocities

• Fxf and Fxr are respectively the front and rear wheel longitudinal forces, while
Fyf and Fyr are the front and rear lateral forces, all expressed in a tire-fixed
reference frame

• lf and lr are the distances from the center of gravity respectively of the front
and rear axles

• WB is the wheelbase of the vehicle (i.e. the distance between the front and
rear axles).

The decision to use the bicycle model has also been influenced by the consid-
eration that, without prior assumptions on the distribution of the left and right
loads, a four-wheel model would not have allowed the separation of the forces on
each axle.

The states equation for the lateral vehicle dynamics in the bicycle model, can
be formulated as: v̇y = 1

m
· (Fyf + Fyr)− vx · ψ̇

ψ̈ = 1
Izz
· (lf · Fyf − lr · Fyr)

(2.3)

where m is the mass of the vehicle and Izz is the yaw moment of inertia. In the
above equation, the longitudinal velocity vx appears as an input. In order to take
its variation into account, vx is transformed into a state by adding a kinematic
update equation to 2.3, which then becomes:

v̇y = 1
m
· (Fyf + Fyr)− vx · ψ̇

ψ̈ = 1
Izz
· (lf · Fyf − lr · Fyr)

v̇x = ax + vy · ψ̇
(2.4)

where ax is the inertial longitudinal acceleration.
The definition of the tire slip angles αf and αr can be obtained from figure

2.4, as they are calculated by equating the wheel and chassis velocities both in the

10



Vehicle dynamics theory

longitudinal and lateral direction. The velocity balance equation of the front wheel
in the longitudinal direction is the following:

vwf · cos(δ − αf )ü ûú ý
wheel velocity

= vCoG · cos(β)ü ûú ý
chassis velocity

(2.5)

while for the lateral direction:

vwf · sin(δ − αf )ü ûú ý
wheel velocity

= vCoG · sin(β) + lf · ψ̇ü ûú ý
chassis velocity

(2.6)

By diving equation (2.6) by equation (2.5), one obtains:

tan(δ − αf ) = vCoG · sin(β) + lf · ψ̇
vCoG · cos(β) (2.7)

Similarly, for the rear wheel, the balance equation for the longitudinal direction is:

vwr · cos(αr)ü ûú ý
wheel velocity

= vCoG · cos(β)ü ûú ý
chassis velocity

(2.8)

and for the lateral direction,

vwr · sin(αr)ü ûú ý
wheel velocity

= −vCoG · sin(β) + lr · ψ̇ü ûú ý
chassis velocity

(2.9)

Dividing equation (2.9) by (2.8):

tan(αr) = −vCoG · sin(β) + lr · ψ̇
vCoG · cos(β) (2.10)

In stable driving conditions, a reasonable assumption is that the tire slip angle
α is usually lower than 5° [6], therefore the small angle assumption can be applied
by substituting sinα ≈ α, cosα ≈ 1 and tanα ≈ α. Equation (2.7) can then be
used to express αf :

αf = −β − lf · ψ̇
vCoG

+ δ (2.11)

While equation (2.10) becomes:

αr = −β + lr · ψ̇
vCoG

(2.12)

By substituting equations (2.11) and (2.12) in the adaptive linear tire model
(2.2), and combining it with the bicycle model state equations (2.4), the following

11



Vehicle dynamics theory

continuous time model is obtained:

v̇y = −2(Cf + Cr)
m · vx

vy −
A

2(Cf · lf − Cr · lr)
m · vx

+ vx

B
ψ̇ + 2 · Cf

m
δ

ψ̈ = −2(Cf · lf − Cr · lr)
Izz · vx

vy −
2(Cf · l2f + Cr · l2r)

Izz · vx
ψ̇ + 2 · Cf · lf

Izz
δ

v̇x = ax + vy · ψ̇
Ċf = 0
Ċr = 0

(2.13)

The final state equations (2.13) has five states, and they are used in Chapter 4
as the vehicle model for the modular estimator.

2.4 Two-track model
The model used for the tires vertical forces estimation is the two-track model (fig-
ures 2.5 and 2.6), together with a steady-state load transfer model [15]. The lateral
and longitudinal load transfers are expressed as:

∆Fzyi = 1
ti

A
cφi

cφf + cφr −m · g · hÍh
Í + WB − li

WB
hri

B
m · ay (2.14)

for i ∈ {f, r},

∆Fzx = m · ax · hCoG
2 ·WB

(2.15)

where:

• ∆Fzyi and ∆Fzx are respectively the lateral and longitudinal changes in the
vertical loads on the left and right side of the axle,

• ti is the axle track width,

• cφi is the axle roll stiffness,

• hri is the axle roll center height,

• hCoG is the height of the center of gravity,

• hÍ is the difference between hCoG and hri, i.e the distance between CoG and
roll center,

• ax and ay are the vehicle CoG longitudinal and lateral accelerations.
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Figure 2.5: Two-track vehicle model, XY plane

Figure 2.6: Two-track vehicle model, YZ plane

Equation (2.14) includes steady-state suspension effects, while they are neglected
in (2.15) since the distribution between left and right wheel are assumed to be equal
on a smooth surface [15].

13
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The vertical loads for each wheel are then expressed by the following equations:

Fzfl = m · g · lr
2 ·WB

−∆Fzyf −∆Fzx

Fzfr = m · g · lr
2 ·WB

+ ∆Fzyf −∆Fzx

Fzrl = m · g · lf
2 ·WB

−∆Fzyr + ∆Fzx

Fzrr = m · g · lf
2 ·WB

+ ∆Fzyr + ∆Fzx

(2.16)
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Chapter 3

Estimation theory

The estimation problem refers to the empirical evaluation of an uncertain vari-
able, like an unknown characteristic parameter or a remote signal, by means of
experimental observations and measurements of the system under investigation.

An estimation problem always assumes a mathematical model of the system.
The models can be classified as:

• static models, characterized by instantaneous (or algebraic) relationships among
variables, usually utilized in the classical statistics

• dynamics models, either described in discrete-time or continuous-time, char-
acterized by relationships among variables that can be represented with dif-
ferential equations

The variable to be estimated, scalar or vector, is denoted as θ(t) and can be either
constant or time-varying. The available data, acquired at N uniformly distributed
time instants, is denoted as d(t), for t ∈ T = {t1, t2, ..., tN}, where T is the set of
observations instants, so the entire observation data set is given by:

d = {d(t1), d(t2), ..., d(tN)}

An estimator (or estimator algorithm) is a function f(·) which, starting from data,
returns a value for the variable to be estimated:

θ̂(t) = f(d)

where θ̂(t) is called the estimate of θ, and can either be:

• constant. In this case the problem is denoted as a parametric identification,
the estimator is denoted by θ̂ or by θ̂T , and the true value of the unknown
variable is denoted by θo
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• a time-varying function. In this case the estimator is denoted by θ̂(t|T ) or by
θ̂(t|N) if the time instants for observation are uniformly distributed. Moreover,
according the the relationship between t and the last time instant tN :

1. when t > tN , it is a prediction problem;
2. when t = tN , it is a filtering problem;
3. when t < tN , it is a smoothing or interpolation problem.

3.1 Kalman filter theory
Since its first formulation by Rudolph E. Kalman in 1960 [16], the Kalman filter
has long been regarded as the optimal solution for many data estimation tasks.

The Kalman filter is an algorithm that employs a set of data measured over
time, which contains statistical noise and other inaccuracies, and estimates desired
variables with a degree of accuracy that tends to be higher than the ones obtained
using a single measurements alone, by estimating a joint probability distribution
over the variables for each time step. In this section, the Kalman filtering problem
will be introduced.

3.1.1 Kalman filtering problem
Let us consider a discrete-time, linear time-invariant (LTI), dynamical system S
(figure 3.1), described by the following state space model:

S

x(t+ 1) = Ax(t) + v1(t)
y(t) = Cx(t) + v2(t)

t = 1,2, ... (3.1)

where x(y) ∈ Rn, y(t) ∈ Rq, v1(t) ∈ Rn, v2(t) ∈ Rq, and assume that:

• the process noise v1(t) and the measurement noise v2(t) are white noises with
zero mean value and known variance which are uncorrelated to each other, i.e.
v1(t) ∼ WN(0, V1) and v2(t) ∼ WN(0, V2) are such that:

E[v1(t1)v1(t2)T ] = V1δ(t2 − t1) (whiteness of v1(t))
E[v2(t1)v2(t2)T ] = V2δ(t2 − t1) (whiteness of v2(t))
E[v1(t1)v2(t2)T ] = 0, ∀t1, t2 (uncorrelation of v1(t) and v2(t))

• A ∈ Rn×n, C ∈ Rq×n, V1 ∈ Rn×n, V2 ∈ Rq×q are known matrices,

• the initial state x(t = 1) is an unknown random vector x(t = 1) ∼ (0, P1),
uncorrelated to noises v1(t) and v2(t),

• the output measurements y(t) are available for t = 1,2, ..., N
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Figure 3.1: Graphical representation of the dynamical system S

The objective is to estimate the state x(N + r), where we will focus at first on
r = 1 (one-step prediction problem) and pass on to r = 0 (filtering problem).

Since v1(t) and v2(t) are random variables, also x(t) and y(t) are too. Then, the
Bayesian estimated of the state x(N + r) given the N measurements y(N), y(N −
1), ..., y(1) is equal to:

x̂(N + r|N) = E[x(N + r)|d] = x̄(N + r) + Σx(N+r)dΣ−1
dd (d− d̄) (3.2)

where
x̄(N + r) = E[x(N + r)] ∈ Rn,
d = yN = [y(N)T y(N − 1)T · · · y(1)T ]T ∈ RNq,

d̄ = E[d] = E[yN ] ∈ RNq,

Σdd = E[(d− d̄)(d− d̄)T ] ∈ RNq×Nq,

Σx(N+r)d = E[(x(N + r)− x̄(N + r))(d− d̄)T ] ∈ Rn×Nq

Moreover, since v1(t) and v2(t) have zero mean value ∀t, also x(y), y(t) must have
zero mean value ∀t:

x̂(N + r|N) = E[x(N + r)|yN ] = Σx(N+r)yN Σ−1
yNyNy

N (3.3)

The main drawback of the proposed form of the Bayesian estimate (3.3) is that
it requires the batch processing of the measurements, since all information is in-
corporated in one single step into the estimate. This leads to the necessity for
inverting ΣyNyN ∈ RNq×Nq, which may be a very difficult task when N is large.

To avoid this drawback, recursive or sequential estimation schemes are looked
for, in which the current estimate depends on the previous estimate and the cur-
rent measurement. Such schemes rely on sequential processing of data, where the
measurements are processed in stages. Using the recursive Bayesian estimation
method, at first the one-step prediction problem will be solved, then the filtering
problem will be dealt with.
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3.1.2 One-step Kalman predictor

The objective of the one-step Kalman predictor is, given the data vector yN =
[y(N)T y(N − 1)T ... y(1)T ]T , to find a recursive Bayesian estimate x̂(N + 1|N)
of the state x(N + 1) starting from the estimate x̂(N |N − 1) of the state x(N)
obtained at the previous stage. The innovation of y(N + 1) given yN is defined by:

e(N + 1) = y(N + 1)− E[y(N + 1)|yN ] ∈ Rq (3.4)

where E[y(N + 1)|yN ] is the projection of y(N + 1) over the subspace H[yN ] gen-
erated by all the components of yN , called past subspace. The innovation e(n+ 1)
is orthogonal to H[yN ], i.e. the innovation is orthogonal to the past (figure 3.2).

Figure 3.2: Past subspace H[yN ]

The prediction error of the state x(N + 1) is defined by:

x̃(N + 1) = x(N + 1)− E[x(N + 1)|yN ] ∈ Rn (3.5)

where E[x(N + 1)|yN ] is the projection of x(N + 1) over H[yN ], then x̃(N + 1) is
orthogonal to H[yN ]. Moreover,

E[x̃(N + 1) = E[x(N + 1)− Σx(N+1)yN Σ−1
yNyNy

N =
= E[x(N + 1)]− Σx(N+1)yN Σ−1

yNyNE[yN ] = 0 (3.6)

and

V ar[x̃(N + 1)] = E[(x̃(N + 1)− E[x̃(N + 1)])(x̃(N + 1)− E[x̃(N + 1)])T ] =
= E[x̃(N + 1)x̃(N + 1)T ] = P (N + 1) (3.7)

Since e(N + 1) and x̃(N + 1) are parallel, being both orthogonal to the past
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subspace H[yN ], they must be linearly dependent:

e(N + 1) = y(N + 1)− E[y(N + 1)|Y N ] =
= Cx(N + 1) + v2(N + 1)− E[Cx(N + 1) + v2(N + 1)|yN ] =

= Cx(N + 1) + v2(N + 1)− E[Cx(N + 1)|yN ]− E[v2(N + 1)|yN ] =
= Cx(N + 1)− v2(N + 1)− CE[x(N + 1)|yN ]− E[v2(N + 1)] =

= Cx(N + 1)− CE[x(N + 1)|yN ] + v2(N + 1) =
= C(x(N + 1)− E[x(N + 1|yN ]) + v2(N + 1) =

= Cx̃(N + 1) + v2(N + 1) (3.8)

where E[v2(N + 1)|yN ] = E[v2(N + 1)] = 0 since v2(N + 1) is a random variable
with zero mean value and independent of yN .

The optimal estimate for the state x(N + 1) based on data yN is given by:

x̃(N + 1|N) = E[x(N + 1)|yN ] = E[x(N + 1)|yN−1, y(N)] (3.9)

where yN−1 = [y(N − 1)T y(N − 2)T · · · y(1)T ]T ∈ R(N−1)q. From the recursive
Bayesian formula, it results that:

x̃(N + 1|N) = E[x(N + 1)|yN−1, y(N)] =
= E[x(N + 1)|yN−1] + E[x(n+ 1)|e(N)] (3.10)

where e(N) is the innovation of y(N) given yN−1.
From the state equation of the system S:

E[x(N + 1)|yN−1] = E[Ax(N) + v1(N)|yN−1] =
= AE[x(N)|yN−1] + E[v1(N)|yN−1] =

= AE[x(N)|yN−1] = Ax̃(N |N − 1) (3.11)

where E[v1(N)|yN−1] = 0 since v1 has zero mean value and is independent of yN .
Since E[x(t)] = E[e(t)] = 0, ∀t, then:

E[x(N + 1)|e(N)] = Σx(N+1)e(N)Σ−1
e(N)e(N)e(N) = K(N)e(N) (3.12)

where it can be proven that:

Σx(N+1)e(N) = AP (N)CT

Σe(N)e(N) = CP (N)CT + V2
K(N) = Σx(N+1)e(N)Σ−1

e(N)e(N) = AP (N)CT [CP (N)CT + V2]−1

P (N) = V ar[x̃(N)] = E[x̃(N)x̃(N)T ]

The recursive form of the one-step state prediction is then:

x̂(N + 1|N) = Ax̂(N |N − 1) +K(N)e(N) (3.13)
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where K(N) ∈ Rn×q is called one-step Kalman predictor gain matrix and
involves the prediction error variance P (N) ∈ Rn×n of the state x(N).

The prediction error variance P (N) ∈ Rn×n of the state x(N) can be recursively
computed using the Difference Riccati Equation (DRE) which can be written as:

P (N + 1) = AP (N)AT + V1 −K(N)[CP (N)CT + V2]K(N)T (3.14)

assuming P (1) = V ar[x(1)] = P1 as starting value.
The update of the state equation (3.13) has to be initialized as a starting value:

x̂(1|0) = E[x(1)] = 0

The optimal estimate for the output y(N + 1) based on data yN is given by:

ŷ(N + 1|N) = E[y(N + 1)|yN ] = E[Cx(N + 1) + v2(N + 1)|yN ] =
= E[Cx(N + 1)|yN ] + E[v2(N + 1)|yN ] =

= CE[x(N + 1)|yN ] + E[v2(N + 1)] = Cx̂(N + 1|N) (3.15)

A graphical representation of the one-step Kalman predictor is shown in figure
3.3.

Figure 3.3: Graphical representation of the one-step Kalman predictor
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3.1.3 Kalman filter
Let us consider a discrete-time, linear time-invariant (LTI), dynamical system S
with an exogeneous (deterministic and known) input u(·) described by the state-
space model:

S

x(t+ 1) = Ax(t) +Bu(t) + v1(t)
y(t) = Cx(t) + v2(t)

t = 1,2, ...

where x(t) ∈ Rn, y(t) ∈ Rq, u(t) ∈ Rp, v1(t) ∈ Rn, v2(t) ∈ Rq, and assume that:

• u(·) may possibly depend on the output y(·) through a casual feedback as

u(t) = f(y(t), y(t− 1), y(t− 2), ...), ∀t

• v1(t), v2(t) are white noises with zero mean value that are correlated if con-
sidered at the same time but uncorrelated at different time instants:

E[vi(t1)vj(t2)T ] = Vijδ(t2 − t1), i = 1,2, j = 1,2

• A ∈ Rn×n, B ∈ Rn×p, C ∈ Rq×n, V1 ∈ Rn×n, V2 ∈ Rq×q, V12 ∈ Rn×q are
known matrices

• the initial state x(t = 1) is an unknown random vector: x(t = 1) ∼ (x̄1, P1),
with known x̄1 ∈ Rn and P1 ∈ Rn×n, which is uncorrelated with v1(t), v2(t)

• the output measurements y(t) are available for t = 1,2, ..., N

The optimal estimate for the state x(N) based on data yN is given by:

x̂(N |N) = E[x(N)|yN ] = E[x(N)|yN−1, y(N)] (3.16)

where yN−1 = [y(N − 1)T y(N − 2)T ... y(1)T ]T ∈ R(N−1)q.
From the Bayesian estimate formula, it results that:

x̂(N |N) = E[x(N)|yN−1, y(N)] = E[x(N)|yN−1] + E[x(N)|e(N)] =
= x̂(N |N − 1) + E[x(N)|e(N)] (3.17)

where e = (N) = y(N)− y(N − 1) is the innovation if y(N) given yN−1.
Since E[x(t)] = E[e(t)] = 0, ∀t, then:

E[x(N)|e(N)] = Σx(N)e(N)Σ−1
e(N)e(N)e(N) = K0(N)e(N) (3.18)

where it can be proved that:

Σx(N)e(N) = P (N)CT

Σe(N)e(N) = CP (N)CT + V2
K0 = Σx(N)e(N)Σ−1

e(N)e(N) = P (N)CT [CP (N)CT + V2]−1

P (N) = V ar[x̃(N)] = E[x̃(N)x̃(N)T ]
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The optimal estimate for the state x(t) based on data yN can be obtained from the
one-step Kalman predictor as:

x̂(N |N) = x̂(N |N − 1) +K0(N)e(N) (3.19)

where K0 ∈ Rn×q is called Kalman filter gain matrix and involves the variance
P (N) ∈ Rn×n of x̃(N). Note that, if V12 = 0n×q, then K(N) = AK0(N).

The variance of the filtering error x(N)− x̂(N |N) involves covariance P (N) as
well, since it can be proven that:

V ar[x(N)− x̂(N |N)] = P (N)− P (N)CT [CP (N)CT + V2]−1CP (N)
⇓

V ar[x(N)− x̂(N |N)] ≤ P (N)

since the estimate x̂(N |N) provided by the Kalman filter is based also on the data
sample y(N) with respect to the estimate x̂(N |N − 1) provided by the one-step
Kalman predictor. This means that the uncertainty on x̂(N |N) has to be lower.

The overall equations of the Kalman filter are:

K :



x̂(N + 1|N) = Ax̂(N |N − 1) +Bu(N) +K(N)e(N)
ŷ(N |N − 1) = Cx̂(N |N − 1)
x̂(N |N) = x̂(N |N − 1) +K0(N)e(N)
e(N) = y(N)− ŷ(N |N − 1)
K0(N) = P (N)CT [CP (N)CT + V2(N)]−1

K(N) = [AP (N)CT [CP (N)CT + V12][CP (N)CT + V2(N)]−1

P (N + 1) = AP (N)AT + V1(N)−K(N)[CP (N)CT + V2(N)]K(N)T
(3.20)

A graphical representation of the Kalman filter is given in figure 3.4

3.1.4 Extended Kalman Filter
Although Kalman filtering techniques by assumption can only be used on linear
system, they can also be adapted to work with non-linear system. The Extended
Kalman Filter (EKF) is one of these methods, based on the recursive linearization of
the system around the current estimation state, then solving it as a linear estimation
problem.

Let us consider a discrete-time, non-linear, time-variant, dynamic system S de-
scribed by:

S :
x(t+ 1) = f(t, x(t), u(t)) + v1(t)
y(t) = h(t, x(t), u(t))) + v2(t)

t = 1,2, ... (3.21)

where x(t) ∈ Rn, y(t) ∈ Rq, u(t) ∈ Rp, v1(t) ∈ Rn, v2(t) ∈ Rq, and assume that:

22



Estimation theory

Figure 3.4: Graphical representation of the Kalman filter K

• v1(t) and v2(t), respectively the process noise and the measurement noise, are
white noises with zero mean value uncorrelated with each other and also with
the initial state x(1)

• f(·) and h(·) are known nonlinear functions

• V1 ∈ Rn×n and V2 ∈ Rq×q are known matrices

• the initial state x(t = 1) is a random vector x(t = 1) ∼ (x̄1, P1) with known
x̄1 ∈ Rn and P1 ∈ Rn×n

• the output measurements y(t) are available for t = 1,2, ...

The matrices V1, V2 can be used as tuning parameters for the filter to achieve the
desired performance: as the model error covariance matrix V1 increases with respect
to the measurement covariance matrix V2, the filter tends trust the measurements
more. On the contrary, if V2 increases with respect to V1, the filter tends to trust
the model more, but the noise removal effect due to the V1 matrix is reduced.
The covariance matrices V1 and V2 represent the uncertainty assigned to either the
model or the measurements.

The Extended Kalman filter is developed in the following two steps [17]:

1. Prediction step: the estimate x̂(N−1|N−1) of the state x(N−1) obtained
at the previous time step is combined with the current inputs to obtain the
prediction of the next state x̂(N + 1|N)
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2. Correction step: the predicted state x̂(N + 1|N) is updated using the inno-
vation term, that is the difference between measurements and the estimated
model output.

Prediction step

The state equation is described by:

x(N + 1) = f((x(N), u(N), N) + v1(N) (3.22)

Supposing that an estimate at time N − 1 is available, equation (3.22) is expanded
as a Taylor series around x̂(N − 1|N − 1), obtaining a linearized state equation:

x(N |N − 1) ≈ f(x̂(N − 1|N − 1), u(N), N)+

+ ∂fx
∂x
|x=x̂(N−1)[x(N − 1)− x̂(N − 1|N − 1)] + v1(N) (3.23)

By defining the one-step state prediction as:

x̂(N |N − 1) = f(x̂(N − 1|N − 1), u(N), N) (3.24)

and denoting with F the Jacobian matrix

F (N) = ∇xfx(N) = ∂fx(N)
∂x

|x=x̂N−1 (3.25)

equation (3.22) can be written as a linear equation:

x(N + 1) = F (N)x(N) + u(N) + v1(N) (3.26)

The state prediction error x̃(N) and the prediction covariance matrix can be
calculated:

x̃(N) = x(N)− x̂(N |N − 1) = F (N)x̂(N − 1|N − 1) + v1(N) (3.27)

P (N |N − 1) = F (N)P (N − 1|N − 1)F T (N) + V1(N) (3.28)
The output equation in (3.21) can also be expanded using Taylor series, in order

to obtain the predicted output vector ŷ(N) and the innovation e(N) = y(N) −
h(x̂(N |N − 1)). The Jacobian matrix of h is denoted with H and computed in
x̂(N |N − 1).

The linearized output equation becomes:

y(N) = H(N)x(N) + v2(N) (3.29)

while the innovation covariance matrix S(N) is:

S(N) = H(N)P (N)HT + V2(N) (3.30)

24



Estimation theory

Correction step

Once the one-step prediction state is obtained, it is updated using the measurement
vector y(N). The corrected state is expressed as:

x̂(N |N) = x̂(N |N − 1) +K(N)(y(N)− h(x̂(N |N − 1)) =
= x̂(N |N − 1) +K(N)e(N) (3.31)

where K(N) is the Kalman gain matrix calculated to minimize the state error
x̃(N |N) = x̂(N |N)−x(N). This can be done by minimizing the estimate covariance
matrix P (N |N) because the problems are equivalent [8].

P (N |N) = E[x̃(N)x̃(N)T |yN ] ≈
≈ [I −K(N)H(N)]P (N |N − 1)[I −K(N)H(N)]T +K(N)V2(N)K(N) (3.32)

By imposing the derivative of P (N |N) equal to zero, the Kalman gain matrix
is obtained:

K(N) = P (N |N − 1)H(N)TS(N)−1 (3.33)
The overall equations of the Extended Kalman filter are:

• Prediction stepx̂(N |N − 1) = f(x̂(N − 1|N − 1), u(N), N)
P (N |N − 1) = F (N)P (N − 1|N − 1)F (N)T + V1

(3.34)

• Correction step

e(N) = y(N)− h(x̂(N |N − 1))
S(N) = H(N)P (N |N − 1)H(N)T + V2(N)
K(N) = P (N |N − 1)H(N)TS(N)−1

x̂(N |N) = x̂(N |N − 1) +K(N)e(N)
P (N |N) = (I −K(N)H(N))P (N |N − 1)

(3.35)

3.2 Linear Matrix Inequalities
Another estimation technique has been used as a part of the vehicle dynamics
estimator to estimate the wheel steering angle δ: the Linear Matrix Inequalities
(LMIs) method.

LMIs are convex or quasi-convex constraints describing many optimization prob-
lems used in system and control theory. A linear matrix inequality has the form:

F (x) , F0 +
mØ
i=1

xiFi > 0 (3.36)
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where x ∈ Rm is the variable and the symmetric matrices Fi = F T
i ∈ Rn×n for

i = 0,1, ...,m are given.
The principle behind this observer is to estimate the state and the unknown

input using the available measurements. The following assumptions must also be
made:

• the number of unknown inputs shall be lower than the number of available
measurements,

• the unknown inputs shall not be related to the measures,

• the considered model shall be observable.

LMIs can be used to represent a wide variety of constraints on x, like Lyapunov
and convex quadratic inequalities [18]. Considering the following set of non-linear
inequalities:

R(x) > 0
Q(x)− S(x)R(x)−1S(x)T > 0 (3.37)

can be represented as a linear matrix inequality by applying Shur complement:C
Q(x) S(x)
S(x)T R(x)

D
> 0 (3.38)

where Q(x) and R(x) are symmetrical matrices: Q(x) = Q(x)T , R(x) = R(x)T .
A typical problem that can be solved with LMIs is the Lyapunov inequality:

P > 0, ATP + PA < 0 (3.39)

where A ∈ Rn×n is known. In this case, the LMI is considered solved if the matrix
P is found or if it is determined that no such P exists [18].
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Chapter 4

Modular vehicle dynamics
estimator

This chapters presents the structure of the proposed modular vehicle dynamics
estimator and explains in detail the composition of each module and its role in the
final structure.

The high level structure of the estimator is shown in figure 4.1, where the vari-
ables shown on the left side are the measurements used as inputs and the ones
shown on the right side are the obtained estimates.

Figure 4.1 is presented as an array of blocks with different function to highlight
the modular concept of the estimator, which has been one of the driving ideas during
its development: the EKF is the "core" around which the other blocks have been
added in order to increase the final performance of the estimator by introducing
additional inputs or models.

Figure 4.1: Modular vehicle dynamics estimator high-level structure
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4.1 Extended Kalman Filter
The core of the vehicle dynamics modular estimator proposed in this thesis work
is an Extended Kalman filter. Although the EKF is not an optimal solver for
non-linear models, it has been chosen over other estimation techniques because of
it has a low computational load, since it only considers the data obtained at the
previous time step instead of the whole data history, making it suitable for real-time
applications [19].

The EKF is based on the single-track model presented in section 2.3, resulting
in the following model for the estimator:

v̇y = −2(Cf + Cr)
m · vx

vy −
A

2(Cf · lf − Cr · lr)
m · vx

+ vx

B
ψ̇ + 2 · Cf

m
δ

ψ̈ = −2(Cf · lf − Cr · lr)
Izz · vx

vy −
2(Cf · l2f + Cr · l2r)

Izz · vx
ψ̇ + 2 · Cf · lf

Izz
δ

v̇x = ax + vy · ψ̇
Ċf = 0
Ċr = 0

(4.1)

where x = [vy, ψ̇, vx, Cf , Cr]T is the state vector and u = [ax, δ]T is the input
vector. The cornering stiffness values Cf , Cr are modeled with a random walk
model according to the adaptive linear tire model presented in section 2.2 in order
to consider the non-linear behavior that the tire is supposed to have at low levels
of lateral acceleration.

The measurement model (or output equation) considered at first is:
ψ̇ = ψ̇

ay = −2 · (Cf + Cr)
m · vx

vy −
2 · (lf · Cf − lr · Cr)

m · vx
ψ̇ + 2 · Cf

m
δ

vx = vx

(4.2)

where y = [ψ̇, ay, vx] is the measurement (or output) vector.

An observability analysis for an EKF which employs models (4.1) and (4.2) has
been performed by Naets et al. in [10], from which the following remarks can be
obtained:

• when the slip angles αf and αr are zero, the cornering stiffnesses Cf and Cr
are unobservable, irrespective of the measurements used

• when the slip angles αf and αr are not zero, at least the yaw rate and lateral
acceleration measurements are needed to make the system observable.
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The first remark implies that during straight driving the cornering stiffnesses
are subject to random drifting since there is no information about lateral dynamics
that can be used to observe Cf and Cr. This is an issue, since straight driving is
one of the most common driving conditions of a vehicle.

To overcome this issue, Van Aalst et al. proposed the introduction of model that
assumes linear tire behavior in order to obtain a virtual sideslip measurement βlin:

v̇y lin =
−2 ·

1
C̄f + C̄r

2
m · vx

vy lin −

2 ·
1
C̄f · lf − C̄r · lr

2
m · vx

+ vx

 ψ̇lin + 2 · C̄f
m

δ

ψ̈lin =
−2 ·

1
C̄f · lf − C̄r · lr

2
Izz · vx

vy lin −
2 ·
1
C̄f · l2f + C̄r · l2r

2
Izz · vx

ψ̇lin + 2 · C̄f · lf
Izz

δ

(4.3)
where u = [vx, δ] is the input vector, C̄f and C̄r are the front and rear cornering
stiffnesses, assumed to be constant.

Measurement model (4.2) is then augmented by introducing a virtual sideslip
angle measurement βlin, obtained by integrating over time linear model (4.3), re-
membering that, under the small angle approximation, βlin = vy lin

vx
.

The augmented measurement model is:

ψ̇ = ψ̇

ay = −2 · (Cf + Cr)
m · vx

vy −
2 · (lf · Cf − lr · Cr)

m · vx
ψ̇ + 2 · Cf

m
δ

vx = vx

βlin = vy lin

vx

(4.4)

where y = [ψ̇, ay, vx, βlin]T is the measurement vector.

The virtual sideslip measurement has been added also to introduce an additional
reference for the lateral velocity, which is one of the most important quantities to
be obtained for control or dynamics analysis purposes, but at the same time it is
very challenging to measure, especially at low levels of lateral acceleration. The
difference in accuracy between measurements performed at medium (0.1g ÷ 0.5g)
or low (< 0.1g) levels of lateral acceleration is shown in figure 4.2 for two sinusoidal
handling maneuvers at constant velocity. It is evident that the quality of the
measure in figure 4.2b is much lower than the one in figure 4.2a, showing more
noise and drifting.

It has to be noted that, since the plots in figure 4.2 have been obtained with
confidential data, more detailed information cannot be provided, such as the Y axes
values, the commercial vehicle used in the maneuvers or the speed at which they
have been performed.
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(a) vy measured at medium levels of ay (b) vy measured at low levels of ay

Figure 4.2: Sinusoidal maneuvers performed at different levels of lateral acceleration

By introducing the additional linear model, however, the βlin reference obtained
is the result of a model, simpler than the one used in equation (4.1), and not of
an actual measure. This means that it is bound to have errors and limitations,
but also moments in which its results correctly represent the actual behavior of
the vehicle. For this reason, a measure of non-linearity s is defined, as a mean to
determine whether the linear model 4.3 is reliable or not:

s(N) = |ψ̇meas(N)− ψ̇lin(N)| (4.5)

where ψ̇meas(N) and ψ̇lin(N) are respectively the measured yaw rate and the yaw
rate predicted by model (4.3) at time N .

This value is then used to adapt the covariances values of the adaptive linear
tire model, QCf

and QCr , and of the virtual sideslip angle measurement Rβlin
. The

reasoning behind the adaptation of the covariances is the following:

• ψ̇meas = ψ̇lin → s = 0: this occurs during straight driving, where no lateral
excitation is present. In this case,

– QCi
are set to zero to stabilize the estimator and avoid drifting of the

cornering stiffnesses
– Rβlin

is set to a low value since the linear model is reliable in this condition

• ψ̇meas ∼ ψ̇lin → s is small: the tire behavior is linear. In this case,

– QCi
are set to low values since under linear behavior the cornering stiff-

nesses do not need to be adapted
– Rβlin

is set to a low value since βlin is accurately predicts the vehicle
behavior
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• ψ̇meas /= ψ̇lin → s is large: the tire behavior is non-linear. In this case,

– QCi
are set to high values since the cornering stiffness values are not

reliable in this condition and need to be adapted
– Rβlin

is set to a high value since βlin is no longer an accurate estimate of
the vehicle sideslip angle

The measure of non-linearity s is obtained by comparing the measured yaw rate
with the one predicted from the linear model because the yaw rate is one of the
most reliable quantities that are measured on a vehicle even in the challenging
on-center condition, as it can be seen from figure 4.3.

(a) ψ̇ measured at medium levels of ay (b) ψ̇ measured at low levels of ay

Figure 4.3: Sinusoidal maneuvers performed at different levels of lateral acceleration

The quantities that are obtained as outputs of the estimator are the following:
• lateral velocity vy
• longitudinal velocity vx
• lateral acceleration ay
• yaw rate ψ̇

• front and rear cornering stiffnesses Cf and Cr
• front and rear tire slip angles αf and αr
• front and rear wheel lateral forces Fyf and Fyr
The tire slip angles are obtained by applying equations (2.11) and (2.12) to the

system states and inputs, and the wheel lateral forces are obtained by combining
the tire slip angles and the cornering stiffnesses, as in equation (2.2).

Figure 4.4 shows the final structure of the Extended Kalman Filter.
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Figure 4.4: Extended Kalman Filter structure

4.1.1 Estimator tuning
The model covariance matrix Q is set as:

Q =


Qvy 0 0 0 0
0 Qψ̇ 0 0 0
0 0 Qvx 0 0
0 0 0 QCf

0
0 0 0 0 QCr

 (4.6)

in which the covariances values are set as:
Qvy = 0 (m/s)2

Qψ̇ = 0 (rad/s)2

Qvx = 1 · 10−4 ·∆t (m/s)2

QCf
= 1 · 10−4 · f1(s) ·∆t (N/rad)2

QCr = 1 · 10−4 · f1(s) ·∆t (N/rad)2

where ∆t is the time step between two consecutive measurements, and

f1(s) =
0, if s ≤ 0.015
g(s) · 5002, otherwise

(4.7)

in which g(s) is a function that gives back the highest value of s in the last 1.5
seconds.
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The measurement covariance matrix R is

R =


Rψ̇ 0 0 0
0 Ray 0 0
0 0 Rvx 0
0 0 0 Rβlin

 (4.8)

where the covariance values are obtained by computing the variance of the measured
signals in the first 1.5 seconds of the maneuver (when the vehicle is still in straight
driving conditions), resulting in:

Rψ̇ = 2 · 10−6 (rad/s)2

Ray = 1.5 · 10−4 (m/s2)2

Rvx = 7.8 · 10−5 (m/s)2

Rβlin
= f2(s) (rad)2

where

f2(s) =
10−7, if s ≤ 0.015

1 · 10−2 · (2 · g(s))4 , otherwise
(4.9)

4.2 Wheel steering angle estimator
As mentioned in the previous section, one of the inputs of the models used in the
EKF is the steering angle δ. However, it is not a measurement that is usually
obtained with normal test equipment, as it requires expensive dedicated sensors
placed on the wheel or suspension.

To overcome this issue, the wheel steering angle estimator developed by Giuseppe
Streppa in a preceding thesis work at Siemens [11] has been introduced as a means to
obtain δ starting from the available measured data, using a linear matrix inequalities
method.

The model used is again the single-track one:
β̇ = Fyf + Fyr

vCoG ·m
− ψ̇

ψ̈ = lf · Fyf − lr · Fyr
Izz

(4.10)

where equation (4.10) can be rewritten as a linear system Σ with unknown input
δ.

Σ :
ẋ = Ax+Bδ

y = Cx
(4.11)

in which x = [β, ψ̇]T is the state vector, δ is the unknown input and y = ψ̇
is the output vector. Using the small angle approximation, and remembering that
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the lateral forces are proportional to the tire slip angles (2.1), the matrices A,B,C
can be expressed as:

A =


−Cf − Cr
m · vCoG

lr · Cr − lf · Cf
m · v2

CoG

lr · Cr − lf · Cf
Izz

−l2r · Cr − l2f · Cf
Izz · vCoG



B =


Cf

m · vCoG

lf · Cf
Izz


C =

è
0 1

é
The state and the input of system Σ are estimated with an Unknown Input

Observer (UIO) O (4.12):

O :
ż = Nz + Ly

x̂ = z − Ey
(4.12)

where z is the state of the observer ans x̂ is the output corresponding to the
estimated variable. The matrices N,L and E have to be computed. The estimation
error e = x− x̂ converges asymptotically to 0 if and only if the following conditions
are met:

1. N is stable

2. PB = 0

3. LC = PA−NP

where P = I + EC and I is the identity matrix. The first condition can be
transformed in a LMI using Lyapunov’s theorem and Shur complement [11]:C

−X 0
0 (PA)TX +X(PA)− (CTW T +WC)

D
< 0 (4.13)

where W is the matrix variable and X is the symmetric positive matrix variable,
which are obtained by solving the LMI problem.

From the second and third conditions, the following equations are obtained:

E = −B(CB)T [(CB)(CB)T ]−1

N = PA−X−1WC
L = X−1W (I + CE)− PAE

(4.14)
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Then, the unknown input observer system O (4.12) is solved, obtaining x̂ =
[β, ψ̇]. Finally, the steering angle δ is computed from Σ:

δ = B+(ż − Eẏ + Ax̂) (4.15)

where B+ is the pseudo-inverse of B.

4.3 Roll correction
It has been observed that the lateral velocity vy estimated by the extended Kalman
filter has a phase difference with respect to the measured data, as shown in figure
4.5.

Figure 4.5: Comparison between measured and estimated lateral velocity

This error is thought to be due to the fact that the roll motion is neglected in
the model used in the EKF. The roll angle φ causes the lateral acceleration to be
influenced by an additive component that needs to be considered in the single-track
model. According to simulations performed with AmeSim, the main contribution
of roll is given by the roll rate φ̇, and to compensate for the phase mismatch a
correction using this term is introduced by Ricci in [8]:

vy,roll = vy − φ̇ · hr (4.16)

where vy,roll is the corrected lateral velocity, vy is the lateral velocity estimated by
the EKF, φ̇ is the vehicle roll rate and hr is the roll center height.

The results of the correction applied by (4.16) are shown in figure 4.6. The phase
difference is almost completely removed, the remaining error is attributed to the roll
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acceleration φ̈ which is neglected here. Introducing the roll rate measurement has
also the effect of increasing the dynamic content of the estimated lateral velocity:
by comparing figure 4.5 and 4.6, it is clear that the estimated lateral velocity shown
in the latter follows more closely the dynamic content of the measured signal.

Figure 4.6: Estimated lateral velocity with roll correction

4.3.1 Sideslip angle calculation
The same phase mismatch noticed for the lateral velocity is observed also for the
sideslip angle β (figure 4.7). This is expected, since β is related to vy.

By using the corrected lateral velocity vy, roll to compute the sideslip angle value:

βroll = tan−1
3
vy, roll
vx

4
(4.17)

the phase mismatch is corrected (figure 4.8).
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Figure 4.7: Measured and estimated sideslip angle β

Figure 4.8: Estimated vehicle sideslip angle with roll correction

4.4 Vertical wheel loads

In section 4.3 it was shown that by introducing additional information such as the
roll rate measurement φ̇ and the height of the roll center hr, to the set of parameters
and measurements already used in the EKF, the quality of the results is improved.
In this section it is shown that by introducing the front and rear roll stiffnesses cφf
and cφr, access to the tire vertical forces is obtained [15].
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By considering the two-track model explained in section 2.4, the longitudinal
and lateral variations of the vertical loads are obtained with equations (2.14) and
(2.15), and they are used to compute the vertical loads for each wheel:

Fzfl = m · g · lr
2 ·WB

−∆Fzyf −∆Fzx

Fzfr = m · g · lr
2 ·WB

+ ∆Fzyf −∆Fzx

Fzrl = m · g · lf
2 ·WB

−∆Fzyr + ∆Fzx

Fzrr = m · g · lf
2 ·WB

+ ∆Fzyr + ∆Fzx

(4.18)

The roll stiffness parameters are obtained through Kinematic & Compliance
(K & C) testing, which is a particular type of suspension testing focused on the
suspension geometry (toe angle, camber angle, etc.) and stiffness.

The resulting estimated tire forces show a very close match both in ampli-
tude and phase with the measurements obtained with force transducers and strain
gauges, as shown in figure 4.9.

Figure 4.9: Measured and estimated vertical load on the front right wheel

4.5 Lateral wheel loads
Once the vertical wheel loads have been determined, the lateral wheel forces are
obtained by applying the vertical proportionality principle, which states that the
difference between the lateral forces on the left and right wheels is proportional to
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the weight distribution, assuming that the friction coefficient for the left and right
wheel is the same. The lateral wheel forces can then be computed as [20]:

Fyij = Fyi
Fzij

Fzi,left + Fzi,right
(4.19)

for i ∈ {front, rear} and j ∈ {left, right}. An example of the estimated lateral
force is shown in figure 4.10, where it is compared to the lateral force measured
using strain gauges and force transducers.

Figure 4.10: Measured and estimated lateral forces for the rear right wheel

The estimated curve is a close fit with respect to the measured one, and the
small differences in amplitude are attributed to the neglected effects of ply-steer
and tire conicity [12].
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Chapter 5

Track tests

This chapter gives an overview of the sensors used for the measurements, their
placement on the vehicle, the needed vehicle parameters and how they are obtained,
and the driving maneuvers used for testing and validation of the estimator.

5.1 Sensors equipment
In order to obtain a large amount of measured data, various physical sensors have
been employed in the testing campaign.

The sensor equipment used for testing is summarized in table 5.1.

Sensor type Manufacturer Model
Inertial Measurement Unit OxTS RT3003G
Optical sensor Kistler Correvit S-Motion
Strain gauges Vishay, 125UN-350

Micro-Measurements 062UV-350
062UT-350

Wheel motion measurement Aicon WheelWatch
Wheel force transducer Kistler RoaDyn (6 DOF)
LMS SCADAS Siemens Mobile 5

Table 5.1: Sensor equipment on test vehicles

The OxTS RT3003G [21] is an Inertial Navigation System for making precision
measurements of motion in real-time. It is equipped with two GNSS antennas, three
gyroscopes and three accelerometers. This IMU (shown in figure 5.1) is placed in-
side the vehicle, in a location close to the center of gravity, usually between the two
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front seats. It provides precise measurements for linear and angular displacements,
velocities and accelerations along the X, Y and Z axes. The data it produces is
used as a reference for the linear accelerations and velocities, as well as angular
rates.

Figure 5.1: OxTs RT3003G Inertial Measurement Unit

The Correvit S-Motion (figure 5.2) is a non-contact optical sensor which en-
ables direct, slip-free measurement of longitudinal and transverse speed in vehicle
driving dynamics tests [22]. Out of the three vehicles used for the estimator vali-
dation, this sensor was mounted only on the SimRod (figure 5.8). It is placed in
the nose of the vehicle, at equal distance from the two wheels, facing downward.
It was used to obtain a more precise measure of the lateral and longitudinal ve-
locities, as well as of the sideslip angle, since the ones produced by the IMU are
a result of the integration of the linear accelerations and as such are prone to errors.

The Vishay Micro-Measurements strain gauges (figure 5.3) are used for load
identification. A number of them is placed at determined positions on the suspen-
sion structure, and the information obtained from them is combined to compute
the longitudinal, vertical and lateral loads on the wheel.

The Aicon WheelWatch system (figure 5.4) provides non-contact high speed
monitoring of wheel motion in vehicle dynamics testing [23]. It provides accurate
measurements of all wheel parameters including steering angle, camber inclination,
slip angle, spring travel. It is built around a high-resolution high speed digital cam-
era that frames the optical targets on the carbon fiber adaptor fixed to the wheel.
Special optical targets applied to the fender define the vehicle coordinate system,
so that WheelWatch can continuously recalculate its position. It has been mounted
only on one of the two commercial vehicles used for the estimator validation, and
it is used to validate the estimated tire slip angles.

The Kistler RoaDyn wheel force transducers (figure 5.5) have been used for
direct measurement of the wheel forces. They measure operating loads and torques
during typical vehicle driving maneuvers [24]. Four wheel force transducers, one
per wheel, have been mounted on the vehicles as a means to obtain more precise
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Figure 5.2: Kistler Correvit S-Motion

(a) 062UT-350 (b) 062UV-350 (c) 125UN-350

Figure 5.3: Strain gauges employed for load identification procedure

lateral force measurements.
The Siemens PLM SCADAS (figure 5.6) is a multi-channel data acquisition

system used to interface with all the utilized sensors.
The position of the sensor equipment on the SimRod vehicle is shown in figure

5.7.
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Figure 5.4: Aicon Wheel Watch system

Figure 5.5: Kistler RoaDyn wheel force transducer

Figure 5.6: Siemens PLM SCADAS Mobile
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(a) SimRod sensors position, front view
(b) SimRod sensors position, rear view

Figure 5.7: Placement of sensor equipment on the SimRod vehicle
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5.2 Vehicle instrumentation
The vehicles used in the test campaign were three: two commercial vehicles, about
which no information will be provided here due to its confidential nature, and the
SimRod (figure 5.8).

Figure 5.8: SimRod vehicle

The SimRod is an electric sports car developed by Siemens to be used as a
technology demonstrator and testing device. Table 5.2 summarizes the vehicle
parameters used in the estimator.

The wheelbase and track width values are obtained from the CAD model of the
SimRod, while the mass has been measured with scales placed under each wheel.

The weight measurements for each axle have then been used to compute the
longitudinal position of the center of gravity:

lf = m · g
Fzr ·WB

(5.1)

where m is the total mass of the vehicle, WB is the wheelbase and Fzr is the
measured weight of the rear axle.

The CoG height has been measured using the wheel scale method proposed in
[25]: after recording the wheel weights and the other parameters at normal trim,
one end of the vehicle is elevated and the pitch angle θ and the front and rear axle
weights Fzf0 and Fzr0 are measured (figure 5.9). The height of the center of gravity
is then calculated:

hCoG =
Fzf0 −m · g( lr

WB
)

(m·g
WB

) + Fzf0(rf − rr)
m · g

+ rr (5.2)
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Parameter Value Unit
Mass (m) 930 kg
Yaw Inertia (Izz) 700 kg·m2

Wheelbase (WB) 2.346 m
CoG distance from the front axle (lf ) 1.171 m
Track width (t) 1.402 m
Cornering stiffness, front axle (Cf ) 2.8·104 N/rad
Cornering stiffness, rear axle (Cr) 5.2·104 N/rad
CoG height (hCoG) 0.19 m
Roll center height (hr) - m
Roll stiffness, front axle (cφf ) - N/mm
Roll stiffness, rear axle (cφr) - N/mm

Table 5.2: SimRod parameters

where rf and rr are respectively the front and rear wheel radii.

Figure 5.9: Graphical representation of the wheel scale method
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The cornering stiffnesses values, needed as initial estimates that are then itera-
tively updated by the EKF, can be obtained with several approaches, such as [26].
In this case, a first estimate was obtained with the cited method and then it was
tuned to obtain a better fit between estimated and measured data.

The yaw inertia has been estimated using the method proposed by Bixel in [27]:

Izz = t ·WB

K
m (5.3)

where t is the track width and K = 4.1942 is an approximation constant dependent
on inertia property and vehicle class. The resulting Izz has an average error of
almost 10%, but since variations of the yaw inertia of this entity do not cause
observable changes in the estimator results, it was deemed acceptable.

The roll center height, as well as the front and rear roll stiffnesses, are obtained
from K&C testing which has not been performed for the SimRod, so those spots
are left blank in table 5.2.

5.3 Maneuvers description
Two different kind on maneuvers have been used in the testing campaign: sinusoidal
maneuvers at constant velocity and step steer maneuvers at constant velocity.

The sinusoidal maneuvers are performed at different velocity in order to have
data at both medium and low levels of lateral acceleration. These maneuvers have
been used to verify the correct functioning of the estimator in all the conditions
of interest. For the two commercial vehicles, a steering robot was used, while the
SimRod was driven manually. Figure 5.10 shows the steering angles of one of the
two commercial vehicles (figure 5.10a) and for the SimRod (figure 5.10b), where
the difference between the vehicle driven with a steering robot and manually can
be seen.

The second maneuver used was a step steer to the left, performed at different
levels of velocity in order to have data at medium and low levels of lateral acceler-
ation. The data obtained from the step steer maneuver has been used to observe
the difference in the forces build-up on the base and modified version of the same
vehicle. As already mentioned, the data for the two commercial vehicles has been
obtained with a steering robot while the SimRod has been driven manually. Figure
5.11 shows the steering angles of one of the commercial vehicle and of the SimRod.
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(a) Steering angle for a commercial vehicle (b) Steering angle for the SimRod vehicle

Figure 5.10: Sinusoidal maneuvers performed on different vehicles

(a) Steering angle for a commercial vehicle (b) Steering angle for the SimRod vehicle

Figure 5.11: Step steer maneuvers performed on different vehicles
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Chapter 6

Test validation

The validation of the modular vehicle dynamics estimator has been divided in four
steps, which are treated in the following sections:

• section 6.1 shows the results of the estimation of the EKF states

• section 6.2 demonstrates that accurate estimation of additional quantities is
achieved

• section 6.3 proves that the estimator enhances the quality of certain signals
measured at boundary conditions

• section 6.4 provides a practical application of the estimator, where it is used
to detect the expected differences in the base and modified version of the same
vehicle.

6.1 State estimation
The EKF provides the estimation of the states x = [vy, ψ̇, vx, Cf , Cr]T . Since the
cornering stiffness as a parameter are not measured, the Cf and Cr resulting from
the estimator cannot be compared to real data. They are, however, used to com-
pute the other states and the lateral loads, so they are considered validated if the
estimation of the other quantities is accurate. The data shown in this section has
been obtained with a sinusoidal maneuver at constant velocity of around 60 km/h
and lateral acceleration of around 0.35 g on the SimRod vehicle. The reported
values of velocity and lateral acceleration are approximations since the vehicle has
been driven manually without the help of steering or accelerating robots.

Lateral velocity
The lateral velocity vy and its relative error are shown in figure 6.1, and the blue
line in figure 6.1a is the data measured with the Correvit S-Motion sensor and the
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(a) Lateral velocity (b) Relative error of the estimated vy

Figure 6.1: Lateral velocity and its relative error

orange one is the result of the estimator, with the roll correction applied; it can
be seen that the two curves are almost entirely overlapped. This is an excellent
result since it means that the estimator is able to reproduce with a good degree of
precision the measurements taken with an high-grade optical sensor.

Yaw rate
Figure 6.2 shows the results for the yaw rate estimation and its relative error In

(a) Yaw rate (b) Relative error of the estimated ψ̇

Figure 6.2: Yaw rate and its relative error

figure 6.2a the blue line is the quantity measured with the OxTS Inertial Measure-
ment Unit (IMU) and the orange one is the estimated state ψ̇. The two curves are
almost indistinguishable between each other, as both the amplitude and the phase
are reproduced correctly. This is to be expected, since the yaw rate is also one
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of the measures used as reference in the EKF. The orange curve can, in fact, be
made to follow the behavior of the blue one more closely (or less) by modifying the
relative covariance values, as explained in section 4.1.

Longitudinal velocity
The longitudinal velocity vx and its relative error are shown in figure 6.3, where

(a) Longitudinal velocity (b) Relative error of the estimated vx

Figure 6.3: Longitudinal velocity and its relative error

in figure 6.3a the blue line is the velocity measured by the Correvit S-Motion
sensor and the orange line is the corresponding estimated state. The two lines are
completely overlapped, as the estimator perfectly reproduces the measured data.
Again, this is to be expected as the same considerations made for the yaw rate also
hold here, the longitudinal velocity being both a state and an output of the EKF.

6.2 Estimation of additional quantities
In this section, it is demonstrated how the estimator expands the amount of avail-
able signals: by taking as inputs or references the yaw rate, roll rate, longitudinal
velocity and acceleration and lateral acceleration, all measured with an IMU, the
following new quantities are estimated:

• Vehicle sideslip angle β

• Front and rear axle slip angles αf and αfr

• Front and rear axle lateral loads Fyf and Fyr

• Vertical wheel loads Fzfl, Fzfr, Fzrl and Fzrr

• Lateral wheel loads Fyfl, Fyfr, Fyrl and Fyrr
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Vehicle sideslip angle
The vehicle sideslip angle β and its relative error for the SimRod are shown in figure
6.4. In figure 6.4a the blue line is the data measured with the Correvit S-Motion

(a) Vehicle sideslip angle β (b) Relative error of the estimated β

Figure 6.4: Vehicle sideslip angle and its relative error

sensor and the orange line is the estimated sideslip angle. Both the amplitude and
phase show a very close match, and the dynamics content of the measured signal
is reproduced in the estimated one.

Front, rear tire slip angles
The tire slip angles for the front and rear axles αf and αr are shown in figure 6.5,
where the blue lines are the data measured with the sensors and the orange lines

(a) Front axle slip angle (b) Rear axle slip angle

Figure 6.5: Front and rear axle slip angles on a commercial vehicle

are the estimated angles. The only vehicle equipped with the WheelWatch sensors
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was one of the two commercial vehicles, so only the data relative to it is shown. The
estimated angles are almost entirely overlapped with the measured ones, demon-
strating the estimator capability. It has to be stressed that the estimator is able to
reproduce with a good degree of precision data obtained with expensive dedicated
sensor equipment, using as input only data coming from an inertial measurement
unit.

Axle lateral forces
The lateral forces for the front and rear axle Fyf and Fyr for the SimRod vehicle are
shown in figure 6.6, together with their respective relative errors. The blue lines in

(a) Front axle lateral load Fyf (b) Relative error of the estimated Fyf

(c) Rear axle lateral load Fyr (d) Relative error of the estimated Fyr

Figure 6.6: Front and rear lateral loads and their respective relative errors

figures 6.6a and 6.6c are the data measured with the sensors and the orange lines
are the estimated forces. The estimated and measured data are almost overlapped,
meaning that the estimator is able to reproduce both the amplitude and the phase
of the real quantity. Once again, results obtained with dedicated and expensive
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equipment are reproduced by the estimator.

Wheel vertical loads
The vertical loads for each wheel Fzfl, Fzfr, Fzrl and Fzrr are shown in figure 6.7,
where the blue lines represent the data measured with the strain gauges and the

(a) Front left wheel vertical load (b) Front right wheel vertical load

(c) Rear left wheel vertical load (d) Rear right wheel vertical load

Figure 6.7: Vertical loads on each wheel measured and estimated on a commercial
vehicle

orange ones are the estimated loads. The results show a very good fit between the
two curves for the wheels at the front axle, while the amplitudes of the estimated
forces on the rear wheels have some differences with respect to the measured ones.
This is thought to be due to the fact that the two-track model used for the wheel
load estimation is not complex enough to capture the actual behavior of the sus-
pensions. It is, however, a promising result since it shows that the wheel loads can
be obtained with a good degree of precision using only data relative to the vehicle
center of gravity.
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Wheel lateral loads
After the wheel vertical loads are computed, they are used to split the front and
rear axle lateral forces Fyf and Fyr in the left and right wheel forces, obtaining Fyfl,
Fyfr, Fyrl and Fyrr. The results are shown in figure 6.8 (orange lines), compared
with the measured data (blue lines).

(a) Front left wheel lateral load (b) Front right wheel lateral load

(c) Rear left wheel lateral load (d) Rear right wheel lateral load

Figure 6.8: Measured and estimated wheel lateral loads for a commercial vehicle

All the estimated curves show a mismatch in amplitude, which is thought to be
caused by the ply-steer and tire conicity effects which are neglected here, as well
as by the non-perfect estimation of the wheels vertical loads. The results, however,
are promising and further work in this direction should help decrease the amplitude
error.
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6.3 Enhancements of signals at boundary condi-
tions

In this section it is demonstrated that the modular estimator presented in this
thesis, aside from expanding the available set of measurements as shown in sec-
tion 6.2, is used to enhance the quality of signals measured in boundary conditions
such as the challenging on-center scenario. In maneuvers with low levels of lateral
acceleration, the sensors performance degrades especially regarding the lateral ve-
locity. This is to be expected since in the IMU vy is obtained by integration of the
measured lateral acceleration, making it prone to errors.

The data shown in this section is obtained with sinusoidal maneuvers at constant
velocity on a commercial vehicle, since on-center handling maneuvers have not been
performed on the SimRod vehicle.

(a) vy without roll correction (b) vy with roll correction

Figure 6.9: Lateral velocity at low levels of lateral acceleration

The blue lines represent the lateral velocity measured with the OxTS IMU, while
the orange ones represent the estimated lateral velocity without the roll correction
(figure 6.9a) and with the roll correction applied (6.9b). It is clear that the mea-
sured vy is subject to drifting and is not stable. The lateral velocity estimated by
the EKF (figure 6.9a) already stabilizes and enhances the quality of the signal to
the point where the sinusoidal shape is clearly recognizable. Moreover, by adding
the roll correction (figure 6.9b), it is assured that the phase of the estimated signal
is correct and that the dynamics content is preserved. In fact, the orange curve in
figure 6.9b contains several spikes and what may seem noise, but those are actually
small variations of the lateral velocity due to road irregularities or suspension phe-
nomena that are too small to be observed in maneuvers performed at higher levels
of lateral acceleration.
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The estimator performance does not degrade even for other signals such as the
axle lateral forces, which are more complex to measure (the wheel lateral and
vertical forces are available only on the other commercial vehicle, which had the
K&C testing performed). The axle lateral forces Fyf and fyr are shown in figure
6.10,

(a) Front axle lateral force (b) Rear axle lateral force

Figure 6.10: Axle lateral forces at low ay

where the blue lines are the loads obtained with the strain gauges and load
identification method and the orange ones are the results of the estimator. It is
remarkable that the estimator reproduces both in amplitude and phase the loads
even in a challenging condition such as the on-center one. The dynamics content
of the estimated curves is yet to be validated, nevertheless this is a very promising
result.

6.4 Practical application
After demonstrating that the estimator can reproduce the results obtained with
expensive and dedicated sensor equipment, even in challenging conditions, it has
been used in a real application case. The maneuver used in this case is a step steer
to the left at constant velocity, performed on a commercial vehicle at medium levels
of lateral acceleration using a steering robot and an accelerating and braking robot,
to achieve maximum repeatability of the measures. The data shown in this section
is the average of seven runs of the same maneuver. The part of the maneuver which
has been analyzed is the first transient, highlighted with a black box in figure 6.11.

Measurements were performed on the base version of the vehicle, then a small
structural modification was applied and the same measurements were taken again.
The difference between the base and modified versions could reportedly be felt
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Figure 6.11: Step steer maneuver

even by non-professional drivers when driving the car. When the data was ana-
lyzed, small differences were found in the lateral loads build-up and steady state,
as highlighted in figure 6.12a. Then, the IMU data of those test drives was run
through the estimator, to see whether it could detect the same differences. Figure

(a) Measured front axle lateral load (b) Estimated front axle lateral load

Figure 6.12: Measured and estimated base-modified comparison

6.12b shows the estimated lateral forces for the base and modified vehicle. It is
clearly seen that the estimator can capture the steady state difference between the
two version, and by taking a closer look at the transient, also the slight difference
in time in the loads build-up was captured, although not as well as the physical
sensors did. The measured time difference in the loads transient was about 20 ms,
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while the estimated one only 5 ms. Although it is not captured correctly, this re-
sult is still remarkable since it was not expected to be able to see a difference at all
using an estimator with input data relative solely to the center of gravity. In future
works it is expected to add localized suspension data to improve the precision of
the results, with the aim of getting as close as possible to the measurements.
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Chapter 7

Conclusions and future work

7.1 Conclusions
The objective of this thesis work was to expand the model-supported response
estimation approach, whose project was started in 2017 with the theses of Ricci [8]
and Streppa [11], to enable the estimation of additional vehicle dynamics response
quantities at low response conditions. This through the use of high precision inertial
sensors in combination with vehicle models.

The proposed approach presents a modular estimator based on an extended
Kalman filter, where the adopted model is a single-track model coupled with an
adaptive linear tire model in which the cornering stiffnesses evolution is modeled
with a random walk model.

The most challenging issue has been the estimation of the lateral velocity, since
no direct reference was available for it and and also because in maneuvers performed
at low levels of lateral acceleration the signal to noise ratio values decrease so
that inertial sensors are no longer able to provide reliable measurements. For this
reason, an additional model in which the cornering stiffness values are assumed to be
constant is introduced, in order to obtain a virtual measurement of the sideslip angle
βlin that is used as an additional input, in order to avoid drifting and inaccuracies
in the estimates. Then, in order to account for those situations in which the linear
model would not produce a reliable value of the sideslip angle, the covariances
relative to the cornering stiffnesses and to the virtual sideslip angle are adapted to
modify the uncertainty attributed to them.

An estimator based on a Linear Matrix Inequalities problem was used to esti-
mate the wheel steering angle since it was one of the inputs of the EKF and no
measurement for it was available.

Then, it was observed that the lateral velocity estimated by the extended Kalman
filter showed a time delay with respect to the measured one, so the roll rate mea-
surement was used to correct this. The updated lateral velocity was then used to
compute the vehicle sideslip angle.
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By combining some of the inputs and outputs of the EKF (equations (2.11) and
(2.12)), the front and rear tire slip angles are obtained. They are then multiplied
by the estimated cornering stiffnesses to obtain the front and rear axle lateral loads.

Moreover, if the front and rear roll stiffness parameters are known, the vertical
loads for each wheel are obtained, which, according to the load proportionality
principle, are then used to split the lateral loads on each axle into the left and right
wheels.

Going back to what has been said in the problem statement, the reasons behind
the interest in virtual sensing are mainly two. The first one is that current detailed
testing approaches using physical sensors are elaborate and expensive. To over-
come this, a modular vehicle dynamics estimator has been developed, setting the
framework for future advancements in this field. The developed estimator has been
proven to be able to reproduce with good levels of approximation results obtained
with advanced testing. It has been validated on a global level, and in future works
will be enhanced to better capture detailed dynamics.

The second reason behind Siemens taking interest in virtual sensing is that re-
liable testing at on-center condition is a key challenge. It has been demonstrated
that the developed estimator increases the stability of data measured at on-center
condition, while in future work it will be ensured that the relevant dynamics con-
tent is captured.

Finally, the estimator has been applied to a base-modified condition, to see if
it could detect the observed differences on a commercial vehicle before and after
some modifications have been applied to it. The results show that the estimator
captured the significant performance changes, while it did not correctly capture the
observed transient changes. This is, however, to be expected since the input data
of the estimator is relative solely to the center of gravity.

7.2 Future work
The estimator developed in this thesis work serves as a framework to be expanded
in future collaborations. Further work to enhance the estimator capabilities could
be done in the following areas:

• Insertion of specialized or localized test data
The insertion of data measured in different locations of the vehicle, such as the
suspension struts, is expected to enhance the precision of the measurements
as well as their dynamics content. This is expected to improve the wheel loads
estimation in particular.

• Parameters identification
By introducing a standardized approach for the identification of certain vehicle
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parameters such as the cornering stiffness, the roll center height, the yaw
inertia or the roll stiffness, it is expected to obtain more precise and reliable
results. This would also reduce the amount of time spent in manually tuning
the parameters.

• Exploration of the estimator capabilities
It is yet to be determined whether the estimator can correctly identify and an-
alyze the non-linear behavior of the vehicle in on-center condition. Frequency
domain analysis of the estimated data at different levels of lateral acceleration,
from medium to very low, will reveal if the non-linear phenomena observed in
measured data is correctly captured by the estimator.
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