POLITECNICO DI TORINO

Master’s Degree Course in Mechatronical Engineering

Master’s Degree Thesis

Simulation of a virtual Traffic Light System
using IEEE 802.11p

Supervisor: Candidate:
prof. Claudio Casseti Gabriel Martnez
Student Id: 238269

Academic Year 2018-2019

Abstract

The automotive industry is one of the most important in the world, moving annually
billions of US dollars, and it is one that it is being reinvented year by year, together with
the advancement in technology, and the development of new strategies for the different
necessities that arises, specially in security.

Of special interest nowadays are the autonomous cars, cars that have for objective
easing the labour of from the driver of the car, and this is done by either adding new
functionalities to the car or in most extreme case, taken away the control of different
labours inside the car. This as an end makes the the action of driving more automatic
and in the ideal case, more secure for the drivers, passengers and actors on the road.

The different functionalities that offer an autonomous car are of a modular nature,
this means that they can be discussed tested and analysed separately, instead of being a
big ensemble, nonetheless like a final test they should always being tested in conditions
where all the intended functionalities are working in parallel. This thesis is about the
intersection control of junction in urban roads.

One of the new tools that will be a disposition of the autonomous car in the near
future will be the 5G network, in which the cars will be using the protocol knows as IEEE
802.11p for network communication for the automotive industry. The analysis of a junc-
tion intersection in an urban road is done using the framework environment of Veins the
open source vehicular network simulation framework, which use the simulator of urban
mobility SUMO for the simulation of comportment of a car and the environment in which
they are simulated, and OMNet-++ for the simulation of network communication within
the cars and of the control itself.

The focus of study is a control strategy for decreasing the total travel time of every
car in the simulation when the cars are under a congestion situation of the junction un-
der study. It is created a framework environment that contain a control algorithm that
works with a decentralized scheme, that is, every car has the option to decide how it will
operate, instead of using an external source or infrastructure. Using the aforementioned
5G network, the cars communicate between each other so they can arbitrate the travel
priority on the intersection.

The control strategy is tested under four different situations, where the performance
of it in every case is successful, enabling the system under study under all the different
scenarios to reduce the total travel time of the cars. Even more, the control assure that
the total travel doesn’t exceed a certain max travel time, so it could be used for predicting
certain situation in worst case scenarios.

The proposed framework of control present an innovative approach to the the problem
of crossing intersection in urban environment, one that can be easily implemented and it
nos process consuming, at the same time that effectively enough that can be considered
for real life scenarios. Recommendations of new additions to the framework are mentioned
whenever it is deemed loadable.

Page 3 of 138

To my family, friends, and the ones

that were left in the way, both in Italy
€5 Chile

Acknowledgements

Si algunas personas me preguntan cual fue uno de mis turning point en mi vida, segu-
ramente tendria que remontarme a uno de esos dias del ano 2014 cuando sentado junto
a Cesar O. y Daniel A., este ultimo nos empez a convencer de ir a hacer un programa
llamado doble titulo, a un pais llamado Italia (esto a pesar de que al final este tltimo no
se uni6 al programa).

Y si bien al principio me mostré incrédulo, después de un poco de convencimiento y
la opini ‘'n de mi padre, empecé a considerarlo una verdadera opcién.

De ahi comenzoé el camino para poder quedar aceptado, un camino que en particular
fue dificil. Me hubiera gustado que hubiera sido mejor, pero no lo fue, y solo gracias al
apoyo de mis padres y mis amigos, los cuales estuvieron ahi en mis més bajos momentos
es que logre ser aceptado.

Llegue a Italia, a una tierra desconocida, siendo la primera vez que tomaba un avién,
la primera vez que salia del pais de origen. Y muchas de las expectativas que tenia cuando
comencé este viaje se cumplieron, y muchas otras que no imagine tener también se re-
alizaron.

El doble titulo, que se esta culminando a medida que escribo las ultimas palabras de
esta tesis, marca un ciclo en el que me hice adulto, creci como persona y aprendi del
mundo.

De los grupos de personas de los que tengo que hablar son dos, aquellos que conocia
antes de este gran viaje, y aquellos que conoci en la tierra lejana conocida como Italia.

En mi tiempo en Italia conoci a un grupo de personas que realmente me hicieron crecer
y madurar: al grupo de chilenos que me acogié y me prepararon para mis primeros dias
en un pais extranjero, Victor que hoy en dia es uno de mis conocidos que mas aprecio y
Nicolas que sus conversaciones siempre me sirvieron para reflexionar sobre la vida.

Al grupo de extranjeros que conoci aca, al Argentino, que me permitio ver la vida desde
el punto de vista de un artista frustrado, al Boliviano, al que seguramente le debo la mayor
parte de mi crecimiento como persona en estos tltimos meses fuera del &mbito académico.

A mi companero de casa, Gunav, que me ha ayudado a conocer un gran grupo de
gente, y que me permite mantenerme en contacto con la parte joven de mi y que por

mucho tiempo hice caso omiso.

Al grupo de chilenos con el que llegue, en especial a Cesar O., que a lo largo de los
anos lo he llegado a considerar un verdadero amigo.

A mis amigos que se quedaron en Chile, los que me escucharon en mis momentos mas
complicados en mi estancia en Italia, y a los cuales hasta el dia de hoy converso activa-

Page 6 of 138

mente; Rolf, quizas la tinica persona con la que siento que puedo hablar de cualquier cosa;
José M., una de las personas con las que realmente siento que aprendo algo nuevo cada
vez que hablo con él, y cuyas anécdotas de historia hicieron que se volviera a prender ese
gusto por la historia, el cual habia perdido; y Miguel D., quizas a mi amigo de mas tiempo,
el cual siempre me escucho cuando lo tinico necesitaba era que alguien me escuchara, y
que siempre estuvo ahi cuando lo necesite.

Y finalmente, a mi madre y mi Padre, que sacrificaron mucho para poder tenerme
donde estoy ahora. Sin ellos este pequeno sueno de ir a estudiar a otro pais y terminar el
doble titulo no seria posible. Sin olvidar a mi hermano, que si bien no hemos hablado, sé
que se enorgullece de tenerme como hermano, y eso me llena de energia.

A todas estas personas que mencione, y a muchas otras que no puedo mencionar para
no hacer esto més extenso, Muchas Gracias.

Page 7 of 138

Contents

1 Introduction 12
1.1 Stateofart 12
1.2 Autonomous Driving Overview, 13
1.3 IEEE 802.11p Overview 14

2 Software to use 16
2.1 SUMO . . . 16
2.2 OMNeTH+ e e 16
2.3 Veins 17

2.3.1 Howit works 17
2.3.2 Imitialization 18

3 Modeling the Problem 19
3.1 Characterization of the intersection 20
3.2 Possible Improvements or changes to the characterization 20

4 Description of the control 21
4.1 Assumptions e e 21
4.2 Logic behind the controller 21

4.2.1 Centralized vs Decentralized Control 21
4.2.2 Adaptive Controller 22
4.2.3 Traffic Congestion 22
4.3 Parameters of the Controller 23
4.4 Structure of the controller 25
4.4.1 State of the semaphore L. 25
4.4.2 Internal Message 25
4.4.3 External Messageo 27
4.4.4 Functional Functions 29
4.5 Workflow 30
4.5.1 Initialization of the Control Algorithm 30
45.2 StateoftheCar 31
4.5.3 Control of States 32
4.5.4 Synchronization L 33

5 Tests 35

5.1 Test 0-Basic Base Case 36
5.1.1 Uncontrolled Simulation 36
5.1.2 Controlled Simulation 38

5.2 Test 1 - Extended Base Case with heavy and intermittent flow 40
5.2.1 Uncontrolled Simulation 41
5.2.2 Controlled Simulation 44

5.3 Test 2 - Heavy flow random vehicle 46
5.3.1 Uncontrolled Simulation 46
5.3.2 Controlled Simulation 49

5.4 Test 3 - Early finish in a heavy congested lane in only one direction 52
5.4.1 Uncontrolled Simulation 52
5.4.2 Controlled Simulation with Early Finish On/Off 54

Page 8 of 138

6.1 Test O 57
6.2 Test 1 . . . 58
6.3 Test 2 . . o, 59
6.4 Test 3 . . ., 60
7 Conclusions 62
References 63

List of Figures

Levels of autonomous Driving - Automated Vehicles for Safety, accessed on

2019 [3] 13
Veins - How does Veins Work?, accessed on 2019 [14] 18
Base Case: four-way intersection 19
Evaluation enter to activate control algorithm 31
Empiric Rules for activating Control 31
stateControl() Function o 32
checkState Call 32
changeState() Functiono 33
Finish Early Routine, 33
Synchronization Message Dynamic 34
Histogram Test 0 37
Histogram Horizontal Travel 37
Histogram Vertical Travel 38
Histogram Test O 39
Histogram Horizontal Travel 39
Histogram Vertical Travel 40
Histogram Test 1 with Control Oft 42
Histogram Starting from East 42
Histogram Starting from North 43
Histogram Starting from East 43
Histogram Starting from South 43
Histogram Test 1 with Control On 44
Histogram Starting from East 45
Histogram Starting from North 45
Histogram Starting from East 45
Histogram Starting from South 46
Histogram Test 2 with Control Oft 47
Histogram Starting from East 48
Histogram Starting from North 48
Histogram Starting from East, 48
Histogram Starting from South 49
Histogram Test 2 with Control On 50
Histogram Starting from East 50
Histogram Starting from North 51
Histogram Starting from East, 51

Page 9 of 138

36
37
38
39
40
41
42
43
44
45
46

47

48
49

20

ol
52

23

o4
95

26

57
o8

29

60
61

62

Histogram Starting from South 51

Histogram Test 3 With controll Off 53
Histogram Horizontal Travel 53
Histogram Vertical Travel 54
Histogram of Test 3 With Control On 55
Histogram of Direction E-W 55
Histogram of Direction N-S 55
Histogram of Direction W-S 56
Histogram of Direction S-N 56

Histogram of No Control and Control Situation with Green 10s / Red 20s . 66
Histogram of Control Situation with Green 15s / Red 25s & Green 20s /

Red 30s o 66
Histogram of Control Situation with Green 30s / Red 40s & Green 40s /
Red 50s o o 67

Histogram of No Control and Control Situation with Green 10s / Red 20s . 68
Histogram of Control Situation with Green 15s / Red 25s & Green 20s /

Red 30s o 68
Histogram of Control Situation with Green 30s / Red 40s & Green 40s /
Red 50s . . . o o o 69

Histogram of No Control and Control Situation with Green 10s / Red 20s . 70
Histogram of Control Situation with Green 15s / Red 25s & Green 20s /

Red 30s o 70
Histogram of Control Situation with Green 30s / Red 40s & Green 40s /
Red 50s o o 71

Histogram of No Control and Control Situation with Green 10s / Red 20s . 72
Histogram of Control Situation with Green 15s / Red 25s & Green 20s /

Red 30s o 72
Histogram of Control Situation with Green 30s / Red 40s & Green 40s /
Red 50s o 73

Histogram of No Control and Control Situation with Green 10s / Red 20s . 74
Histogram of Control Situation with Green 15s / Red 25s & Green 20s /

Red 30s o 74
Histogram of Control Situation with Green 30s / Red 40s & Green 40s /
Red 50s o o 75

Histogram of No Control and Control Situation with Green 10s / Red 20s . 76
Histogram of Control Situation with Green 15s / Red 25s & Green 20s /

Red 30s o 76
Histogram of Control Situation with Green 30s / Red 40s & Green 40s /
Red 50s o 7

List of Tables

S U W N

Floats 36
Data Test 0 with Control Off 36
Data Test 0 with Control On 38
Floats e 41
Data Test 1 e 41
Data Test 1 e 44

Page 10 of 138

7 Floats 46
8 Data Test 2 o oo 47
9 Data Test 2 49
10 Floats oo 52
11 Data Test 3 with Early Finish 52
12 Data Test 3 with Early Finish 54
13 Data Test 3 without Early Finish 54
14 DataTest 0 oL o S7
15 Results Test O 0. .o o o8
16 Data Test 1 o o8
17 Results Test 1 oo oo 29
18 DataTest 2 o L 29
19 Results Test 2 oo L 60
20 DataTest 3 L 60
21 Results Test 3 o o 61
22 Global result of test with car generation of 30 [s], for different state tran-
sitlon time 65
23 Global result of test with car generation of 16 [s], for different state tran-
sition timeo 67
24 Global result of test with car generation of 14 [s], for different state tran-
sition time Lo 69
25 Global result of test with car generation of 14 [s|, for different state tran-
sition timeo Lo 71
26 Global result of test with car generation of 14 [s|, for different state tran-
sition timeo oL 73
27 Global result of test with car generation of 14 [s], for different state tran-
sition timeo 5

Page 11 of 138

1 Introduction

The automotive industry is one of the most relevant in our life, used for transportation
of persons or goods, for moving from the house to the job or simply in order to go buy
groceries, the impacts that this particular industry has in our life can’t be objected, and
the different advancement that are being produced and developed for this industry are of
special interest for a great number of peoples.

Of special interest are two different technologies: Autonomous Driving, the capacity
of the car to be self-driven, without or partial necessity of a driver; And the technology
known by V2X - Vehicle to everything - the technology of the car to send and receive
information from other cars or infrastructures (of interest in this infrastructures is the

R.S.U - Road Side Unit).

Because of this two technologies, there is a necessity of development in two different
areas, namely hardware and software, the need of specialized embed system for processing
the most quickly possible the data that it is being capture by the different sensors of the
car, together with better and reliable sensors, and specialized algorithms that has to be
both quick and efficient, in the way that they don’t have to suffer from delays when they
are processing the data coming from the hardware.

This thesis present a framework environment that includes an algorithm thought for
cars with autonomous driving, a technology that it is in development right now by differ-
ent automakers in the world, and that has the possibility of using V2X communication -
Technology thought for 5G networks. This algorithm is thought for intersection of urban
areas, and search to reduce congestion time of cars waiting in line in this roads. The
necessity of an algorithm that it is efficient (that doesn’t require so many computations),
and to be flexible enough that can be adapted to multiple situations are the goals of this.
The approach is novel enough, because meanwhile there are other algorithms thought
for similar situations, they require a R.S.U. for every intersection, adding in a cost of
effectively producing this solution (installation and maintenance of them for every inter-
section under study), and the proposed solution use a decentralised scheme, where it is
only required that the cars have a good enough channel of communication.

1.1 State of art

Autonomous driving is the next big stop for car makers, many of them are making
sure to invest in this technology, or in one way or another to joint venture with smaller
companies that work in this area.

Meanwhile there isn’t a deadline of when this technology is going to be implemented,
given the difficulties of what this entails and the different definitions of what it is au-
tonomous driving (there exist five levels, with level 5 being fully autonomous, and right
now we are in level 2, as defined by 1.2), the different car makers are given different
possible dates [I] of when this technology will be available for the public, with most of
them coinciding in the next decade.

Page 12 of 138

For cars with this technologies, it is not only necessary that other cars have to support
this technology, but it is also important to create roads and infrastructure that support
this technology. Meanwhile there are different car makers that are putting different cars
on the road in order to test it, Volvo is testing this technology on a closed environment
in a road in Gothenburg, Sweden, in order to develop not only autonomous driving, but
also infrastructure to support this technology[2] .

In what respect to the control algorithm, the focus is not on how the car moves, so
it will be assumed that the car has an autonomous level of at least 3. Calling to the
combination of roads and cars a “system”, the different algorithms require an external
agent that control the cars, from outside the system, like in [4] where the computations of
controls are done in a network that control all the cars of the systems, and it is updating
constantly the position of the cars on the road, or like in the Autonomous Intersection
Management (AIM) framework [5], where it is possible to reach a continuous flow of cars
on an intersection, without ever stopping, but with the requirements that the computa-
tions has to be done on an R.S.U.

1.2 Autonomous Driving Overview

The US organization of National Highway Traffic Safety Administration (NHTSA)
released on 2016 a document that intended to put on a framework a policy over the safe
deployment of automated vehicles. This document was reviewed on 2017 and later on
2018 and in them, the NHTSA define the six different levels of automation on a vehicle
as shown on Figure 1.

SOCIETY OF AUTOMOTIVE ENGINEERS (SAE) AUTOMATION LEVELS

Full Automation

Driver Partial Conditional
Automation Assistance Automation Automation Automation Automation

Zero autonomy; the Vehicle is controlled by Vehicle has combined Driver is a necessity, but The vehicle is capable of The vehicle is capable of
driver performs all the driver, but some automated functions, is not required to monitor performing all driving performing all driving
driving tasks. driving assist features like acceleration and the environment. The functions under certain functions under all
may be included in the steering, but the driver driver must be ready to conditions. The driver conditions. The driver
vehicle design. must remain engaged take control of the may have the option to may have the option to
with the driving task and vehicle at all times control the vehicle. control the vehicle.
monitor the environment with notice.

at all times.

Figure 1: Levels of autonomous Driving - Automated Vehicles for Safety, accessed on 2019

3]

Nowadays, car makers says that we are in transition toward level 3 of autonomous
driving, or level 2.5, with mixed functionalities of level 3 and 2. It is expected that for
the year 2035, it will be available the technology for autonomous driving level 5 [6], but

Page 13 of 138

this doesn’t mean that the technology will be comerciable right away.

1.3 IEEE 802.11p Overview

The organization know as IEEE (Institute of Electrical and Electronics Engineers)
funded in 1884, it is the world’s largest technical professional society, in which they re-
search and promote different advancement of electrical and electronic engineering, telecom-
munications, computer engineering and allied disciplines|7].

In the area of telecommunications, the standard IEEE 802.11 is a set of protocols, for
implementing wireless local area network (WLAN). This standard specifies:

1. Physical layer (PHY): The electronic circuit transmission technologies of a network.

2. Media Access control (MAC): Hardware responsible for the interaction with the wired,
optical or wireless transmission medium.

3. Interconnection between devices: The procedures in which the different devices are
connected.

4. Security: The standard of security that has to be reproduced that has to be present.

Following this, WiFi is a certification of interoperability and standard compliance re-
leased by the WiFi Alliance for devices based on 802.11 standards.

The first standard was created in 1999, with the creation of the IEEE 802.11. Since
then, the IEEE has produced several amends to the original standard in order to update
the technologies, or for incorporating new services.

IEEE 802.11p is an amend produced of 2010 to add Wireless Access in Vehicular
Environment (WAVE), the so called vehicular communication system. As described by
[8] and [9] it sets a series of requirements to be followed in order to support Intelligent
Transportation Systems. This are:

1. A method to create a high velocity connection within the cars, without the necessity
of establishing a basic service set (BSS), instead they used a wildcard basic service set
identifier (BSSSID) to stablish a quick connection. Thus without the need to wait on
the association and authentication procedures to complete prior to exchanging data.
Because such stations are neither associated nor authenticated, the authentication
and data confidentiality mechanisms provided by the IEEE 802.11 standard (and its
amendments) cannot be used. These kinds of functionality must then be provided by
higher network layers.

2. This amendment adds a new management frame for timing advertisement, which al-
lows TEEE 802.11p enabled stations to synchronize themselves with a common time
reference. The only time reference defined in the IEEE 802.11p amendment is UTC.

3. Some optional enhanced channel rejection requirements (for both adjacent and nonad-
jacent channels) are specified in this amendment in order to improve the immunity of
the communication system to out-of-channel interference. They only apply to OFDM
transmissions in the 5 GHz band used by the IEEE 802.11a physical layer.

Page 14 of 138

4. Use of the frequency bands licensed for ITS applications. TEEE 802.11p standard
typically uses channels of 10 MHz bandwidth in the 5.9 GHz band (5.850-5.925 GHz).
This allows the receiver to better cope with the characteristics of the radio channel
in vehicular communications environments, e.g. the signal echoes reflected from other
cars or houses.

In the scope of this thesis, all the communications between the cars are effectuated by
the simulation software that will be following this standard of communication, making it
a valid ITS application.

Page 15 of 138

2 Software to use

This thesis make use of two different programs and one computational framework for
running the different simulations and for the programming of the control algorithm. The
specifications used for each of this, and how they operate will be explained at continuation.

2.1 SUMO

As described by [10] and [I1], “Simulation of Urban MObility” (Eclipse SUMO) is an
open source, highly portable, microscopic and continuous road traffic simulation package
designed to handle large road networks. SUMO is licensed under the Eclipse Public Li-
cense V2.

SUMO is a traffic simulation package, that can simulate networks of any sizes, given
that the computer power is large enough. SUMO is mainly a microscopic, space-continuous
road traffic simulation. What it means to be a "microscopic” traffic simulator is that
each vehicle and its dynamics are modeled individually. It supports multi-modal and
inter-modal ground based traffic. SUMO models individual vehicles and their interac-
tions using models for car-following, lane-changing and intersection behavior. It also uses
pedestrian models to simulate the movement of persons and their interactions with vehi-
cles.

For the purpose of this Thesis, the model of simulation used is the default model used
by SUMO: It is a modification to the microscopic model defined by Stefan Kraug in [12].
The model follows the same idea as that of Krauf, namely: Let vehicles drive as fast
as possibly while maintaining perfect safety (always being able to avoid a collision if the
leader starts braking within leader and follower maximum acceleration bounds) with the
following differences:

e Different deceleration capabilities among the vehicles are handled without violating
safety (the original model allowed for collisions in this case).

e The formula for safe velocity was adapted to maintain safety when using the simu-
lator, that is, changing the continuous time model of Kraus to a discrete one, thus
avoiding collisions.

In order for SUMO to operate with other software, it makes use of TraCI command,
this is the short term for “Traffic Control Interface”. Giving access to a running road
traffic simulation, it allows to retrieve values of simulated objects and to manipulate their
behaviour “on-line”.

Given the limitation of the version used in Veins [2.3], the version of SUMO used is

SUMO 0.32.0.

2.2 OMNeT++

As described by [13], OMNeT++ is an extensible, modular, component-based C++
simulation library and framework, primarily for building network simulators. “Network”
is meant in a broader sense that includes wired and wireless communication networks,

Page 16 of 138

on-chip networks, queuing networks, and so on. Domain-specific functionality such as
support for sensor networks, wireless ad-hoc networks, Internet protocols, performance
modeling, photonic networks, etc., is provided by model frameworks, developed as inde-
pendent projects. It has extensions for real-time simulation, network emulation, database
integration, SystemC integration, and several other functions.

Although OMNeT++ is not a network simulator itself, it has gained widespread popu-
larity as a network simulation platform in the scientific community as well as in industrial
settings, and building up a large user community.

OMNeT++ provides a component architecture for models. Components (modules)
are programmed in C++4, then assembled into larger components and models using a
high-level language (NED).

It will be used with the simulation framework (model) of vehicular networks Veins
|2.3]. Given the limitation of the version used is Veins [2.3], the version of OMNeT++
used is OMNeT++ 5.4.1.

2.3 Veins

As described by [14], Veins is an Open Source vehicular network simulation frame-
work, ships as a suite of simulation models for vehicular networking. These models are
executed by an event-based network simulator (OMNeT++ [2.2]) while interacting with
a road traffic simulator (SUMO [2.1]). Other components of Veins take care of setting up,
running, and monitoring the simulation.

This constitutes a simulation framework. What this means is that Veins is meant to
serve as the basis for writing application-specific simulation code. While it can be used
unmodified, with only a few parameters tweaked for a specific use case, it is designed to
serve as an execution environment for user written code. Typically, this user written code
will be an application that is to be evaluated by means of a simulation. The framework
takes care of the rest: modeling lower protocol layers and node mobility, taking care of
setting up the simulation, ensuring its proper execution, and collecting results during and
after the simulation.

Veins contains a large number of simulation models that are applicable to vehicular
network simulation in general. Not all of them are needed for every simulation — and,
in fact, for some of them it only makes sense to instantiate at most one in any given
simulation. The simulation models of Veins serve as a toolbox: much of what is needed to
build a comprehensive, highly detailed simulation of a vehicular network is already there.

2.3.1 How it works

As discussed before, with Veins each simulation is performed by executing two sim-
ulators in parallel: OMNeT++ (for network simulation) and SUMO (for road traffic
simulation). Both simulators are connected via a TCP socket. The protocol for this
communication has been standardized as the Traffic Control Interface (TraCI). This al-
lows bidirectionally-coupled simulation of road traffic and network traffic. Movement of

Page 17 of 138

vehicles in the road traffic simulator SUMO is reflected as movement of nodes in an OM-
NeT++ simulation. Nodes can then interact with the running road traffic simulation,
e.g., to simulate the influence of IVC on road traffic.

-

[~ Comfort ™\
[Traffic Safety
Traffic Efficiency en
on
ITS Application ery
hnge J
Data Di /

J/

Data Collection

£
8
=
=
=
]
3
E
w

| Medium Access Behavior Mobility

| Emissions

| Physical Layer
Road Traffic Simulation

SUMO

Veins |\
OMNeT++

. /

Figure 2: Veins - How does Veins Work?, accessed on 2019 [14]

2.3.2 Initialization

As per this Thesis, the last stable version of Veins is Veins 4.7.1, for which it is going to
be used. From this version, it is going to be used the fully-detailed model of IEEE 802.11p.

As per documentation of Veins, and for this thesis in particular, Veins is going to be
installed, in ”..\src\veins-4.7.1” and from here on, this will be the path referred for any
file used or modified in this thesis.

For simplification, we are going to use the example that bring Veins by default, and
from there on modify files according to necessity.

Page 18 of 138

3 Modeling the Problem

This section will refer to the description of the problem, and the characterization of
the automotive intersection. The parameters introduced in the characterization of the
intersection will be later be used on the control algorithm.

For the porpoise of this thesis, we will be using a four-way automotive intersection of
90 degree between each of the lanes (see Figure 3). The cars can come from one of the
four possibly entrance, namely from L1 to L4, and can exit from one of the four possible
exits, namely from E1 to E4.

Every road is a two car lane, forming what it is known as a four lane highway. The
intersection will be an urban intersection, thus limiting the maximum velocity achievable
to the cars, that in this case will be 14m/s (50.4km/hr).

Because the cars are simulated by SUMO and they have the possibilities of being con-
trolled in an automatic and external way, it will be assumed that the cars are autonomous,
and that the simulation program is simulating like this. This means that the cars travel
in an efficient way without feedback from the conductors (this can be done because of the
model used by the simulator, where it is impossible for accidents to happen unless they
are from external cause).

L
I I M
| | |
L2 E2
|
|
----------------------- I..... @ e o o s s s s 0 s 0 0 0 e e e e
C7 :
|
|
|
|
|
E:A.Z :E
e T . :

E3 : 4_ Lo L1
I3 L C=(X,Y) El
..... lL....: .
| ;
..... |.....
|
|
|
|
|
|
...................... R
|
|
|
E4! L4

Figure 3: Base Case: four-way intersection

Page 19 of 138

3.1 Characterization of the intersection

In order for the control algorithm to work, the cars has to known certain parameters
that characterize the intersection. This parameters are:

e The center point of the intersection, ”C” on Figure 3. This parameter count with
two values, the X position on a cartesian map, and the Y position on a cartesian
map, which can be thought as position on a GPS readily available inside the cars.
It is the blue dot on Figure 3.

e The distance from the Center Point [C] until the start of the intersection, considering
an error margin. This parameter is "L”. In practical use, it is the point where cars
stop when they are under the control algorithm. The margin error helps in two
ways, the first one is the area that it is normally reserved for pedestrian to cross
over. The second form of help it is because help to the simulation, and solve issues
of incoming cars. Is is the red line of dots in Figure 3.

Incidentally, the L parameter without this error margin it’s called truel, and it is
the point where car start stopping in congestion. It is the pink line of dots in Figure
3.

e The distance from where the cars stop when they are under the control algorithm
[L], until the area where the start to be controlled it is "M”. It is the light-blue
line of dots in Figure 3.

This four parameters have the possibility of characterize any 4-way intersection and
T-type intersection.

These four parameter define three different area on the scheme of the control:

e The Control Zone (CZ on Figure 3), this zone goes from when a car enter throught
the light-blue line until the red line.

e The Active Zone (AZ on Figure 3) compress the Control Zone plus the area between
the red line until the pink line.

e Everything else is an idle zone, and that it is also true for other Active Zone or
Control Zone once the car has passed the pink line.

3.2 Possible Improvements or changes to the characterization

The definitions of the different areas of control are done in a square manner because
it helps to define boundaries in a more descriptive way, but this could also be done in a
radial way. The square has the possibility to define different L’s or M’s when the inter-
section aren’t symmetrical and it is necessary to have better simulations.

In the characterization, it is considered that the junction is a four way intersection
with an incident angle of 90°, but one can characterize any kind of incident roads. The
means to do this are is using the same approach presented here, where it would be nec-
essary to have a parameter to describe the incoming incident road and their angles with
respect to C. The calculus of this is done via trigonometric, and for cutting computation
time on the processor of the car, one could use look up tables.

Page 20 of 138

4 Description of the control

In this section we will talk about the different decisions that were made for the creation
of the control algorithm. There is also a detailed description of the final control algorithm,
finalizing with a state diagram of the different part of the algorithm.

4.1 Assumptions

Because this control work under the assumptions that the cars under simulation are
of autonomous nature, it will not intervene with the internal control structure of what it
is expected of the internal works of the autonomous driving algorithm, excepting for two
situations:

e When the car enter the Active Zone, the rule of Brake hard of the simulator to avoid
passing a red light (Speed Mode bit4d of SUMO see [16]) it is deactivated because
the junction doesn’t have a semaphore element on the road and because otherwise
the simulation present problem with the cars that stop because of other cars.

e When the car is under the control algorithm and it is in Green State or Yellow State,
the rule of Regard right of way at intersections in the simulator (Speed Mode bit3 of
SUMO see [16]) it is deactivate because is it not necessary to check cars coming from
the side - they are stopped and currently in Red State. This can cause problem for
the algorithm if it is not deactivate, with car not responding to the velocity control.

In every other instance, the car respect the safe velocity speed to follow (speed of
the road and speed following the car), and the car react to the car next in line following
a scheme that it is similar to the Adaptive Cruise Control in Urban Areas that can be
found in some cars being produced today. This last take priority over the instruction of
the control.

4.2 Logic behind the controller
4.2.1 Centralized vs Decentralized Control

In general terms, when a control is being developed, outside of the algorithm being
created the developer has to select the type of the scheme of the control, this is, design a
centralized control algorithm or a decentralized control algorithm.

A centralized control algorithm is one in which all the decision are done by a central
controller. The controller has to receive the information from different agents of the con-
trol developed, and then based on the information received by them, give orders to the
actuators in the control. This is the approach generally done for what this thesis is trying
to do (see State of Art 1.1), where the controller is the R.S.U. of the intersection.

There is a fundamental problem with this approach in the current situation of the the-
sis [3], is that to be valid it should be necessary to have one R.S.U. for every intersection.
This is impracticable in practice because of the cost that imply an R.S.U in itself, plus
the maintenance and installation of the structure. This make a costly solution, at least
until better and more cheaper form of transmission exists.

Page 21 of 138

A decentralized control algorithm is one where every agent of the control scheme has
the possibility to control itself. To the problem of this thesis in particular, this means
that every car has the possibility of select its own state, or arbitrate this state, without
the necessity of having an exterior agent controlling them (the R.S.U.).

The cons of this approach are that because the cars don’t have a central decision
center that know the state of all the agents in the system in a any given time, the cars
needs to stop under certain situation during the travel because of the change of state (at
least in this scheme), given a greater travel time that the one that can be obtained with
[5], where the cars never stop, but it is a control much more approachable in the shorter
term.

4.2.2 Adaptive Controller

When making test to see the average time of cars with a normal semaphore scheme
(continuous semaphore controller), in every test under uncongested conditions, cars with-
out control where better that cars with controller (See annex [7]). Instead, the controller
was successful in regulate the flow of cars in congested situation, and maintain a con-
tinuous rate of cars. From this experiment, and because the cars travel in an efficient
way, this because of the assumption that they are autonomous, we extract the following
conclusions:

e In uncongested conditions of travel, it is better that the cars decide by themselves
how to travel. This sometimes enable the cars to never stop meanwhile they are
travelling.

e In congested situation, the algorithm of a virtual traffic light system is an acceptable
solution for solving congestion and for minimizing time of travel.

4.2.3 Traffic Congestion

Automotive traffic congestion refer to the situation when in roads, the velocity of the
flow of cars decrease, increasing the total travel time of the different vehicles currently
travelling by the road. When the congestion occur, it is not necessary that cars stop
altogether, this last situation is referred by travel jam. When cars stop, or regularly stop,
the congestion also bring an increase in the queue time of the cars.

The goal for this thesis is to reduce total travel time of the cars when confronted with
an urban intersection, so for this they have to detect the situations when cars are under
congestion. Because one of the goal of the control algorithm it is to be the lightest possible
so it doesn’t affect the processor of the cars (thinking of it for a real possible implemen-
tation over different brand of cars), it has been selected empiric rules that indicate when
a car enter a congestion, they are:

e A car has been stopped for more than timeStopCar

e A number of car equal to adaptiveStarCar have stopped, and it hasn’t elapse
timeStopCar.

Page 22 of 138

In this manner, is not necessary that every car has to know the state of system in
any given time, but when the congestion happens, they will known that they are under
congestion without problem when any of the two situations above occurs. After this, the
first car that detect the congestion will announce to the other cars in the system that
there is a congestion.

Of relevance are two parameters defined on [15]:

e Duration of the congestion - It is the maximum amount of time that the congestion
can last at any time in the system. Because normally cities has this duration
characterized, it is equal to 2 x longCyclesNumber, this give the possibility of an
early exit to the adaptive control, if the intersection has a constant flow but that
don’t require to be controlled.

e Extent of the congestion - It is the maximum geographic extension of congestion
on the transportation system at any given time. the Parameters of L and M are
directly correlated to this. In the junctions when the extent of congestion is greater
than L + M, M should increase in value. Ideally, this should be less than L + M

4.3 Parameters of the Controller

The controller use different parameters in the algorithm. This parameters can be
adjusted before running the simulation. There is the possibility to implements a R.S.U.
that sends the parameters via message, but this is not implemented in this thesis:

e Parameters related to characterization of an intersection, as seen on Figure 3.

C_X This parameter correspond to the coordinates X of the center of the
intersection.

C_Y This parameter correspond to the coordinates Y of the center of the
intersection.

L This parameter is the distance from the center of the intersection until
the start of the intersection, plus a certain space for security reason.

trueL This parameter represent the true distance from the center of the inter-
section until the start of the intersection

M This parameter is the distance from L until the start of the Control zone

e Parameters related to scheduling time

tControl It is the self scheduling time that the car use to check its own
state meanwhile it is in the Active Zone.

tldle It is the self scheduling time that the car use to check its own
state meanwhile it is in the Idle Zone.

tGreen It is the duration of the State 0 or Green State of the virtual
semaphore.

tRed It is the duration of the State 2 or Red State of the virtual
semaphore. tYellow, the parameter of the duration of the State 1 or Yel-
low State of the virtual semaphore is defined like tRed — tGreen, so tRed
needs to be always greater or equal to tGreen.

Page 23 of 138

— timeStopCar It is the time for triggering checkCongestion (see [4.4.2])
when the car stop for the first time in the Active zone.

e Parameters related to thresholds or counting

— longCyclesNumber It is the number of half cycles that are done in the
control cycle before exiting.

— adaptiveStarCar It is the number of cars that have to be surpassed by
counterStopCar in order to activate the control algorithm.

— thresholdWaiting It is the threshold to surpass in every iteration of the con-
trol for cars remaining in different roads, so the control can continue.

Apart from this, the controller has other internal parameters that can only be adjusted
before running the simulation:

e securityFactorDetention Number used for calculating a safe distance for the
detention of the car when it does a transition to State 2 or Red State, or in case
that calculates that have to stop when it does a transition to State 1 or Yellow
State.

Other parameters are internally to the controller, like boolean variables, or the internal
state of the virtual semaphore, they normally interact with external message or are used
for sending information to others cars.

e timeAdaptive It is the time stamp of the control equal to the moment when it
is triggered the state 0 or 2 of the virtual semaphore meanwhile the control algorithm
is activate. When it isn’t being used for controlling, it is equal to SIMTIME_MAX.

e semaphoreState It is the actual state of the virtual semaphore, once the control
is triggered and meanwhile it is activated.

e DirectionReceivedWSM][2] This parameter store the direction of travel of the
received message, whenever it is relevant. This parameter relates to direction[2]
14.4.3].

e countChanges This is the parameter that store how many changes of half
cycles has ocurred in the control algorithm. When the car trigger the control, this
variable start with a value of 0, in other case, it adopt the value of the received car.
This parameter relates with countMessage[4.4.3].

e adaptiveControl This is a boolean variable that indicates if the control is ON if
its value is true, OFF otherwise.

e counterStopCar Variable for storing the number of cars waiting on an intersec-
tion. If exceeds adaptiveStarCar, the car activate the control.

e counterWaitingCar This is the variable that in every iteration of the cycle
count how many car are waiting on a different road, in order to exit the control in
an early manner if deemed loadable.

e checkEnd Internal wait time for triggering checkWaiting

Page 24 of 138

4.4 Structure of the controller

The controller use internal an external messages for scheduling and for communication
with other cars, respectively, together with specialized functions that call them or send
them (the other functions are for code optimization or for functionality that aren’t part
of the control). Next it will be explained all of the critical parts of the controller.

4.4.1 State of the semaphore

Because we are simulating a virtual traffic light system, there is the necessity to sim-
ulate internally this system. It is created three different state, than in normal conditions
operate in a semi periodic way. It is called “normal conditions” when the car is already
synchronized to the controller established in case that it is running, and the change of
state is triggered by the internal message checkState [4.4.2]. The state are:

e Green State: also called state 0 of the semaphore, correspond to the green light
on a normal semaphore. It overrun any restriction that the car could have imposed
over their velocity, restarting services.

It comes after a Red State or state 2, and has a duration of tGreen. Meanwhile
in this state, the function stateControl() run doGreen() every tControl.

e Yellow State: also called state 1 of the semaphore, correspond to the yellow light
on a normal semaphore. When a car enter this state, depending on the amount of
time remaining of this state, and their relative position to the end of their Control
Zone, the car can continue like it would if it was in Green State, can decrease their
velocity given that it would not be able to cross the intersection, or comport like if
it was in red state, stopping before crossing the junction. It comes after a Green
State or state 0, and has a duration of tYellow. Meanwhile in this state, the
function stateControl() run doYellow() every tControl.

e Red State: also called state 2 of the semaphore, correspond to the red light on a
normal semaphore. In this state, the car can’t cross the junction, having only the
possibility of advancing with a reduce on velocity or remain stopped. It comes after
a Yellow State or state 1 and it last tRed. Meanwhile in this state, the function
stateControl() run doRed() every tControl.

When the car are synchronizing with each other, normally on the first cycle of the
control, or when the car enter to a control zone and the controller is activated, the car
enter immediately to the actual state of the system, and it last the time given by the
function that triggered this synchronization, that it should be the remaining time of the
actual state.

4.4.2 Internal Message

The internal message are the schedule procedure of a normal program. They are called
by other functions with a certain delay and normally activate other functions when they
are called.

e event is the schedule procedure that check the position of the car on the map
respect to the characterized intersection. With this we can know if the car is in the
control zone or outside of it.

Page 25 of 138

It is called by the function “stateControl()” every “tControl” if the car is under
the control algorithm or “tControl” otherwise.

checkCongestion when it is called means that “timeStopCar” has elapsed with-

out the car starting or triggering the control by counterStopCar surpassing adap-
tiveStarCar. This trigger the control algorithm to take place using "normalCycleTraffic()”.
It is called by the function "stateControl()” the first time that the car stop after

entering a new Active Zone.

checkWaiting When the car do a transition from state 2 to 0 or from state 1 to 2 -
meaning that this message is called by the function changeState(), the cars check
the state of the roads apart from the one in which they are, in order to determine
if they can exit the control algorithm in a preemptive way if the amount of cars
is inferior to thresholdWaiting. This is done via a message that the cars send
to other cars in range. This procedure is called after it has elapsed checkEnd -
accounting for the delay in transmission of message of the cars - and do the above
mentioned.

checkState has the function of making the virtual traffic light system work as
intended; this means to trigger the change of semaphore in a timely manner, and it
is also the responsible for ending the different cycles of control.

It is called by different functions and at different times depending of the situation:

— By ”changeState()” in a periodic manner if the semaphore has already en-
tered this function before and it is running in a normal way. This happens
always after the first synchronization of the virtual semaphore, or after the
first time the car trigger the control cycle, all of this cases described by the
following items. It is called in tGreen if the last state was Red, it is called in
"tYellow” if the last state was Green, and it is called in "tRed” if the last
state was Yellow.

— By "changeStateTime(simtime_t timeToNewState)” This functions syn-
chronize a car that it is entering to a Control Zone with a control cycle already
running. This functions it is used when the response signal of synchroniza-
tion come from the same road, independent of the direction of the car. Call
checkState in timeToNewState, that is, the remaining time of the current
state synchronized with every other car already in control, in order to change
the state at the same time.

— By ”scheduleStateTime(simtime_t timeToNewState)” This functions syn-
chronize a car that it is entering to a Control Zone with a control cycle already
running. This functions it is used when the response signal of synchroniza-
tion come from a different road, independent of the direction of the car. Call
checkState in timeToNewState, that is, the remaining time of the current
state synchronized with every other car already in control, in order to change
the state at the same time.

— By ”changeAdaptiveStateTime(simtime_t timeToNewState)” This func-
tions synchronize a car that is in the control zone when a cycle is triggered, and
the car isn’t the one that it is triggering the cycle. This functions is used when
the initial signal of synchronization come from the same road, independent of
the direction of the car. Call checkState in timeToNewState, that is, the

Page 26 of 138

time of the remaining current state synchronized with the car that triggered
the cycle, in order to change the state at the same time.

— By ”scheduleAdaptiveStateTime(simtime_t timeToNewState)” This func-
tions synchronize a car that is in the control zone when a cycle is triggered, and
the car isn’t the one that it is triggering the cycle. This functions is used when
the initial signal of synchronization come from a different road, independent
of the direction of the car. Call checkState in timeToNewState, that is, the
time of the remaining current state synchronized with the car that triggered
the cycle, in order to change the state at the same time.

— By "normalCycleTraffic() This functions trigger the synchronization signal
with the rest of the car in the control Zone. By default, call checkState in
"tYellow”, in order to let any car already crossing the intersection, to finish
it and prepare cars in the same road - that should be in queue because of the
congestion, to cross over.

4.4.3 External Message

The external message are the medium of communication and synchronization of the
cars between each other.

The message sent that comply with IEEE 802.11p in format of WSM (Wave Short
Message) has the following parameters, whether all of this information is present or not
depend of the type of message. This made it able to distinguish between obligatory
parameters or situational:

e Obligatory Parameters

— stmtime_t timestamp Used in every instance of synchronization between
cars or RSU with cars, or for verification of the message. It is the time at which
the control is activated or every time that the car change from Red to Green
State, or from Yellow to Red State. It is the value that send the parameter of
timeAdaptive [4.3]. Can have any value from 0 until SIMTIME MAX, that it
is the maximum value that can have a simulation.

— wnt ccmType Parameter for indicating the type of Message. The value
can be from 0 until 4, but there is the possibility of adding another type of
external message.

e Situational Parameters

— int semaphoreState This parameter indicated the actual state of the
virtual semaphore, sending semaphoreState [4.3]. It is used in message Type 1
and 4. The values can only be 0, 1 or 2.

— int countMessage This parameter indicated how many half a cycles
has occurred in the control algorithm. This is for synchronization porpoise,
and also for knowing when to finish the algorithm. It is used in message Type
1 and 4. The values that can adopt goes from 0 until longCyclesNumber x 2

— 4nt direction[2] This parameter has the coordinates in relation with axis
X and Y, indicating direction of traveling: 1 if the car is going in a positive
direction, -1 if it is going in a negative direction, and 0 if it doesn’t apply. It

Page 27 of 138

is for knowing the direction and lane of travel of the other cars. It is used in
message Type 1, 3 and 4.

The different messages that can be sent by the cars can be understood by the type
of message, under which circumstance it is send, under which circumstance it is accepted
(otherwise it is ignored), the objective of the message and what it does once it is accepted.

e Type 0 Message

— When it is send: Car enter control zone.

— When it is accepted: Car is in active zone; Car is being controlled by the
algorithm; Car has done a cycle of event in the control zone.

— Reason of the Message: Message is asking if the control algorithm is work-
ing.

— What it does to the car accepted: Send back a message Type 1 with the
synchronization data.

e Type 1 Message

— When it is send: Car received a Type 0 Message; Car is in active zone; Car
is being controlled by the algorithm; Car has done a cycle of event in the
control zone.

— When it is accepted: timeStamp of the message less than timeAdaptive;
adaptiveControl is false; Car is in Active Zone.

— Reason of the Message: Send synchronization data request to cars in con-
trol.

— What it does to the car accepted: Synchronized the car to the other cars
already in the control cycle.
e Type 2 Message
— When it is send: Car is stopped; adaptiveControl is false; Car hasn’t sent
this message before in the same Control Zone without exiting it before.

— When it is accepted: Car is virtually stopped (velocity is so small that
can be considered to be stopped); adaptiveControl is false; Car is in Active
Zone.

— Reason of the Message: Car sends a message to add a count to counterStop-
Car, in order of possible triggering a normal cycle of control algorithm.

— What it does to the car accepted: Add a count in counterStopCar, if this
value exceed adaptiveStarCar, car trigger a normal cycle of the control algo-
rithm, sending a message Type 4.

e Type 3 Message

— When it is send: Car changed semaphore state from 1 to 2 or from 2 to 0.
— When it is accepted: Car in Active Zone; adaptiveControl is true.

— Reason of the Message: Check if it is viable to exit the control algorithm in
a preempive manner.

Page 28 of 138

— What it does to the car accepted: Check if the message received come
from the other road than from the car that received the message. If it is from
a different road, counterWaitingCar increase in one.

e Type 4 Message

— When it is send: meanwhile the car is stopped, elapsed timeStopCar or
counterStopCar surpass adaptiveStarCar before elapsing timeStopCar.

— When it is accepted: Car is in the Active Zone; timeStamp of the mes-
sage less than timeAdaptive.

— Reason of the Message: Car start the control Algorithm, sending a message
so the other cars in Active Zone, or cars that enters after the trigger, are
synchronized with it.

— What it does to the car accepted: Synchronize the car with the current
state of the control algorithm imposed by the triggering car.

4.4.4 Functional Functions

The control algorithm has different functions, ones for optimizing the code, other for
verifying certain states of the cars - for example if it is inside a certain zone - complemen-
tary functions like the ones of synchronization, and function that do the functional work
of the car. The cars that will be listed next are the most important for the work of the
code.

e doGreen() This function is done in order to apply to the car a comportment
befitting the Green State, this means that delete any restriction over the velocity of
the car, minus the safe speed.

This function works every tControl meanwhile the car is under the control algo-
rithm and the semaphore state of the car is Green.

e doYellow() This function is done in order to apply to the car a comportment
befitting the Yellow State. This function sees the remaining time until the Yellow
State change to Red, and depending of this, adjust the velocity accordingly in order
that the cars with enough time and velocity can cross the junctions, otherwise the
cars stop in the Control Zone.

This function works every tControl meanwhile the car is under the control algo-
rithm and the semaphore state of the car is Yellow.

e doRed() This function is done in order to apply to the car a comportment
befitting the Red State. This function sees the remaining time until the Red State
change to Green, and depending of this, adjust the velocity accordingly in order
that the cars remain in Control Zone without crossing to the exclusive part of the
Active Zone.

This function works every tControl meanwhile the car is under the control algo-
rithm and the semaphore state of the car is Red.

e stateControl() Every time that it is invoked, check the position of the car in
the map with respect to the junction and act accordingly. In this way, send the

Page 29 of 138

initial message asking if the system is under control, check the state of the car the
first time that stop in Active Zone, when it is under control modify the velocity
of the according to the state, and once it exits the active zone, reset variables of
control and procure to exit the control algorithm.

This function works every tControl meanwhile the car is in Active Zone and tldle
otherwise.

e enteringToControl() When the car enter the Active Zone, and it is recognized
like so by stateControl(), the car send a Message Type 1 asking if there is a running
control algorithm.

e exitingControl() When the car exit the Active Zone, and it is recognized like so
by stateControl(), the car reset all the variables that were involved or could have
been involved in case the control algorithm wasn’t running. It also reinstate the
velocity control of the velocity back to the Autonomous Driving Car.

e updateParametersOnWSMAdaptive() This is a function of synchroniza-
tion to the ongoing control algorithm if it hasn’t elapsed a half cycle of control. It
procures that all the variables, including the semaphore states, be in synchronization
with the ongoing control algorithm, independent of the direction of the incoming
synchronization message.

This function is triggered with every Message Type 4 and some Message Type 1.

e updateParametersOnWSM() This is a function of synchronization to the ongo-
ing control algorithm if it has elapsed more than half a cycle. It procures that all
the variables, including the semaphore states, be in synchronization with the ongo-

ing control algorithm, independent of the direction of the incoming synchronization
message.

This function is triggered with most of the Message Type 1.

4.5 Workflow

Here will be explained with states diagram the different parts of the code already
discussed.
4.5.1 Initialization of the Control Algorithm

How it was described in 4.2.3, for initializing the control algorithm, first the control
enter in an evaluation phase like it is show in Figure 4 where the car start the two
evaluation rules.

Page 30 of 138

Car is in Active Zone without being Controlled

O]

1?

Car stop for the first time?
yes

v v
Schedule ’checkCongestion’ Send Message Type 2
in timeStopCar counterStopCar+-+

Figure 4: Evaluation enter to activate control algorithm

From here, for activating the control, there are two possible ways that this can be
done, like it is shown in Figure 5, where the empiric rule N°1 has a greater priority than
the rule N°2, only by the account that when the first rule apply, cancel the second one.

This also imply that the maximum time that the car will be stopped during the control
algorithm, before it resume going again will be tYellow + timeStopCar

Message Type 2 Arrive & it’s accepted

/ CounterStopCar++/

"checkCongestion’ arrived

7
if counterStopCar > adaptiveStarCar I 2
l yes if Car is stopped
Cancel 'checkCongestion’ l
T
urn Control On Turn Control On
Send Message Type 4 for Send Message Type 4 for
synchronization of other cars synchronization of other cars
(a) Empiric Rule N°1 (b) Empiric Rule N°2

Figure 5: Empiric Rules for activating Control

4.5.2 State of the Car

Every a certain amount of time, the car check its position on the map, and depending
of this and other boolean parameters that modify their value outside of the iteration of
stateControl(), it can send a signal for synchronising to the control algorithm if it is
running, activate the evaluation phase described before, or simple schedule the next check
of position, like it is shown on Figure 6.

Page 31 of 138

event
°

N

stateControl()
L 5 no
Car is virtually stopped? Is Active Zone? \ Schedule ’event’ in tIdle \
&& Adaptive Control off? lyes
§e&e First Time asking this? \ Schedule ’event’ in tControl\ ?
lyes I Last ’event’ was in Active Zone?
\Evaluation activation of\ l 2 l 2 l yes
control algorithm Last ’event’ was in Active Zone? Adaptive Control On?
| yes Set Speed Mode to 31
l yes
?
\ Set Speed Mode to 15 \somaphorcStatczzO) l
. exitingFromControl() |
l yes semaphoreState==

enteringToControl() | doGreen()
oGreen
semaphoreState==2
yes yes
doYellow()[| doRed()

Figure 6: stateControl() Function

How it can be appreciated, this function call itself every tControl or tIdle depending
of their position on the map. The only exception is when the car is initialized. When this
happen, the car call the message ’event’ at the same time. This could be interpreted like
that the car schedule this message when the car start.

4.5.3 Control of States

The control algorithm is highly dependent of three things: Activation of the control,

synchronization of the control, and maintaining the control until the end of itself or exit-
ing the Active Zone.
Meanwhile the synchronization is a transitory state, the maintaining could be considered
the normal state. While the control is active and in normal operation, the message check-
State is schedule, and this call change State. This dynamic can be appreciated in Figure
7 and 8.

checkState
°

\ 2

no Reset Values of Variables

countChanges< 2xlongCyclesNumber Exit control
l yes Car continue normally
changeState()

Figure 7: checkState Call

Page 32 of 138

if semaphoreState> 2
changeState() —7/ semaphoreState++
semaphoreState* 0

if semaphoreState == 0 if semaphoreState == 1 if semaphoreState == 2
yes yes yes
doGreen() doYellow() doRed()
Schedule 'checkState’ in tGreen / Schedule ’checkState’ in tYellow / Schedule 'checkState’ in tRed
Send Message Type 3 Send Message Type 3
for possible exit of Control for possible exit of Control
Schedule 'checkWaiting’ in checkEnd Schedule ’checkWaiting’ in checkEnd

Figure 8: changeState() Function

After it has elapsed 'checkWaiting’, it is activated the routine for seeing if the control
exit in an early manner, described in Figure 9.

checkWaiting

l

if counterWaitingCar > thresholdWaiting — %, /Reset Variables
Exit Control
l yes

/ counter WaitingCar= 0 /

Figure 9: Finish Early Routine

The variable counterWaitingCar increase in one every time that the car receive a
message Type 3 from a car that it is from a different road. This value is reset to 0 once
the car exit the Active Zone or end the Control Algorithm.

4.5.4 Synchronization

For synchronization porpoise, the control algorithm use message Type 1 and Message
Type 4. The difference between this two is that the latter is used when the car is already
in the Active Zone in the moment that the control algorithm is triggered, meanwhile the
former is a generic form of synchronization. The dynamic of the two message is showed
on Figure 10.

Page 33 of 138

Message Type 1 arrive and it’s accepted

if Message is schedule to the past

no . s
if countChanges:: 0 —>| updateParametersOnWSM() | Message Type 4 arrive and it’s accepted

yes
updateParametersOnWSMAdaptive() | | updateParametersOnWSMAdaptive() |
(a) Message Type 1 (b) Message Type 4

Figure 10: Synchronization Message Dynamic

The parameter of countChanges is parameter that increase in one every time that
the state of the semaphore changes from Red to Green or from Yellow to Red. This serves
two porpoise, it helps to know when to exit when a certain number of cycles have elapsed
and that every car is in the same cycle.

The functions updateParametersOnWSMAdaptive() and updateParametersOnWSM()
make sure to update the internal variables of the car in order to be synchronized in state
and iteration of the control algorithm, independent of the direction from which they
received the synchronization signal.

Page 34 of 138

5

Tests

For realizing the different test, we will consider the base case described on [3] like if
they were actual urban intersection. This means that the limit of the velocity on every
lane is 14m/s or 50.4km/hr.

The assumptions of simulation will be:

Cars have a minimum gap of 2.5 meters.
Cars have a length of 2.5 meters.

Cars have a deceleration of 4.6m/s.
Cars have an acceleration of 2.6m/s.

Cars follow the modified Krauf model of simulation, because of this there can’t be
accidents.

Cars have an Adaptive Cruise Control incorporated that take precedence over the
safe velocity of the cars, taking in account the cars in front of them.

There aren’t buildings that create conflicts with the transmitted signals.
There aren’t pedestrians.

The parameter tldle, that the car use for scheduling every time it checks its own
state outside the Control Zone is 1 second.

The parameter tControl, that the car use for scheduling every time it checks its own
state in the Control Zone and how update its own speed depending on the state of
the virtual semaphore is 1 second.

The message that the cars send to the others cars have a delay that it is modeled
with a fixed delay of 0.3s plus a delay with normal distribution with mean 0.7 and
standard deviation of 0.1 seconds.

The flow of cars will be indicated in the same way that in the SUMO file, i.e.: by flow,
time in which the flow start, ordered in order of appearance in the flow, number of cars
in the flow, period in seconds in which every car appear, and route of travel indicated by
starting direction and exiting direction.

Because the simulation it is done in SUMO, we have to take in account that the pro-
gram give priority to cars coming from the north and south.

Of importance to note is that every test activate some type of control algorithm, this
means that every test is subjected to congestion. Otherwise, the control is not activated
and the flow of cars is optimal.

The comparison of the different tests will be with respect to their uncontrolled simu-
lation, Showing first the uncontrolled simulation and after that, the controlled simulation.

Page 35 of 138

5.1 Test 0 - Basic Base Case

The test 0, basic base case present the four lanes starting almost at the same time,
and with a heavy rate of cars, but with low number. This is the basic test showing the
less features of the simulation.

The flow of cars for this simulation are:

| Flow | Starting [s] | Number of Cars | Period of Cars [s] | Route |

1 0 25 4 N-S
2 0.5 25) E-W
3 1 25) S-N
4 1.5 25 4 W-e

Table 1: Floats

5.1.1 Uncontrolled Simulation

The results of the full simulation and of every route of the simulation can be visualized
in the table 2, with the parameter of study being the total travel time of the cars.

’ \ Min Value \ Mean \ Max Value \ Standard Deviation \ # Cars ‘

Data 132 172.280 257 44.536 100
E-W 160 207.280 257 29.573 29.573
N-S 132 132 132 0 25
W-E 183 217.840 256 22.330 25
S-N 132 132 132 0 25

Table 2: Data Test 0 with Control Off

Page 36 of 138

With the data of the entire simulation and every lane, we can proceed to see the
histogram of distribution of the simulation for each case:

Frequency

Data

50 .

(5]
o

Frequency
)
o

—_
o

120 140 160 180

200

220 240 260

Total Time [s]

Figure 11: Histogram Test 0

Lane E-W

160 180 200 220 240 260
Total Time [s]

(a) Histogram E-W Direction

Frequency

Lane W-E

180 200 220 240 260
Total Time [s]

(b) Histogram W-E Direction

Figure 12: Histogram Horizontal Travel

Page 37 of 138

Frequency
&

=y
o
T

(4]
T

0
1315

Lane N-S

132

Total Time [s]

(a) Histogram N-S Direction

132.5

Frequency

=y
wm
T

=y
o
T

w
T

0
131.5

132.5

(b) Histogram S-N Direction

Figure 13: Histogram Vertical Travel

How it can be appreciated in the histograms, the cars that are going from Nort to
South and vice versa never stop, because internally they have better priority. The other 2
flows are stopped until the two previous flow pass the junction, and from then it depends

since which time they enter the junction, and the queu of the line.

5.1.2 Controlled Simulation

The results of the full simulation and of every route of the simulation can be visualized
in the table 3, with the parameter of study being the total travel time of the cars.

| Min Value | Mean | Max Value | Standard Deviation | # Cars |

Data 132 142.730 159 9.046 100
E-W 133 145.880 158 9.248 25
N-S 132 142.240 159 9.462 25
W-E 133 144.840 157 8.494 25
S-N 132 144.960 157 9.208 25

Table 3: Data Test 0 with Control On

With the data of the entire simulation and every lane, we can proceed to see the
histogram of distribution of the simulation for each case:

Page 38 of 138

Frequency

Data

20 . .

-
o

Frequency
S

135 140 145 150 155 160
Total Time [s]

Figure 14: Histogram Test 0

Frequency

135 140 145 150 155 135 140 145 150 155
Total Time [s] Total Time [s]
(a) Histogram E-W Direction (b) Histogram W-E Direction

Figure 15: Histogram Horizontal Travel

Page 39 of 138

Lane S-N

Lane N-S
10 T

Frequency
IS o

Frequency

N
T

el 1L Adad bk

155 160 135 140 145 150 155

135 140 145
Total Time [s] Total Time [s]
(a) Histogram N-S Direction (b) Histogram S-N Direction

Figure 16: Histogram Vertical Travel

The histograms show that the four flow show a similar comportment, where each of
the flow has a similar mean, and similar standard deviation of the total travel time, from
which it can be seen that the control help decrease the total travel time of Flow 2 and 4,
and doesn’t increase greatly the travel time of the other two flows.

Of interest is that the travel time for any situation never surpass 160 seconds, meaning
that the maximum waiting time of any car with the parameter selected increase in at most
30 seconds aproximately.

5.2 Test 1 - Extended Base Case with heavy and intermittent
flow

This test case it is an extension of Test 0, where now we have the same idea, incident
flows that come at almost the same time and with similar rate generation of car. The
different is that some flows can turn right, there are 16 flows separated in groups of four,
making this a very heavy congested intersection.

The flow of cars for this simulation are:

Page 40 of 138

| Flow | Starting [s] | Number of Cars | Period of Cars [s] | Route |

1 0 10) E-W
2 0.5 10) N-S
3 1 10 6 W-E
4 1.5 10 6 S-N
) 10 10 6 E-N
6 11 10 6 N-W
7 12 10) W-S
8 13 10) S-E
9 60 25 6 E-W
10 60.5 25 6 N-S
11 61 25 6 W-E
12 61.5 25 6 S-N
13 70 15) E-N
14 71 15) N-W
15 72 15) W-S
16 73 15) S-E

Table 4: Floats

5.2.1 Uncontrolled Simulation

The results of the full simulation and of every route of the simulation can be visualized
in the table 5, with the parameter of study being the total travel time of the cars.

’ \ Min Value \ Mean \ Max Value \ Standard Deviation \ # Cars ‘

Data 131 204.95 342 77.251 240
E-W 196 270 342 42.988 35
E-N 253 289.760 331 24.054 25
N-S 132 132.886 133 0.323 35
N-W 131 131.760 132 0.436 25
W-E 195 268.886 340 41.781 35
W-S 250 287.840 330 25.519 25
S-N 132 132.857 133 0.355 35
S-E 131 131.680 132 0.476 25

Table 5: Data Test 1

With the data of the entire simulation and every lane, we can proceed to see the
histogram of distribution of the simulation for each case:

Page 41 of 138

Frequency

12

101

Frequency

150

Data

120

100

[es]
o

()}
o

A
o

N
o

100 150 200 250 300 350
Total Time [s]

Figure 17: Histogram Test 1 with Control Off

Lane E-W Lane E-N

Frequency

200 250 300 350 240 260 280 300 320 340 360
Total Time [s] Total Time [s]

(a) Histogram N-S Direction (b) Histogram N-W Direction

Figure 18: Histogram Starting from East

Page 42 of 138

Lane N-S Lane N-W

35 20
301
25l 151
2 50! g
s 3 10
g 15 g
L [T
10t s
5 .
0 0
131.5 132 1325 133 1335 130.5 131 1315 132 132.5
Total Time [s] Total Time [s]
(a) Histogram N-S Direction (b) Histogram N-W Direction

Figure 19: Histogram Starting from North

Lane W-E

14

Frequency
Frequency

150 200 250 300 350 240 260 280 300 320
Total Time [s] Total Time [s]
(a) Histogram W-E Direction (b) Histogram W-S Direction

Figure 20: Histogram Starting from East

Lane S-N Lane S-E
20— ‘ ;

30

251

N
o
=y
o
T

Frequency
o
Frequency
S

10f
5t
5l
0 0
131.5 132 1325 133 1335 130.5 131 1315 132 132.5
Total Time [s] Total Time [s]
(a) Histogram S-N Direction (b) Histogram S-E Direction

Figure 21: Histogram Starting from South

The histograms shows that the flows that are originated from Noth and South direction
have a better comportment, with a standard deviation that can be omitted (inferior to
0.5). Instead, the other flows have a noticeable worst time compared to test 0. It is

Page 43 of 138

shown, that like expected, with an increase in cars and thus, in the level of congestion,
the intersection perform worst in an uncontrolled situation.
5.2.2 Controlled Simulation

The results of the full simulation and of every route can be visualized in the table 6,
with the parameter of study being the total travel time of the cars.

| | Min Value | Mean | Max Value | Standard Deviation | # Cars |

Data 131 144.021 161 9.041 240
E-W 132 144.229 160 9.343 35
E-N 131 145.600 159 8.529 25
N-S 133 143.029 160 8.652 35
N-W 132 143.6 159 9.367 25
W-E 132 142.8 160 9.132 35
W-S 131 145.000 159 9.170 25
S-N 131 142.914 159 8.621 35
S-E 131 146.240 161 10.097 25

Table 6: Data Test 1

With the data of the entire simulation and every lane, we can proceed to see the
histogram of distribution of the simulation for each case:

Data
25 T T T T

- N
w o

Frequency
o

130 135 140 145 150 155 160
Total Time [s]

Figure 22: Histogram Test 1 with Control On

Page 44 of 138

Frequency

Frequency

Frequency

135 140 145 150 155 160
Total Time [s]

(a) Histogram E-W Direction

Frequency

N
n

-

e
w»

o

130 135 140 145 150 155 160
Total Time [s]

(b) Histogram E-N Direction

Figure 23: Histogram Starting from East

135 140 145 150 155 160
Total Time [s]

(a) Histogram N-S Direction

Frequency

Lane N-W

135 140 145 150 155 160
Total Time [s]

(b) Histogram N-W Direction

Figure 24: Histogram Starting from North

135 140 145 150 155 160
Total Time [s]

(a) Histogram W-E Direction

Frequency

-
0

-

e
o

o

130 135 140 145 150 155 160
Total Time [s]

(b) Histogram W-S Direction

Figure 25: Histogram Starting from East

Page 45 of 138

Lane S-N

6 3
25}
> > 2
(8] Q
g 5
-1 2 15f
1 o
w Lot
05}
0
130 135 140 145 150 155 160 130 135 140 145 150 155 160
Total Time [s] Total Time [s]
(a) Histogram S-N Direction (b) Histogram S-E Direction

Figure 26: Histogram Starting from South

Because of the increase of car in the simulation, it can be seen with better detail that
the control algorithm let every route to have a similar comportment in terms of mean
total time and standard deviation. The histograms also show that the greater amount of
car tends to be over the left - this means that most cars tends to have lower values of
total time.

5.3 Test 2 - Heavy flow random vehicle

Test 2 is about a heavy congested intersection, but the flow of cars generated at ran-
dom, with random rate generation of cars, number of cars and start. In this way, it can
be seen how the control fare in situation that goes outside periodic situations.

The flow of cars for this simulation are:

| Flow | Starting [s] | Number of Cars | Period of Cars [s] | Route |

1 0 15 4 E-W
2 0 17 bt N-S
3 2 18 6 W-E
4 5 10 3 S-N
5 10 10 10 E-N
6 15 13 7 W-S
7 20 10 10 E-W
8 22 14 10 N-S
9 30 13 bt W-E
10 35 12 4 S-N
11 40 8 5 N-W
12 50 9 7 S-E

Table 7: Floats

5.3.1 Uncontrolled Simulation

The results of the full simulation and of every route can be visualized in the table &,
with the parameter of study being the total travel time of the cars.

Page 46 of 138

| Min Value | Mean | Max Value | Standard Deviation | # Cars |

Data 131 174.765 238 41.603 149
E-W 171 215.760 235 13.405 25
E-N 166 195.000 218 16.653 10
N-S 132 132.258 133 0.445 31
N-W 131 131.750 132 0.463 8

W-E 198 217.968 238 9.548 31
W-S 197 207.769 214 4.850 13
S-N 132 132.000 132 0 22
S-E 131 131.111 132 0.333 9

Table 8: Data Test 2

With the data of the entire simulation and every lane, we can proceed to see the

histogram of distribution of the simulation for each case:

70

Frequency
— [\ 5] B n ()]
o o o o o o

o

120

Figure 27: Histogram Test 2 with Control Off

140

160

180
Total Time [s]

220

240

Page 47 of 138

Frequency

Frequency

Frequency

Lane E-N

g
c
@
3
o
2
L
160 170 180 190 200 210 220 230 240 160 180 200 220 240
Total Time [s] Total Time [s]
(a) Histogram E-W Direction (b) Histogram E-N Direction

Figure 28: Histogram Starting from East

Lane N-§ Lane N-W
25 ‘ ; ;
20
15 g
()
=]
g
10 I
5
0
1315 132 1325 133 1335 130.5 131 1315 132 1325
Total Time [s] Total Time [s]
(a) Histogram N-S Direction (b) Histogram N-W Direction

Figure 29: Histogram Starting from North

Lane W-S

w

Frequency
= N
- [N o

o
o

o

200 2

200 205 210 215 220 225 230 235 240 05 210 215
Total Time [s] Total Time [s]
(a) Histogram W-E Direction (b) Histogram W-S Direction

Figure 30: Histogram Starting from East

Page 48 of 138

Lane S-N
25 T
20
>
Q51
@
=2
8
I 10
5 L
0
131.5 132 132.5

Total Time [s]

(a) Histogram S-N Direction

Frequency

Lane S-E

0
130.5 131 1315 132 132.5
Total Time [s]

(b) Histogram S-E Direction

Figure 31: Histogram Starting from South

Like it would have been expected, routes originated from the north or the south have
a total time very low, almost without variation. In a random type of simulation, other
types of flow present a more distributed form, but still present a mean total time of travel
in comparison with the flows originated from north or south.

5.3.2 Controlled Simulation

The results of the full simulation and of every route can be visualized in the table 9,
with the parameter of study being the total travel time of the cars.

| | Min Value | Mean | Max Value | Standard Deviation | # Cars |

Data 131 144.114 160 8.914 149
E-W 133 145.960 160 8.914 25
E-N 132 143.300 157 8.460 10
N-S 132 142.290 159 9.060 31
N-W 132 144.375 157 9.395 8

W-E 132 144.742 160 8.489 31
W-S 131 143.462 158 9.024 13
S-N 132 144.046 159 9.609 22
S-E 131 144.889 158 10.191 9

Table 9: Data Test 2

With the data of the entire simulation and every lane, we can proceed to see the
histogram of distribution of the simulation for each case:

Page 49 of 138

Frequency

20

-
o

Frequency
S

130 135 140 145 150 155
Total Time [s]

160

Figure 32: Histogram Test 2 with Control On

Lane E-N

Frequency
N
- 3]
T

o
3

135 140 145 150 155 160 135 140
Total Time [s]

(a) Histogram E-W Direction

Figure 33: Histogram Starting from East

145
Total Time [s]

150 155

(b) Histogram E-N Direction

Page 50 of 138

Lane N-W

1 ; :
08}
> >
g Sosf
[H] @
3 3
g g
I T 04r
02}
0 ‘ . .
135 140 145 150 155 160 135 140 145 150 155
Total Time [s] Total Time [s]
(a) Histogram N-S Direction (b) Histogram N-W Direction

Figure 34: Histogram Starting from North

Frequency
Frequency

135 140 145 150 1556 160 130 135 140 185 150 155
Total Time [s] Total Time [s]
(a) Histogram W-E Direction (b) Histogram W-S Direction

Figure 35: Histogram Starting from East

6 Lane S-N] Lane S-E
08
> >
g Sos
(] (3]
=] =]
g g
5 = 04+
02
0 ‘ .
135 140 145 150 155 160 130 135 140 145 150 155
Total Time [s] Total Time [s]
(a) Histogram S-N Direction (b) Histogram S-E Direction

Figure 36: Histogram Starting from South

In the random case scenario, we have to filter the result data of the routes where there
are a considerable amount of cars and the one where there aren’t. In the flow with over 20
cars, we can see that the comportment it’s similar to the test 0 and 1, with a similar form

Page 51 of 138

in the histogram. In the flow with lower amount the car, the histogram show a distributed
form across the different total travel time, but even in this case, we can observe that the
maximum travel time never exceed 160 seconds. What’s more, seeing the results of the
data, we can see that even with lower amount of car, the mean total travel time and the
standard deviation show a similar comportment to the other case. Thus the control has
a similar comportment indiferent of the density of the flow of cars.

5.4 Test 3 - Early finish in a heavy congested lane in only one
direction

In test 3, there are 2 heavy flow in an uncongested situation, flow N-S and S-N. There
is an incident in which arrive two flow with different arriving time, flow from E-W and
flow W-S. we can see that because of the early activation the cars that are in the heavy
flow can exit from the control once the incident car exit the active zone.

The flow of cars for this simulation are:

| Flow | Starting [s] | Number of Cars | Period of Cars [s] | Route |

1 0 25 5 N-S
2 0 25 bt S-N
3 20 25 10 E-W
4 30 25 8 W-S

Table 10: Floats

5.4.1 TUncontrolled Simulation

The results of the full simulation and of every route with early finish can be visualized
in the table 11

] \ Min Value \ Mean \ Max Value \ Standard Deviation \ # Cars ‘

Data 132 149.079 261 36.740 76
E-W 195 228.250 261 22.814 8
N-S 132 132 132 0 30
W-S 135 198 235 39.283 8
S-N 132 132 132 0 30

Table 11: Data Test 3 with Early Finish

With the data of the entire simulation and every lane, we can proceed to see the
histogram of distribution of the simulation for each case:

Page 52 of 138

Frequency

()]
o
T

Frequency
W
o

120 140 160 180

200

220 240 260

Total Time [s]

Figure 37: Histogram Test 3 With controll Off

Lane E-W

180 200 220 240 260
Total Time [s]

(a) Histogram E-W Direction

Frequency

Lane W-S

100 150 200 250
Total Time [s]

(b) Histogram W-S Direction

Figure 38: Histogram Horizontal Travel

Page 53 of 138

Frequency
= =N W@
o w o (&2} o

(&)
T

Lane N-S

Frequency

w
o

[
wn

N
o

=y
wm
T

—
o
T

w
T

0 0
1315 132 132.5 131.5 132 132.5
Total Time [s] Total Time [s]

(a) Histogram N-S Direction (b) Histogram S-N Direction

Figure 39: Histogram Vertical Travel

Seeing Figure 37, it can be seen that there are two groups of cars, the big uninter-
rupted flows, and the incident flows. Nothing much to say, the situation is similar to the
uncontrolled situation of the other tests.

5.4.2 Controlled Simulation with Early Finish On/Off

The results of the full simulation and of every route for the case with early finish can
be visualized in the table 12, with the parameter of study being the total travel time of
the cars.

| | Min Value | Mean | Max Value | Standard Deviation | # Cars |

Data 131 138.276 160 8.550 76
E-W 132 142.500 160 10.351 8
N-S 132 137.233 156 8.076 30
W-S 131 141.875 159 9.628 8
S-N 132 137.233 156 8.054 30

Table 12: Data Test 3 with Early Finish

The results of the full simulation and of every route for the case without early finish
can be visualized in the table 13, with the parameter of study being the total travel time
of the cars.

| Min Value | Mean | Max Value | Standard Deviation | # Cars |

Data 131 140.316 160 8.921 76
E-W 132 142.500 160 10.351 8
N-S 132 139.833 156 8.820 30
W-S 131 141.875 159 9.628 8
S-N 132 139.800 156 8.790 30

Table 13: Data Test 3 without Early Finish

With the data of the entire simulation and every lane, we can proceed to see the
histogram of distribution of the simulation for each case:

Page 54 of 138

Data Data

w
o

40 T T

n
(&)

w

o
N
o

Frequency
N
[=)
Frequency
o

10
10
5
0 0
130 135 140 145 150 155 160 130 135 140 145 150 155 160
Total Time [s] Total Time [s]
(a) Histogram Data with Early Finish (b) Histogram Data without Early Finish

Figure 40: Histogram of Test 3 With Control On

Lane E-W Lane E-W

2 2 . . ;
15}] 15}
g o)
3 1 S 1t
o o
1 2
(N L
) I l) I l
0 0
w0 145 a5
Total Time [s Total Time [5]
(a) Histogram with Early Finish (b) Histogram without Early Finish
Figure 41: Histogram of Direction E-W
Lane N-S Lane N-S
20 T w T 14 . :
12
15+ 10
& <)
c c 8
S0} g
g g 6
' ('
s 4
e L1 1 1
0 e N 0
135 140 145 150 155 140 155
Total Time [s] Total Tlme [s]
(a) Histogram with Early Finish (b) Histogram without Early Finish

Figure 42: Histogram of Direction N-S

Page 55 of 138

Lane W-S Lane W-S

Frequency
Frequency

150 155 160

130 135 140 145 150 155 160 130 135 140 145
Total Time [s] Total Time [s]
(a) Histogram with Early Finish (b) Histogram without Early Finish

Figure 43: Histogram of Direction W-S

Lane S-N Lane S-N

-
=

20

-
)8}
T

15

Frequency
=
Frequency
S

5]
T

- M L0 al |
145 150 155

135 140 145 150 155 135 140
Total Time [s] Total Time [s]

(a) Histogram with Early Finish (b) Histogram without Early Finish

Figure 44: Histogram of Direction S-N

For this experiment in particular, there are two situations of control, the early finish on
and off. The reason of why this happen is that when the incident flow of cars disappear,
the car that are still in the Active Zone don’t have to be in a control that it isn’t doing

its work.

The control even in situation of incident flows shows that achieve a distribution of the
total travel time centered around a similar value for any route. Not only that, the normal
distribution of the histogram of heavy flow are skewed towards the left, meaning that the
greater amount of cars tend to have a reduced time travel. Even in the cars that have
a greater travel time, the total travel time don’t exceed 160 seconds, showing that the
control, with this parameters, is very reliable in predicting a total travel time.

In the case of the cars from the incident flow, they are evenly distributed, but more
centered towards the left. This is because the reduced amount of cars doesn’t let to see
a significant results, but by the data amount, it can be seen that the control works like

intended.

Page 56 of 138

6 Analysis

In section 5 it was shown different tests with the control turned ON and OFF, and
a little interpretation of what happen in every case. Now it will be shown the effects
of the control over the different test, taking in account the average time of travel in the

simulation for the different routes.

Because every lane has a different comportment depending on the flows of cars, the

number of cars and their route of travel, the approach to take will be:

e First, for every flow in the simulation, it will be taken the variation of average
total travel time of their respective route in the no control situation vs the control

situation.

e Second, this variation that can be negative if the travel time decrease, or positive
otherwise, will be multiplied by their weight in the simulation, defined like the
number of cars in the flow divided by the total number of cars in the simulation.

e Third, the total sum of the previous valour with all the other flows in the simulation
will result in a value that can be positive or negative. In this weighted sum if the
value is positive, means that the control increase the total travel time, otherwise it
decrease the total travel time, and there is a positive value in using it.

This approach give us an objectively way of comparing the different flows, where the
flows with a greater number of car have a bigger weight in the final sum, and otherwise,

incident cars have less weight.

6.1 Test O

In test 0, there are four flows of cars, all of them with almost the same rate and start,
so the test make for a good comparison for every lane with all conditions the same.

In the table 14 we can see the comparison of the mean travel time with the variation

per route of travel:

| | No Control | Control | Variation [%] | # Cars |

Data 172.280 142.730 -20.7% 100
E-W 207.280 145.880 -42.09% 25
N-S 132 142.240 7.2% 25
W-E 217.84 144.840 -50.40% 25
S-N 132 144.960 8.94% 25

Table 14: Data Test 0

The overall performance, can be analysed in table 15:

Page 57 of 138

| Flow | Route | Variation [%] | weight | Total |

1 N-S 7.2 1/4 1.8

2 E-W -42.09 1/4 -10.523

3 S-N 8.94 1/4 2.235

4 W-E -50.40 1/4 -12.6
Total -19.088

Table 15: Results Test 0

How it can be seen in the table, the performance of the control has a positive impact
in the overall simulation.

6.2 Test 1

Test 1 it is an extension over test 0, with more cars per lane, 16 different flow, with
different activation time and rate time. In this case the number of cars per lane it is the
same in all case, making it a heavy affluent intersection.

In the table 16 we can see the comparison of the mean travel time with the variation
per route of travel:

| | No Control | Control | Variation [%] | # Cars |

Data 204.95 144.021 -42.31% 240
E-W 270 144.229 -87.2% 35
E-N 289.760 145.600 -99.01% 25
N-S 132.886 143.029 7.09% 35
N-W 131.760 143.600 8.25% 25
W-E 268.886 142.800 -88.30% 35
W-S 287.840 145.000 -98.51% 25
S-N 132.857 142.914 7.04% 35
S-E 131.680 146.240 -9.96% 25

Table 16: Data Test 1

The overall performance, can be analysed in table 17:

Page 58 of 138

| Flow | Route | Variation [%] | weight | Total |

1 E-W -87.2 10/240 | -3.633
2 N-S 7.09 10/240 | 0.295
3 W-E -88.3 10/240 | -3.679
4 S-N 7.04 10/240 | 0.293
5 E-N -99.01 10/240 | -4.125
6 S-W 8.25 10/240 | 0.344
7 W-S -98.51 10/240 | -4.105
8 S-E 9.96 10/240 | 0.415
9 E-W -87.2 25/240 | -9.198
10 N-S 7.09 25/240 | 0.739
11 W-E -88.3 25/240 | -9.198
12 S-N 7.04 25/240 | 0.733
13 E-N -99.01 15/240 | -6.188
14 N-W 8.25 15/240 | 0.516
15 W-S -98.51 15/240 | -6.157
16 S-E 9.96 15/240 | 0.623
Total -42.21

Table 17: Results Test 1

How it can be seen in the tablet he performance of the control has a positive impact

in the overall simulation.

6.3 Test 2

Test 2 it is a random test with different flow, with different numbers of cars per flow,

which starts at different times in the simulation.

In the table 18 we can see the comparison of the mean travel time with the variation

per route of travel:

| | No Control | Control | Variation [%] | # Cars |

Data 174.765 144.114 -21.27% 149
E-W 215.760 145.960 -47.82% 25
E-N 195.000 143.300 -36.08% 10
N-S 132.258 142.290 7.05% 31
N-W 131.750 144.375 8.74% 8

W-E 217.968 144.742 -50.59% 31
W-S 207.769 143.462 -44.83% 13
S-N 132.000 144.046 8.36% 22
S-E 131.111 144.889 9.51% 9

Table 18: Data Test 2

The overall performance, can be analysed in table 19:

Page 59 of 138

| Flow | Route | Variation [%] | weight | Total
1 E-W -47.82 15/149 | -4.814

2 N-S 7.05 17/149 | 0.804
3 W-E -50.59 18/149 | -6.112
4 S-N 8.36 10/149 | 0.561
) E-N -36.08 10/149 | -2.42

6 W-S -44.83 13/149 | -3.911

7 E-W -47.82 10/149 | -3.209

8 N-S 7.05 14/149 | 0.662

9 W-E -50.59 13/149 | -4.414
10 S-N 8.36 12/149 | 0.673
11 N-W 8.74 8/149 0.469
12 | SE 9.51 0/149 | 0.574
Total -21.142

Table 19: Results Test 2

How it can be seen in the tablet he performance of the control has a positive impact

in the overall simulation.

6.4 Test 3

Test 3 at different than the others test that were searching to see how the control
fare in heavy congested conditions, search to see how incident cars fare in a heavy flow
conditions, and how the control improves when there is the posibility of exiting early from
it. Seeing the comparison of graph in 5.4.2, the Early Finish reduce the total time with
respect to the case with Early Finish Off.

In any case, the analysis of the control will be done with respect to the control with
Early Finish On, because it is the one with better results.

In the table 20 we can see the comparison of the mean travel time with the variation

per route of travel:

| | No Control | Control | Variation [%] | # Cars |

Data 149.079 138.276 -7.81% 76
E-W 228.25 142.5 -60.18% 8
N-S 132 137.233 3.81% 30
W-S 198 141.875 -39.56% 8
S-N 132 137.233 3.81% 30

Table 20: Data Test 3

The overall performance, can be analysed in table 21:

Page 60 of 138

| Flow | Route | Variation [%] | weight | Total |

1 N-S 3.81 30/76 | 1.504
2 S-N 3.81 30/76 | 1.504
3 E-W -60.18 8/76 | -6.335
4 W-S -39.56 8/76 | -4.164
Total -7.491

Table 21: Results Test 3

How it can be seen in the tablet he performance of the control has a positive impact
in the overall simulation, even if the incident flow was minimum.

Page 61 of 138

7 Conclusions

In this work it is presented a framework for the correct traveling of autonomous cars
meanwhile they travel in intersections, using the communication network 5G and the
protocol for automobiles IEEE 802.11p, and it is further simulated and tested to see the
comportment of it. The technologies of autonomous cars and the communication network
are assumed to be fully implemented and this enable to center the development only on
the framework.

The communication platform is given to us by another framework, Veins, which give the
standards for the protocol to be used, and implement the different routines and commands
for sending and receiving message between cars.

The simulation are done in conjunction with SUMO that enable the simulation of every
car in a microscopic model, together with OMNET++4 that enables network communica-
tion. The framework developed is developed in the latter, and eventually simulation of
the cars plus the networks are also running using it.

Regarding the results, it is only presented and considered one iteration of parameter
that meanwhile could be that they aren’t the optimal, present good overall results. The
principal characteristic of the control are that it is a decentralized scheme that doesn’t
use an external calculation for arbitrating the cars, with an adaptive start an exit, so it
only works in critical situations of the cars, namely in congestion.

Every simulation analysed show a similar comportment, where the parameter of eval-
uation show that when the control is activated, there is an improvement over a situation
of no arbitration. The control shows that when the number of cars per low become higher
(generally over the 20 cars), the comportment of the standard deviation and the mean of
the total travel time become similar between each flow.

The weakness of the framework presented are the necessity of having certain parame-
ters defined from before running the simulation, and that cars are stopped over a certain
amount of time when the control is activated. The first is something that can be changed
with an exterior message, coming from an R.S.U. This solutions contemplate that there is
an R.S.U. per big zone, and every time the car enter a new zone, the points of junctions
and the parameters of the particular junctions change with it, this solutions liberate of
the necessity of having an R.S.U. per intersection. The second problem correspond with
tuning of parameters and the necessity of quitting processing capability of the ECU of
the cars.

The framework presented is a proposed solution over the problem of car travelling
in junctions road, that help to mitigate the problem of congestion in urban intersection,
and it is thought for the future of automobiles, particularly, for when all the cars have
integrated the ability to send and received messages from other cars. More and more the
different manufacturer of cars are taking hands on the new technologies, or the would be
new technologies, and selecting the best one between all the different options is something
that depends not only in the better specifications of the controls, but also in the availability
of implementation given the resources or capabilities at hand.

Page 62 of 138

References

1]

[10]

[11]

[12]

[13]

Emerj, "The Self-Driving Car Timeline Predictions from the Top 11 Global
Automakers”, [Online]. Avaible on https://emerj.com/ai-adoption-timelines/

self-driving-car-timeline-themselves-top-11-automakers/. Accessed on Oc-
tober, 2019.

Test Site Sweded. ”DriveMe” [Online]. Avaible on https://www.testsitesweden.
com/en/projects-1/driveme. Accessed on October, 2019.

NHTSA, ”Automated Vehicles for Safety”, [Online]. Avaible on https://www.
nhtsa.gov/technology-innovation/automated-vehicles-safety. Accessed on
October, 2019.

S. Alireza Fayazi ; Ardalan Vahidi ; Andre Luckow. ”Optimal scheduling of au-
tonomous vehicle arrivals at intelligent intersections via MILP”. IEEE, 2017.

Peter Stone ; Guni Sharon ; Michael Albert ; Josiah Hanna, ” Autonomous Intersec-
tion Management”, [Online|. Avaible on http://www.cs.utexas.edu/~aim/. Ac-
cessed on October, 2019.

Bimbraw, K. 7 Autonomous cars: Past, present and future a review of the develop-
ments in the last century, the present scenario and the expected future of autonomous
vehicle technology”. Informatics in Control, Automation and Robotics (ICINCO),
2015 12th International Conference on (Vol. 1, pp. 191-198). IEEE.

IEEE, "History of IEEE”, [Online]. Available on https://www.ieee.org/about/
ieee-history.html. Accessed on 2019.

Daniel Jiang, Luca Delgrossi, "IEEE 802.11p: Towards an International Standard
for Wireless Access in Vehicular Environments”, Mercedes-Benz Research & Devel-
opment North America, Inc., 2008.

[EEE, "IEEE 802.11p-2010 - IEEE Standard for Information technology— Local and
metropolitan area networks— Specific requirements— Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 6:
Wireless Access in Vehicular Environments”, 2010.

SUMO, ”Simulation of Urban MObility - Wiki”, [Online]. Available on https://
sumo.dlr.de/wiki/Simulation_of_Urban_MObility_-_Wikil Accessed on 2019.

SUMO, Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz, Jakob Erdmann,
Yun-Pang Fltterd, Robert Hilbrich, Leonhard Lcken, Johannes Rummel, Peter Wag-
ner, and Evamarie Wiener. ”Microscopic Traffic Simulation using SUMO ”. IEEE
Intelligent Transportation Systems Conference (ITSC), 2018.

Stefan Krauf, ” Microscopic Modeling of Traffic Flow: Investigation of Collision Free
Vehicle Dynamics”, 1998.

OMNeT++, ”What is OMNeT++7", [Online]. Available on https://omnetpp.org/
intro/. Accessed on 2019.

Page 63 of 138

https://emerj.com/ai-adoption-timelines/self-driving-car-timeline-themselves-top-11-automakers/
https://emerj.com/ai-adoption-timelines/self-driving-car-timeline-themselves-top-11-automakers/
https://www.testsitesweden.com/en/projects-1/driveme
https://www.testsitesweden.com/en/projects-1/driveme
https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
http://www.cs.utexas.edu/~aim/
https://www.ieee.org/about/ieee-history.html
https://www.ieee.org/about/ieee-history.html
https://sumo.dlr.de/wiki/Simulation_of_Urban_MObility_-_Wiki
https://sumo.dlr.de/wiki/Simulation_of_Urban_MObility_-_Wiki
https://omnetpp.org/intro/
https://omnetpp.org/intro/

[14] Veins, ”Documentation”, [Online]. Available on http://veins.car2x.org/
documentation/. Accessed on 2019.

[15] Transportation Research Board, ”Highway Capacity Manual”. HCM200, 2000.

[16] SUMO, ”"TraCl/Change Vehicle State”. [Online|. Avaible on https://sumo.dlr.de/
docs/TraCI/Change_Vehicle_State.html. Accessed on October, 2019.

Page 64 of 138

http://veins.car2x.org/documentation/
http://veins.car2x.org/documentation/
https://sumo.dlr.de/docs/TraCI/Change_Vehicle_State.html
https://sumo.dlr.de/docs/TraCI/Change_Vehicle_State.html

Annex A - Initial Base Case Test in a continous
control framework

During the creation of the framework environment, there was the proposition of using
a control that was always active, and the cars would enter a control state when they
entered the Active Zone. The control would give priority to the first car that enter the
Active Zone and thereafter the cars would synchronize with respect to this.

The control wasn’t optimized for congested situations, where the mean travel time
was around the same for cases with the control on and off, but it improved the standard
deviation of the cars, distributing the total travel time between the different flows. The
problem was that in uncongested situations, the control turned off was always better that
situations with the control turned on, so it was opted to change to an adaptive solution.

At continuation it will be shown the global results of the test performed for different
rates of cars for four different flows in uncongested situation, the flows being: North to
South; South to North; East to West; West to East. This four flows start at the same
time and have similar conditions at the test performed in the adaptive scenario. This test
also served to selected a good time transition for the states Green, Yellow and Red, so in
the results there will be shown the global result of the simulation compared between the
control turned off and controls turned on with different time transitions, listing only the
Green state and the Red state, giving that the Yellow state is the different between the
two of them.

Results
Test 30 cars per lane every 30 seconds

The test performed consisted on the four flows producing a car every 30 seconds, for
a total of 120 cars in the simulation, the numeric results can be seen at continuation:

’ \ Mean Time \ Min Time \ Max Time \ St. Deviation ‘

No Control 135.39 126 140 3.247
Green 10 / Red 20 143.53 126 149 4.91
Green 15 / Red 25 146.37 126 154 6.32
Green 20 / Red 30 147.63 126 161 10.07
Green 30 / Red 40 151.25 126 182 17.08
Green 40 / Red 50 151.56 126 180 14.56

Table 22: Global result of test with car generation of 30 [s], for different state transition
time

We can also see the distribution of the car in the different situations of control:

Page 65 of 138

No Control Control Greem 10s Red 20s
60 [~ T T T 20 — T T T

50

40
o) &
= =
ER 1 g
g g
w w

20 1

| ‘ |

0

125 130 135 140 125 130 135 140 145 150
Total Time [s] Total Time [s]
(a) No Control Situation (b) Control with Green 10s / Red 20s

Figure 45: Histogram of No Control and Control Situation with Green 10s / Red 20s

Control Greem 15s Red 25s Control Greem 20s Red 30s

25— 25
20 20
315} 5151
c c
[7) [}
=l =
o o
g g
1o “10r
51 5+
0 0 -
125 130 135 140 145 150 155 125 130 135 140 145 150 155 160
Total Time [s] Total Time [s]
(a) Control with Green 15s / Red 25s (b) Control with Green 20s / Red 30s

Figure 46: Histogram of Control Situation with Green 15s / Red 25s & Green 20s / Red
30s

Page 66 of 138

Control Greem 30s Red 40s Control Greem 40s Red 50s

Frequency
Frequency

120 130 140 150 160 170 180 190 120 130 140 150 160 170 180
Total Time [s] Total Time [s]

(a) Control with Green 30s / Red 40s (b) Control with Green 40s / Red 50s

Figure 47: Histogram of Control Situation with Green 30s / Red 40s & Green 40s / Red
50s

It’s easy to see than in every iteration, the situation that has the best performance is
the one with no control.

Test 55 cars per lane every 16 seconds

The test performed consisted on the four flows producing a car every 16 seconds, for
a total of 880 cars in the simulation, the numeric results can be seen at continuation:

| | Mean Time | Min Time | Max Time | St. Deviation |

No Control 135.83 132 141 3.29
Green 10 / Red 20 150.37 132 194 13.67
Green 15 / Red 25 149.29 132 178 12.25
Green 20 / Red 30 154.66 132 222 18.89
Green 30 / Red 40 154.04 132 223 18.95
Green 40 / Red 50 156.37 132 243 23.15

Table 23: Global result of test with car generation of 16 [s], for different state transition
time

We can also see the distribution of the car in the different situations of control:

Page 67 of 138

No Control

120

Frequency

132 134 136 138 140 142
Total Time [s]

(a) No Control Situation

70

Control Greem 10s Red 20s

Frequency

130 140 150 160 170 180 190 200
Total Time [s]

(b) Control with Green 10s / Red 20s

Figure 48: Histogram of No Control and Control Situation with Green 10s / Red 20s

30 Control Greem 15s Red 25s

25

N
=]

Frequency
&

130 140 150 160 170 180
Total Time [s]

(a) Control with Green 15s / Red 25s

60

Control Greem 20s Red 30s

50

N
o

Frequency
w
(=]

20

140 160 180 200 220
Total Time [s]

(b) Control with Green 20s / Red 30s

Figure 49: Histogram of Control Situation with Green 15s / Red 25s & Green 20s / Red

30s

Page 68 of 138

Control Greem 30s Red 40s Control Greem 40s Red 50s

Frequency
Frequency

140 160 180 200 220 140 160 180 200 220 240
Total Time [s] Total Time [s]

(a) Control with Green 30s / Red 40s (b) Control with Green 40s / Red 50s

Figure 50: Histogram of Control Situation with Green 30s / Red 40s & Green 40s / Red
50s

It’s easy to see than in every iteration, the situation that has the best performance is
the one with no control.
Test 62 cars per lane every 14 seconds

The test performed consisted on the four flows producing a car every 16 seconds, for
a total of 868 cars in the simulation, the numeric results can be seen at continuation:

| | Mean Time | Min Time | Max Time | St. Deviation |

No Control 135.88 133 141 3.29
Green 10 / Red 20 150.98 133 187 13.86
Green 15 / Red 25 152.26 133 203 14.99
Green 20 / Red 30 152.88 133 213 17.33
Green 30 / Red 40 157.7 133 227 22.37
Green 40 / Red 50 159.63 133 256 26.44

Table 24: Global result of test with car generation of 14 [s], for different state transition
time

We can also see the distribution of the car in the different situations of control:

Page 69 of 138

Control Greem 10s Red 20s

80

No Control
140 T T T

Frequency
Frequency

133 134 135 136 137 138 139 140 141 130 140 150 160 170 180 190
Total Time [s] Total Time [s]
(a) No Control Situation (b) Control with Green 10s / Red 20s

Figure 51: Histogram of No Control and Control Situation with Green 10s / Red 20s

Control Greem 15s Red 25s Control Greem 20s Red 30s

80

60 -
50 [
= =
gaor g
[7) [}
=l =
g §
£a0f s

0 130 140 150 160 170 180 190 200 210 130 140 150 160 170 180 190 200 210 220
Total Time [s] Total Time [s]
(a) Control with Green 15s / Red 25s (b) Control with Green 20s / Red 30s

Figure 52: Histogram of Control Situation with Green 15s / Red 25s & Green 20s / Red
30s

Page 70 of 138

Control Greem 30s Red 40s

Control Greem 40s Red 50s

Frequency
Frequency

140 160 180 200 220 140 160 180 200 220 240 260
Total Time [s] Total Time [s]

(a) Control with Green 30s / Red 40s (b) Control with Green 40s / Red 50s

Figure 53: Histogram of Control Situation with Green 30s / Red 40s & Green 40s / Red
50s

It’s easy to see than in every iteration, the situation that has the best performance is
the one with no control.

Test 72 cars per lane every 12 seconds

The test performed consisted on the four flows producing a car every 16 seconds, for
a total of 864 cars in the simulation, the numeric results can be seen at continuation:

| | Mean Time | Min Time | Max Time | St. Deviation |

No Control 135.9 133 141 3.3
Green 10 / Red 20 151.62 133 191 13.37
Green 15 / Red 25 152.96 133 213 15.66
Green 20 / Red 30 154.14 133 214 18.12
Green 30 / Red 40 157.32 133 227 21.35
Green 40 / Red 50 164.54 133 265 30.06

Table 25: Global result of test with car generation of 14 [s], for different state transition
time

We can also see the distribution of the car in the different situations of control:

Page 71 of 138

Control Greem 10s Red 20s

No Control

150

o
Q
S

Frequency
Frequency
)

o

50

133 134 135 136 137 138 139 140 141 130 140 150 160 170 180 190
Total Time [s] Total Time [s]
(a) No Control Situation (b) Control with Green 10s / Red 20s

Figure 54: Histogram of No Control and Control Situation with Green 10s / Red 20s

Control Greem 15s Red 25s Control Greem 20s Red 30s

80

70

Frequency
Frequency

130 140 150 160 170 180 190 200 210 220 130 140 150 160 170 180 190 200 210 220
Total Time [s] Total Time [s]
(a) Control with Green 15s / Red 25s (b) Control with Green 20s / Red 30s

Figure 55: Histogram of Control Situation with Green 15s / Red 25s & Green 20s / Red
30s

Page 72 of 138

Control Greem 30s Red 40s

Control Greem 40s Red 50s

Frequency
Frequency

140 160 180 200 220 120 140 160 180 200 220 240 260 280
Total Time [s] Total Time [s]

(a) Control with Green 30s / Red 40s (b) Control with Green 40s / Red 50s

Figure 56: Histogram of Control Situation with Green 30s / Red 40s & Green 40s / Red
50s

It’s easy to see than in every iteration, the situation that has the best performance is
the one with no control.

Test 87 cars per lane every 10 seconds

The test performed consisted on the four flows producing a car every 16 seconds, for
a total of 870 cars in the simulation, the numeric results can be seen at continuation:

| | Mean Time | Min Time | Max Time | St. Deviation |

No Control 135.87 133 141 3.29
Green 10 / Red 20 153.78 133 214 16.82
Green 15 / Red 25 155.65 133 211 16.34
Green 20 / Red 30 164.69 133 238 24.23
Green 30 / Red 40 156.15 133 232 20.5
Green 40 / Red 50 190.21 133 348 50.01

Table 26: Global result of test with car generation of 14 [s], for different state transition
time

We can also see the distribution of the car in the different situations of control:

Page 73 of 138

Frequency

No Control

133 134 135 136 137 138 139 140 141
Total Time [s]

(a) No Control Situation

Frequency

Control Greem 10s Red 20s

130 140 150 160 170 180 190 200 210 220
Total Time [s]

(b) Control with Green 10s / Red 20s

Figure 57: Histogram of No Control and Control Situation with Green 10s / Red 20s

Frequency

Control Greem 15s Red 25s

130 140 150 160 170 180 190 200 210 220
Total Time [s]

(a) Control with Green 15s / Red 25s

Frequency

80

Control Greem 20s Red 30s

140 160 180 200 220 240
Total Time [s]

(b) Control with Green 20s / Red 30s

Figure 58: Histogram of Control Situation with Green 15s / Red 25s & Green 20s / Red

30s

Page 74 of 138

Control Greem 30s Red 40s Control Greem 40s Red 50s

o
n
=3

Frequency
o
[=)] o] (=)
(=] o (=]
Frequency

N
o

N
o

o

140 160 180 200 220 240 150 200 250 300 350
Total Time [s] Total Time [s]

(a) Control with Green 30s / Red 40s (b) Control with Green 40s / Red 50s

Figure 59: Histogram of Control Situation with Green 30s / Red 40s & Green 40s / Red
50s

It’s easy to see than in every iteration, the situation that has the best performance is
the one with no control.

Test 96 cars per lane every 9 seconds

The test performed consisted on the four flows producing a car every 16 seconds, for
a total of 864 cars in the simulation, the numeric results can be seen at continuation:

| | Mean Time | Min Time | Max Time | St. Deviation |

No Control 135.88 133 141 3.29
Green 10 / Red 20 155.45 133 214 16.06
Green 15 / Red 25 158.01 133 240 22.01
Green 20 / Red 30 156.77 133 223 19.50
Green 30 / Red 40 159.13 133 242 24.01
Green 40 / Red 50 164.38 133 260 30.96

Table 27: Global result of test with car generation of 14 [s], for different state transition
time

We can also see the distribution of the car in the different situations of control:

Page 75 of 138

Frequency

200

No Control

180

160

140 |

a
N
o

o
Q
S

80

60

40

20

133 134 135 136 137 138 139 140 141
Total Time [s]

(a) No Control Situation

Frequency

Control Greem 10s Red 20s

130 140 150 160 170 180 190 200 210 220
Total Time [s]

(b) Control with Green 10s / Red 20s

Figure 60: Histogram of No Control and Control Situation with Green 10s / Red 20s

Frequency

Control Greem 15s Red 25s

140 160 180 200 220 240
Total Time [s]

(a) Control with Green 15s / Red 25s

Frequency

o
=]

Control Greem 20s Red 30s

140 160 180 200 220
Total Time [s]

(b) Control with Green 20s / Red 30s

Figure 61: Histogram of Control Situation with Green 15s / Red 25s & Green 20s / Red

30s

Page 76 of 138

Control Greem 30s Red 40s Control Greem 40s Red 50s

120 140

100 F 120r

@
o

80

Frequency
(o2}
(=]
Frequency

=]
S

40

IS
o

201

N
o

o

140 160 180 200 220 240 140 160 180 200 220 240 260
Total Time [s] Total Time [s]
(a) Control with Green 30s / Red 40s (b) Control with Green 40s / Red 50s

Figure 62: Histogram of Control Situation with Green 30s / Red 40s & Green 40s / Red
50s

It’s easy to see than in every iteration, the situation that has the best performance is
the one with no control.

Short Analysis

In every test performed, the No Control case was better than all the other controls.
This was to be expected, because there wasn’t an origin to a possible congestion and
thus, the travel time of the car shouldn’t be increased in an considerably manner. This
is contrasted with the control situations where they impose a restriction over the system,
and a restricted system always has worse optimum compared to a less restricted system.

Of notice is that in general, smaller time transition has better performance than greater
time transition. Evidently, this is not always a rule of thumbs, but in the different test
performance, this was always true, and thus the time transition selected for the thesis was
the control with smaller time transition of all the different time transition tested.

Page 77 of 138

Annex B - Definition of functions and Vareables

This file Is the 7.h” where it is defined the different functions and vareables of the
developed framework. The locations is:

...\src\veins\modules\application\traci\TraCIDemollp.h

The code is:

#ifndef TraClDemollp_H
#define TraClDemollp_H

#include ”"veins/modules/application/ieee80211p/BaseWaveApplLayer.h”

class TraCIDemollp : public BaseWaveApplLayer {
private:
cOutVector changeStateVector;
public:
virtual void initialize (int stage);
virtual void finish ();
protected:
simtime_t lastDroveAt;
bool sentMessage;
int currentSubscribedServiceld ;

//startControl: If the control algorithm start
//at the initialization
bool startControl = true;

//Position of the road
double const CX = 927.6;
double const C.Y = 927.6;

//Lenght of the Road
double const L = 30;
//Area of Control

double const M = 100;

//Parameter or the real Road, for porpouse
//of identifying car in same place
double const truel = 5;
//Extra parameter when calculating Time to Junction
double const securityFactorDetention = 2;
// decel of the car, this in later versions of veins

// will be obtained by a method but right now

Page 78 of 138

// we have to use the definition of the car.
double const decelMax = 4.5;

/1111111111 stateControl () ALGORITHM///////////]]]/

//Schedule Message that invoque stateControl ()
cMessage xevent = mnew cMessage("event”);

//Time stamp of when the stateControl() is invoked
simtime_t timeStateCtrl = 0;

//When you enter the Control Zone it becomes false.
//Synchronization porpouse
bool Enter = true;

//Time to wait in idle state of stateControl() in order
//to check Position and work in Idle Zone
simtime_t tldle=1;

//Time to wait in control state of stateControl()
//in order to check Position and work in Active Zone
simtime_t tControl=1;

[/11]1]]7]11]/END stateControl () ALGORITHM////////]//

[T T ADAPTIVE CONTROL ALGORITHM/ // /[/[]/ /] /]

//Bool vareable that become true if the control it is activated.
bool adaptiveControl = false;

//Constructor of Message to Send to others cars
WaveShortMessage* wsm;

//Variables of direction to be filled with
//the direction of travel of the car
int DirectionReceivedWSM [2];

//Message for activating the control when there
//aren’t adaptiveStarCar waiting in lane

cMessage *xcheckCongestion = mnew cMessage(” checkCongestion”);

//Time to surpass in order to trigger checkCongestion
double timeStopCar = 10;

//Variable for counting the number of stopped car on a lane
int counterStopCar;

Page 79 of 138

//Trigger to hit of waiting car in a road in
//order to activate the control
int adaptiveStarCar = 2;

//Time stamp of change of state in order to check
//priority of starting car
simtime_t timeAdaptive = SIMTIME MAX ;

//Number of cycles before exiting adaptive control.
int longCyclesNumber = 50;

//Variable that it is counting the changes of states.
//4+1 when it is 0 or 2.
int countChanges = 0;

//When car stop for the first time in the active zone,
//this vareable becomes true and send message type 2,
//making it possible to only send this type of message

//only one time
bool stopCar = false;

/111117777177 JEND ADAPTIVE CONTROL ALGORITHM/ ///////]//]11]11]/]]
[P JSEMAPHORE CONTROL ALGORITRMY/ /// /111 1) 111111111

//Message for making the change of the state of the semaphore
cMessage xcheckState = mnew cMessage(” checkState”);

//Time to wait between states of the semaphore

simtime_t tGreen = 10;
simtime_t tRed = 20;
simtime_t tYellow = tRed—tGreen;

//Definition of the different states of the virtual semaphore
//0 = Green ; 1 = Yellow ; 2 = Red
double semaphoreState ;

/1177777 7END SEMAPHORE CONTROL ALGORITHM/ //////////1]/]

[OIIPIEETT T FINISH EARLY CTRLS /1) /1)) 11]11] 111117

//Message to see if there are cars waiting in any lane.
cMessage *xcheckWaiting = new cMessage(”checkWaiting”);

//Counter for cars waiting in line during adaptive control.
int counterWaitingCar = 0;

Page 80 of 138

//Threshold that to surpass in order to exit Control
int thresholdWaiting = 1;

//Window of time for checking if there are cars waiting

//in other lane
simtime_t checkEnd = 2;

[P0 JEND FINISH EARLY CTRL//// /)11 1/)]1]117111]
N R =S N Ny,

// Used for storing the route number defined in the
//model of the simulation

// 10 - E-W ; 12 —> E-N
// 20 - N-S ; 22 —> N-W
// 30 — W-—E : 32 —> W-—S
// 40 — S - N 42 — S - E
cMessage xroute = new cMessage(”"route”);

//Variable where it is going to be stored the route
int routeld = 0;

//Number of time the control algorithm is activated
int numActivation = 0;

//Type of activation, if any
int typeActivation = 0;

//Time of control trigger , if any
simtime_t timeActivation = 0;

//Counter finish normal cycle, if any
int counterFinishNormal = 0;

//Counter finish short cycle, if any
int counterFinishShort = 0;

//Debug Variable for counting if the early finish activate
//and how much
int counterFinishEarly = 0;

//1f Message Type 1 Trigger bad time acepting.
//0 =No ; 1 = Yes

int activationBadTime = 0;

//Type of update function used for synchronizing
// 0 —> Nothing

Page 81 of 138

// 1 ~—> updateParametersOnWSMAdaptive
// 2 —> updateParametersOnWSM
int functionActivation = 0;

//Type of update synchronize function used in synchronizing
// 0 —> Nothing

// 1 ~—> changeState

// 2 —> scheduleState

int syncActivation = 0;

//Type of Message Used for synchronization of Control Algorithm
// 0 —> Nothing

// 1 ~—> Received Message Type 1

// 2 —> Received Message Type 4

// 3 ~—> Send Message Type 4

int messageActivation = 0;

// 1d of Car that Trigger the control Algorithm
int carldTrigger;

// 1d of the Car
int carldOwn;

[IITTIEIE)T 7END DEBUG /)]] 1111111117

protected:
virtual void onWSM(WaveShortMessage* wsm);
virtual void onWSA(WaveServiceAdvertisment* wsa);

virtual void updateParametersOnWSM () ;
virtual void updateParametersOnWSMAdaptive ();

bool checkTimeUpdate (simtime_t In);
virtual void changeState ();
virtual void changeStateTime (simtime_t timeToNewState);

virtual void scheduleStateTime (simtime_t timeToNewState);

virtual void changeAdaptiveStateTime (simtime_t timeToNewState);
virtual void scheduleAdaptiveStateTime (simtime_t timeToNewState);

virtual void doGreen ();
virtual void doRed ();

virtual void doYellow ();

simtime_t timeToCurrentState ();
simtime_t timeToOtherState ();

Page 82 of 138

#endif

virtual

virtual
virtual
virtual
virtual

virtual

void

void
void
void
void

void

handleSelfMsg (cMessagex msg);

stateControl ();
enteringToControl ();
exitingFromControl ();
resetVariables ();

cancelSMessage (cMessagex msg);

bool goingRigth ();
bool controlGRightZone ();
bool activeGRightZone ();

bool goingLeft ();
bool controlGLeftZone ();
bool activeGLeftZone ();

bool goingUpwards ();
bool controlGUpZone ();
bool activeGUpZone ();

bool goingDownwards ();
bool controlGDownZone ();
bool activeGDownZone ();

bool isControlZone ();
bool isActiveZone ();

bool isDiffDirection ();

virtual void populatelnitialCCM ();
virtual void responseCCM ();

double timeToJunction ();

virtual void startCounter ();
virtual void normalCycleTraffic ();

virtual void verifyEndControl ();

Page 83 of 138

Annex C - Main Framework Structure
This file Is the ”.cc” where it is developed the code and the brain of the framework.

...\src\veins\modules\application\traci\TraCIDemollp.cc

The code is:

#include ”veins/modules/application/traci/TraCIDemollp.h”
Define_Module (TraCIDemollp);

//Initializing function of every car Module
void TraCIDemollp::initialize (int stage) {
BaseWaveApplLayer:: initialize (stage);
if (stage =— 0) {

sentMessage = false;
lastDroveAt = simTime ();
currentSubscribedServiceld = —1;

scheduleAt (simTime()+1, route);

if (startControl){
stateControl ();
carldOwn = cSimpleModule :: getld ();
changeStateVector.setName(”stateChange”);
semaphoreState = 2;
counterStopCar = 0;
timeAdaptive = SIMTIME MAX;

}

//Finishing function of every car Module
void TraClDemollp:: finish (){
recordScalar ("routeld” | routeld);

recordScalar ("numberActivation” ;numActivation);
recordScalar ("typeC” | typeActivation);
recordScalar (" timeActivation” ,timeActivation);

recordScalar (" functionActivation” ,functionActivation);
recordScalar (" messageActivation” ;messageActivation);
recordScalar (”syncActivation” ;syncActivation);

recordScalar (7 ActivationBadTime” ,activationBadTime);

recordScalar ("triggerCarld” ,carldOwn);
recordScalar ("triggerCarReceive” jcarldTrigger);

Page 84 of 138

recordScalar (" counterFinishNormal” jcounterFinishNormal);
recordScalar (" counterFinishShort” JcounterFinishShort);
recordScalar (" counterFinishEarly” counterFinishEarly);

}

void TraCIDemollp::onWSA(WaveServiceAdvertisment* wsa) {
if (currentSubscribedServiceld = —1) {
mac—>changeServiceChannel (wsa—>getTargetChannel ());
currentSubscribedServiceld = wsa—>getPsid ();
if (currentOfferedServiceld != wsa—>getPsid()) {
stopService ();
startService ((Channels :: ChannelNumber)
wsa—>getTargetChannel (), wsa—>getPsid (),
?Mirrored Traffic Service”);

}

//Activate every time the car module receive a message type wsm
void TraCIDemollp ::onWSM(WaveShortMessagex wsm) {

EV << "onWSM () \n”;

//The car is already on control. Send a message to the asking car.
if ((wsm—>getCemType()==0) && isActiveZone () && !Enter
&& adaptiveControl){
EV << 70\n";

responseCCM () ;
}

//Response to message type 0. The car enter to control

else if ((wsm—>getCcmType()==1) && (wsm—>getTimestamp () < timeAdaptive)
&& ladaptiveControl && isActiveZone ()){
EV << 71\n”;
EV << "Received synchronization Signal (second type)\n”;

messageActivation = 1;

timeActivation = simTime ();
numActivation++;

adaptiveControl = true;

stopCar = true;

carldTrigger = wsm—>getCarld ();
timeAdaptive = wsm—>getTimestamp ();
semaphoreState = wsm—>getSemaphoreState ();

Page 85 of 138

countChanges = wsm—>getCountMessage () ;
DirectionReceivedWSM [0] = wsm—>getDirection (0);
DirectionReceivedWSM [1] = wsm—>getDirection (1);

//Prevent Schedule to the past

if (!checkTimeUpdate (wsm—>getTimestamp ())){
activationBadTime = 1;
countChanges++;

if (semaphoreState ==1){
timeAdaptive += tRed;
}

else if (semaphoreState ==2){
timeAdaptive += tGreen;
}

semaphoreState++;

if (semaphoreState >2){
semaphoreState=0;
¥

}

if (countChanges =— 0){
updateParametersOnWSMAdaptive () ;
}

else{
updateParametersOnWSM () ;
¥

}

//Car send a message indicating states
else if((wsm—>getCemType()==2) && (mobility —>getSpeed()<1)
&& ladaptiveControl && isActiveZone ()){

EV << 72\n";
counterStopCar—++;
EV <<” Counter Stop Car= 7 << counterStopCar << "\n";
if (counterStopCar > adaptiveStarCar){
adaptiveControl = true;
stopCar = true;

cancelSMessage (checkCongestion);

typeActivation = 2;
normalCycleTraffic ();

Page 86 of 138

//Early Finish check
else if((wsm—>getCemType()==3) && isActiveZone ()
&& adaptiveControl){

EV << 73\n";
DirectionReceivedWSM [0] = wsm—>getDirection (0);
DirectionReceivedWSM [1] = wsm—>getDirection (1);

if (isDiffDirection ()){
counterWaitingCar—++;
}

}

//Sunchronization when car is already on the active zone
else if((wsm—>getCemType()==4) && isActiveZone ()

&& (wsm—>getTimestamp () < timeAdaptive))

EV << 74\n”;

messageActivation 2;

timeActivation = simTime();
numActivation++;

adaptiveControl = true;

stopCar = true;

carldTrigger = wsm—>getCarld ();
timeAdaptive = wsm—>getTimestamp () ;
semaphoreState = wsm—>getSemaphoreState ();
countChanges = wsm—>getCountMessage () ;
DirectionReceivedWSM [0] = wsm—>getDirection (0);
DirectionReceivedWSM [1] = wsm—>getDirection (1);

cancelSMessage (checkCongestion);
updateParametersOnWSMAdaptive () ;

}

else{
EV << "Received signal has been ignored\n”;
}

wsm = nullptr;

}

//When the car judge that the incoming message is good,
//synchronize the parameter of the car with of the

Page 87 of 138

//ongoing control algorithm
void TraClDemollp ::updateParametersOnWSM () {
EV <<”updateParametersOnWSM ()\n” ;

cancelSMessage (checkCongestion);
EV << "New Time Control is: 7 << timeAdaptive << ”"\n”;

if (isDiffDirection ()){
EV << 7 Signal is of different orientation\n”;
changeStateTime (timeToOtherState()—simTime()+timeAdaptive);
syncActivation = 1;

}

else{
EV << 7 Signal is of the same orientation\n”;
scheduleStateTime (timeToCurrentState()—simTime()+timeAdaptive);
syncActivation = 2;

}

functionActivation = 2;

}

//When the car judge that the incoming message is good,
//synchronize the parameter of the car with of the ongoing
//control algorithm
void TraCIDemollp ::updateParametersOnWSMAdaptive () {

EV <<”updateParametersOnWSMAdaptive ()\n” ;

cancelSMessage (checkCongestion);

7

EV << "New Time Control is: << timeAdaptive << "\n”;

if (isDiffDirection ()){
EV << 7Signal is of different orientation\n”;
changeAdaptiveStateTime (tYellow—simTime()+timeAdaptive);
syncActivation = 1;

}

else{
EV << 7Signal is of the same orientation\n”;
scheduleAdaptiveStateTime (tYellow—simTime()+timeAdaptive);
syncActivation = 2;

}

functionActivation = 1;

}

// Return true if the incoming time can be accepted, otherwise false
bool TraClDemollp::checkTimeUpdate(simtime_t In) {

Page 88 of 138

bool var = false;

if ((isDiffDirection ()) && (timeToOtherState()—simTime()+In > 0)){

var = true;
}

else if((!isDiffDirection()) &&
(timeToCurrentState()—simTime()+In > 0)){
var = true;

}

return var;

}

//Function for self scheduling message
void TraCIDemollp:: handleSelfMsg (cMessage*x msg) {

EV << "handleSelfMsg ()\n";

if (msg =— event){
stateControl ();

}

else if (msg==checkState){
EV << 7countChanges before update = 7 << countChanges << "\n”;

if (countChanges < 2xlongCyclesNumber){
changeState ();
EV << 71t has been updated the change of semaphore\n”;
}
else{
EV << "The car Exit from the Control\n”;
resetVariables ();
traciVehicle —setSpeed (—1);
counterFinishNormal++;

}
}

else if (msg=checkCongestion){
//Start control for one cycle
if (mobility —>getSpeed () < 1){
adaptiveControl = true;
typeActivation = 1;
normalCycleTraffic ();

}

else if (msg=—checkWaiting){
if (counterWaitingCar >= thresholdWaiting){
counterWaitingCar = 0;

Page 89 of 138

}

else{
resetVariables ();
traciVehicle —>setSpeed (—1);
cancelSMessage (checkState);
counterFinishEarly++;
}
}
else if (msg=route){
routeld = std::stoi(traciVehicle —>getRouteld ());
}

}

//Function for populating the message type 1, and sending it
void TraCIDemollp:: populatelnitialCCM () { // Not used
EV<<’populatelnitial CCM ()\n”;

wsm = new WaveShortMessage ();
populateWSM (wsm) ;

wsm—>setCemType (0);

wsm—>set Timestamp (timeAdaptive);
//wsm—>setSemaphoreState (semaphoreState);
/ /wsm—>setCountMessage (countChanges) ;

//Going to rigth

if(goingRigth()){
wsm—>setDirection (0,1);
wsm—>setDirection (1,0);

}

//Going Left

else if(goingLeft()){
wsm—>setDirection (0,—1);
wsm—>setDirection (1,0);

}

//Going Down

else if(goingDownwards()){
wsm—>setDirection (0,0);
wsm—>setDirection (1,1);

}

//Going Up

else if(goingUpwards()){
wsm—>setDirection (0,0);
wsm—>setDirection (1,—1);

}

EV <<”The Control Variable Time is: "<< timeAdaptive << "\n”;
sendDelayedNormalD (wsm) ;

Page 90 of 138

wsm = nullptr;

//Give a WM message response with the time of control
//the current state of the semaphore, and the type of WSM Message
void TraCIDemollp ::responseCCM () {

wsm = new WaveShortMessage ();

populateWSM (wsm) ;

wsm—>setCarld (carldOwn) ;

wsm—>setCemType (1);

wsm—>set Timestamp (timeAdaptive);
wsm—>setSemaphoreState (semaphoreState);
wsm—>setCountMessage (countChanges) ;

//Going to rigth

if (goingRigth ()){
wsm—>setDirection (0,1);
wsm—>setDirection (1,0);

}

//Going Left

else if(goingLeft()){
wsm—>setDirection (0, —1);
wsm—>setDirection (1,0);

}

//Going Down

else if(goingDownwards()){
wsm—>setDirection (0,0);
wsm—>setDirection (1,1);

}

//Going Up

else if(goingUpwards()){
wsm—>setDirection (0,0);
wsm—>setDirection (1,—1);

}

sendDelayedNormalD (wsm) ;

wsm = nullptr;

}
R Yy,

//Functions for the correct work of the virtual semaphore,
//and their synchronization in the ongoing control algorithm
void TraCIDemollp:: changeState () {

Page 91 of 138

EV << 7changeState ()\n";
//Update the current state
semaphoreState++;

if (semaphoreState > 2)

semaphoreState=0;

if (semaphoreState==0){

}

cancelSMessage (checkState);

EV << 71t has been updated to Green Semaphore\n”;

timeAdaptive=simTime ();
countChanges++;

doGreen () ;

EV << "Time to new State is: 7 << tGreen <<” With State:
<< semaphoreState<<”\n";
EV << " Control Time: 7 << timeAdaptive <<"\n”;

verifyEndControl ();
scheduleAt (simTime()+tGreen, checkState);

else if(semaphoreState==1){

}

EV << 71t has been updated to Yellow Semaphore\n”;

doYellow ();

EV << 7changeState: Time to new State is: 7 << tYellow
<<” With State: "<< semaphoreState<<”\n";

cancelSMessage (checkState);
scheduleAt (simTime()+tYellow , checkState);

else if(semaphoreState==2){

EV << 71t has been updated to Red Semaphore\n”;

timeAdaptive=simTime ();

countChanges++;

doRed () ;

EV << 7changeState: Time to new State is: 7 << tRed
<<” With State: "<< semaphoreState<<”\n";

EV << " Control Time: 7 << timeAdaptive <<"\n";

Page 92 of 138

cancelSMessage (checkState);
verifyEndControl ();
scheduleAt (simTime()+tRed, checkState);

}

else
EV <<”Semaphore State is Wrong with number semaphoreState="
<<semaphoreState<<’\n”;

changeStateVector.recordWithTimestamp (simTime (), semaphoreState);

}

void TraCIDemollp::changeStateTime (simtime_t timeToNewState) {
EV << 7changeStateTime ()\n”;

if (semaphoreState==0 || semaphoreState ==1){
semaphoreState=2;
}

else{
if (simTime()—timeAdaptive < tGreen){
semaphoreState=0;
}

else
semaphoreState=1;

if (semaphoreState==0){
EV << 71t has been updated to Green Semaphore\n”;
doGreen () ;
}
else if(semaphoreState==1){
EV << 71t has been updated to Yellow Semaphore\n”;
// Tiempo al nuevo estado tiene que ser lo sufientemente

//alto como para efectuar cambios a la velocidad
doYellow ();
}
else if(semaphoreState==2){
EV << 71t has been updated to Red Semaphore\n” ;
doRed () ;
}
else
EV <<”Semaphore State is Wrong with number semaphoreState="
<<semaphoreState<<’\n” ;

EV << 7changeStateTime: Time to new State is: 7 << timeToNewState

Page 93 of 138

<<” With State: "<< semaphoreState<<”\n";
changeStateVector.recordWithTimestamp (simTime () ,semaphoreState);

cancelSMessage (checkState);
scheduleAt (simTime()+timeToNewState, checkState);

}

void TraCIDemollp::scheduleStateTime (simtime_t timeToNewState) {

EV << 7scheduleStateTime ()\n”;
if (semaphoreState==0){
EV << 71t has been updated to Green Semaphore\n”;
doGreen () ;
}
else if(semaphoreState==1){
EV << 71t has been updated to Yellow Semaphore\n”;
// Tiempo al nuevo estado tiene que ser lo sufientemente
//alto como para efectuar cambios a la velocidad
doYellow ();
¥
else if(semaphoreState==2){
EV << 71t has been updated to Red Semaphore\n”;
doRed () ;
}
else
EV <<”Semaphore State is Wrong with number semaphoreState="
<<semaphoreState<<’\n" ;

EV << 7Time to new State is: 7 << timeToNewState <<” With State: ”
<< semaphoreState<<’\n" ;

changeStateVector.recordWithTimestamp (simTime () ,semaphoreState);

cancelSMessage (checkState);
scheduleAt (simTime()+timeToNewState, checkState);

}

//Different Direction
void TraCIDemollp::changeAdaptiveStateTime (simtime_t timeToNewState) {
if (semaphoreState==1){
semaphoreState=2;

doRed () ;
}

else{
semaphoreState=1;
doYellow ();

Page 94 of 138

}

changeStateVector.recordWithTimestamp (simTime () ,semaphoreState);

cancelSMessage (checkState);
scheduleAt (simTime()+timeToNewState, checkState);

//Same Direction
void TraCIDemollp::scheduleAdaptiveStateTime (simtime_t timeToNewState)

}

if (semaphoreState==2){
semaphoreState=2;

doRed () ;

}

else{
semaphoreState=1;
doYellow ();

}

changeStateVector.recordWithTimestamp (simTime () ,semaphoreState);

cancelSMessage (checkState);
scheduleAt (simTime()+timeToNewState, checkState);

s
N Ny yay,

//Functions for Afecting Velocity when they pass to certain States

void TraCIDemollp::doGreen () {

}

EV <<”Car is in Green”;
traciVehicle —>setSpeedMode (7);
traciVehicle —setSpeed (—1);

void TraCIDemollp::doRed() {

EV <<”Car is in Red”;
traciVehicle —>setSpeedMode (15);

simtime_t remainingTime;
simtime_t scheduleTime ;

if (countChanges==0){

remainingTime = tYellow + timeAdaptive — simTime();
}
else{

remainingTime = tRed 4+ timeAdaptive — simTime ();
}

Page 95 of 138

if(timeStateCtrl = simTime()){
scheduleTime = timeStateCtrl+tControl—simTime ();
}

else{
scheduleTime = tControl;
}

double remainingTimeDouble = SIMTIME DBL(remainingTime);
double scheduleTimeDouble = SIMTIMEDBL(scheduleTime);

// onlyin control zone
if (isControlZone ()){
double timeJunction = timeToJunction ();
double decelActual = mobility—>getSpeed ()/timeJunction;

if((timeJunction > remainingTimeDouble)
&& (mobility —getSpeed () >0.5)){
traciVehicle —setSpeed (—1);
}
else if((timeJunction <= remainingTimeDouble)
&& (mobility —>getSpeed () >0.5)){
if(decelActual > decelMax){
traciVehicle —>slowDown (abs(mobility —>getSpeed () —
decelMaxxscheduleTimeDouble) ,
scheduleTimeDouble*1000);

}

else{
traciVehicle —>slowDown (abs(mobility —>getSpeed () —
decelActualxscheduleTimeDouble)
scheduleTimeDouble*1000);
}
}
else{
traciVehicle —>setSpeed (0);
}
}

else{
EV <<”Car Remain Stopped”;
traciVehicle —setSpeed (0);

}

void TraClDemollp::doYellow () {
EV <<”Car is in Yellow”;
traciVehicle —setSpeedMode (7);
simtime_t remainingTime;
simtime_t scheduleTime ;

Page 96 of 138

if (countChanges==0){

remainingTime = tYellow + timeAdaptive — simTime();
}
else{
remainingTime = tRed + timeAdaptive — simTime ();
}
if (timeStateCtrl = simTime ()){
scheduleTime = timeStateCtrl+tControl—simTime ();
}
else{
scheduleTime = tControl;
}
double remainingTimeDouble = SIMTIME DBL(remainingTime);
double scheduleTimeDouble = SIMTIMEDBL(scheduleTime);

if (remainingTimeDouble > SIMTIME DBL(tYellow)*0.7){
EV <<”Car will not stop”;
traciVehicle —>setSpeed (—1);
}
// only in control zone
else if(isControlZone ()){
double timeJunction = timeToJunction ();
double decelActual = mobility—>getSpeed()/timeJunction;

if (remainingTimeDouble >= SIMTIME DBL(tYellow)*0.4){
if ((timeJunction > remainingTimeDouble) ||
(timeJunction*2 < remainingTimeDouble)){
traciVehicle —setSpeed (—1);
}
else{
if (decelActual > decelMax){
traciVehicle —slowDown (abs(mobility —>getSpeed () —
decelMaxx*scheduleTimeDouble) ,
scheduleTimeDouble*1000);
}
else{
traciVehicle —slowDown (abs(mobility —>getSpeed () —
decelActual*scheduleTimeDouble)
scheduleTimeDouble*1000);

}

}

else if(remainingTimeDouble < SIMTIMEDBL(tYellow)x0.4){
if((timeJunction > remainingTimeDouble) &&

(mobility —>getSpeed () >0.5)){

Page 97 of 138

if(decelActual > decelMax){
traciVehicle —>slowDown (abs(mobility —>getSpeed () —
decelMaxx*scheduleTimeDouble) ,
scheduleTimeDouble*1000);

}
else{
traciVehicle —>slowDown (abs(mobility —>getSpeed () —
decelActualxscheduleTimeDouble)
scheduleTimeDouble*1000);
}
}
else{
traciVehicle —>setSpeed (0);
}
}
}
else{
if ((remainingTime < 5) && mobility —>getSpeed () < 6){
traciVehicle —>setSpeed (0);
}
else{
traciVehicle —>setSpeed (—1);
}
}

}

ey,
N Ny,

//Functions for calculating remaining time in different states.

simtime_t TraCIDemollp::timeToCurrentState (){
simtime_t varTime;

if (countChanges==0){
varTime = tYellow ;
}

else{
if (semaphoreState==0){

varTime = tGreen;
}

else if (semaphoreState==1){
varTime = tGreen+tYellow;
}

else if (semaphoreState==2){
varTime = tRed;
}
}

return varTime;

Page 98 of 138

}

simtime_t TraCIDemollp::timeToOtherState (){
simtime_t varTime;

if (countChanges==0){

varTime = tYellow ;
}
else{
if (semaphoreState==0 || semaphoreState==1){

varTime = tRed;
}
else{
if (simTime()—timeAdaptive < tGreen){
varTime=tGreen;
}

else
varTime=tGreen+tYellow ;

}

return varTime;

}

//Function to calculate the time given the actual speed
//at the junction more nearby

double TraCIDemollp::timeToJunction () {
double distance = 0;
double time_double = 0;

if (goingRigth()){ //Going to rigth
distance = CX—-L—securityFactorDetention —
mobility —>getCurrentPosition ().x;
if ((mobility —>getCurrentSpeed ().x)>0.5){
time_double=2xdistance /abs(mobility —>getCurrentSpeed ().x);
}

else{
time_double=4xdistance;
¥
¥

else if(goingLeft()){//Going to Left
distance = mobility —>getCurrentPosition ().x —
CX—-L—securityFactorDetention
if (abs(mobility —getCurrentSpeed ().x)>0.5){
time_double=2xdistance /abs(mobility —>getCurrentSpeed ().x);
}

else{
time_double=4xdistance;

Page 99 of 138

}

}
}
else if(goingDownwards()){//Going downwards
distance = C_.Y-L—securityFactorDetention —
mobility —>getCurrentPosition ().y;
if (abs(mobility —>getCurrentSpeed ().y)>0.5){
time_double=2xdistance /abs(mobility —>getCurrentSpeed ().y);
}

else{
time_double=4xdistance;
}
}

else if(goingUpwards()){//Going upstairs
distance = mobility —>getCurrentPosition ().y —
C_Y-L—securityFactorDetention;
if (abs(mobility —getCurrentSpeed ().y)>0.5){
time_double=2xdistance /abs(mobility —>getCurrentSpeed ().y);
}

else{
time_double=4xdistance;
¥
}

return time_double;

NNy,

// Function for controlling the control state transition of the car
void TraCIDemollp::stateControl () {

EV<<’stateControl ()\n”;

EV<<” Position: |7 << mobility—=>getCurrentPosition ().x << 7" <<
mobility —>getCurrentPosition ().y << "|\n";
timeStateCtrl = simTime();

if (isActiveZone ()){
EV <<”Car is in Active Zone\n”;
scheduleAt (simTime()+tControl, event);

if (Enter){
// Put this when control activate
traciVehicle —>setSpeedMode (15);
enteringToControl ();

}

if (adaptiveControl){
EV <<”Car is being controlled\n”;

EV << 7countChanges = 7 << countChanges << "\n”;
if (countChanges==0){
EV <<” Control Time is: 7 << timeAdaptive

Page 100 of 138

2

<< 7. Time to State Change is:
<< 10—simTime()+timeAdaptive

<<” With State: 7 << semaphoreState<<”\n";
¥
else{

EV <<” Control Time is: 7 << timeAdaptive <<
7. Time to State Change is: "<<
timeToCurrentState()—simTime()+timeAdaptive

<<” With State: "<< semaphoreState<<”\n";

¥

///]//]////Responsive Velocity change with redundancy
if (semaphoreState==0){

doGreen ();
}

else if(semaphoreState==1){
doYellow ();

}
else if(semaphoreState==2){
doRed () ;

}

NNy
}
else{

EV << 7Car is not being controlled\n”;
¥

//Next line is a try before discovering speed mode
//1if (semaphoreState==0){

// traciVehicle —>setSpeed (—1);
//}
EV <<”Moving to: ["<< mobility—>getCurrentDirection ().x
<< 7 "<<mobility —>getCurrentDirection ().y <<”|\n";
EV <<" Velocity of the car is: 7 << mobility —>getSpeed ()
<< 2 \n77;
}
else{

if (! Enter){
exitingFromControl ();
}

EV <<”Car is not in Active Zone\n”;

EV <<’ Control Time is: 7 << timeAdaptive << "\n”;
EV <<” Velocity of the car is: 7 << mobility —>getSpeed ()
<< 7 \n77 ;

Page 101 of 138

scheduleAt (simTime()+tldle , event);

if ((mobility—>getSpeed()<0.5) && !adaptiveControl && !stopCar){

stopCar = true;
scheduleAt (simTime()+timeStopCar, checkCongestion);

startCounter ();

}
N Ny,

//Complementary Functions of ControlState ()
void TraCIDemollp::enteringToControl () {
EV<<”enteringToControl ()\n”;
recordScalar ("enterControlZone” ;simTime ());

Enter = false ;

if (!adaptiveControl){
semaphoreState = 9.
populatelnitial CCM () ;

}

void TraCIDemollp:: exitingFromControl () {
EV<<” exitingFromControl ()\n”;

Enter = true;

resetVariables ();

traciVehicle —>setSpeedMode (31);
timeAdaptive = SIMTIME MAX;

cancelSMessage (checkCongestion);
cancelSMessage (checkState);

traciVehicle —>setSpeed (—1);

}

void TraClDemollp::resetVariables () {
EV<<’resetVariables ()\n";

traciVehicle —>setSpeedMode (15);

Page 102 of 138

stopCar = false
adaptiveControl = false;

countChanges =
counterStopCar =
counterWaitingCar

| o o

N N NNy,

//Boolean functions for direction of traveling of the car,
//and position on the map
bool TraClDemollp:: goingRigth () {

bool var = false;
if (mobility—>getCurrentDirection ().x > 0.87){
var=true;

}

return var;

}

bool TraClDemollp:: controlGRightZone () {
bool var = false;

if ((mobility—>getCurrentPosition().x >= CX-L-M) &
(mobility =—>getCurrentPosition ().x < CX-L)){
var=true;

}

return var;

}

bool TraClDemollp::activeGRightZone () {
bool var = false;

if ((mobility—>getCurrentPosition ().x >= CX-L-M) &
(mobility —getCurrentPosition ().x < CX—truel)){
var=true;

}

return var;

bool TraCIDemollp:: goingLeft () {

bool var = false;
if (mobility—>getCurrentDirection ().x < —0.87){
var=true;

Page 103 of 138

}

return var;

}

bool TraClDemollp:: controlGLeftZone () {
bool var = false;

if ((mobility—>getCurrentPosition ().x <= CX+LHM) &&
(mobility —>getCurrentPosition ().x > CX+L)){
var=true;

}

return var;

}

bool TraClDemollp::activeGLeftZone () {
bool var = false;

if ((mobility—>getCurrentPosition ().x <= CX+LM) &
(mobility —>getCurrentPosition ().x > CX+trueL)){
var=true;

}

return var;

bool TraCIDemollp:: goingUpwards () {

bool var = false;
if (mobility—>getCurrentDirection ().y < —0.87){
var=true;

}

return var;

}

bool TraCIDemollp:: controlGUpZone () {
bool var = false;

if((mobility—>getCurrentPosition ().y <= CY+LM) &
(mobility —getCurrentPosition ().y > CY+L)){
var=true;

}

return var;

Page 104 of 138

bool TraCIDemollp::activeGUpZone () {
bool var = false;

if ((mobility—>getCurrentPosition ().y <= CY+LM) &
(mobility =—getCurrentPosition ().y > C_Y+trueL)){
var=true;

}

return var;

bool TraClDemollp:: goingDownwards () {

bool var = false;
if (mobility—>getCurrentDirection ().y > 0.87){
var=true;

}

return var;

}

bool TraClDemollp:: controlGDownZone () {
bool var = false;

if ((mobility—>getCurrentPosition().y >= CY-L-M) &
(mobility =—getCurrentPosition ().y < C.Y-L)){
var=true;

}

return var;

}

bool TraClDemollp::activeGDownZone () {
bool var = false;

if ((mobility—>getCurrentPosition().y >= CY-L-M) &
(mobility —>getCurrentPosition ().y < C.Y—trueL)){
var=true;

}

return var;

//It is true if the car is in control zone with the direction of

//control
bool TraCIDemollp::isControlZone () {
bool var = false;

Page 105 of 138

if((goingRigth()) && (controlGRightZone()))

var = true;
else if ((goingLeft()) && (controlGLeftZone()))
var = true;
else if ((goingUpwards()) && (controlGUpZone()))
var = true;
else if ((goingDownwards()) && (controlGDownZone()))
var = true;
if (var){

EV << 7Car is in Control Zone\n”;

}

else
EV <<”Car is not in Control Zone\n”;

return var;

}

bool TraClDemollp::isActiveZone () {
bool var = false;

if((goingRigth()) && (activeGRightZone()))

var = true;

else if ((goingLeft()) && (activeGLeftZone()))
var = true;

else if ((goingUpwards()) && (activeGUpZone()))
var = true;

else if ((goingDownwards()) && (activeGDownZone()))
var = true;

if (var){

EV << 7Function: Car is in Active Zone\n”;

}

else
EV <<”Function: Car is not in Active Zone\n”;

return var;

}
Ny

//Function for seeing if the receiving message is from a car
//from different road

bool TraClDemollp::isDiffDirection (){
bool var = false;

if ((goingRigth ())||(goingLeft ())){

Page 106 of 138

if (DirectionReceivedWSM [0]==0){
EV << 7 Message Received is of Direction Y: 7
<< DirectionReceivedWSM [1] << 7"\n”;
var = true;

}

else if ((goingUpwards())||(goingDownwards())){
if (DirectionReceivedWSM [1]==0){
EV << ”"Message Received is of Direction X:
<< DirectionReceivedWSM [0] << "\n";
var = true;

}

return var;

}

//1f a message is scheduled, cancel it.
void TraCIDemollp:: cancelSMessage (cMessagex msg){

if (msg—isScheduled ()){
cancelEvent (msg);
}

}

//Function for initializing and sending message type 2
void TraCIDemollp::startCounter () {
EV <<”Sending Message for Counting Stop Car\n”;
counterStopCar++;

wsm = new WaveShortMessage () ;
populateWSM (wsm) ;

wsm—>setCemType (2);
wsm—>set Timestamp (timeAdaptive);

if(goingRigth()){ //Going to rigth
wsm—>setDirection (0,1);
wsm—>setDirection (1,0);

}

else if(goingLeft ()){
wsm—>setDirection (0, —1); //Going Left
wsm—>setDirection (1,0);

}

else if(goingDownwards()){ //Going Down
wsm—>setDirection (0,0);
wsm—>setDirection (1,1);

Page 107 of 138

else if(goingUpwards())
wsm—>setDirection (0,0
wsm—>setDirection (1, —1);

{) //Going Up

)

}

sendDelayedNormalD (wsm)) ;
wsm = nullptr;

}

//Function for initializing and sending message type 4
void TraCIDemollp::normalCycleTraffic () {
EV <<”Sending Message for full Cycle Control\n”;

messageActivation = 3;
numActivation—++;
timeAdaptive=simTime ();
semaphoreState = 2;

counterStopCar=0;

wsm = new WaveShortMessage ();
populateWSM (wsm) ;

wsm—>setCarld (carldOwn) ;

wsm—>setCemType (4);
wsm—>set Timestamp (timeAdaptive);

wsm—>setSemaphoreState (semaphoreState) ;
wsm—>set CountMessage (countChanges) ;

if(goingRigth()){ //Going to rigth
wsm—>setDirection (0,1);
wsm—>setDirection (1,0);

}

else if(goingLeft()){
wsm—>setDirection (0,—1); //Going Left
wsm—>setDirection (1,0);

}

else if(goingDownwards()){ //Going Down
wsm—>setDirection (0,0);
wsm—>setDirection (1,1);

}

else if(goingUpwards())
wsm—>setDirection (0,0
wsm—>setDirection (1,—1);

{) //Going Up

I

Page 108 of 138

sendDelayedNormalD (wsm) ;
wsm = nullptr;

timeActivation = simTime();
changeStateVector.recordWithTimestamp (simTime () ,semaphoreState);

scheduleAt (simTime()+tYellow , checkState);

}

//Function for initializing and sending message type 3
void TraCIDemollp:: verifyEndControl () {
EV <<”Sending Message for Veryfing ctrl\n”;

wsm = new WaveShortMessage ();
populateWSM (wsm) ;

wsm—>setCemType (3);

if (goingRigth()){ //Going to rigth
wsm—>setDirection (0,1);
wsm—>setDirection (1,0);

}

else if(goingLeft ()){
wsm—>setDirection (0, —1); //Going Left
wsm—>setDirection (1,0);

}

else if(goingDownwards()){ //Going Down
wsm—>setDirection (0,0);
wsm—>setDirection (1,1);

}

else if(goingUpwards()){ //Going Up
wsm—>setDirection (0,0);
wsm—>setDirection (1,—1);

}

sendDelayedNormalD (wsm) ;
wsm = nullptr;

scheduleAt (simTime()+checkEnd, checkWaiting);

Page 109 of 138

Annex D - Modified Comunication Network

In order to run the simulation it is necessary to add a random delay in the way that the
car or R.S.U. send messages. This is done by modifying the files BaseWaveApplLayer.h
and BaseWaveApplLayer.cc. In the thesis, it was added the function

virtual void sendDelayedNormalD(cMessage* msg);

That send a message of the type WSM/BSM/WSA with a normal delay. This delay
is modified directly in inside the function in BaseWaveApplLayer.cc.

BaseWaveApplLayer.h

Location of the files is:
...\src\veins\modules\application\ieee80211p\BaseWaveApplLayer.h

The code is:

// Based on the original code by David Eckhoff
// Copyright (C) 2016 David Eckhoff <eckhoff@cs.fau.de>

// Documentation for these modules is at http://veins.car2x.org/

// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,

// but WITHOUT ANY WARRANTY; without even the implied warranty of

// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

// GNU General Public License for more details.

//

// You should have received a copy of the GNU General Public License

// along with this program; if not, write to the Free Software

// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA

//

#ifndef BASEWAVEAPPLLAYER H.
#define BASEWAVEAPPLLAYER H-

#include <random>
#include <map>
#include ”veins/base/modules/BaseApplLayer.h”

#include ”veins/modules/utility /Consts80211p.h"
#include ”veins/modules/messages/WaveShortMessage m .h”

Page 110 of 138

#include ”veins/modules/messages/WaveServiceAdvertisement_m .h”
#include ”veins/modules/messages/BasicSafetyMessage m .h”
#include ”veins/base/connectionManager/ChannelAccess.h”
#include ”veins/modules/mac/ieee80211p/WaveAppToMacl609_4Interface.
#include ”veins/modules/mobility/traci/TraCIMobility.h”
#include ”veins/modules/mobility/traci/TraClCommandInterface.h”

using Veins:: TraCIMobility ;

using Veins:: TraCICommandInterface;
using Veins:: AnnotationManager ;

using Veins:: TraCIMobilityAccess;
using Veins:: AnnotationManagerAccess;

//#define DBGAPP std::cerr << 7[” << simTime ().raw() << 7] 7
// << getParentModule()—>getFullPath () << 7

#ifndef DBG.APP
#define DBGAPP EV

Hendif

/%%

x @brief

x WAVE application layer base class.
*

x @Qauthor David Eckhoff
*

x @ingroup applLayer

*

x @see BaseWaveApplLayer
x Qsee Macl1609_4

x @see PhyLayer80211p

*

@see Decider80211p

*/
class BaseWaveApplLayer : public BaseApplLayer {

public:
“BaseWaveApplLayer () ;
virtual void initialize (int stage);
virtual void finish ();

virtual void receiveSignal (cComponent* source
simsignal_t signallD ,
cObjectx obj, cObjectx details);

enum WaveApplMessageKinds {
SEND BEACON EVT,
SEND_WSA EVT

}s

Page 111 of 138

protected:

static const simsignalwrap_t mobilityStateChangedSignal;
static const simsignalwrap_t parkingStateChangedSignal;

/*x @brief handle messages from below and calls the onWSM,
onBSM, and onWSA functions accordingly x/
virtual void handleLowerMsg(cMessage* msg);

/*% @brief handle self messages x/
virtual void handleSelfMsg(cMessage* msg);

/** @brief sets all the necessary fields in the WSM,
BSM, or WSA. x/

virtual void populateWSM (WaveShortMessagex wsm,
int rcvld=-1, int serial=0);

/*% @brief this function is called upon receiving a
WaveShortMessage */
virtual void onWSM(WaveShortMessagex wsm) { };

/*% @brief this function is called upon receiving
a BasicSafetyMessage , also referred to as a beacon x/
virtual void onBSM(BasicSafetyMessagex bsm) { };

/*x @brief this function is called upon receiving a
WaveServiceAdvertisement x/
virtual void onWSA(WaveServiceAdvertisment* wsa) { };

/*% @brief this function is called every time the
vehicle receives a position update signal x/
virtual void handlePositionUpdate (cObjectx obj);

/*% @brief this function is called every time the vehicle
parks or starts moving again x/
virtual void handleParkingUpdate(cObject* obj);

/**% @brief This will start the periodic advertising of
the new service on the CCH

O S

@param serviceDescription a literal description of the
service

*/

virtual void startService(Channels:: ChannelNumber channel,
int serviceld, std::string serviceDescription);

Page 112 of 138

@param channel the channel on which the service is provided
@param serviceld a service ID to be used with the service

/*% @brief stopping the service and advertising for it x/
virtual void stopService ();

/%% @brief compute a point in time that is guaranteed to
be in the correct channel interval plus a random offset
*
x @param interval the interval length of the periodic message
x @param chantype the type of channel, either type . CCH or
type-SCH
f
virtual simtime_t computeAsynchronousSendingTime (
simtime_t interval , t_channel chantype);

/%%

x @brief overloaded for error handling and stats recording
purposes
*
% @param msg the message to be sent. Must be a WSM/BSM/WSA
*
/

virtual void sendDown(cMessagex msg);

[%%
x @brief overloaded for error handling and stats recording
purposes
*
* @param msg the message to be sent. Must be a WSM/BSM/WSA
x @param delay the delay for the message
*
/

virtual void sendDelayedDown(cMessage*x msg, simtime_t delay);

/%%

x Q@brief overloaded for error handling and stats recording
purposes

*

* @param msg the message to be sent. Must be a WSM/BSM/WSA
*/

virtual void sendDelayedNormalD (cMessagex msg);

/%

x @brief helper function for error handling and stats
recording purposes

*

x @param msg the message to be checked and tracked

/

virtual void checkAndTrackPacket(cMessagex msg);

Page 113 of 138

protected:

/* pointers ill be set when used with TraCIMobility */
TraCIMobilityx mobility;

TraCICommandInterfacex traci;

TraCICommandInterface :: Vehiclex traciVehicle;

AnnotationManager* annotations;
WaveAppToMac1609_4Interfacex mac;

/* support for parking currently only works with TraCI x/
bool isParked;
bool communicateWhileParked ;

/* BSM (beacon) settings x/
uint32_t beaconLengthBits;
uint32_t beaconUserPriority;
simtime_t beaconlnterval;
bool sendBeacons;

/* WM (data) settings x/

uint32_t dataLengthBits;

uint32_t dataUserPriority;
bool dataOnSch;

/* WSA settings x/

int currentOfferedServiceld;

std::string currentServiceDescription;
Channels :: ChannelNumber currentServiceChannel;
simtime_t wsalnterval;

/* state of the vehicle x/
Coord curPosition;

Coord curSpeed;

int myld;

int mySCH;

/% stats =/

uint32_t generatedWSMs;
uint32_t generatedWSAs;
uint32_t generatedBSMs;
uint32_t receivedWSMs;
uint32_t receivedWSAs;
uint32_t receivedBSMs;

/* messages for periodic events such as beacon and WSA
transmissions x*/

Page 114 of 138

cMessagex sendBeaconEvt;
cMessagex sendWSAEvt;

}s

#endif /+ BASEWAVEAPPLLAYERH. x/

BaseWaveApplLayer.cc

Location of the files is:
...\src\veins\modules\application\ieee80211p\BaseWaveApplLayer.cc

The code is:

// Based on the original code by David Eckhoff
// Copyright (C) 2011 David Eckhoff <eckhoff@cs.fau.de>
//

// Documentation for these modules is at http://veins.car2x.org/

//

// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.

//

// This program is distributed in the hope that it will be useful,

// but WITHOUT ANY WARRANTY; without even the implied warranty of

// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

// GNU General Public License for more details.

//

// You should have received a copy of the GNU General Public License

// along with this program; if not, write to the Free Software

// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA

//

#include ”veins/modules/application/ieee80211p/BaseWaveApplLayer.h”

const simsignalwrap_t BaseWaveApplLayer:: mobilityStateChangedSignal =
simsignalwrap _t (MIXIM_SIGNAL MOBILITY_CHANGE NAME) ;

const simsignalwrap_t BaseWaveApplLayer:: parkingStateChangedSignal =
simsignalwrap _t (TRACLSIGNAL PARKING CHANGE NAME) ;

void BaseWaveApplLayer::initialize (int stage) {
BaseApplLayer:: initialize (stage);

if (stage==0) {
//initialize pointers to other modules

Page 115 of 138

if (FindModule<TraCIMobility*>::findSubModule (
getParentModule ())) {
mobility = TraCIMobilityAccess (). get (getParentModule ());
traci = mobility —>getCommandInterface ();
traciVehicle = mobility —getVehicleCommandInterface ();

}

else {
traci = NULL;
mobility = NULL;
traciVehicle = NULL;
}

annotations = AnnotationManagerAccess (). getIfExists ();
ASSERT(annotations);

mac = FindModule<WaveAppToMacl1609_4Interfacex >::findSubModule (
getParentModule ());
assert (mac);

myld = getParentModule()—>getId ();

//read parameters

headerLength = par(”headerLength”).longValue ();

sendBeacons = par(”sendBeacons”). boolValue ();
beaconLengthBits = par(”beaconLengthBits”).longValue ();
beaconUserPriority = par(”beaconUserPriority”).longValue ();
beaconlnterval = par(”beaconlnterval”);

dataLengthBits = par(”datalengthBits”).longValue ();
dataOnSch = par (”dataOnSch”). boolValue ();
dataUserPriority = par(”dataUserPriority”).longValue ();

wsalnterval = par(”wsalnterval”).doubleValue ();

communicateWhileParked = par (”
communicateWhileParked”). boolValue ();

currentOfferedServiceld = —1;

isParked = false;
findHost()—>subscribe (mobilityStateChangedSignal , this);
findHost()—>subscribe (parkingStateChangedSignal , this);

sendBeaconEvt = new cMessage (" beacon evt”, SEND BEACONEVT);
sendWSAEvt = new cMessage (”wsa evt”, SEND-WSAEVT);

generatedBSMs = 0;
generated WSAs = 0;

Page 116 of 138

generatedWSMs = 0;
receivedBSMs = 0;
receivedWSAs = 0;
receivedWSMs = 0;

}

else if (stage = 1) {
//simulate asynchronous channel access

if (dataOnSch = true && !mac—>isChannelSwitchingActive()) {
dataOnSch = false;
std:: cerr << "App wants to send data on SCH but MAC
doesn’t use any SCH. Sending all data on CCH”
<< std ::endl;

}

simtime_t firstBeacon = simTime ();

if (par(”avoidBeaconSynchronization”).boolValue() = true) {
simtime_t randomOffset = dblrand () * beaconlInterval;
firstBeacon = simTime() + randomOffset ;
if (mac—>isChannelSwitchingActive () == true) {

if (beaconlInterval.raw() %
(mac—>getSwitchingInterval ().raw()*2)) {
std:: cerr << "The beacon interval (”
<< beaconlnterval << 7) is smaller than or
not a multiple of one synchronization
interval (7 << 2%mac —>
getSwitchingInterval () << 7). 7
<< "This means that beacons are generated
during SCH intervals” << std::endl;
}
firstBeacon = computeAsynchronousSendingTime (
beaconInterval ; type.CCH);

}

if (sendBeacons) {
scheduleAt (firstBeacon , sendBeaconEvt);
}

}

simtime_t BaseWaveApplLayer:: computeAsynchronousSendingTime (
simtime_t interval , t_channel chan) {

/%

x avoid that periodic messages for one channel type are

Page 117 of 138

}

scheduled in the other channel interval
+ when alternate access is enabled in the MAC

*/

simtime_t randomOffset = dblrand () % beaconlnterval;
simtime_t firstEvent ;
simtime_t switchingInterval = mac—>getSwitchinglnterval ();

//usually 0.050s
simtime_t nextCCH;

/%

x start event earliest in next CCH (or SCH) interval.
For alignment, first find the next CCH interval

x To find out next CCH, go back to start of current interval
and add two or one intervals

x depending on type of current interval

*/

if (mac—isCurrentChannelCCH ()) {
nextCCH = simTime () — SimTime ().setRaw (simTime ().raw () %
switchingInterval .raw()) + switchinglnterval %2;
}
else {
nextCCH = simTime () — SimTime ().setRaw (simTime ().raw () %
switchinglnterval .raw()) + switchinglnterval;

}

firstEvent = nextCCH + randomOffset ;

//check if firstEvent lies within the correct interval and,
if not, move to previous interval

if (firstEvent.raw() % (2«switchinglnterval.raw()) >
switchinglnterval .raw()) {
//firstEvent is within a sch interval
if (chan = type.CCH) firstEvent —= switchinglnterval;
}
else {
//firstEvent is within a cch interval, so adjust for SCH
//messages
if (chan = type_.SCH) firstEvent += switchinglnterval;

}

return firstEvent ;

void BaseWaveApplLayer :: populateWSM (WaveShortMessage* wsm,

int rcvld, int serial) {

Page 118 of 138

wsm—>set WsmVersion (1);

wsm—>set Timestamp (simTime ()) ;
wsm—>setSenderAddress (myld) ;
wsm—>setRecipient Address (revld);
wsm—>setSerial (serial);
wsm—>setBitLength (headerLength);

if (BasicSafetyMessagex bsm = dynamic_cast<BasicSafetyMessages>(
wem)) {
bsm—>setSenderPos (curPosition);
bsm—>setSenderPos (curPosition);
bsm—>setSenderSpeed (curSpeed);
bsm—>setPsid (—1);
bsm—>setChannelNumber (Channels : : CCH) ;
bsm—>addBitLength (beaconLengthBits);
wsm—>setUserPriority (beaconUserPriority);

}

else if (WaveServiceAdvertisment* wsa =
dynamic_cast<WaveServiceAdvertisment*>(wsm)) {
wsa—>setChannelNumber (Channels ::CCH);
wsa—>setTargetChannel (currentServiceChannel);
wsa—>setPsid (currentOfferedServiceld);
wsa—>setServiceDescription (currentServiceDescription.c_str ());

}

else {
//will be rewritten at Macl609.4 to actual Service Channel.
//This is just so no controllnfo is needed
if (dataOnSch) wsm—>setChannelNumber (Channels::SCH1);
else wsm—>setChannelNumber (Channels::CCH);
wsm—>addBitLength (dataLengthBits);
wsm—>setUserPriority (dataUserPriority);

}

void BaseWaveApplLayer:: receiveSignal (cComponent* source ,
simsignal_t signallD, cObjectx obj, cObject* details) {
Enter_Method_Silent ();
if (signallD = mobilityStateChangedSignal) {

handlePositionUpdate (obj);
}

else if (signallD = parkingStateChangedSignal) {
handleParkingUpdate (obj);
}

}

void BaseWaveApplLayer:: handlePositionUpdate (cObject* obj) {

Page 119 of 138

ChannelMobilityPtrType const mobility =

check_and_cast <ChannelMobilityPtrType >(obj);
curPosition = mobility —>getCurrentPosition ();
curSpeed = mobility —>getCurrentSpeed ();

}

void BaseWaveApplLayer :: handleParkingUpdate (cObject* obj) {
//this code should only run when used with TraCI
isParked = mobility —>getParkingState ();
if (communicateWhileParked = false) {
if (isParked = true) {
(FindModule<BaseConnectionManager >::findGlobalModule ())
—>unregisterNic (this—>getParentModule()—>
getSubmodule (" nic”));
}
else {
Coord pos = mobility—>getCurrentPosition ();
(FindModule<BaseConnectionManager* >::findGlobalModule ())
—>registerNic (this—getParentModule()—>getSubmodule (”
nic”),(ChannelAccess*) this—>getParentModule()—>
getSubmodule (" nic”)—>getSubmodule (" phy80211p”),
&pos) ;

}

void BaseWaveApplLayer :: handleLowerMsg (cMessage* msg) {

WaveShortMessagex wsm = dynamic_cast<WaveShortMessagesx>(

msg) ;
ASSERT (wsm) ;

if (BasicSafetyMessagex bsm = dynamic_cast<BasicSafetyMessagesx>(
wsm)) {
receivedBSMs++;
onBSM (bsm) ;

¥

else if (WaveServiceAdvertisment* wsa =
dynamic_cast<WaveServiceAdvertisment*>(wsm)) {

received WSAs++;
onWSA (wsa) ;

¥

else {
received WSMs++;
onWSM (wsm) ;

}

delete (msg);

Page 120 of 138

}

void BaseWaveApplLayer:: handleSelfMsg (cMessage*x msg) {
switch (msg—>getKind ()) {
case SEND BEACONEVT: {

}

}

BasicSafetyMessagex bsm = new BasicSafetyMessage ();
populateWSM (bsm) ;

sendDown (bsm) ;

scheduleAt (simTime() + beaconlnterval , sendBeaconEvt);
break ;

case SEND WSA EVT: {

}

WaveServiceAdvertisment* wsa = new WaveServiceAdvertisment ();
populateWSM (wsa) ;

sendDown (wsa) ;

scheduleAt (simTime () + wsalnterval , sendWSAEvt);

break ;

default: {
if (msg)
DBGAPP << ”"APP: Error: Got Self Message of unknown
kind! Name: 7 << msg—>getName () << endl;
break ;

void BaseWaveApplLayer:: finish () {
recordScalar (7 generatedWSMs” | generated WSMs) ;
recordScalar ("receivedWSMs” receivedWSMs) ;

}

recordScalar (" generatedBSMs” | generated BSMs) ;
recordScalar ("receivedBSMs” ;receivedBSMs) ;

recordScalar (7 generatedWSAs” generated WSAs) ;
recordScalar ("receivedWSAs” ;receivedWSAs) ;

BaseWaveApplLayer::~ BaseWaveApplLayer () {

cancelAndDelete (sendBeaconEvt);

cancelAndDelete (sendWSAEvt) ;

findHost()—>unsubscribe (mobilityStateChangedSignal , this);

}

void BaseWaveApplLayer:: startService (Channels:: ChannelNumber channel |
int serviceld , std::string serviceDescription) {
if (sendWSAEvt—>isScheduled ()) {

error (" Starting service although another service

Page 121 of 138

was already started”);

}

mac—>changeServiceChannel (channel);

currentOfferedServiceld = serviceld;
currentServiceChannel = channel;
currentServiceDescription = serviceDescription;

simtime_t wsaTime = computeAsynchronousSendingTime (
wsalnterval , type.CCH);
scheduleAt (wsaTime, sendWSAEvt);

}

void BaseWaveApplLayer::stopService () {
cancelEvent (sendWSAEvt) ;
currentOfferedServiceld = —1;

}

void BaseWaveApplLayer ::sendDown(cMessagex msg) {
checkAndTrackPacket (msg);
BaseApplLayer ::sendDown (msg) ;

}

void BaseWaveApplLayer :: sendDelayedDown (cMessage* msg,
simtime_t delay) {

checkAndTrackPacket (msg);
BaseApplLayer :: sendDelayedDown (msg, delay);

}

void BaseWaveApplLayer :: sendDelayedNormalD (cMessagex msg) {

checkAndTrackPacket (msg);

double distribution = normal(0.7,0.1);
if (distribution < —0.2){
distribution = 0;

}

BaseApplLayer :: sendDelayedDown (msg, 0.3+ distribution);

}

void BaseWaveApplLayer:: checkAndTrackPacket (cMessage*x msg) {
if (isParked && !communicateWhileParked) error (”
Attempted to transmit a message while parked, but
this is forbidden by current configuration”);

if (dynamic _cast<BasicSafetyMessagex>(msg)) {
DBGAPP << 7sending down a BSM” << std::endl;

Page 122 of 138

generated BSMs++;

}

else if (dynamic_cast<WaveServiceAdvertisment*>(msg)) {
DBGAPP << 7sending down a WSA” << std::endl;
generated WS As++;

}

else if (dynamic_cast<WaveShortMessagex>(msg)) {
DBGAPP << 7sending down a wsm” << std::endl;
generated WSMs++;

Page 123 of 138

Annex E - Message Constructor

The content of the different messages that the cars and the R.S.U. can send and receive
in OMNETT++ are defined on a constructor file, that also create the methods to assign
and read this content. For this reason, only the constructor code will be given now. The
location of the file is:

...\src\veins\modules\messages\WaveShortMessage .msg

The code is:

// Based on the code of David Eckhoff
// Copyright (C) 2011 David Eckhoff <eckhoff@cs.fau.de>

// Documentation for these modules is at http://veins.car2x.org/

// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,

// but WITHOUT ANY WARRANTY; without even the implied warranty of

// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

// GNU General Public License for more details.

//

// You should have received a copy of the GNU General Public License

// along with this program; if not, write to the Free Software

// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA

//

packet WaveShortMessage {
//Version of the Wave Short Message
int wsmVersion = 0;
//Determine which security mechanism was used
int securityType = 0;
//Channel Number on which this packet was sent
int channelNumber;
//Data rate with which this packet was sent
int dataRate = 1;
//User priority with which this packet was sent
//(note the AC mapping rules in Macl609_4:: mapUserPriority)
int userPriority = 7;
//Unique number to identify the service
int psid = 0;
//Provider Service Context
string psc = ”"Service with some Data”;
//Length of Wave Short Message

Page 124 of 138

int wsmLength;

//Data of Wave Short Message

string wsmData="Some Data”;

int semaphoreState;
int direction [2];
int ccemType;

int countMessage ;
int carld ;

int senderAddress = 0;

int recipientAddress = —1;
int serial = 0;

simtime_t timestamp = 0;

Page 125 of 138

Annex F - Test Cases

All the different test are build in the same manner, with a document that describe
the type of cars, the possible routed that the cars can follow and the flow to generate. At
continuation there are presented the different test used for the thesis, where the location
of the file is

... \examples\veins\erlangen.rou.xml

Test 0

<routes>
<vType color="1,1,0" maxSpeed="14" minGap="2.5" length="2.5" sigma="0.5"
decel="4.5" accel="2.6" impatience="off" id="vtype0"/>

<route id="10" edges="L1 E3"/>
<route id="12" edges="L1 E2"/>

<route id="20" edges="L2 E4"/>
<route id="22" edges="L2 E3"/>

<route id="30" edges="L3 E1"/>
<route id="32" edges="L3 E4"/>

<route id="40" edges="L4 E2"/>
<route id="42" edges="L4 E1"/>

<flow id="flow201" number="25" period="4" begin="0" route="20" type="vtype0"/>
<flow id="flow101" number="25" period="5" begin="0.5" route="10" type="vtype0"/>
<flow id="flow401" number="25" period="5" begin="1" route="40" type="vtype0"/>
<flow id="flow301" number="25" period="4" begin="1.5" route="30" type="vtype0"/>
</routes>

Test 1

<routes>
<vType color="1,1,0" maxSpeed="14" minGap="2.5" length="2.5" sigma="0.5"
decel="4.5" accel="2.6" impatience="off" id="vtype0"/>

<route id="10" edges="L1 E3"/>
<route id="12" edges="L1 E2"/>

<route id="20" edges="L2 E4"/>
<route id="22" edges="L2 E3"/>

<route id="30" edges="L3 E1"/>
<route id="32" edges="L3 E4"/>

Page 126 of 138

<route id="40" edges="L4 E2"/>
<route id="42" edges="L4 E1"/>

period="5"
period="5"
period="6"
period="6"

period="6"
period="6"
period="5"
period="5"

period="6"
period="6"
period="6"
period="6"

period="5"
period="5"
period="5"
period="5"

begin="0" route="10" type="vtype0"/>
begin="0.5" route="20" type="vtype0"/>
begin="1" route="30" type="vtype0"/>
begin="1.5" route="40" type="vtype0"/>

begin="10" route="12" type="vtype0"/>
begin="11" route="22" type="vtype0"/>
begin="12" route="32" type="vtype0"/>
begin="13" route="42" type="vtype0"/>

begin="60" route="10" type="vtype0"/>
begin="60.5" route="20" type="vtype0"/>
begin="61" route="30" type="vtype0"/>
begin="61.5" route="40" type="vtype0"/>

begin="70" route="12" type="vtype0"/>
begin="70.5" route="22" type="vtype0"/>
begin="71" route="32" type="vtype0"/>
begin="71.5" route="42" type="vtype0"/>

<vType color="1,1,0" maxSpeed="14" minGap="2.5" length="2.5" sigma="0.5"

<flow id="flow101" number="10"
<flow id="flow201" number="10"
<flow id="flow301" number="10"
<flow id="flow401" number="10"
<flow id="flow121" number="10"
<flow id="flow221" number="10"
<flow id="flow321" number="10"
<flow id="flow421" number="10"
<flow id="flow102" number="25"
<flow id="flow202" number="25"
<flow id="flow302" number="25"
<flow id="flow402" number="25"
<flow id="flow122" number="15"
<flow id="flow222" number="15"
<flow id="flow322" number="15"
<flow id="flow422" number="15"
</routes>

Test 2

<routes>

decel="4.5" accel="2.

<route id="10" edges="L1 E3"/>
<route id="12" edges="L1 E2"/>
<route id="20" edges="L2 E4"/>
<route id="22" edges="L2 E3"/>
<route id="30" edges="L3 E1"/>
<route id="32" edges="L3 E4"/>
<route id="40" edges="L4 E2"/>
<route id="42" edges="L4 E1"/>

6" impatience="off" id="vtype0"/>

<flow id="flow101" number="15" period="4" begin="0" route="10" type="vtypeO"/>
<flow id="flow201" number="17" period="5" begin="0" route="20" type="vtype0"/>

Page 127 of 138

period="6" begin="2" route="30" type="vtype0"/>
period="3" begin="5" route="40" type="vtype0"/>

period="10" begin="10" route="12" type="vtype0"/>
period="7" begin="15" route="32" type="vtype0"/>

period="8" begin="20" route="10" type="vtype0"/>
period="10" begin="22" route="20" type="vtype0"/>
period="5" begin="30" route="30" type="vtype0"/>
period="4" begin="35" route="40" type="vtype0"/>

number="8" period="5" begin="40" route="22" type="vtype0"/>
number="9" period="7" begin="50" route="42" type="vtype0"/>

<vType color="1,1,0" maxSpeed="14" minGap="2.5" length="2.5" sigma="0.5"

.6" impatience="off" id="vtype0"/>

period="5" begin="0" route="20" type="vtype0"/>
period="5" begin="0" route="40" type="vtypeO"/>

number="8" period="10" begin="20" route="10" type="vtype0"/>
number="8" period="8" begin="30" route="32" type="vtype0"/>

<flow id="flow301" number="18"
<flow id="flow401" number="10"
<flow id="flow121" number="10"
<flow id="flow321" number="13"
<flow id="flow102" number="10"
<flow id="flow202" number="14"
<flow id="flow302" number="13"
<flow id="flow402" number="12"
<flow id="flow221"
<flow id="flow421"
</routes>
Test 3
<routes>

decel="4.5" accel="2
<route id="10" edges="L1 E3"/>
<route id="12" edges="L1 E2"/>
<route id="20" edges="L2 E4"/>
<route id="22" edges="L2 E3"/>
<route id="30" edges="L3 E1"/>
<route id="32" edges="L3 E4"/>
<route id="40" edges="L4 E2"/>
<route id="42" edges="L4 E1"/>
<flow id="flow201" number="30"
<flow id="flow401" number="30"
<flow id="flow102"
<flow id="flow321"
</routes>

Page 128 of 138

Annex G - Map for base case

The map used for the simulation is created in NETEDIT to be used in SUMO. The
coordinates used in NETEDIT for the creation of the map doesn’t correspond to the one
used in OMNET++, this are done indepently. The location of the file is:

...\examples\veins\erlangen.net.xml

Even if the file is done externally, it can be created in text format, in which in this
case is presented. The code is:

<?xml version="1.0" encoding="UTF-8"7>

<!-- generated on 5/13/2019 11:02:13 PM by Netedit Version 0.32.0
<?xml version="1.0" encoding="UTF-8"7>

<configuration xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation=
"http://sumo.dlr.de/xsd/netconvertConfiguration.xsd">

<input>
<sumo-net-file value=
"C:\Users\gi_ma\src\veins-4.7.1\examples\veins\erlangen.net.xml"/>
</input>

<output>
<output-file value=
"C:\Users\gi_ma\src\veins-4.7.1\examples\veins\erlangen.net.xml"/>
</output>

<processing>
<no-turnarounds value="true"/>
<offset.disable-normalization value="true"/>
<lefthand value="false"/>
<junctions.corner-detail value="0"/>
<rectangular-lane-cut value="false"/>
<walkingareas value="false"/>

</processing>

</configuration>
-—>

<net version="0.27" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="http://sumo.dlr.de/xsd/net_file.xsd">

<location netOffset="0.00,0.00" convBoundary="0.00,-1805.20,1805.20,0.00"

origBoundary=
"-10000000000.00,-10000000000.00,10000000000.00,10000000000.00"
projParameter="1!"/>

Page 129 of 138

<edge id=":0_0" function="internal">
<lane id=":0_0_0" index="0" speed="15.00" length="5.24" width="3.50"
shape="897.20,-893.95 897.00,-895.37 896.39,
-896.39 895.37,-897.00 893.95,-897.20"/>
</edge>
<edge id=":o0_1" function="internal">
<lane id=":0_1_0" index="0" speed="15.00" length="8.35" width="3.50"
shape="897.20,-893.95 897.00,-896.95 896.39,
-899.09 895.37,-900.37 893.95,-900.80"/>
</edge>
<edge id=":0_2" function="internal">
<lane id=":0_2_0" index="0" speed="15.00" length="17.30" width="3.50"
shape="897.20,-893.95 897.20,-911.25"/>
<lane id=":0_2_1" index="1" speed="15.00" length="17.30" width="3.50"
shape="900.80,-893.95 900.80,-911.25"/>
</edge>
<edge id=":o0_4" function="internal">
<lane id=":0_4_0" index="0" speed="15.00" length="5.24" width="3.50"
shape="911.25,-897.20 909.83,-897.00 908.81,
-896.39 908.20,-895.37 908.00,-893.95"/>
</edge>
<edge id=":0_5" function="internal">
<lane id=":0_5_0" index="0" speed="15.00" length="8.35" width="3.50"
shape="911.25,-897.20 908.25,-897.00 906.11,
-896.39 904.83,-895.37 904.40,-893.95"/>
</edge>
<edge id=":0_6" function="internal">
<lane id=":0_6_0" index="0" speed="15.00" length="17.30" width="3.50"
shape="911.25,-897.20 893.95,-897.20"/>
<lane id=":0_6_1" index="1" speed="15.00" length="17.30" width="3.50"
shape="911.25,-900.80 893.95,-900.80"/>
</edge>
<edge id=":0_8" function="internal">
<lane id=":0_8_0" index="0" speed="15.00" length="5.24" width="3.50"
shape="908.00,-911.25 908.20,-909.83 908.81,
-908.81 909.83,-908.20 911.25,-908.00"/>
</edge>
<edge id=":0_9" function="internal">
<lane id=":0_9_0" index="0" speed="15.00" length="8.35" width="3.50"
shape="908.00,-911.25 908.20,-908.25 908.81,
-906.11 909.83,-904.83 911.25,-904.40"/>
</edge>
<edge id=":0_10" function="internal">
<lane id=":0_10_0" index="0" speed="15.00" length="17.30" width="3.50"
shape="908.00,-911.25 908.00,-893.95"/>
<lane id=":0_10_1" index="1" speed="15.00" length="17.30" width="3.50"
shape="904.40,-911.25 904.40,-893.95"/>

Page 130 of 138

</edge>
<edge id=":0_12" function="internal">
<lane id=":0_12_0" index="0" speed="15.00" length="5.24" width="3.50"
shape="893.95,-908.00 895.37,-908.20 896.39,
-908.81 897.00,-909.83 897.20,-911.25"/>
</edge>
<edge id=":0_13" function="internal">
<lane id=":0_13_0" index="0" speed="15.00" length="8.35" width="3.50"
shape="893.95,-908.00 896.95,-908.20 899.09,
-908.81 900.37,-909.83 900.80,-911.25"/>
</edge>
<edge id=":0_14" function="internal">
<lane id=":0_14_0" index="0" speed="15.00" length="17.30" width="3.50"
shape="893.95,-908.00 911.25,-908.00"/>
<lane id=":0_14_1" index="1" speed="15.00" length="17.30" width="3.50"
shape="893.95,-904.40 911.25,-904.40"/>
</edge>

<edge id="E1" from="o" to="hl" priority="1" length="900.00">
<lane id="E1_0" index="0" speed="15.00" length="900.00" width="3.50"
shape="911.25,-908.00 1805.20,-908.00"/>
<lane id="E1_1" index="1" speed="15.00" length="900.00" width="3.50"
shape="911.25,-904.40 1805.20,-904.40"/>
</edge>
<edge id="E2" from="o" to="v1" priority="1" length="900.00">
<lane id="E2_0" index="0" speed="15.00" length="900.00" width="3.50"
shape="908.00,-893.95 908.00,0.00"/>
<lane id="E2_1" index="1" speed="15.00" length="900.00" width="3.50"
shape="904.40,-893.95 904.40,0.00"/>
</edge>
<edge id="E3" from="o" to="h2" priority="1" length="900.00">
<lane i1d="E3_0" index="0" speed="15.00" length="900.00" width="3.50"
shape="893.95,-897.20 0.00,-897.20"/>
<lane id="E3_1" index="1" speed="15.00" length="900.00" width="3.50"
shape="893.95,-900.80 0.00,-900.80"/>
</edge>
<edge i1d="E4" from="o" to="v2" priority="1" length="900.00">
<lane id="E4_0" index="0" speed="15.00" length="900.00" width="3.50"
shape="897.20,-911.25 897.20,-1805.20"/>
<lane id="E4_1" index="1" speed="15.00" length="900.00" width="3.50"
shape="900.80,-911.25 900.80,-1805.20"/>
</edge>
<edge id="L1" from="h1" to="o" priority="1" length="900.00">
<lane id="L1_0" index="0" speed="15.00" length="900.00" width="3.50"
shape="1805.20,-897.20 911.25,-897.20"/>
<lane id="L1_1" index="1" speed="15.00" length="900.00" width="3.50"
shape="1805.20,-900.80 911.25,-900.80"/>
</edge>

Page 131 of 138

<edge id="L2" from="v1" to="o" priority="1" length="900.
<lane 1d="L2_0" index="0" speed="15.00" length="900.

shape="897.20,0.00 897.20,-893.95"/>

<lane id="L2_1" index="1" speed="15.00" length="900.

shape="900.80,0.00 900.80,-893.95"/>
</edge>

<edge i1d="L3" from="h2" to="o" priority="1" length="900.
<lane id="L3_0" index="0" speed="15.00" length="900.

shape="0.00,-908.00 893.95,-908.00"/>

<lane id="L3_1" index="1" speed="15.00" length="900.

shape="0.00,-904.40 893.95,-904.40"/>
</edge>

<edge 1d="L4" from="v2" to="o" priority="1" length="900.
<lane 1d="L4_0" index="0" speed="15.00" length="900.

shape="908.00,-1805.20 908.00,-911.25"/>

<lane id="L4_1" index="1" speed="15.00" length="900.

shape="904.40,-1805.20 904.40,-911.25"/>
</edge>

00">
00" width="3.50"

00" width="3.50"

OOII>

00" width="3.50"

00" width="3.50"

OOII>

00" width="3.50"

00" width="3.50"

<junction id="h1l" type="dead_end" x="1805.20" y="-902.60"

incLanes="E1_0 E1_1" intLanes=""

shape="1805.20,-902.55 1805.20,-909.75 1805.20,-

<junction id="h2" type="dead_end" x="0.00" y="-902.60"
incLanes="E3_0 E3_1" intLanes=""

shape="0.00,-902.65 0.00,-895.45 0.00,-902.55"/>

<junction id="o" type="priority" x="902.60" y="-902.60"
inclLanes="1L2_0 L2_1 L1_0 L1_1 14_0 L4_1 L3_0 L3_1"

intLanes=":0_0_0 :0_1_0 :0_.2_.0 :0_2_1 :0_.4_0 :o_
:0.8.0 :0.9.0 :0.10_0 :0_10_1 :0_12_0 :0_13_

902.65"/>

5.0 :0.6_0 :0_6_1
O :0.14_.0 :0_14_1"

shape="895.45,-893.95 909.75,-893.95 911.25,
-895.45 911.25,-909.75 909.75,-911.25 895.45,
-911.25 893.95,-909.75 893.95,-895.45">
<request index="0" response="0000000000000000" foes="0000000011000000"

cont="0"/>

<request index="1" response="0000000000000000" foes="0000000011000000"

cont="0"/>

<request index="2" response="0000000000000000" foes="1111000011000000"

cont="0"/>

<request index="3" response="0000000000000000" foes="1111000011000000"

cont="0"/>

<request index="4" response="0000110000000000" foes="0000110000000000"

cont="0"/>

<request index="b" response="0000110000000000" foes="0000110000000000"

cont="0"/>

<request index="6" response="0000110000001111" foes="0000110000001111"

cont="0"/>

<request index="7" response="0000110000001111" foes="0000110000001111"

cont="0"/>

Page 132 of 138

<request index="8" response="0000000000000000" foes="1100000000000000"

<request index="9" response="0000000000000000" foes="1100000000000000"

<request index="10" response="0000000000000000" foes="1100000011110000"

cont="0"/>
cont="0"/>
cont="0"/>
<request index="11"
cont="0"/>
<request index="12"
cont="0"/>
<request index="13"
cont="0"/>
<request index="14"
cont="0"/>
<request index="15"
cont="0"/>
</junction>

response="0000000000000000"
response="0000000000001100"
response="0000000000001100"
response="0000111100001100"

response="0000111100001100"

foes="1100000011110000"

foes="0000000000001100"

foes="0000000000001100"

foes="0000111100001100"

foes="0000111100001100"

<junction id="v1" type="dead_end" x="902.60" y="0.00" incLanes="E2_0 E2_1"
intLanes="" shape="902.55,0.00 909.75,0.00 902.65,0.00"/>
<junction id="v2" type="dead_end" x="902.60" y="-1805.20"
inclanes="E4_0 E4_1" intLanes="" shape="902.65,-1805.20 895.45,
-1805.20 902.55,-1805.20"/>

<connection from="L1"
state="m"/>
<connection from="L1"
state="m"/>
<connection from="L1"
state="m"/>
<connection from="L1"
state="m"/>
<connection from="L2"
state="M"/>
<connection from="L2"
state="M"/>
<connection from="L2"
state="M"/>
<connection from="L2"
state="M"/>
<connection from="L3"
state="m"/>
<connection from="L3"
state="m"/>
<connection from="L3"
state="m"/>
<connection from="L3"
state="m"/>
<connection from="L4"

to="E2"

to="E2"

to="E3"

to="E3"

to="E3"

to="E3"

to="E4"

to="E4"

to="E4"

to="E4"

to="E1"

to="E1"

to="E1"

fromLane="0"

fromLane="0"

fromLane="0"

fromLane="1"

fromLane="0"

fromLane="0"

fromLane="0"

fromLane="1"

fromLane="0"

fromLane="0"

fromLane="0"

fromLane="1"

fromLane="0"

toLane="0"
toLane="1"
toLane="0"
toLane="1"
toLane="0"
toLane="1"
toLane="0"
toLane="1"
toLane="0"
toLane="1"
toLane="0"
toLane="1"
toLane="0"

via="

via="

via="

via="

via="

via="

via="

via="

via="

via="

via="

via="

via="

:0_4_0" dir="r"

:0_5_0" dir="r"
:0_6_0" dir="s"
:0_6_1" dir="s"
:0_0_0" dir="r"
:0_1_0" dir="r"
:0_2_0" dir="s"
:0_2_1" dir="s"
:0_12_0" dir="r"
:0_13_0" dir="r"
:0_14_0" dir="s"
:0_14_1" dir="s"

:0_8_0" dir="r"

Page 133 of 138

state="M"/>
<connection from="L4" to="E1" fromLane="0" tolLane="1" via=":0_9_0" dir="r"

state="M"/>
<connection from="L4" to="E2" fromLane="0" toLane="0" via=":0_10_0" dir="g"

state="M"/>
<connection from="L4" to="E2" fromLane="1" toLane="1" via=":0_10_1" dir="s"

state="M"/>
<connection from=":0_0" to="E3" fromLane="0" toLane="0" dir="r" state="M"/>
<connection from=":o_1" to="E3" fromLane="0" toLane="1" dir="r" state="M"/>
<connection from=":0_2" to="E4" fromLane="0" toLane="0" dir="s" state="M"/>
<connection from=":o0_2" to="E4" fromLane="1" tolLane="1" dir="s" state="M"/>
<connection from=":o0_4" to="E2" fromLane="0" toLane="0" dir="r" state="M"/>
<connection from=":0_5" to="E2" fromLane="0" toLane="1" dir="r" state="M"/>
<connection from=":o0_6" to="E3" fromLane="0" toLane="0" dir="s" state="M"/>
<connection from=":0_6" to="E3" fromLane="1" tolLane="1" dir="s" state="M"/>
<connection from=":0_8" to="E1" fromLane="0" toLane="0" dir="r" state="M"/>
<connection from=":0_9" to="E1" fromLane="0" toLane="1" dir="r" state="M"/>
<connection from=":0_10" to="E2" fromLane="0" toLane="0" dir="s" state="M"/>
<connection from=":0_10" to="E2" fromLane="1" toLane="1" dir="s" state="M"/>
<connection from=":0_12" to="E4" fromLane="0" toLane="0" dir="r" state="M"/>
<connection from=":0_13" to="E4" fromLane="0" toLane="1" dir="r" state="M"/>
<connection from=":o0_14" to="E1" fromLane="0" toLane="0" dir="s" state="M"/>
<connection from=":o0_14" to="E1" fromLane="1" toLane="1" dir="s" state="M"/>

</net>

Page 134 of 138

Annex H - Building Parameters

The simulation of OMNeT++ and SUMO requires to input buildings in order to test
the reflection of the message being transmitted over the air. Nonetheless, this only difficult
the simulation being that it is not the end of this thesis, so it is replaced by a dot in the
map.

The locations of the file that control this is:

...\examples\veins\erlangen.poly.xml
and the code of this file is:
<shapes>
<poly id="polyO" type="building" color="1,0,0" fill="true"

layer="-1" shape="195,45 195,45 195,45 195,45"/>
</shapes>

Page 135 of 138

Annex I - OMNeT++4 parameters

In order to run the simulation, it is necessary that the stage to be defined, and the
model of the IEEE 802.11p to be described. For this it is necessary to modify two files. of
Notice is that the stage is the same that the original one, but the R.S.U. are not initialized.

Simulation Parameters

The locations of the file that control this is:
...\examples\veins\omnetpp.ini

and the code of this file is:

[General |
cmdenv—express—mode = true
cmdenv—autoflush = true
cmdenv—status —frequency = 1s
xx.cmdenv—log—level = info
ned—path = .

image—path = ../../images
network = RSUExampleScenario
x%.%.vector—recording = true

debug—on—errors = true
print —undisposed = true

sim—time—limit = 1800s

xx.scalar—recording = true
x*.vector—recording = true

xx.debug = false
xx.coreDebug = false

x.playgroundSizeX = 2000m
x.playgroundSizeY = 2000m
x.playgroundSizeZ = 50m

Page 136 of 138

*.annotations .draw = true

x.obstacles.debug = false
x.obstacles.obstacles = xmldoc(” config.xml” |
” // AnalogueModel [@type="SimpleObstacleShadowing | / obstacles”)

*.manager.updatelnterval = 1s

x. manager. host = "localhost”

*.manager . port = 9999

x. manager . autoShutdown = true

. manager . launchConfig = xmldoc(”erlangen .launchd.xml”)

%.TSU [0].mob111ty x = 950
«x.rsu[0]. mobility.y = 950
x.rsu[0]. mobility.z = 3

x.rsu [*].applType = "TraCIDemoRSUIl1p”
x.rsu [*].appl.headerLength = 80 bit
x.rsu [*].appl.sendBeacons = false
x.rsu [x].appl.dataOnSch = false
x.rsu[*]|.appl.beaconInterval = 1s
x.rsu[x]|.appl. beaconUserPriority = 7
x.rsu [*].appl.dataUserPriority = 5

11p specific parameters
#
NIC—Settlngs
*.connectmnManager.senlerect = true

x.connectionManager. maxInterfDist = 500m
x.connectionManager . drawMaxIntfDist = false
x.%%.nic.macl609_4.useServiceChannel = false

*.%%.nic.macl609_4.txPower = 20mW
x.x%.nic.macl609_4.bitrate = 6Mbps

Page 137 of 138

x.%%.nic.phy80211p.sensitivity = —89dBm

x.%%.nic.phy80211p.useThermalNoise = true
x.x%.nic.phy80211p.thermalNoise = —110dBm

%.%%.nic.phy80211p.decider = xmldoc(” config.xml”)
%.%%.nic.phy80211p.analogueModels = xmldoc(” config.xml”)
x.x%.nic.phy80211p.usePropagationDelay = true

%.%%.nic.phy80211p.antenna = xmldoc(”antenna.xml”
7 /root /Antenna [@id="monopole ’]”)

x.node [*]. applType = /TraCIDemollp/

«.node [*].appl.headerLength = 80 bit
x.node [*].appl.sendBeacons = false
x.node [x].appl.dataOnSch = false
x.node [x].appl.beaconInterval = 20s

.node [x]. VelnsmobﬂltyType debug true

*
x.node [*]. veinsmobility .x = 0

x.node [*]. veinsmobility .y = 0

x.node [*].veinsmobility.z = 1.895

x.node [*0]. veinsmobility .accidentCount = 0

x.node [*0]. veinsmobility.accidentStart = 15s

x.node [*0]. veinsmobility.accidentDuration = 30s

[Config Default |

Stage Parameters
The locations of the file that control this is:
..\examples\veins\RSUExampleScenario.ned

and the code of this file is:

import org.car2x.veins.nodes.RSU;
import org.car2x.veins.nodes.Scenario;

network RSUExampleScenario extends Scenario

{
}

submodules:

Page 138 of 138

	Introduction
	State of art
	Autonomous Driving Overview
	IEEE 802.11p Overview

	Software to use
	SUMO
	OMNeT++
	Veins
	How it works
	Initialization

	Modeling the Problem
	Characterization of the intersection
	Possible Improvements or changes to the characterization

	Description of the control
	Assumptions
	Logic behind the controller
	Centralized vs Decentralized Control
	Adaptive Controller
	Traffic Congestion

	Parameters of the Controller
	Structure of the controller
	State of the semaphore
	Internal Message
	External Message
	Functional Functions

	Workflow
	Initialization of the Control Algorithm
	State of the Car
	Control of States
	Synchronization

	Tests
	Test 0 - Basic Base Case
	Uncontrolled Simulation
	Controlled Simulation

	Test 1 - Extended Base Case with heavy and intermittent flow
	Uncontrolled Simulation
	Controlled Simulation

	Test 2 - Heavy flow random vehicle
	Uncontrolled Simulation
	Controlled Simulation

	Test 3 - Early finish in a heavy congested lane in only one direction
	Uncontrolled Simulation
	Controlled Simulation with Early Finish On/Off

	Analysis
	Test 0
	Test 1
	Test 2
	Test 3

	Conclusions
	References

