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zie a voi è stato più piacevole studiare.

Ringrazio i miei amici napoletani a Torino. Grazie ad Alessandra, Vincenzo e Raf-

faele, insieme a Lazzaro mi avete spesso aiutato a superare la nostalgia di casa.

Ringrazio i miei amici di Napoli. Grazie a Marco ed Antonio che seppur lontani

mi sono sempre stati vicini.

Infine, ringrazio tutti coloro che mi hanno regalato un sorriso e mi son stati vicini,

permettendomi di raggiungere questo traguardo che fine a qualche anno fa sem-

brava impossibile.

2



Contents

1 INTRODUCTION 11

2 REVIEW 13

2.1 WHAT IS AN ANTENNA . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 ELECTROMAGNETIC FIELD RADIATED BY AN ANTENNA 16

2.3 ANTENNA UNDER TEST . . . . . . . . . . . . . . . . . . . . . . 23

3 CVX SOFTWARE 29

3.1 THIN PLATE SPLINE . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 NUCLEAR NORM MINIMIZATION . . . . . . . . . . . . . . . . . 32

3.3 ALGORITHM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 PATH OF THE DRONE . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 SIMULATION AND ANALYSIS . . . . . . . . . . . . . . . . . . . 38

3.5.1 RESULTS RADIAL PATH CVX . . . . . . . . . . . . . . . 40

3.5.2 RESULT SPIRAL PATH CVX . . . . . . . . . . . . . . . . 43

3.5.3 RESULT RECTANGULAR PULSE FLIGHT CVX . . . . 45

4 SINGULAR VALUE THRESHOLDING 47

3



4.1 THE ALGORITHM . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 RADIAL PATH SVT . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 SPIRAL PATH SVT . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 COMPARISON BETWEEN SVT AND CVX . . . . . . . . . . . . 57

5 REDUCED ORDER MODEL 65

5.1 LOVE’S THEOREM . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 REDUCED ORDER MODEL METHOD . . . . . . . . . . . . . . 68

5.3 DISCRETE EMPIRICAL INTERPOLATION . . . . . . . . . . . 70

5.3.1 CUBIC SPLINE AND B-SPLINE TRAJECTORY . . . . . 73

5.4 RECONSTRUCTED NEAR FIELD . . . . . . . . . . . . . . . . . 75

5.4.1 REGULAR SURFACE . . . . . . . . . . . . . . . . . . . . . 76

5.4.2 IRREGULAR SURFACE . . . . . . . . . . . . . . . . . . . 82

5.5 RECONSTRUCTED FAR FIELD . . . . . . . . . . . . . . . . . . 93

6 CONCLUSION 109

Bibliography 111

4



List of Figures

List of Figures

2.1 Spherical reference frame . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Example of an array of antennas used for tv receiving signal . . . . 17

2.3 How the waves propagates in the 3 different regions. Credits to

physics.stackexchange.com . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Picture of a helix antenna . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Single antenna layout and simulated field . . . . . . . . . . . . . . 25

2.6 Array 2x2 layout and simulated field . . . . . . . . . . . . . . . . . 26

2.7 Array 3x3 layout and simulated field . . . . . . . . . . . . . . . . . 26

2.8 Array 4x4 layout and simulated field . . . . . . . . . . . . . . . . . 27

3.1 Example of an uniforme lattice Ω, 80x80, where 1600 samples are

randomly selected. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Example of how the linear map and its complementary work . . . 35

3.3 Example of radial pattern where θ0=15° . . . . . . . . . . . . . . . 36

3.4 Example of spiral pattern, where A=0.1 and ω=1.3 . . . . . . . . . 37

3.5 Example of a rectangular pulse flight . . . . . . . . . . . . . . . . 38

5



List of Figures

3.6 Difference between the simulated and the interpolated field. θ0 =

15°, radial path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.7 Difference between the simulated and the interpolated field. α = 0.1,

radial path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.8 Difference between the simulated and the interpolated field. ω = 1.1,

spiral path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.9 Difference between the simulated and reconstructed field. ω = 1.1

α = 1, spiral path . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 Measured points setting θ0=15° . . . . . . . . . . . . . . . . . . . . 52

4.2 Layout of the array 4x4 of helix antennae . . . . . . . . . . . . . . 52

4.3 Reconstructed field with the SVT, 4x4 array, λ/5 sampling . . . . 54

4.4 Original and reconstructed field, svt, radial path, 20% of points,

λ/10 sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Measured points setting A=0.15 and ω=1.3 . . . . . . . . . . . . . 61

4.6 Reconstructed field with the spiral path, λ/5 . . . . . . . . . . . . 62

4.7 Reconstructed field with the spiral path, λ/10, 20% of points . . . 63

4.8 Graphics that shows the behaviour of the results obtained using the

CVX software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.9 Graphics that shows the behaviour of the results obtained using the

SVT algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1 Starting condition of the Love’s theorem . . . . . . . . . . . . . . . 66

5.2 Final condition of the Love’s theorem . . . . . . . . . . . . . . . . 67

5.3 Scheme of input-output for the ROM . . . . . . . . . . . . . . . . . 69

5.4 Example of the points selected by the DEIM . . . . . . . . . . . . 72

6



List of Figures

5.5 Difference between cubic spline and B-spline . . . . . . . . . . . . . 76

5.6 Behaviour of the error computed as (5.1) for different cases . . . . 78

5.7 Example of uniform λ/2 sampling . . . . . . . . . . . . . . . . . . . 79

5.8 Original field, array 4x4, ROM . . . . . . . . . . . . . . . . . . . . 80

5.9 Reconstructed NF, spiral path 15% of points, 4x4, ROM . . . . . . 80

5.10 Reconstructed NF, radial path 15% of points, 4x4, ROM . . . . . . 81

5.11 Reconstructed NF, all points of the DEIM, 4x4, ROM . . . . . . . 81

5.12 Reconstructed NF, joining all points of the DEIM, 4x4, ROM . . . 82

5.13 Reconstructed NF, uniform sampling λ/2, 4x4 ROM . . . . . . . . 82

5.14 Difference between a regular and irregular surface . . . . . . . . . . 83

5.15 Irregular surface in the case of a uniform λ/2 sampling . . . . . . . 85

5.16 Spiral trajectory of 140m regular surface . . . . . . . . . . . . . . . 86

5.17 Error for irregular and regular surface, spiral trajectory . . . . . . 86

5.18 Original NF and reconstructed NF for cubic spline . . . . . . . . . 87

5.19 Original NF and reconstructed NF for B-spline . . . . . . . . . . . 88

5.20 Original NF and reconstructed NF for radial trajectory 140m . . . 89

5.21 Original NF and reconstructed NF for radial trajectory 173m . . . 90

5.22 Original NF and reconstructed NF for spiral trajectory 140m . . . 91

5.23 Original NF and reconstructed NF for spiral trajectory 173m . . . 92

5.24 Circular Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.25 Original FF and reconstructed FF for a uniform λ/2 sampling . . . 95

5.26 Original FF and reconstructed FF for B-spline trajectory . . . . . 96

5.27 Original FF and reconstructed FF for spiral trajectory, 140m . . . 97

5.28 Original FF and reconstructed FF for radial trajectory, 140m . . . 98

5.29 Original FF and reconstructed FF for cubic trajectory . . . . . . . 99

7



List of Figures

5.30 Original FF and reconstructed FF for spiral trajectory, 173m . . . 100

5.31 Original FF and reconstructed FF for radial trajectory, 173m . . . 101

5.32 Original FF and reconstructed FF for B-spline trajectory, single

antenna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.33 Original FF and reconstructed FF for B-spline trajectory, array 2x2 103

5.34 Original FF and reconstructed FF for B-spline trajectory, array 3x3 104

5.35 Original FF and reconstructed FF for cubic spline, single antenna . 105

5.36 Original FF and reconstructed FF for cubic spline, array 2x2 . . . 106

5.37 Original FF and reconstructed FF for cubic spline, array 3x3 . . . 107

8



List of Tables

List of Tables

2.1 Error computed as (5.4) for different cases, lenght trajectory 140m 24

3.1 Variation of the error with respect to θ0, radial trajectory, CVX . . 41

3.2 Variation of the error with respect to α, when θ0 = 15° . . . . . . . 41

3.3 Variation of the error with respect to ω, spiral trajectory CVX . . 43

3.4 Variation of the error with respect to α, spiral trajectory, ω = 1.1 . 43

3.5 Variation of the error with respect to the amplute, rectangular pulses

flight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6 Variation of the error with respect to α , amplitude =3, rectangular

pulses flight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 Variation of (4.8), [%], wrt τ and δ . . . . . . . . . . . . . . . . . 53

4.2 Variation of (4.7), [%], wrt τ and δ . . . . . . . . . . . . . . . . . 53

4.3 Variation of the error considering an error, SVT, radial . . . . . . . 53

4.4 Variation of the error wrt percentage of measured points, svt, radial

path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.5 Variation of (4.8), [%], wrt τ and δ, spiral path . . . . . . . . . . 56

4.6 Variation of (4.7), [%], wrt τ and δ, spiral path . . . . . . . . . . 56

9



List of Tables

4.7 Variation of the error considering an error, SVT, spiral . . . . . . . 56

4.8 Variation of the error wrt percentage of measured points, svt, spiral

path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.9 CVX and SVT error, spiral path . . . . . . . . . . . . . . . . . . . 58

4.10 CVX and SVT error, radial path . . . . . . . . . . . . . . . . . . . 58

4.11 CVX and SVT error, random selection . . . . . . . . . . . . . . . . 59

5.1 Error computed as (5.4) for different cases . . . . . . . . . . . . . 78

5.2 Error computed as (5.4) for different cases, lenght trajectory 140m 84

5.3 Error computed as (5.4) for different cases, lenght trajectory 173m 84

5.4 Error computed as (5.4) in the case of a uniform λ/2 sampling . . 85

5.5 Error computed as (5.4) spiral trajectory on regular surface . . . . 85

5.6 Error computed as (5.4) for cubic and B-spline considering all the

points of the DEIM . . . . . . . . . . . . . . . . . . . . . . . . . . 93

10



Chapter 1

INTRODUCTION

This thesis talks about the reconstruction of the near and far field radiated by

different configurations of arrays of antennae starting from the measurement of

a few samples in the near field region of the scattering object. The samples are

supposed to be measured in external environment by means of UAV drone. The

works has been structured in this way:

� The second chapter contains a brief introduction to the world of the elec-

tromagnetism, introducing the Maxwell’s equations since to arrive to the

difference of the near and far field radiated by an antenna; moreover, there

is a short introduction to the parameters that are able to describe an an-

tenna. It concludes by introducing what is the antenna under test taken into

account in this thesis, its parameters and the simulated radiated near field

on a measurement surface that can be represented by a matrix;

� The third chapter talks about the first method studied here in order to re-

constructed the near field scattered by the an antenna, on a regular constant
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1 – INTRODUCTION

surface measurement. The method relies on a first interpolation through

splines for the points of the matrix that are not measured by the drone, and

a successive use of the CVX software for minimizing the nuclear norm of the

unknown matrix;

� The fourth chapter talks about the second method studied in order to improve

the drawbacks of the previous one. It relies on the use of Singular Value

Threshold algorithm to minimize the nuclear norm of the unknown matrix.

The chapter ends with a comparison between the two methods;

� The methods seen in the previous chapters are both based on matrix com-

pletion algorithms. Instead, the new method introduced in the chapter five

relies on the computation of the equivalent currents, that belongs to a generic

surface S that encloses the antenna under test. By the knowledge of the

equivalent currents it is possible to compute both the near and the far field

radiated by the antenna. Moreover, here will be considered even an irregular

surface measurement, coincident with the trajectory of the drone;

� The last chapter is a conclusion of all the work carried out with an analysis

of the results.
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Chapter 2

REVIEW

The main purpose of the thesis is the interpolation of the electromagnetic field

without prior information on the radiating source, using measurements acquired

by UAV (drones). Before to start to discuss about the main work, a brief introduc-

tion about the theory and the notations used in the following chapter is necessary.

2.1 WHAT IS AN ANTENNA

In the thesis, the analyzed antenna under test is an array of antennae of differ-

ent sizes. An antenna is a device that can work both as a transmitter and as a

receiver. In the former case, the purpose is to radiate the electromagnetic power

coming from a generator into the space; in the latter case, the aim is to receive the

electromagnetic power coming from the space and to transfer it to a load .In theory,

both cases must be analysed to study the complete behaviour of an antenna but,

13



2 – REVIEW

as a consequence of the Maxwell’s equations, a relation exists between the antenna

working as transmitter and the same antenna working as receiver [1].So, once the

behaviour in one case is known, it is easy to obtain the behaviour in the other way.

Depending on the working frequency, or more in general, on the asked require-

ments, there are various types of antenna. A detailed description is out of the

scope of this thesis, but more information can be found in the book in literature

[2].

The description of antenna, that is the way it works as a receiver and the way it

works as a transmitter, is completely fulfilled by two parameters: the gain and the

directivity.

The directivity describes how the intensity of the radiating field changes in each

direction. They are introduced for a spherical reference frame, as in Figure 2.1; r

is the radius of the sphere, θ the longitudinal angle and φ the latitudinal angle.

The directivity depends only on the two angular coordinates θ and φ.

Figure 2.1. Spherical reference frame

The directivity is defined as the limit of the radius r tending to infinity of the

ratio between the power density radiated in a considered direction and the average

14



2.1 – WHAT IS AN ANTENNA

power density radiated into the space:

D(θ,φ) = lim
r→∞

|E(r,θ,φ)|2\2ζ
Powrad\A

(2.1)

In the equation (2.1) D(θ,φ) is the directivity function, |E(r,θ,φ)|2 represents the

square of the absolute value of electric field radiates into the considered direction,

ζ is the impedance of the medium, Powrad is the value of the power radiated into

all the space, A is the surface of the sphere that the power goes through.

From a physics point of view, the directivity tells about how strong is the intensity

of the radiated field in a certain direction with respect to the average value. In

most cases designers are interested in the direction where the directivity assumes

its maximum value, so refereeing to directivity only is always intended the direction

of the maximum value. Much an antenna radiates more power only in one direction

much this value is bigger [3].

The gain is a parameter that relates the power that an antenna radiates in a certain

direction with respect of the power radiated by an ideal isotropic radiator, i.e. a

radiator with no internal losses, in the same direction. The mathematical formula

of the gain function, G(θ,φ),is basically similar to (2.1). The difference is at the

denominator, where instead of the value of Powrad, in this case there is the value

of Powin,that is the power received by the antenna.

G(θ,φ) =
|E(r,θ,φ)|2\2ζ

Powin\A
(2.2)

These two a-dimensional parameters are strictly related to the size of the antenna,

for exception of superdirectivity antennas [4].

15



2 – REVIEW

The directivity of the antenna is something related to the ratio between the size of

the antenna and its wavelength λ, λ = c0
f , where c0 is the speed of the ligth while

f is the angular frequency.

It is worth noticing that if the requirement of a project is to have a high direc-

tivity antenna, the solutions are or the increasing of the working frequency or the

increasing of the size of the antenna itself [5].

In several applications, the range of the frequency can’t overcome a certain value,

so in order to obtain a high directivity antenna it is necessary to increase the size.

Another solution is given by considering a group of antennas, called array. In gen-

eral, all the elements of an array of antennas are of a common type, aligned on

a line or in a plane [6].By positioning all the antennas composing the array in a

proper way, high value of directivity can be reached with the advantage to keep

the size of each antenna reasonable small. An array of antennas, for example, it is

used for the reception of TV signal.

2.2 ELECTROMAGNETIC FIELD RADIATED

BY AN ANTENNA

In this section there is a brief introduction regarding the Maxwell’s equations and

how antenna propagates into the free space.

The starting point in order to compute the equation of the electric and of the

magnetic field radiated by an antenna are the Maxwell’s equations, that represent

a set of four partial differential equations. They link the electromagnetic fields to

the magnetic and electric sources [7].

There are two different formulations: the microscopic Maxwell’s equations that

16



2.2 – ELECTROMAGNETIC FIELD RADIATED BY AN ANTENNA

Figure 2.2. Example of an array of antennas used for tv receiving signal

describe what happens at atomic scale; the macroscopic Maxwell’s equations that

describe what happens a large scale, neglecting what happens at atomic scale, for

example the quantum phenomena.

Since there are differential equations, to find a unique solution boundary and ini-

tial conditions must be known. A detailed method about how imposing correctly

boundary conditions is described by P. Monk in his book [8].

In this thesis, a particular solution of the Maxwell’s equations in the frequency

domain has been used, known as spherical waves function [9].
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2 – REVIEW



∇× H = −iωεE + J

∇× E = −iωµH−M

∇ · εE = ρ

∇ · µH = 0

(2.3)

In the equation (2.3), the vectors E and H are respectively the electric and the

magnetic field, J and M are the vectors of the electric and magnetic current den-

sity, ω is the angular frequency, ε and µ are the permittivity and the permeability

of the medium, ρ the volume charge density.

The aim is to derive the expression of the electric and magnetic field. For hypoth-

esis, the sources propagate toward a medium that has this characteristic:

� If there are many sources applied to the system, the overall effect is the sum

of each effect produced by one single cause, i.e. the medium is linear;

� The permittivity (ε) and the permeability (µ) of the material are constant

in all the volume of the material and constant in time, i.e. the medium is

homogenous;

� The vectorial properties of the permittivity and of the permeability are not

described by tensors but they are the same in each point, i.e. the medium is

isotropic.

Furthermore, since we are dealing with the Maxwell’s equations in the frequency

domain, it is possible to work even with dispersive media.

Instead of solving directly the equation, an alternative and easy manner is to

describe the electric and magnetic field in terms of two auxiliary quantities, a

18



2.2 – ELECTROMAGNETIC FIELD RADIATED BY AN ANTENNA

vector potential and a scalar potential [10].

From the last equation of the set (2.3) comes out that exists at least one vector

potential (f) that allows to write the magnetic field as the rotor of the vector

potential itself; this is possible since the divergence of the magnetic field is null.

So:

∃ | f : µH = ∇× f (2.4)

By substituting the equation (2.4) in the second equation of the set (2.3), since

for hypothesis the medium is considered linear and the curl operator is linear,

neglecting the presence of the magnetic current density vector M, it is possible to

write:

∇× (E + iωf) = 0 (2.5)

An important observation is that the rotor of the vector enclosed by circular brack-

ets is null, so it is irrotational. As a consequence, it exists at least one potential

scalar (φ) such as:

∃ |φ : E + iωf = −∇φ (2.6)

The way with which the expression of the potentials is derived is out of the scope

of the thesis, but only the final result is shown. For more detailed information, see

[11]. 
∇2 f + k2f = −µJ

∇2 φ+ k2φ = −ρ
ε

∇ · f + iωεµφ = 0

(2.7)

Where k is the propagation constant. The last equation of (2.7) is the so called

Lorenz gauge. It is helpful to decouple the first two equations and to reduce the

19



2 – REVIEW

degrees of freedom on the choice of the vector and scalar potentials. The most

powerful property of the Lorenz gauge is that it is relativistic invariant, that is if

it is valid for a certain reference frame, it is still valid for all the possible reference

frames [12]. At this stage, once the the vector and scalar potential have been

computed from (2.7) it is easy to get the electric field E and the magnetic field H.

It is important to point out that if homogenous equations are considered, i.e. no

external sources applied, it leads to a set of four scalar differential equations that

have the same form.

If the homogenous equation of the vector potential is considered, so a free region

space, a solution is given by: [13]

m = ∇f x r (2.8)

n = k−1∇xm (2.9)

The vector functions m and n can represent the vectors of electric and magnetic

field in a medium that has the characteristic mentioned above. Concerning on a

spherical reference frame, the analytical expressions of the fields are: [13]

E(r,θ,φ) =
k
√
µ

∑
c,s,m,n

Q(c)
smnF(c)

smn(r,θ,φ) (2.10)

H(r,θ,φ) = −ik√µ
∑

c,s,m,n

Q(c)
smnF

(c)
3−smn(r,θ,φ) (2.11)

The complete expression of F(c)
smn and Q

(c)
smn can be found in the literature [13]. The

former quantity is the expression of the waves functions while the latter quantity

represents the wave coefficients.

20



2.2 – ELECTROMAGNETIC FIELD RADIATED BY AN ANTENNA

The apex c c indicates the property of the waves. With the choice of c=1 and c=2

we are refereeing to standing waves; choosing c=3 we are refereeing to an outward

travelling wave, while c=4 to an inward travelling wave.

The subscripts n=1,2,. . . and m=0,1,. . . n are used to generate the m and n

functions. The subscript s is used to have a more compact notation. With s=1 we

are refereeing to the m function , while s=2 to the n function.

Obviously, in the practice, the summation cannot be calculated for all the values,

but it is truncated after some terms. The maximum terms of n and m are respec-

tively N and M with the constraint M ≤ N .

A more compact notation can be performed using the index J = 2N(N +2). With

this choice, as a result only one single summation is present instead of three [13].

2∑
s=1

N∑
n=1

M∑
m=−n

=

J∑
j=1

(2.12)

The choice of the index N it is not so arbitrary. It depends essentially from the

propagation constant k and from the radius of the minimum sphere r0, that is the

smallest sphere possible able to subscribe the antenna. In general, a good choice

of N is given by [13].

N = [kr0] + n1 (2.13)

where the parameter n1 depends on the required accuracy. At this stage, by a

proper choice of N, it is possible to split the space into three regions:

� r0 ≤ r ≤ N
k

�
N
k ≤ r ≤

4N2

πk

�
4N2

πk ≤ r <∞
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The first one is called evanescent region, where the electromagnetic field does not

propagate as a wave and the relationship between E and H is often complicated

to predict [14]. One of the main characteristic is that the net energy that flows the

region is equal to zero.

The second is the Fresnel region, or the so called near field region. With the hy-

pothesis that the propagation is obtained by means of electric sources, the electric

field has a dependence of 1
r2 while the magnetic field 1

r3 .The situation is dual if the

fields are generated by magnetic sources.

Another important property of the near field region comes out considering a power

balance. The real part, i.e. the active power, is independent from r and it rep-

resents the power radiated by the sources; the imaginary part, i.e. the reactive

power, has a dependence of 1
r3 . As a result, the reactive power is confined in a

region very close to the radiating source.The more the distance r is small, the worse

the sources radiates [2]. Furthermore, in a region very close to the source, since

the reactive power predominates over the active power, the measurements can be

undetermined or ambiguous.

The last region is the Fraunhofer region, or the so called far field region. In this

region, both for electric field and magnetic field the dependence is 1
r .

In the practice, there is not a clear transition between the near field region and the

far field region, but it is always present a transition zone where all the components

of the fields must be taken into account.

In this thesis, in order to reconstruct the electromagnetic field scattered by the

array of antennae, the measurements will be carried out in the near field region.
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2.3 – ANTENNA UNDER TEST

Figure 2.3. How the waves propagates in the 3 different regions. Credits to
physics.stackexchange.com

2.3 ANTENNA UNDER TEST

In the thesis the antenna under test is a helix antenna, see Figure 2.4 .A helix

antenna can be realized by a conducting wire wrapped on a cylindrical surface.

Sometimes, the surface can be even filled with an insulating material, but this case

won’t be consider here.

Figure 2.4. Picture of a helix antenna
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The characteristics of the antenna are listed in Table 2.1 :

Parameter [symbol] Value [unit of measure]
Frequency [f ] 203 [MHz]
Wavelength [λ] 1.48 [m]
Propagation constant [k0] 4.25 [m−1]
Wave impedance [η0] 377 [Ω]
Length x axis [xlength] 0.64 [m]
Length y axis [ylength] 0.64 [m]
Length z axis [zlength] 2.08 [m]
Distance x axis [xdist] 0.74 [m]
Distance y axis [ydist] 0.74 [m]

Table 2.1. Error computed as (5.4) for different cases, lenght trajectory 140m

The values of xdist and ydist refer to the spacing on the x and y axis of two con-

secutive antennae, in the case an array it is considered. This distance is computed

from the centre of the first antenna with the centre of the successive one. The

value of 0.74m corresponds to half wavelength. In this thesis will be considered

the case of a single helix antenna and different arrays: 2x2, 3x3, 4x4.

In the case of a regular surface measurement that can be represented by a matrix,

the surface spans from -8λ to +8λ both on the x and y axis, with the origin of the

coordinate system coincident with the centre of the helix antenna, in the case of a

single one, or with the centre of the array.

The matrix is divided into smaller squares depending on the sampling; in partic-

ular, in the thesis a λ/5 and a λ/10 samplings are considered. A λ/5 sampling

means that each wavelength 5 samples of the near field are taken; similar situation

happens with a λ/10 sampling where 10 samples are taken. As a result, in the

former case the resultant matrix has a size of 80x80 while in the latter case a size

of 160x160.
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For all the cases, the abscissa z for the measurement has kept constant for a value

of 5λ (7.38m); obviously this is a simplification of a real situation, since it is im-

possible to flight a constant height with a drone.

For all the points of the matrix, that represents a certain Cartesian position in a

(x,y,z) reference frame, with the origin of the reference frame mentioned above, it

is simulated the near field radiated by the antenna under test in Matlab, without

considering any disturbance. In the chapter 3 and 4 the simulated electromagnetic

field can be described as a function: E(x, y) = Ex(x, y)+Ey(x, y). In the 5 chapter

even the z component Ez(x, y) will be considered.

The antenna under test and the simulated near field, in the case of a λ/5 sampling,

is shown in the following figures.

Figure 2.5. Single antenna layout and simulated field
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Figure 2.6. Array 2x2 layout and simulated field

Figure 2.7. Array 3x3 layout and simulated field
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Figure 2.8. Array 4x4 layout and simulated field

The figures shows the plot of the simulated value in Decibel computed as:

20 ∗ log10

√
|Ex(x, y)|2 + |Ey(x, y)|2 (2.14)

As it is possible to notice from the figures, by increasing the number of antennae,

it increases the gain in the central region, put in correspondence of the origin of

the reference frame. In a few words, by increasing the number of elements of the

array, the complexity of the electromagnetic field increases, since the gain in the

region with the highest directivity increases. This is translated into a bigger error

on the reconstruction of the field when an array 4x4 is considered rather than the

case when the scattering object is composed by a single helix antenna.
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Chapter 3

CVX SOFTWARE

The main goal of the thesis is to reconstruct the electromagnetic field scattered

by an array of antennae, using only a few entries and without having any a priori

knowledge about the transmitting system; using this starting scenario, the recon-

struction of the electromagnetic field does not match perfectly the scattered field,

since an error is always present due to the fact that the available information are

not enough to perfectly reconstruct the field.

In this chapter will be described an algorithm used in order to achieve the matrix

reconstruction representing the scattered field. The algorithm used is described

in the article [15]. It is applied on different sources and it uses only a limited

number of data, selected randomly. It can be applied for any sources, without any

requirements on priori information of the source itself. The algorithm is obtained

by mixing together two regularizers: the thin plate spline interpolation (TPS) and

the interpolation by the minimization of the nuclear norm. In the following, both

procedures are explained.
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3.1 THIN PLATE SPLINE

A spline is a mathematical function used to interpolate a set of points in a generic

interval. A requirement to satisfy is that the interpolated function is continuos

until a certain order for all the points of the set. The thin plate spline (TPS) is

a polyharmonic spline introduced by Duchon in the last century. The interpola-

tion function belongs to the class C1 , i.e. it has continuos first partial derivates.

The objective function of the TPS interpolation is to minimize an energy func-

tion.Considering a 2D problem, assuming that f is a function that goes from R2

to R with square integrable second derivatives, assuming a finite set of points in

R2 that are all different and not collinear, Υ = {vi : i = 1,2, ...n} , then the thin

plate spline interpolant f on Υ is a function that minimizes the integral: [16]

I(s) =

∫
R2

(
∂2s

∂ζ2
)2 + 2(

∂2s

∂ζ∂η
)2 + (

∂2s

∂η2
)2dxdy (3.1)

with the constraint that:

s(vi) = f(vi), i = 1,2, ....n (3.2)

where in the equation (3.1) the symbols ζ and η indicate two generic components

of the vector x.

The TPS method is highly used because it can be found a closed form solution by
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3.1 – THIN PLATE SPLINE

Figure 3.1. Example of an uniforme lattice Ω, 80x80, where 1600 samples
are randomly selected.

solving a linear system and then the set of points of Υ can be in general positions.

Let assume to have a generic radiating source and let assume that the radiated

electromagnetic field on a given uniform lattice Ω has dimensions of m by n. The

fundamental assumption is that the field is not measured in all the points of the

lattice Ω but only in a set of random positions p, where p < m·n, as in Figure 3.1.

At this stage, the thin plate interpolation f (r) can be seen as a superimposition of

radial basis functions Φ(r) computed in all the points where the field is measured,

weighted with coefficients ci. [15]

f(r) =

p∑
i=1

ciΦ(|r − ri|) (3.3)

The basis functions Φ(r)are computed as: [15]

Φ(r) = −r2log(r2) (3.4)
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with the assumption that r =
√
x2 + y2. The weighted coefficients of the equation

(3.3) can be computed by the knowledge of the electromagnetic field computed at

position rk.[15]

For those points who are not measured but interpolated by TPS algorithm,i.e. for

all the points i = 1, ...(m · n)−p, at the position ri, the value is given by ĕi = f(ri).

3.2 NUCLEAR NORM MINIMIZATION

The problem of the reconstruction of the matrix can be seen as a problem of matrix

completion, where the aim is to find the values of a generic m · n matrix, denoted

with M, given a sparse set of observation Ω. An important assumption is that the

matrix M is a low-rank matrix.

This can be solved by means of the rank minimization problem. The objective

function of the rank minimization problem is given by:

minimize rank (X) (3.5)

and subjected to the constraint:

s.t. Xij = Mij where (i, j) ∈ Ω (3.6)

where X is a decision variable and rank(X) is equal to the rank of the matrix to

be reconstructed M.
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Unfortunately, the relation (3.5) can not be used in the practice since it is a non-

deterministic polynomial time hardness problem; as a consequence, the time in

order to find the solution depends doubly exponentially in the dimension n of the

matrix.[17]

A convex optimization problem can be found by relaxing the objective function

(3.5) by replacing the rank(X) with its nuclear norm ||X||∗ [18]. It becomes:

minimize ||X||∗ (3.7)

where the nuclear norm ||X||∗ has defined as:

||X||∗ = trace(
√

X Xt) =
∑
k

σk (3.8)

where σk indicate the singular values of the matrix X.

A further modification of the objective function (3.7) can be done by expressing

the nuclear norm in a positive semi-definite form [19]. In this way the objective

function becomes:

minimize trace(Y) + trace(Z) (3.9)

where in addition to the constraint given in (3.6), the (3.9) is subjected to:

Y X

Xt Z

 ≥ 0 (3.10)

where the matrix Y and Z are Hermitian matrices and their dimensions are respec-

tively m · m and n ·n. By solving this problem the simplest representation suitable

with the available data is found, that corresponds to the simplest electromagnetic
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source that is able to scatter the field described by M.

3.3 ALGORITHM

The algorithm proposed in [15] combines the techniques of the thin plate spline

and the nuclear norm minimization in order to obtain a reconstruction of a matrix

M, dimension m · n, representing the electromagnetic field radiated by a source,

where only p, with p < m · n, samples are measured and they are collected in the

vector e.

The combination of the two techniques is useful because with the TSP, solving

the (3.9), a significant underestimation of the field appears when a sequence of

adjacent data is missing [15]. The interpolated field using TPS is collected in a

vector ĕ.

By mixing together (3.3),(3.4) and (3.9), subjected to the constraints given by (3.6)

and (3.10) the objective function of the algorithm is [15]:

min
X∈Cm·n

||X||∗ + α||W(Ac(X)− ĕ)||2 (3.11)

subject to:

||A(X) − e||2 ≤ ε (3.12)

The operator A(X) is the linear map: it selects only the p measured samples

from the uniform lattice Ω. Its complementary is given by AC(X) that selects the

(m · n − p) points that are not measured. The matrix W is a diagonal matrix,

where each entry is given by Wi,i = |ĕi|−1. The threshold value ε takes into

account the noise level that affects the measured data e. The parameter α is
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called the regularization parameter; it indicates how the algorithm relies on the

minimization of the nuclear norm and how it relies on the interpolation through

TPS. It is positive definite, i.e. α ∈ (0,+ inf)

Figure 3.2. Example of how the linear map and its complementary work

3.4 PATH OF THE DRONE

A very important difference with respect to the procedure described in the [15]

regards how the samples are measured.

The goal is to measure the electromagnetic field on a surface by using a drone.

For this reason, the samples are not chosen randomly but according to various

trajectories that are able to represent qualitatively a 2D flight of a drone, where,

in this case, the z abscissa is supposed to be constant.

In particular, three different trajectories have been analysed.

� RADIAL FLIGHT
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The function used in order to simulate a radial flight for the drone can be

roughly described as a superimposition of straight lines, with different slopes

with respect to the horizontal axis.

n∑
i=1

y(x) = i ∗ θ0 ∗ x (3.13)

where the initial angle θ0 is chosen by the user in range so that θ0 ∈

[15; 30; 45; 60; 90]°, while the final term of the sum n is given by n = ( 180
θ0
−1).

An example is given in figure 3.3.

Figure 3.3. Example of radial pattern where θ0=15°

� SPIRAL FLIGHT

The function used in order to simulate approximately a spiral flight is of the
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type:


X(ε) = A ∗ ε ∗ cos(ωε)

Y (ε) = A ∗ ε ∗ sin(ωε)

(3.14)

where A is the amplitude of the spiral function, ε is the independent vari-

able that represents the x and y coordinates, while ω represents is a spatial

frequency. The parameters tuned by the user are A and ω. By their tuning,

different shapes of the spiral are considered, and consequently different num-

bers of samples where the electromagnetic field is measured. An example is

given in the figure 3.4.

Figure 3.4. Example of spiral pattern, where A=0.1 and ω=1.3

� RECTANGULAR PULSE FLIGHT The function used in order to describe
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the fligth of the drone is a train of rectangular pulses. The amplitude of the

rect is chosen by the user. An example is given in the figure 3.4.

Figure 3.5. Example of a rectangular pulse flight

3.5 SIMULATION AND ANALYSIS

The equation (3.11) with the constraint given by (3.12) have been implemented on

Matlab. Unlike the case of the paper [15], where the matrix W has been chosen

as a diagonal matrix and each entry given by Wi,i = |ĕi|−1, in the thesis W has

been chosen as a diagonal matrix where each entry has been set equal to 1. The

threshold value, ε, has been chosen empirically equal to 10−6. This value is so

small because the electromagnetic field radiated by the array has been simulated

thought Matlab, so no noise affects the measurements.
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The algorithm implemented on Matlab can be subdivided into four steps:

i. The first step is to simulate the electromagnetic field scattered by the array,

and load on Matlab as a matrix, of dimension m ·n. Each entry of the matrix

represents the value of the field in a point of a Cartesian reference frame;

ii. The second step is to select the p points where the field has been measured

by means of one of the trajectory shown in Section 3.4;

iii. Once that the trajectory has been selected and ,consequently, the points

where the field is measured, starting from these points the algorithm inter-

polates by means of the spline the field in the remaining (m · n)− p points.

iv. The final step is to minimize the rank of the unknown matrix starting from

the measured values and the interpolated values find in the previous step. The

minimization of the rank has done thought CVX software; the minimization

has been carried out separately for the real and imaginary part of the x and

y components.

In order to evaluate the performance of the algorithm, two kinds of errors are

considered. The first is computed as:

√
norm(Ex−Exspline)2 + norm(Ey−Eyspline)

2√
norm(Ex)2 + norm(Ey)2

(3.15)

√
norm(Ex−Excvx)2 + norm(Ey−Eycvx)2√

norm(Ex)2 + norm(Ey)2
(3.16)

The second manner is basically the same, but instead of computed the norm of

the matrices by means of the Matlab command ”norm”, it has been computed
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using the Frobenius norm. The command ”norm(X)”, where X is a generic matrix,

returns the maximum singular value of the matrix X, that for a first approximation

it is the maximum of svd(X). Instead, the Frobenius norm of a generic matrix X

has defined as: ||X||F =
√

(trace(XtX)).

In the equations (3.15) and (3.16) the matrices Ex and Ey represent the matrix

where the values of the x and y component of the simulated electromagnetic field

are stored; in (3.15) the matrices Exspline and Eyspline are the x and y components

of the field interpolated using the spline; in (3.16) the matrices Excvx and Eycvx

are the x and y components of the field after the minimization of the nuclear norm.

Since that in this section a λ/5 sampling is performed, the unknown matrix to be

reconstructed has dimension 80x80, so in total there are 6400 points that represents

the electromagnetic field in the space.

In the following the obtained results are shown in the case of a 3x3 array.

3.5.1 RESULTS RADIAL PATH CVX

In this first step, the regularization parameter α has be set equal to 1, while it has

been changed the initial angle θ0 of the radial function. In this case only the error

computed as (3.16) and (3.15) has been taken into account; furthermore, no error

on the trajectory of the drone is considered. The results are shown in the table 3.1

:

As it is possible to notice, the best case is when θ0 = 15°, that corresponds an

amount of 1055 points where the field is measured, while in the remaining 5345

points the field is first interpolated by the spline and then the CVX software

minimize the nuclear norm of the resulting matrix. The second column of the

table 3.1 refers in the case when only the interpolation with the spline is carried
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Angle θ0 [ °] Error splines [%] Error splines+CVX [%]
90 119 80.0
60 41.2 48.2
45 29.1 35.1
30 23.3 26.3
15 13.4 11.1

Table 3.1. Variation of the error with respect to θ0, radial trajectory, CVX

out, while the third column when both spline and CVX software are used. In the

case θ0 = 15°the total length of the flight of the drone is approximately equal to

180m.

At this stage, it has been changed the parameter α when θ0 = 15°, in order to find

the range of values that give the best results.

α Error splines+CVX [%]
0.01 10.5
0.1 10.2
1 11.1
3 12.4
5 13.0

Table 3.2. Variation of the error with respect to α, when θ0 = 15°

The best result is achieved when α=0.1. By increasing α the algorithm relies

more on the interpolation through the spline rather than the minimization of the

nuclear norm, for this reason by increasing the order of magnitude of α the error

when using both spline and CVX is pretty close to the case when only spline is

used. In the case α = 0.1, that corresponds to the best case, the Frobenius norm

of the error when both spline and CVX software is considered is equal to 13.6%,

while in the case only the spline is used the error is equal to 20.2%.

41



3 – CVX SOFTWARE

Figure 3.6. Difference between the simulated and the interpolated field.
θ0 = 15°, radial path

Figure 3.7. Difference between the simulated and the interpolated field.
α = 0.1, radial path

At this stage an error on the trajectory of the drone is considered; the error is

obtained through a random variable: in particular, naming the value of the random

variable in a point that represents the trajectory of the drone as ji, if 0 < ji ≤ 0.2

the i point is moved upward, if 0.2 < ji ≤ 0.4 the i point is moved downward, while
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if 0.4 < ji ≤ 1 the i point remains in its position. The index i is that i = 1, ...., N

where N is the number of points where the electromagnetic field is measured, i.e.

when θ0=15°N = 1055. A number of 20 simulations have been carried out and the

error computed through (3.16) is equal to 10.2± 0.6.

3.5.2 RESULT SPIRAL PATH CVX

As in 3.5.1, the parameter α has be kept equal to 1. It has been kept constant while

the parameter ω of the spiral pattern has been varied; no error on the trajectory

of the drone is assumed. The results are shown in the table 3.3 :

ω Error splines [%] Error splines + CVX [%]
0.5 43.3 42.7
0.8 24.8 24.5
1.1 16.9 15.1

Table 3.3. Variation of the error with respect to ω, spiral trajectory CVX

In this case, the number of points able to achieve an error of 15.1% are around the

30% of all the points of the matrix. This is a worse results with respect to the case

of the radial trajectory.

The successive step was to kept ω = 1.1 and changes the value of α. The results

are shown in Table 3.4:

α Error splines + CVX [%]
0.1 17.2
1 15.1
3 15.4
5 16.3

Table 3.4. Variation of the error with respect to α, spiral trajectory, ω = 1.1
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Figure 3.8. Difference between the simulated and the interpolated field.
ω = 1.1, spiral path

Figure 3.9. Difference between the simulated and reconstructed field. ω =
1.1 α = 1, spiral path

A further increment of α would be useless since the algorithm would relies more

on the interpolation through the splines but, in this case, the error achieved with

the splines is higher than in the case when even the minimization of the nuclear

norm is used.
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At this point it has been considered an error of the trajectory of the pattern

as described in 3.5.1. The error is obtained averaging out 20 simulations and it is

equal to 15.2± 0.1.

3.5.3 RESULT RECTANGULAR PULSE FLIGHT CVX

As in the previous the parameter α was kept equal to 1 and in this case has been

changed the amplitude of the rect. The results are shown in the table :

Amplitude Error splines [%] Error splines + CVX [%]
3 25.6 54.8
4 29.7 64.6
5 33.2 69.7
6 45.2 74.5

Table 3.5. Variation of the error with respect to the amplute, rectangular pulses flight

The best case is when the amplitude is equal to 3. Again, another table is shown,

where this time change the parameter α.

α Error splines + CVX [%]
0.1 78.3
1 54.8
3 25.7
5 25.5
10 25.5

Table 3.6. Variation of the error with respect to α , amplitude =3,
rectangular pulses flight

Taking into account that the amount of samples to achieve an error of 25.5% is quite

big, around the 50% of measured points, in the following chapter no simulations
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on a rectangular pulse flight will be carried out.

46



Chapter 4

SINGULAR VALUE

THRESHOLDING

The method used for the reconstruction of the electromagnetic field cited in the

article [15] and described in the previous chapter is a powerful method but it has

some drawbacks.

To minimize the objective function in (3.7) the CVX software is used. Its main

limit is due to the computational time for the computation of the minimization of

the nuclear norm.

In Chapter 3, the algorithm in (3.11) has been tested for an unknown matrix of a

size 80 ·80, so for an amount of 6400 points that describe the simulated electromag-

netic field of the array. But, the final goal is to manage matrices that can describe

a realistic problem, for example by performing a λ/10 sampling. Therefore, there

is the necessity to work with matrices with bigger sizes. For this reason, the CVX

software can not be used in practice because the computational time for getting
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the result would be not acceptable. Moreover, the obtained error is not negligible,

so it was necessary to exploit a new solution.

In this chapter it is described another algorithm that performs the minimization

of the nuclear norm: the singular value threshold (SVT) algorithm.Both the cases

of a λ/10 sampling and a λ/5 sampling here are presented.

4.1 THE ALGORITHM

Let’s consider a generic A matrix of size n ·m. The matrix can be decomposed as:

A = UΣV∗ (4.1)

where the matrix Σ is a diagonal matrix so that Σ = diag(σi) , i = 1, ..r; r is the

rank of the matrix A, σi are the singular value. For each τ ≥ 0 it possible to

introduce an operator such that [20]:

Dτ (A) := UDτ (Σ)V ∗ (4.2)

where the function Dτ (Σ) is defined as:

Dτ (Σ) = diag({(σi − τ)+}) (4.3)

The operator in (4.3) is the so called singular value shrinkage operator. With

the notation (σi−τ)+ only the positive is considered, such that: (σi−τ)+ = max(0,

(σi − τ)) . If there are several σi that are below the threshold τ the consequence
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is that rank(Dτ (Σ)) << rank(A).

Now, let’s consider that M is the unknown matrix that has to be reconstructed, of

size m · n where only p, with p < m · n, points are observed, p∈ Ωn1·n2. Assuming

that τ > 0, a sequence δk of positive step sizes, X is the matrix reconstructed and

considering a starting Y0, it is possible to define an iterative procedure such that

[20]: 
Xk = Dτ (Y(k−1))

Yk = Y(k−1) + δkPΩ(M−Xk)

(4.4)

The equation (4.4) stops when a stopping criteria is reached. The sequence of Xk

converges to this solution [20]:

minimize τ ||X||∗ +
1

2
||X||2F (4.5)

The constraints of the objective function are the same of the equation (3.6).

s.t. Xij = Mij where (i, j) ∈ Ω (4.6)

In the equation (4.5) the second term is the square of the Frobenius norm of the

matrix X. It is easy to notice that if τ is sufficiently big the (4.5) tends to (3.7).

In this thesis, the used algorithm to perform the SVT decomposition has been

developed by Candès et all, and it can be found in [17]. The user has to set some

parameters as input for the algorithm:

� The parameter τ . Referring to 4.5 bigger is the value of τ , the more (4.5)

tends to (3.7); its implies that the objective function relies more on the
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minimization of the nuclear norm rather on the minimization of the Frobenius

norm. According to [17], a good choice is to set τ =
√
m · n, where m and n

are the sizes of the unknown matrix M;

� The step size δ. The convergence of the problem is guaranteed if 0 < δ < 2;

anyway, this choice of δ sometimes is too conservative and the convergence

is slow. Here, it is has been simulated even cases when δ > 2;

� The stopping criteria ε. It indicates that the algorithm stops when ||PΩ(XK−M)||F
||PΩ(M)||F <

ε; a suggested stopping criteria is to set ε = 10−4;

� The maximum number of iteration before the algorithm stops. In this thesis,

it has been set equal to 750.

In order to evaluate the performance of the algorithm, two kinds of error are

considered: √
norm(Ex −Ex,svt)2 + norm(Ey −Ey,svt)2√

norm(Ex)2 + norm(Ey)2
(4.7)

√
frob(Ex −Ex,svt)2 + frob(Ey −Ey,svt)2√

frob(Ex)2 + frob(Ey)2
(4.8)

In the formulae (4.7) and (4.8), the matrices Ex and Ey represent respectively the

x and the y components of the original simulated field; the matrices Ex,svt and

Ey,svt represent the respectively the x and the y components of the reconstructed

field by the SVT algorithm.

The error (4.7) is computed by considering the l2 norm of the matrix. In Matlab,

the command norm(X), where X is a generic matrix, returns the maximum singular

value of the matrix X; whereas, the error (4.8) is computed by considering the
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frobenius norm of the matrix. The frobenius norm of a generic matrix X is given

by: frob(X) =
√
trace(XTX).

4.2 RADIAL PATH SVT

Here we consider the case when the samples are taken accordingly to a radial path;

the characteristics of the scattering object are the same of that presented in Section

2.3, with a λ/10 sampling. The trajectory of the radial flight has been introduced

in Chapter 3 and an example is given by the figure 3.3.

The first step is to find the best values for the input parameters of the SVT al-

gorithm; for this purpose, it has been considered a matrix surface that goes from

-8λ to +8λ, with λ = 1.48m, it has considered a λ/5 sampling, and as a result the

electromagnetic field is represented by a 80x80 square matrix. The initial angle,

θ0, of the formula (3.13) has chosen such that: θ0 = 15°. The number of the max-

imum iteration has set to 750 and the stopping criteria ε = 10−4. The obtaneid

results are shown in the table 4.2, computed using the command norm, and in the

table 4.1, computed using the Frobenius norm. The percentage error is computed

according to (4.7) and (4.8). The test has done by considering a 4x4 array as in

the figure 4.2.

As it is possible to see in the tables, the best cases are obtained when τ = 80.
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Figure 4.1. Measured points setting θ0=15°

Figure 4.2. Layout of the array 4x4 of helix antennae
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δ 0.5 1 1.5 1.8 2.3 3
τ
80 12.6 11.8 11.7 11.6 11.6 65.6
400 17.5 17.1 13.3 12.6 12.0 65.6
800 20.1 17.4 17.1 17.1 14.6 62.0
1600 26.1 20.1 18.1 17.6 11.3 17.1
3200 33.4 26.1 22.2 20.8 19.2 18.1
4800 37.2 30.4 26.0 24.2 22.0 17.5

Table 4.1. Variation of (4.8), [%], wrt τ and δ

δ 0.5 1 1.5 1.8 2.3 3
τ
80 7.91 7.56 7.57 7.50 7.54 65.1
400 14.9 7.73 7.73 8.77 7.92 65.2
800 17.2 14.5 14.5 14.5 11.5 61.3
1600 22.4 15.4 15.4 15.0 14.5 14.5
3200 29.1 22.3 18.9 17.7 16.4 15.4
4800 32.6 26.3 22.3 20.7 18.7 17.7

Table 4.2. Variation of (4.7), [%], wrt τ and δ

This value, together with the value of δ = 1.8 are set for the successive simula-

tions. In order to evaluate better the performance of this choice of τ and δ an error

on the measurement has been introduced, as mentioned in the chapter 3. Running

10 simulations, it has been obtained:

Error (4.8) [%] Error (4.7) [%] Computational time [s]
8.49± 0.0190 7.51± 0.0106 6.18± 0.82

Table 4.3. Variation of the error considering an error, SVT, radial

Since the variance of the errors and of the computational time can be considered

small, it is possible to fix constant for the radial path the choice of δ = 1.8 and

τ = sqrt(n ·n) , indicating with n the size of the matrix to be reconstructed. Here

is shown the reconstructed field, without considering the error.
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Figure 4.3. Reconstructed field with the SVT, 4x4 array, λ/5 sampling

Now, it will be considered the case when a λ/10 sampling is performed; in this case,

the unknown matrix that has to be reconstructed has a size of 160x160. With the

previous choice of input parameters, now τ becomes τ = 160. By considering a
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layout as in the figure 4.2, several simulations have carried out, depending on the

percentage of measured points. The results are listed in the table 4.4.

Percentage of measured points [%] Error with frobenius norm, (4.7),[%]
5 43.9
10 25.1
15 15.6
20 8.62
25 4.50

Table 4.4. Variation of the error wrt percentage of measured points, svt, radial path

An example of the reconstructed field using the 20% of points is given in the figure

4.4. On the left there is the simulated field, while on the right there is the recon-

structed one. The input parameters for the SVT algorithm was τ=160 and δ=1.8,

while for the radial path the angle θ0 was set equal to 15°.

4.3 SPIRAL PATH SVT

With all the starting hypothesis of the section 4.2, the same analysis is carried

out in the case of spiral path. Referring to the formula (3.14), setting A=0.15 and

ω = 1.3, the tables 4.6, where the command norm is used, and the table 4.5 , where

instead the frobenius norm is used, are compiled.

As in the previous case, the best result is achieved by selecting τ = 80 and δ = 1.8.
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δ 0.5 1 1.5 1.8 2.3 3
τ
80 9.39 7.56 7.56 7.12 9.06 16.5
400 21.8 13.8 11.8 10.3 11.3 18.0
800 24.4 21.7 15.1 14.1 14.9 11.7
1600 30.5 24.3 22.3 21.9 22.8 15.0
3200 30.8 30.4 26.5 25.8 25.9 22.3
4800 42.7 34.9 30.4 28.5 30.0 22.3

Table 4.5. Variation of (4.8), [%], wrt τ and δ, spiral path

δ 0.5 1 1.5 1.8 2.3 3
τ
80 7.21 6.26 6.19 6.14 7.02 15.9
400 16.1 9.09 8.24 7.66 8.66 16.2
800 17.3 16.1 9.26 9.26 10.1 18.9
1600 23.3 17.2 16.2 16.1 16.6 19.8
3200 31.8 23.3 19.1 17.8 18.6 16.2
4800 36.3 28.1 23.2 21.2 22.5 16.2

Table 4.6. Variation of (4.7), [%], wrt τ and δ, spiral path

By introducing the same error on the measurement of the previous case is intro-

duced.

Error (4.8) [%] Error (4.7) [%] Computational time [s]
8.35± 0.0450 5.12± 0.0089 6.71± 0.16

Table 4.7. Variation of the error considering an error, SVT, spiral

Considering now a λ/10 sampling, the variation of the error computed as (4.8)

with respect to the percentage of measured points is listed in Table 4.8 :

In Figure 4.7 is shown the case where the 20% of points have been measured. For

the spiral path A=0.13 while ω=1.35.
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Percentage of measured points [%] Error with frobenius norm, (4.7),[%]
5 82.4
10 52.0
15 31.6
20 14.5
25 8.14

Table 4.8. Variation of the error wrt percentage of measured points, svt, spiral path

4.4 COMPARISON BETWEEN SVT AND CVX

In this section will be shown the results of the technique used in Chapter 3, that

considers the use of first an interpolation through the splines for the points not

measured and then a nuclear norm minimization using the CVX software, and of

the method explained in this chapter, that considers the use of the SVT algorithm

for the nuclear norm minimization without using a previous splines interpolation.

In order to compare the two technique, a λ/5 sampling has been considered, since

performing a λ/10 sampling, and in practice have an amount of 25600 to manage,

would have requested a huge effort in term of computational time for using the

CVX software. The scattering object has been considered a 4x4 array of helix

antennae, as seen in Figure 4.2. All the parameters of the scattering object are the

one declared in the section 2.3.

To evaluate the differences the radial and the spiral trajectories are considered;

moreover, it has been simulated even the case when the points are not selected

according to a determinist trajectory but randomly. In this last case, an average

between 10 simulations are done.

Since one of the aims is to minimize the time flight of the drone, the idea is
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to measure less samples than required by the Nyquist criterion according to the

electric size of the antenna. The Nyquist sampling theorem states that a continues

signal, y(t) with a frequency fM , can be reconstructed from its sampled signal

y(n∆t) if signal is sampled with a frequency fS≥2fM . In our case, to perform an

undersampling less than the 16% of total amount of points shall be measured.

The reconstruction error is computed using the formula (4.8), using the Frobenius

norm.

Percentage of measured points [%] Error CVX [%] Error SVT [%]
5 78.1 80.0
10 71.2 70.6
15 59.3 51.2
20 45.8 36.2

Table 4.9. CVX and SVT error, spiral path

Percentage of measured points [%] Error CVX [%] Error SVT [%]
5 42.2 32.5
10 32.9 25.2
15 15.6 11.6
20 14.6 8.42

Table 4.10. CVX and SVT error, radial path

As it is possible to see from the tables, the SVT algorithm has better results

than the CVX software, except for the case of random selection points. For both

methods, the results are smaller when a radial trajectory is used.

Taking into account even the computational time for the simulation, the CVX
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Percentage of measured points [%] Error CVX [%] Error SVT [%]
5 68.1 85.8
10 43.6 56.7
15 28.9 41.8
20 18.4 25.4

Table 4.11. CVX and SVT error, random selection

software needs more or less of 10 minutes while the SVT algorithm less than 30s,

in the case of a λ/5 sampling; the difference gets bigger when it is considered a

λ/10 sampling: the SVT runs in less than 1 minute while the CVX software needs

around 2 hours.

Anyway, even if it is possible to treat with bigger matrices by using the SVT

algorithm, the error on the reconstruction of the field is still not negligible when

less samples than required by the Nyquist’s criterium are measured. There is still

the need to measured around the 30% of points to have an error less than the 5%

in the case of a radial path, while around 40% of points if a spiral trajectory is

considered.

In the following chapter will be introduced a new technique with who it will be

possible to overcome this problem. Unlike the two methods analysed so far, it

doesn’t rely on matrix completion algorithm.
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Figure 4.4. Original and reconstructed field, svt, radial path, 20% of
points, λ/10 sampling
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Figure 4.5. Measured points setting A=0.15 and ω=1.3
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Figure 4.6. Reconstructed field with the spiral path, λ/5
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Figure 4.7. Reconstructed field with the spiral path, λ/10, 20% of points
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Figure 4.8. Graphics that shows the behaviour of the results obtained
using the CVX software

Figure 4.9. Graphics that shows the behaviour of the results obtained
using the SVT algorithm
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Chapter 5

REDUCED ORDER

MODEL

In this chapter a new technique for the reconstruction of the electromagnetic field

is introduced. So far, two methods have been exploited that allow obtaining the

near field scattered by the radiating source, but it has not been mentioned how to

compute the far field once the near field is known. With the procedure described

in this chapter, both the near field and the far field radiated by the antenna can

be computed, starting from the same input.

The procedure relies on a reduced order model (ROM) for antenna characteriza-

tion.

So far, only the situation when the samples are taken on a regular matrix surface

has been analysed; here, in addition to this, also the situation where the samples

are taken on an irregular surface, coincident with the trajectory of the drone will

be studied.
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The characteristic of the scattering object have been introduced in Section 2.3.

Here, will be analysed a single helix antenna and an array of 2x2,3x3 and 4x4 helix

antennae.

Before to introduce the new technique, a brief introduction to the equivalence the-

orem,also known as the Love’s theorem, is necessary.

5.1 LOVE’S THEOREM

Let’s suppose to have a generic electric source J, and/or a generic magnetic source

Jm, that induce in the space an electromagnetic field that can be described by

the couple (E,H), obeying the Maxwell’s laws introduced in the formula (2.3);

moreover, let’s consider a generic closed surface S that encloses the sources, with

the assumption that the surface S is compact and it is possible to define a normal

component n̂ for all the boundary points.

Figure 5.1. Starting condition of the Love’s theorem
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Given this hypothesis, it is possible to substitute J and Jm with new equivalent

sources, Js and Jms, that belong to the surface S. The linkage of the new sources

with the previous couple of the field is given by:


Js = n̂ × Hs

Jms = −n̂ × Es

(5.1)

In the formula (5.1) Hs and Es are respectively the magnetic and electric field

scattered by the sources J and Js, computed on the surface S. The new sources,

Js and Jms, generates a new couple of the field, (E′,H ′). This new couple is

equal to the previous one (E,H) outside the surface S, while inside it the field is

equal to zero [11]. The new situation is summarized in the figure 5.2.

Figure 5.2. Final condition of the Love’s theorem

In the following, the surface S that encloses the antenna under test will be a

parallelepiped, with dimension of (2λ, 2λ, 2.5λ) in the case of a 3·3 and 4·4 array,

while in the case of a single helix and in the case of a 2·2 array the dimensions are
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(λ, λ, 2.5λ).

5.2 REDUCED ORDER MODEL METHOD

A reduced order model (ROM) is a simplification of a more complex model. It is

useful to introduce it because it reduces the computational complexity of the com-

plex original model. It is possible to obtain a simplified version from a complex

model by reducing the state space dimension or the degrees of freedom. [21]. An

important assumption is that the input-output relation of the original model is still

preserved when the ROM is built. Here, the properties of the ROM relies on the

knowledge of a small amount of data to be measured, on the outer dimension of the

antenna and on geometry of the measurement surface scan; no a priori information

on the characteristic of the radiated source are necessary.

The ROM is built on the base of the article [22]. Let’s suppose to have a generic

antenna that radiates in the space, and assume to enclose the antenna with an ar-

bitrary closed surface S. The input is given by the equivalent electric, or magnetic,

currents Js and Jms on the surface S introduced in (5.1); the ouput is the radiated

far field, or the near field, of the antenna on a surface S’. The two surfaces, for

hypothesis, are distinct.

The electric field computed on the surface S’ at a generic position r′ depends only

on the equivalent sources on the surface S [22]. The relation is given by :

E(r′) =

∫
S

ḠEJ(r′|r) · JEQ(r) dS (5.2)

In the formula (5.2), ḠEJ is the electric field free space dyadic Green function for
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Figure 5.3. Scheme of input-output for the ROM

electric sources. By discretizing the two surfaces S and S’ it is possible to write

the formula (5.2) in a matrix-vector form, as follow:

e = G jeq (5.3)

The vector e represents the discretized electric field tangential to the surface S’,

the vector jeq represent the discretized equivalent electric and magnetic currents

on the surface S, while G is the so called radiation matrix, that maps any current

distribution on S to the radiated field S’.

The problems now becomes to compute the equivalent currents jeq on the surface S.

The first step is to measure some samples of the electric field e in a generic position

(r′) from the antenna under test. In our specific case, these samples are taken by

means of a drone in the near field region, according to different trajectories that

will be introduced later. Then, the radiation matrix G is built. At this stage, from

the relation (5.3) it is possible to compute jeq. Since our interest is to minimize

the quantity ||Gjeq − e||, the equivalents currents are computed with the Matlab
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command lsqr, that attempts to solve the least squares solution jeq that minimizes

the previous quantity. Consequently, to evaluate the performance of the procedure,

the error is computed as:

||Gjeq − e||
||e||

(5.4)

At this stage, once the equivalent currents on the surface S are obtained, for the

input-output relation of the ROM it is possible to compute both the far field and

the near field radiated by the antenna under test.

The trajectories with which the near field is computed are the spiral and radial

introduced in the previous chapter 3. Moreover, to these two trajectories, other

two are added; they come from by joining together some points given as output of

a discrete empirical interpolation method (DEIM).

5.3 DISCRETE EMPIRICAL INTERPOLATION

The radiating operator G is compact because the surfaces S and S’ are distinct for

hypothesis. For definition, a compact operator T is a linear operator from the Ba-

nach space such that: T : X → Y ; an important property is that T is a bounded

operator, so it is continuous [23]. Since G is bounded it is possible to compute

its singular value decomposition (SVD) and it can be written in a factorized form:

[24] :

G ≈ UΣV ∗ (5.5)
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With this procedure only the r largest singular values σr are kept. The matrix U

has a size of M·R, where M is the length of the vector e. The value M is related to

the number of measured points. The r singular values σr quantify the amount of

power that is coupled from one characteristic mode of S to S’ [22]. At this stage,

the DEIM algorithm is applied to the matrix U in order to identify the dominant

equivalent electric currents. The output of the DEIM is a sorted list of points,

from the most to the least significant ones, that has to be measured in order to

proper characterize the antenna under test.

An example of how the DEIM works is given in Figure 5.4.On the left there is the

simulated electromagnetic field scattered by a 4x4 array of helix antennae, with

a λ/10 sampling; by building the radiation matrix G that goes from S to S’ for

this specific antenna under test, it is possible to apply the DEIM algorithm. On

the right side of the Figure 5.4 is shown the most significant points selected by

the DEIM to have a fast characterization of the antenna under test. Once that

these points are obtained, they have to be measured by the drone, so the problem

now becomes finding a trajectory that passes through or in the nearby of the points.

Since the aim is to minimize as much as possible the flight time of the drone,

consequently, the covered path, it is necessary to find a minimum path between

all the points given by the DEIM. For this purpose, the kinematic and dynamic

constraints of the drone haven’t been taken into account, but only a fast solution

was found, based on the minimization of the Euclidean distance between all the

points. A so formulated issue can be seen as an instance of the Travelling Salesman

problem (TSP); an example of how the TSP is solved can be found in [25].
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Figure 5.4. Example of the points selected by the DEIM

An easy way to find the exact solution for the TSP would be to try all the per-

mutations of the points and find what is the minimum distance covered. A so

formulated algorithm has a computational complexity of O(N!), where N is total

number of the points. In the thesis, the maximum value of N is 360, in the practice

becomes impossible to find a correct solution of the TSP problem. For this reason,

a heuristic algorithm is considered. In particular, the Nearest Neighbour (NN) al-

gorithm is used; its computational complexity in the worst case is O(N) [26].In this

thesis, the Matlab NN algorithm used has been written by Aleksandar Jevtic in

the 2009, and it can be found in the Mathworks File Exchange; unlike the original

algorithm, where the points are selected randomly from a list of cities, here are

exactly the points given by the DEIM. The algorithm works following these steps:

i. Select a current point;

ii. Find out the shortest distance between the current point and the remaining

not-visited points;
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iii. Set a new point as the current one;

iv. Mark the previous point as visited;

v. If all the points have been already visited,terminate the algorithm, else go to

step ii.

In this thesis, two distinct situations has been analysed: the former takes into

account all the points of the DEIM; the latter selects only the first 2/3 of points

in order to have an easier trajectory for the drone to be followed.

The algorithm returns the length of the path and the list of the coordinates of the

points of the matrix, ordered from the first to the last point to visit.

In the case of the near field, or the far field, analysed starting from an irregular

measurement surface, two functions are considered for approximating a reliable

path for the drone through the points: a cubic spline trajectory and a B-spline

trajectory. Instead, in the case of a regular matrix surface, the points are simply

connected by horizontal, or vertical, or diagonal movements across the squares of

the matrix.

5.3.1 CUBIC SPLINE AND B-SPLINE TRAJECTORY

The definition of the spline has been introduced in Section 3.1. An important char-

acteristic of a spline interpolation is that the interval of observation is subdivided

in smaller intervals, and for each one of these is provided a mathematical function

of a certain degree; moreover, the splines provide a certain smoothness, depend-

ing on the degree of the spline interpolation, at places where the polynomial pieces

connect [27]. Since a spline interpolation is smoother than interpolating with other
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methods, such as a polynomial interpolation, it is preferred because the drone can

follow easier the trajectory.

The cubic spline provides a third degree polynomial for each sub-interval of the set

of interpolating data; for each sub-interval, the cubic spline can be described as a

time-dependent function of the form:

q(t) = a0 + a1t+ a2t2 + a3t3 (5.6)

With this choice,in each sub-interval the function admits a second derivative, that

corresponds to the acceleration profile, and the value of the second derivative com-

puted at the edges of each interval is equal to zero.

The B-spline, called also basis spline, is a Bézier curve with a minimal support

with respect to a given degree, smoothness and domain partition [27]. The main

difference with respect to the other spline method interpolation is that the eval-

uation of the B-spline is based on a recursive procedure instead of a closed form

expression [28].

Assuming a B-spline of a degree p and a number N of waypoints, the parametric

curve s(t) is described by the following equation [29] :

s(t) =

N∑
i=0

piB
p
i (t) (5.7)

The vectorial coefficients ppi are called control points and they determine the shape

of the curve and they are computed imposing interpolation conditions on the set of

data points. The quantities Bpi are the i-th B-spline basis function of degree p and

they are definite in a recursive way. The formula for the B-spline basis function

can be found in [29].
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The cubic spline trajectory has been computed by means the Matlab command

spline, while for the B-spline trajectory the Matlab command bsplinepolytraj. For

both cases, the function returns at any given time the position on the (x,y); the

time interval has chosen as t = [0 : 0.01 : 200]. The trajectories are uniformly

sampled between the start and end times of the interval. The total length (dist)

of the path has been computed as:

dist =

J−1∑
i=0

√
(pxi − px(i+1))2 + (pyi − py(i+1))2 J = 2 · 104 (5.8)

The formula is the summation of the Euclidean distance between the i-th and

(i+1)-th points.

The cubic spline trajectory passes exactly through the waypoints given by the

DEIM while the B-spline trajectory falls inside the polygon defined by the control

points ppi . In Figure 5.5 is shown an example of the different of the two trajectories,

using the same waypoints and the same path.

5.4 RECONSTRUCTED NEAR FIELD

As mentioned in the section above, now will be analysed not only the case where

the points are taken on a regular matrix surface, that can be represented by a

square matrix, but even the case where the points are taken according to an irreg-

ular surface, coincident with the path of the drone.
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Figure 5.5. Difference between cubic spline and B-spline

5.4.1 REGULAR SURFACE

The matrix that represents the surface goes from -8λ to +8λ, with the value of

λ = 1.45m and it is has been performed a λ/10 sampling on both x and y axis.

As a result, the electromagnetic field is represented by a 160x160 matrix. The

procedure is briefly explained in the following.

As done in the previous chapters, a certain number of samples are taken from the

matrix by means of a radial and spiral trajectory; in this subsection, also a trajec-

tory that connects all the points, and the 2/3 of the points, given as the output of

the DEIM is considered; moreover, it has been simulated also the case when only

the points, and the 2/3 of points, are considered as the basis for the reconstruction

of the field.

The equivalent currents jeq are computed as jeq = lsqr(Gtilde, eindices), where

the matrix Gtilde is obtained by considering only the rows and all the columns of
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the radiation matrix, G, in correspondence of the x,y,z coordinates of the points

below the trajectory of the drone; in a few words, Gtilde = G(indices, :) where in-

dices indicates the x,y,z coordinates of the measured points by means of the drone

or by considering the points given by the DEIM; the size of Gtilde is M·N, where

M is three times the number of measured points and N is the number of the basis

vector; mthe size of the matrix G follows the electrical size of the surface S and

S’. The matrix eindices contains all the value of the simulated field in the points

that are measured; it is a column vector of a dimension of 3 times the number of

measured points. As a result, jeq has a size of N·1. It is important to underline

that the radiation matrix, G, is always the same for each scattering object, i.e. it

doesn’t not depend on the considered trajectory.

The error is computed with the formula (5.4). The results are shown in the table

5.1 and in the figure 5.6. Since it has been considered a 160·160 matrix, the total

amount of the points that represent the near field are 25600. It is important to un-

derline that the DEIM selects 330 points to measure, that correspond an amount of

1.3% of the total points. By joining together all the points selected by the DEIM,

the 35% of the points are measured, while by joining only 2/3 of the points given

by the DEIM the amount of the measured points decreases to the 30%.

The penultimate row of the table refers to the case when all the points of the near

field matrix are used to compute the equivalent currents Js. The last row refers

to the case when it is measured a sample each λ/2 on both x and y axis, example

in figure 5.7; in this case an amount of 0.04% points are measured.

The comparison between the different configurations of the arrays has been done
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Trajectory Er single [%] Er 2x2 [%] Er 3x3 [%] Er 4x4 [%]
Spiral 10% points 0.87 0.79 2.17 8.23
Spiral 15% points 0.17 0.14 0.58 3.84
Radial 10% points 0.18 0.28 1.03 7.50
Radial 15% points 0.11 0.14 0.44 3.37
All points of DEIM 0.11 0.15 0.46 3.54
2/3 points of DEIM 0.12 0.16 0.48 3.71
Connecting all points 0.10 0.11 0.45 3.25
Connecting 2/3 points 0.11 0.10 0.46 3.37
All NF points 0.099 0.010 0.41 3.13
Uniform sampling λ/2 95 100 102 103

Table 5.1. Error computed as (5.4) for different cases

Figure 5.6. Behaviour of the error computed as (5.1) for different cases

by considering the above-mentioned dimension of the surface S and, by consider-

ing the same the same trajectory for all the cases regarding the spiral and radial;

when it is considered the case when the points are connected joining together the

output of the DEIM the trajectory changes by considering different arrays, but

anyway they have the same percentage of measured points. Moreover, it is needed
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Figure 5.7. Example of uniform λ/2 sampling

to underline the fact that, in the case of a radial and spiral path, it is possible to

properly reconstruct the near field pattern even using less samples than required

by the Nyquist’s criterium (less than the 16% of measured points), since the ob-

tained error can be considered small. This is an improvement with the respect

the case when the CVX software (chapter 3) or the SVT algorithm (chapter 4) is

used. In the following, an example of how the near field is reconstructed is shown;

in particular, it is shown the case of the array 4x4, reconstructed by a spiral and

radial path, measuring only the 15% of points, all the points of the DEIM and

when all the points of the DEIM are joint together.
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Figure 5.8. Original field, array 4x4, ROM

Figure 5.9. Reconstructed NF, spiral path 15% of points, 4x4, ROM
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Figure 5.10. Reconstructed NF, radial path 15% of points, 4x4, ROM

Figure 5.11. Reconstructed NF, all points of the DEIM, 4x4, ROM
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Figure 5.12. Reconstructed NF, joining all points of the DEIM, 4x4, ROM

Figure 5.13. Reconstructed NF, uniform sampling λ/2, 4x4 ROM

5.4.2 IRREGULAR SURFACE

In this subsection it is shown the case when the surface is not a regular matrix sur-

face, but it is coincident with the trajectory of the drone. The difference between

the regular and irregular surface can be seen in the figure 5.14. On the left there

is the regular surface, where the measured points are selected between the points

82



5.4 – RECONSTRUCTED NEAR FIELD

of the matrix; while for the irregular surface, the near field is computed for all the

(x,y,z) coordinates that belong to the trajectory of the drone.

Here, the equivalent currents jeq are computed as jeq = lsqr(G, e). Unlike the

Figure 5.14. Difference between a regular and irregular surface

previous case, the radiation matrix, G is not equal for all the cases for each scat-

tering object, but it depends on the particular trajectory, or more in general on

the measured field e. The size of G is m·n, where m is 3 times the number of the

measured points and n is the number of the basis vectors of the scattering object;

the vector e is column vector of size m; as a consequences, the vector jeq is a

column vector of size n. In order to evaluate the algorithm, it is computed the

error as in the case (5.4).

An important issue to solve is the total length of the trajectory. How long the

trajectory should be to correct evaluate the performance of the procedure?

To answer this question it has been taken into account the cubic spline and the

B-spline trajectories. By considering the case of a single helix antenna, once the

radiation matrix has been obtained in the subsection 5.4.1, and once the SVD de-

composition has been performed as (5.5), the DEIM algorithm is applied to the
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matrix U. At this stage, the TSP algorithm is applied only to the first 2/3 of points

given as output of the DEIM and as a result it is given a list of points to travel for

minimizing the length. Then, a cubic spline and a B-spline trajectory has found

in order to connect all the points.

With this procedure, the cubic spline trajectory has a length of 173m while the

B-spline is 140m. In order to properly compare the trajectories, it has been con-

sidered also a spiral and a radial trajectory with a length of 173m and 140m.

Even if these lenghts have been computed by considering the radiation matrix of

the single helix antenna, they are fixed even for the others array, in order to eval-

uate the error for all the scattering objects by keeping constant the length of the

trajectory.

The results are shown in Table 5.2 and Table 5.3.

In Table 5.4 the results in the case of a uniform λ/2 are shown. The measured

points are shown in Figure 5.15

Trajectory [140m] Er single [%] Er 2x2 [%] Er 3x3 [%] Er 4x4 [%]
Spiral 0.093 0.098 0.20 1.40
Radial 0.093 0.10 0.16 1.42
B-spline 0.11 0.096 0.16 1.15

Table 5.2. Error computed as (5.4) for different cases, lenght trajectory 140m

Trajectory [173m] Er single [%] Er 2x2 [%] Er 3x3 [%] Er 4x4 [%]
Spiral 0.095 0.098 0.29 1.40
Radial 0.090 0.097 0.31 1.77
Cubic spline 0.098 0.10 0.16 1.39

Table 5.3. Error computed as (5.4) for different cases, lenght trajectory 173m
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To evaluate the performance between the irregular and regular surface, it is com-

Trajectory [173m] Er single [%] Er 2x2 [%] Er 3x3 [%] Er 4x4 [%]
Uniform λ/2 0.01 0.01 0.06 0.12

Table 5.4. Error computed as (5.4) in the case of a uniform λ/2 sampling

Figure 5.15. Irregular surface in the case of a uniform λ/2 sampling

puted the error in the case of spiral trajectory for a regular matrix with a length

of 140m and 173, as in Figure 5.16. The results are compared with the case of the

irregular surface and shown in Table 5.5 and in Figure 5.17. As it is possible to

notice, the error is always smaller in the case of an irregular surface.

Trajectory Er single [%] Er 2x2 [%] Er 3x3 [%] Er 4x4 [%]
Spiral 140m 0.30 0.21 0.95 5.10
Spiral 173m 0.18 0.14 0.61 3.96

Table 5.5. Error computed as (5.4) spiral trajectory on regular surface
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Figure 5.16. Spiral trajectory of 140m regular surface

Figure 5.17. Error for irregular and regular surface, spiral trajectory
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Figure 5.18. Original NF and reconstructed NF for cubic spline
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Figure 5.19. Original NF and reconstructed NF for B-spline
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Figure 5.20. Original NF and reconstructed NF for radial trajectory 140m
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Figure 5.21. Original NF and reconstructed NF for radial trajectory 173m

It is possible to notice from the B-spline and cubic spline trajectory that the sam-

pling is not uniform, but there are some areas where there is more space between

a samples and its successor. This is due to the fact that the trajectories have been
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Figure 5.22. Original NF and reconstructed NF for spiral trajectory 140m

generated with a sampling time of 0.01s and that areas represents an acceleration

of the drone. Whereas, for the spiral and radial trajectory, in order to make faster

the simulation the chosen sampling time was to 0.1s. In the following is shown the

error when the equivalent currents, jeq are computed starting from the points that
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Figure 5.23. Original NF and reconstructed NF for spiral trajectory 173m

stay below the cubic spline and the B-spline trajectory generated by considering

all the points of the DEIM, and not all the first 2/3 of points as in the previous

case.

From the figures it is possible to see that wit the use of the equivalent currents jeq

it is possible to proper reconstruct the near field in the measured points.

92



5.5 – RECONSTRUCTED FAR FIELD

Trajectory Er single [%] Er 2x2 [%] Er 3x3 [%] Er 4x4 [%]
Cubic spline 0.099 0.099 0.23 1.75
B-spline 0.095 0.088 0.22 1.67

Table 5.6. Error computed as (5.4) for cubic and B-spline considering all
the points of the DEIM

5.5 RECONSTRUCTED FAR FIELD

In this section it will be shown the reconstructed far field radiated by the an-

tenna, starting from the equivalent currents, jeq, computed as in the subsection

5.4.2. In this case, it is necessary to distinguish between the equivalent electric

currents, jcurrent, and the equivalent magnetic currents, mcurrent. Supposing

that jeq is a column vector of size nx1, it results that: jcurrent = jeq(1 : n
2 ,1)

and mcurrent = jeq(n2 + 1 : n,1) ∗ η0. The obtained far field is compared with the

original simulated far field scattered by the considered array. Here are shown the

results in the case of a 4x4 array for all the analysed trajectories.

In the following figures, the reference far field radiated by the antenna under test

is compared with the reconstructed one. Two cases are shown: the case when the

antenna is Right Hand Circular Polarized (RHCP) and when the antenna is Left

Hand Circular Polarized (LHCP). When a circular polarization is considered, the

electric field has two linear component, with equal magnitude while the direction

changes in a rotatory manner due to a phase difference of π/2 [4].
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Figure 5.24. Circular Polarization

The circular polarization is defined from the source to the transmitter. Right and

left circular polarization are defined in two different ways. Pointing the thumb

in the same direction of the wave propagation, the fingers in the direction of the

field’s temporal rotation, the field seems to rotated clockwise from the point of

view of the source; this is a right-handed convention and it refers to RHCP. On

the contrary, the LHCP is a left-handed convention and the is anti-clockwise.

As it is possible to see from the following figures, with this approach the recon-

structed field is able to follow the profile of the reference, both for a right hand

and for a left hand circular polarization. Best results are obtained when a spline

trajectory is used.

An important result is obtained, different from the case of a regular surface, when

a uniform λ/2 sampling is considered; in the case of an irregular surface, measuring

the points as reported in Figure 5.15, both the Near Field and the Far field (Figure

5.25) are properly reconstructed, with a small error. Instead, when the points are
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taken on a regular surface, as in Figure 5.7, the error is much high and the near

field can’t be computed according to that trajectory.

Figure 5.25. Original FF and reconstructed FF for a uniform λ/2 sampling
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Figure 5.26. Original FF and reconstructed FF for B-spline trajectory
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Figure 5.27. Original FF and reconstructed FF for spiral trajectory, 140m
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Figure 5.28. Original FF and reconstructed FF for radial trajectory, 140m
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Figure 5.29. Original FF and reconstructed FF for cubic trajectory
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Figure 5.30. Original FF and reconstructed FF for spiral trajectory, 173m
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Figure 5.31. Original FF and reconstructed FF for radial trajectory, 173m
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Figure 5.32. Original FF and reconstructed FF for B-spline trajectory, single antenna
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Figure 5.33. Original FF and reconstructed FF for B-spline trajectory, array 2x2
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Figure 5.34. Original FF and reconstructed FF for B-spline trajectory, array 3x3
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Figure 5.35. Original FF and reconstructed FF for cubic spline, single antenna
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Figure 5.36. Original FF and reconstructed FF for cubic spline, array 2x2
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Figure 5.37. Original FF and reconstructed FF for cubic spline, array 3x3
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Chapter 6

CONCLUSION

As seen in the previous chapters, the method that gives the best results in terms

of the error of the reconstruction of the field is the reduced order model. The only

drawback is due to the computational time in order to get the radiation matrix,

G; it depends from the number of measured points and on the size of the surface

that encloses the radiating object. The more are big these quantities, the more is

the time needed for getting G. It is important to underline again that by using

the ROM, with the knowledge of the equivalent currents, it is possible to compute

both the radiated near and far field. If only a fast characterization is needed the

best method is the use of the SVT algorithm, since it is possible to manage with

a huge amount of data in a very fast way. The CVX software works well if the

points are selected randomly (as done in the starting paper [15] ).

Regarding to the trajectories of the drone, if the aim is to use a method of the

completion matrix the best path for the drone is the radial one, since the error is

smaller than the case of the spiral;instead, if the ROM is used, the best way is to
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determine the points that corresponds to the dominant equivalent currents with

the DEIM, determine the minimum path between the desired amount of points

that we want to visit and find a B-spline trajectory; the B-spline trajectory is

preferred to the cubic spline since it is smoother and shorter. Anyway, this kind of

work should be improved by approaching to a more realistic problem step by step.

For example, it may be considered a real flight simulation where the drone doesn’t

fly at constant height; or can be considered the case when the measurement can

be affected by the error of the sensor in the drone or can be affected by external

noises of the environment.
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