

“One machine can do the work of fifty ordinary men. No machine can do the work of one
extraordinary man.”

Elbert Hubbard

σ

file:///C:/Users/leolo/Desktop/TESI/Tesi_Definitiva/TESI%20LEO%20Definitiva.docx%23_Toc26221696

-
-

https://dblue.it/blog/the-moral-machine-una-morale-per-le-auto-a-guida-autonoma/

𝑡(𝑥, 𝑦) = {1 𝑖𝑓 𝑒(𝑥, 𝑦) ≥
𝑚(𝑥, 𝑦)

𝑘
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

https://github.com/carla-simulator/carla/blob/master/PythonAPI/examples/manual_control.py

 7

(

-
-
-
-

https://wiki.unrealengine.com/Recommended_Hardware

C:\carla-master\carla\Unreal\CarlaUE4\Content\Carla> CarlaUE4.exe -carla-

server –windowed -ResX=1280 -ResY=720 -quality-level=Medium –benchmark –

fps=10

C:\carla-master\carla\Unreal\CarlaUE4\Content\Carla\PythonAPI\examples>

python ADAS_scenario.py

Short range
applications

(0÷25 m)

Short range
applications

 (0÷3 m)

Medium
range

applications
 (0÷50 m)

Short/medium/l
arge range

applications
 (0÷200 m)

RADAR SENSOR LIDAR SENSOR ULTRASONIC
SENSOR

CAMERA

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝑐 ∗ 𝑡

2

3 ∙ 108 𝑚/𝑠

𝑐(𝑡𝑇,1 − 𝑡𝑅,1 + 𝑡𝑠) = √(𝑥1 − 𝑥)2 + (𝑦1 − 𝑦)2 + (𝑧1 − 𝑧)2

𝑐(𝑡𝑇,2 − 𝑡𝑅,2 + 𝑡𝑠) = √(𝑥2 − 𝑥)2 + (𝑦2 − 𝑦)2 + (𝑧2 − 𝑧)2

𝑐(𝑡𝑇,3 − 𝑡𝑅,3 + 𝑡𝑠) = √(𝑥3 − 𝑥)2 + (𝑦3 − 𝑦)2 + (𝑧3 − 𝑧)2

𝑐(𝑡𝑇,4 − 𝑡𝑅,4 + 𝑡𝑠) = √(𝑥4 − 𝑥)2 + (𝑦4 − 𝑦)2 + (𝑧4 − 𝑧)2

3 ∙ 108 𝑚/𝑠

𝑥 = [
𝑝
𝑣
]

𝑥′ = 𝐹𝑥 + 𝑢
𝑃′ = 𝐹𝑃𝐹𝑇 + 𝑄

∆𝑇

𝑦 = 𝑧 − 𝐻𝑥′

𝑆 = 𝐻𝑃′𝐻𝑇 + 𝑅
𝐾 = 𝑃′𝐻𝑇𝑆−1

𝑥 = 𝑥′ + 𝐾𝑦
𝑃 = (𝐼 − 𝐾𝐻)𝑃′

PREDICT UPDATE

 Predict the state of x

i.e. x’

 Predict the error

covariance of P i.e. P’

 Compute the difference

between the actual value

and the predicted one (y)

 Compute the Kalman Gain

(K)

 Update both the estimate

with measurement (x) and

the Error Covariance (P)

𝑥 = 𝑓
𝑋

𝑍
; 𝑦 = 𝑓

𝑌

𝑍

𝐺2𝐷(𝑥, 𝑦) =
1

2𝜋𝜎2
𝑒

(−
𝑥2+𝑦2

2𝜎2)

σ

σ

σ σ

1

273

[

1 4 7 4 1
4 16 26 16 4
7 26 41 26 7
4 16 26 16 4
1 4 7 4 1]

σ

∇𝑓(𝑥, 𝑦) =

[

𝜕𝑓(𝑥, 𝑦)

𝜕𝑥
𝜕𝑓(𝑥, 𝑦)

𝜕𝑦]

= [
𝐺𝑥

𝐺𝑦
]

α

𝑀(𝑥, 𝑦) = |∇𝑓(𝑥, 𝑦)| = √(𝐺𝑥
2 + 𝐺𝑦

2)

𝛼(𝑥, 𝑦) = arctan (
𝐺𝑦

𝐺𝑥
)

𝑦 = 𝑚𝑥 + 𝑏

 𝑚 → ∞

𝜌 = 𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃

𝑦 = −
𝑐𝑜𝑠𝜃

𝑠𝑖𝑛𝜃
𝑥 +

𝜌

𝑠𝑖𝑛𝜃

ρ and θ

θ ρ

𝑚 =
𝑦2 − 𝑦1

𝑥2 − 𝑥1

https://www.udacity.com/course/self-driving-car-engineer-nanodegree--nd013

𝑆𝑥 = [
−1 0 1
−2 0 2
−1 0 1

] 𝑆𝑦 = [
−1 −2 −1
0 0 0
1 2 1

]

𝑆𝑥 = 𝑆𝑦
𝑇 𝑆𝑦 = 𝑆𝑥

𝑇

𝐺𝑥 = ∑(𝑟𝑒𝑔𝑖𝑜𝑛 ∗ 𝑆𝑥)

𝐺𝑦 = ∑(𝑟𝑒𝑔𝑖𝑜𝑛 ∗ 𝑆𝑦)

𝑓(𝑦) = 𝐴𝑦2 + 𝐵𝑦 + 𝐶

𝑅 =

[1 + (
𝑑𝑥
𝑑𝑦

)
2

]

3
2

|
𝑑2𝑥
𝑑𝑦2|

𝑅 =
1

𝐾

𝑓′(𝑦) =
𝑑𝑥

𝑑𝑦
= 2𝐴𝑦 + 𝐵 𝑎𝑛𝑑 𝑓′′(𝑦) =

𝑑2𝑥

𝑑𝑦2
= 2𝐴

𝑅 =
(1 + (2𝐴𝑦 + 𝐵)2)

3
2

|2𝐴|

𝑙𝑎𝑛𝑒 𝑐𝑒𝑛𝑡𝑒𝑟 =
𝑟𝑖𝑔ℎ𝑡𝑃𝑜𝑠 + 𝑙𝑒𝑓𝑡𝑃𝑜𝑠

2

𝑐𝑎𝑚𝑒𝑟𝑎 𝑐𝑒𝑛𝑡𝑒𝑟 = 𝑐𝑎𝑚𝑒𝑟𝑎_𝑤𝑖𝑑𝑡ℎ/2

𝑂𝑓𝑓𝑠𝑒𝑡𝑝𝑖𝑥𝑒𝑙𝑠 = 𝑙𝑎𝑛𝑒 𝑐𝑒𝑛𝑡𝑒𝑟 − 𝑐𝑎𝑚𝑒𝑟𝑎 𝑐𝑒𝑛𝑡𝑒𝑟

𝑂𝑓𝑓𝑠𝑒𝑡𝑚𝑒𝑡𝑒𝑟𝑠 = 𝑂𝑓𝑓𝑠𝑒𝑡𝑝𝑖𝑥𝑒𝑙𝑠 ∗ 𝑥𝑚𝑒𝑡𝑒𝑟
𝑝𝑖𝑥𝑒𝑙𝑠

Simple and fast algorithm to identify straight lane
lines

The Hough transformation method does not work
correctly for curved lanes or sharp turns. Moreover,

the presence of road signs on the surface of the asphalt
of the lanes, such as arrow or stop signs, can confuse

the lane detection algorithm

The Hough transformation works adequately on
straight lanes based on continuous straight lines

The mask’s parameters cannot dynamically adapt to
different types of road environments.

There are no universal parameters that can be used,
therefore, in order to obtain the correct parameters,
several algorithm changes are required that depend
on each particular situation to be analyzed (such as

canny threshold values, ROI vertices and Hough
transform parameters)

Low computational effort
The ROI formation points set out assume that the

camera in front of the vehicle remains stable in the
same position and that the lanes are flat

With appropriate hardware it can be used for real time
applications Lane detection is not very effective against lanes that

have dashed or barely visible lane lines.

It does not work on non-lane roads, ie not marked with
road signs

The algorithm as a whole is very sensitive to road
visibility and it is not effective in the presence of

adverse weather conditions such as fog or rain

The algorithm is able to accurately detect lane lines,
even in the presence of a curved lane

High computational effort

Accurate determination of both the curvature to
which the vehicle is subjected using the polynomial

adaptation and the position and direction of the
vehicle with respect to the center of the lane using the

camera and road parameters

To obtain clear and visible lanes in the binary image,
the threshold parameters must be optimized for each

different type of scenario. Moreover, the
hyperparameters must necessarily be correctly tuned

to get the correct results
The algorithm is able to work both with white and

yellow lane lines, continuous on both sides, or with
broken lines on one side only, or on both side

The detection of lane lines may not be efficient when
there are not enough pixels to identify lane lines. In
fact, the almost or total lack of data (pixels) prevents

the algorithm from performing any type of polynomial
adaptation correctly.

It use a combination of effective approaches (like the
combination of gradient and color thresholds) that

make the end result more robust against weather
conditions and road visibility

As for the previous algorithm, the points to establish
the ROI must be set a priori and depend on each

situation

It can also be used when the vehicle is travelling at
high speed

Without appropriate hardware it cannot be used for
real-time applications

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑟𝑎𝑚𝑒𝑠 𝑤𝑖𝑡ℎ 𝑙𝑖𝑛𝑒𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑟𝑎𝑚𝑒𝑠

𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 + 𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

S x S x [B ∗ (4 + 1 + C)]

Pr(𝑂𝑏𝑗𝑒𝑐𝑡) ∗ 𝐼𝑜𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ

Pr (𝐶𝑙𝑎𝑠𝑠𝑖|𝑂𝑏𝑗𝑒𝑐𝑡)

Pr(𝐶𝑙𝑎𝑠𝑠𝑖|𝑂𝑏𝑗𝑒𝑐𝑡) ∗ Pr(𝑂𝑏𝑗𝑒𝑐𝑡) ∗ 𝐼𝑜𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ = Pr(𝐶𝑙𝑎𝑠𝑠𝑖) ∗ 𝐼𝑜𝑈𝑝𝑟𝑒𝑑

𝑡𝑟𝑢𝑡ℎ

𝑏𝑥 = 𝜎(𝑡𝑥) + 𝑐𝑥

𝑏𝑦 = 𝜎(𝑡𝑦) + 𝑐𝑦

𝑏𝑤 = 𝑝𝑤𝑒𝑡𝑤

𝑏ℎ = 𝑝ℎ𝑒𝑡ℎ

σ

𝑡∗̂ − 𝑡∗

 git clone https://github.com/carla-simulator/carla.git

 cd carla

http://carla-assets-internal.s3.amazonaws.com/Content/20190710_0097e66.tar.gz

Unreal\CarlaUE4\Content\Carla

 Make clean

 Make launch

https://git-scm.com/about
http://www.gnu.org/software/make
https://cmake.org/about/
https://www.python.org/
https://www.unrealengine.com/en-US/what-is-unreal-engine-4
https://www.mkdocs.org/

 Make package

sudo apt-get update
sudo apt-get install wget software-properties-common
sudo add-apt-repository ppa:ubuntu-toolchain-r/test
wget -O - https://apt.llvm.org/llvm-snapshot.gpg.key|sudo apt-key add -
sudo apt-add-repository "deb http://apt.llvm.org/xenial/ llvm-toolchain-xenial-7 main"
sudo apt-get update
sudo apt-get install build-essential clang-7 lld-7 g++-7 cmake ninja-build libvulkan1 python
python-pip python-dev python3-dev python3-pip libpng16-dev libtiff5-dev libjpeg-dev tzdata sed
curl unzip autoconf libtool rsync
pip2 install --user setuptools
pip3 install --user setuptools

sudo update-alternatives --install /usr/bin/clang++ clang++ /usr/lib/llvm-7/bin/clang++ 170
sudo update-alternatives --install /usr/bin/clang clang /usr/lib/llvm-7/bin/clang 170

git clone --depth=1 -b 4.22 https://github.com/EpicGames/UnrealEngine.git ~/UnrealEngine_4.22
cd ~/UnrealEngine_4.22
./Setup.sh && ./GenerateProjectFiles.sh && make

git clone https://github.com/carla-simulator/carla

export UE4_ROOT=~/UnrealEngine_4.22

make launch # Compiles the simulator and launches Unreal Engine's Editor.
make PythonAPI # Compiles the PythonAPI module necessary for running the Python examples.
make package # Compiles everything and creates a packaged version able to run without UE4
editor.
make help # Print all available commands.

make clean
git pull
./Update.sh
make launch

https://github.com/carla-simulator/carla

C:\carla-master\carla\Unreal\CarlaUE4\Content\Carla> CarlaUE4.exe -carla-

server –windowed -ResX=1280 -ResY=720 -quality-level=Medium –benchmark –

fps=10

C:\carla-master\carla\Unreal\CarlaUE4\Content\Carla\PythonAPI\examples>

python ADAS_scenario.py

https://pjreddie.com/darknet/yolo/

https://github.com/pjreddie/darknet/blob/master/data/coco.names

