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Abstract

Every year hazardous events take place all around the globe, causing damages from
many point of views: humanitarian losses, crisis, economical losses, environmental
issues and damages to the vegetation in short terms. Considering a longer time span,
areas involved by catastrophic events suffer from several drawbacks: cultural herit-
age loss, possible damages to flora and fauna and the need to rebuild structures and
plan for vegetation regrowth. European Union and the European Space Agency are
becoming more and more active in collecting information about natural disasters.
Through the Copernicus Emergency Management System (EMS), data about past
catastrophic events are collected and categorized according to the type of event, the
state and the region in which they took place.
The goal of this thesis is to focus on wildfire events and exploit data provided by
Copernicus EMS to train a machine learning algorithm to automatically determine
damaged areas by a past wildfire and eventually provide a severity level estimation.
In fact, Copernicus system monitors forest fires and after the fire is extinguished, hu-
man operators are in charge of providing delineation and grading maps, i.e. precisely
identify which areas were affected by the forest fire and the entity of the damage, from
slight damages to total destruction of the area of interest. Starting from Coperni-
cus data, a dataset was generated by collecting satellite imagery from Sentinel2-L1C
mission to train and feed CNN-based deep neural networks known in the state of the
art of biomedical image segmentation. This project demonstrates the good learning
capabilities of the implemented models in distinguishing damaged areas and areas
not affected by the wildfires and underlines the limits of the considered approaches
in providing a severity level estimation.
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Chapter 1

Introduction

Catastrophic hazards are of different nature, ranging from floods, earthquakes, severe
storms to humanitarian crisis. Such events represent potential threats from many
point of views: humanitarian, economical and environmental. Forest fires are no
exception: damage to properties, destruction of flora and fauna, economical loss,
massive emission of CO2, CO and air quality problems in the neighboring areas.
Moreover, large emissions caused by fire activities have implications on climate
change and global warming as stated in [1].

Global awareness about these types of events is constantly increasing, especially
after the Siberia wildfires and the Amazon rainforest wildfires in 2019, where several
millions of hectares are still burning.
Fires are caused either by human or natural causes. In the first case, incidents
caused by machinery, petroleum leaks, electric faults or even people deliberately
starting fires, while in the latter the main causes are lightning and volcanic activities.
Especially in case of naturally-caused fires, the possibility to detect and intervene
are lower due to difficulty in reaching certain areas.

Furthermore, after fire is fully extinguished, other negative aspects are present:

• economical loss: damage to properties and crops, thus resulting in the reduction
of economical incomes and requires investments for post-fire restoration;

• local heritage loss;

• reduction of vegetation: the absorption of carbon-dioxide is reduced due to
the reduction of vegetation in the area. A second consequence is the increase
of soil erosion, which could possibly lead to other catastrophic events such as
landslides;
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• air pollution, caused by gas emissions during the event;

Evaluation for restoration must be made: depending on the area, the severity of the
damages and the soil characteristics, a partial restoration of the original area may
requires several decades or several hundreds years.

Climate change and global warming may increase the probability of having long
lasting and more extended wildfires, thus underlining the importance of prevention
and timely intervention during its occurence and monitoring the burnt area after the
fire extinguished.
For this reasons, real-time detection systems and the ability to provide a severity es-
timation is fundamental. The objective of this thesis is to evaluate, using a machine
learning-based approach, the possibility to automate the identification of burnt areas
and provide a severity estimation level based on satellite acquisitions and geospatial
data. In fact, thanks to different sensors present on satellites and the possibility to
collect data from locations around the globe, there are no difficulties in collecting
post-fire data, unless in-situ information are required.
In particular, two different approaches were considered: the first exploits imagery
acquired using cheaper sensors, i.e. RGB sensors, while the second approach exploits
the data coming from all the available bandwidths from the satellites.
Identification of burnt areas and severity estimation can be both categorized as an
image segmentation task. Starting from state of art techniques known in biomed-
ical image segmentation, different models have been applied to satellite imagery to
understand the tasks’ feasibility and performance evaluation.

The thesis is structured as follows:

• State of the Art: a brief overview of Neural Networks is given together with
the most recent techniques used in the context of Computer Vision and image
segmentation;

• Dataset and Tools: the different data sources, the formats and the services
used to obtain the dataset are described, together with the tools, frameworks
and libraries used for the development of the system;

• Methodology: the data preprocessing, data splitting, training strategies, loss
functions and evaluation metrics are described;

• Performance Evaluation: the performances of the models implemented are eval-
uated and compared, with some considerations about possible limitations of
each of the approaches;
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• Conclusions: a high level overview of the approaches is given together with
some considerations about future developments;
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Chapter 2

State of the art

This chapter provides a brief introduction to Machine Learning, with a particular
focus on Neural Networks and Deep Learning and their main application in the field
of Computer Vision and Image Segmentation.

2.1 Related Works

In the recent years, the field of Deep Learning and Computer Vision is becoming
more and more subject of interest thanks to the increasing computing capabilities
offered by hardware and GPUs acceleration. Modern Computer Vision problems are
tackled with approaches entirely based on neural network models. Such models are
extremely complex and difficult to interpret, but at the same time offer great possibil-
ity of improvements and learning thanks to the capabilities of features extraction and
encoding, compared to other approaches based on classical machine learning models
such as SVMs, random forests where models’ improvements are entirely based on
feature engineering and feature creation.

In particular, all the image segmentation models implemented in this work were
created in the context of medical image segmentation, where research is active for
segmentation in different tasks, such as [2], [3], [4], [5].
The application of machine learning-based approaches in the context of satellite
imagery at the moment of writing is essentially limited to SVMs, decision trees,
Random Forest models, K-means clustering and time series analysis ([6], [7], [8], [9]),
with some research studies implementing Artificial Neural Networks (ANN) [6].

The adoption of Convolutional Neural Networks (CNN) for the analysis of satellite
images could bring several benefits in the field: thanks to convolutions, deep neural
networks are able to learn and classify pixels also considering spatial correlations and

13
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morphological information.

2.2 Machine Learning & Deep Learning

Machine Learning is a subset of the Artificial Intelligence research field where al-
gorithms and mathematical models are built to let a machine learn a task. In this
section only Supervised Learning tasks are analysed.
Supervised machine learning algorithms require the input data and the labels/desired
results. The training process consists in updating a set of learnable parameters such
that the output of the model, i.e. the prediction, is as accurate as possible. The
output of the training process is the model itself.
More formally, let {Xtr, ytr} be the training set and {Xtest, ytest} be the test set,
where X and y are the input features and the labels respectively. The goal of the
training process is to determine a function f such that the prediction ŷ (Equation
2.1) maximizes some evaluation metrics computed on the test set, i.e. the prediction
is as close as possible to the ground truth y.

ŷ = f(X) (2.1)

Thanks to the possibility of collecting and processing great amount of data at low
cost due to the diffusion of IoT devices, smartphones, new sensors and the improve-
ments in the computational capabilities, Machine Learning and more in general Data
Analysis is becoming one of the hottest topics at the time of writing. Supervised
Machine Learning models can be used for automatic fraud detection systems [10],
human activity recognition [11] but also in Computer Vision for object identification
or semantic segmentation of images. More specifically, modern machine learning
techniques for object recognition and analysis of images are entirely based on CNNs
models, which are described in the following paragraphs.

2.2.1 Neural Networks (NN)

Neural networks [12] are complex models composed of several interconnected neurons.
Each neuron receives as input a vector x which is multiplied by the weight vector w.
Then, a bias term b is added and a non-linear function, also known as the activation
function f , is applied to the result (Equation 2.2). The training process consists in
learning the parameters ~w and b. The structure of a neuron is shown in Figure 2.1.

y = ~x · ~w + b (2.2)
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Figure 2.1: Structure of a neuron

Multiple neurons can be combined to create multiple layers, which can be stacked
to obtain Artificial Neural Networks (ANN), such as in Figure 2.2.

Intermediate layers are called hidden layers. The input vector of a hidden neuron
is obtained from the output of all the neurons in the previous layer. The number of
learnable parameters in an ANN depends on the number of neurons: the higher the
number, the higher the number of parameters.

Given the output of a neural network, the training process is performed by minim-
izing a loss function l = l(y, ŷ) through gradient descent, backpropagation algorithm
and the chain rule [13]. The loss function is used to evaluate in a quantitative way
the model’s prediction on an input dataset with respect to the ground truth and
update the model’s parameters accordingly. In this thesis, two loss functions have
been used: cross entropy (Equation 2.3) and dice loss (Equation 2.4).

CE = −
C∑
c=1

N∑
i=1

yci log ŷci (2.3)

DL = 1− 2 · |X ∩ Y |
|X|+ |Y |

(2.4)

Where:

• C and N represent the number of classes and number of data points respect-
ively;
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Figure 2.2: Structure of an ANN

• yci is a binary indicator (0 or 1): it is 1 if the point i belongs to class c, 0
otherwise;

• ŷci is the probability of point i to belong to class c;

• X is the prediction set;

• Y is the ground truth set;

• |X| is the cardinality of set X;

2.2.2 Convolutional Neural Networks (CNN)

Simple ANNs do not adapt very well to Computer Vision tasks due to the char-
acteristics of simple, fully connected layers: each neuron is able to take as input
information about one single pixel, without considering any spatial correlations and
shapes among the pixel neighbourhood. For this reason, Convolutional Neural Net-
works represent the state of the art in modern Computer Vision.
CNNs are based on Convolutional Layer (Figure 2.3): a layer is defined by a ker-
nel of size n x m which is multiplied element-wise by a portion of the input image.
The new output feature is computed by summing up all the multiplied elements.
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This operation is performed by sliding the kernel over the entire input image, thus
generating as output a feature map.

Figure 2.3: Example of a convolutional layer with a 3x3 kernel. The blue tensor is
the input feature map, the green tensor is the output feature map

A convolutional layer is characterized by different parameters which determine
the output shape: padding added to the input image, stride, kernel size and dilation.

2.2.3 Computer Vision & Image Segmentation

The goal of Computer Vision is to train computer systems to acquire the capabilities
of human visual systems by analysing images and videos. Image analysis can be
divided into the following categories:

• classification: given an input image, the system assigns a single label to the
entire image, e.g. vehicle, person, dog;

• classification and localization: given an input image, the system assigns a single
label to the entire image and localizes with a bounding box the object that lead
the system to make that prediction;

• object detection: given an input image, the system identifies and localizes
different objects in the scene, assigning a class label to each of them;

• semantic segmentation: given an input image, the system assigns a label to
each pixel, thus understanding the content and the objects;



Chapter 2. State of the art 18

• instance segmentation: given an input image, the system assigns a label to
each pixel, distinguishing objects with the same semantic meaning, e.g. two
overlapped vehicles are identified as two different objects of class ’vehicle’;

Image analysis and segmentation problems are tackled through CNNs and Deep
Learning. Stacked convolutional layers act as feature extractors, starting from low
level features such as shapes to higher level features, necessary for classification and
segmentation purposes.

In general, segmentation models are based on an encoder-decoder architecture,
where:

• encoders/downsamplers reduce the input image’s resolution, increasing the
number of intermediate features and extracting high level relevant information.
They are characterized by a series of convolutional layer, batch normalizations
and ReLu;

• decoders/upsamplers process the output of encoders: through transposed con-
volutions or other interpolation techniques, they upsample the encoded image,
reducing the number of features, thus localizing the most relevant features;

Through the gradient descent algorithm, neural networks are able to automatic-
ally learn the most relevant intermediate features for segmentation purposes. A final
convolution with a kernel of size 1x1 is used to perform a pixel-wise classification
over the reconstructed image. The number of output channels is equal to the number
of classes.

In the following sections a brief description of the implemented neural networks
is provided. All of them have been applied in the field of biomedical image segment-
ation.

UNet

UNet [3] is composed of 4 downsamplers and 4 upsamplers. Prior to each down-
sample operation, the intermediate feature maps are processed by convolutions,
batch-normalization and Rectified Linear Unit (ReLU). Then, a max-pooling layer
with a kernel of size 2x2 is used to halve the image’s resolution. The next convolu-
tions double the number of intermediate features/channels.
Upsampling operations are performed by transposed convolutional layers to increase
the feature maps’ resolution. Figure 2.4 shows the UNet’s architecture.

After each decoding operation, the next convolutional layer receives as input the
concatenation along the channel axis of the upsampled and the downsampled feature
map at the corresponding level.
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Figure 2.4: UNet architecture

CUMedVision1

CUMedVision1 [14] architecture (Figure 2.5) is composed of a single downsampling
path, where 5 max-pooling layers halve the input image’s resolution, and 3 up-
sampling path. Each deconvolutional path is in charge of computing an output
feature map of the same size as the input image where each single pixel is associ-
ated with a class, i.e. the upsampler is in charge of extracting the relevant features
from the downsampled image. Each upsampling path is associated with a pixel-wise
classifier to provide the output segmentation map and improve performances during
the training process: through multi-task learning, better intermediate features are
learnt such that the performances of the overall model are boosted.
The output feature maps of the decoders are merged together through a sum oper-
ation and a final Softmax non-linearity is applied.

CUMedVision2 - Deep Contour Aware Network

CUMedVision2 [14], also known as Deep Contour Aware Network, is an extension
to CUMedVision1 architecture, as shown in Figure 2.6.

The green path corresponds to CUMedVision1 architecture. The blue path shares
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Figure 2.5: CUMedVision1 architecture. Source: [14]

Figure 2.6: CUMedVision2 architecture. Source: [14]

the exact same architecture, with the only difference that the intermediate classifiers
are trained to identify border pixels. Finally, information from both the paths are
combined together in the output feature map m(x) as described in [14] to generate
the segmentation map.

Data Augmentation

The training process of Neural Networks is extremely computationally expensive
and time consuming. Also, another big constraint for the development of Deep
Learning models is the amount of input data required: in general, several hundreds
or even thousands of images are required for the training process and to have the
Neural Networks generalize fairly well. To introduce further variance and to avoid
overfitting on the training dataset, data augmentation techniques are used in the
context of image analysis and computer vision to dynamically generate new input
images during the training phase. Some of the most common effects applied on input
images are the following:
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• random rotation;

• random vertical flip;

• random horizontal flip;

• random shear;

• random elastic distorsion;

2.3 Satellite imagery analysis

Satellite acquisitions acquire information not only among the visible bandwidths.
In particular, Sentinel-2 mission (which is described more in depth in the following
chapter) collects information at 13 different wavelengths. By combining them to-
gether, it is possible to obtain indexes useful for the identification of some specific
areas, like burnt area or water presence. The definition of 4 burnt area indexes (BAI,
BAIS2, NBR and NBR2) and 2 water presence indexes (WPI and MNDWI) are given
with respect to Sentinel-2 bands, which are described in Table 2.1.

These indexes are computed by using spectral bands which are particularly sens-
ible either to the presence of vegetation or water presence, as shown in Figure 2.7
[15]. For these reasons, B11 and B12 are used generally to compute water presence
indexes, whereas a combination of B5, B6, B7 and B11/B12 are used generally to
compute burnt area indexes. In case of burnt areas, the goal is to obtain an index
which maximizes the reflectance in case of burnt vegetation (Figure 2.8) [16] [17].
Given an index, it is possible to identify a threshold value to generate a segmenta-
tion map which distinguishes between burnt and unburnt areas, such as [18]. One
possible method to automatically identify the threshold value is the Otsu Method
[19] used in image analysis, which minimizes the intra-class variance by maximizing
the inter-class variance in a gray-scale image containing two classes.

Figure 2.9 shows the burnt area caused by a wildfire in Portugal with the com-
parisons of different indexes. The bottom-right corner of the image is absent due to
missing satellite acquisition.

BAI - Burnt Area Index

BAI =
1

(0.1− B04)2 + (0.06− B08)2
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Figure 2.7: Bandwidths absorption. Source: [15]

Figure 2.8: Healthy vegetation vs Burnt vegetation reflectance. Source: [17]
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Band Description
Central

Wavelength (µm)
Spatial

resolution
1 Coastal aerosol 0.443 20m
2 Blue 0.490 10m
3 Green 0.560 10m
4 Red 0.665 10m
5 Vegetation red edge 0.705 20m
6 Vegetation red edge 0.740 20m
7 Vegetation red edge 0.783 20m
8 Near Infrared (NIR) 0.842 10m

8A Narrow NIR 0.865 10m
9 Water vapour 0.945 60m

10 Short wavelength infrared (SWIR) 1.375 60m
11 SWIR 1.610 20m
12 SWIR 2.190 20m

Table 2.1: Sentinel-2 bands description

BAIS2 - Burnt Area Index for Sentinel 2

Source: [20].

BAIS2 =

(
1−

√
B06 · B07 · B8A

(B04)

)
·
(

B12− B8A√
B12 + B8A

+ 1

)

NBR - Normalized Burnt Ratio

NBR =
B08− B12

B08 + B12

NBR2 - Normalized Burnt Ratio 2

Source: [21].

NBR2 =
B11− B12

B11 + B12

WP - Water Presence Index

Source: [20].
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WP =
(B8A + B11 + B12)− (B01 + B02 + B03)

(B8A + B11 + B12) + (B01 + B02 + B03)

MNDWI - Modified Normalized Difference Water Index

Source: [22]

MNDWI =
B03− B11

B03 + B11
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(a) RGB Image (b) Severity mask (c) NBR Index

(d) NBR2 Index (e) BAI Index (f) BAIS2 Index

(g) WP Index (h) MNDWI Index

Figure 2.9: Wildfire in Mira, Portugal. Activation date: 15/10/2017
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Chapter 3

Dataset and Tools

In the first part of this chapter a description on the different data sources and services
used to download the dataset is given. In the second part, the set of tools and
frameworks used for the development of the thesis is presented.

3.1 Data sources and services

3.1.1 Data sources

Information about catastrophic events and natural disasters are collected and pro-
cessed by European Union and the European Space Agency (ESA) and made pub-
licly available through the Copernicus Emergency Management Service (EMS) [23].
Different type of disasters are monitored: floods, volcanic eruptions, earthquakes,
storms and fires. Each monitored event is identified through a code of this kind:
EMSRXXX ; each event may have one or more areas of interest, also known as bound-
ing boxes. Events are also called activations and two different types of information
may be available:

• delineation maps, which contain information about the burnt area;

• grading maps, which contain information about the burnt area and for each
area a severity level is given from 0 (not burnt) to 4 (completely destroyed);

The activation maps from Copernicus are provided as shapefiles: a particular data
format used for geospatial information. Geometrical information, such as points,
lines and polygons, is contained in several files of different formats without any
topological information. In particular, the following information are provided in the
shapefile:

27
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• identification of the area of interest with administrative boundaries and bound-
ing box;

• delineation of hydrography of the entire area;

• delineation of settlements and populated areas;

• delineation of transportation maps and roads;

• delineation of the physiography of the area;

• delineation of the grading maps with the corresponding severity levels;

Among them, the bounding box and the polygons’ definition of the grading maps
were used: the first is defined with the geospatial coordinates of 4 vertices, which
identifies the area of interest, and the second is defined with the array of the vertices
composing the polygon. Each polygon or multipolygon is characterized with the
same severity level. For a better understanding of the information contained in
the shapefiles and to ease the automatic parsing of the information, shapefiles were
converted into GeoJSON file format through the GDAL [24] translator library.
The collected information represents the ground truth to be provided as input during
the neural network training process, but it requires to be converted into a grayscale
image. Also, the satellite data containing the topological information of the area of
interest is not available from the shapefile but must be downloaded from SentinelHub
services. The collection process is described in the following subsection.

3.1.2 SentinelHub and Data collection

SentinelHub [25] is an online service through which it is possible to visualize and
download satellite acquisitions. Data collected from different missions and different
satellites are available:

• Sentinel-1 mission includes two polar-orbiting satellites, operating day and
night to collect information. Data collected from Sentinel-1 is used generally
for land and ocean monitoring;

• Sentinel-2 mission provides high-resolution imagery in the visible and infrared
bandwidths. Data collected by this mission is particularly used for soil and
vegetation monitoring, as well as burnt area detection. The products provided
by Sentinel-2 are divided in L1C, noisier and without any post-processing, and
L2A, post-processed products to filter the atmosphere noise;
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• Sentinel-3 mission’s goal is to measure sea topography, sea and land temperat-
ure and colours through the usage of 4 different sensors;

• Sentinel-5P mission collects data about air quality, ozone and UV radiation;

• Landsat mission (NASA), similar to Sentinel-2 systems both in terms of data
collected and resolution;

• MODIS mission (NASA) collects data for land monitoring. MODIS mission
does not differ too much from Sentinel-2 mission, except for the lower spatial
resolution compared to the latter;

Sentinel-2 products were chosen for data collection as the bands collected by
the satellites are useful for vegetation and burnt area monitoring. Furthermore,
Sentinel-2 products offer higher resolution imagery compared to other missions such
as MODIS and Landsat.

Sentinel-2 collects a total number of 13 bands, each with a different spatial res-
olution and characteristic.

SentinelHub service offers Cloud API keys to retrieve data, given the upper-
left and bottom-right vertices of the bounding box, the time interval and the layer
which determines which bands to retrieve. For each activation, satellite acquisitions
1 month prior the activation date and 1 month after the activation date have been
collected by exploiting the information contained in the GeoJSON files. Each image
is composed of 13 channels previously described. All the images were downloaded
from SentinelHub service by forcing the smallest dimension between height and width
to be 512 pixels, as the second dimension is computed automatically by the service.

For each activation event, Copernicus EMS provides the activation date, i.e. the
date in which the forest wildfire started. Given the activation date, Sentinel-Hub was
configured to retrieve only satellite imagery with a cloud coverage lower than 10% to
limit the amount of noise in the downloaded images. All the available data 1 month
prior and 1 month after the activation date were downloaded from the service.

3.1.3 Mask generation

Neural networks used for segmentation require as input satellite images and segment-
ation masks which associate per each pixel of the input image a class, ranging from 0
to 4. Images and masks must be of the same resolution. The severity mask generation
process has been automatized through a python script, exploiting the information
contained in the GeoJSON files and the resolution of the downloaded images. In
fact, by parsing the GeoJSON files containing the crisis information, polygons and
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Severity level Pixel value Class label
Completely Destroyed 255 4
Highly Damaged 192 3
Moderately Damaged 128 2
Negligible to slight damage 64 1
No damage 0 0

Table 3.1: Severity level to pixel color translation

multipolygons structures define burnt area and the corresponding severity levels. In
particular, vertices are defined as (longitude, latitude) tuples with the corresponding
severity level.

To generate severity masks as grayscale images, all the vertices coordinates were
translated into pixels and the OpenCV library was used to draw polygons on a black
image. Table 3.1 shows how severity levels were translated to pixel colors in range
[0, 255].

Given the mask, stored as a grayscale png image, a 2D matrix is obtained by
analysing pixels’ values. Each single pixel is classified with a label ranging in [0, 4].

3.1.4 Data Cleaning

After mask generation and data retrieval through Sentinel-Hub online service, for
each single activation, all the downloaded products were verified and checked for
consistency together with the severity mask. Some wildfires events were discarded
due to high presence of clouds, unavailable data or mask mismatch.
After the data cleaning process, a total number of 147 acquisitions were selected for
the training and test procedures of neural network models.

3.1.5 Label distribution

Table 3.2 shows the percentage of pixels divided per each class. The segmentation
problem is an imbalanced task: the majority of pixels belongs to unburnt areas,
whereas among the 4 different severity levels, class 4 and class 3 are the most frequent.

3.2 Tools & Frameworks

In this section the different tools and frameworks used for the development of the
algorithms of this thesis are introduced and described.
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Class Percentage
Class 0 85.23%
Class 1 1.78%
Class 2 3.46%
Class 3 4.53%
Class 4 5.00%

Table 3.2: Label distribution

3.2.1 GDAL

Geospatial Data Abstraction Library (GDAL) is an open-source library to read,
parse and analyse different geospatial data file formats, such as shapefiles. GDAL
software was used to convert automatically shapefiles into GeoJSON files through
python scripts.

3.2.2 QGis

QGis is a Geographic Information System (GIS) application with a Graphical User
Interface. It can open different geospatial data formats, visualize and manipulate
vectorial and geospatial data format. Information is shown with different informative
layers and delineation maps and it is particularly useful to comprehend the content
of all the different shapefiles provided by Copernicus EMS.

3.2.3 Python

python is a high level programming language which supports both the object-oriented
and functional programming paradigm. It is becoming one of the most popular and
diffused programming language thanks to its simplicity and flexibility. It is also
supported by a large variety of external libraries for web development, data analysis,
machine learning, numerical computation and data visualization libraries.

3.2.4 OpenCV & skimage

OpenCV [26] and skimage [27] are open-source libraries for image processing. OpenCV
is a computer vision library which offers APIs in C++, Java and python. It con-
tains several algorithms to process images, identify objects and faces, eye-tracking
algorithms, filters, possibilities to draw polygons but also functions to process images
such as equalization tools and color models conversions.
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skimage is another image processing library with similar functionalities as OpenCV.
skimage was used for its contour-detection algorithms and for the implementation
of data augmentation algorithms, such as vertical and horizontal flip, rotation and
shear effects.

3.2.5 scikit-learn

scikit-learn [28] is an open-source library for machine learning. It contains several
classes and tools useful for data analysis, supervised and unsupervised learning mech-
anisms, such as Decision Trees, Random Forests, Logistic and Linear Regressions,
Support Vector Machines, normalization and dimensionality reduction techniques.
scikit-learn also provides useful functions for computing class distribution and class
weights in case of imbalanced classification problems, classes to perform train and
test split and cross-validation.

3.2.6 PyTorch

PyTorch [29] is an open-source library for machine learning and numerical com-
putation based on the Torch library. It offers a python and a C++ interface for
development. The basic data type in PyTorch is the tensor which stores numer-
ical information or model parameters. As the operations are performed on different
tensors, a computational graph is dynamically built by the framework to keep track
of all the functions applied to the input data. Then, the Autograd module is respons-
ible for the automatic differentiation to compute the gradients in the backward pass
during the training process of the neural network. Tensor operations can be handled
by CPU or GPUs, thanks to the support of CUDA library and GPUs’ hardware
acceleration.
PyTorch is provided with the Optim module which implements several optimization
algorithms to train neural networks. Models can be easily built using the nn mod-
ule, which contains user-friendly interfaces and classes to easily build complex neural
network models and concatenate different layers together.

Furthermore, PyTorch offers great flexibility for dataset loading operation and
preprocess: it is possible to define an input pipeline to alter, augment and normalize
the data.



Chapter 4

Methodology

In this chapter the description of the approaches and the analysis performed are
given, starting from a preliminary study on the input data. Then, the input pipeline
for data preprocessing and data augmentation is described to enhance the capabil-
ities of neural networks to generalize and avoid overfitting issues. Finally, possible
improvements to the networks’ architecture and the quality measures used in the
Performance Evaluation chapters are explained.

4.1 Problem interpretation and approaches

Each satellite acquisition is coupled with a grayscale mask, generated as explained
in Chapter 3. In particular, 4 qualitative severity levels are available. Thus, the
segmentation problem can be interpreted in two different ways:

• a simpler binary problem, distinguishing between burnt or not burnt area;

• a more complex multiclass problem, with an increasing severity level: the higher
it is, more severe the damage is;

Masks can be easily converted to the binary case by simply grouping together classes
1, 2, 3, 4.

It is obvious that passing from the binary case to the multiclass problem, the
complexity of the problem increases. In fact, the dataset presents an evident prob-
lem of class imbalance considering the burnt/unburnt area ratio. Class imbalance
becomes even more evident when considering the severity level, as can be seen in
Table 4.1 and Table 4.2.

33
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Class 0 Class 1
Occurrence 53,699,522 9,255,486
Percentage 85.30% 14.70%

Table 4.1: Class imbalance in binary case

Class 0 Class 1 Class 2 Class 3 Class 4
Occurrence 53,699,522 1,323,767 2,485,435 2,830,252 2,616,032
Percentage 85.30% 2.10% 3.95% 4.50% 4.15%

Table 4.2: Class imbalance in multi-class case

Imbalanced class issues can be relieved by using proper loss functions, such as Dice
Loss or a Weighted Cross Entropy Loss, where each class is inversely proportionally
weighted to its occurence in the dataset, thus penalizing more misclassification errors
performed on the minority classes.
It is worth noticing that all the neural network architectures considered in this work
were created in the context of biomedical image segmentation, where cells ([14], [3],
[4]) and organs ([5], [30], [31]) or other structures ([32]) are segmented. Two main
differences are that:

• cells and organs are characterized by well-defined shapes and their contours are
defined by cell membrane or tissues, while burnt area have undefined shapes;

• cells and organs are not interpenetrating each other, while burnt area of differ-
ent severity levels may be overlapped together within the same region (Figure
4.1);

It is worth noticing that the original UNet implementation used a CrossEntropy
loss combined with a pixel-wise weight map, which penalized more errors made in
contour pixels, i.e. cell membranes. Such approach is not suitable in this context
due to the extremely variability of burnt areas: some regions present great amount of
damaged areas, some other monitored activations present smaller regions represented
with few pixels. Computing weight maps in these latter cases would lead to weight
maps with all values near zero, thus making training neural networks more difficult.
Since Sentinel-2 satellite acquisitions are obtained by analysing 13 different band-
widths, it is possible to perform the prediction of burnt areas by considering a subset
of the original feature space. In this thesis, two evaluations are performed:

• a first analysis based on low-cost sensors, i.e. RGB sensors;
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Figure 4.1: Severity mask with overlapping regions of different severity levels

• a second analysis based on the entire feature set;

So, neural networks were trained considering the two different input feature sets.

4.2 Preliminary analyses

Given the premises about class imbalance and overlapping regions previously intro-
duced, it is important to perform a preliminary analysis on the grade of separability
between the 5 different classes to evaluate possible difficulties during the training
process of neural networks.

4.2.1 Analysis on burnt area indexes and severity levels

Satellite imagery analysis and in particular burnt area detection relies on Burnt Area
Index (BAI) or Normalized Burnt Ratio (NBR) and their variants, particular com-
binations of different bandwidths such that the resulting greyscale image enhances
the presence of burnt areas. The quality of an index must be evaluated through the
Separability Index (Equation 4.1), which quantifies how well two classes are separ-
ated.

SI =
| µa − µb |
σa + σb

(4.1)

The higher the Separability Index is, more separable are the classes. The indexes
were computed for both the binary case and the multiclass case for all the burnt area
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indexes (NBR, NBR2, BAI, BAIS2). The separability indexes between burnt and
unburnt area pixels are shown in Table 4.3.

NBR NBR2 BAI BAIS2
SI 0.553 0.928 0.773 0.862

Table 4.3: Separability indexes in the binary scenario

The results show that state of the art’s indexes for burnt area detection are
effective since SI value is almost 1. Thus, it is expected to see good performances
for neural network models in the binary segmentation scenario.

This analysis was extended to the multiclass scenario by computing the SI
between all possible combinations of classes. The results are shown in Figure 4.2.

Figure 4.2: Separability indexes in multiclass scenario

All the 4 indexes lead to the same results: a good separability is obtained by
considering class 2 vs class 0, class 3 vs class 0 and class 4 vs class 0. In contrast,
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the separability index between unburnt areas and slightly damaged areas is not very
high, thus underlining the difficulty in automating this task.
The most relevant outcome of this analysis is the extremely low degree of inter-class
separability within burnt regions: the highest index value is 0.25 and is observed
between class 1 and class 2 for BAIS2 and BAI and 0.3 between class 2 and class 3
for NBR2 and the lowest value is lower than 0.1 between class 3 and class 4.

This analysis underlines the impossibility to detect and to estimate with a reas-
onable confidence the severity level using the state of art indexes for burnt area
detection. It is important to notice that the procedures and the data used for the
severity level estimation by Copernicus EMS and the companies in charge are not
known: it is possible that in-situ information are collected for this purpose.
Furthermore, it is worth noticing that in NBR2 index, class 3 presents higher separ-
ability indexes than class 4 with respect to unburnt areas. Such index emphasizes
more burnt areas with severity level 3 than severity level 4, thus underlining the pos-
sibility that the distinction from ”Highly Damaged” and ”Completely Destroyed”
may not be so clear, at least solely using information obtained from the 13 bands.

4.2.2 Analysis on 13 bands

The previous analysis considered pixel values obtained by computing indexes known
in state of the art for burnt area detection. It is possible that burnt area inter-class
overlapping issues may be relieved by consider the problem in 13 dimensions, i.e.
all the available bands of Sentinel-2 L1C mission. To perform this evaluation, the
Principal Component Analysis (PCA) [33] has been used.

First, all the images with the corresponding masks were read to generate a n x p
matrix, where n is the number of pixels and p is the number of features per pixels,
i.e. 13 bands. Given the matrix, PCA is computed with all the 13 components. From
Figure 4.3, it can be seen that with the first two and three principal components the
explained variance ratio reaches 82% and 91% respectively, so it is possible to plot
the pixels with the respective class in a 2D and 3D chart (Figure 4.4). Scatterplots
represent a sample of 150.000 pixels per class for all the 5 classes due to rendering
issues.

Given the scatterplots and the results from the PCA analysis, it is likely that the
5 severity classes are overlapped and hardly separable in the feature space of the 13
bands.
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Figure 4.3: Explained variance ratio

4.3 Data Preprocessing and input pipeline

Before providing data to neural networks, it is important to build an input pipeline
to preprocess and alter images such that models receive the input in the correct
format and with values within proper ranges. Figure 4.5 represents the entire input
pipeline.

The training input pipeline operates as follows:

1. all training images are read as numpy arrays and resized: each activation is an
image composed of 3 or 13 channels and normalized with a min-max normal-
ization. Each image was resized to 512x512;

2. for each training image, the corresponding severity mask is loaded from a grey-
scale png image;

3. a class transformer component is in charge of converting greyscale images into
multi-class masks, where each pixel is associated with a class in range [0 − 4]
or [0− 1];

4. the tuple (image, mask) is fed to a transformation pipeline so defined (Figure
4.6):

(a) ToBandsMapper and BandsAggregator are two classes used to easily select
certain spectral bands and eventually combine them. The aggregator
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Figure 4.4: Scatterplots of pixels with PCA

class returns a new multi-channel image, generated by executing a lambda
expression. These modules are present only for multi spectral bands input;

(b) Random Rotate randomly applies a rotation within a specified range to
both the input image and mask;

(c) Random Horizontal/Vertical Flip randomly applies a flip on the corres-
ponding axis to both the input image and mask;

(d) Random Shear randomly applies a shear mapping with an angle within a
specified range to both the image and mask;

(e) ToTensor converts a batch of images with axes [N,H,W,C] to PyTorch’s
convention [N,C,H,W ];

(f) Normalize maps the input image from range [0, 1] to range [−1, 1];

5. the input images are used for training the model;

6. the mask prediction obtained by neural network model is compared to the
ground truth via the loss function, which is used to update the model’s weights
and biases;

The transformation pipeline corresponds to the data augmentation process [34] to
generate each time a different input set to lead neural networks to generalize better.
The parameters for the transformation pipeline are reported in Table 4.4.
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Figure 4.5: Input pipeline during training process

Probability Angle (degree)
RandomRotate 0.5 [−50,+50]
RandomHorizontalFlip 0.5 /
RandomVerticalFlip 0.5 /
RandomShear 0.5 [−20,+20]

Table 4.4: Data augmentation parameters

4.4 BandsAggregator and training process

The BandsAggregator class was designed to easily change the number of input fea-
tures and thus the number of activation’s input channels. Through PyTorch’s trans-
formers, this process is done on-the-fly as data is provided to the network.

The greatest advantage of this mechanism is obtained when the neural network
is trained by considering all the input feature space: instead of providing all 13
spectral bands to the model, an incremental approach was used. In particular, first
the spectral bands used in the different burnt area indexes were provided and then,
one by one each of the spectral bands was added till all the input feature space was
used. This process was performed to understand if and to which extent each single
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Figure 4.6: Transformation pipeline

feature contributed to the prediction in case significant improvements were observed.

4.5 CUMedVision2 and contour generation

CUMedVision2 model has two different branches, which are fused together to get
the prediction outcome: the first is in charge of segmenting the input image, whereas
the second branch is trained to determine the contour pixels of burnt area regions.
Thus, the training process requires, together with the input image and the ground
truth, a third image which represents all the contour pixels. This image is dynamic-
ally generated using the ContourGenerator class, which uses scikit-image library to
determine the boundaries of all the burnt regions and applies a disk filter of radius
1. The pipeline used to feed the CUMedVision2 network is shown in Figure 4.7.

4.6 Input features - Incremental approach

As described in the previous section, an incremental approach was chosen to evaluate
the benefits of adding more input features to the neural networks. In particular, two
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CUMedVision2 transformation pipeline
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Figure 4.7: CUMedVision2 input pipeline

neural networks were trained using the RGB input and the single-channel BAIS2 im-
age. Then, multiclass UNet models with Dice Loss were trained. By incrementally
adding more input bands, the network is able to compensate the absence of data (ex-
ample in Figure 4.8) and properly recognize water as unburnt areas. Unfortunately,
regions with water presence or absent data are extremely limited in the dataset and
thus, the ability of the network to properly learn how to distinguish these elements
in the satellite image is strictly related to the train/test set partitioning.

In all the training procedures class 1 and class 3 never or rarely got activated in
case of UNet models. In terms of shape of the burnt area, results were comparable
and thus the 13-channel multi spectral input has been chosen for the multiclass-
multibands training procedure.

4.7 Comparison with data before and after the

activation event

A final approach was considered by providing as input to the neural network two
multi spectral bands input: one image before the activation event and one image
after the conclusion of the catastrophic event. This operation was performed to
let the neural network learn by comparing the satellite imagery prior and after the
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Figure 4.8: Example of an image with missing information obtained through Sen-
tinelHub service

wildfire. The benefits of this approach could be the followings:

• increased robustness towards mountainous areas: the presence of shadows and
the noise introduced by the morphology of the considered area should be re-
duced when considering a differential approach, in which two images are com-
pared;

• increased robustness towards already-burnt areas: in few cases, images with
evident burnt regions prior the activation are present in the dataset, which
severity level was not monitored Copernicus EMS, thus introducing noise and
further difficulties when training the system;

• increased performances in the multiclass case, due to the possibility to compare
information about vegetation presence before and after the event;

It is important to notice that in this thesis, no approaches for interpreting neural
network models were considered and thus it is not known which are the most relevant
features which led the model to take a certain decision. By providing two multi
spectral bands images to the network, it is expected to achieve better performances
for the reasons previously considered.
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Due to the time required for training and UNet achieving better performances
over CUMedVision1 when considering the shape of the burnt area regions, only
multiclass UNet model was extended to receive as input the two images. Two UNet
models were trained: one for the RGB case (6 channels) and one for the multi spectral
input case (26 channels).

4.8 Quality measures

In Machine Learning it is fundamental to assess the developed model and its output
through different metrics, according to the type of problem and the class distribution.
In this section, different evaluation metrics which were used for models’ assessment
are described, both in binary classification problems and in the multi-class case.
Table 4.5 and Table 4.6 represents the confusion matrices for both the binary clas-
sification and multi-class classification problems. Conventionally, in the binary case
the positive class is attributed to burnt areas.

Ground truth
True False

Predicted
True True Positive (TP) False Positive (FP)
False False Negative (FN) True Negative (TN)

Table 4.5: Binary confusion matrix

4.8.1 Accuracy

Accuracy measures the percentage of correctly classified data points with respect to
the total number of samples. In the binary case it is computed as follows:

Ground truth
Class 0 Class 1 Class 2 Class 3 Class 4

Predicted

Class 0 m00 m01 ... ... m04

Class 1 m10 m11 m14

Class 2 ... m22 ...
Class 3 ... m33 ...
Class 4 m40 ... ... ... m44

Table 4.6: Multi-class confusion matrix
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Acc =
TP + TN

TP + FP + FN + TN

It is generalized as follows in the multi-class case:

Acc =

∑4
i=0mii∑4

i=0

∑4
j=0mij

Accuracy evaluation metric cannot be used as a reliable evaluation metric for this
thesis due to class imbalance: in fact, a simple classifier that always predicts class
0 would reach an accuracy of 85.30% on the entire dataset. For this reason, it is
important to introduce other evaluation metrics.

4.8.2 Precision

Precision for class i measures the amount of correctly classified data points in class i
with respect to total number of predicted samples in i. In the binary case, precision
is measured on the positive class as follows:

precision =
TP

TP + FP

For multi-class problems, precision can be computed for each of the class as:

precisioni =
mii∑4
j=0mij

4.8.3 Recall

Recall for class i measures the amount of correctly classified samples in class i with
respect to number of samples actually belonging to class i. For binary problems,
recall is computed as follows:

recall =
TP

TP + FN

The recall metrics can be extended to multi-class problems by computing it for
each single class.

recalli =
mii∑4
j=0mji
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4.8.4 F1 score

F1 score combines together recall and precision through a harmonic mean so defined:

F1i = 2 · precisioni · recalli
precisioni + recalli

(4.2)

In binary classification problems, F1 score is generally computed for the positive
class, as for multi-class problems, the metric is computed for each class. In the latter
case, a macro-F1 score can be computed as the (weighted) mean of per-class F1
score (Equation 4.3 and 4.4, where N is the total number of data points and ni is
the number of points belonging to class i).

macro-F1 =
1

4
·

4∑
i=0

F1i (4.3)

weighted-F1 =
1

N
·

4∑
i=0

ni · F1i (4.4)

4.9 Validation procedure

For validation purposes, it is important to provide neural network models test images
which do not overlap with the bounding boxes of training images. This is to overcome
overfitting issues: if the neural network is overfitting and it is learning the morphology
of each of the training input images and overlapping regions with test images are
present, then validation losses and metrics are not valid. Thus, to validate the
developed models a cross-validation approach has been implemented, which is shown
in Figure 4.9.

Given the entire dataset composed of 51 activations with a total number of 147
input images, the 7-fold cross validation is performed as follows: at each iteration, a
group of activation events is chosen as test set with all its images, as the remaining
6 groups of activations are used for the training process. Activations are grouped
together such that each fold contains (almost) the same amount of test images and
there are not overlapping regions between the train and test set. The training set
is enriched with synthetic data through data augmentation, whereas test set is not.
As the training process is completed, evaluation metrics are computed on the test
set: accuracy, per-class recall, precision and f1-score are computed. Then, the mean
value is computed for all the metrics. The groups are defined in Table 4.7.
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Figure 4.9: CrossValidation procedure

4.10 Training system

Due to the high amount of parameters and images to analyse, it was not possible
to perform the analysis on a simple local machine. Furthermore, to train neural
networks in reasonable amount of time, a CUDA-accelerated system is fundamental.
Table 4.8 describes the main hardware characteristics and software packages.
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Fold # Activation codes Test set size (images)

1

EMSR370, EMSR299, EMSR252, EMSR288,
EMSR316, EMSR365, EMSR344, EMSR363,
EMSR303, EMSR362, EMSR278, EMSR373,
EMSR371, EMSR247, EMSR221, EMSR173,
EMSR360, EMSR331, EMSR307, EMSR367,
EMSR230

21

2 EMSR207, EMSR133 21
3 EMSR169, EMSR209, EMSR290 21
4 EMSR213, EMSR217, EMSR302 20

5
EMSR239, EMSR237, EMSR214, EMSR219,
EMSR368, EMSR305, EMSR353, EMSR175,
EMSR295

21

6
EMSR369, EMSR171, EMSR250, EMSR248,
EMSR210, EMSR254, EMSR211

21

7
EMSR132, EMSR216, EMSR227, EMSR298,
EMSR291, EMSR300

22

Table 4.7: Definition of folds for cross-validation

Component Model/Version
CPU Intel Core i9-7940X @ 3.10GHz
RAM 128GB
GPU 4x GTX 1080Ti 12GB
Nvidia Drivers 390.116
CUDA release 9.0, V9.0.176
Python 3.6.7
PyTorch 1.1.0
torchvision 0.3.0

Table 4.8: System configuration
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Performance Evaluation

In this chapter the experimental results of the developed neural network models are
presented. This chapter is structured as follows: first, UNet, CUMedVision1 and
CUMedVision2 models are trained and tested on RGB images by considering both
the binary and the multi-class case. Then, the same training and testing procedures
are performed on the entire dataset with the 13 input spectral bands. An input
example with the corresponding ground truth is shown in Figure 5.1. Then, two
comparison tables are shown in Section 5.3 to compare the different models predic-
tion, both in binary and multiclass case.
For binary classification problems, accuracy, recall, precision and F1-score are presen-
ted with mean value obtained across the 7 folds, best and worst value obtained for
each metric among the 7 folds. Best and worst values of two different metrics may
be obtained from two different folds.
The same analysis is performed in the multiclass case: recall, precision and F1-score
are computed per each class and mean, best and worst values obtained from the 7
different folds are reported.

In some experiments, a higher number of epochs was chosen with a variable learn-
ing rate to stabilize the models prediction. In particular, a MultiStepLR Scheduler
has been used with the steps and gamma parameters specified in the following tables.

49
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(a) Input RGB image (b) Ground truth: binary mask

(c) Ground truth: 5-level mask

Figure 5.1: Input example for the RGB case

5.1 RGB input

5.1.1 UNet

Binary case

Parameters used for the training process on each fold are reported in Table 5.1.
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Parameter Value
Batch size 8
Epochs 25
Optimizer Adam
Learning rate 0.0001
Weight decay 0
Scheduler /
Loss function(s) Binary Cross-Entropy

Table 5.1: UNet training parameters in binary case, RGB input

Accuracy Recall Precision F1-score
Mean 90.43% 0.698 0.706 0.665
Best 96.30% 0.934 0.899 0.886
Worst 82.38% 0.390 0.492 0.518

Table 5.2: UNet model evaluation metrics in binary case, RGB input

The basic UNet model in the binary case achieved a mean F1-score of 0.665, with
a best score of 0.886. Figure 5.2 shows model outputs obtained from the best and
the worst performing folds respectively.
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(a) Input image (b) Ground truth (c) Prediction

(d) Input image (e) Ground truth (f) Prediction

Figure 5.2: Binary UNet RGB predictions from best and worst performing folds

Most errors are related to small burnt areas that the UNet is not able to detect.
Minor misclassification errors are seen in the contour areas, while burnt areas with
greater extension are detected more precisely. Also, minor errors are performed
within small unburnt areas surrounded by major burnt regions, presence of clouds
and volcanic areas.
Light conditions affect prediction outcomes and training process: depending on the
time of the day at which the satellite acquisition is made and the morphology of
the area, the presence of shadows caused by mountainous areas may lead the neural
network to label undamaged areas as burnt.



53 5.1. RGB input

Multi-class case

Parameter Value
Batch size 8
Epochs 50
Optimizer Adam
Learning rate 0.01
Weight decay 0
Scheduler MultiStep
Steps Epochs: 25, 35, 45
Gamma 0.1
Loss function(s) Dice Loss

Table 5.3: UNet training parameters in multiclass case, RGB input

Recall Precision F1-score

Class 0
Mean 0.842 0.954 0.889
Best 0.951 0.986 0.949
Worst 0.632 0.901 0.769

Class 1
Mean 0 / /
Best 0 / /
Worst 0 / /

Class 2
Mean 0.350 0.136 0.177
Best 0.676 0.262 0.277
Worst 0 0.043 0.075

Class 3
Mean 0 / /
Best 0 / /
Worst 0 / /

Class 4
Mean 0.496 0.207 0.187
Best 0.769 0.694 0.295
Worst 0.054 0.056 0.100

Table 5.4: UNet model evaluation metrics in multiclass case, RGB input

The extension of UNet to the multiclass case is performing poorly in terms of F1-
score with respect to the different burnt severity levels considering the RGB input.
Class 1 and Class 3 layers never activated and thus recall, precision and F1-score
values are not valid.
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Two prediction outcomes are shown in Figure 5.3: Example 1 shows a case where
UNet was able to determine the general shape of the burnt area, but it was unable
to correctly estimate the severity level; Example 2 shows the prediction outcome
influenced by the presence of crops.

(a) Example 1: input (b) Example 1: ground
truth

(c) Example 1: prediction

(d) Example 2: input (e) Example 2: ground
truth

(f) Example 2: prediction

Figure 5.3: Examples obtained from multi-class UNet with RGB input

In Example 2 case, the presence of cultivated areas and light conditions negatively
influence the prediction outcomes, due to high presence of areas with dark brown
color. In this case, UNet was not able to detect severity levels and overestimated the
burnt area region.
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5.1.2 CUMedVision1

Binary case

Parameter Value
Batch size 16
Epochs 25
Optimizer Adam
Learning rate 0.0001
Weight decay 0
Scheduler /
Loss function(s) Binary CrossEntropy

Table 5.5: CUMedVision1 training parameters in binary case, RGB input

Accuracy Recall Precision F1-score
Mean 90.40% 0.688 0.678 0.647
Best 94.56% 0.944 0.955 0.813
Worst 0.874 0.432 0.398 0.536

Table 5.6: CUMedVision1 evaluation metrics in binary case, RGB input

CUMedVision1 model performances are in general lower compared to binary UNet.
In particular, the network is able to detect the burnt area inside the image, but its
shape and the contour areas are not as precise as UNet, with major errors obtained
in the worst case, as shown in Figure 5.4 Example 2. The absence of concatenation
layers in the network architecture is providing a lower amount of information to
determine the burnt area more precisely.
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(a) Example 1 input (b) Example 1 ground
truth

(c) Example 1 prediction

(d) Example 2 input (e) Example 2 ground
truth

(f) Example 2 prediction

Figure 5.4: Examples obtained from binary CUMedvision1 with RGB input

Multi-class case

Parameter Value
Batch size 8
Epochs 25
Optimizer Adam
Learning rate 0.0001
Weight decay 0
Scheduler /
Loss function(s) CrossEntropy

Table 5.7: CUMedVision1 training parameters in multiclass case, RGB input
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Recall Precision F1-score

Class 0
Mean 0.938 0.910 0.921
Best 0.997 0.971 0.968
Worst 0.794 0.797 0.874

Class 1
Mean 0.026 0.033 0.016
Best 0.145 0.138 0.077
Worst 0 0 0

Class 2
Mean 0.039 0.078 0.041
Best 0.177 0.179 0.155
Worst 0 0 0

Class 3
Mean 0.112 0.145 0.075
Best 0.557 0.285 0.196
Worst 0.011 0.028 0.016

Class 4
Mean 0.382 0.257 0.245
Best 0.590 0.797 0.469
Worst 0.185 0.049 0.090

Table 5.8: CUMedVision1 evaluation metrics in multiclass case, RGB input

Differently from the multiclass UNet, all the classes were present in the prediction
performed on the test set with CUMedvision1, though the recall, precision and f1-
score are fairly low on the different burnt severity levels. Figure 5.5 shows 3 different
examples on prediction outcomes.
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(a) Example 1 input (b) Example 1 ground
truth

(c) Example 1 prediction

(d) Example 2 input (e) Example 2 ground
truth

(f) Example 2 prediction

(g) Example 3 input (h) Example 3 ground
truth

(i) Example 3 prediction

Figure 5.5: Examples obtained from multiclass CUMedvision1 with RGB input

Example 1 shows a case where the network is able to detect the burnt region
general shape, with great errors made in contour areas. Example 2 and Example 3
show two different cases in which CUMedVision1 is making major mistakes:

• Example 2: the network is greatly overestimating the burnt area region due to
light conditions, shadows and mountainous areas;
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• Example 3: burnt areas are almost absent in prediction, even though they are
clearly visible from the RGB image;

Furthermore, in all the three prediction outcomes, areas with different severity
levels are not clearly identified. Instead, the network is computing a grid pattern in
which different severity levels are present, thus leading to a slight increase in F1-score
with respect to the results obtained from multiclass UNet.

Further attempts were performed by increasing the learning rate value up to
0.01. The obtained models performed worse since all pixels were classified as unburnt
regions.

5.1.3 CUMedVision2

Binary case

Parameter Value
Batch size 4
Epochs 25
Optimizer Adam
Learning rate 0.0001
Weight decay 0
Scheduler /
Loss function(s) Binary CrossEntropy

Table 5.9: CUMedVision2 training parameters in binary case, RGB input

Accuracy Recall Precision F1-score
Mean 86.66% 0.563 0.707 0.526
Best 95.92% 0.965 0.963 0.849
Worst 67.63% 0.103 0.203 0.186

Table 5.10: CUMedVision2 evaluation metrics in binary case, RGB input

CUMedVision2 models were trained using the same parameters as CUMedVision1,
with the only difference that Binary CrossEntropy Loss was applied also to the sec-
ondary branch in charge of contour prediction. As shown in Figure 5.6, in Example 1
the network is predicting the burnt area precisely, whereas in Example 2 the network
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is unable to correctly determine the burnt area and thus overestimates it, due to
light conditions and high presence of shadows. Furthermore, in all the cases the con-
tour prediction provided a completely empty image, thus underlining the difficulty in
determining precisely the shapes of burnt area regions. Due to this reason, CUMed-
Vision2 reached comparable performances with respect to CUMedVision1 and thus
was not considered in the multiclass scenario.

5.1.4 Comparison with data before and after the activation
event

In this subsection, the performances of multiclass UNet model with 6-channels images
are reported.

Parameter Value
Batch size 8
Epochs 50
Optimizer Adam
Learning rate 0.001
Weight decay 0
Scheduler MultiStepLR
Steps Epochs: 25, 35, 45
Gamma 0.1
Loss function(s) Dice Loss

Table 5.11: UNet training parameters in multiclass case, 6-channels input
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(a) Example 1 input (b) Example 1 ground
truth

(c) Example 1 contour

(d) Example 1 prediction (e) Example 1 contour pre-
diction

(f) Example 2 input (g) Example 2 ground
truth

(h) Example 2 contour

(i) Example 2 prediction (j) Example 2 contour pre-
diction

Figure 5.6: Examples from binary CUMedVision2, RGB input
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Recall Precision F1-score

Class 0
Mean 0.878 0.954 0.908
Best 0.991 0.995 0.952
Worst 0.672 0.892 0.801

Class 1
Mean 0.098 0.078 0.078
Best 0.234 0.151 0.183
Worst 0 0.016 0.028

Class 2
Mean 0.378 0.116 0.201
Best 0.890 0.204 0.332
Worst 0 0 0.080

Class 3
Mean 0.102 0.248 0.132
Best 0.392 0.763 0.249
Worst 0 0.016 0.025

Class 4
Mean 0.364 0.398 0.347
Best 0.824 0.792 0.560
Worst 0 0.098 0.148

Table 5.12: UNet evaluation metrics in multiclass case, 6-channels input

5.2 Multi spectral bands input

In this section the same experiments of the previous section are performed, with the
only change on the input data. In particular, all the 13 inputs bands available from
Sentinel-2 L1C mission are used.
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(a) Example 1 correspond-
ing RGB input after the
activation

(b) Example 1 ground
truth

(c) Example 1 prediction

(d) Example 2 input
corresponding RGB input
after the activation

(e) Example 2 ground
truth

(f) Example 2 prediction

Figure 5.7: Examples from multiclass UNet, 6-channels input
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5.2.1 UNet

Binary case

Parameter Value
Batch size 8
Epochs 25
Optimizer Adam
Learning rate 0.0001
Weight decay 0
Scheduler /
Loss function(s) Binary CrossEntropy

Table 5.13: UNet training parameters in binary case, 13-channels input

Accuracy Recall Precision F1-score
Mean 95.64% 0.771 0.885 0.811
Best 97.62% 0.964 0.953 0.914
Worst 93.41% 0.444 0.796 0.597

Table 5.14: UNet evaluation metrics in binary case, 13-channels input

By analysing all the 13 input spectral bands available from Sentinel-Hub service,
binary UNet model with a threshold of 0.5 achieved an overall mean F1-score over
all the folds of 0.811, compared to 0.665 obtained in the RGB case. Considering the
best performance obtained from a fold, F1-score incremented from 0.886 to 0.914.
In particular, by training on 13 features, the model was able to:

• determine burnt areas more precisely;

• identify clearly the presence of water in the image and do not classify it as a
burnt area;

• become more robust with respect to atmospheric noise and light conditions,
which were limiting factors when considering performances in the RGB scen-
ario;

Two examples are shown in Figure 5.8.
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(a) Example 1 correspond-
ing RGB input

(b) Example 1 ground
truth

(c) Example 1 prediction

(d) Example 2 correspond-
ing RGB input

(e) Example 2 ground
truth

(f) Example 2 prediction

Figure 5.8: Examples from binary UNet with multi spectral bands input

In Example 1, the region was clearly determined by UNet with some minor er-
rors in identifying small unburnt regions surrounded by destroyed areas, whereas in
Example 2 a greater number of mistakes were made.
In general, the possibility to use the multi spectral input bands severely improved
performances and burnt area delineation in countour regions, but UNet model still
lacks the ability to precisely determine small burnt areas.



Chapter 5. Performance Evaluation 66

Multi-class case

Parameter Value
Batch size 8
Epochs 50
Optimizer Adam
Learning rate 0.01
Weight decay 0
Scheduler MultiStep
Steps Epochs: 25, 35, 45
Gamma 0.1
Loss function(s) Dice Loss

Table 5.15: UNet training parameters in multiclass case, 13-channels input

Recall Precision F1-score

Class 0
Mean 0.839 0.980 0.902
Best 0.948 0.991 0.965
Worst 0.732 0.965 0.842

Class 1
Mean 0 / /
Best 0 / /
Worst 0 / /

Class 2
Mean 0.257 0.085 0.119
Best 0.632 0.158 0.252
Worst 0.048 0.046 0.050

Class 3
Mean 0.257 0.125 0.199
Best 0.934 0.343 0.502
Worst 0.0 0.0 0.0

Class 4
Mean 0.526 0.332 0.411
Best 0.943 0.830 0.765
Worst 0.0 0.105 0.177

Table 5.16: UNet evaluation metrics in multiclass case, 13-channels input

As in the RGB input case, Class 1 and Class 3 were never (or rarely) predicted. Only
some pixels of Class 2 and Class 4 were correctly classified, with a F1-score of 0.177
and 0.187 as mean values and 0.277, 0.295 as best values respectively. Figure 5.10
shows 3 examples, where:
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• Example 1 shows a case in which UNet model is able to determine precisely
the shape of the burnt area region, with minor misclassification errors in the
contours areas;

• Example 2 shows a case in which the model is severely underestimating the
burnt area;

• Example 3 is a case in which the burnt region is overestimated;

In general, the model is not able to correctly detect the severity level of the area:
the predominant predicted class is class 4, which in general determines the overall
shape of the burnt area, whereas the contour areas are always labelled as class 2.
Class 1 is never predicted. Low values of F1-score are justified by the fact that, even
though the shape in most of the cases is well determined, the severity level prediction
within the identified region is wrong.
Compared to RGB input, the trained UNet models were able to partially activate
severity level 3 in few cases, which lead to a significant drop of F1-score for class 4
or total absence of it (Figure 5.9).

Figure 5.9: F1-score values in multiclass UNet, multi spectral input
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(a) Example 1 correspond-
ing RGB input

(b) Example 1 ground
truth

(c) Example 1 prediction

(d) Example 2 correspond-
ing RGB input

(e) Example 2 ground
truth

(f) Example 2 prediction

(g) Example 3 correspond-
ing RGB input

(h) Example 3 ground
truth

(i) Example 3 prediction

Figure 5.10: Examples from multiclass prediction with UNet, multi spectral bands
input
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5.2.2 CUMedVision1

Binary case

Parameter Value
Batch size 16
Epochs 25
Optimizer Adam
Learning rate 0.0001
Weight decay 0
Scheduler /
Loss function(s) Binary CrossEntropy

Table 5.17: CUMedVision1 training parameters in binary case, 13-channels input

Accuracy Recall Precision F1-score
Mean 94.25% 0.609 0.930 0.719
Best 96.30% 0.805 0.966 0.873
Worst 91.93% 0.295 0.864 0.452

Table 5.18: CUMedVision1 evaluation metrics in binary case, 13-channels input

CUMedVision1 models trained on multi spectral input demonstrated slight improve-
ments in terms of F1-score with respect to the corresponding models trained on the
RGB input. Figure 5.11 shows two examples in which the model performs well and
underestimates the burnt region respectively. In particular, the neural network learnt
to distinguish the presence of water and not classify it as burnt areas. In Example
2, it is likely that the conformation of the land and the low presence of vegetation
negatively influenced the prediction outcome.
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(a) Example 1 correspond-
ing RGB input

(b) Example 1 ground
truth

(c) Example 1 prediction

(d) Example 2 correspond-
ing RGB input

(e) Example 2 ground
truth

(f) Example 2 prediction

Figure 5.11: Examples from binary prediction with CUMedVision1, multi spectral
bands input

Multi-class case

Parameter Value
Batch size 8
Epochs 25
Optimizer Adam
Learning rate 0.0001
Weight decay 0
Scheduler /
Loss function(s) Cross Entropy

Table 5.19: CUMedVision1 training parameters in multiclass case, 13-channels input
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Recall Precision F1-score

Class 0
Mean 0.958 0.973 0.965
Best 0.989 0.992 0.979
Worst 0.930 0.942 0.952

Class 1
Mean 0.013 0.083 0.024
Best 0.029 0.254 0.047
Worst 0 0 0

Class 2
Mean 0.176 0.138 0.126
Best 0.378 0.269 0.222
Worst 0.021 0.052 0.029

Class 3
Mean 0.136 0.231 0.132
Best 0.390 0.355 0.272
Worst 0.011 0.074 0.021

Class 4
Mean 0.524 0.253 0.283
Best 0.851 0.699 0.514
Worst 0.206 0.041 0.078

Table 5.20: CUMedVision1 evaluation metrics in multiclass case, 13-channels input

Figure 5.12 shows that in general the developed and trained model is able to detect
the burnt area, providing as output all the possible 4 severity levels. The main issue
is the same encountered in the RGB input case: the network did not learn how to
distinguish the different severity levels, thus providing as output a grid of pixels in
which different classes are present. Among the 4 severity levels, the best F1-score is
achieved in identifying class 4, with a mean value of 0.283 and best value of 0.514.
Class 1 is the worst-performing, with a mean F1-score of 0.024 and best F1-score of
0.047. Considering instead the evaluation metrics of class 0, a mean F1-score of 0.965
is achieved, thus indicating that the neural network is able to correctly distinguish
between burnt and unburnt areas, i.e. there are high learning capabilities in the
binary setting.
Example 1 shows a case in which few mistakes where made in identifying internal
unburnt regions, whereas in Example 2 the burnt region was underestimated.
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(a) Example 1 correspond-
ing RGB image

(b) Example 1 ground
truth

(c) Example 1 prediction

(d) Example 2 correspond-
ing RGB image

(e) Example 2 ground
truth

(f) Example 2 prediction

Figure 5.12: Examples from multiclass prediction with CUMedVision1, multi spec-
tral bands input
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5.2.3 CUMedVision2

Binary case

Parameter Value
Batch size 4
Epochs 25
Optimizer Adam
Learning rate 0.0001
Weight decay 0
Scheduler /
Loss function(s) Binary CrossEntropy

Table 5.21: CUMedVision2 training parameters in binary case, 13-channels input

Accuracy Recall Precision F1-score
Mean 92.91% 0.702 0.852 0.743
Best 97.67% 0.8981 0.996 0.852
Worst 87.97% 0.432 0.560 0.603

Table 5.22: CUMedVision2 evaluation metrics in binary case, 13-channels input

CUMedVision2 models were trained in the multibands case to determine whether or
not the considered architecture is able to determine contour areas in case of multi
spectral band input. Figure 5.13 shows two examples. In all the cases, the models
were not able to detect contours of the burnt area region. As in the RGB input case,
performances are comparable with CUMedVision1 and thus this architecture has not
been considered in the multiclass case.

5.2.4 Comparison with data before and after the activation
event

In this subsection, the performances of multiclass UNet model with 26-channels
images are reported.
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(a) Example 1 correspond-
ing RGB input

(b) Example 1 ground
truth

(c) Example 1 contour

(d) Example 1 prediction (e) Example 1 contour pre-
diction

(f) Example 2 correspond-
ing RGB input

(g) Example 2 ground
truth

(h) Example 2 contour

(i) Example 2 prediction (j) Example 2 contour pre-
diction

Figure 5.13: Examples from binary CUMedVision2, multi spectral input
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Parameter Value
Batch size 16
Epochs 50
Optimizer Adam
Learning rate 0.01
Weight decay 0
Scheduler MultiStepLR
Steps Epochs: 25, 35, 45
Gamma 0.1
Loss function(s) Dice Loss

Table 5.23: UNet training parameters in multiclass case, 26-channels input

Recall Precision F1-score

Class 0
Mean 0.975 0.963 0.969
Best 0.998 0.990 0.994
Worst 0.895 0.913 0.932

Class 1
Mean 0 / /
Best 0 / /
Worst 0 / /

Class 2
Mean 0.374 0.184 0.206
Best 0.685 0.449 0.354
Worst 0.004 0.082 0.008

Class 3
Mean 0.047 0.178 0.063
Best 0.128 0.660 0.114
Worst 0 0.007 0.010

Class 4
Mean 0.391 0.393 0.356
Best 0.755 0.861 0.542
Worst 0.035 0.038 0.037

Table 5.24: UNet evaluation metrics in multiclass case, 26-channels input

Figure 5.14 shows 3 examples of the developed model. Example 1 shows a case in
which UNet was able to precisely determine the burnt areas, with major errors made
in determining the class. Example 2 is a case with extremely difficult light conditions,
in which previously trained models severely overestimated the burnt area. Thanks
to the differential approach, in which two satellite images acquired before and after
the event are compared, the neural network was able to correctly identify the burnt
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(a) Example 1 correspond-
ing RGB input after the
activation

(b) Example 1 ground
truth

(c) Example 1 prediction

(d) Example 2 correspond-
ing RGB input after the
activation

(e) Example 2 ground
truth

(f) Example 2 prediction

(g) Example 3 correspond-
ing RGB input after the
activation

(h) Example 3 ground
truth

(i) Example 3 prediction

Figure 5.14: Examples from multiclass UNet, 26-channels input
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area. Example 3 shows a case in which class 1 was entirely misclassified as class
2. Furthermore, providing images before and after the activation event may lead to
misclassification errors when considering a longer time span, especially in case the
vegetation changes or when considering cultivated areas.

5.3 Models comparison

In this section, all the different models are compared in terms of accuracy, recall,
precision and F1-score, considering both the RGB input and the multi spectral input.
The metrics reported in the tables are mean values, computed considering the results
from all the 7 folds. The networks are compared in the binary case, as well as in the
multiclass case.

Table 5.25 shows the performance comparisons between the two considered mod-
els. CUMedVision2 model was discarded due to poor performances and the inability
to detect contour areas. Overall, UNet model performed better than CUMedVision1
model. In particular, in the RGB case the differences in terms of F1-score are fairly
limited. As the number of input features is incremented to all the bandwidths avail-
able from Sentinel-2 L1C products, UNet demonstrated greater learning capabilities
by better identifying burnt areas with respect to CUMedVision1. In particular, as
shown previously, major misclassification errors are made in contour regions for both
the models, with UNet performing better and CUMedVision1 greatly underestimat-
ing the burnt region.

UNet CUMedVision1

RGB

Accuracy 90.43% 90.40%
Recall 0.698 0.688
Precision 0.706 0.678
F1-score 0.665 0.647

Multi Spectral input

Accuracy 95.64% 94.25%
Recall 0.771 0.609
Precision 0.885 0.930
F1-score 0.811 0.719

Table 5.25: Performance comparison in Binary case

Segmentation maps computed by thresholding the NBR2 index were used as
an evaluation metrics to assess the deep learning models. The threshold values
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were computed using the Otsu method on each single image, similarly to [18]. The
considered segmentation technique achieved the following scores:

• accuracy: 72.97%;

• precision: 0.340;

• recall: 0.884;

• F1-score: 0.491;

The worst-performing model achieved higher performances in all the 4 evaluation
metrics, with further improvements in the multi spectral input case.

A comparison of different outputs is shown in Figure 5.15, where the input image
was obtained from Fold 7.

In the examples shown, it is noticeable the difference between RGB models and
multibands models, especially in case of CUMedVision1: since more significant fea-
tures are available, the neural networks are able to better predict burnt areas in the
considered region. However, the prediction outcomes severely depends on the time
at which the satellite imagery were taken: the more the time passes after the activ-
ation date, the less significant the available data become. Unfortunately, this issue
is out of the control of the developer/data scientist since the frequency at which the
satellite imagery is taken strictly depends on Sentinel-2 orbits and availability of the
service.

Models performances by considering the extension to the multiclass case are
shown in Table 5.26. By considering the evaluation metrics, CUMedVision1 was
able to recall all the 5 classes, while UNet never activated class 1 and class 3 in
the RGB case and class 1 in the multibands input case. Furthermore, F1-score of
CUMedVision1 in class 0 is higher in both the cases. This is due to the fact that
CUMedVision1 underestimates the amount of burnt pixels, thus leading to better
results in class 0. Considering class 2 and class 4, UNet reached comparable or even
better results than CUMedVision1, especially in the case of multi spectral input
bands.
Among the different burnt severity levels, the best F1-score of 0.411 is achieved by
UNet model with multi spectral bands input on class 4, compared to CUMedVision1
which achieved 0.283. This result is justified by the fact that the majority of activ-
ations monitored by Copernicus EMS present a greater percentage of burnt areas of
class 4.

Figure 5.16 shows an example of multiclass prediction. In general, both models
do not correctly predict class 1, 2 and 3 and identify the entire burnt area as class 4,
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with some minor regions marked as Moderately Damaged (class 2) near the contours.
UNet outputs are sharper than CUMedVision1, which tends to identify the burnt
area with a grid pattern, where different severity levels are repeated, thus justifying
extremely low values of F1-score for class 1 and class 3. Finally, two UNet models
were trained by taking as input two images: an image prior the activation event and
one image after the wildfire was stopped. One model was trained on RGB images,
whereas the second was trained on multi spectral band inputs. The main differences
are the following:

• RGB input: the 6-channels UNet achieved a higher F1-score with respect to
RGB UNet. The developed UNet was also able to classify pixels belonging to
class 1 and class 3;

• multi spectral input: the 26-channels UNet achieved higher values of mean
precision compared to the traditional UNet, with a better mean F1-score on
class 2 and class 0. Furthermore, this models demonstrated more robustness
in mountainous areas;

These experiments underline the limitation of the implemented models: both UNet
and CUMedVision1 were originally implemented in the context of biomedical image
segmentation. Their adaptations in the analysis of satellite imagery evidence their
limitations, due to the absence of cell membranes and stacked areas with different
severity levels: the difficulty in the identification of small areas and the ability to
precisely determine contour regions.
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(a) RGB Input (b) Ground Truth

(c) UNet RGB prediction (d) UNet multibands prediction

(e) CUMedVision1 RGB prediction (f) CUMedVision1 multibands predic-
tion

Figure 5.15: Model predictions comparison in binary case
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UNet
UNet

6/26-channels
CUMedVision1

RGB

Class 0
Recall 0.842 0.878 0.938
Precision 0.954 0.954 0.910
F1-score 0.889 0.908 0.921

Class 1
Recall 0 0.098 0.026
Precision / 0.078 0.033
F1-score / 0.078 0.016

Class 2
Recall 0.350 0.378 0.039
Precision 0.136 0.116 0.078
F1-score 0.177 0.201 0.041

Class 3
Recall 0 0.102 0.112
Precision / 0.248 0.145
F1-score / 0.132 0.075

Class 4
Recall 0.496 0.364 0.382
Precision 0.207 0.398 0.257
F1-score 0.187 0.347 0.245

Multibands

Class 0
Recall 0.839 0.975 0.958
Precision 0.980 0.963 0.973
F1-score 0.902 0.969 0.965

Class 1
Recall 0 0 0.013
Precision / / 0.083
F1-score / / 0.024

Class 2
Recall 0.257 0.374 0.176
Precision 0.085 0.184 0.138
F1-score 0.119 0.206 0.126

Class 3
Recall 0.257 0.047 0.136
Precision 0.125 0.178 0.231
F1-score 0.199 0.063 0.132

Class 4
Recall 0.526 0.391 0.524
Precision 0.332 0.393 0.253
F1-score 0.411 0.356 0.283

Table 5.26: Performance comparison in multiclass case
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(a) RGB Input (b) Ground truth

(c) UNet RGB prediction (d) UNet multibands predic-
tion

(e) CUMedVision1 RGB pre-
diction

(f) CUMedVision1 mult-
ibands prediction

(g) 6-channels UNet predic-
tion

(h) 26-channels UNet predic-
tion

Figure 5.16: Model predictions comparison in multiclass case



Chapter 6

Conclusions

In this chapter possible future developments in the field of automatic satellite im-
age processing through deep learning techniques are presented. Then, some final
considerations are given.

6.1 Future developments

As seen from the previous chapter and due to the nature of the phenomenon, models
performances, especially in a multi-class context, offer margin of improvements. This
is due to two main reasons:

• nature of data: natural disasters and forest wildfires are unpredictable events.
They depend on a great amount of factors, from human activities to meteoro-
logical information and the morphological aspect of the involved areas. Also,
the time component is extremely important: as time passes, the effect of a
forest wildfire may reduce due to growing vegetation, thus making it extremely
difficult to provide a prediction on the severity level;

• nature of the model: both UNet and CUMedVision architectures were created
in the context of biomedical image segmentation, where cells and organs are
defined by specific membranes or tissues, whereas burnt areas with different
severity levels are of different shapes and land extensions;

To overcome performances issues, it is possible to work either on input data or
on the network architecture.

83
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6.1.1 Feature engineering

First of all, it is important to remember that all the input data used in this thesis are
obtained from Sentinel2-L1C mission, which provides raw data obtained from satel-
lite acquisitions. Sentinel2-L1C products are affected by atmospheric noise which
can negatively influence the training process and the outcome. To overcome this
issue, it could be possible to use Sentinel2-L2A products if available, which provide
instead bottom of atmosphere reflectance and thus limit the noise introduced by the
atmosphere.
Another possibility is to train a neural network to remove noise from Sentinel2-L1C
products: if both L1C and L2A data are available, it is possible to train a custom
neural network which learns how to clean the input data. Then, the cleaned data is
used to feed and train a UNet model both in binary and multiclass case. This auto-
matized cleaning process could provide benefits, especially in case the acquisition is
performed by an aircraft and not by a satellite. Eventually, the input feature space
could be enriched with data from Sentinel-1 mission.

To enhance model performances, it is also possible to preprocess and eventually
transform the input data using image and signal processing techniques. In particular,
considering the RGB case, it is possible to analyse different color theory techniques,
different color spaces and equalization techniques to manipulate input data. As an
example, Figure 6.1 shows a possible image altered using the HSV color space by
increasing saturation and value.

(a) Original image (b) Altered image

Figure 6.1: Example of image alteration using HSV color space

This exact same concept can be extended to multi spectral bands input but
requires proper domain knowledge for data manipulation and feature engineering,
where a new feature map is identified such that different severity levels are more
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separable with respect to the original feature space.

6.1.2 Architectural and loss improvements

To reduce misclassification errors due to light conditions and to enhance the identi-
fication of small burnt areas, it is also possible to modify the current neural network
architecture, either by changing the encoder-decoder structure or by revising the
entire network and develop ad-hoc solutions for satellite imagery context. Indeed,
the absence of a great amount of data covering different types of geographic areas
in different periods of the year is a great issue that cannot be easily overcome and
underlines the need of models which are able to learn with a limited amount of
samples per each type of morphological areas. In particular, many misclassification
errors were made in mountainous area and cultivated areas due to high presence of
shadows and great changes during summer and winter season respectively.

The development of a custom loss function may also provide benefits to the
training process, both in terms of time required and model performances.

6.2 Final considerations

Analysis of satellite imagery with machine learning and especially deep learning tech-
niques is still at early stages of development and many improvements are possible.
The development of machine learning algorithms for emergency management sys-
tems is extremely important, especially nowadays, due to the high number of forest
wildfires which are endangering the planet environment. Such a system could be for
example installed on aircrafts to automatically identify burnt regions and automatize
the mask generation process, which is entirely done manually by operators at the
time of writing. This thesis showed the feasibility of automatic burnt area detection
and the limits of the considered architectures in this context.
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[6] R. Ramo, M. Garćıa, D. Rodŕıguez, and E. Chuvieco, “A data mining approach
for global burned area mapping,” International journal of applied earth obser-
vation and geoinformation, vol. 73, pp. 39–51, 2018.

[7] R. Ramo and E. Chuvieco, “Developing a random forest algorithm for modis
global burned area classification,” Remote Sensing, vol. 9, no. 11, p. 1193, 2017.

[8] T. Kumar and K. Reddy, “A technique for burning area identification using
ihs transformation and image segmentation,” International Arab Journal of In-
formation Technology (IAJIT), vol. 12, no. 6A, pp. 764–771, 2015.

87



Bibliography 88

[9] L. A. Hardtke, P. D. Blanco, H. F. del Valle, G. I. Metternicht, and W. F. Sione,
“Semi-automated mapping of burned areas in semi-arid ecosystems using modis
time-series imagery,” International Journal of Applied Earth Observation and
Geoinformation, vol. 38, pp. 25–35, 2015.

[10] F. Carcillo, Y.-A. Le Borgne, O. Caelen, Y. Kessaci, F. Oblé, and G. Bon-
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