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Abstract

Simultaneous Localization and Mapping(SLAM) has been considered by literature the

holy grail of the robotics because of many aspects, �rst above all the enhanced ability

of generic unmanned vehicles to move in an unknown and unstructured environment.

Anyway, SLAM is a chicken-or-egg problem since for localization a map is needed

and for mapping the information about the precise position is required, hence the

two aspects cannot be approached independently, indeed their reciprocal relationship

determines the real core of the matter. The work aims at describing what SLAM is

and how it can be implemented from a theoretical point of view. A revision of the

literature and research of actual technologies has been carried on. Last but not least

an application of this approach has been experimented on an example of service robot

acted at escorting and helping airport travelers under the supervision of California

State University of Los Angeles in collaboration with the San Diego Airport.
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Executive Summary

The purpose of the paper is to provide an overview of the literature about Simultane-

ous Localization and Mapping matter, its theoretical foundaments and the description

on how it can be implemented on a service robot.

Simultaneous Localization and Mapping (SLAM) is the problem of localizing a vehi-

cle in an unknown and unstructured environment while mapping it. It is referred to

be a chicken-or-egg problem since the two phases, localization and mapping, cannot

be tackled independently since in order to resolve one of them the other is needed.

SLAM exploits sensors to perceive reality surroundings the system and creates a map

in order to make successive localization faster and more reliable. Example of used

sensors are cameras, monocular or stereo, or ToF cameras and lidars. The �rst ex-

ploits only visual information gathered from the lenses, the last uses lasers to scan

in three or two dimensions the environment, hence exploiting the time-of-�ight data,

while ToF cameras are hybrids between the two.

In robotics application like service robots the lack of information about the mission

environment create the need of a vehicle able to perceive the reality in real time, which

cannot rely on a-priori information about it. This is why approaches like SLAM seems

to be so appealing in this �eld.

As en example of implementation of the SLAM system in the �eld of service robotics

an escorting robot prototype has been built. The robot was conceived under the su-

pervision of California State University of Los Angeles in collaboration with the San

Diego Airport. Its aim was to assist airport travelers in the airport, providing services

like maps, information and navigation system. A costumer would arrive at the airport

and ask the robot to show him the way to check-in desks, gates or restaurants.
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The main author contribution to the project has been the development of SLAM

design and integration in the existing vehicle. The software, entirely developed in

C++ runs on an Ubuntu environment installed on the NVIDIA development board,

JETSON TX2. The software is able to take images from the stereocamera, and from

these, create the map of the environment in �rst place. After map was generated

the software would localize the robot and send commands to the motors in order to

complete the prescribed mission by reaching the �nal destination decided by the user,

who interfaced himself with the autonomous robot by a tablet application.
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1 Introduction to service robotics

The term Service Robotics is used to refer to that category of autonomous or auto-

matic unmanned machines able to perform tasks that can be more or less repetitive

depending on the kind of application. Service robots are nowadays used in each �eld of

the human life, from the domestic environment to the industrial one. Their increasing

capability to e�ectively interact with clients or workers are making them suitable to

be applied in wider and wider range of operations. Nowadays robot are gaining impor-

tance and application in those works characterized by dull and repetitive tasks even

taking into account the challenges that an unstructured and dynamical environment

presents, nonetheless robots are increasingly exploited in more complex environment

when they are able to overcome the intrinsic limitations of reality perception. Auto-

mated machines that perform repetitive tasks in not a novelty, it is enough to think

to the Ford Motor Company, which in 1913 introduced a car production line which is

considered one of the pioneer types of automation in the manufacturing industry[11].

With the passing of the years automation in industry became an essential feature in

market competitive industries, this approach makes possible an increased production

in reduced time, less errors and more repeatability and accuracy[12]. What makes

service robotics a completely di�erent paradigm from automatic robots is the abil-

ity of working in unknown,changing and crowded environment, the kind of services

provided and the complexity of the system.
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Chapter 1. Introduction to service robotics

The way service robots are made suitable for these complex tasks comprehends

di�erent characteristics[13] :

1 Sensors which perceive the environment and the own state.

2 Modelling of the sensorial information in order to represent the ascertainable

environment as well as the state of the robot.

3 Integration of signi�cant local information to a global and consistent description.

4 Methods to exploit the gathered knowledge to accomplish tasks of di�erent

kinds

1.1 Example of service robots

To the aim of introducing the work done some examples of service robotics will be

examined in order to understand the actual state of the art of the leader technologies

and solutions. Leaving apart the "less-challenging" solutions such as: automatic

vacuum dust machines, essential domotic applications, etcetera. this section will

brie�y describe some exmaple of indoor autonomous robots able to perform various

tasks made challenging by the dynamical unstructured environment they operate.

1.1.1 Savioke[1]

Savioke is an autonomous wheeled platform designed for use in the hospitality and

service industries. It is meant to operate as butler mainly in hotel facilities, it is able

to charge a payload inside a secured trunk and navigate through the environment in

order to complete the delivery.

The robot is approximately 1 meter tall, weighs less than 50 Kg, has a carrying

capacity of 57 L, and is designed to travel at a human walking pace. It travels

independently between �oors via the hotel elevator[14].

2



Chapter 1. Introduction to service robotics

Figure 1.1: Savioke Relay

The robot interact with people through a user interface implemented on a small

tablet thought to be minimal and easy to use. Moreover it is able to navigate and

localize itself via sensors such as LiDar and proximity sensors.

1.1.2 Airstar

Airstar is a robot that can help airline passengers navigate the airport. It is fully

autonomous and able to understand if obstacles hinder its motion and avoid them. It

provides also general information about the airport, congestion status, shops, etcetera.

It communicates with users via one big screens positioned on the front and rear central

body[15].

Figure 1.2: LG Airstar

It is currently deployed for commercial use at Incheon airport in Seoul, South Korea.
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Chapter 1. Introduction to service robotics

1.1.3 Aethon[2]

Aethon is an example of heavy weights carrier autonomous robot. It is meant to move

payloads up to 700 Kg with a speed of 76 cm/s.

Figure 1.3: Aethon

Its development is aimed to free up sta� to focus on patient care, and improve service

levels. Hospitality environments can gain improvements in e�ciency as was well as

in the guest experience.

1.2 Robot perception of reality

As previously pointed out the main characteristic of modern service robot applications

is the capability of the machines to operate in unpredictable and crowded environ-

ment. In industrial automated production deployment robots like mechanical arms

or automated carriers can be made aware of the environment a priori, this means that

the assumption of no unforeseen events is made, with the only exception of really haz-

ardous situations, and the robot will move inside a always known and unchangeable

space. Moreover, aiding the robot with infrastructure changes is simpler in this kind

of applications, for example Landmark-based Navigation is convenient in the scenario

of a stock that can precisely calculate the increase in e�ciency the autonomous vehicle

can import, calculate revenues and operate investments in infrastructure according

4



Chapter 1. Introduction to service robotics

to that. To make an example of what stated Autonomous ground vehicles (AGV)

are widely used in stocks by di�erent companies, among all Amazon is a leader in

the sector and on 2018 Deutsche Bank published a market research about Amazon

transportation[16] pointing out the introduction of autonomous carriers in stocks cut

expenses of about 20% resulting in $22 million in cost savings. This reduce in costs

came from the less involved employers and in reduced �xed costs such as less air

condition and lights. With these kind of advantages become easy to adapt the en-

vironment to a robot but when it comes to machines that operate in contact with

people or clients the paradigm is di�erent, the robot must be able to adapt and un-

derstand the environment just like a human can do. What is clear is that autonomous

robots need sensor of any kind to grasp information from the surrounding and with

those gathered it has to take decisions. In the following sections 1.2.1 and 1.2.2 the

methods to perceive the environment and the ways the machine interact with it will

be described.

1.2.1 Perception of surrounding and localization methods

Localization in an unknown environment is something not novel in today world, in

fact Global Positioning System (GPS) satellites were launched in 1978 and became

fully operational in 1993 [17]. GPS provides a global position information through the

principle of Trilateration and it is considered the De Facto standard in automotive

localization sector.

This kind of technology allows a precision of up to few centimeter and, in long term

measurement, millimeters, but only for military purposes; when it comes to civil de-

ployment GPS provides an accuracy of maximum 4.9 m [18]. The main limitations of

GPS is that it is suitable only for outdoor use since in indoor environment signal is

not able to reach the receivers.

The need of sensors able to track the position also indoor is the core characteristic

of autonomous ground vehicles and they can be mainly divided in two di�erent cate-

gories: Absolute and relative localization systems.

Relative position is a kind of localization dependent of previous state, which means
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Chapter 1. Introduction to service robotics

Figure 1.4: GPS Trilateration Mechanism

that the system does not know a priori its position but it knows only its local lo-

calization relative to previous poses, while absolute position, as can be intuited by

term is referred to the global localization performed with external resources. Usually

relative positioning is made possible by on-board sensors like encoders,gyroscopes,

inertial measurement units etcetera, these techniques usually su�er of poor precision

on the long time scale since usually they accumulates error with the passing of time.

On the other hand global positioning rely on extern sources like beacon, GPS, or

landmarks[19]. Descriptions of the systems to build maps of unknown environments

usable to perform global positioning methods will follow as long with the methods to

detect obstacles and key feature on the surrounding.

Camera

Among various sensors Cameras can be used not only to localize a AGV but also to

extract key elements and useful information from the recorded images[20].

As far as localization is concerned Cameras, single or stereo, are at the base of the

visual Simultaneous Localization and Mapping (vSLAM). Images can be used to

save the map of an unknown environment in order to globally position a vehicle or

they can be used to track the motion of the robot by subsequent reference frames

transformations, each of them related to the previous state. In chapter 2 an exhaustive

explanation of this technique will be carried on. The use of cameras is not limited

just to localization but they can be exploited to have the perception of the depth

6



Chapter 1. Introduction to service robotics

and extract from it important information regarding obstacles or goal objects. Last

but not least from the images of the camera the robot can be made able to discern

between the nature of di�erent objects and take decisions accordingly[21].

LiDAR

LiDAR stands for Light Detection and Ranging and it is an e�cient method to scan

surrounding environment in two or even three dimensions[22]. These technology works

in a fashion similar to the one of the Radar except from the fact that it exploits pulses

of light in place of radio waves. Performing what is called Time of Fights Measure-

ments, LiDAR calculates the time it takes for the light to reach the obstacle and

hit back the emitter, in this way this technology senses the distances from objects

occuping the space[23]. In case of three dimensional scanning, LiDAR can be used to

build point cloud based maps from which di�erent objects shapes can be recognized,

moreover they reveal to be useful in those application requiring view under the sur-

face, for example crack detection or surface degradation.

Figure 1.5: Example of an output map from LiDAR inspection

1.2.2 Interaction with environment

In service robotics the interaction is not limited with the environment, but often also

human �nal users are involved, to this aim the machine must be able to e�ectively

interact in order to complete its job. The way robots like AGV operating in stocks or

7



Chapter 1. Introduction to service robotics

charging areas work is closely related to their end e�ector. The nature of this tool,

usually located at the extremity of the manipulator arm, is directly related to the

�nal scope of robot itself. Just to make some examples the types of end e�ectors

varies from a gripper or robotic hand to a welder or pressure sensor.

Figure 1.6: Sample images of end e�ectors from Robotiq R©[3]

This kind of approach is suitable when the only variable to take into account is the

e�ciency of operations, but when it comes to deal with human more attention must

be paid in the interaction design. The concept of humanoid robot acceptance by

human was �rstly studied by Professor Masahiro Mori and carried to the discovery

of what has been named Uncanny Valley. This theory asserts is possible to reach a

certain level of a�nity only abandoning a human-like design in order to overcome the

risk of falling inside the Uncanny Valley, this de�ection shown in �gure 1.7. From

these studies[4] it appears that humans tends to accept and like robots only up to a

certain degree of human likeness and the reject is made worse by the movement as

�gure 1.8 shows.

8



Chapter 1. Introduction to service robotics

Figure 1.7: Uncanny valley[4]

Figure 1.8: E�ect of movement on Uncanny valley plot

An empirical prove of this trend can be found in the shape and appearances of

commercial examples of autonomous robot that are designed to strongly and e�ec-

tively interact with people such as LG Airstar R© (1.1.2) or Savioke(1.1.1) R©. Au-

tonomous vehicles like those interacts with people through the use of tablets or voice

recognition techniques and do not exploit end e�ectors since their services does not

require a manipulation of the surrounding but only to carry loads,provide information

and directions, and most important be able to localize and navigate in an unstruc-

tured,dynamical and indoor environment. The purpose of this work falls inside this

last scope as will be exhaustively described in following chapter 3.
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2 Simultaneous Localization and

Mapping techniques

The aim of this paper is to describe the work done with the start up Innotech aimed

to design and build a fully autonomous service ground robot. The design has been

cured by the innovation incubator of San Diego airport, in whose environment the

robot has been developed and tested. The elementary operation that a AGV must

be able to perform is to go from point A to point B. This apparently trivial problem

becomes more di�cult the more it is deeply analyzed. The machine must be able

to locate itself and know where point A or B are or recognize if it reached one of

them. The path from initial to �nal point must be created and in real time modi�ed

if obstacles come across. The scope of this chapter is to provide a summary of state

of the art of Simultaneous Localization and Mapping techniques to solve one of the

previously described problems, precisely the localization. A revision of the literature

brings to the conclusion that SLAM exploits two di�erent kind of technologies used

as sensors to perceive the world, LiDAR and Cameras. The above mentioned AGV

embeds a stereocamera for the reasons that will be explained in chapter 3 and in

order to describe how system has been implemented a revision of the state of the art

of the visual SLAM approach will be made.

2.1 Visual SLAM

Simultaneous localization and mapping is the term referred to the problem of esti-

mating a moving vehicle position in a unknown environment while building a map

10
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of surroundings. This is of key importance for the achievement of fully autonomous

robots.

At each time instant t the following quantities are de�ned:

• xtxtxt is the vector containing all the poses information about the robot

• ututut is the control input applied to the robot at time instatnt t− 1

• mjmjmj is the vector containing the j
th landmark coordinates

• zjtzjtzjt is the observation measurement of the jth landamark at time instant t

The statement of the SLAM problem can be generally described by equation 2.1

P (xt,m|Z0:t, U0:t, x0) (2.1)

2.1 describes the probability distribution of the actual pose of the robot conditioned

by the initial conditions or position, coordinates of landmarks and history of control

inputs.

2.2 Visual SLAM sensors

Visual based Simultaneous Localization and Mapping exploits cameras to perceive

the environment. These kind of sensors seem to be very appealing for the �nal

purpose since they are cheap,light,compact and low power consuming, moreover they

are suitable to fairly detect stable features and extract useful information from the

environment[24]. Before going into the details describing how Visual SLAM algorithms

work an explanation of the principle underlying the system will be provided: depth

reconstruction from images. All the di�erent sensor in the market can be subdivided

in three main categories.

Monocular cameras

Monocular cameras, or Monocameras in short, are sensors characterized by just one

lens that capture frames providing no immediate and clear information about depth.

11
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Figure 2.1: Example of MonoCamera: Fire�y R© S [5]

The most immediate way to understand the distance of an object from the camera is

the triangle similarity method :

Two triangles are said "similar" if their angles are all congruent and corre-

sponding sides ratio are equal

Bearing this in mind it is possible to calculate the distance of an object with known

dimensions precisely from the frame:

D = W ∗ F/P (2.2)

Where D is the distance between sensor and analyzed object, W is the known width

of the object, F is the focal length that is an intrinsic parameter of the sensor and P

is the width measured in pixels.

Of course this formula does not serve SLAM purpose since segmentation of the

image, object recognition and known dimensions are almost never possible conditions.

Through the years diverse techniques have been used to extract the depth information

from mono images, but they can coarsely classi�ed in two main categories[25]:

- SFM: Structure-from-motion techniques exploit the physics of motion and per-

ception to understand the distance of a moving object inside �xed consecutive

frames
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Figure 2.2: Distance calculation of known dimensions object

- DFC: Depth from Combining Defocus and Correspondence techniques relies on

di�erent depth cues such as texture,Focus/Defocus, occlusion or gravity

Tha main drawback of this approach aimed to convert bi-dimensional images to three

dimension is that they are computationally expensive and not enough accurate for

real-time, high frequency based applications[26]. When monocular cameras are used

for SLAM purposes another approach is usually adopted to create a depth perception

and it is the acquisition of the same image frame from di�erent point of views to

exploit the principle of triangulation, which will be described further on this chapter.

Examples of pseudo-stereo implementations can be found in [27] [28] [29] [30] [31].

ToF Cameras

Figure 2.3: Example of ToF Camera: Basler ToF Camera[6]

ToF Cameras stands for Time of Flight Cameras, these sensors exploit the technol-

ogy of Time-of-�ight measurement, just like LiDAR, and provide several information
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about the frame scene[32]. Basically these cameras rely on the principles of light re-

�ection: the illumination unit emits modulated light with a solid state laser or LED

operating near the infrared domain, about 850nm, and an imaging sensor, which ac-

cepts only same nature light, hit by photons converts energy in electric current. Phase

shift between illuminating and re�ected light is calculated an therefore the distance

from the camera plane of each captured pixel[7].

Figure 2.4: 3D time-of-�ight camera operation (Image taken from Texas
Instrument[7])

The advantage of ToF paradigm is its low software complexity, fast response time and

independency from frame brightness, moreover range results to be scalable, from 10−2

to 103 meters. Nowadays ToF cameras have low-resolutions and integrated solutions

are not common[33], the solution is to use a regular RGB camera and a ToF sen-

sor, therefore, calibrating the set-up, a �nal output 4-channel frame can be provided

(RGB-Depth).
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Stereocameras

The term Stereocamera refers to an hardware set up aimed to capture two images of

the same scenario from two slightly di�erent point of views in order to exploit the

stereoscopic properties, which will be described further on. Basically a stereo system

is made up by two identical lenses �xed at a certain distance called baseline.

Figure 2.5: Example of Stereocamera: ZED R© camera[8]

Stereocameras usage relies on the principle of Triangulation, this is the process able

to determine the three dimensional position of an object from multiple images, in

this case two. The basic principle of triangulation can seem trivial when no source of

errors and uncertainty are taken into consideration.

From �gure 2.6 can be seen that the 3D point P represented in the real world refer-

Figure 2.6: Simpli�ed Stereo Vision System[9]
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ence frame W(X, Y, Z) is projected on two di�erent locations in the two dimensional

camera planes and these can be computed by equations 2.3 and 2.4.

uL = f ·X/Z (2.3)

and

uR = f · (X − b)/Z (2.4)

Disparity is now de�ned as the di�erence between 2.3 and 2.4

Disparity = uL − uR = f · b/Z (2.5)

And �nally 2.5 is linearly related to the depth:

depth = f · b/disparity (2.6)

In reality a stereo set-up is more complex and even the best stereocamera will in-

troduce some distortions in the output, although explained basic principles are still

valid.

Figure 2.7: Typical Stereo Vision System[9]
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The main arising problem to tackle are three:

- Evaluation of intrinsic parameters: The evaluation of the distortion parameters

introduced by lenses is of key importance to understand the spatial relation

between the two camera planes and hence a correct depth estimation

- Recti�cation of captured images: Images taken from the two cameras are not

parallel and usually do not lie on a common plane, the �nal aim of recti�cation

is exactly this, project images onto the common plane.

- Point correspondence on both frames: Last but not least, triangulation requires

an exact correspondence of projected points, if this does not hold, even correct

geometrical reasoning's would lead to incorrect results.

Figure 2.8: Incorrect triangulation example

From previous sensors description some reasoning will be made in order to explain

why the choice of the sensor to embed in the project AGV has been taken. Monocular

cameras were discarded due to their intrinsic criticalities in perceiving depth. Stere-

ocamera has been preferred to ToF sensors because, as will be described in chapter

3, an arti�cial intelligence algorithm called YOLO has been deployed on the machine

and it needed high resolution images to extract information from the frames. More-

over, in order to reduce the number of components of the system and in this way its

complexity the choice has been to mount a ZED R© stereocamera, which would serve

both YOLO and SLAM purposes.

In the light of this, deeper description of stereo system based SLAM will follow.
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2.2.1 Camera preparation for SLAM

As previously mentioned the �rst step to take when using a stereocamera is the

calibration process, this is the starting point to obtain more precise and reliable

depth measurements[34]. Scope of calibration is to estimate intrinsic and extrinsic

parameters of the camera. Main source of distortions come from misalignment and

assembling tolerances on mechanical sizes or lenses manufacturing defects.

Figure 2.9: Stereocamera misalignment error sources[10]

In [35] the authors reports in order of relevance the most important parameters to

be taken into account when setting up and calibrating a camera system. They are

shown in table 2.1, sensitivity mathematical expressions are also reported.

An important source of error in stereo disparity calculation and recti�cation process

arises from lenses geometrical and mounting imperfection. This last branch can be

further subdivided in three main categories[36]:

- Radial Distortion : This causes set of points from the original image to move

inward grouping together and scaling down dimensions or moving outward and

spreading out towards margins. When distortion is negative it is referred as

barrel distortion, when positive pincushion distortion. This type of distortion is

symmetrical with respect to the optical axis and it is governed by the following

equation 2.10, if perfect lens centering is assumed.

δρr = k1ρ
3 + k2ρ

5 + k3ρ
7 + ... (2.7)
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Table 2.1: Sensitivity to depth precision for di�erent misalignment[10]

Error Source Relative Change in Depth

Y aw Error ∆φ ∆Z
∆φ
≈ −Z2

B
(1 +X2)

Sensor T ilt∆φ ∆Z
∆φ
≈ −X2

2

B

Pitch Error∆θ ∆Z
∆θ
≈ Z2

B
X2Y2

Roll Error∆γ ∆Z
∆γ
≈ Z2

B
Y2

Baseline Error∆B ∆Z
∆B
≈ −Z

B

Focal Length Error∆f2
∆Z
∆f2
≈ − Z2

Bf22

Where ρ is the distance from the principal point of the image plane and kn

are radial distortion coe�cients. Equation 2.7 describes the point by polar

coordinates (ρ, φ) and in particular the above mentioned imperfection will a�ect

only radial displacements, in order to express the error in the same reference

frame of the image a Cartesian coordinates transformation must be applied, as

equations 2.8 and 2.9 show.

x = ρ cosφ

y = ρ sinφ
(2.8)

δxr = k1x
(
x2 + y2

)
+ o
[(
x, y)5

)]
δyr = k1y

(
x2 + y2

)
+ o
[(
x, y)5

)] (2.9)

Usually radial distortion are mainly caused by �awed radial curvature of the

lens elements.
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(a) Barrel distortion

(negative)

(b) Undistorted object (c) Pincushion distortion

(positive)

Figure 2.10: Radial distortion

- Decentering Distortion : This defect comes from the non collinearity of

lenses optical centers and it introduces both radial and tangential point dis-

placement. It is analytically described by equation 2.10.

δρd = 3(j1ρ
2 + j2ρ

4 + ...) sin(φ− φ0)

δtd = (j1ρ
2 + j2ρ

4 + ...) cos(φ− φ0)
(2.10)

Where φ0 is the angle between the positive x-axis and the known maximum

tangential distortion axis. Applying following transformation 2.11 and substi-

tutions 2.12 2.13 to 2.11 it is possible to obtain 2.14.δxd
δyd

 =

cosφ − sinφ

sinφ cosφ

δρd
δtd

 (2.11)

cosφ = x/ρ

sinφ = y/ρ
(2.12)

p1 = −j1 sinφ0

p2 = j1 cosφ0

(2.13)

δxd = p1(3x2 + y2) + 2p2xy + o
[
(x, y)4]

δyd = 2p1xy + p2

(
x2 + 3y2

)
+ o
[
(x, y)4] (2.14)
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Figure 2.11: Decentering Distortion

- Thin Prism Distortion : This last sink of error arises from imperfect lens

manufacturing and assembly leading to the adjunction of a thin prism to the

optic projection and just like decentering distortion it causes both tangential

and radial displacements. Thin prism can be mathematically modeled by 2.15

and with patterns similar to 2.11 2.12 2.13 follows 2.16.

δρp = (i1ρ
2 + i2rho

4 + ...) sin(φ− φ1)

δtp = (i1ρ
2 + i2rho

4 + ...) cos(φ− φ1)
(2.15)

Where φ1 similarly to φ0 is the angle between positive x-axis direction and max-

imum tangential distortion axis, but as the two distortions have di�erent e�ects

on radial and tangential displacement the two maximum distortion reference

axis can be di�erent.

δxp = s1

(
x2 + y2

)
+ o
[
(x, y)4]

δyp = s2

(
x2 + y2

)
+ o
[
(x, y)4] (2.16)
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Figure 2.12: E�ect of tangential distortion

Assuming negligible all the terms of order higher than 3 it is possible to superimpose

the e�ect of the treated distortions in order to obtain the two comprehensive formulas

for point displacement along X and Y directions. By summing equations 2.14 2.9

2.16 it is possible to �nally obtain the equation 2.17.

δx (x, y) = s1

(
x2 + y2

)
+ p1(3x2 + y2) + 2p2xy + k1x

(
x2 + y2

)
δy (x, y) = s2

(
x2 + y2

)
+ 2p1xy + p2

(
x2 + 3y2

)
+ k1y

(
x2 + y2

) (2.17)

Di�erent tools are available to calibrate the stereo pairs of cameras and obtain their

parameters from simple procedures, examples can be OpenCV calibration camera

library[37] and Matlab Stereo Camera Calibrator App [38]. Both of them will be further

described in chapter 4.

2.2.2 Image processing for SLAM

Before explaining how to tackle images recti�cation and point correspondence prob-

lem, some de�nition are needed:

Epipole

The epipole is the point of intersection of the line joining the optical

centres, that is the baseline, with the image plane. Thus the epipole is the

image, in one camera, of the optical center of the other camera
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Epipolar Plane

The epipolar plane is the plane de�ned by a 3D point M and the optical

centres C and C'

Epipolar line

The epipolar line is the straight line of intersection of the epipolar plane

with the image plane. It is the image in one camera of a ray through

the optical centre and image point in the other camera. All epipolar lines

intersect at the epipole.

Figure 2.13: The epipolar constraint

De�nitions and �gure 2.13 have been taken from [39].

Assuming two cameras O and O′ with �xed baseline b and linked by the transforma-

tion matrix 2.18:

T =

R t

0 1

 (2.18)

point correspondence is the term referred to the problem of identifying which point

x′ on image plane O′ corresponds to a point x on image plane O.

With reference to �gure 2.14, the world point X is projected on image plane O in x

that is the intersection point between ray OX and image plane O. In order to �nd x′

it is possible to notice that ray OX has as image a line, called epipolar line, on image

plane O′ and that x′ must lay on this line, in particular it is the intersection between

ray O′X and the image line of OX on image plane O′[40].
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Figure 2.14: Epipolar geometry

These statements held because of some geometrical constraints, points O, O′ and X

form a plane called Epipolar plane and epipole e is image of camera center O′ and

vice versa. Same reasoning made for a point correspondence relation from O to O′

remain valid also in the opposite case. It is worthy to notice that di�erent world

points generate di�erent epipolar lines on image planes, but all of them intersect in

the epipoles.

Now that the geometric problem has been stated it is possible to see how these points

and line can be analytically found, in order to do this the concept of Fundamen-

tal Matrix must be introduced. The fundamental matrix F is used to translate the

epipolar geometry into algebraic form[41].

l′ = [e′]×Hπx = Fx (2.19)

Where l′ is the epipolar line on image plane O′, the notation [e′]× is de�ned as a 3x3

skew-symmetric matrix and Hπ is a two-dimensional homography mapping each xi

to x′i. Fundamental matrix results then to be de�ned in equation 2.20.

F = [e′]×Hπ (2.20)

Must be pointed out that F represents a 3x3 mapping matrix of a two-dimensional to

one-dimension transformations, hence it must have rank equal or lower to 2, generally

it is 2. Moreover the geometric derivation described by equation 2.19 relies on a scene

plane but it is not a necessary condition for the existence of F.
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It follows that fundamental matrix possesses some properties describing what stated

before.

Point Correspondence: Given two correspondent points

x′TFx = 0 (2.21)

Epipolar lines: Given two epipolar lines of two correspondent points

l′ = Fx

l = F Tx′
(2.22)

Epipoles:

Fe = 0

F T e′ = 0
(2.23)

In order to estimate the fundamental matrix it is possible to take two projected points

x = (x, y, 1)T and x′ = (x′, y′, 1)T and solve equation 2.21 as follows in equation 2.24.

x′xf11 + x′yf12 + x′f13 + y′xf21 + y′yf22 + y′f23 + xf31 + yf32 + f33 = 0

Af =


x′1x1 x11y1 x′1 y′1x1 y′1y1 y′1 x1 y1 1
...

...
...

...
...

...
...

...

x′nxn x′nyn x′n y′nxn y′nyn y′n xn yn 1

 f = 0
(2.24)

To the aim of �nding a unique solution of F, matrix A must have rank 8 and in this

case solution is trivial (up to scale), but due to noise rank of matrix A can become

higher than 8, usually 9 since it has 9 columns. In the last case the Least Square

estimator can be used in order to minimize ‖ Af ‖ subject to ‖ f ‖= 1.This approach

is called 8-point algorithm.

In case matrix A has rank 7 thus having dimensions 7x9, still the problem is feasible

exploiting the singularity constraint of F leading to a unique solution (up to scale),

this last method is referred as 7-point correspondences [42].

25



Chapter 2. Simultaneous Localization and Mapping techniques

In order to reduce the degrees of freedom of the estimation problem it is possible to

introduce the specialization of F to the case of normalized coordinates called Essential

matrix E. Knowing the calibration matrix K it is possible to decompose the camera

matrix as follow: P = K [R|t] resulting in the relation 2.25.

x = PX (2.25)

Normalized coordinates are then de�ned as the result of the transformation 2.26

x̂ = K−1x = [R | t]X (2.26)

Considering now a stereo-pair with normalized camera matrices P = [I | 0] and

P ′ = [R | t] the fundamental matrix takes the name of essential matrix and has the

form described by equation 2.27.

E = [t]×R = R
[
RT t

]
×

(2.27)

The de�ning equation for the essential matrix is x̂′TEx̂ = 0 and substituting 2.26 it

follows that E and F are related by equation 2.27.

E = K ′TFK (2.28)

The reduced degrees of freedom of the essential matrix with respect to the fundamen-

tal one result in extra constraints exploitable to solve the correspondence problem[42].

Having discussed the correspondence problem it becomes clear how it is the underly-

ing layer of every possible SLAM algorithm and technique and because of this it must

be tackled with care. In modern application it is a de facto requirement for almost

every SLAM software to work with recti�ed images[43]. Recti�cation process applies

to the images a transformation in order to project the two di�erent image planes to

a common plane so that epipolar lines of both frames are coincident and parallel to

the coincident horizontal axis of right and left images. This process is essential for
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stereo analysis since correspondence seeking algorithms can reduce the research space

to only one dimension, speeding up execution time and accuracy of the �nal result.

Figure 2.15: Recti�cation of an image stereopair

What stated before is the core of the matter and what traditionally has been done

in order to rectify image stereopairs[44], but some problems arises when epipoles are

inside or near to the frames space, in fact this makes the recti�ed images to go un-

bound or at least increase their dimensions. Even if a lot of di�erent algorithms and

methods are now available in literature[45][46], these results to be complex and not al-

ways the most e�ective. Chen et al.[43] proposed an easier method that relies only on

the fundamental matrix. The input of the algorithm is a stereopair with an overlap-

ping region, from this it is possible to �nd at least seven correspondent points for the

reasons discussed in 2.2.2, �nd F and the correspondent epipoles in the two images

and exploit the epipolar constraint to �nd the overlapping region of the stereopair.

Assuming now the left image to have pixels dimensions nxm and corners coordinates

A(0, 0, 1)T , B(0, n, 1)T , C(m,n, 1)T , D(m, 0, 1)T , epipolar lines are calculated with

the formulas 2.29.
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l′1 ∼ FA

l′2 ∼ FC

l′3 ∼ FTA

l′4 ∼ FTC

(2.29)

The equivalence is not strict since, as discussed previously, correspondence problem

is determined only up to a scale factor and 2.29 hold only for a non null scale factor.

Having found the epipolar lines it is �nally possible to extract the pixels value with

the Brasenham Algorithm and resample the recti�ed images.

2.3 Visual SLAM methods and implementations

In section 2.2 di�erent technologies of visual perception as well as the theory back-

ground underneath the main approaches of depth perception from two-dimensional

images have been described, from these it is possible to start introducing how Simul-

taneous Localization and Mapping can be implemented.

The literature describing SLAM implementations is various and comprehends diverse

approaches and methodologies, in fact Simultaneous localization and mapping has not

reached an end point but instead is still object of deep researches and improvements.

This section of the work aims at describing the principle fashions of methodologies

at the base of SLAM algorithms. According to Strasdat et al.[47] SLAM and SFM,

whose principles were derived by photogrammetry, are similar problems aimed at the

same scope: the estimation of a sensor pose moving inside an unknown environment,

just motivated by di�erent means. The latter wants to reconstruct o�-line a 3D space

from a relatively small set of image batch, while the former aims at tracking the

motion of a sensor, camera or LiDAR, in real-time. From this distinction of the two

it becomes clear that in SFM the �nal result quality overcomes the time to achieve

it, while in SLAM this is not always true because of the requested �rm frequency of

the running system.

Focusing on SLAM approaches two methodologies have prevailed on others: �lter-
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ing approaches, which update probabilistic distributions by merging information in

a sequential fashion from all the previous images; and bundle adjustment (BA) that

are oriented towards heuristically select speci�c images, called keyframes, evenly dis-

tributed in space and optimize the obtained batch reaching absence of drift errors in

long runs.

With reference to �gure 2.16a it is possible to think about SLAM as a graph and

analyze the inference with a Markov random �eld, where Ti represents the positions

covered by the camera as a vector and static features are represented by vector xj,

while the lines in the graphs stand for the observations of the jth feature from the ith

pose.

(a) Markov Random

Field

(b) Filter (c) Keyframe BA

Figure 2.16: (a)SLAM/SFM as Markov random �eld. (b) and (c) Inference
propagation in �lter and keyframe approach

It is clearly visible that as the real time operation goes on the dimension of the sets

of positions and features increase inevitably since new keyframes would be inserted

as new paths are covered. The solution to the SLAM problem involves the resolution

of the Markov graph from scratches while it is growing step after step, but this is

not feasible because of the computational cost growth at each new frame, considering

that it increases linearly in keyframe BA based approach as O(N) and cubicly in �l-

tering as O(N3). Considering the estimation of the state Ti provided by the �ltering

solution it can be noticed that each feature recognition is subordinated to previous

states of the system. This method gains its consistence by holding the information

of the features that are likely to be measured again in the future, but this results in

a strong correlation between states. The �nal outcome graph results to be compact
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and not likely to spread exponentially as new features are added when new areas

are investigated. The drawback is that removing or updating a previous state would

cause changes in all subsequent ones causing the increase of computations and justi-

fying the cubic increase with measurements. The standard �lter used is the Extended

Kalman Filter (EKF) even if also mixed approaches exploiting particle �ltering are

common[24]. On the other side there is BA optimization which solves the graph from

scratches at each new frame getting rid of the grater part of the past poses except for

the keyframes. Graph in 2.16c results to be more �lled with previous position vectors

but lowly inter connected among them, resulting in a solution e�ciently optimizable.

The two described philosophies are very di�erent, one is getting advantage of compact

but complex routines to manage graph (�ltering), while the other (BA) is exploiting

a verbose but highly e�cient database of past poses.

As Strasdat et al.[47] pointed out, more mature implementations involve keyframe BA

based approaches in perfomring SLAM due to their better performances and scala-

bility.

SLAM implementation can be divided in two steps, the feature extraction and the

technique itself. The starting point is to use the images taken from camera to ex-

tract features from the frames. When the term feature is used in the SLAM �eld it is

usually referred to points features, but as Naveed et al. pointed out[24] there are meth-

ods that exploits line/edge features because of the main advantage of being invariant

to light conditions and moreover, they provide useful information about geometry

of surroundings. There are also examples of featureless SLAM implementations[48]

where motion has been tracked with no feature extraction from the image but just

by considerations on pixel values inside the central sub-window of the frame.

As previously said the most mature approach in SLAM implementation is the point

feature extraction and this procedure involves a image processing step that can be

carried out using di�erent algorithms which peculiarly characterize di�erent SLAM

developments[49].
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2.3.1 Feature extraction algorithms

A feature is de�ned as a speci�c information extractable from an image and they are

categorized in two ways:

• Keypoint, also called corners, are static features localized in a spot on the frame

and characterized by patches of pixels around the coordinates. They present

gradient change along all directions.

• Edges are particular feature characterized by their orientation or pro�les, and

because of this, they do not present gradient change along orientation. They

are usually exploited as markers of boundaries between objects

Even if the di�erent algorithms that will be further described in this section use

completely di�erent approaches the basic functioning scheme of feature extraction is

always the same: Detection of interest point, description of feature and its matching

among two di�erent time instant images.

The identi�cation of an interest point is made by examining itself properties; interest

points are particular pixels spaces were boundaries of objects changes suddenly or

were two di�erent edge segments meet, and because of this they are stable under

di�erent light exposure on a local and global scale, or more in general, stable in case

of perturbations of the landscape. In order to be classi�ed as interest point it should

be detectable repeatably and e�ciently. Having identi�ed a certain number of inter-

ests points or feature in an image, it is necessary to distinguish one from the others,

and in order to this, it is possible to generate descriptors for each of them including

information about shape or appearance aimed at recognizing the same point in two

di�erent images of the same object for example taken from two di�erent perspectives

or under two di�erent light conditions. Descriptors can be both focused on local or

global image domain. Having found the interests point and labeled them with descrip-

tors, working as �ngerprints, the last step is match interest point pixels coordinates

between two di�erent images.
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Figure 2.17: Feature matching

Features from Accelerated Segment Test[50]

Feature from Accelerated Segment Test, in short FAST, is an algorithm developed

by E. Rosten and T. Drummond in 2006, it was born to solve the high computation

cost of other feature detectors and, indeed, it is characterized by high computational

e�ciency even improved if machine learning is used as aid to the visual engine. For

these reasons it is recommended for real-time implementations. The algorithm �ow

is now explained:

• Considering the pixel p let Ip be its intensity, the aim is to decide whether it is

or not an interest point

• Choose a suitable threshold t and isolate a Bresenham circle of radius 3, or in

other words individuate a 16 pixels rounded contour around p

• p is considered an interest point if at least n adjacent pixels are outside the

intensity range IpIpIp − ttt < III < IpIpIp + ttt

• Repeat for each entry of the image matrix

To speed up the algorithm is possible to exploit some tricks in order to avoid useless

checks of all the 16 pixels. It is possible to reject as interest point the pixel p if less

than 3 of pixels 1,5,9 and 13 fall into the above mentioned range. If this �rst test

is passed it is possible to check for all the other 12 pixels around p, in the case n
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Figure 2.18: Bresenham circle

are contiguously found the point can be marked as of interest. The limitations of

this algorithm concern the dependence of the execution time from the order pixels

are queried, moreover setting of parameters such as t or n is not an easy task if they

remain static among di�erent sessions, because of all these considerations machine

learning approach is adopted to optimize the software execution and performances.

Machine learning improvement works in the following way:

• A feature vector P is determined including all 16 circle pixels around a feature

point and divided in 3 subsets: Pd for darker points, Ps for similar points and

Pb for brighter ines

• De�ned a variable Kp, which is true if the point is of interest or the opposite

the other way, use the ID3 algorithm on each subset. ID3 algorithm works

minimizing the entropy of the system.

H(P ) = (c+ c̄log2(c+ c̄)− clog2c− c̄log2c

where c = | {p|Kp is true} | (number of corners)

where c = | {p|Kp is false} | (number of non corners)

(2.30)

Another limitation of the above described algorithm is the problem of keypoints

concentrated density, in fact, if no actions are taken a lot of keypoints will be found

in the same local area, �gure 2.19.
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Figure 2.19: Image without points suppression

A possible solution could be to evaluate the di�erence in intensity of pixel p with

respect to the ones belonging to the Bresenham circle and score the interest point

accordingly, only the points with highest score will be used, �gure 2.20

Figure 2.20: Image with points suppression
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It is interesting to point out that FAST algorithm surprisingly does not work well

with perfect images produced on purpose by computer since crisp images tend to

fail the corner test. Computer-generated images must previously be processed and

blurred, for example with a Gaussian �lter, in order to transform sharp corners in

less precise edges.

Harris corner Detector[51]

Harris corner detector has been introduced by C. Harris and M. Stephens in 1988 and

it is characterized by the di�erential calculation along directions, since 1988 it has

been strongly improved and used in many machine vision implementations because

of its ability to distinguish corners and edges.

The idea at the base is to investigate those sub windows whose pixels are unique and

this can be made comparing the points values of a window with adjacent ones in all

the 8 directions. Sum Squared Di�erences (SSD) is taken as criteria and evaluated

for each shift, so let E(u, v) be the sum of all SSD of a 3x3 window.

E(u, v) =
∑
x,y

w(x, y) [I(x+ u, y + v)− I(x, y)]2 (2.31)

Corner detection problem is a maximization problem of functional E(u, v) and in

order to do that it is advisable to maximize the di�erence, it follows:

E(u, v) ≈
[
u v

]
M

u
v


with :

M =
∑

w(x, y)

 I2
x IxIy

IxIy Y 2
y


(2.32)

35



Chapter 2. Simultaneous Localization and Mapping techniques

Solving for the eigenvectors of M it is possible to score the gradient and discern

between �at regions, corner or edges (2.2).

R = detM − k(traceM)2 = λ1λ2 − k(λ1 + λ2)2 (2.33)

Table 2.2: Harris detector eigenvalues criteria

|R| ∼ 0 λ1 ∼ 0 and λ2 ∼ 0 FLAT REGION
|R| < 0 λ1 >> λ2 or v.v. EDGE
|R| >> 0 λ1 ∼ λ2 and λ1 >> 0 CORNER

Figure 2.21: Harris detector output image

Scale Invariant Feature Transform[52]

Scale invariant Feature Transform (SIFT) has been developed in 2004 by D. Lowe,

and it is a proprietary software of University of British Columbia. With respect to

the previous one described algorithms this one embeds not only keypoints detection

but also description and matching. This algorithm take into account the scale of the

image, the represented object could seem big from a near point of observation but
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also small if seen from far away, that is why images scales are separated into octaves,

each one being the half of the previous, by simply reducing the pixels dimensions of

the photo keeping the sides ratio constant. In this way information, scaling down, are

de�nitely lost and operation cannot be reverted just by scaling up since resolution

would not be the same.

Figure 2.22: Example of successive pyramidal images

Each octave is then progressively blurred with the Gaussian Blur operator. This is a

convolution process of the image and the Gaussian operator. Each pixel is so treated

with relation 2.34.

L(x, y, σ) = G(x, y, σ) ˙I(x, y) (2.34)

Where I(x,y) is the pixel location in the image reference frame and G, the Gaussian

operator, is de�ned as follows 2.35.

G(x, y, σ) =
1

2πσ2
exp

(
−x

2 + y2

2σ2

)
(2.35)
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Figure 2.23: Example of successive application of Gaussian blur operator

Before analyzing the image in order to �nd the keypoints a new set of images is gen-

erated by subtracting two di�erently blurred images of the same octave and repeating

the pattern for each octave. The term referred to the new set is Di�erence of Gaus-

sian kernel (DOG). DOG can be seen as approximation of the Laplacian operator

and the former is preferred since it is scale invariant, less computationally expensive

and moreover Laplacian is really sensitive to noise.

Figure 2.24: DOG on the left and Laplacian operator on the right

After the above described step the e�ective keypoints are investigated comparing each

pixel with its 3x3 neighborhood in the same, magni�ed and reduced subsequent scale
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for a total amount of 26 comparisons. If the analyzed pixel is a local maximum or

minimum is it labeled as possible interest point. When operation is concluded a lot of

matches come out, so they are �ltered by saving only those above a certain intensity

threshold and rejecting the edges with an Hessian matrix acted to discover principal

curvature. Having computed location of interest points it is possible to proceed with

the orientation which is individuated by studying the gradient magnitude and orien-

tation. Gradients are calculated in the surrounding of the keypoints and subdivided

by magnitude. Higher magnitude gradient will tell the orientation of the keypoint.

In order to build a descriptor it is taken a 16x16 mask around the pixels and the

gradient evaluation operation is repeated for each 4x4 sub-block. Big intensity values

are eliminated to guarantee illumination independence, while keypoint orientation is

subtracted from the direction of the descriptor gradient in order to reach rotation

independence. Keypoints are �nally matched analyzing their nearest neighbors.

Speeded-Up Robust Features[53]

Speeded-Up Robust Features (SURF) was �rstly introduced by H. Bay in 2009 and it

relies on fast-Hessian detector for feature detection, it is patented as because of this

not freely accessible. What di�erentiate it from a standard Hessian procedure is that

this algorithm exploits integral images to boost computational e�ciency. Integral

calculations on images are e�cient ways to sum or average intensities of pixels in a

rectangular area with extremities O(0, 0) and XXX(x, y).

IΣ(x) =

i≤x∑
i=0

j≤y∑
j=0

I(i, j) (2.36)

The detector is based on Hessian matrix calculation whose entries are the convolution

of Gaussian blurring operator and pixel value.

H(XXX, σ) =

Lxx(XXX, σ) Lxy(XXX, σ)

Lyx(XXX, σ) Lyy(XXX, σ)

 (2.37)
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Figure 2.25: Integral images area of interest

Di�erently from SIFT where Laplacian of Gaussian(LoG) were approximated by

DOG, SURF exploits box �lters in order to simulate the Gaussian blurring, obtaining

an approximation of the Hessian matrix determinant fast to compute and suitable for

real-time applications and objects recognition. Images are also in this case divided

in octaves and repeatedly blurred. In order to build the descriptor the orientation of

the keypoint must be investigated. To do so, Haar-wavelet responses are calculated in

x-y directions in a 6σ radius circle with a sampling time equal to σ. The orientation

is understood individuating the direction where the responses sum is higher.

Figure 2.26: Haar-wavelet responses based orientation extraction

Similarly to the SIFT the approach is then repeated in each 4x4 sub-window of a

square contour appositely built with dimensions 20σ. The so obtained descriptor

vector is unique for each sub-window and has dimension 64, while in SIFT it had 128

entries.
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Binary Robust Independent Elementary Features

Binary Robust Independent Elementary Features(BRIEF) is not a feature detector

but just a way to build a descriptor vector. Algorithms like SURF or SIFT are very

robust but their descriptors result to be quite time and resource consuming to be

determined, that is why BRIEF has been designed. BRIEF works at a singular pixel

level in order to build a binary word of variable length, from 128 to 512 bits.

Vn = [01000110101110...bn] (2.38)

The descriptor word is created by comparing pairs of pixels with a function de�ned

by 2.39.

τ(I, x, y) =

1 for : p(x) < p(y)

0 for : p(x) ≥ p(y)

(2.39)

Considering a patch of sides nxn, the pairs to be compared can be choosen accordingly

to di�erent geometries (�gure 2.27):

(a) Pairs can be extracted from a uniform distribution spreading around the key-

point in a range of n/2

(b) Pairs can be extracted from a gaussian distribution with σ = 0.04 ∗ S2

(c) A variant of point 2 acted to draw in a more keypoint centered neighborhood is

to extract the two pixels from two di�erent gaussian distributions characterized

by: σ1 = 0.04 ∗ S2 and σ2 = 0.01 ∗ S2. First distribution is centered in the

keypoint, second one in the �rst extracted pixel

(d) Pairs can be extracted from a series of concentric circles radiating out from the

pole

(e) One point of the pair can be extracted from a series of concentric circles radiating

out from the pole, while the other remain �xed to the pole
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(a) (b) (c)

(d) (e)

Figure 2.27

In conclusion the BRIEF descriptor function will look like 2.40

f(n) =
∑

1<i<n

2i−1τ(I, xi, yi) (2.40)

Oriented FAST and Rotated BRIEF[54]

Oriented FAST and rotated BRIEF (ORB) is the algorithm developed by OpenCV

in 2011 to substitute SIFT and SURF, which are patented and not free to use. It uses

FAST algorithm (described in 2.3.1) for keypoints detection, but improving it, ex-

ploiting pyramids level images to assign to each interest point an orientation, making

actually FAST scale invariant.

To the aim of �nding the orientation of a patch around a keypoint it is possible

to perform following calculations.

mpq =
∑
x,y

xpyqI(x, y) (2.41)

Having found the moments, equation 2.41, it is possible to calculate their center of

mass.
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Figure 2.28: Pyramid levels of same
image

Figure 2.29: Orientation of interest
point patch

C =

(∑n
i=1 mixi∑n
i=1mi

,

∑n
i=1 miyi∑n
i=1mi

)
(2.42)

Orientation of the patch is now indicated by the vector
−→
OC

θ = atan

(∑n
i=1miyi∑n
i=1mixi

)
(2.43)

Once feature points are detected they are described by a slightly modi�ed version of

the BRIEF descriptor (equation 2.40), in fact the above mentioned descriptor presents

really bad performance in rotation bigger than few degrees. In order to overcome the

problem 2Xn matrix is built and rotated of the amount described by equation 2.43.

S =

x1, ... xn

y1, ... yn


Sθ = RθS

(2.44)
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Figure 2.30: ORB extraction and matching

2.3.2 Keyframes selection and tracking

After having described how features can be extracted and matched from image to

image it is possible to see how SLAM techniques work in order to track the camera

pose and concurrently build a reliable map of the environment. Taking as example a

standard hardware set up, it is not strange to think about a stereo sensor capturing

15 to 60 frames per second. They are too much information to be processed by an

embedded computational unit. SLAM software have the capability to select some

relevant frames to be processed, analyzed, described and used by the map generation

thread. As multiple times it is read in the literature, SLAM is a chicken-or-egg

problem because for mapping, a pose estimate is needed and for tracking the camera,

the map is needed.

The �rst thing to be tackled is the reconstruction of the camera position by analyzing

frame by frame. Features are extracted and described by the algorithms described in

2.3.1, then their 3D coordinatesXjXjXj = [xjyjzj1]T are obtained from the 2D projections
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xij = [uijvij1]T exploiting triangulation and point correspondence explained in 2.2.2.

xij = PiXjXjXj

where

Pi = K [Ri ti]

(2.45)

In equation 2.45 matrix K contains all the calibration parameters of the camera

describe in 2.2.1 and [Ri ti] is the roto-translation matrix describing camera pose in

the world reference frameW . It must be pointed that equality in 2.45 is ensured by the

three-dimensional information introduced by the stereo baseline length, if this would

not be true, location of landmarks would be determined up to scale and equation 2.45

would be:

xij ∼ PiXjXjXj (2.46)

The estimation of a calibrated camera pose from at least 3 3D points coordinate can

be referred as Perspective-n-point problem (PnP). PnP problem take the name P3P

problem when pose estimation starts from the observation of three di�erent world

points.

Figure 2.31: Perspective-3-points problem

With reference to the �gure 2.31 let PA = X, PB = Y , PC = Z, a = BC, b = AC,

c = AB and α, β and γ respectively the angles between PB and PC, PC and PA,
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Pa and PB, it possible to write the equation system for the problem.
Y 2 + Z2 − 2Y Z cosα− a2 = 0

Z2 +X2 − 2XZ cos β − b2 = 0

X2 + Y 2 − 2XY cos γ − c2 = 0

(2.47)

The system yields either in�nite or at most 4 possible solutions. Due to this ambiguity

in the results, PnP problem are usually solved with more than 3 world points, even

if this carries increased complexity in solution, as well as increased computational

cost[55]. Another approach not exploiting the PnP algorithms is based on the mini-

mization of the reprojection error of 3D objects location and camera parameters[56].

This is usually done by building a cost function that change from implementation

to implementation and �nd the minimum solution for the reprojection error, which

is the error committed when calculating a three dimensional coordinate from its two

dimensional projection, example of this application can be found in [57] [58] [56]. It is

worth to notice that the minimization problem cannot be solved for the whole batch

of feature points matched between two di�erent temporal frame because of the pres-

ence of false positive matches generated by the native local tendency of descriptors.

Before feeding the pose estimator with coordinates and points true features must

be determined. Due to the presence of outliers, linear estimator like Least Squares

proved to be ine�cient. Just to make an example RANSAC optimization algorithm

is often used in this �eld, even though its iterative nature it resulted to be suitable

for real time applications [56][59].

As mentioned above, SLAM problem involves at the same time localization and map-

ping, which is why two di�erent threads are running on the system, one for tracking

and the other for map generation and optimization. Keyframes are those frames

accepted to build the depth map and their selection varies from implementation to

implementation.
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(a) Batch of points with

presence of outliers

(b) LS estimator (c) RANSAC estimator

Figure 2.32

The most common methods are the following:

• Steepest descent like algorithms that insert keyframes in an initially empty

batch only when they reduce the most energy. This is a cost expensive method

with respect to others, in fact number of operations scale as O(n2)[59]

• Close/far points threshold can be used to estimate the need to insert a new

keyframe, in fact a certain number of close points (distant less than n times

the baseline, where n can very from application to application) are needed to

estimate translation. When the amount of detected close points is too low it is

possible to add a keyframe[60]

• A shift threshold can be used as discriminant in keyframe insertion, in fact if a

certain amount of roto-translation has been detetcted a new keyframe can be

added[61].

• A last rather straightforward way to do so is to investigate the number of

detected and matched features point, if they go down a certain threshold the

frame can be labeled as keyframe[58].

Even if a keyframe database, working as a rudimentary map, has been created, com-

paring each new frame to each component of the database for localization purposes

would be so onerous to make it impossible. In order to tackle this problem, keyframes

are usually synthesized in a binary vocabulary, easy and fast to be read, organized

47



Chapter 2. Simultaneous Localization and Mapping techniques

like trees. Keyframes, specially if recorded for long operations, can be very di�erent

one from the other and most of the times deep comparisons are not necessary, for

example when the scenes are totally di�erent. To speed up the process and make it

more e�cient a tree-like structure made of nodes is built and each node is scored with

its level of distinctiveness.

Figure 2.33: Tree-like structure binary vocabulary

This kind of hierarchically based approach makes easier and faster the queries to the

map keyframes when relocalization, after a tracking failure, is needed, or when loop

detection is performed to understand if a particular place has been already visited

and in this way correct the poses and feature points location linked to the keyframes

in the database. In order to optimize 3D reconstruction and in this way camera pose

estimation local bundle adjustment is performed on-line by solving a minimization

problem of the reprojection error. As previously mentioned cost functions vary from

implementation to implementation, but, in order to make an example, the solution

proposed by Mur-Artal et al. in [60] is presented.

(RRR,ttt) = arg min
R,t

∑
i∈χ

ρ
(∥∥xis − πs (RXRXRX i + ttt

)∥∥2

Σ

)
(2.48)

Where xs ∈ R2 is the keypint, X ∈ R3 is the world point, ρ is the Huber cost

function, πs is the projection function obtained from triangulation. When this bundle

adjustment is not performed on a small set of keyframe (local), but it is done for
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example on the whole map after a loop detection, it takes the name of global bundle

adjustment. In following �gure 2.34 it is possible to see the life cycle of a mapping

thread.

Figure 2.34: Qualitative �ow chart of map building procedure
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3 Innotech autonomous vehicle

As previously mentioned this paper aims at describing the work done for the start up

Innotech Sys. The �nal objective was to design and build an autonomous robot able

to escort and provide information and services to consumers of di�erent realities. In

particular, this project, has been carried on with the supervision of San Diego airport,

California, indeed, the robot has been tested and optimized for airport indoor utiliza-

tion. The driving idea of the project is to provide a powerful tool for the travelers in

order to make the journey easier and more comfortable. Nowadays airports can be

really challenging environments, and people not used to deal with them can encounter

several di�culties in these places. Age, language barriers or simply impracticability

are just some of the hindering factors this project wants to tackle. An example of

the operational �ow will better clarify the idea. The customer enters the airport and

approaches the robot rest zone, scans his ticket into the robot and via vocal command

asks to the AGV to escort him to the destination that can be a restaurant, the check

in desk or the gate. The robot will start escorting the customer carrying his luggage

to the �nal target.

Figure 3.1: Side view of the prototype
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3.1 Schematics

Before describing each part of the robot in detail it is convenient to provide a general

description to have a better insight on how the system works and communicates under

a macroscopic point of view. With reference to Figure 3.2 it is possible to see that

Robot 
Control Unit

(RCU)

EM3 EM4 EM1EM1

CAN

USB

CAN

AN
AN

RS232

Jetson TX2

3D LiDAR

Narrow FOV LiDARs
CC3220 Wi-Fi 

Module

ZED Stereo Camera

CAN
Robot 

Control Unit
(RCU)

AN

F28069-LAUNCHXL

Figure 3.2: System Architecture

the key of the system is the Jetson TX2 where all the high level software is running,

it is in charge of reading the di�erent peripherals and process data for navigation,

localization and object recognition and avoidance. The board communicates over

USB with the ZED Stereo Camera that takes images of surrounding and recti�es

them. Moreover it communicates with the main RCU F28069-LAUNCHXL via CAN

bus. The RCU is in charge of interfacing the lidar with the Jetson and runs also the

motors control algorithm. Motors commands are send via CAN bus from the main

RCU to two smaller custom printed PCBs RCUs provided with H-bridges to power

the motors. The latter work also as power distribution board in order to manage the

battery packs. The design and development phase has been carried on a prototype

AGV (Figures 3.1 and 3.3) in order to test what can be called the brain of the robot.

This choice has been made in order to make all the hardware integration steps as

smooth as possible carrying in parallel a mechanical design development updated

with last changes and improvements.
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Figure 3.3: Front view of the prototype

3.2 Datasheets

Having seen from a macroscopic point of view how the system has been designed it

is now convenient to provide a detailed description of the principal hardware com-

ponents. For the reasons already described no particular attention was paid to the

mechanical side of the prototype, hence in this paragraph only the hardware relevant

from a software point of view will be described.

3.2.1 ZED stereocamera by Stereolabs

ZED is a stereocamera developed by Stereolabs that has been used as main reality

perceiver sensor. The choice has been driven by the quality provided from this sensor

in image capturing and the strong partnership between Stereolabs and NVIDIA, hence

providing optimal integration and working conditions of the hardware. Moreover, with

the camera it comes its SDK that allows to build SLAM application characterized by

massive speed and accuracy that will be described in following chapter 4. Following

Tables from 3.1 to 3.5 report the technical hardware speci�cations.
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Table 3.1: Video speci�cations

Video Mode Frames per second Output Resolution (side by side)
2.2K 15 4416x1242
1080p 30 3840x1080
720p 60 2560x720
WVGA 100 1344x376

Table 3.2: Depth speci�cations

Depth Resolution Same as selected video
Depth Range 0.5-20 m (1.64 to 65 ft)
Depth Format 32-bits
Stereo Baseline 120 mm (4.7�)

Table 3.3: Motion speci�cations

6-axis Pose Accuracy +/- 1mm
Orientation: 0.1◦

Frequency 100 Hz

Table 3.4: Sensor speci�cations

Lens Field of View 90◦ (H) x 60◦ (V) x 110◦ (D)
Sensor Resolution 4M pixels per sensor with large 2-micron pixels
Dimensions 175x30x33 mm (6.89 x 1.18 x 1.3�)
Weight 159 g (0.35 lb)

Table 3.5: Power speci�cations

Connector USB 3.0 port with 1.5m integrated cable
Power Power via USB 5V / 380mA
Operating Temperature 0◦C to +45◦C (32◦F to 113◦F)

3.2.2 Jetson TX2

The principal computer embedded in the system is the Jetson TX2 development

board. On this hardware both the AI Yolo application for object recognition and

SLAM system run. Following �gure 3.4 and Table 3.6 show the technical speci�cation

and schematics. Detailed explanation of the software running on this hardware will

be held in the dedicated Chapter 4.
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Table 3.6: JetsonTX2

GPU 256-core NVIDIA PascalTM GPU architecture with 256 NVIDIA CUDA cores
CPU Dual-Core NVIDIA Denver 2 64-Bit CPU Quad-Core ARM R© Cortex R©-A57 MPCore
Memory 8GB 128-bit LPDDR4 Memory 1866 MHx - 59.7 GB/s
Storage 32GB eMMC 5.1
Power 7.5W / 15W

Figure 3.4: Jetson TX2 schematics

3.2.3 F28069-LAUNCHXL by Texas Instruments

This controller runs the control algorithm of the motors. The software has been

entirely developed in Model Based Design in Simulink environment. The above men-

Figure 3.5

tioned software takes as input the CAN messages received from jetson TX2 in order to

54



Chapter 3. Innotech autonomous vehicle

consequently power the motors. No detailed description of the logic will follow since

this would go out of the scope of the work. Anyway, in this section an insight about

the integration of the stepper motor encoder will be given since this has been one of

the responsibilities of the author. The entry point of the control block in Figure 3.6 is

the eQEP. The enhanced quadrature encoder pulse (eQEP) block is used along with a

linear or rotary incremental encoder to get position, direction, and speed information

from a rotating machine. In other words, this simulink block reads the information

provided by the encoder in order to use them in the feedback of the stepper motor

controller. The control logic is based on a negative feedback provided by the angular

Figure 3.6: Encoder based control block

position of the stepper motor. A turn command in degrees is accepted via CAN and

compared with the encoder output when this di�erence is bigger than a threshold the

command to power the stepper motor is sent, while when the di�erence falls inside

a certain range the motor is idle. This is done to avoid hysteresis cycles. Anyway,

due to imperfect motor coupling and noise on the motor control board the stepper

motor was still rotating too slow to assure good control and motion performances,

this is why, in order to make operations smoother and more e�cient also tangential

velocities of the wheels have been exploited in order to create a di�erential aiding in

the stirring phase. In Figure 3.7 it is possible to see the implemented logic. Through

a basic logic circuit the angle direction of rotation is deduced, and according to it,
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Figure 3.7: Di�erential aiding

wheels DC motor are powered di�erentially. In steady conditions motor are powered

for 75% of the nominal power, in stirring phase the wheels nearer to the center of

rotations are powered for 50% while other wheels are powered in steady conditions.

3.3 Adopted communication protocols

The designed AGV in order to accomplish its tasks needs to communicate both inter-

nally and externally to the system. Communication over di�erent hardware compos-

ing the overall system is essential from basics operations, such as moving, stopping

or stirring, to more advanced functionalities which can be detecting, recognizing or

avoiding obstacles. On the other side the machine must be also able to communicate

with external entities such as controllers, tablets or even other similar robots. To the

aim of designing an e�cient system di�erent communication protocols must be taken

into account considering strengths and weaknesses of each of them. The �nal choice

has fallen on CAN bus for internal communication and MQTT network protocol for

external information exchange.

3.3.1 CAN bus

Controller Area Network bus, or in short CAN bus, is a message based protocol able

to make di�erent microcontrollers communicate without the need of a host computer.

It has been o�cially released in 1986 by Bosch[62]. CAN bus is a multi master serial
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bus, this means that more than one node (each ECU is called node) can start the

transmission since the hierarchy is not always vertical. Moreover, being serial, low

lines are used and this allow a low pin count and reduced hardware cost. This protocol

started to be used mainly in automotive application, but because of its e�ciency

spread in each �eld of automation and embedded systems. It is the De Facto standard

for automotive nowadays and due to its lightweight protocol management, low cost

and deterministic resolution of contentions it appears as an appealing solution for

high speed and e�ciency applications. Can physical layer is basically composed by

two lines for data transmission CAN_H (CAN high) and CAN_L (CAN low). Their

digital voltage levels determines if 1 or 0 is transmitted. The di�erential signaling

ensures current �owing in conductors of equal intensity but opposite in sign, resulting

in a �eld canceling e�ect carrying really low noise. Usually wires are twisted in pairs

for a maximum length of 40 meters allowing a maximum of 30 connected nodes.

Figure 3.8: Di�erential signal example

As previously mentioned CAN bus has been used to implement the communication

between the Jetson TX2 and the main RCU directly talking to the motors control

boards. The information that the main computer sends are relative to the directions

commands of motion. In particular the Jetson acquires the objective coordinates in

the 3D space as cartesian reference and calculate the trajectory knowing its current

position. The structure of a message sent over CAN bus is a standard form meant

to ensure integrity and correctness of data as well as e�ciency in trasmission. In

particular this shape is well explained by Figure 3.9.
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Figure 3.9: CAN bus message data structure

The �rst bit is called Start of Frame (SOF) and it is intended to communicate the

will of a node to talk, furthermore it has the value of a Dominant Zero. SOF is

followed by the CAN identi�er(CAN-ID). This frame is important for two reasons:

the �rst is that it uniquely identify a message, indeed providing useful information

about the sender and kind of data transmitted, while the second is the priority of the

message, lower values have higher priority. Next part of the structure is the Remote

Transmission Frame (RTR), which even if little used, indicates whether a node is

sending dataor asking fro speci�c messages. Following the RTR it is possible to �nd

the Control �eld, also named Data Length Code (DLC). This last is made up of 6 bits

indicating the length of the sent message data. After the DLC there is the core of the

CAN message shape, the Data �eld. Data is sent over CAN in a unreadable way, that

is why information must be decoded in order to be visualized in engineering values

or human-readable form. Once data are transmitted a quality check is demanded to

the Cyclic Redundancy Check frame (CRC), which ensure integrity of information.

The structure of the message closes with 2 bits for the Acknowledgment (ACK) with

which receiver nodes provide con�rmation of the received data and 7 bits for the End

of Frame (EOF). Without entering in the details of the bit timing it must be said

that every node needs a CPU, a CAN controller and a CAN transceiver in order to

exploit this communication protocol. The way chosen in order to structure the data

�eld has been a 8-Bytes bitmask.

Bytes number 1, 2, 3 and 5 corresponds to a direction command and all of them
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Figure 3.10: CAN data bitmask

power the wheels motor, in particular all of them will power the motor in the positive

direction while the second one will power them in the opposite direction. Bytes

number 4 and 5 can range from 0 to 4 in function of the amount of stirring requested.

The stirring of the robot is actuated by a stepper motor which rotates the platform

on which the front semiaxis is mounted. The value 0 corresponds to the unstirred

direction of motion while values from 1 to 4 are discrete values corresponding to

incremental rotations of the stepper motor. Byte number 7 is the STOP command

which is given when the �nal objective is reached or a condition preventing the robot

from continuing the mission happens. Last but not least byte number 8 is unused in

normal conditions and indicates a generic error situation adopted to put the robot in

safety condition when an unknown and not controlled event happens.

3.3.2 MQTT

Message Queue Telemetry Transport, or in short MQTT, is a message based protocol

typical of application where power consumption is a critical point and resources from

this point of view are limited. Anyway, this protocol results to be so pragmatic and

e�cient that even Facebook Messenger app decided to base its working on MQTT,

asserting that the latency in sending/receiving messages reduced from multiple sec-

onds to hundreds of milliseconds, meaning a speed increase of one order of magnitude.

This protocol appeared to be �tting perfectly with project that needed to interface

the robot with external entities, which could be other similar machine, workstations

or related mobile applications. The above mentioned messaging protocol does not link

directly the talker (now on indicated as publisher) and the listener (now on indicated

as subscriber) but interposes between them a third entity: the broker. The broker is
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the only server while publishers and subscribers are clients. Brokers can be whether

installed on the same machine or be external services in the same network or even

outside it. The protocol works in a simple fashion: publishers publish messages on a

particular topic, intended as a queue of messages, and subscribers receive messages

coming from the topics they subscribed to; brokers are in charge of receiving messages

from publishers and redirect them to correct subscribers. The structure of a MQTT

message can be described by following Figure 3.11.

Figure 3.11: mqtt message structure

The structure is basically divided in two parts, header and payload. The aim of the

header is to describe the payload and make sure clients and broker have enough in-

formation to handle the message. Header itself is divided again in two parts, �xed

and variable length section. The MQTT �xed header is the part where following

information are provided:

• Message type: this section indicate to which protocol command or response the

message belongs. It can be a subscription, publication, connection and so on.

• Duplicate Message �ag(DUP): this �eld inform the subscriber that the message

could be already been delivered.

• Quality of Service (QoS) Level : this is a delivery assurance on the published

messages. It can range from 0 to 2 and indicates respectively: at most once the
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message is delivered, at least once the message is delivered and exactly once

the message is delivered. In case of mismatches of QoS between di�erent clients

lower level is e�ectively respected.

• Retain: This is �ag that suggests the server to deliver the last published message

at the �rst subscription.

• Remaining length: This �eld indicates the number of bytes still present in the

rest of the message, i.e. the two optional frames of the variable header and

payload.

The variable section of the header is function of the kind of message taken into con-

sideration, just to make an example, in case of a message of type PUBLISH the

information stored inside this �eld can be the topic. Last but not least there is the

payload section, which has not a prescribed length, and it is the part where the ef-

fective information is stored. Coming to the way MQTT has been implemented into

the developed AGV, this protocol is the way the robot gets the commands from the

developed android app acted at interfacing the service with the customer. Further-

more, the protocol is also exploited to inform the user interface (UI) about robot state

and position. Examples of data exchange are the directions the robot is following,

the hand shake for mission start or completion and eventual lost signal. Moreover,

when the robot is commanded in manual mode the joystick always implemented in

an android app sends the directions commands via MQTT. More details about this

matter will be given in Section 3.5.

3.4 Shape design

Di�erent concepts have been evaluated regarding the chassis of the robot. Each

of them has some peculiarities and distinctions but they are united by two main

characteristics: all of them have the hardware and battery packs at the bottom of the

body and all of them have a screen on the top in order to be visible and of easy use

by the customer. Two similar shapes are shorter and with a smaller screen in order to
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make room for storage in the middle. The three remaining shapes are, on the other

side, united by a more long limbed design acted at presenting a bigger screen of even

easier and more comfortable use for the costumer.

3.5 User Interface (UI)

Nowadays robots are becoming part of people everyday life, anyway there is still some

kind of distrust towards these kind of technologies in domestic or commercial appli-

cation. This is the main reason why the way people interface themselves with the

AGV must be easy, e�cient, rapid and e�ective. A mobile application-like design is

the synthesis of these pillars.

Figure 3.12: User interface homepage

The homepage visible in Figure 3.14 is what a costumer would see on the screen on

top of the robot. From this main page he could navigate inside the application �nd-

ing di�erent useful information, such as the map of the airport with the restaurants,

Figure 3.15.

The main activity that the user can exploit is the navigation system which will escort

the costumer to the selected interest point. This service, as anyone else provided by

the application, can be selected with the touch screen or by vocal command. The

entry point is a list of the interest points, Figure 3.16

Each of the item in the list is uniquely linked to a three-dimensional coordinate on
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Figure 3.13: Airport map

Figure 3.14: Interest points list

the map of the robot stored in the SLAM system, once the person selects the �nal

destination, this will be communicated to the SLAM system via MQTT. After the

handshake between interface and robot happens, the application will ensure the readi-

ness of the costumer to follow the AGV and eventually this last will start moving.

During the mission directions and state of the robot are provided to the person via

screen in a user friendly fashion. All data is exchanged via MQTT, again. Last but

not least, �ve di�erent languages are supported and menu, as well as vocal assistant,

will be set to the preferred language, Figure 3.17.
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Figure 3.15: Language selection
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4 Robot Localization and Mapping

The scope of this chapter is to provide an insight on the principal work done by the

author, that is the implementation of the Simultaneous Localization and Mapping

system on the AGV. After the review of the literature of the matter a �rst choice was

to be made: visual or lidar SLAM implementation. Both solutions were possible and

each of them had advantages and drawbacks. The �nal decision has been to opt for

the visual. The reason behind this choice has been the presence of the ZED stereo-

camera, already integrated because of YOLO object recognition software. Including

a new sensor, such as lidar, would have meant increased costs and both hardware

and software complexity in the �nal product. The cost, indeed, has been one of the

driving factors in the process of design, since the service robot target was a low-cost

application. Description of the developed code will follow, comparing two di�erent

libraries used to implement the SLAM system, the proprietary ZED SDK and the

open source orbSLAM2. Tests and results will be also described.

4.1 Implemented SLAM system

As previously mentioned two di�erent libraries have been exploited in order to build

the software, anyway the principal work �owchart of both the systems is similar.

When the application is started �ve di�erent command lines options must be passed

to the software, which will execute di�erent branches in function of user preferences.
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Figure 4.1: Rami�cation of the work�ow

Of the �ve di�erent command lines parameters already mentioned only three of

them individuate separate �ows (Figure 4.1). These parameters are:

• isMapper is a boolean value indicating whether the application must be started

in mapping or driving mode.

• virtual/real CAN is a boolean value indicating whether the application should

use the virtual or real CAN interface.

• on/o� line is an optional parameter, which if present will instruct not to read

Stereocamera images but instead charging a pre-recorder stereovideo or image

sequence.

• turning and position tolerances are the two remaining parameters that does

not interact directly with the execution of the program, but just indicates the

tolerance threshold to be respected in navigation phase.
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4.1.1 Virtual/Real CAN bus

One of the settings parameters passed through command line is the socket_TF

boolean variable. This variable must be set to 1 if a CAN physical interface is

present, while can be set to 0 for testing purposes and the software will send vir-

tual CAN messages exploiting the library SocketCAN. SocketCAN is a set of drivers

developed by Volkswagen in order to implement CAN protocols for Linux. There are

several CAN implementations on Linux based machines, but one the particularities

of SocketCAN is that it has been created in a network programming fashion that

is meant to be as close as possible to TCP/IP protocols. This choice was made to

allow programmers to become familiar with CAN sockets in the smaller time pos-

sible. Furthermore, excluding SocketCAN, these kind of CAN implementation are

usually hardware speci�c with a comparatively little functionality. Exchanging the

CAN controller would mean an update in the software leading to adaptation of large

parts of the application. SocketCAN being not implemented in the user space, grant

to the programmer a socket API that can be called and programmed without taking

care of the speci�c hardware.

Moreover, SocketCAN has a useful functionality that is the virtual CAN socket. The

exactly same code can be used to instruct a real CAN network or a fake one aimed

at testing purposes. The only di�erence between the two implementations is the kind

of socket to be used.

4.1.2 Mapping

The mapping mode is the one used to map a new environment, hence no motor output

commands will be given.

Mapping application has been usually exploited in o� line mode, since on line mapping

would result in lower quality and, anyway, it was not required by the application. This

is why, during the mapping the robot was commanded in manual mode, a stereovideo

of the environment was recorded and in a second time analyzed. To this aim an on

purpose software was coded and interfaced with a joystick android application.
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The manual mode works in a simple manner. It initialize CAN and MQTT interfaces

Figure 4.2: Manual control �owchart

and starts two di�erent and separated loops, one for CAN bus and one for MQTT

subscriber. The two loops run at di�erent frequencies, in particular 5 Hz is the

frequency chosen for the CAN messages, while the subscriber continuously listens

on the MQTT network waiting for messages published by the publishers, which in

this case is the android joystick application. In order to choice the broker both the

external and internal ways have been considered. At �rst place and external broker

was exploited, but the latency for the message queue was to high and the joystick was

not responding enough fast to the inputs. This is why, in second place it has been

decided to install a broker in the internal network, reaching su�ciently low response

time.
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4.1.3 Navigation

Before diving into the life cycle of the main branch it can be useful to provide an

overview on the classes de�ned into the software. Three di�erent classes are reserved

to communication protocols interfaces, one for CAN bus and two for MQTT. The

class CAN_interface is de�ned as follows:

class CAN_interface{

int s;

struct can_frame frame;

private:

void sendOK(void);

public:

int CAN_send(int byte);

CAN_interface (bool socket_TF);

void CAN_loop(void);

};

The constructor will initialize the proper socket according to the already discussed

boolean variable socket_TF, prepare the structure of the CAN message and start a

detached thread CAN_loop. CAN_loop is a message sender cycle that reads the value

of the shared variable LAST_COMMAND, convert its value to the proper CAN message

and send the message over the BUS to the RCU. Another important method has been

implemented in order to ful�ll an handshake with the rest of the system at the boot,

this method just send a void message correctly formatted once. The last method is

the CAN_send, which has been implemented just to send a single CAN message in case

of unscheduled events. To complete the description about communication protocols

other two classes must be presented, MQTT_interface and subscriber. Both of them

implemented MQTT interfaces but they are separated since they start two di�erent

threads detached from the main application.

The de�nition of the subscriber class is the standard reported in the o�cial github

repository of Eclipse Paho project [63], hence not reported. The only modi�cations
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were made to adapt the topic and the callback on_message. The callback, when

called, calls in turn a function that process the message event, for example starting

or aborting the mission. The other MQTT based class is the MQTT_interface, of

which de�nition follows:

class MQTT_interface{

public:

mqtt::async_client pub{SERVER_ADDRESS,PUB_ID};

MQTT_interface ();

void pub_loop(void);

};

It is possible to see at �rst place the declaration of the client pub which de�ne the in-

stance of the publisher object. Following, the constructor, similarly to CAN_interface,

set up the client and detach an independent thread, pub_loop for publication which

publishes a message with a frequency of 5 Hz. Going deeper into the core of the

application it is possible to �nd the class Commands, in charge of taking the informa-

tion from the SLAM system, elaborate them and communicate formatted data to the

communication protocols classes.

class Commands{

int cnt,heading;

float positional_tol,turning_tol;

private:

int isnotRange(float a,float b, float t);

public:

Commands(float pos_tol, float turn_tol);

int Calculate_and_command(Rotation Rwc,Translationt wc,

,vector<vector<float>> &ref);

vector<vector<float>> get_ref_dir();

int processKeyEvent(Translation twc,vector<vector<float>> &ref);

};
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From the declaration it is possible to see the constructor Commands that initialize

some settings parameters that must be tuned in order to improve the quality of the

navigation, example of these can be the tolerance parameters passed via command

line already discussed prior. Before introducing the most important methods of the

class it is useful to discus isnotRange. This methods is exploited constantly during

navigation phase, it is a simple function that returns boolean values. Its aim is to

tell whether a value a falls inside a linear interval of radius t centered in b.

Figure 4.3: isnotRange function

The trajectory, being shaped by a set of subsequent waypoints, forces the robot to

follow an imaginary trackline, the isnotRange method is constantly adopted to un-

derstand if a certain waypoint is reached and in case step to the next one. Having

cleared how the trajectory is followed it is possible to introduce how it is loaded

into the program. The �rst step is upon the tablet application, which asks the user

which is the �nal objective. This is sent to the path planning algorithm that look for

that place in a �le, linking each interest point to a three-dimensional coordinate, and

create a .txt �le with all the waypoints. Once this procedure is �nished the SLAM

application can call the method get_ref_dir that will search for the above intro-

duced .txt �le and load those waypoints in the memory as a vector of vector. Finally

the last two methods are processKeyEvent and Calculate_and_command. The �rst

is a debugging and security escape function. It can be called by remote in order to

print on the screen some debugging variables such as: position, orientation, MQTT

messages queues, CAN bus messages etc. It can also be used in order to cancel the

mission or stop the robot if something unexpected happens.

Last but not least Calculate_and_command is the piloting method. It gets as inputs
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orientation and position of the vehicle as well as waypoints, check if the current po-

sition is near one of them and if it is case load in the memory the next waypoint,

in the opposite case it will drive the robot in the correct direction by sending the

right CAN message. It also control the stirring since when a curve must be tackled it

will command the stepper motor to rotate until the requested degree is reached and

will communicate the motor when to come back to the straight position. The last

functionality implemented into this methods is the drifting correction, in fact, the

robot is instructed to follow a straight imaginary line during rectilinear. In order to

do this the stepper motor is commanded to stir whenever the AGV runs further than

a tunable threshold from the reference line.

Having explained each part of the implemented software is now possible to intro-

duce the general �owchart of the life cycle of the application, from the directions

instructions to the reach of the �nal objective (Figure 4.4).
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Figure 4.4: Life cycle �ow chart
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4.2 Testing

The tests to be performed have been indicated by the San Diego airport, indeed they

asked to perform at least 30 successful missions in order to validate and evaluate the

project. The tests were organized in the following way.

A potential user, in that case airport employees, would use the graphical interface to

ask the robot to bring him or her to one of two possible gates, the robot would assist

the user to the destination and come back to the original position. Two possible paths

were available, one straight line an done L-shaped curve.

Figure 4.5: Straight path on the left and L-shaped on the right

To the aim of evaluating the quality of the developed application some preliminary

tests have been performed inside the Engineering and Technology department of Cal-

ifornia State University of Los Angeles. These were focused on understanding how

precisely can a vehicle localize itself under a mapped environment. The software

developed for SLAM purposes exploits the above cited ZED SDK or orbSLAM2 in

order to build a map of the environment and then localize into it. A ZED stereo-

camera has been used to record two di�erent videos of a L-shaped path inside the

department. Each sequence has been analyzed once to build a map and, in a second

phase, two di�erent localization tests have been performed on each generated map by

feeding the system with a new stereovideo of the same L-shaped path. It is worth to

notice that no true information about trajectory were available during the tests, and

74



Chapter 4. Robot Localization and Mapping

Figure 4.6: Sequence 1 trajectory of the L-shaped department path

Figure 4.7: Sequence 2 trajectory of the L-shaped department path

because of this the vector of camera poses recorded during the mapping phase has

been assumed as true estimation and compared to the measurements taken during

the evaluation attempts. Must be pointed out that this assumption does not lead

to a loss of generality since, even if the map reference frame is not coincident with

the world reference frame, the localization technique would still serve the purpose of

localizing inside the mapped environment. Landmarks and features are stored inside

the map and they are assumed to be still in space, indeed a relative localization with

reference to them would be possible.Results of tests are reported in Table 4.1.
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Table 4.1: Tests Results

N of frames Mapping time mean FPS µerrrelx µerrrelz µerrx µerrz σ2
x σ2

z Number of track losts
Sequence 1 982

270 secs 3.6 orbSLAM2 2.022% 1.53% 0.6 mm 1.6 mm 0.00013 0.00019 0
30 secs 30 ZED SDK 2.21% 1.17% 0.7 mm 1.7 mm 0.00012 0.0002 0

Sequence 2 1039
306 secs 3.4 orbSLAM2 0.67% 1.56% 0.8 mm 2.2 mm 0.00008 0.00017 0
34 secs 30 ZED SDK 2.32% 2.11% 1.2 mm 1.3 mm 0.00009 0.00017 0

From the measurements of variance it is possible to notice the repeatability of

the localization phase permits reliable operations since it remains fairly constant

among di�erent attempts. As far as mean localization error is concerned values are

in the order of millimeters; it must be anyway pointed out that this error does not

represents the absolute position estimate value but just the noise to take into account

when referring to a previously built map.

As it can be derived from measurements reported in Table 4.1 the two di�erent

libraries do not behave consistently in a di�erent way, in fact the results of variance

and tolerance are absolutely comparable, indeed almost equal. What di�er between

the two di�erent methods is the massive speed characterizing the ZED SDK, which

makes possible to run the SLAM system at 30 FPS, while orbSLAM2 remains on an

average value of 3.4-3.6 frames per second. It has not been possible to investigate

what makes this huge di�erence since, when contacted, Stereolabs did not want to

share any information on its proprietary software. It must be anyway pointed out that

the increased FPS at which the application can run when deployed with ZED SDK

bring two big advantages: reliability of the localization and mapping in increased

and the possibility of lost track is way reduced due to the accurate features tracking

derived from the high frequency, the second advantage is the possibility of running

the software in odometric way that means with no need of a previously charged map.

This last situation comes with some drawbacks that are the loss of reliability and

repeatability in localization as well as the risk of loosing the track with no possibilities

of getting it back. This was anyway not possible with orbSLAM2 due to the low FPS,

and, even if this does not represent a good practice for SLAM purposes, still presents

an added feature.
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Having tested and validated the implemented system three days have been spent in

the airport innovation lab, which is a dismissed terminal, in order to collect feedback

and surveys from customers. Almost 50 tests have been performed and the obtained

feedback were promising, Figure 4.8.

Figure 4.8: Results of survey
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5 Conclusions and future lines

Coming to the conclusions it is possible to sum up what the work was aimed to. In

this paper an extensive description of Simultaneous Localization and Mapping state

of the art has been performed as well as a comparison of the most recent image pro-

cessing and description algorithms. A possible implementation of these technologies

in the service robotics �eld has been investigated and tested through the designed

prototype of steward robot.

Thanks to the California State University, San Diego airport and Innotech-sys the

prototype has been built and tested in a real airport environment providing useful

insight on possible diverse implementations and improvement of the project.

The tested hardware, and in particular NVIDIA Jetson TX2 and ZED stereocam-

era, behaved as expected from the performance point of view and con�rmed what

most of the implementations nowadays present in the research are experiencing. This

hardware is able, thanks to its computational power and e�ciency, to run in real

time applications that are strongly limited by low power consumption still asking for

su�ciently high performances. This is due to the massive parallel GPU computing.

Possible future improvements of the work done are various and diverse. The study

carried on is just at an embryonic level. At �rst place a proper path planning service

must be integrated in the system which is prepared to move in a unstructured envi-

ronment but the lack of a proper trajectory planner strongly limits the potentialities

of the AGV. Moreover, at the actual state the robot is trained to react to unexpected

events and objects by stopping the motion, reaching a safe condition and wait for

restoration of previous conditions. This means that if an obstacle comes through

the robot will detect it and stop until the path is free again. This behavior can be
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certainly improved by updating the trajectory in real time or dynamically react to

moving objects.

Other possible future improvements include for sure the feasibility study of a lidar

implementation. Lidar is a promising technology, widely used in this �eld; its cost

is higher than a stereocamera implementation but �nal results could be more pre-

cise and easily portable. Last but not least the possibility of a steward robot �eet

must be taken into account and robots must be made able to communicate with each

other. This would result in sharing resources and useful information compensating

the increased complexity with e�ciency increase.
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