
Master Degree Thesis

Optimization of CNN-Based Object
Detection Algorithms for Embedded

Systems

Daniele Caschili
Matricola: 243807

Supervisors
prof. Massimo Poncino

doc. Daniele Jahier Pagliari
Master degree course in Ingegneria Informatica

(Computer Engineering)

Politecnico di Torino
Italia, Torino

Academic year 2018-2019

Abstract
Object detection is the branch of computer vision and machine learning that

classifies and localizes multiple objects of different classes in the same image or a
video stream. At this time, the state-of-the-art method in this field is to use a Con-
volutional Neural Network (CNN) to process the input images and produce boxes
that enclose each detected object. These networks are highly accurate, but they
require lots of computational power. Therefore, to run object detection algorithms
on embedded devices the easiest solution is to connect to the cloud. This leads
inevitably to latency and energy consumption problems. The optimization and re-
duction in the size of these networks is currently an open research problem.
This thesis proposes a technique to reduce the size and the computational require-
ments of CNN-based object detection by using post-training low bit-width quan-
tization. Though reducing bit-width greatly reduces the size and computational
requirements, it also drastically decrease the network prediction capabilities. There-
fore, this thesis analyzes the possibility of using two consecutive inferences to obtain
a highly-accurate result yet with an energy-efficient procedure. First, a reduced bit-
width inference is used to roughly detect objects in the image. Then, these boxes
are refined with a higher precision inference.
Results show that the refinement is able to increase the mAP value by about 10%
with respect to the reduced bit-width network while having a similar energy con-
sumption. The full precision network has greater precision, but it consumes twice
the energy.

3

Contents

1 Introduction, Motivations and Goals 10

2 Background 13
2.1 Neural Networks . 13

2.1.1 Neurons . 13
2.1.2 Networks . 15
2.1.3 Training . 16

2.2 Convolutional Neural Network . 17
2.2.1 Architecture . 18
2.2.2 Layers . 18
2.2.3 Training . 20

2.3 Object Detection . 21
2.3.1 YOLO (You Only Look Once) 21
2.3.2 YOLO v2 . 23
2.3.3 Object detection evaluation - mAP 24

2.4 Quantization . 27
2.4.1 Values representation . 28
2.4.2 Uniform and Nonuniform . 29

2.5 Tensorflow . 30
2.5.1 Components . 30

2.6 Freezing a graph . 31

3 Related Works 32

4 Arbitrary Bit-Width Post Training Quantization in Tensorflow 35
4.1 Graph Loading . 36
4.2 Graph Analysis . 37
4.3 Graph Modification . 38

4.3.1 Fake Quantization . 38
4.3.2 Graph Modification . 38

4.4 Alexnet Analysis . 39

5 Selective Refinement for Energy-Efficient Object Detection 41
5.1 Procedure . 42
5.2 Evaluation Procedure . 45

5.2.1 Datasets . 45
5.2.2 Metric . 45

4

5.2.3 Test Runs . 47
5.2.4 Grid Search . 48
5.2.5 Pareto Frontier . 48

6 Results and Future Works 49
6.1 Results . 49

6.1.1 One object dataset . 49
6.1.2 Two objects dataset . 50
6.1.3 Validation dataset . 51

6.2 Future Works . 52
6.2.1 Quantization methods . 52
6.2.2 Tensorflow 2.0 . 53
6.2.3 Combined refinement of multiple image sections 54

List of Figures

2.1 Neuron structure [22] . 14
2.2 Activation functions [22] . 14
2.3 feed forward neural network [22] . 15
2.4 High level overview of CNN structures [22]. 18
2.5 LeNet-5 architecture [14] . 18
2.6 Convolution [22] . 19
2.7 Max Pooling example [28] . 20
2.8 Filters learnt. [12] . 20
2.9 YOLO Model. The image is divided into S ∗ S cells and for each cell

a certain number of bounding boxes are detected. 22
2.10 Intersection over union is the metric used to compare bounding boxes.

It is the ratio between the overlapping area and the box union area
[23]. 22

2.11 Box definition diagram [25] . 23
2.12 11-points interpolation example [23] 25
2.13 All points interpolation. [23] . 26
2.14 AUC results for all points interpolation [23] 27
2.15 Floating point representation [4]. 29
2.16 Uniform vs. NonUniform quantization [30] 29
2.17 List of common Tensorflow operations [3]. 31

4.1 The program flowchart. 36
4.2 Alexnet[12] top 1 and top 5 accuracy on ImageNet[6]. 40

5.1 Sequence Diagram. 42
5.2 The program flow graph. 43
5.3 Use case dataset example. 45

6.1 Results one object dataset. 50
6.2 Results two objects dataset. 51
6.3 Results validation dataset. 52

7

List of Tables

2.1 Floating point formats [4] . 28

6.1 Figure 6.1 results. 50
6.2 Figure 6.2 results. 51
6.3 Figure 6.3 results. 52

9

Chapter 1

Introduction, Motivations and Goals

The increase in computational power in last years allows employing machine learn-
ing techniques in various fields, from computer vision to speech recognition, etc.
Whereas in the past, the main goal was to reach a certain computational power
in order to make these machine learning algorithms work, nowadays the idea is to
improve efficiency to move the inference phase from servers to embedded devices,
limited both in battery life and speed. While the training phase can be performed
without problems on the servers, the inference phase is better suited to be per-
formed locally, avoiding all problems derived from a permanent network connection
to a cluster, like latency, security, and energy consumption.
In literature, there are two paths to neural networks optimization: a hardware ori-
ented approach and an algorithmic one [30]. The former generally proposes custom
hardware accelerators to improve efficiency [24, 18]. The latter is additionally di-
vided into a static approach and a dynamic one, where the static solutions try to
improve the network efficiency independently of the input data [4, 8, 19] while the
dynamic ones optimize different inputs in different ways[11, 21].
This thesis is focused mainly on Convolutional Neural Networks. The main power
consuming process present in these networks is certainly the convolution operation
which consists in a large number of MAC (multiply and accumulate) operations. In
literature, the most commonly used method to reduce the complexity of Convolution
operations is the bit width reduction via a quantization process: a mapping from a
higher precision space to a lower bit width representation. By reducing the number
of bits requested for those operations, it is possible to greatly reduce the energy con-
sumption while keeping an acceptable accuracy score. However, most convolution
approaches belong to the static category, in the sense that the bit-width is decided
independently of input data.
Dynamic quantization techniques like [21, 11] adapt the optimization to the runtime
conditions.
The main goal of this thesis work is to explore a possible dynamic approach to
reduce the energy requirements of a Convolutional Neural Network for object detec-
tion. In summary, the method works as follows. A low energy cost network produces
general and poorly defined predictions. Then, if the prediction score doesn’t meet
the requirements, a more expensive network is used to refine the result, applied on
a section of the original image containing the bounding box predicted by the first

10

network. The expensive network can then operate using smaller size convolutions
with less MAC, and can focus his analysis on a smaller area.
To verify the efficiency of this approach, we simulated the effect of uniform quan-
tization. The two networks are modified using a custom network node, written in
Tensorflow, that reproduces the quantization effects. This allows us to run the tests
on a server reproducing the precision loss derived from bit-width reduced operations
on an embedded system. To analyze the energy we used the results from Moons
et al.[18]. They calculated the power consumption for MAC operations performed
at 8 and 4 bits.
The proposed method is tested against a realistic industrial dataset, generated in
the context of a European project, which contains images of objects moving on a
conveyor belt, which have to be detected in order to perform automatic counting.
In the dataset, objects are small and few per frame, which are the most favorable
conditions for the applications of our method. In fact, the second inference step
is performed on small regions of the original image, yielding a reduced overhead in
terms of the number of operations. Without this condition, the refinement with
the higher precision network would increase the overall process energy consumption,
almost exceeding that of a solution that performs only the high precision analysis.
The process is performed on three different datasets: images with at most one ob-
ject, images with at most two objects and the whole validation set.
We expect to find the best results using the one-object dataset but we have to con-
sider the possibility to have some false positives. If the low precision network detects
more than one box, even if we are using the one-object dataset, the high precision
network will perform the refinement on all predictions with a low confidence score.
So there is the possibility to waste energy in detecting the false positive produced
by the low precision network.
The results show that, on all datasets, the refinement technique is able to improve
by about 10% the mean Average Precision (mAP) score, which is the standard ac-
curacy score for object detection, while keeping the energy cost similar to a solution
that uses only a lower precision network.

Chapter 2

Background

Thanks to the increase in computer computational power and the availability of
huge datasets, machine learning has become increasingly popular in the last years
[31]. Machine learning is a branch of Artificial intelligence that aims at building
programs able to learn to perform some actions through a process called training.
Deep learning is a branch of machine learning that tries to build a deep neural net-
work to achieve tasks in different fields such as object detection, speech recognition,
self-driving cars, etc. [30]

2.1 Neural Networks

Inspired by the human brain with its billions of connections, deep neural networks
have multiple layers of interconnected units called neurons. Depending on the signals
it receives as inputs, the neuron can be activated, producing another signal sent to
another neuron. The set of input signals are propagated through the middle layers,
called hidden layers, and then to the output layer.

2.1.1 Neurons

Neurons are the building blocks of neural networks.

13

Figure 2.1: Neuron structure [22]

Figure 2.1 shows one of the most basic neuron structures. A set of input values
are weighted and summed. This result is used as input for an activation function
that determines how much the neuron will be activated by the received input signal.
For this reason, the analogy with the human brain is strong, a biological neuron is
activated by some input signal and propagates its output to others. In the image:

• xi: is one of the input values.

• wi: is one of the weights.

• θ: is the activation threshold.

The activation function is just a "rule" to determine how much will be activated.
There are different types of activation functions and the most common types are:

(a) Sigmoid acti-
vation function

(b) tanh activa-
tion function

(c) Relu activa-
tion function

Figure 2.2: Activation functions [22]

The function in figure 2.2a is called sigmoid activation function and produces
an output in the range [0, 1]. It has been reported that the networks that use this
activation function may incur in vanishing or exploding gradient problem [33]. The
math formula for figure 2.2 is:

σ(x) =
1

1 + e−x

The hyperbolic activation function (figure 2.2b) is similar to the sigmoid func-
tion, but its output range is [−1, 1]. Both tanh and sigmoid nonlinearities are defined
as saturated due to the fact that they have a limited range of possible values. For
that reason the usage of both tanh and sigmoid activation functions in feed forward
neural network as hidden layer leads to vanishing gradient problems[7].

tanh(x) =
2

1 + e−2x
− 1

The last one, figure 2.2c, is the ReLU (Rectified Linear Unit) which offers a valid
alternative to the previous functions, solving the problem of vanishing or exploding
gradient [16].

max(0, x)

Networks with many layers using this activation, usually learn faster [15]. The ReLU
can lead to have some units that are never activated during training, due to the 0
part of the function [16]. A possible variation the ReLU, called Leaky ReLU,
ensures that, even if x is negative, the activation function isn’t zero. The formula
is:

max(0.01x, x)

2.1.2 Networks

A neural network is composed of multiple neurons organized in layers. The most
basic structure of a neural network is the feed-forward neural network. Figure 2.3
shows a simple example:

Figure 2.3: feed forward neural network [22]

This type of network uses the so called fully-connected layers that forward their
output to all neurons in the following layer. Each internal layer is called hidden

layer. The output layer produces a set of probabilities values for a set of mutually
exclusive classes. Generally, the last layer is a softmax layer, it converts the previous
layer output to this probability distribution.

2.1.3 Training

Supervised learning is the most common form of training [15]. The training is per-
formed using a set of input vectors paired with the corresponding desired output.
Conceptually the network tries to mimic the training set. Practically, the network
parameters are modified to reduce the value of a function that expresses the differ-
ence between the actual output and the ground truth, called cost function (also loss
or objective function).
The training process uses a method called backpropagation to update the network
weights.
Considering a single neuron, a modification in its weights directly modifies the out-
put. If this neuron is connected to another one, the modification also affects the
connected neuron. To take into account this sequence, the chain rule of calculus is
used. Considering a function h(x) = f(g(x)) dependent on the output of another
function, we can calculate the change in h due to a change in the input x using:

∂h(x) =
∂f

∂g

∂g

∂x
∂x

This formula during backpropagation has to be applied to a longer sequence of
interdependent functions.
Due to this complexity is not possible to calulate the exact combination to perform
the cost function minimization. For that reason gradient descent is used.

C =
1

2n

∑
x

(y(x)− a)2

Considering

• n: the number of inputs.

• y(x): the desired output.

• a: is the actual output, clearly it also depends on both weights and biases.

This cost function is called mean squared error. Different Loss functions exist and
each one modifies the performance of the network.
The training phase wants to reduce the loss by modifying the network parameters,
weights, and biases. As mentioned above, given the complexity of the problem, the
exact solution can’t be found analytically. The gradient descent process modifies all
parameters following the negative gradient of the cost function. To understand it,
let us consider the case of C dependent only on 2 variables C(w, b). A small change
in those variable produces:

∆C(w, b) ≈ ∂C

∂w
∆w +

∂C

∂b
∆b

Now let us name:

∇C =

(
∂C

∂w
,
∂C

∂b

)T

∆v = (∆w,∆b)T

Where ∇C is called gradient.

∆C(w, b) ≈ ∇̇C∆v

We need to decrease C so ∆C has to be negative. Hence we can chose ∆v = −η∇C.
In this way it is guaranteed that ∆C will be negative. −η is called the learning rate.
Then the modification is applied to the values

w → w′ = w − η∂C
∂w

b→ b′ = b− η∂C
∂b

In the case of a real network, we have multiple weights and biases, so a partial
derivative of the cost function has to be calculated using the chain rule explained
above. But the base concept remains the same: we want to follow the gradient of
C in the negative direction.
The whole gradient descent process would require the complete dataset. Due to the
computational complexity, in general it is used the stochastic gradient descent over
a mini batch. A small set of randomly selected input values is used as input in the
network. The gradient descent is calculated for each input and the mean result is
kept to update parameters. Then a new mini-batch is selected until all input values
have been used. This is called a epoch. To complete the training process various
epochs are performed.

2.2 Convolutional Neural Network
Convolutional neural networks are well suited to tasks such as object recognition,
image classification, and text analysis. They have been first introduced in 1989 [13],
but only in recent years, thanks to the increase in GPU power and to the availability
of huge datasets for training, have been largely used in computer vision tasks. The
key observation is that many natural signals are a composition of low-level features
(edges form motifs, motifs assembles into parts, parts form objects [15]). These
patterns can be found not only in images but also in speech and music.
The CNN structure is inspired by the visual cortex in animals [22], where groups of
cells are sensitive to a small subregion of the input image. Therefore the image is
not processed as a single block but as a composition of smaller features.
The main difference with feed-forward neural networks is the absence of fully con-
nected layers in the initial and central part of the architecture. Fully connected

layers are only used in the final part to produce the output, the classification prob-
ability distribution. From a computational perspective, this translates into models
that require a smaller number of weights even for a large number of layers, and are
therefore more tractable from the point of view of memory occupation. The training
process is executed with backpropagation as in the feed-forward neural network [15].

2.2.1 Architecture

The figure 2.4 shows an high-level view of a CNN organization. Apart from the input
layer, the middle layers achieve feature extraction while the final fully connected part
performs classification.

-

Figure 2.4: High level overview of CNN structures [22].

In basic CNN architectures, feature extraction is performed by a repeated pat-
tern. First, a convolutional layer is applied to the input, then an activation function
(generally the ReLU) and finally a Pooling layer, which reduces the information size.
An example of one of the first CNN created is shown in figure 2.5.

Figure 2.5: LeNet-5 architecture [14]

2.2.2 Layers

Convolutional layers’ role is to find local conjunction of features from the previous
layers [15]. They don’t perform a simple matrix multiplication as the fully connected

in a feed-forward neural network do, they rather execute a convolution.
Weights in a convolutional neural network are grouped in matrices called kernels
(or filters). Though they have a smaller width and height with respect to the input,
in basic CNN architectures they must match the depth.
Considering the input layer, an image usually has three dimensions: width, height,
and depth (that is generally three, following RGB encoding). Therefore the first set
of filters must have a depth of three.

Figure 2.6: Convolution [22]

As shown in figure 2.6 the convolution operation is applied by multiplying a
kernel for an area in the input image (each value is multiplied by the corresponding
weight, then the result is the sum of all multiplications). The result is stored in the
output matrix called feature map or activation map. There are multiple of such
filters. Once the input has been completely processed, the network uses the next
filter. It is important to notice, that the depth of the activation map is not related
to the input or the kernel depth, instead, it is equal to the number of kernels applied
to the input image.
Some definitions for this layer:

• N : width/height of the input, in the simplified case of a square input image.

• P : the amount of padding used in the input. The padding is useful to obtain a
desired dimension in the activation map, for example, to keep the same input
sizes.

• S: the stride. It expresses by how much a kernel is shifted during convolution.

• F : the kernel dimension.

Then we can express the size of the output feature map as:⌊
N + 2P − F

S

⌋
+ 1

Pooling layers merge semantically similar features found in the previous activation
map [15] and help control overfitting [22]. The most common layer is the Max-
pooling which extract the maximum value.

Figure 2.7: Max Pooling example [28]

The different colors highlight different areas of the input tensor to the polling
layer. The maxpooling takes the maximum number in those sections. The stride is
typically of two.

Activation layers apply an activation function to each element of their input (typi-
cally a ReLU or LeakyReLY).
The fully connected layer takes the output of convolution/pooling, flattens it and
predicts the best label to describe the image. As in a normal feed-forward neural
network, the inputs to the fully connected layer are multiplied by the weights and
summed together. Then an activation function is used to produce the output. The
results are propagated to the next fully connected layer. The last one has a neuron
for each class label and it produces the probability distribution.

2.2.3 Training

The training phase modifies the weights values in order to detect image features.
As we can see from figure 2.8, filters after training have learnt some low-level features
of the image.

Figure 2.8: Filters learnt. [12]

Dropout technique is used to reduce overfitting during training [12]. It sets

to zero the output of each hidden neuron with a given probability reducing the co-
adaptation of neurons.

Another technique called batch normalization limits the effects of covariate
shift. The continuous change in the distribution of network activations due to the
changes in network parameters forces layers to continuously adapt, slowing down
training [9]. The solution is to apply, after activation layers, a normalization to
bring the mean to zero and the standard deviation to one.

2.3 Object Detection

Object detection performs classification and localization even for images with mul-
tiple objects with different classes. The localization task is achieved drawing boxes
around objects, generally defined in terms of box center, width, and height. Within
each box, the object is also classified.

2.3.1 YOLO (You Only Look Once)

Networks like YOLO (You Only Look Once)[27] use a carefully built network to
analyze the image in a single inference. YOLO can perform object detection on
a video stream (45 frames per second according to the results of [27]). The input
image is divided into an S ∗S grid and for each cell, the network predicts a specified
number of bounding boxes and outputs the conditional class probabilities. The
number of outputs for YOLO are:

S ∗ S ∗ (B ∗ 5 + C)

B is the number of boxes to be detected by each cell, this is a network parameter.
C is the set of class conditional probability, these values are calculated for each cell
for each class. The five numbers define a single bounding box:

• bx, by the bounding box center.

• bw, bh the box height and width.

• BC the box confidence score.

where the box confidence score represents the probability of detecting an object and
how good is its shape.

Even if more than one box is detected for each cell, at the end only one object
per cell can be identified.

Figure 2.9: YOLO Model. The image is divided into S ∗ S cells and for each cell a
certain number of bounding boxes are detected.

As we can see from figure 2.9 there are lots of boxes predictions, but only the
best ones are kept in the final output. The metric to evaluate a box is the IoU
(Intersection over Union):

Figure 2.10: Intersection over union is the metric used to compare bounding boxes.
It is the ratio between the overlapping area and the box union area [23].

In order to select the best box for each grid cell the non-max suppression
algorithm is used [27]. First, all boxes with a confidence score below a certain
threshold are removed, then the box with the highest probability is used to compute
the IoU against all other. If the resulting IoU is greater than another threshold
(usually 0.6), the compared box is discarded. Conceptually it means that they are
boxes encircling the same object, given that they are almost completely overlapped.
Given that the compared box has a lower confidence score, it is discarded.

2.3.2 YOLO v2

Version 2 of the YOLO network introduces various changes to improve speed (while
keeping a good accuracy score of 67 frames per second [25]).
The network modifies the input size to accept 416 ∗ 416 images. In this way, the
image center is overlapped to that of the central grid cell. It is common to have
pictures with centered subjects so it simplifies certain predictions.
YOLO v2 uses anchor boxes to predict all the B boxes.
The box is represented using different values. The prediction values:

bx = σ(tx) + cx

by = σ(ty) + cy

bw = pwe
t
w

bh = phe
t
h

σ(t0) = Pr(object)

Where Pr(object) is the probability that the box contains an object. The σ()
(sigmoid) function is used to constrain values between [0, 1]. The box center is
expressed as an offset with respect to the top left corner of the grid cell (cx, cy)
and width and height are expressed relative to the anchor box dimensions (pw is the
anchor box width, ph the height).
The value σ(t0) gives an idea of how good is a box, it is the box confidence score.
If this value is below a certain threshold (typically 0.3) the corresponding box is
discarded. Figure 2.11 shows the values of a predicted box. The dashed box is the
anchor box while the blue box is the prediction. The blue dot is the predicted box
center, it is expressed as an offset with respect to the top left corner of the cell in
which it is contained plus the coordinates of that corner.

Figure 2.11: Box definition diagram [25]

The network architecture is similar to YOLO v1, but it doesn’t have the last two
fully connected layers.
The output has a different size:

S ∗ S ∗ (B ∗ (5 + C))

Each predicted box has its conditional class probabilities, differently with respect to
YOLO V1 that had a set of conditional class probabilities for each cell.

YOLO v3 The last version of YOLO, version 3 [26], brings some small changes
and it is a little bit bigger, but produces fast and good result with respect to for
example SSD (Single shot detection). The main change is that it predicts boxes at
multiple scales.

2.3.3 Object detection evaluation - mAP

In order to evaluate how good a model is performing object detection, the mAP
(mean average precision) is the most used metric.
The definition of the mAP depends on two other metrics:

Precision =
TP

TP + FP
=

TP

All detections

Recall =
TP

TP + FN
=

TP

All ground truths

where:

• TP : True Positive. Boxes with IoU > threshold.

• FP : False Positive. Boxes with IoU < threshold. Also boxes with IoU >
threshold for a ground truth for which a prediction has already been found.

• FN : False Negative. The network didn’t produce any boxes while a ground-
truth exists.

The process starts by calculating the AP for each class, then the mean produces the
mAP.
To calculate AP, the inference is performed on a set of images and the results are
compared with the ground truth. Having the list of all predicted boxes, it is possible
to start calculating the TP and FP. If more than one box has an IoU greater than
the threshold with the same ground truth, only the box with the highest IoU is
considered TP, the others FP.
The list of boxes is ordered based on the confidence score, in decreasing order. Then,

starting from the highest confidence score, the precision and recall are calculated.
Obviously, for the first elements in the list, the recall will be low (it is calculated
over all ground truths) while the precision could be near 100% (it is based on the
detections, so if the first is a TP the precision will be high). The set of elements
used to calculate those two values grows at each iteration, normally the precision
will go down while the recall will go up as new elements are used. After all elements
in the list have been used for this process, a point for each element is plotted in the
graph. This produces the precision-recall graph. The area under this graph is the
AP for the given class.
There are two methods to calculate the AUC (Area Under the Curve) for the AP:
the 11-points interpolation and the all points interpolation method.

11-points interpolation

The 11-points interpolation gets the AUC value by averaging the graph values at
eleven evenly spaced points.

AP =
1

11

∑
r∈{0,0.1,...,1}

ρinterp(r)

ρinterp(r) = max
r̃:r̃≥r

ρ(r̃)

Where ρ(r̃) is the precision calculated at recall value r̃.

Figure 2.12: 11-points interpolation example [23]

As we can see from the figure 2.12, from the r value considered, the value of
pinterp(r) is obtained retrieving the maximum value of precision calculated on r̃

greater than r. This process to calculate the AP is then repeated for each class and
averaged in order to get the mAP.

All points interpolation

Rather than interpolating only a few set of points, all points interpolation uses all
points needed.

AP =
1∑

r=0

(rn+1 − rn)ρinterp(rn+1)

ρinterp(rn+1) = max
r̃:r̃≥rn+1

ρ(r̃)

The following figure 2.13 shows the curve produced by selecting all points interpo-
lation.

Figure 2.13: All points interpolation. [23]

Figure 2.14: AUC results for all points interpolation [23]

As stated before, calculating the AP is the same as calculating the AUC for the
precision-recall graph, we can see the process in figure 2.14. Then the AP calcula-
tion is repeated for all classes and then averaged.

2.4 Quantization

Deep neural networks are used in different tasks nowadays like computer vision,
speech recognition, and robotics, with state-of-the-art accuracy[29]. Those results
come at the cost of high computational complexity and energy consumption. There-
fore, it is important to optimize these processes in order to be able to apply them
on embedded systems.
Embedded devices come with limited computational capacity, limited storage and
battery life (in case of smartphones). To try to solve these problems, in literature,
there are different approaches both at the hardware level and at DNN algorithm
level [19, 11, 20, 8, 24].
Quantization refers to the process of reducing the number of bits needed to represent
a number on a computer, by mapping to a lower precision representation limiting
the loss of information.

2.4.1 Values representation

In computer science, numbers are represented as sequences of bits. Real numbers are
the most commonly represented values in machine learning and there are different
methods to represent them:

• Floating point

• Fixed point

• Dynamic fixed point

A floating point number is composed of three parts: a sign bit, an exponent and a
mantissa. The exponent represents the order of magnitude and the mantissa, the
correct value in that order. For this reason, floating-point numbers can represent a
wide range of values. There exist different floating-point formats :

Table 2.1: Floating point formats [4]

Format Total
bit-
width

Exponent
bit-
width

Mantissa bit-width

Double precision floating point 64 11 52
Single precision floating point 32 8 23
Half precision floating point 16 5 10

Just by using the half precision floating point representation it is possible to
reduce the bit width without having an impact on the training performance [4].
However, floating point operations are time and energy consuming from a hardware
point of view.
Fixed point numbers are stored like integers in two’s complement. Besides all fixed
point numbers have a common scaling value, a shared exponent. This greatly sim-
plifies the time and energy required to perform operations. Some embedded systems
don’t come with an FPU (floating point unit) so quantization can help also in this
regard.
The last representation I consider is the dynamic fixed point that comes with a vari-
able shared exponent. In Deep learning, it is used to have groups of variables with
different scaling factors. For example layer’s weights, bias, gradients, etc. can be
used with a different scaling factor [4].

Figure 2.15: Floating point representation [4].

2.4.2 Uniform and Nonuniform

Quantization can be of two different types: uniform and nonuniform. The former
is the easiest one and basically is a conversion from floating point to fixed point or
to dynamic fixed point, this type preserves an equal spacing between consecutive
represented value. The latter is not limited to equal spacing and it considers tech-
inques like log domain quantization and learned quantization or weight sharing [30].

Figure 2.16: Uniform vs. NonUniform quantization [30]

This thesis focuses on uniform quantization, considering the dynamic fixed-point
conversion. It is a linear mapping among a floating-point variable to a fixed point
one. A limited range for the floating-point is linearly mapped, with some losses, to a
fixed point representation. It is possible to apply the quantization both for weights
and activations.
Quantization can improve a model performance both in terms of computational re-
quirements and in model size. A low bit precision operation, clearly requires less
energy to be performed increasing the battery life for mobile devices. It is also
possible to easily build, custom hardware to improve efficiency. With some extreme
techniques, it is possible to use one-bit weights, hence converting the convolutional

operation to a binary logic operation [24]. For what concerns the model dimen-
sions, it is a common practice in machine learning to package a trained model as
a single block ready to perform inference. Its size could potentially be a problem,
particularly for embedded devices (for example Alexnet size is about 200Mb). With
quantization, the size can be drastically reduced.

2.5 Tensorflow

In this section, I will describe briefly the important concepts of Tensorflow useful to
explain this thesis work. Tensorflow is an interface for expressing machine learning
algorithms and an implementation for executing such algorithms [1]. It has been
released in 2015 by Google. As a high-level description, Tensorflow expresses com-
putations as directed graphs. Nodes in these graphs are represented by operations
and edges are data flows expressed as tensors, arbitrary sized arrays. One of the
strengths of Tensorflow is the ability to run on a wide variety of heterogeneous
systems (mobile devices, single machines or distributed systems) with little or no
change to the algorithm specification[1]. It has also a built-in model training sup-
port.

2.5.1 Components

Variables are buffers that contain tensors, but are preserved between one execution
of the graph and the other. Some variables properties are:

• They must be initialized.

• Tensorflow can use variables to perform training with gradient descent without
additional code.

• Given that they are preserved between different runs, their values can be saved
to disk.

For a single variable declaration, Tensorflow add three different operations:

1. An operation for producing the tensor, It corresponds to the initialization
phase.

2. An Assign operation, it assigns the initialization tensor to the variable.

3. The effective variable operation, that holds the current value.

A placeholder is like a variable but without the need to initialize it immediately.
Usually placeholders are used as input nodes.
Constants are nodes that take value that can’t be changed.
An operation represents an abstract computation. A kernel in Tensorflow is a
particular implementation of an operation that can run on a particular device.

Figure 2.17: List of common Tensorflow operations [3].

To interact with the graph, a Tensorflow program uses a session. It builds the
graph, initializes all variables and is able to run a subsection of the graph to get an
intermediate result, this type of execution is called partial execution.

2.6 Freezing a graph
In Tensorflow it is possible to save the state of a graph in order to persist its weights,
hence the results of training. In this way, other people that want to use the graph,
don’t have to perform the training again. There are two possible ways. The first
consist of a set of 4 files:

• A .meta file which holds the graph structure and the metadata.

• An .index file.

• A .data file which holds the weights.

• A checkpoint file.

With this format, in order to perform inference, it is necessary to have the source
code.
The second way is to generate to a .protobuff file, a single file that holds all informa-
tion needed by Tensorflow to perform inference. This format removes all unnecessary
components, such as those related to the training process. For example, all Variable
nodes are converted to Constant nodes.

Chapter 3

Related Works

Deep neural networks are widely used in various areas of Artificial Intelligence and
their popularity is constantly increasing. This development has been paired with
the increase in the computational power of CPU and GPU.
Due to their excellent results, nowadays the main concern is to find techniques to
reduce the complexity of those algorithms to bring efficient deep neural networks to
embedded devices without a constant connection to the internet.
To tackle this problem two different types of approaches have been used: hardware-
based optimization and a software algorithmic optimization.
The first approach tries to develop a dedicated hardware structure to optimize data
flows or improve parallelization. Parallelization of MAC operations (multipliers and
accumulator) is the most commonly addressed, due to the large number of such op-
erations involved in the inference phase of a deep convolutional neural network[30].
Moons et al. [17] describe some ad-hoc hardware solutions to reduce energy con-
sumption and improve parallelization.
Andri et al.[2] described a hardware architecture for an accelerator optimized for
binary-weights CNN.
Rastegari et al. [24] proposed a network binarization in two ways, a Binary-
Weight-Network that affects only weights with a reduction in size with respect to
an equivalent CNN of about 32 times, and a XNOR-Network with both weights
and inputs binarized. XNOR-Network produces a 58x speedup in CPUs due to the
reduced number of high precision operations. The advantage of binarization is that
it is possible to execute convolution just by using binary logic operations.
Always related to weights binarization, Courbariaux et al.[5] proposed a method
to train BNN (Binarized Neural Network) with weights and activation constrained
to -1 and 1. This allows to drastically reduce memory size and to replace most
arithmetic operations with bit-wise operation, reducing power consumption.
Moons et al.[19] developed a combined algorithmic and hardware system to im-
prove energy consumption in common convolutional neural networks. The main idea
is that common architecture widely use the ReLU activation function that produces
0 if the input value is lower or equal to 0. It is possible, by using hardware acceler-
ators with dedicated hardware support, to skip ReLU computation in case of zero
inputs. Besides, a precision scaling technique is implemented in hardware. For the
algorithmic optimization, a per-layer quantization is used. The right quantization

32

value is obtained with a greedy search over the parameters, trying various quanti-
zation until the target accuracy is reached.
Gysel et al. [8] create Ristretto, a framework in Caffe, that is able to approximate
floating-point operations using dynamic fixed point. This reduces the network size
and energy consumption. Ristretto takes a trained model and performs a weight
analysis, in order to calculate the dynamic ranges for dynamic fixed-point numbers.
Then, performing inference with different images in input analyzes activation pa-
rameters for quantization. Afterward, the bit-width reduction phase produces an
optimized model.
The reduction in network complexity can be achieved statically or dynamically, it
means that at runtime it is possible to modify certain parameters to adapt the model
to the processed data. Jahier Pagliari et al.[11] propose this approach applied on
RNN (Recurrent neural network), where the parameter tuned at runtime is called
BW (Beam Width). By increasing this parameter the network accuracy increases
alongside the computational complexity. At runtime, the network is monitored and
when necessary the BM is adjusted. They reduced the average BW by up to 33%
with respect to a static network, while producing comparable or even better results.
A dynamic approach has been used also by Tann et al.[31]. Using hardware ac-
celerators and a low-power embedded GPGPU, their technique is able to adjust the
number of channels in the network. They achieved up to 95% energy reduction with
less than 1% accuracy loss.
Regarding energy consumption optimization Park et al.[21] proposed an interest-
ing combination of two different neural networks, one small and consuming low
energy and the other a complete and high performant neural network. The idea is
that processing input images don’t have always the same complexity, so the first
inference is performed using the small network. If the results are good enough (the
network has good confidence in its prediction) the inference is complete. On the
other hand, if the confidence score is too low, the inference is performed again with
the bigger DNN. This approach has been called Big/Little. Jahier Pagliari et
al.[10] propose another dynamic approach that exploits a bit-width reconfiguration,
for CNN in object classification, via quantization. Their work needs a first phase in
which the training set is analyzed in order to determine the values ranges to perform
quantization. For each bit-width configuration, the inference is performed over the
whole dataset. For each image, the least bit-width configuration that produced a
confidence score greater than a certain threshold is recorded. During execution, the
inference starts with the lowest bit-width quantization. If the result has a confi-
dence score high enough, the execution moves to the next image. Otherwise, the
bit-width is increased to repeat the inference. This process continues until either
the confidence threshold has been exceeded or the maximum bit-width configuration
has been used. In their work, they used two bit-width configurations at runtime.
This thesis work consists of two parts. The first concerns the creation of a software
program using Tensorflow, able to, similarly to Ristretto [8], analyze a pre-trained
model and add some fake quantization nodes with a given bit-width.
The second part is a proposal for an optimization for the Object detection network
YOLOv2 [25], taking inspiration from the Jahier Pagliari et al.[10] work but ap-
plied for object detections. The final objective was to reduce the bit width, hence

the precision, of floating-point operations to optimize this highly efficient network
to be used on an embedded device without a constant connection to the internet.
First, a very low bit precision inference is performed, if some bounding boxes are
predicted with a low confidence score, the inference is performed again with a higher
bit-width and over a region of the image that contains the predicted bounding box.

Chapter 4

Arbitrary Bit-Width Post Training
Quantization in Tensorflow

To adapt Deep Neural Networks to embedded systems, limited in hardware per-
formances, there are two main approaches: the creation of custom hardware and
circuits or logic optimizations at the algorithm level. For the second case, as ex-
plained in chapter 2, there are different techniques. They can be further divided
into two categories: static or dynamic approaches. The former tunes some network
parameters that are kept constant during inference while the latter update them
dynamically as the input changes.
The final objective of my thesis is to develop a program in Tensorflow which is
able to apply this dynamic approach to an object detection network, YOLOV2[25].
Specifically, an approach similar to the Jahier Pagliari et al.[10] work, with a
first inference performed on a low bit-width quantized network and a refinement
performed, if necessary, with a full-fledged network.
In this chapter, I explain the first phase of the work: the analysis of a pre-trained
model and the quantization of network operations. The objective is to simulate
the effect of running a quantized inference on an embedded device, using a normal
PC with TensorFlow. To this end, a “fake quantization” is performed. The "fake
quantization" provides us the information that we need, it is taking into account,
in the network calculations, the precision loss that would be present using variables
stored with a reduced bit-width, even if they are stored in memory as full-fledged
32 bits float. Importantly, the fake quantization implemented can support arbitrary
bit-widths (for example, not only 8 and 16 bit, which are also supported natively by
Tensorflow, but also intermediate bit-width such as 9, 10, 11, etc.).
I tested the quantization on a classification task using AlexNet [12] and the Ima-
geNet validation set [6] for the LSVRC-2012 competition. Results will be measured
using top-1 and top-5 accuracy.

35

Figure 4.1: The program flowchart.

4.1 Graph Loading

As I described in chapter 2, Tensorflow stores network models in two ways: a set of
.index, .meta, .data and checkpoint files or a Protocol Buffer file .pb containing the
description of a frozen model. Protocol buffers are Google’s mechanism for serial-
izing structured data in a way that is language and platform-independent. It is a
similar concept to XML. This format is used in Tensorflow to store a frozen graph.
A .pb file contains all that is necessary to use the pre-trained model for inference.
Given that it is basically a text file, firstly a parsing phase is needed to restore the
graph by populating a Tensorflow data structure called graph def (graph definition).
The program begins by loading the .pb file and then it recovers the graph definition,
in this way it will be possible to apply the various changes needed. A graph in Ten-
sorflow is composed of operations that represent transformations applied to tensors.
Once the graph is restored, it is possible to retrieve all operations and analyze them.
Each operation comes with various attributes, the most important:

• Name: by default is <op_type>_<x>, where x is the number of occurrences
of the same operation type in the graph.

• Type: the type of operation as described by 2.17.

• Inputs and Outputs: lists of tensors in input and in output, they represent the
edges that connect the nodes.

In order to have easily access to the graph, I created a class named FrozenGraph-
Handler that simply loads the definition and extracts references to the input and
output tensors, needed to perform inference in the next stages.

1 # Read the graph d e f i n i t i o n
2 with t f . i o . g f i l e . GF i l e (s e l f . frozen_model_path , " rb ") as f :
3 graph_def = t f . compat . v1 . GraphDef ()
4 graph_def . Pa r seF romSt r ing (f . r ead ())
5

6 # Res to r e the graph
7 with t f . Graph () . a s_de f au l t () as graph :
8 t f . import_graph_def (graph_def ,
9 input_map=None ,

10 r e tu rn_e l ement s=None ,
11 name=""
12)
13 s e l f . graph = graph

14

15 # Save f i r s t and the l a s t ope r a t i on ,
16 # the o r d e r may change a f t e r the mo d i f i c a t i o n s
17 s e l f . i npu t_ten so r = s e l f . graph . g e t_ope r a t i on s () [0] . ou tpu t s [0]
18 s e l f . ou tput_tenso r = s e l f . graph . g e t_ope r a t i on s () [−1] . ou tpu t s [0]

In this listing, we can see the code used to read the .pb file, restore the data and
store the input and output tensors. The first operation receiving the input tensor
while the last operation returning the output one.

4.2 Graph Analysis

The next phase is the graph analysis, performed to determine, for all selected nodes,
the ranges of possible values assumed by the activations for the current dataset.
This is used in the next phase to apply quantization.
The FrozenGraphHandler has a reference to the restored graph that will be use
to have access to all operations. By looking at 2.17, it is possible to see that not
all nodes need quantization, for example, Less, Greater, Shape, etc. The quantized
nodes will be Add, Mul, Matmul, and Conv2D. For this thesis work, they were suf-
ficient.
The class that performs the analysis is called FrozenGraphAnalyzer. Initially,
it iterates over all graph operations and it saves a reference to all nodes having an
operation type present in the list mentioned above.
Then the range calculation is performed exploiting the partial execution functional-
ity in the Tensorflow session. By passing a reference to all selected tensors and the
input images, the session.run() methods return a list of all partial outputs, one for
each requested operation and each input image. Then, after having determined the
min and max value over all inputs for each operation, it builds a dictionary that will
be used in the graph modification phase. The dictionary contains an entry for each
node, where the key is the node name and the value is:

• min_value

• max_value

• num_channel : The number of channels in the node output. The quantization
node must keep the same number.

• n_bits : The bit-precision.

• output_tensor : Reference to the output tensor.

• op: Reference to the operation.

The n_bits is present because a possible improvement in the program would be a
per-layer quantization. It means to change the bit precision, based on the range
values for different layers.

4.3 Graph Modification
The graph modification phase is handled by the class FrozenGraphModifier that
needs a reference to the FrozenGraphHandler, to access the graph, and to the
dictionary built in the previous phase. The modifier creates a new graph node for
each operation to quantize and then it inserts it into the graph.

4.3.1 Fake Quantization

In this work, I use fake quantization. It means that the node class, that I will
describe shortly, is taking the input represented in floating-point, it is clamping its
value, based on the selected bit precision, then it is converting it back to floating-
point before producing the output.
The class that defines the Tensorflow custom node is called BaseRoundingQSim
and its base class is QSim (from Quantization Simulation). The hierarchical struc-
ture is necessary to support, in future works, other types of quantization (logarith-
mic, etc.).
BaseRoundingQSim needs all data contained in the dictionary for the operation
that it has to quantize. In Tensorflow it isn’t possible to use standard python code
in the graph unless by using a particular annotation: @tf.function. This tells Ten-
sorflow that the following method has to be used as a graph node, it will be wrapped
and inserted in the model definition. The method marked with @tf.function is the
class-default __call__() method. It is suggested to use this structure to avoid
problems with function scope in case of variable declaration inside the method.
The class uses a function provided by Tensorflow to perform the mapping:
tf.quantization.fake_quant_with_min_max_vars_per_channel()
This function takes the starting range as input [a, b], and the number of bits to
define the mapping. Given n bits, there are only 2n possible value to be represented.
The TensorFlow function maps from [a, b], to [0, 2n − 1]. Then it converts back to
[a, b] range, with a loss in precision that simulates the real quantization at a low bit
representation.

4.3.2 Graph Modification

After having created a quantization node it is time to insert it in the graph. As
I described in chapter 2, the Tensorflow graph is composed of nodes connected by
edges. Each edge is a Tensor, data that flows from one node to the other. Adding
a node means that some edges have to be rerouted, disconnecting all inputs in the
following node and connect them to the new node, then connect the latter’s output to
the former’s input. This is a complex procedure, also because Tensorflow isn’t meant
to be used in this way. The structure of a general Tensorflow program is divided
in a first phase of graph definition followed by the execution via a session.run()
call. This suggests that after a graph is composed, the modification should be made
only by modifying the code structure in the composition phase, not in the execution
phase. However, our goal is to be able to modify pre-trained models for which only
the frozen graph is available. Therefore, there is no alternative but to modify the

pre-generated graph. Fortunately, in the tf.contrib module (which contains various
packages built by the community, being Tensorflow an open-source project), there
is a package called graph_editor that enables the kind of modifications that are
needed to add and remove nodes.
Graph_editor uses SubGraphViews. As the name suggests they are a useful tool
to monitor the state of a group of nodes in the graph. It is possible to have a
SubGraphView of only one node. After the creation of that structure, it is possible to
use various methods to insert and modify other SubGraphViews. The Graph_editor
can’t act directly at the node level.

1 # Get the subgraph view , i t i s needed by Graph_Editor
2 # to per fo rm mod i f i c a t i o n s
3 op_to_add_sgv = ge . sgv (op_to_add)
4 prev_op_sgv = ge . sgv (data_for_op [Cons tan t s .DICT_KEY_OP])
5

6 # Connect op to the new op e r a t i o n exchang ing
7 # the output
8 ge . swap_outputs (prev_op_sgv , op_to_add_sgv)
9 ge . connect (prev_op_sgv , op_to_add_sgv)

Ge is an object of type graph_editor. Data_for_op is the dictionary contain-
ing all useful data for the quantization. The code performs the node insertion.
Op_to_add_sgv contains the new node to be added while prev_op_sgv contains a
reference to the node to be modified. The swap_outputs() method is swapping the
outputs of the previous node and the quantization node. Given that the quantiza-
tion node is isolated, swap_output() is detaching the previous node output from the
graph. Then connect() is used to reconnect the graph.

4.4 Alexnet Analysis

In order to test the program results and the effect of a quantization on a real case, I
used the AlexNet CNN [12] on the ImageNet validation set [6]. In order to evaluate
the performance, I used the top-1 and top-5 accuracy. Accuracy is calculated as
follows:

Acc =
Correct predictions
All predictions

Alexnet’s output is an array of probabilities, one for each class. In the case of
Imagenet, there are 1000 classes. The difference among top 1 and top 5 is the fact
that top 1 considers only the prediction with the highest probability whereas top 5
considers the best five.
The inference result can be seen in the picture below:

Figure 4.2: Alexnet[12] top 1 and top 5 accuracy on ImageNet[6].

It is possible to notice that going below 8 bits, the loss in accuracy is very high.

Chapter 5

Selective Refinement for
Energy-Efficient Object Detection

In this chapter, I will describe the second part of this thesis work. Based on the soft-
ware described in the previous chapter, the final goal is to build a system to enhance
CNN performances on embedded devices mainly in terms of energy consumption.
The program uses a similar approach to the Jahier Pagliari et al.[10] work but
applied on an object detection task. I use a first CNN having half of all layers quan-
tized at 4 bits and the other half at 8 bits. It is used to perform inference over an
image. By itself, the accuracy of this network won’t be very high. For that reason,
in case of a box confidence score lower than a certain threshold, a second network
is used with higher precision. This high precision network, however, will only be
executed on parts of the image containing the poorly defined boxes. Therefore, on
average, this network will perform fewer operations with respect to a solution that
uses it directly on the original image. As a consequence, the energy consumption
and latency of the overall inference will be reduced.

41

Figure 5.1: Sequence Diagram.

5.1 Procedure

The CNN used for this thesis, as explained previously, is YOLOv2[25] due to the
good performances in object detection and its structural simplicity. The low pre-
cision network has the first half of its layers quantized at 4 bits, the other at 8
bits. This network is built and used to perform inference on the complete image
416∗416∗3. The output will contain some bounding boxes definition, together with
the box confidence score which is expressed as:

Box confidence score = σ(t0) = Pr(object)

This represents a measure of how good a bounding box is. This inference will pro-
duce a set of bounding boxes that won’t have high values of confidence. If that value
isn’t enough, the second network will be used to “refine” the prediction. The latter is
an 8-bit quantized YOLOv2 network that can have very accurate predictions. The
input to this network will be a section of the initial image. Figure 5.2 shows the
process execution.

Figure 5.2: The program flow graph.

This comes with some problems. First of all, we have to consider that the
main pattern of the YOLOv2 structure is: Conv2D-Relu-Pooling and it is repeated
multiple times with some cases with more than a single Conv2D layer. I can’t use
an arbitrary size in input, but I have to choose a dimension that allows all layers to
execute their tasks without problems.
Let’s start analyzing the Conv2D layers to understand what sizes are accepted.
Each one has a padding of type ’same’, which means that zero padding is added to
maintain the same size among input and output, and is paired with a kernel. Filters
come with two different dimensions: a 3 ∗ 3 ∗x (where x is the input depth) and the
other 1 ∗ 1 ∗ x. Considering how the convolution is executed, a filter 1 ∗ 1 ∗ x can
be applied no matter the input size. The same is true also for the 3 ∗ 3 ∗ x filter
considering that the padding mode is ’same’.
Relu layer doesn’t pose any problem. For the MaxPooling layer, we have to be careful
about the padding. If the input dimension is odd, with a stride of 2, the rightmost
columns are discarded without proper padding. Usually, the padding is applied in
order to avoid to discard some values. Anyway, it is possible to calculate the accepted
inputs and outputs dimensions without problems. Finally, the YOLOV2 structure
contains a passthrough layer that turns a 26 ∗ 26 ∗ x layer into a 13 ∗ 13 ∗ 4x layer
by dividing the original by 2 over the x and y axis. This block is then concatenated
with the layer just preceding the passthrough. Considering the division, it is clear
that width and height for the input tensor must be even, else the concatenation will
fail (sizes won’t be compatible). Knowing all that, it is easy to calculate all possible
values accepted in input.
As explained in chapter 2, the YOLOV2 output expresses a bounding box using 4
values: a center (x, y), width and height. Those values are expressed as offsets with
respect to the top-left corner of the grid cell, for the center point, and to the most
similar anchor box for width and height. In case of a confidence score lower than
a certain threshold, it is possible to refine the box by extracting a section of the
image containing the previously predicted box. The section sizes have to be among

the acceptable values, else the YOLO prediction will fail. If the box doesn’t match
any acceptable value, a bigger section is extracted maintaining the center of the box
as the center of the section. This part of the original image is used as input for the
second network. The result is analyzed and different situations could happen:

• The network didn’t find any box. In this case, also the first network prediction
is discarded.

• The network found a box, it must be remapped to the original image.

• The network found more than one box. All boxes are added to the prediction
list and they are remapped to the original image.

After the refinement, the YOLO output has to be remapped to the original image.
This is straightforward because, from the extraction phase, I still have access to
the top-left corner of the section of the image. Firstly I have to express the box
prediction in terms of pixel coordinates within the sub-image. Then by simply sum-
ming those values with the top-left corner of the extracted image, expressed in pixel
coordinates, we will remap the bounding box values in the original size image.

It is clear that this thesis work is trying to exploit two different optimizations:

• The reduction in energy consumption due to the reduction in bit width for
convolutional operations.

• The reduction in size, for convolutional layers, due to the reduced input size
derived from the extraction phase.

The second optimization isn’t a great deal for the majority of general object de-
tection tasks, in fact, it is common to have boxes that occupy a great portion of
the original image. In those cases, the extracted section won’t provide almost any
advantages, the size reduction would be negligible. This technique has a great po-
tential though if the dataset contains small objects that don’t fit the whole image.
The application case for this thesis work considers a dataset of images similar to
figure 5.3.

Figure 5.3: Use case dataset example.

The object occupies a very small part of the image, so the extraction phase
will greatly reduce the new input size. These images contain industrial components
(plastic connectors) on a conveyor belt. The objective is to detect them in order to
perform counting and automatic quality inspection.

5.2 Evaluation Procedure

5.2.1 Datasets

In order to evaluate the performance of this method, I used a realistic industrial
dataset, generated in the context of a European project, which contains images of
objects moving on a conveyor belt, which have to be detected in order to perform
automatic counting. In the images, objects are small and few per frame. Three
different datasets have been used:

1. Set of images with at most one single object.

2. Set of images with at most two objects.

3. The complete validation set with one, two and more objects.

The best results are expected for Dataset 1. This depends on the fact that having a
single object, the extracted image will be a minor portion of the image. For the other
two cases, for the presence of multiple objects, there will be multiple refinements
with the consequent increase in energy consumption.

5.2.2 Metric

Generally, all object detection tasks, as explained in chapter 2, are evaluated using
the mAP score. That score isn’t well suited to evaluate this particular task. Mean

average precision counts all boxes greater than a certain threshold as equally valid,
but given that my work is refining a box, it would be better to find a metric that
keeps into account also the box quality. To perform an accurate analysis of the
proposed solution, a set of different metrics has been used.

• TP: True positive.

• FP: False positive.

• FN: False negative.

• IoU: Intersection over the union, averaged over only TP.

• Energy spent to complete the task. It is an average over all images in the
dataset.

• mAP: mean average precision.

The IoU is a crucial value, it gives information on how good is a bounding box and
by averaging it over only the correct predictions, I can get a good estimate of how
good it is the refinement process.
TP measures how many boxes have an IoU greater than a threshold with respect to
the ground truth.
FP measures how many boxes aren’t greater than that threshold. Besides, boxes
with IoU greater than the threshold for ground truth already matched. A predicted
bounding box with IoU greater than the threshold has been already founded for this
ground truth.
FN measures how many ground truth boxes don’t have a corresponding prediction
with IoU greater than the threshold.
In order to estimate the energy consumption, I used the work of Moons et al.
[18] that provides a table with values of power consumption for MAC (multiply-
accumulate operation), all other operations are negligible due to the higher number
of MAC needed for convolutions. The formulas to get the energy for a single MAC
at a given bit width are:

Emac_8 = 0.103 ∗ 1

250 · 106
∗ 1

128

Emac_4 = 0.045 ∗ 1

125 · 106
∗ 1

256

The leftmost factors (0.103 and 0.045) in the multiplications are the power values
reported in [18] (expressed in Watts) while the rightmost factors are added because
the hardware described in that work performs 128 8-bit multiplications or 256 4-bit
multiplications in parallel. When doing the former, the hardware is able to run at
250MHz, while for the latter operation it runs at 125MHz. Thus, the middle factors
in the two multiplications represent the time required for each operation and are
used to convert the power values into energy values. In this way, it is possible to
sum all contributions for each MAC operation either at 4 bits or 8 bits.

These quantities have to be multiplied by the number of MAC operations performed
and for the number of images to get the total energy:

Tot_energy = Emac ∗ num_op ∗ num_img

In order to calculate the number of operations I used the following formulas:

Tot_op_conv_layer = Ni ∗Nj ∗ S2 ∗ (W ∗H) ∗ (W ′ ∗H ′)
Where:
• Ni: the number of feature maps in input. In other words, the depth of the

input tensor.

• Nj: the number of feature maps in output.

• S: The filter size. For example, in a 3 ∗ 3 filter, this value will be 3.

• W and H are the width and height for the input tensor.

• W ′ and H ′ are the width and height for the output tensor.
This formula is applied for all convolutional layers. The number of operations de-
pends on the input sizes. So by reducing the input dimensions, it is possible to
reduce the number of operations hence the energy consumption.
Lastly, there are some threshold values to set up in order to use YOLO and to
calculate the mAP:
• ThC: Confidence threshold. YOLO considers a box as a valid prediction, only

if the box confidence score is greater than this value. It means that YOLO
thinks that there is an object inside the box.

• ThS: Selective refinement threshold. Looking at figure 5.1, it is the threshold
used to determine if refinement is needed or not.

• ThO: Overlap threshold. This value is used during non-max suppression. All
boxes with an IoU greater than this value with respect to the box with the
highest confidence score are discarded.

• ThP: True positive threshold. During the mAP calculation, the number of TP
is calculated. This value is the threshold to consider a box as a TP or not.

5.2.3 Test Runs

In order to have a good understanding of how good is this optimization technique I
performed the analysis with three different setups:

1. A complete 8-bits network. This will provide the highest accuracy in the test.

2. A YOLOV2 with the first half layers quantized at 4 bits and the other at 8.
This will provide the lower bound for the test.

3. The refinement process showed in figure 5.1.
I will expect to see case 3 to have an accuracy greater than the second setup while
having a similar energy consumption value.

5.2.4 Grid Search

In order to check what are the best values for those threshold, I performed a grid
search with the following ranges:

ThC = [0.05, 0.6, 0.05]

ThS = [0.5, 1.05, 0.05]

ThP = [0.5, 1, 0.05]

Following python notation for range(), the first value is the range starting value,
the second is the final value exclusive and the third is the step amount. It means
that after ThC = 0.05 the following value will be ThC = 0.1. The ThP is used to
calculate the mAP values that are averaged to get the final result.

5.2.5 Pareto Frontier

In order to evaluate if the refinement performed better than the other two networks,
I based the analysis on mAP and energy consumption. Having a multivariable
optimization problem, the Pareto front is used to find all those couples of values
that are considered the best in the dataset. Specifically, for multiple variables, the
best values are those couples for which it isn’t possible to improve one component
without penalizing the other. In this case, for a Pareto element in this dataset, it
isn’t possible to improve the energy component without penalizing the mAP. In this
way, if the refinement network produces values that exceed this line it is clear that
they are better results with respect to the other 2 network outputs. The side on
which a refinement output is considered better depends on whether it is better to
have a higher value, for a component, or not. The Pareto front is calculated over
the 8 bits and half half networks.

Chapter 6

Results and Future Works

6.1 Results

In this section, I will show graphs Energy-mAP. The energy is calculated in Joule
and it is the average over all images in the dataset. The mAP is the average of all
mAP calculated at different IoU with threshold ThP. The graphs will show the best
result obtained using a certain combination of ThC and ThS (clearly ThS only for
the refinement case).

6.1.1 One object dataset

This dataset contains images with at most a single object. There are about 40
images.

49

Figure 6.1: Results one object dataset.

From figure 6.1 it is possible to see that, with an energy consumption almost
equal to the half half network, it is possible to achieve better mAP.
Following, the values for the figure 6.1:

Table 6.1: Figure 6.1 results.

Energy [J] mAP[%]
8 bits network 279.252 95.697%
refinement 127.336 74.957%
half half network 126.385 63.769%

6.1.2 Two objects dataset

Figure 6.2 shows results relative to the second dataset. It contains images with at
most 2 objects (it contains also all images of the first dataset). There 313 images in
this dataset. With respect to the previous graph, here we can notice that the overall
mAP is reduced from about 75% to around 70%. However, this is true also for
the original 8-bit and half/half networks, so the benefit of the proposed refinement
method is similar to the previous case (around 10% improvement).
Following, the values for the figure 6.2:

Figure 6.2: Results two objects dataset.

Table 6.2: Figure 6.2 results.

Energy [J] mAP[%]
8 bits network 279.252 90.708%
refinement 127.854 69.92%
half half network 126.385 58.154%

6.1.3 Validation dataset

Figure 6.3 shows results relative to the last dataset, the validation set. It contains all
images of the first and the second dataset, in addition it contains images with more
than two objects. There 961 images in this dataset. In this case the difference in
terms of energy consumption is slightly more visible. This happens because there are
images with more than two objects, so the refinement could be performed multiple
times for a single image, one for box.
Following, the values for the figure 6.3:

Figure 6.3: Results validation dataset.

Table 6.3: Figure 6.3 results.

Energy [J] mAP[%]
8 bits network 279.252 88.256%
refinement 128.247 70.553%
half half network 126.385 59.572%

6.2 Future Works

In this section I will explore some of the improvements that can be applied to this
thesis work:

• Implement different quantization methods.

• Switch to Tensorflow 2.0.

• Combination of different image section for refinement.

6.2.1 Quantization methods

As explained in chapter 2 there are different quantization methods. In the context
of this thesis work, it would be possible to apply one of the nonuniform techniques
like log domain quantization or learned quantization or weight sharing [4]. As shown

in chapter 4 the QSim is an easily extendable class. It is sufficient to implement
@tf.function for the __call__() method.

6.2.2 Tensorflow 2.0

Recently Tensorflow version 2 has been released. It brings lots of changes to the
Tensorflow 1 workflow explained in chapter 2 and in order to move this project to
that version there are different things to consider. In general, with this release,
Google wanted to realize the following points [32]:

• Fewer lines of code.

• Increased clarity and simplicity.

• Easier debugging.

The concept of eager execution by default, has been added. It means that the call
to tf.session.run() isn’t necessary anymore, instead, we have to wrap our operations
into python functions and run them as simple methods.
The usage of name-based variable tracking is discouraged in Tensorflow 2.0. I used
it extensively to retrieve references to network nodes in my implementation. This
could be a big obstacle to the conversion to Tensorflow 2.0. It is more difficult to
access all information contained in the proto buffer file of the network. In addition
the .pb format isn’t the standard way to store a frozen model anymore. Instead a
SavedModel format is used.
The tf.Contrib module has been removed in Tensorflow 2.0. Some packages have
been converted, but graph editor did not. As shown in chapter 4 I used it exten-
sively to easily modify the graph by adding nodes. This adds another obstacle to
the conversion, in addition to the new difficulty to find a reference to a given layer,
it is really hard to modify the graph. All modifications has to be made directly on
the proto buffer graph description file.
The usage of the @tf.function annotation is still present.

1 W = t f . V a r i a b l e (t f . ones (shape =(2 ,2)) , name="W")
2 b = t f . V a r i a b l e (t f . z e r o s (shape =(2)) , name="b")
3

4 @tf . f u n c t i o n
5 de f f o rwa rd (x) :
6 r e t u r n W ∗ x + b
7

8 out_a = fo rwa rd ([1 , 0])
9 p r i n t (out_a)

The listing above shows a simple example that explains how the new programming
workflow for Tensorflow 2.0 can be used.

6.2.3 Combined refinement of multiple image sections

This thesis results have been achieved using a particular dataset. All images contain
small objects. This is useful because, in this way, the resulting bounding boxes will
be small as well. Then, by extracting from the image the corresponding section
with the accepted dimensions, I am sure that there will be a great reduction in the
number of operations for the convolutional layers. In the case of multiple objects,
I’m performing one refinement for each extracted section. One possible improvement
could be an algorithm to join together nearby sections in a way to create a bigger
image containing multiple boxes that still respects the constraints in size. In this
way, the number of operations will be bigger, but the refinement will be performed
just once, possibly eliminating some repeated computations and further improving
efficiency.

Bibliography

[1] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heteroge-
neous Distributed Systems. 2016. arXiv: 1603.04467 [cs.DC].

[2] R. Andri et al. “YodaNN: An Architecture for Ultralow Power Binary-Weight
CNN Acceleration”. In: IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems 37.1 (2018), pp. 48–60. doi: 10.1109/TCAD.
2017.2682138.

[3] Nikhil Buduma and Nicholas Locascio. Fundamentals of deep learning: design-
ing next-generation machine intelligence algorithms. OóReilly, 2017.

[4] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Training deep
neural networks with low precision multiplications. 2014. arXiv: 1412.7024
[cs.LG].

[5] Matthieu Courbariaux et al. Binarized Neural Networks: Training Deep Neural
Networks with Weights and Activations Constrained to +1 or -1. 2016. arXiv:
1602.02830 [cs.LG].

[6] J. Deng et al. “ImageNet: A Large-Scale Hierarchical Image Database”. In:
CVPR09. 2009.

[7] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016.

[8] Philipp Gysel, Mohammad Motamedi, and Soheil Ghiasi. Hardware-oriented
Approximation of Convolutional Neural Networks. 2016. arXiv: 1604.03168
[cs.CV].

[9] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. 2015. arXiv: 1502.
03167 [cs.LG].

[10] Daniele Jahier Pagliari, Enrico Macii, and Massimo Poncino. “Dynamic Bit-
width Reconfiguration for Energy-Efficient Deep Learning Hardware”. In: July
2018, pp. 1–6. doi: 10.1145/3218603.3218611.

[11] Daniele Jahier Pagliari et al. “Dynamic Beam Width Tuning for Energy-
Efficient Recurrent Neural Networks”. In: May 2019, pp. 69–74. doi: 10.1145/
3299874.3317974.

55

https://arxiv.org/abs/1603.04467
https://doi.org/10.1109/TCAD.2017.2682138
https://doi.org/10.1109/TCAD.2017.2682138
https://arxiv.org/abs/1412.7024
https://arxiv.org/abs/1412.7024
https://arxiv.org/abs/1602.02830
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/1604.03168
https://arxiv.org/abs/1604.03168
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167
https://doi.org/10.1145/3218603.3218611
https://doi.org/10.1145/3299874.3317974
https://doi.org/10.1145/3299874.3317974

[12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classifica-
tion with Deep Convolutional Neural Networks”. In: Advances in Neural Infor-
mation Processing Systems 25. Ed. by F. Pereira et al. Curran Associates, Inc.,
2012, pp. 1097–1105. url: http://papers.nips.cc/paper/4824-imagenet-
classification-with-deep-convolutional-neural-networks.pdf.

[13] Y. LeCun et al. “Backpropagation Applied to Handwritten Zip Code Recogni-
tion”. In: Neural Comput. 1.4 (Dec. 1989), pp. 541–551. issn: 0899-7667. doi:
10.1162/neco.1989.1.4.541. url: http://dx.doi.org/10.1162/neco.
1989.1.4.541.

[14] Y. Lecun et al. “Gradient-based learning applied to document recognition”.
In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324. doi: 10.1109/5.
726791.

[15] Yann Lecun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: Nature
521.7553 (2015), 436–444. doi: 10.1038/nature14539.

[16] Andrew L. Maas. “Rectifier Nonlinearities Improve Neural Network Acoustic
Models”. In: 2013.

[17] B. Moons et al. “14.5 Envision: A 0.26-to-10TOPS/W subword-parallel dynamic-
voltage-accuracy-frequency-scalable Convolutional Neural Network processor
in 28nm FDSOI”. In: 2017 IEEE International Solid-State Circuits Conference
(ISSCC). 2017, pp. 246–247. doi: 10.1109/ISSCC.2017.7870353.

[18] Bert Moons et al. “DVAFS: Trading computational accuracy for energy through
dynamic-voltage-accuracy-frequency-scaling”. In: Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2017 (2017), pp. 488–493.

[19] Bert Moons et al. “Energy-efficient ConvNets through approximate comput-
ing”. In: 2016 IEEE Winter Conference on Applications of Computer Vision
(WACV) (2016). doi: 10.1109/wacv.2016.7477614. url: http://dx.doi.
org/10.1109/WACV.2016.7477614.

[20] Bert Moons et al. Minimum Energy Quantized Neural Networks. 2017. arXiv:
1711.00215 [cs.NE].

[21] E. Park et al. “Big/little deep neural network for ultra low power inference”. In:
2015 International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS). 2015, pp. 124–132. doi: 10.1109/CODESISSS.
2015.7331375.

[22] Josh Patterson and Adam Gibson. Deep learning: a practitioners approach.
OReilly, 2017.

[23] Rafaelpadilla. rafaelpadilla/Object-Detection-Metrics. 2019. url: https://
github.com/rafaelpadilla/Object-Detection-Metrics.

[24] Mohammad Rastegari et al. XNOR-Net: ImageNet Classification Using Binary
Convolutional Neural Networks. 2016. arXiv: 1603.05279 [cs.CV].

[25] Joseph Redmon and Ali Farhadi. “YOLO9000: Better, Faster, Stronger”. In:
arXiv preprint arXiv:1612.08242 (2016).

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://doi.org/10.1162/neco.1989.1.4.541
http://dx.doi.org/10.1162/neco.1989.1.4.541
http://dx.doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/ISSCC.2017.7870353
https://doi.org/10.1109/wacv.2016.7477614
http://dx.doi.org/10.1109/WACV.2016.7477614
http://dx.doi.org/10.1109/WACV.2016.7477614
https://arxiv.org/abs/1711.00215
https://doi.org/10.1109/CODESISSS.2015.7331375
https://doi.org/10.1109/CODESISSS.2015.7331375
https://github.com/rafaelpadilla/Object-Detection-Metrics
https://github.com/rafaelpadilla/Object-Detection-Metrics
https://arxiv.org/abs/1603.05279

[26] Joseph Redmon and Ali Farhadi. “YOLOv3: An Incremental Improvement”.
In: arXiv (2018).

[27] Joseph Redmon et al. “You Only Look Once: Unified, Real-Time Object Detec-
tion”. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2016). doi: 10.1109/cvpr.2016.91.

[28] Rajalingappaa Shanmugamani and Stephen Moore. Deep learning for com-
puter vision: expert techniques to train advanced neural networks using Ten-
sorFlow and Keras. Packt., 2018.

[29] V. Sze et al. “Efficient Processing of Deep Neural Networks: A Tutorial and
Survey”. In: Proceedings of the IEEE 105.12 (2017), pp. 2295–2329. doi: 10.
1109/JPROC.2017.2761740.

[30] Vivienne Sze et al. “Efficient Processing of Deep Neural Networks: A Tutorial
and Survey”. In: Proceedings of the IEEE 105.12 (2017), 2295–2329. doi: 10.
1109/jproc.2017.2761740.

[31] Hokchhay Tann et al. “Runtime configurable deep neural networks for energy-
accuracy trade-off”. In: Proceedings of the Eleventh IEEE/ACM/IFIP Inter-
national Conference on Hardware/Software Codesign and System Synthesis -
CODES 16 (2016). doi: 10.1145/2968456.2968458.

[32] TensorFlow Core. url: https://www.tensorflow.org/guide.

[33] Bing Xu, Ruitong Huang, and Mu Li. Revise Saturated Activation Functions.
2016. arXiv: 1602.05980 [cs.LG].

https://doi.org/10.1109/cvpr.2016.91
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/jproc.2017.2761740
https://doi.org/10.1109/jproc.2017.2761740
https://doi.org/10.1145/2968456.2968458
https://www.tensorflow.org/guide
https://arxiv.org/abs/1602.05980

	Introduction, Motivations and Goals
	Background
	Neural Networks
	Neurons
	Networks
	Training

	Convolutional Neural Network
	Architecture
	Layers
	Training

	Object Detection
	YOLO (You Only Look Once)
	YOLO v2
	Object detection evaluation - mAP

	Quantization
	Values representation
	Uniform and Nonuniform

	Tensorflow
	Components

	Freezing a graph

	Related Works
	Arbitrary Bit-Width Post Training Quantization in Tensorflow
	Graph Loading
	Graph Analysis
	Graph Modification
	Fake Quantization
	Graph Modification

	Alexnet Analysis

	Selective Refinement for Energy-Efficient Object Detection
	Procedure
	Evaluation Procedure
	Datasets
	Metric
	Test Runs
	Grid Search
	Pareto Frontier

	Results and Future Works
	Results
	One object dataset
	Two objects dataset
	Validation dataset

	Future Works
	Quantization methods
	Tensorflow 2.0
	Combined refinement of multiple image sections

