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Abstract

The final work focuses on the development of the SmartGimbal control system that is
a camera holder. The thesis is the outcome of a collaboration with Digisky Srl, offering
high technology and low cost solutions in the avionic system field. One of the Digisky’s
proper product is the SmartBay platform, a wing pylon enabled to host any type of
sensors. The SmartGimbal is one of the sensors conceived by Digisky, compatible with
the SmartBay platform, holding a camera to achieve the purpose of aerial monitoring,
surveillance, fire detection and medical emergencies.
Proceeding according to the Model-Based approach, four main parts of the thesis can be
identified. First, the mechanics and the dynamics of the gimbal system are analyzed to
derive a mathematical model of the gimbal system and its dynamic equations, also by
applying the Denavit-Hartenberg convention from robotic.
In the second part, the control system of the gimbal, that is able to rotate around the az-
imuth and elevation axes, is developed. From the simulations performed through Matlab
and Simulink environments, both the maximum torque and angular speed values that
the DC motors should provide to the system are evaluated. Eventually, the DC motors,
already mounted on the system, are directly controlled by means of PI controllers.
Finally the control algorithms are converted into C code to be executed on the micro-
controller, placed on the Arduino Mega 2560 board. In this manner, the two control
algorithms can run on the microcontroller and the control system can be tested on the
real existing system. Before the validation phase on the real gimbal system, as suggested
by the model-based design approach, a Software-in-the-Loop and a Processor-in-the-Loop
simulations are performed.
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Chapter 1

Introduction

Nowadays the aerial shots provided by cameras are very useful and employed instruments
to achieve different purposes like surveillance, earth monitoring, disasters prediction. The
Digisky Srl offers this kind of services thanks to the development and enhancement of
the SmartBay platform and its own sensors, installed outside the aircraft.

1.1 Digisky and the SmartBay project

This thesis grows in collaboration with the Digisky company whose aim is to offer high
technology solutions in avionic systems and advanced aerial monitoring projects. Starting
from the ICT and automotive environments, the innovations are moved into the general
aviation and UAV industry offering the possibility of low-cost integrated systems easy to
install and applicable in several different fields. From design to prototyping phase, the
Digisky’s products can be employed in precision farming, fire detection, remote medical
emergencies systems and plant surveillance.
The SmartBay platform is a Digisky’s proper integrated system of sensors and softwares,
able to host any type of peripherals and to establish a smart connection between the
mission aircraft and external devices.

Figure 1.1: SmartBay wing pylon
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1.2. THE SMARTGIMBAL

SmartBay, shown in figure 1.1, is a wing pylon, i.e. a rigid structural element generally
used to keep up elements outside the fuselage or the wings. Some of the SmartBay
technical features are listed below:

• wing pod of low aerodynamic impact

• 3 slots carrying up to 40 kg payloads

• embedded IMU and RTK-GPS

• universal payload ’plug&play’

SmartBay compatible payload sensors include cameras with gyro stabilization, chem-
ical sensors for monitoring the air quality, audio sensors to check noise areas and a wide
range of sensors produced by other manufactures.

1.2 The SmartGimbal

The SmartGimbal is one of the Digisky’s proprietary sensors, and it supports a camera
located at the center of the gimbal mechanism. This complex electromechanical system,
which is a two-axis tracking system, is also called Inertially Stabilized Platform (ISP) and
has been widely studied by the researchers in the recent years. In fig.1.2 the SmartGimbal
sensor is shown and its own technical characteristics are listed below:

Figure 1.2: SmartGimbal sensor
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1.2. THE SMARTGIMBAL

• fast IMU embedded

• tilt range 0

◦ − 180

◦

• yaw range 0

◦ − 360

◦

• full remotely controlled from ground or aircraft

• yaw/tilt compensation speed up to 55◦/s

• camera holder weighing up to 3 kg

From a strictly mechanical point of view, a gimbal is a cardan joint employed to sta-
bilize any object. In absence of the 2-axis gimbal, the video camera would be hooked to
the aircraft and then integral to its motion and oscillations; the results would be highly
inaccurate images and videos.
As shown in the next figure, the mechanical system is made of two joints: the first one is
external and allows the pan rotation of the gimbal; the second one is the inner joint which
permits the tilt rotation. While a continuous rotation of the pan joint is guaranteed, as
mentioned in the gimbal technical specifications, the tilt angle is constrained between 0

◦

and 180

◦.

Figure 1.3: Gimbal mechanical structure

Each one of the motion axis has its own DC motor, guaranteeing the motion of the
camera in the desired direction. A control architecture must be defined to move the gim-
bal accordingly to a reference input command and to compensate the aircraft oscillations
and disturbances (for example due to the wind) on the azimuth/elevation axis. In the
control architecture definition the other sensors mounted on the 2-axis or near the video
camera are also considered. There are two digital encoders, to exactly know the pan and
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1.3. OUTLINE OF THE THESIS

tilt angles in local reference frame and the IMU (Inertial Measurement Unit) sensors to
know the actual angular position of the camera in the absolute reference frame.
The other important problem related to the gimbal motion control is the image stabi-
lization done by a specific programming technique, but this matter it’s out of the scope
of the thesis.

1.3 Outline of the thesis

The thesis is structured as follows:

- Chapter 2: the model-based design approach is explained since it will be applied
in each step of the work;

- Chapter 3: the kinematics of the Gimbal system will be studied, i.e. its mechanical
structure. The roto-translation matrix of the gimbal will be obtained by applying
the DH conventions coming from robotics. In the present chapter, the jacobians of
the gimbal will be found out since they will be used in chapter 4;

- Chapter 4: by means of the Lagrange equations and the jacobians, the dynamic
model of the gimbal system is derived. The obtained dynamic model will be used
in chapter 6 as plant of the controller;

- Chapter 5: the dynamic model of the gimbal is expressed in terms of state-space
representation matrices to be linearized around some linearization points. The
same is done for the two independent DC-motor driving the pan and tilt axes;

- Chapter 6: in the present chapter the control system is developed following two
different control techniques, the Loop-Shaping and the LQR. The gimbal is chosen
as plant of the controller which is designed starting from the definition of a few
specifications given in both time and frequency domains. The aim is to identify the
maximum values of torque and angular velocities the DC-motors should provide
to the plant. Then, the possibility of a new motor-reducer-encoder group different
from the assembled one is evaluated (in chapter 9). A comparison between the
results taken from the two control strategies is made;

- Chapter 7: the two available DC-motors are controlled by means of the PID
control techniques, from which two distinct controllers are designed. The plants
are now the DC-motors and a linear control system is first considered and simulated.
Eventually the system is converted into a non-linear one by introducing Simulink’s
blocks modeling the typical non linearities (actuator saturations, backlash, . . . ). In
the second scenario, it is only verified that, despite all the introduced non linearities,
the control system still gives acceptable simulation results;

- Chapter 8: the control algorithm developed in chapter 7 is here converted into C
code using the Simulink’s code generation tool. Indeed the final goal is to integrate
the provided code in Arduino, in order to execute it on the Arduino Mega 2560

12



1.3. OUTLINE OF THE THESIS

microcontroller platform. Before exporting the control algorithm on actual board,
a SIL (Software in the Loop) and a PIL (Processor in the Loop) simulations are
performed, following the V-model of the MBD approach. Once these steps are
completed, the Arduino board is configured to be properly linked to the external
peripherals;

- Chapter 9: collecting the data coming from the simulation of chapter 6, a DC
motor survey is conducted, aimed at finding two DC-motors which satisfy the maxi-
mum torque and angular speed values required by the gimbal system. Furthermore,
a survey is conducted in order to search for compatible reducers and control shields,
both within the Faulhaber’s and Maxson’s catalogues.

- Chapter 10: suggestions for future works are presented.
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Chapter 2

Model-based design

2.1 Model-based design overwiev

Today there are smart systems whose functionality and capabilities increase making these
systems increasingly complex. The model-based design technique is a typical approach
when dealing with embedded software and control problems, allowing simplifications in
complex design problem, avoiding project or automation problems, decreasing the effort
and removing the hand-coding errors, ensuring shorter times in the development process.
The reference V-model of the Model-based design approach is shown in the next figure.

Figure 2.1: Model-Based design V-model
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2.2. THE V-MODEL

This method is appreciated and employed in the engineering fields since it permits
faster achievements of systems design and facilitates data analysis and system validation.
MathWorks company created software tools in order to improve the MBD, providing
modeling and simulations environments to test and improve (or redefine) the model.
Since the tests and validations are done endlessly, and not at the end of the project, the
main errors are found and corrected before the hardware testing. Among the many ad-
vantages of the MBD method there is the possibility to create reusable projects with the
purpose of saving time, reduced costs, flexibility and better quality of the product, guar-
anteeing the optimization of the process. Moreover the software tools, like as Simulink,
are provided with code generation to automatically generate the code from the system
model, for the implementation on the chosen micro controller.

2.2 The V-model

The V-model is a development model proper of the software field. It is so called because of
the V-shape, which proves the connection between each phase of the software development
life cycle and its own testing phase. It is a well organized model, in which each testing
phase can be implemented from the documentation of the previous one. Four main steps
characterizing the V-model can be identified: the model in the loop (MIL), the software
in the loop (SIL), the processor in the loop (PIL) and finally the hardware in the loop
(HIL) step.

• MIL (Model in the loop): It consists of plant modeling and control system design,
starting from the requirements definition.

Figure 2.2: Model in the loop step

It is a simulation only phase, in fact both plant and controller run on the PC. In
the actual step is allowed to design, simulate and improve the project until the
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2.2. THE V-MODEL

given requirements aren’t satisfied. In this way the planner can be sure that the
system is working properly. Taken Matlab as design environment, its tool is used
as simulation one (i.e.Simulink in which the model entirely exists).

• SIL (Software in the loop):
Here is provided the C/C++ code, by means of the code generation. The simulation
still entirely runs on the PC: while the controller is translated in an executable
C/C++ code, the plant exists on the native simulation language.

Figure 2.3: Software in the loop step

Then, while the controller block is replaced with the S-function block extracted
after the code generation process, the plant exists in terms of Simulink’s block.
The aim of the SIL step is to verify that the generated code works as well as the
original designed model. The validation takes place on PC and it’s not real time,
the logic signal are simply exchanged between controller and plant and the design
optimization is required to ensure that the simulation time do not become too high.

• PIL (Processor in the loop):
In the actual phase, an hardware/software integration is performed since the con-
troller is validated on the target hardware. The plant runs in simulation environ-
ment instead the controller (that is an executable) runs on the hardware. In this
project the target hardware is the Arduino Mega 2560 board.

16



2.2. THE V-MODEL

Figure 2.4: Processor in the loop step

• HIL (Hardware in the loop):
It is the last step in which the simulation takes place in real-time, then in the real
physical domain. The controller runs on the HW target, while the plant is emulated
on a dedicated hardware. The exchanged signals between controller and plant are
physical ones, and it’s a good method to test the influences of the hardware on the
real-time performances.

Figure 2.5: Hardware in the loop step
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Chapter 3

Kinematics

The kinematics purpose is to study the motion of a body, without taking into account the
causes that generate the motion (i.e. forces and moments acting on the body). Derive
suitable kinematics model of the bodies is essential to understand the behavior of an
entity, especially in the case of the robotic manipulators. It’s possible to recognize two
different kind of kinematics: forward and inverse kinematics. The first one has always a
solution and the calculation to achieve the motion equation is more simpler than in the
case of the inverse kinematics, of which the solution could take a long time and be very
expansive. In fact, there are two typical approaches to the inverse kinematics problem:
the analytical or the numerical one, that are described later.

3.1 Forward Kinematics

The two-axis tracking system is a mechanical system, conceived as an ideal rigid body,
to be more exact as a robotic manipulator. In fact, is possible to imagine the gimbal as
a kinematic chain which consists of intermediate rigid bodies (links) connected through
joints, bounded to a base at one end and featuring a gripper (end − effector) at the
other end. The gimbal system is made of two revolute joints, each one driven by a DC-
motor.
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3.1. FORWARD KINEMATICS

Figure 3.1: A generic open kinematic chain

Like all rigid bodies, the gimbal moves in the space by means of the two possible
types of motions that are translation and rotation (or roto-translation if the two motions
are combined). As known, any body is fully described in space by its own position and
orientation, the so called pose of a body, with respect to an inertial reference frame.
Being the manipulator made of links and joints is indispensable to identify the reference
frames of each one of them and find the relationships between their different orientations.
To obtain the equation of motion of the gimbal the forward kinematic, the homogeneous
transformation matrices and the DH conventions are used.

The following are the guidelines in defining the kinematics of any rigid body. Of
a generic manipulator having an open kinematic chain body, can be identified the links
enumerated from 0 to n starting from the base. Also the joints, whether they are revolute
or prismatic, are numerated from 1 to n, remembering that the i-th joint attaches link
i−1 to i. Then a reference frame is assigned to each link, considering the reference frame
0 as corresponding to the one of the base. Since each joint adds one degree of freedom
to the entire system, the variable associated to this motion is called joint variable, or
generalized coordinate if it is independent. The i-th joint variables are represented by
qi, which is the rotation angle for revolute joint (qi = ✓i) or the displacement for prismatic
one (qi = di).
The aim of the kinematic study is to translate the position of a point from the reference
frame i− 1 into the frame i, by applying the homogeneous transformation matrices. Let
Ai is the transformation matrix, then it is dependent by only joint coordinate qi and it
has the following structure:

A1
0 =


R1

0 d1
0

0 1

"
(3.1)

According to (3.1) the matrix A1
0 describes the coordinates of a point in frame 1 with

respect to frame 0, in fact it consists of the rotation matrix R and the translation vector
d. So, it’s possible to describe the pose of the gripper with respect to the base frame
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3.1. FORWARD KINEMATICS

through the roto-translation matrix Tn
0 , defined as:

Tn
0 =

nY

i=1

Ai (3.2)

3.1.1 Gimbal Forward Kinematics

Since the gimbal is a 2DOF system and the allowed motions are the elevation and azimuth
rotations, it is conceived as a manipulator made of two revolute joints driven by two
independent DC motors. With these premises the gimbal structure becomes comparable
to a spherical arm manipulator, as shown in figure 3.2. However is useful to take into
consideration a further variable (d3) corresponding to the distance of the camera from
the tracked object and associated to a prismatic joint (which is not really controllable
by any DC motor).

Figure 3.2: Typical spherical arm manipulator

In the figure the reference frames are jet located and the joint variables are also chosen:
in the next section all these datas will be derived by means of the Denavit-Hartenberg
conventions.

3.1.2 Denavit-Hartenberg convention

The Denavit-Hartenberg (DH) convention, is a widely used technique in robotic systems
to choose the reference frames of the manipulator links and to achieve the kinematic
equations of an open kinematic chain structure. According to [2], to obtain an overall
description of the manipulator kinematics, it’s better to focus on the single relationships
existing between two consecutive links, identifying the frames of each link (from 0 to
n if the manipulator has n + 1 links connected through n joints). Finally the total
description of the frame n with respect to frame 0 will be obtained by applying the
following calculation:

Tn
0 (q) = A0

1(q1)A
1
2(q2) . . . A

n−1
n (qn) (3.3)
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3.1. FORWARD KINEMATICS

Starting from the expression (3.3) is needed to define the frame of each link and evaluate
the coordinate transformation between them. The DH convention is for this purpose a
systematic method to refer to concerning the reference frames choice.

Figure 3.3: Denavit-Hartenberg parameters

DH convention algorithm: Referring to figure 3.3, assume that joint i connects link
i− 1 to link i: the DH convention algorithm is applied to fix the frame of link i.

1. The origin of i-th frame, which is Oi, is always on the motion axis of joint i+1 and
is located at the intersection point of axis zi with the minimum distance segment
between zi and zi−1 axis;

2. The zi axis is along the motion axis of joint zi+1 and its direction is defined ac-
cordingly to the right-hand rule, indicating the positive direction of the motion;

3. The axis xi is located to be orthogonal to both zi and zi−1 and its own direction
is arbitrary (in general it points toward the next joint);

4. The ji axis simply must complete the right-hand rule in defining the actual reference
frame i.

Some clarifications:

• If two consecutive motion axis are parallel the origin Oi is set on a desired point
by the user, rather on the arm;

• The end-effector frame doesn’t have a subsequent RF, then On is placed in a point
of choice, generally on the end-effector. Moreover the only condition to observe is
that xn axis must be normal to zn−1, while zn is not conditioned and jn always
must complete the right-hand rule;
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3.1. FORWARD KINEMATICS

• The base reference frame, then the 0 RF, is not preceded by others: in this case
the only required condition is related to the z0 axis, which must follow the motion
axis z1. The origin O0 and the axis x0 are devoid of any rule.

Once defined the reference frames of each manipulator link, the pose of the ith frame
with respect to the following and the preceding ones must be established, then the DH
parameters are introduced.
As general to move between two frames, 6 parameters are needed (3 rotation variables
and as much of translation). The DH convention catch on to express the relative posi-
tions between the RFs in a common manner and to reduce the number of the required
parameters. In fact only 4 parameters are necessaries, the so-called DH parameters. The
four DH parameters, also said minimal variables, emerge in fig. 3.3 :

- ai represents the translation measured along axis xi and it corresponds to the
minimal signed distance between zi and zi−1 axis along the common normal;

- di is the distance measured along zi−1 axis, identifying the translation between the
origin Oi−1 and the intersection of xi and zi−1;

- ↵i is the rotation angle around xi axis, such that ki and ki−1 coincide and the
positive direction is counter-clockwise;

- ✓i is the rotation angle around ki−1 axis, such that xi−1 and xi coincide.

Three of these parameters are geometric ones (then constants) while one of these depends
on the relative motion between two successive links and then is time dependent.
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3.1. FORWARD KINEMATICS

3.1.3 DH rules applied to the Gimbal

The Denavit-Hartenberg rules from robotics are applied to the gimbal system.

(a) Gimbal CAD drawing (b) DH Gimbal parameters

Figure 3.4: Gimbal CAD model and approximated model

With reference to figure 3.4 the DH parameters are chosen and listed below:

link ✓i[rad] ai[m] ↵i[rad] di[m]

1 ✓1 0
⇡

2

d1

2 ✓2 0 −⇡

2

d2

3 0 0 0 d3

Table 3.1: DH parameters of the Gimabl

Some simplifications are adopted to make the calculations simpler and more imme-
diate:

- the gimbal model is approximated to a spherical arm manipulator;

- the joints 1 and 2 are two real revolute joints, each one autonomously driven by a
DC motor;
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3.1. FORWARD KINEMATICS

- joint 3 is a prismatic one, which only allows to consider the distance (d3) between
camera and ground: it’s not really controllable;

- the distance d2 is set to 0, like as the two revolution axis intercept in a point;

- the segment d1 represents the distance between the base and the motion axis of
joint 1 and its value is taken from the CAD drawing in fig. 3.4;

- ✓1 and ✓2 correspond to the tilt and pan rotation angles, respectively. From tech-
nical datas, the system features continuous rotation around the azimuth axis and
a pan rotation bounded between 0◦and 180◦.

Once fixed the links, end-effector, base and ground RFs, simply by applying (3.1) and
(3.3) the overall coordinate transformations is evaluated:

T 0
3 (q) =


R0

3 d03
0 1

"
=

2

664

c1c2 −s1 c1s2 c1s2d3 + d1
s1c2 c1 s1s2 s1s2d3
−s2 0 c2 c2d3
0 0 0 1

3

775 (3.4)

Note the end-effector pose which coincides with the three rows of the 4-th column,
and the square rotation matrix [3x3] made of the first three columns and rows.
The final matrix is obtained as the result of: 1

T 0
3 (q) = T 0

1 (q1)T
1
2 (q2)T

2
3 (q3) =

=

2

664

c1 −s1 0 0

s1 c1 0 0

0 0 1 0

0 0 0 1

3

775

| {z }
T 0
1

2

664

c2 0 s2 0

0 1 0 0

−s2 0 c2 0

0 0 0 1

3

775

| {z }
T 1
2

2

664

1 0 0 0

0 1 0 0

0 0 1 d3
0 0 0 1

3

775

| {z }
T 2
3

3.1.4 Joint and operational spaces

Once computed the T j
i coordinate transformation matrices and the total one, the kine-

matic functions can be obtained. First of all the joint space must be distinguished from
the operational space:

1. The joint variables qi (✓i or di) are defined into the joint space and the joint variables
vector is denoted as q:

=) q =

2

4
✓1
✓2
d3

3

5 with q1=✓1, q2=✓2, q3=d3;

1From now on short forms of mathematical expressions relating to sin and cos will be used: s1 or c1

mean sin✓1 and cos✓2 respectively.
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3.2. INVERSE KINEMATICS

2. The operational space, also called task space, is reachable by the end-effector of the
manipulator: in this space the task of the gripper is fixed. Here is defined the pose
vector p made of 6 parameters:

=) p =

x
↵

"
where x coincides with the position and ↵ represents the orientation.

3. The last definition is related to the workspace, i.e. the points that the origin of
the grip can reaches. To identify this space only x is needed. Then:
=) p = p (✓1, ✓2, d3) with p provided by the 4-th column of T 0

3 .

Considering the structural and mechanical limitations of the gimbal structure, that is:
8
><

>:

−1 < ✓1 < 1
0 < ✓2 < ⇡

dmin < d3 < 1

the two vectors of interest will be

q =

2

4
✓1
✓2
d3

3

5
= joint space (3.5)

p =

2

4
c1s2d3 + d1

s1s2d3
c2d3

3

5
= workspace (3.6)

From the above defined vectors, if the joint variables are known, the direct kinematics
functions are achieved: the three cartesian components are extract depending on the qi
parameters as follow.

8
><

>:

x(t) = c1s2d3 + d1

y(t) = s1s2d3

z(t) = c2d3

(3.7)

3.2 Inverse Kinematics

Since the manipulator task is defined in the operational space/workspace while the control
actions are designed as functions of the joint variables, a transformation from the pose
vector to the joint vector is required. To this purpose the inverse kinematics functions
must be obtained translating the motion requirements (designated to the gripper) into
actions which allow the desired behavior of the manipulator.
Unfortunately the problem is not easy to solve for a number of reasons, like as:

• In general the equations are non linear, then is not always allowed to find a closed-
form solution;
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3.2. INVERSE KINEMATICS

• More than one solution to the problem could exists, depending on the DOF of the
manipulator and on the non-null DH parameters;

• If the manipulator structure is redundant infinite solutions could exist.

Sometimes the closed-form solutions of (3.7) cannot be analytically computed, then
to solve the inverse kinematics problem several numerical techniques should be applied.
Among all of them, the widely used method is the Jacobian representation.

3.2.1 Jacobians

The Jacobians are matrices mapping the existing relation between joint and end-effector
velocities. They are of two types:

- Linear jacobian;

-- Angular jacobian.

Being ṗ(q) the velocities vector of the gripper depending on the joint variables, and
q̇ the velocities vector of the joint:

ṗ(t) = JLq̇

v̇(t) = JAq̇
(3.8)

Notice the two different jacobian matrices in (3.8):

- The Linear jacobian JL, also called task jacobian, which is directly extracted from
the coordinate transformation matrix T 0

3 ;

-- The Angular jacobian JA, which is a matrix made of other two matrix terms: the
Analytical jacobian and the Geometric jacobian.

Linear Jacobian

Suppose of dealing with a manipulator having n DOF. Its own overall coordinate trans-
formation will be expressed by means of T 0

n matrix:

T 0
n(q) =


R0

n p0n
0 1

"
, q =

2

4
q1
. . .
qn

3

5
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3.2. INVERSE KINEMATICS

To obtain the linear jacobian is required to isolate the d0n vector and evaluate its own
time derivative.Then the jacobian matrix will appear as:

JL =

2

6666666664

@p1
@q1

@p1
@q2

. . .
@p1
@qn

@p2
@q1

@p2
@q2

. . .
@p2
@qn

...
... . . . ...

@pn
@q1

@pn
@q2

. . .
@pn
@qn

3

7777777775

(3.9)

=) JL 2 Rm⇥n

Geometric Jacobian

The Geometric Jacobian of a manipulator is simply identified through the J entity. It is
a [6 ⇥ n] matrix used to make explicit the relation between the gripper linear velocities
ṗe and the angular ones with respect the joint velocities q̇. The geometric jacobian is
defined as:

J =


JP

JO

"
(3.10)

The J is made of two other matrices: JP (coinciding with JL) represents the position
jacobian, while JO represents the orientation jacobian. Concerning the JO an observation
is necessary: can be defined two different types of velocities vectors, that are

- analytical velocities

v =


ṗe

↵̇

"
q̇

-- angular velocities

p =


ṗe

!

"
q̇

While ṗe is the same vector in both analytical and angular matrices, the angular
velocities (↵̇ and !) don’t represent the same quantities. In fact, ! is a real vector,
instead ↵̇ is not. The reason of this lies in the derivative of the rotation matrix R0

n.
In order to compute the geometric jacobian of a generic manipulator made of n links, it’s
better to distinguish the cases of revolute or prismatic joints and follow the guidelines
below. The geometric jacobian is expressed as:

J =

⇥
J1 J2 . . . Jn

⇤
=


JP 1 JP 2 . . . JP n

JO1 JO2 . . . JOn

"

The Ji expression depends on the joint type:

J i =


JP i

JOi

"
=

"
zi−1 ⇥ (dn

0 − di−1
0 )

zi−1

#
if the joint is revolute (3.11)
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J i =


JP i

JOi

"
=

"
zi−1

0

#
if the joint is prismatic (3.12)

Notice that the jacobian computation is quite easy if the homogeneous transformation
matrix T 0

n is already obtained, in fact all the vectors could be find inside it:

- zi−1 vector corresponds to the first three terms of the 3-th column of T i−1
0 ;

-- dn
0 vector is the pose vector, i.e the first three terms of the 4-th column of Tn

0 ;

- di−1
0 as before, are the first three terms of the 4-th column of T i−1

0

3.3 Gimbal Jacobians

With reference to (3.11) and (3.12), the linear and geometric jacobians of the gimbal
system are obtained in the actual section and will be used in the next chapter to achieve
the equations of motion of gimbal system. Let approximate the gimbal system to a
spherical manipulator, the overall jacobian will be:

J =


JP 1 JP 2

JO1 JO2

"
=


z0 ⇥ (p2 − p0) z1 ⇥ (p1 − p0)

z0 z1

"
(3.13)

being

z0 =

2

4
0

0

1

3

5 , z1 =

2

4
0

1

0

3

5

3.3.1 Gimbal Linear Jacobians

From (3.9) the linear jacobian is computed, by means of the coordinate transformation
matrix T 0

3 :

T 0
3 (q) =


R0

3 d03
0 1

"

Isolating the pose vector p from T 0
3 and computing the time derivative of its terms:

p =

2

4
c1s2d3 + d1

s1s2d3
c2d3

3

5
=)

8
><

>:

x(t) = c1s2d3 + d1

y(t) = s1s2d3

z(t) = c2d3

=)

8
><

>:

ẋ(t) = −s1s2d3q̇1 − c1c2d3q̇2

ẏ(t) = c1s2d3q̇1 + s1c2d3q̇2

ż(t) = −s2d3q̇2

If ṗ(t) = JLq̇,then:

JL =


JL1

JL2

"
=

2

4
−d3s1s2 d3c1c2
d3c1s2 d3s1c2

0 −d3s2

3

5 2 R3⇥2 (3.14)

28



3.3. GIMBAL JACOBIANS

where

JL1 =

2

4
−d3s1s2
d3c1s2

0

3

5 , JL2 =

2

4
d3c1c2
d3s1c2
−d3s2

3

5

3.3.2 Gimbal Geometric Jacobians

As said, the geometric jacobian consist of the analytical and orientation terms.

JP evaluation

Considering the 2 DOF of the gimbal system, which can rotate around the azimuth and
the elevation axis, can be identified the two rotation vectors:

8
><

>:

h
0 0 1

iT
for azimuth rotation

h
0 1 0

iT
for elevation rotation

Then the analytical matrix is:

JP =

2

4
0 0

0 1

1 0

3

5 (3.15)

JO evaluation

The orientation jacobian strongly depends on the chosen angles representation (RPY,
Euler angles, . . . ). A relation exists between the eulerian and angular velocities: the first
can be transformed in the second ones by means of a transformation matrix. Identified
the eulerian velocities as

!e =
⇥
0

˙✓2 ˙✓1
⇤T

=

⇥
0 q̇2 q̇1

⇤T

the angular velocities are:
! = TRPY !e

Being ✓1 = ✓z and ✓2 = ✓y, the transformation matrix TRPY is defined as:

TRPY =

2

4
c✓yc✓z −s✓z 0

c✓ys✓z c✓z 0

−s✓y 0 1

3

5
=

2

4
c1c2 −s1 0

c2s1 c1 0

−s2 0 1

3

5 (3.16)

By applying (3.16):

! = TRPY !e =

2

4
c1c2 −s1 0

c2s1 c1 0

−s2 0 1

3

5

2

4
0

q̇2
q̇1

3

5
=

2

4
−s1q̇2
c1q̇2
q̇1

3

5

If ! = JOq̇, then JO will be:
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JO =

⇥
JO1 JO2

⇤
with JO1 =

2

4
0

0

1

3

5 , JO2 =

2

4
−s1
c1
0

3

5 (3.17)

According to (3.13), the geometric jacobian of the gimbal system is:

J =

2

6666664

−d3s1s2 d3c1c2
d3c1s2 d3s1c2

0 −d3s2
0 −s1
0 c1
1 0

3

7777775
(3.18)
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Chapter 4

Dynamics

The dynamics describes how forces and moments acting on a system can cause the motion
variation of the system itself. Since the forces computation is very useful in choosing
actuators, or transmission, or in designing the joints, a dynamic model of the mechanical
system is required when dealing with a control problem. Define the dynamic model means
find the system motion equations, in the joint space, through two main tecnhiques: the
Langrange and Newton-Euler formulations. In the thesis the Lagrange equations will be
derived, also if the Newton-Euler approach is a more precise and computationally more
efficient than the used one.
References of the actual chapter are [2], [6].

4.1 Lagrange equations of a generic manipulator

The Lagrange Formulation provides a set of motion equations through a systematical
method. Let assume a manipulator made of n-link, having n DOF: the generalized
coordinates of each link must be identified as qi, with i = 1, . . . , n. Once the generalized
coordinates vector is established, the Lagrangian expression of the system is defined as:

L = T − U (4.1)

Note that the Lagrangian consists of two terms: T and U representing the kinetics and
potential energy, respectively. However the lagrangian is employed to obtain the set of
the motion equations, as below:

d

dt

@L
@q̇i

− @L
@qi

= Fi i=1,. . . ,n (4.2)

The expression (4.2) is computed for each i-th link; the entity F i represents the gener-
alized force vector for the generalized coordinate qi. In the generalized forces vector can
be found the contributions due to the non-conservative and the friction forces, since the
manipulator interacts with the environment.
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Summing the contributions of all the links, the matrix form of (4.2) is obtained:

d

dt

✓
@L
@q̇

◆T

−
✓
@L
@q

◆T

= F (4.3)

Each matrix will have as many rows as links. From (4.1), the computations of the system
kinetic and potential energies are necessaries.

4.1.1 Kinetic energy

Assuming a n-link and n-DOF electromechanical system, its total kinetic energy is:

T =

nX

i=1

(Tli + Tmi) (4.4)

being Tli the kinetic energy associated to the i-th link, while Tmi is the kinetic energy of
the i-th motor moving the i-th link.
As regard the link kinetic energy is the sum of translational and rotational terms.
Then the total kinetic energy of each link is summarized as:

Tli =
1

2

mliq̇
TJ

(li)T
P J

(li)
P q̇

| {z }
translational

+

1

2

q̇TJ
(li)T
O RiI

i
liRi

TJ
(li)
O q̇

| {z }
rotational

(4.5)

The same employed approach for Tl can be done for Tm, which will appear as below:

Tmi =
1

2

mmiq̇
TJ

(mi)T
P J

(mi)
P q̇

| {z }
translational

+

1

2

q̇TJ
(mi)T
O RmiI

mi
mi

RT
mi

Jmi
O q̇

| {z }
rotational

(4.6)

Replacing (4.5) and (4.6) in (4.4) the total kinetic energy of the system is obtained, as:

T =

1

2

nX

i=1

nX

j=1

bij(q)q̇iq̇j =
1

2

q̇TH(q)q̇ (4.7)

where H(q) is the inertia matrix, defined as a symmetric and positive [n⇥ n] matrix.
Usually it also is configuration-dependent, like as the inertia of a body is.

4.1.2 Potential energy

As known, the potential energy of a body is due to its position with respect to a force field.
In the case of a n-link manipulator actuated through motors, again the total potential
energy is given by two contributions:

U =

nX

i=1

(Uli + Umi) (4.8)
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where Uli is the link potential energy and Umi is the motor potential energy. In detail:

Uli = −mlig
T
0 pli , Umi = −mmig

T
0 pmi

(4.9)

where gT
0 represents the gravitational vector, having as component gT

0 =

⇥
0 0 1

⇤T .
Moreover pli and pmi

express the position of link and actuator, respectively.
Substituting the above relations in (4.8), the total potential energy appears as:

U = −
nX

i=1

(mlig
T
0 pli +mmig

T
0 pmi

) (4.10)

Under the assumption of rigid link, only the gravity force is taking into account. Obvi-
ously if the mechanical structure features elastic properties, also the elastic force term
must be added to (4.10).

4.1.3 Manipulator equations of motion

Once computed the total kinetic and potential energy, T and U respectively, according
to (4.1) the lagrangian is obtained. Then the motion equations can be get by partially
deriving (with respect to qi) or computing the time derivative of the lagrangian, as in
(4.2). In matrix form:

H(q)q̈ + g(q) = F (4.11)

From now on, since the forces acting on the manipulator are the actuator torques, the
generalized forces vector F will be replaced with the torque vector ⌧ . By substituting
(4.7) and (4.10) into (4.2) and by evaluating each of this terms, the overall equation of
motion for each link is obtained, as below:

nX

j=1

hij(q)q̈j +
nX

j=1

nX

k=1

cijk(q)q̇kq̇j + gi(q) = ⌧ i (4.12)

being cijk the so-called Christoffel symbols, defined as:

cijk =

@hij
@qk

− 1

2

@hjk
@qi

(4.13)

The previously introduced Christoffel symbols represent the elements of the C matrix,
which will be given a physical meaning later. Then the matrix form of the motion
equation of a generic robot manipulator will take the following form:

H(q)q̈ +C(q, q̇)q̇ + g(q) = ⌧ (4.14)

Also the ⌧ vector deserves clarifications: it represents the non conservative forces vector,
made of the contributions of actuator torque (⌧ a) and friction force that do work at the
joint. The friction torques are expressed by means of F v (n⇥n) and F s (n⇥n) matrices,
coinciding with the viscous and static friction respectively.
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4.2. DYNAMICS OF THE GIMBAL

Furthermore the contribution of the external forces acting on the manipulator gripper
must be taken into account, due to the interaction of the end-effector with the environ-
ment. The latter effect is included into the Lagrange equations through JThe, in which
he identifies the moments and forces applied by the gripper on the workspace. In light
of this, the motion equation in matrix form becomes:

H(q)q̈ +C(q, q̇)q̇ + F vq̇ − F ssgn(q̇) + g(q) = ⌧ a − JThe (4.15)

4.1.4 Physical meaning of the terms

According to (4.12) and (4.15) can be identified:

• inertial terms:

- hii represent the moment of intertia at joint i in the actual manipulator con-
figuration;

- hij coincides with the effect of the j-th joint acceleration on joint i;

• quadratic terms

- cijj q̇2i is the centrifugal term due to the velocity of joint j on joint i;
- cijkq̇j q̇k is the Coriolis term: it shows the effect of the joint j and k velocities

on joint i;

• friction terms:

- fvii is the element of the viscous friction matrix;
- fsii is the element of the static friction matrix;

• gi is the gravitational contribution on joint i, depending on the manipulator con-
figuration.

4.2 Dynamics of the Gimbal

In this section the motion equation of the gimbal system will be provided, also by using
some of the results obtained in the previous chapter and accordingly to the above pointed
out theory.

Guidelines for deriving the gimbal lagrange equation

1. Compute the H(q) matrix:

- find out the coordinate transformation matrix T 0
3 ;

- obtain the jacobians of the gimbal;
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4.2. DYNAMICS OF THE GIMBAL

- use the linear and angular jacobians to evaluate the total kinetic energy T
and the H(q) matrix;

2. Calculate the C(q, q̇) matrix consistently to (4.13), by means of Christoffel sym-
bols;

3. Obtain g(q):

- evaluate the total potential energy, as in (4.10);
- gi(qi) will be the result of the partial derivative of U with respect to the joint

variables qi;
- once known all the i-th component of g(q), assemble the gravitational vector.

4. Write the motion equations, also in matrix form, as in (4.14).

4.2.1 Simplifying conditions concerning the Gimbal

As said in the previous chapters, the dynamics equations of the gimbal will be derived
starting from the approximation of the gimbal to a spherical arm robot manipulator.
Then the reference figure is the following one:

Figure 4.1: Shperical arm manipulator reference

The explained lagrangian procedure will be implement, but earlier the simplifying
assumptions of the study are listed:

• the gimbal mechanical structure is considered as rigid one;

• assume that the joint rotational axis are orthogonal;
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4.2. DYNAMICS OF THE GIMBAL

• let the center of mass of the links between each joints closed by the rotational axis:
the overall structure is well balanced;

• also if the inertia matrices are not diagonal, because of the links are not symmetric,
they are considered as diagonal ones in order to decrease the number of unknowns
during the computation of the dynamic problem;

• in the presence of small angles variations (regarding the elevation motion, for ex-
ample) it’s possible to approximate sin ✓i = ✓i and cos ✓i = 1

• neglect the static friction term, then F ssgn(q̇) is null; consider the viscous friction
as linear means dealing with a diagonal F v matrix:

F v = diag
⇥
fv1 fv2 . . . fvn

⇤

• during the calculation of the total kinetic energy, force the linear velocity jacobians
as null, due to the fact that the gimbal structure only rotates and doesn’t translate:
if the manipulator has n links, for i=1, . . . ,n

Jvi = 0

• concerning to purely rotational systems, the gravity force doesn’t affect in any
way the dynamics of the system itself, due to the center of mass which features a
constant position:

g(q) = 0

• during the evaluation of the generalized forces vector the term −JThe is not con-
template: since the gripper interacts with the environment, the external forces
acting on the system are the aerodynamic moments essentially. In the simulation
phase they will be modeled as sinusoidal disturbances affecting the measurements
of the gimbal position (provided by the encoder):

⌧ = ⌧ a

where ⌧ a represents the actuating torques generated by means of the DC-motors.

4.2.2 Lagrange dynamic equations of the Gimbal

Taking into account the premises made in the previous section, the dynamic equations
of the gimbal are obtained. The orientation jacobians, computed in chapter 3 through
(3.17), are listed below for better readability of the text:

JO1 =

2

4
0 0

0 0

1 0

3

5 (4.16)

JO2 =

2

4
0 −s1
0 c1
1 0

3

5 (4.17)
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The jacobians are the essential elements to achieve the dynamic equation of motion, in
matrix form:

H(q)q̈ +C(q, q̇)q̇ + F vq̇ = ⌧ a (4.18)

Step 1. Define the generalized coordinate vector

Are considered as generalized coordinates the states of the mechanical system, i.e a set
of coordinates able to univocally describe the analyzed system. As states are chosen the
angular positions (q1(t), q2(t)) and the angular velocities (q̇1(t), q̇2(t)) of the gimbal. As
result, the generalized coordinates vector, also called state vector, will be a [4⇥1] vector:

q =

⇥
✓1 ✓2 ˙✓1 ˙✓2

⇤T (4.19)

where ✓1 = q1 (azimuth angle), ✓2 = q2 (elevation angle), ˙✓1 = q3, ˙✓2 = q4.

Step 2. Find out the inertia matrix H(q)

Since the gimbal system features 2 links, the overall inertia matrix is given by:

H = H1 +H2 (4.20)

being H1 and H2 the inertia matrices dealing with link 1 and 2 respectively. Moreover
Γ1 and Γ2 coincide with the inertia matrix of each link, assumed to be diagonal as known
from section 4.2.1.
For the first link, which can rotate around the azimuth axis:

H1 = (JO1)
T
Γ1JO1 =

=


0 0 1

0 0 0

"2

4
Γ1x 0 0

0 Γ1y 0

0 0 Γ1z

3

5

2

4
0 0

0 0

1 0

3

5
=

=


Γ1z 0

0 0

"
(4.21)

The same is done for the second link, allowed to rotate around the elevation axis:

H2 = (JO2)
T
Γ2JO2 =

=


0 0 1

−s1 c1 0

"2

4
Γ2x 0 0

0 Γ2y 0

0 0 Γ2z

3

5

2

4
0 −s1
0 c1
1 0

3

5
=

=


Γ2z 0

0 s12Γ2x + c12Γ2y

"
(4.22)

Replacing H1 and H2 expressions into (4.20):

H =


Γ1z + Γ2z 0

0 s12Γ2x + c12Γ2y

"
(4.23)
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Step 3. Compute the C(q, q̇) matrix

In order to achieve the goal of the actual step, the Christoffel symbols must be evaluated.
The C(q, q̇) is a [2⇥ 2] matrix, and its own elements are given by:

8
>>>><

>>>>:

c11 = c111q̇1 + c112q̇2

c12 = c121q̇1 + c122q̇2

c21 = c211q̇1 + c212q̇2

c22 = c221q̇1 + c222q̇2

(4.24)

According to (4.24) the C(q, q̇) matrix will be:

C(q, q̇) =


c11 c12
c21 c22

"
(4.25)

The elements of the C(q, q̇) matrix are computed as:
8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

c111 =
1

2

@h11
@q1

= 0

c112 = c121 =
1

2

@h11
@q2

= 0

c122 =
@h12
@q2

− 1

2

@h22
@q1

= (−s1c1Γ2x + s1c1Γ2y)q̇1

c211 =
@h21
@q1

− 1

2

@h11
@q2

= 0

c212 = c221 =
1

2

@h22
@q1

= (s1c1Γ2x − s1c1Γ2y)q̇1

c222 =
@h22
@q2

= 0

(4.26)

Note the presence of the inertia matrix H elements in (4.26). Replacing the results
of (4.26) into (4.24), then:

8
>>>><

>>>>:

c11 = 0

c12 = s1c1(Γ2y − Γ2x)q̇1q̇2

c21 = −s1c1(Γ2y − Γ2x)q̇1q̇2

c22 = s1c1(Γ2x − Γ2y)q̇
2
1

As already mentioned, the C(q, q̇) matrix is made of quadratic velocities terms (c22) and
explains the contribution of the velocities of the j-th joint on joint i (c12, c21). Anyhow
is clear that a strong nonlinearity characterizes the matrix.
Once obtained the values of the Christoffel symbols,the Coriolis matrix will appear as:

C(q, q̇) =


0 s1c1(Γ2y − Γ2x)

−s1c1(Γ2y − Γ2x) s1c1(Γ2x − Γ2y)

"
(4.27)
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Step 4. Define the viscous friction matrix F v

The viscous friction is modeled as linear, then F v will be a diagonal [2⇥ 2] matrix:

F v =


fv1 0

0 fv2

"

where fv1 and fv2 coincide with the friction coefficients dealing with link 1 and 2, re-
spectively. In detail:

- concerning with the 1-st link rotating around the azimuth axis, determine the
fv1 coefficient means consider the bronze-steel coupling. For these materials the
standard viscous friction coefficients are in the range 0.15 ÷ 0.20: considering the
worst friction case is chosen fv1 = 0.20;

- about the 2-nd link, the viscous friction coefficient is closed to zero: is choosen
fv2 = 0.002.

Because of the clarifications above, the friction matrix is the following one:

F v =


fv1 0

0 fv2

"
=


0.20 0

0 0.002

"
(4.28)

Step 5. Consider the generalized force vector ⌧ a

Since each link of the gimbal is actuated by a DC-motor, the generalized force vector
consist of a [2⇥ 1] vector:

⌧ a =


⌧ a1

⌧ a2

"
(4.29)

where ⌧ a1 and ⌧ a2 are the torques generated through the DC motors at each link in
order to move the gimbal system, given an input command.
The dynamic of the DC motors will be exhaustively treated in the next chapter.

Step 6. Write the dynamic equation

Collect all the results provided during the previous steps and write down the dynamic
equations of the gimbal system. In this scenario, two differential motion equations are
generated by means of the lagrange formulation, each one of them describes the dynamics
of the given link. Based on (4.18), the dynamic equations are joined in the matrix form
as:

Γ1z + Γ2z 0

0 s12Γ2x + c12Γ2y

"

| {z }
H


q̈1
q̈2

"
+


0 s1c1(Γ2y − Γ2x)

−s1c1(Γ2y − Γ2x) s1c1(Γ2x − Γ2y)

"

| {z }
C


q̇1
q̇2

"
+


0.20 0

0 0.002

"

| {z }
Fv

=


⌧ a1

⌧ a2

"

| {z }
⌧a

(4.30)
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From (4.30) is possible to extract the two differential equations of link 1 and 2:
(
(Γ1z + Γ2z)q̈1 + s1c1(Γ2y − Γ2x)q̇1q̇2 + fv1q̇1 = ⌧a1
(s21Γ2x + c21Γ2y)q̈2 + s1c1(Γ2x − Γ2y)q̇1q̇2 + fv2q̇2 = ⌧a2

(4.31)

being
q =

⇥
q1 q2 q̇1 q̇2

⇤T
=

⇥
✓1 ✓2 ˙✓1 ˙✓2

⇤T
=) q̈1 = ¨✓1, q̈2 = ¨✓2

where ✓1 and ✓2 are the azimuth and elevation angles, ˙✓1 and ˙✓2 are the angular velocities,
¨✓1 and ¨✓2 are the angular accelerations.
Some thoughts concerning the obtained motion equations:

- the equations are strongly non-linear: the presence of the product (q̇1q̇2) is a non-
linear element;

- the equations are of the time-variant type due to the presence of c1,s1 that are
varying during time;

- in order to design a suitable controller of the gimbal system, a linearization is
required, because the controller works with linear time-invariant systems (LTI sys-
tems). Also a state-space description of the mechanical system is needed.

4.3 Dynamics of the actuators

Actuators and sensors are two basic components of a manipulator: presently the oper-
ating principles of the electric actuators will be introduced and their dynamics will be
obtained.
The topic is then related to the joint actuating systems, generally made of:

1. power supply, which aim is to supply the whole actuating system by helpfully con-
verting the alternating voltage (from the distribution) into direct one, appropriate
to the requests of the power amplifier;

2. power amplifier, which controls and modulates the power flow coming from the
power supply. Its task is to deliver the amount of energy needed and required by
the actuators, also taking into account the portion of supply which will be loosed
due to dissipation phenomenas;

3. motors or servomotors, that can be of two types: electrics if the manipulator has
small dimensions, otherwise the actuators are usually of hydraulic kind;

4. transmission, inevitably located between the joints and their actuators due to the
fact that the joint requires low speed and high torques to complete the given task.
On the contrary, the servomotors provides low torques and very high speed, then a
gear is inserted between motor and joint. For sure adding new components to the
chain means keep in mind also the presence of backlash and friction dissipations,
from a control problem of view.
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4.3.1 Electric servomors

The electric DC motors are the widely used servomotors in robotic field. The dynamics
equations can be obtained by means of the equivalent circuit of an electric motor, that
is shown below:

Figure 4.2: Equivalent circuit of a DC motor

Referring to 4.2 are defined:

- Ra, the armature resistance;

- La, the inductance, that can be neglected;

- ia, the armature current;

- vs(t), voltage source;

- vb(t), back electromotive force, proportional to the angular motor speed !;

- TM (t) is the torque provided by the motor, while TL(t) is the load required torque;

- if the motor is supplied through a direct voltage =) vs(t) = Vs, ia(t) = Ia, and
also the torques become constant entities when the steady-state is reached.

Let’s assume the model of the circuit of figure 4.2, and a constant supply, then the
Kirchhoff’s Voltage Law is applied to the scheme:

RaIa + La
dia
dt

+ Vb = Vs (4.32)

As said, the back electromotive force is proportional to the angular velocity, by means
of the Kb back emf constant

Vb = Kb! (4.33)

While the torque is proportional to the armature current, through the torque constant
Km. The operating principle of a DC motor is expressed by:

⌧ = KmIa (4.34)
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where ⌧ = T , represents the torque provided by the motor actuating the joint: it’s not
possible to directly control the torque, but by means of control action is allowed to control
the input voltage Vs. From (4.32),(4.33),(4.34), the i-th torque actuating each joint can
be expressed as:

⌧i =
Kmi

Ri
(Vi −Kbi!i) (4.35)

Besides, is possible to prove that Kb = Km if both are in the SI, then (4.32) (dynamic
equation of the DC motor) can be rewrite as:

RaIa + La
dia
dt

+K! = Vs (4.36)

When the DC motor drives a payload (as in the gimbal case, where the motors are needed
to move the rotational axis of the camera), the inertia of the motor and the friction
coefficient are to be taken into account when extracting the mechanical equation, as
below:

Jm
d!

dt
+Bm! = ⌧ (4.37)

By using (4.36) and (4.37), given ! =

d✓

dt
, the system of equations describing the me-

chanical and electric behavior of the DC motor is:
8
>><

>>:

La
dIa
dt

+RaIa = Vs −K
d✓

dt

Jm
d2✓

dt
+Bm

d✓

dt
= KIa

(4.38)

Starting from (4.38) the state-space matrices of the motor will be derived, in the next
chapter.
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Chapter 5

State-space representation and

Linearization

The modern control theory needs the so called state-space representation to know the
dynamics of the system to be controlled, i.e. the dynamics of the plant. Differently from
the transfer function description of a system, the state-space representation allows to
not consider the plant as a black-box, because an internal knowledge is possible. For this
reason the state-space model of the gimbal will be obtained in the actual chapter. Then
the model will be linearized, in order to design a suitable controller for the gimbal LTI
system.

5.1 State-space model

The state-space model is a mathematical method to represent the dynamic of a real
physical system, by means of inputs, outputs and state variables definitions. All these
system variables are related thanks to n differential equations, also permitting to dealing
with multiple inputs multiple outputs (MIMO) systems.

5.1.1 State of the system

The state of the system (xi(t)) is an internal variable of the plant and evolves during
time. A system usually has n state variables, depending on the n order of the system
itself: all the state variables xi(t) , with i = 1, . . . , n are collected in the state vector

x(t). By definition the state vector consists of the minimal variables that can univocally
determine the overall state of the system, at each given time. In fact, at time t the state
vector is the amount of the system information until t and, together with u, is able to
determine the system behavior for all instants ti > t.
The state variables of the gimbal system are the rotation angles and the angular velocities
of link 1 and 2. So, the state vector appears as:

x(t) =
⇥
x1 x2 x3 x4

⇤T
=

⇥
✓1 ✓2 ˙✓1 ˙✓2

⇤T (5.1)
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5.1.2 State-space equations

The mathematical model of the system provides n first-order differential equations, also
called state equations. The latter, together with the output equation determine the state-
space description of a system, which is defined as:

(
ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t)
(5.2)

where, if the system has p inputs, q outputs and n state variables:

- x(t) is the state vector, according to (5.1) =) x(t) 2 Rn;

- u(t) is the system input vector, also called control vector =) u(t) 2 Rp;

- y(t) is the system output vector =) y(t) 2 Rq;

- A(t) is the [n⇥ n] state matrix =) dim(A) = Rn⇥n;

- B(t) is the [n⇥ p] input matrix =) dim(B) = Rn⇥p;

- C(t) is the [q ⇥ n] output matrix =) dim(C) = Rq⇥n;

Moreover, after the linearization process around an equilibrium point, the 4 matrices
become constant. In this condition the system is said to be linear time invariant (LTI)
and the state-space representation is the following one, according to (5.2):

(
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(5.3)

The overall gimbal holder will be considered as plant of the controller, then:

- x(t) is a [4⇥ 1] vector =) n = 4;

- u(t) is a [2 ⇥ 1]vector, i.e. the inputs are the torques provided by the two DC
motors =) p = 2;

- y(t) is a [4⇥ 1] vector =) q = 4;

- A(t) is the [4⇥ 4] state matrix;

- B(t) is the [2⇥ 4] input matrix;

- C(t) is the [4⇥ 4] output matrix;

Also if the system has 4 outputs, the really controllable outputs are two, i.e. the gimbal
tilt and pan angles.
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5.2 Gimbal linearization

The real physical systems are usually non linear and time-variant. Neverthless there are
many more powerful control techniques for LTI systems than for non-linear time-variant
ones: for this reason the latter are approximated around an equilibrium point by means
of suitable linear models, the so called linearized models. The choice of the equilibrium
point is not univocal, because more than one equilibrium point should exists.
For the motion control purpose the gimbal system is split into two subsystems: the first is
able to rotate around the azimuth axis and the second one rotates around the elevation
axis. This decision is legitimized because the actuators, that are the two DC-motors,
independently work by each other and they are controlled by two different controllers.

5.2.1 Section rotating around azimuth axis

From (4.31), the motion equation describing the dynamic of the system rotating around
the azimuth axis is isolated:

(Γ1z + Γ2z)q̈1 + s1c1(Γ2y − Γ2x)q̇1q̇2 + fv1q̇1 = ⌧a1 (5.4)

With reference to (5.1) and (5.3):

x(t) =

2

664

x1
x2
x3
x4

3

775 =

2

664

q1
q2
q3
q4

3

775 =

2

664

✓1
✓2
˙✓1
˙✓2

3

775 =) ẋ(t) =

2

664

ẋ1
ẋ2
ẋ3
ẋ4

3

775 =

2

664

˙✓1
˙✓2
¨✓1
¨✓2

3

775

To obtain the state space matrices, the dynamic system must be rewrite as:
8
>>>>>><

>>>>>>:

ẋ1 = q̇1 = x3 = f1

ẋ2 = q̇2 = x4 = f2

ẋ3 = q̈1 = f3

ẋ4 = q̈2 = f4

y = x1 = g

(5.5)

In (5.5) the real controlled output variable coincides with pan angle, then ✓1. Besides
to both state variables and output variable is associated a function (fi and g). To reach
matrices of the state equation, the jacobians of fi with respect to xi or ui must be
evaluated; while to obtain the matrices of the output equation, the jacobians of g with
respect to xi and ui should be calculated. Then:

A(t) =

2

66666666664

@f1
@x1

@f1
@x2

@f1
@x3

@f1
@x4

@f2
@x1

@f2
@x2

@f2
@x3

@f2
@x4

@f3
@x1

@f3
@x2

@f3
@x3

@f3
@x4

@f4
@x1

@f4
@x2

@f4
@x3

@f4
@x4

3

77777777775

=

2

6666664

0 0 1 0

0 0 0 1

A31 A32 A33 A34

0 0 0 0

3

7777775
(5.6)
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5.2. GIMBAL LINEARIZATION

In details:

f3 = −
x3x4(Γ2y − Γ2x)(sinx1 cosx1)

Γ1z + Γ2z
− x3fv1

Γ1z + Γ2z
+

⌧1
Γ1z + Γ2z

A31 =
@f3
@x1

= −
x3x4(Γ2y − Γ2x)(2 cos

2
(x1)− 1)

Γ1z + Γ2z

A32 =
@f3
@x2

= 0

A33 =
@f3
@x3

= −
x4(sinx1 cosx1)(Γ2y − Γ2x)

Γ1z + Γ2z
− fv1

Γ1z + Γ2z

A34 =
@f3
@x4

=

x3(sinx1 cosx1)(Γ2y − Γ2x)

Γ1z + Γ2z

(5.7)

In an analogous way:

B(t) =

2

6666666664

@f1
@u1
@f2
@u1
@f3
@u1
@f4
@u1

3

7777777775

=

2

66666664

0

0

1

Γ1z + Γ2z
0

3

77777775

(5.8)

Concerning the output matrix:

C(t) =


@g

@x1

@g

@x2

@g

@x3

@g

@x4

"
=

⇥
1 0 0 0

⇤
(5.9)

As always, the forward matrix D(t) = 0.
Now, in order to obtain state space matrices of the time-invariant type, an equilibrium
point must be chosen and the just computed linear matrices should be calculated for the
second time in the equilibrium point:

A =

@fi
@xi

<<<<
xi=xi

,B =

@fi
@uj

<<<<
uj=uj

,C =

@g

@xi

<<<<
xi=xi

,D =

@g

@uj

<<<<
uj=uj

where i = 1, . . . , 4 for the state variables and j = 1, 2 for the input commands. The xi
and uj terms represent the given values of the equilibrium point.
As equilibrium point is chosen:

8
>>>>>>>>><

>>>>>>>>>:

x1 = k
⇡

2

=) cosx1 = 0 , sinx1 = 1

x2 =
⇡

4

=) cosx2 =

p
2

2

, sinx2 =

p
2

2

x3 = 0 =) initial velocity null on azimuth axis

x4 = 0 =) initial velocity null on elevation axis

(5.10)
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5.2. GIMBAL LINEARIZATION

Replacing the equilibrium point in (5.6),(5.8),(5.9) the final state space matrices are
computed:

A =

2

66666664

0 0 1 0

0 0 0 1

0 0

fv1
Γ1z + Γ2z

0

0 0 0 0

3

77777775

, B =

2

66666664

0

0

1

Γ1z + Γ2z

0

3

77777775

, C =

⇥
1 0 0 0

⇤
, D = 0

5.2.2 Section rotating around the elevation axis

As done in the previous section, from (4.31) the dynamic equation of the rotation around
the elevation axis is extracted:

(s21Γ2x + c21Γ2y)q̈2 + s1c1(Γ2x − Γ2y)q̇1q̇2 + fv2q̇2 = ⌧a2 (5.11)

The relations of (5.5) are still valid, with the only difference that now the real output is
y(t) = x2 = g. Again, as equilibrium point is chosen the same of (5.10) and A(t) matrix
is then obtained deriving fi with respect to the xi state variables, instead the matrix A
by evaluating A(t)|xi=xi . The state function f4 is:

f4 = −
x3x4(sinx1 cosx1)(Γ2x − Γ2y)

Γ2x sin
2 x1 + Γ2y cos

2 x1
−

x3(sinx1 cosx1)(Γ2x − Γ2y)

Γ2x sin
2 x1 + Γ2y cos

2 x1

− fv2x4
Γ2x sin

2 x1 + Γ2y cos
2 x1

+

⌧2
Γ2x sin

2 x1 + Γ2y cos
2 x1

;
(5.12)

Then, A(t) matrix is:

A(t) =

2

6666664

0 0 1 0

0 0 0 1

0 0 0 0

A41 A42 A43 A44

3

7777775
(5.13)

By computing the partial derivative of f4 with respect to the partial derivative of the xi
state variables:
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5.2. GIMBAL LINEARIZATION

A41 =
@f4
@x1

=

−x3x4(Γ2x − Γ2y)(2 cos
2 x1 − 1)(Γ2x sin

2 x1 + Γ2y cos
2 x1)

Γ2x sin
2 x1 + Γ2y cos

2 x1
+

+

x3x4(sinx1 cosx1)(Γ2x − Γ2y)(2 sinx1 cosx1Γ2x − 2 cosx1 sinx1Γ2y)

Γ2x sin
2 x1 + Γ2y cos

2 x1
−

−
x3(Γ2x − Γ2y)(2 cos

2 x1 − 1)(Γ2x sin
2 x1 + Γ2y cos

2 x1)

Γ2x sin
2 x1 + Γ2y cos

2 x1
−

−
x3(sinx1 cosx1)(Γ2x − Γ2y)(2 sinx1 cosx1Γ2x − 2 cosx1 sinx1Γ2y)

Γ2x sin
2 x1 + Γ2y cos

2 x1
−

−
x4fv2(2 sinx1 cosx1Γ2x − 2 cosx1 sinx1Γ2y)

Γ2x sin
2 x1 + Γ2y cos

2 x1
−

⌧2(2 sinx1 cosx1Γ2x − 2 cosx1 sinx1Γ2y)

Γ2x sin
2 x1 + Γ2y cos

2 x1
;

A42 =
@f4
@x2

= 0 ;

A43 =
@f4
@x3

=

−x4(Γ2x − Γ2y)(sinx1 cosx1)

Γ2x sin
2 x1 + Γ2y cos

2 x1
−

(Γ2x − Γ2y)(sinx1 cosx1)

Γ2x sin
2 x1 + Γ2y cos

2 x1
;

A44 =
@f4
@x4

= −
x3(Γ2x − Γ2y)(sinx1 cosx1)

Γ2x sin
2 x1 + Γ2y cos

2 x1
−

fv2(Γ2x − Γ2y)(sinx1 cosx1)

Γ2x sin
2 x1 + Γ2y cos

2 x1
;

(5.14)
Replacing in (5.14) the values of the chosen equilibrium point, the final A matrix is:

A =

2

6666664

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 A44

3

7777775
=

2

66666664

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 − fv2
Γ2x

3

77777775

(5.15)

Always referring to (5.8) and (5.9), the remaining state matrices are extracted:

B =

2

66666664

0

0

0

1

Γ2x

3

77777775

; C =

⇥
0 1 0 0

⇤
; D = 0 (5.16)
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5.2. GIMBAL LINEARIZATION

5.2.3 Linearized model of the Gimbal and its SS description

At this point is possible to collect all the results of the previous section and write down
the state-space equations of the Gimbal system, represented by its own linearized model.
The next state matrices are used in Matlab and Simulink environments in order to design
a suitable controller for the gimbal mechanical system. The state-space description of
the gimbal electromechanical system is given by:

(
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

where:

A =

2

666666664

0 0 1 0

0 0 0 1

0 0 − fv1
Γ1z + Γ2z

0

0 0 0 − fv2
Γ2x

3

777777775

; B =

2

666666664

0

0

1

Γ1z + Γ2z
1

Γ2x

3

777777775

; C =

2

664

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3

775 ; D = 0

The geometric parameters of the overall gimbal structure are acquired by means of the
CAD drawing: are listed below and will be needed for the control design purpose.

Parameter Symbol V alue[SI]

Azimuth axis mass m1 4.87[Kg]

Elevation axis mass m2 1.95[Kg]

Azimuth moments of inertia
Γ1x 0.07079363[Kgm2

]

Γ1y 0.03039091[kgm2
]

Γ1z 0.0817408[Kgm2
]

Elevation moments of inertia
Γ2x 0.01174741[Kgm2

]

Γ2y 0.008261759[kgm2
]

Γ2z 0.01162105[Kgm2
]

Distance to ground d3 500[m]

Viscous friction fv1 0.2

Viscous friction fv2 0.002

Table 5.1: Geometric parameters of the Gimbal structure
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5.3. ACTUATORS LINEARIZATION

5.3 Actuators linearization

In order to derive the state-space description of the DC motor actuating the rotational
motion on azimuth and elevation axis, the dynamic model explained in chapter 4 is used.
The state-space description is always represented through the following equations:

(
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

In the DC motor model, the new state vector is made of three components, i.e.

x =

⇥
x1 x2 x3

⇤T
=

⇥
ia !m ✓m

⇤T (5.17)

Instead the input vector consists of two terms:

u =

⇥
u1 u2

⇤T
=

⇥
Vs ⌧l

⇤T (5.18)

For the thesis purpose, in which a position control system is developed, the output is
assumed to be the ✓m angle =) y(t) = ✓m(t). From all the previous clarifications, the
system state equations are:

8
>>>><

>>>>:

ẋ1 = −Ra

La
x1 −

K

La
x2 +

1

La
Vs

ẋ2 =
K

Jm
x1 −

Bm

Jm
x2 −

1

Jm
⌧

ẋ3 = x2

(5.19)

while the output equation is:
y = x3

Finally, the state space matrices A,B,C,D are obtained as:

A =

2

666664

−Ra

La
−K

La
0

K

Jm
−Bm

Jm
0

0 1 0

3

777775
; B =

2

66664

1

La

0

0

3

77775
; C =

⇥
0 0 1

⇤
; D = 0

The parameters concerning the DC motors are taken from their own datasheets and
are listed in the following table:
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5.3. ACTUATORS LINEARIZATION

Parameter Symbol V alue[SI]

Nominal voltage Vs 12 [V]

Terminal resistance Ra 1.46 [⌦]

Rotor inductance La 135 [µH]

Back emf constant Kb 1.945 [mVmin−1]

Torque constant Kt 18.57 [mNm/A]

Mass m 114 [g]

Rotor inertia Jm 12 [gcm2]

Speed up to nmax 7000 [min−1]

Table 5.2: Electromechanical parameters of the DC-motors
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Chapter 6

Gimbal motion control

In the actual chapter a suitable controller for the gimbal system will be designed, es-
sentially applying two different techniques: the loop-shaping and the Linear Quadratic
Integrator (LQI). The starting point to keep in mind is to think the gimbal system as
decoupled : the rotation around the azimuth axis is independent from the rotation around
the elevation axis, due to the fact that there are two separate DC-motors. In other words,
each DC-motor generates a torque ⌧i which will only affects the corresponding state vari-
ables ✓i. This approach to the problem is the so-called decentralized control.
If the section rotating around the two axis are independent by each others, then the con-
troller design is dealing with SISO systems (Single-Input-Single-Output). The controller
works well if the output signal (i.e. the gimbal angular position) follows the reference
angle satisfying the given requirements in time domain.
The results of the simulations will be used later, in chapter 9, to conduct a DC motor
survey. In fact, regardless of the motors and reducers already present in the Digisky’s
laboratories, it has been asked if there could be gearmotors on the market that better
match the needs of this specific application.

6.1 Premises and Requirements of the control design

As common starting point, the state matrices obtained in the previous chapter, are
copied in the Matlab environment, through which the control design is performed. Then,
two different control systems are developed, the first one to obtain a control action
regulating the behavior around the azimtuh axis, while the second one to govern the
elevation rotation by acting on the other DC-motor.
Defined the A,B,C,D state matrices and all the needed geometric parameters, by means
of the Matlab command
>> sys_2axis=ss(A,B,C,D);

the gimbal continuous time transfer function is created.
Later, in order to work with two decoupled systems, the transfer functions of each system
are extracted, via the line code:
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6.1. PREMISES AND REQUIREMENTS OF THE CONTROL DESIGN

>> [NUM1 ,DEN1]= ss2tf(A,B,C,D,1);
SYS_Z=zpk(minreal ([sys11;sys12;sys13;sys14 ]));

>>[NUM2 ,DEN2]= ss2tf(A,B,C,D,2);
SYS_Y=zpk(minreal ([sys21;sys22;sys23;sys24 ]));

One would expect that the typical transfer functions of a rotating system are of the form:
8
>>><

>>>:

✓i
⌧i

=

k

s(s+ p1)
=) y(t) = ✓i

˙✓i
⌧i

=

k

s+ p1
=) y(t) = ˙✓i

(6.1)

Effectively, from Matlab computations, appears that the two systems are rotating
and decoupled:
>> SYS_Z =

10.711
1: -----------

s (s+2.142)

2: 0

10.711
3: ---------

(s+2.142)

4: 0

>>SYS_Y =

1: 0

85.125
2: ------------

s (s+0.1703)

3: 0

85.125
4: ----------

(s+0.1703)

Note that system z and system y have transfer functions consistent with (6.1). More-
over, if torque ⌧1 acts, it only affects the state variables x1 and x3; on the contrary if
torque ⌧2 is present, the state variables x2 and x4 are influenced. Remembering the
definition of the state vector

x(t) =
⇥
x1 x2 x3 x4

⇤T
=

⇥
✓1 ✓2 ˙✓1 ˙✓2

⇤T
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6.1. PREMISES AND REQUIREMENTS OF THE CONTROL DESIGN

means that the two systems are really decoupled, then the idea of two difference control
systems makes sense.

Then is necessary to clarify that we’re dealing with a position control, then the
variables to control (i.e. the outputs of the control system) are the angular positions of
the decoupled gimbal system:

(
y1 = ✓1 =) control action on azimuth axis DC-motor
y2 = ✓2 =) control action on elevation axis DC-motor

Then the requirements concerning the dynamics and the statics of the control system,
given by the client, are collected and listed below:

• dynamics of the control system: characterize the dynamics of the control system
means define the performances during the transient

- absence of overshoot =) bs = 0%;
- rise time: tr  5s;

• statics of the control systems: it deals with the performances of the control system
at the end of the transient, then at steady state condition

- of greater interest is the value of error between the reference signal and the
output of the system at steady-state: =) |e1r | = 0 if the reference signal is
a step (r(t) = "(t)).

In the next sections the Loop-Shaping and LQI designs will be explained. While in
the Loop-Shaping approach the time domain requirements above will be translated into
frequency domain constraints, in the LQI controller design the given requirements will
be reached by conveniently tuning the control law.
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6.2. LOOP-SHAPING DESIGN

6.2 Loop-Shaping Design

The basic idea of the Loop-Shaping control technique is to opportunely design the con-
troller of a plant, so that the given requirements are satisfied.

Figure 6.1: Control system reference schem

In the loop-shaping approach we’re interested to design the controller, in order to
obtain an open loop transfer function Ga(s) = C(s)G(s) having the needed features to
satisfy the given requirements. In fact, the ’loop-shaping’ expression alludes to choice of
C(s) such that Ga assumes the desired shape to fulfill the specifications.

6.2.1 Structure of the controller

The analysis of the well known specifics allows to find some constraints on the C(s)
transfer function, as said in the general introduction of the motion control problem. The
LTI controller of the gimbal structure is planned starting from the general definition:

C(s) =
kc
s⌫

Y

i

 
1 +

s

zdi

1 +

s

mdizdi

!
Y

j

 
1 +

s

mijpij

1 +

s

pij

!
(6.2)

So, the given requirements are translated into constraints on the controller, i.e.:

- the static specifications allow to identify restrictions regarding the controller gain
kc and the ⌫ poles in s=0. The steady-state gain of C(s) is defined as

kc = lim

s!0
s⌫C(s)

Also the plant has p poles in s=0 and its steady-state gain is instead

kp = lim

s!0
spG(s)

=) kc
s⌫

is said to be the static part of the controller;
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6.2. LOOP-SHAPING DESIGN

- the transient time domain requirements are used to design the remaining part of
the controller expression

=)
Y

i

 
1 +

s

zdi

1 +

s

mdizdi

!
Y

j

 
1 +

s

mijpij

1 +

s

pij

!

6.2.2 Requirements translation

In order to translate the given requirements into constraints on the C(s) transfer function
shape, the 2

nd order prototype model is considered, through which is possible to explicit
the desired constraints in terms of dumping (⇣) and normal frequency (!n) of a system.
The dynamic behavior of a 2

nd order prototype system can be expressed as:

w2
n

s2 + 2⇣!ns+ !2
n

The requirements, known in time response domain, must be translated in frequency
response domain to be used in the controller design. From definitions, concerning the
frequency response of the system, the following entities should be evaluated:

8
>>>>>>>>><

>>>>>>>>>:

⇣ =

|ln(ŝ)|q
⇡2

+ ln

2
(ŝ)

Tp =
1

2⇣
p
1− ⇣2

Sp =
2⇣
q
2 + 4⇣2 + 2

p
1 + 8⇣2

p
1 + 8⇣2 + 4⇣2 − 1

(6.3)

Due to the definitions in (6.3), the dumping coefficient is strictly dependent from the
maximum overshoot requirements. Once defined ⇣, the constraints on the sensitivity
function peak (Sp) and on the complementary sensitivity function peak (Tp) can be
reached, and it is possible to demonstrate that Sp and Tp are related to the gain margin
and phase margin. Then:

ŝ = 0% =)

8
><

>:

⇣ ≥ 0.7

Tp  1.002

Sp  1.276

In detail, the values of the peak functions allow to define the constant magnitude loci, on
the Nichols plane, in which the controller is designed through the loop-shaping method.
In other words, they represent the limits that cannot be exceed by the Nichols plot of
the frequency response of the loop function L(j!).
On the other side, from the rise time and settling time specifications, the bounds dealing
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with the normal frequency (and consequently with the crossover frequency) are available.
From definitions: 8

>>><

>>>:

tr =
⇡ − arccos ⇣

!n

p
1− ⇣2

!c = !n

qp
1 + 4⇣4 − 2⇣2

(6.4)

8
>>><

>>>:

ts,↵% =

ln↵

!n⇣

!c = !n

qp
1 + 4⇣4 − 2⇣2

(6.5)

From(6.4) and (6.5) two different constraints on the crossover frequency exist: actually,
the constraint on !c is chosen as:

!c = max(!c,ts,!c,tr)

Then:

(
tr  5s

ts,2%  4s
=)

8
>>>><

>>>>:

!n,tr = 2.863rad/s

!c,tr = 1.855rad/s

!n,ts = 1.117rad/s

!c,ts = 0.724rad/s

=) !c,des ' 0.724rad/s

6.2.3 Design procedure

The controller design is completed if three steps are followed:

1. The steady-state and the transient requirements are converted from time domain
into frequency domain, applying the relations illustrated in the previous section;

2. The controller is planned by means of the loop-shaping design: it means chose a
suitable number of controller poles at the origin (⌫), set the controller gain value
(kc) and draw on the Nichols plane the frequency response of the loop function.
Then ;

3. Make sure that all the time domain requirements are satisfied; if not, return to step
2 and optimize the controller design until the given requirements are not fulfill.

6.2.4 Azimuth rotation controller

Once translated the time domain specifications into frequency domain constraint, the
controller design can be performed. The plant transfer function is:

Gp(s) =
10.71

s(s+ 2.142)
(6.6)
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As is clearly shown by (6.6), the plant has one pole in s = 0, then if p is the number of
Gp poles in zero =) p = 1.
From now on, each time domain requirement influences the controller design.

- |e1r | = 0 if r(t) = "(t)
In order to guarantee a null tracking error at steady-state when the input signal
is a step type, the final value theorem must be applied. The provided definition of
the theorem is:

e1r = lim

t!1
er(t) = lim

s!0
s · er(s) =

= lim

s!0
s · er(s) =

s⌫+pK2
d

s⌫+pKd +KcKpGa

R0

sh+1

(6.7)

where:
8
>>>><

>>>>:

h = 0, p = 1, ⌫ = 0

Kd = 1

Kc is the steady-state controller gain, Kp is the steady-state plant gain
R0 = 1 is the step amplitude of the reference signal

The time domain limit exists and is bounded when ⌫ + p ≥ h (where h is the
reference order). Being the reference signal a step, h = 0. Thanks to the final
value theorem the needed number of the controller poles at zero (⌫) is evaluated,
to provide the requirements fulfillment. Summarizing, until now:

p = 1, ⌫ = 0, h = 0

Replacing all the known values, and completing the limit computation in (6.15),
can be demonstrate that no poles at zero are needed in the C(s) transfer function
=) ⌫ = 0, accordingly to the result concerning the system type and zero tracking
error:
The tracking error of an LTI feedback control system is guaranteed to be null, at
steady-state, only if the system type ⌫ + p is greater than the reference input signal
order.
Moreover, since the limit is null no constraint on controller gain kc is obtained
=) kc = 1.
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- ŝ = 0% =) ⇣ ≥ 0.7, Tp  1.002, Sp  1.276

Figure 6.2: Constant loci Tp and Sp

As said before, the constant loci curves are dealing with the phase and gain margins:
the gain margin indicates how much the gain can increase without causing the
instability of the closed loop system; analogously the phase margin should not be
exceeded to not have an unstable response. In other terms, during the controller
design phase, one should avoid the intersection between the constant loci curves
and the Nichols plot of the frequency response of the loop function L(j!).

- unitl now, we’re dealing with a controller having Kc = 1 and ⌫ = 0, then the static
part of the controller is:

C(s) =
Kc

s⌫
= 1 =) L(j!) = Gp at the beginning of the design phase

The dynamic part of C(s) remains to be designed, by means of the compensation net-

works: they are the so-called lead and lag networks, already mentioned in the definition
of the controller general structure (6.2). Via the following Matlab line code, the constant
loci curves are overlapped to the Nichols plot of the frequency response of the loop func-
tion L(j!), in order to evaluate if lead or lag actions are necessaries:

>> figure , myngridst(Tp0 ,Sp0), hold on, nichols(L)
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The result is shown in the next figure:

Figure 6.3: Frequency response of L(j!) before design phase

Observing the figure above and analyzing the datas provided by Matlab, it’s possible
to conclude that a lead action is required. In fact, in order to fulfill the given requirements,
the system needs two essential actions:

1. lead action: the point corresponding to the !c,des frequency must be located outside
the constant loci curves and this causes a phase lead. The loop function L(j!)
should be subjected to a phase lead equal to (−108

◦
+ 90

◦
) ' 18

◦;

2. magnitude attenuation: L(j!) has to cut the 0dB axis at the !c,des frequency. The
magnitude of the loop function should decrease of ' 16dB;

However, first the lead action is performed in the design of a controller through the loop-
shaping techniques: after this step, again the Nichols plot of the new L(j!) is observed
such that the frequency response can be improved by means of a lag action (or magnitude
actuation).

Lead network

The lead network is added to the C(s) controller expression. It is defined as:

Rd(s) =
1 +

s

zd

1 +

s

mdzd

(6.8)
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From (6.8) is clear that the network introduces a real zero at s = −zd and a real pole at
s = −mdzd. Then the lead network has to be designed, by make an appropriate choice
of zd and md: to perform this is useful to refer to universal diagrams of magnitude and
phase of the compensation networks, shown in the following figure.

(a) Magnitude diagram (b) Phase diagram

Figure 6.4: Magnitude and Phase universal diagrams

Referring to 7.12:

- md is chosen accordingly to the requested phase margin in !c,des;

- zd is obtained by computing
zd =

!c,des

!n

where !n is the chosen normalized frequency such that the phase lead happens
exactly at the frequency !c,des. In the gimbal controller design, are selected:

(
md = 16

!n = 0.25
=) zd = 2.89

According to (6.8):

Rd(s) =
49.27s+ 134.4

2.898s+ 134.4
(6.9)

While the new controller expression is:

C(s) = Rd(s)

Instead the overall L(j!) loop function becomes:

L(s) = Gp(s)C(s) (6.10)
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6.2. LOOP-SHAPING DESIGN

If the Nichols plot of the new loop function is plotted on Matlab, the result is:

Figure 6.5: L(j!) Nichols plot after lead action

Magnitude attenuation

From 6.5 appears the necessity of a magnitude action, due to the desire of intersect the
0dB axis at the frequency ! = !c,des. Then the magnitude value of the L(j!) loop
function is computed at !c,des; the new controller gain is evaluated and the final loop
function Lfinal(j!) is obtained, as exploited below through the Matlab commands:
>> [m,p]=bode(L1 ,wc_d)
>> kc=(1/m)
>> L_final=kc*L1

With regard to the assumptions above, the new expression of the controller C(s) is:

Cfinal(s) = kcRd(s) (6.11)

Consequently, the final expression of the loop function will be:

Lfinal(s) = Gp(s)kcRd(s) (6.12)

and its frequency domain response will be evaluated, by means of the Nichols plot, below:
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6.2. LOOP-SHAPING DESIGN

Figure 6.6: L(j!) Nichols plot at the end of the design

Once the requirements on Nichols plot are satisfied, i.e. the loop function doesn’t
intercept the constant magnitude loci curves, the closed loop function behavior is simu-
lated, when the reference command coincides with a step. The closed loop function of a
control system is usually defined as:

W (s) =
L(s)

1 + L(s)
=

Gp(s)C(s)

1 +Gp(s)C(s)
(6.13)

By means of W (s) the validation of the given requirements is allowed. During the check
phase some dynamics specification is not satisfied, the controller C(s) or its gain kc
should be conveniently improved. Thanks to the Matlab command
>> figure , step(W)

the closed loop response of the system is obatined, in time domain, as illustrated below:

63



6.2. LOOP-SHAPING DESIGN

Figure 6.7: Closed loop function time response

Note from 6.7 the fulfillment of the given specifications in both time and frequency
domain:

- |e1r | = 0 when the reference r(t) = "(t) with amplitude R0 = 1;

- the time response never exceed the command reference value =) ŝ = 0%;

- both tr and ts,2% are sufficiently lower than the imposed maximum values.

6.2.5 Elevation rotation controller

As done for the azimuth rotation controller design also for the 2

nd DC-motor controller
the loop-shaping method is applied. The requirements to be satisfied are the same of the
previous design and also the followed logic is the same.
The plant is obviously different from the elevation case one, and it is:

Gp(s) =
85.125

s(s+ 0.1703)
(6.14)

Again, the plant as one pole in s = −0.1703 =) p = 1. As known, each requirement
allows to extract a constraint in the controller design phase:

- |e1r | = 0 if r(t) = "(t) : the final value theorem is applied:

e1r = lim

t!1
er(t) = lim

s!0
s · er(s) =

= lim

s!0
s · er(s) =

s⌫+pK2
d

s⌫+pKd +KcKpGa

R0

sh+1

(6.15)
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6.2. LOOP-SHAPING DESIGN

one should deduce that no pole at s = 0 is needed when the C(s) expression is
defined. Then:

p = 1, ⌫ = 0, h = 0

Besides no constraint on the controller gain is obtained, so kc = 1;

- ŝ = 0% =) ⇣ ≥ 0.7, Tp  1.002, Sp  1.276.

Once clarified the starting point for the controller design, the Nichols plots of the loop
function L(j!) will be examined with reference to the constant loci curves of figure 6.2,
and it is modified each time in order to achieve a response for which the shape of L(j!)
doesn’t cross the Tp0 and Sp0 curves.
First of all the Nichols plot of L(j!) is required:

Figure 6.8: L(s) Nichols plot, before design

Note that, again, two compensation actions are needed:

• add a lead network;

• adjust the loop function shape by means of magnitude attenuation.

Lead network

Adding a lead network Rd(s), the highlighted point in 6.8 will shifts toward right with
respect the old position. This means that the point corresponding to the frequency
! = !c,des, after the design of the Rd(s) network will be located outside the constant loci
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6.2. LOOP-SHAPING DESIGN

curves. As always,

Rd(s) =
1 +

s

zd

1 +

s

mdzd

Then, chosen: (
md = 16

!n = 0.5
=) zd = 1.44

=) Rd(s) =
24.63s+ 33.59

1.449s+ 33.59

An additional clarification concerning the controller expression is needed. Since the
plant has no unstable poles, a stable zero-pole cancellation is allowed when the product
Gp(s)C(s) is performed: the low frequency pole is neglected, and it is replaced with a
pole having a frequency near the desired one. Then an initial expression of the controller
is:

Cin(s) =
s+ 0.1703

s+ 1.5

After the lead network design, by means of suitable choice related to md and zd, the
controller becomes:

C2(s) =
s+ 0.1703

s+ 1.5
· 24.63s+ 33.59

1.449s+ 33.59
=) L2(s) = Gp(s)C2(s)

At the end of this first design phase, one expected the desired crossover frequency point
outside the constant loci magnitude curves, but not jet crossing the 0dB axis (due to
the magnitude attenuation not jet actuated). The result is illustrated in the following
picture:

Figure 6.9: L(s) Nichols plot, after lead design
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Magnitude attenuation

From 6.9 appears the necessity of a magnitude attenuation action: more precisely an
attenuation of 40dB is required. Through the Matlab commands exploited in the previous
section, the magnitude of L(j!) is evaluated in ! = !c,des; then a new controller gain is
obtained and consequently a new loop function. The final result is the next one:

Figure 6.10: L(s) Nichols plot, after controller design

Since the Nichols plot requirements are satisfied, the behavior in time domain of the
closed loop function W (s) can be tested. As done for the motion control on the azimuth
axis, again the closed loop response is illustrated, when the reference command is the
step one. Also this time, the designed controller seems to work very well:

- ŝ = 0% as requested;

- tr  5s from specifications and tr ' 4.8s;

- ts,2%  4s and it is ts,2% ' 3.6s

The listed values can be proved from the next figure.
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Figure 6.11: W (s) step response

In Appendix A are supplied the Matlab scripts concerning the design of the controllers
C(s) of both azimuth and elevation rotations.

6.2.6 Simulation results

Once individually simulated the controllers of the motion around the elevation and az-
imuth axis, the unique control system scheme on Simulink is created and tested.

Figure 6.12: Overall control system scheme

The scheme in 6.12 is briefly elucidated below:

• the Group 1 block generates the reference angles for both the axis rotation;
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6.2. LOOP-SHAPING DESIGN

• the Controller block gets as inputs the reference angles and provides as outputs
the torques required to move the gimbal system in order to follow the command
inputs, accordingly to the dynamic equations of motion. Inside the block, can be
found the two controllers, singularly designed in the previous sections.

(a) Black box (b) Inside the block

Figure 6.13: Controller block detail

• the Radiants to Degrees block performs the conversion from the angles expressed
in radiant measure of unit, into the degree values for the same angles;

• as outputs of the control system are observed the two angular positions of the
gimbal system, i.e. the variables to effectively control.

The control system of the gimbal is simulated, where as input are given:

✓1 = x1 = 3.18
rad

s
=) 180

◦ , ✓2 = x2 = 1

rad

s
=) 57

◦

and the results are shown in the next figures.
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6.2. LOOP-SHAPING DESIGN

Figure 6.14: Measured and reference angular positions on azimuth axis

Figure 6.15: Measured and reference angular positions on elevation axis
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Figure 6.16: Measured and reference angular positions and velocities of the overall gimbal
system

As expected, from the previous figures, all the given requirements are fulfilled:

ŝ tr[sec] ts,2%[sec] |e1r |

required 0%  5 s  4 s 0

azimuth axis 0% 4.6 s 2.8 s 0

elevation axis 0% 4.6 s 3.1 s 0

Table 6.1: Results of the Loop-shaping design

then, the loop-shaping design has been completed.

71



6.3. LINEAR-QUADRATIC REGULATOR DESING

6.3 Linear-Quadratic Regulator Desing

Differently from the Loop-shaping approach, the Linear-Quadratic Regulator technique
is not based on the closed loop pole placement. In fact, the LQR controller is obtained
by means of minimization of the cost function J(x, u) identifying the suitable tradeoff
between the weight of the system states and the input variables. It is one of the optimal
controls and the cost function to be optimized is expressed through the quadratic form,
as below:

J =

Z tf

t=0

C
xT (⌧)Qx(⌧) + uT (⌧)Ru(⌧)

D
d⌧ (6.16)

Then the problem is to find a suitable input u(t) which is the solution of the cost function
(6.16):

min

u(t),t2[0,tf ]
J(u) = min

u(t),t2[0,tf ]
xT (tf )Su(tf ) +

Z tf

0

C
xT (⌧)Qx(⌧) + uT (⌧)Ru(⌧)

D
d⌧

where
Q,S 2 Rn,n

: Q = QT ≥ 0, S = ST ≥ 0, R 2 Rp,p
: R = RT > 0

The Q matrix is defined as semi-positive diagonal matrix, while the R matrix is defined
as positive one: for each Q and R matrices always exists a uott(t) which minimizes the
J(x, u) cost function. Moreover the finite horizon Linear Quadratic control problem is
of little interest, due to the fact that a time-variant controller is obtained.

Infinite horizon LQ problem

If tf ! 1 the cost function looses the final cost term xT (tf )Su(tf ) and becomes:

min

u(t),t2[0,tf ]
J(u) = min

u(t),t2[0,tf ]

Z tf

0

C
xT (⌧)Qx(⌧) + uT (⌧)Ru(⌧)

D
d⌧

where Q and R are the design parameters of the LQ controller. As always:

Q = QT ≥ 0, R = RT > 0

The control law of the LQ controller is defined as:

u(t) = −Kx(t) (6.17)

where u(t) represents the solution to the infinite horizon LQ control problem, concerning
the static state feedback architecture, shown below:
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Figure 6.17: Static state feedback control architecture

In detail, K is a matrix, from definition:

K = R−1BTP 2 Rp,n (6.18)

and P is provided by the solution of the Algebraic Riccati Equation (ARE):

Q− PBR−1BTP T
+ PA+ATP = 0

P = P T > 0

(6.19)

System Reachability

By the evaluation of the Mr matrix, the reachability of the dynamic system can be stated.
The reachability matrix is defined as:

Mr =
⇥
B AB . . . An−1B

⇤

If ⇢(Mr) = n, being n the number of the system states, then the system is said to be
reachable, and the matrix couple (A,B) is reachable. The Matlab commands to verify
the reachability are:
>> Mr=crtb(A,B);
>> rho_Mr=rank(Mr);

Obviously the dynamic system to refer with is:

ẋ(t) = Ax(t) +Bx(t)

System Observability

Considering a different matrix, Mo, defined as:

Mo =
⇥
C CA . . . CAn−1

⇤T

if
⇢(Mo) = n

then the rank of Mo matrix is the maximum one and the dynamic system is said to be
observable (i.e. the couple (A,C) is observable). The observability of the system can be
checked through the following Matlab commands:

73



6.3. LINEAR-QUADRATIC REGULATOR DESING

>> Mo=obsv(A,C);
>> rho_Mo=rank(Mo);

6.3.1 Tuning of LQ control law

In order to obtain a Linear Quadratic Regulator some mandatory steps must be followed:
1. Derive the state-space representation of the system to control, as done in chapter

5 ;

2. Tune the LQ regulator, i.e. choose the values of each term of the weight matrices
Q and R. The weight matrices are diagonal, then if the system has n states and p
inputs, (n+ p) parameters should be chosen:

a) at the first iteration, the user usually choose the elements of Q and R (qij and
rij respectively) such that the state variables and the control variables have
the same order of magnitude into the cost function;

b) from the 2

nd iteration on, the single values of qij and rij are conveniently
changed in order to obtain the required control system performances. Do
not forget that the coefficients to chose coincide with the relative weight of a
variables with respect to the others.

3. Guarantee qij ≥ 0 and rij > 0, bearing in mind that their values are set according
to the relative importance of each state or control variables.

A clarification about the matrices Q and R are needed: the Q matrix deals with the
system states; the R matrix instead concerns the weight of the control input inside the
cost function. Then:

• if R >> Q the greater weight in the cost function is represented by the control
effort u(t): an expansive control law solution is reached:

• if Q >> R the cost function J is weighted by the state errors, then the result will
be a faster system response.

As said, the design of an LQ controller consists of a tradeoff between control input
and state variables. The values of the qij , rij coefficients also depend on the limitations
concerning the dynamic system to control. In fact, if having large control input signal
is not dangerous in the analyzed system, then small value of R can be imposed; on the
other side, if having large u(t) signal causes sensor noises or actuator saturation, a large
value of R should be forced.
Once defined the weight matrices of the LQ regulator, the K matrix is computed by
using the following command on Matlab:
>> K=lqr(A,B,Q,R);

where:
- A and B are the state-space description matrices;

- Q and R are the LQ matrices, created as previously illustrated.
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6.3.2 Matlab implementation

In order to control the gimbal dynamic system, the LQ regulator technique is adopted;
the Matlab script can be found in Appendix B.
First of all the needed geometric parameters are defined in the Matlab environment in or-
der to make possible the computation of the state-space description matrices A,B,C,D.
Then, the gimbal transfer functions are generated and employed as plant to control with
Simulink tool. The reference Matlab command is:
>> sys_c=ss(A,B,C,D)

To design the LQ regulator, the two rotating masses are not considered as independent
from each one, but only one controller for the entire gimbal system is developed. Then
the controller features two input variables, u1 and u2 and two controlled variables, i.e.
✓1 and ✓2. We’re dealing with a MIMO system (Multi-Input Multi-Output).
In the LQ design are defined two essential components of the control system: the integral
action stage and the dynamic observer system.

Integrative stage

In addition to the system states, for each variable to control a further integrative state
is introduced: the aim of the so-called integral action is to guarantee the steady-state
zero tracking error. Therefore the matrices A,B,C become Atot, Btot, Ctot according to
given rules of conversion, depending on the controlled system states. Also the size of the
Klqr vector will change, because it will be computed by means of Atot and Btot. The
augmented gimbal system is:

x(t) =
⇥
q✓1(k) q✓2(k) x1(k) x2(k) x3(k) x4(k)

⇤T

where q(k) is discrete time integral of the tracking error. Consequently the state-space
matrices are transformed into:

Atot =


1n⇥n −TsC
0n⇥1 A

"
2 R6⇥6 , Btot =


02⇥2

B

"
2 R6⇥2

As always R is a diagonal matrix, depending on the two control signal of the system,
therefore its size is [2 ⇥ 2]; since the system states are 6, also Q is a [6 ⇥ 6] diagonal
matrix. The chosen weights of the rij and qij coefficients are readable through the
Matlab commands:
>> R=diag ([0.01 0.01])
>> Q=diag ([100 100 10 10 1 1])

then the Klqr matrix is obtained as:
>> k_lqr=dlqr(A_tot ,B_tot ,Q,R);
>> ki=[k_lqr (:,1) k_lqr (: ,2)];
>> ko=[k_lqr (: ,3:6)];
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As expected, the matrix Klqr is of [2 ⇥ 6] size: 2 rows as many as the control inputs, 6
columns as many as the 6 states.

klqr =


−94.6311 0 52.7996 0 9.7719 0

0 −65.9435 0 36.2687 0 6.6565

"

and the feedback control system is modified into:

Figure 6.18: Feedback control system with integral stage

With reference to 6.18, the new control law is:

u(k) = −kiq(k)− k0x(k)

Observer LTI system

The Observer dynamic system doesn’t influence the dynamic of the plant system: it
only allows the estimation of the real state vector requiring as input the control inputs
of the plant and the state variables. The observer can be employed only if the system
is completely observable: the reachability and the observability are checked through the
following line code:
>> Mr=ctrb(A,B);

rho_mr=rank(Mr);
>> Mo=obsv(A,C);

rho_obs=rank(Mo);

From Matlab computations ⇢(Mr) = ⇢(Mo) = n then the control system can be featured
by the observable system. The latter modifies the control system and the control law as
below:

u(k) = −kiq(k)− k0x̂(k) , x̂ is the estimated state vector
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Figure 6.19: Feedback control system with integral stage and observer

The LTI observer system is created by means of the pole placement method, bearing
in mind that the dynamic of the observer system is defined by the following relation:

x̂(k + 1) = (Ad − L · Cd)x̂(k) +
⇥
Bd L

⇤
·

u
y

"

Then, the observer system is created by means of Ad, Bd, L matrices, as:
>> sys_obs=ss(A_d -L*C_obsv ,[B_d L],eye(4),0,Ts)

where L is the observer gain matrix, made through the pole placement method:
>> L=place(A_d’,C_obsv ’,lambda_obsv)’

being the lambdaobsv the eigenvalues of (A− L · Cd) matrix.

λobsv =

⇥
0.4 0.41 0.42 0.43

⇤

Cobsv =


1 0 0 0

0 1 0 0

"
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6.3.3 Simulation results

For the first time are tuned the LQI (Linear-Quadratic-Integrative) Regulator parameters
and the control system is simulated in Simulink environment, in order to improve the
response of the dynamic control system at each iteration. The simulated feedback control
scheme is shown in the picture below:

Figure 6.20: LQI Simulink control scheme

As expected, the main blocks are exploited below:

- the Signal Builder block which provides the reference signals;

- the Discrete Time Integrator block which enables the integral action;

- the K0 and Ki gain blocks; they represent the control action of the regulator;

- the Observer LTI system which allows the estimation of the vector state, as jet
said.

The simulation results concerning the azimuth motion control are displayed:
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Figure 6.21: Reference and azimuth angular positions

The elevation angular position instead appear as:

Figure 6.22: Reference and elevation angular positions
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From figures 6.21 and 6.22 the following conclusions can be summarized:

ŝ tr[sec] ts,2%[sec] |e1r |

required 0%  5 s  4 s 0

azimuth axis 0.08 % 2.9 s 1.35 s 0

elevation axis 0.08% 2.56 s 1.36 s 0

Table 6.2: Results of the LQR design

6.4 Loop-shaping and LQR results comparison

In the actual section a comparison between the results coming from the two different
control techniques is developed. In detail, the required torques (on both rotation axis)
due to the dynamic of the system and the required angular velocities of the system itself
are compared. The control techniques should guarantee that the controlled outputs will
follow the given input:

- ✓1 = 1 rad ' 58

◦;

- ✓2 = 0.5 rad ' 27

◦.

Both the torques and angular rates must be interpreted as the required ones to guarantee
a satisfying gimbal system response in terms of time response, overshoot and steady-state
tracking error.
Remembering the design specifications:

required

ŝ 0%

tr  5 s

ts,2%  4 s

Table 6.3: Design requirements
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Concerning the torques required by the control system of the gimbal:

- on the azimuth motion axis:

(a) Loop-shaping design

(b) LQR design

Figure 6.23: Required torques on the azimuth axis
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- on the elevation motion axis:

(a) Loop shaping design

(b) LQR design

Figure 6.24: Required torque on the elevation axis
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Concerning the angular velocities that the system should features to satisfy the given
requirements:

- on azimuth rotation axis:

(a) Loop-shaping design

(b) LQR design

Figure 6.25: Angular rate on azimuth axis
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- on elevation motion axis:

(a) Loop shaping design

(b) LQR design

Figure 6.26: Angular rate on elevation axis
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axis ŝ tr[sec] ts,2%[sec] ˙✓[deg/s] torque [mNm]

required ⇥ 0%  5 s  4 s ⇥ ⇥

Loop Shaping azimuth 0% 4.6s 2.8s 38

◦/s 3.1[mNm]
elevation 0% 4.6s 2.9s 23

◦/s 0.14[mNm]

LQR azimuth 0.08% 2.9s 1.35s 72

◦/s 0.82[mNm]
elevation 0.08% 2.5s 1.36s 35

◦/s 0.057[mNm]

Table 6.4: Results of Loop-Shaping/LQR comparison

From tab. 6.4 one can note that the time response, the rise time and the overshoot are
different for the two applied control techniques. This is due to the fact that while the loop-
shaping design derives the constraints of the control system from the given requirements,
the LQ controller is obtained through the optimization of the cost function J(x, u). The
main differences are listed below:

1. ŝ = 0% in the loop-shaping design because the controller is developed starting from
the needed to have absence of overshoot. Instead, the LQ controller is obtained
by means of successive optimizations which allow to achieve a dynamic response
closed to the desired one: in the best optimization scenario the user is not able to
reduce the overshoot under 0.08%;

2. the rise time and settling time are higher in the loop-shaping control system, but
in both cases the requirement concerning tr and ts are fulfilled. The reason of a
faster system response in the LQ control system is due to the fact that in the choice
of the design parameters Q >> R, as can be confirmed by referring to the script
in Appendix B ;

3. the required ˙✓1 and ˙✓2 angular velocities on the two motion axis, are higher in the
LQ control system with respect to the loop-shaping design, due to the low weights
assigned to the x3 and x3 state variables inside the cost function J(x, u);

4. also concerning the required torques ⌧1 and ⌧2, the main difference is that the LQ
control system needs of very lower torques than the loop-shaping control system.
This is justified by means of the chosen R matrix values;

5. |e1r | = 0 specification is accommodated in both the two control systems.
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Chapter 7

PID regulators

Given the needed to control the gimbal holder with the electric motors already available
in the laboratory, two PID controllers are designed. In fact, is still valid the basic idea
for which the two rotations around azimuth and elevation axis are totally decoupled, so
the two DC-motor work in a complete independent way: one PID controller will be used
to control each actuator.
The PID regulator is made of 3 main parts which are the proportional (P), the integrative
(I) and the derivative (D) one. Its expression is:

u(t) = KP e(t) +KI

Z t

0
e(t)dt+KD

de(t)

dt
(7.1)

and the corresponding control scheme is:

Figure 7.1: General feedback scheme of a PID regulator

Note that the gains KP ,KI ,KD are constants and through them the control input
u(t) is computed, based on the actual value of the tracking error e(t) = r(t) − y(t).
Modify the gains value means act on static and dynamic behaviors of the controlled
system, as exploited below:
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Parameter Action Stability Response time

KP
KP " improve slow down

KP # get worse speed up

KI
KI " get worse slow down

KI # improve speed up

KD
KD " get worse get worse

KD # get worse speed up

Table 7.1: Effects of the PID gains on the system behavior

In detail:

• KP : the introduction of the proportional gain causes an output variation in a
proportional way with respect to the actual error value, e(t). The command input
value u(t) changes when the output y(t) also changes;

• KI : by means of the integrative gain, the offset due to the proportional action on
y(t), is canceled. The gain KI is applied to guarantee a steady-state null track-
ing error; at the same time the integrative action should generate overshoots and
oscillations on the system response. Generally, a PI controller generates a faster
response without deteriorate the overall system stability;

• KD: the purpose of the derivative action is to computing the control action also
taking into account the derivative term of the error.

If the sampling time Ts of the system is defined, the regulator can be translated in
the discrete time as:

u(k) = KP e(k) +KITs

nX

k=0

e(k)dt+KD
e(k)− e(k − 1)

Ts
(7.2)

The discrete-time regulator is used in the phase of the control system implementation on
microcontroller.

7.1 Linear PI feedback control system

In order to control the motion on the two axis of the gimbal system, two DC motor must
be separately controlled. In fact, what is really controllable is the supply voltage of the
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DC motors: the current flowing inside the motor depends on the applied voltage and
consequently the torque generated by each motor on the rotation axis is proportional to
the current by means of the constant torque coefficient.

7.1.1 Matlab and Simulink implementation

The scripts concerning the PID controllers are added in Appendix C. In order to develop
the motion control system of the gimbal, the state-space description of the DC motor is
get from chapter 5 and its transfer functions are extracted by means of Matlab commands,
then are used as plant of the control system.
The Simulink feedback control system is the same in both rotation cases and it’s made
of the following main blocks:

Figure 7.2: Linear feedback control system

In the previous figure, note the presence of:

- Signal builder block which generate the references of the control scheme;

- PI controller block in which the control law is computed by means of only propor-
tional and integral actions. The PID gains are chosen as KP = 20 and KI = 0.02.
The controller provides as output the controllable input variable called Va, corre-
sponding to the supply voltage of the DC-motor;

- DC motor block, in which the dynamics and the electromechanical properties of the
used DC motor are included. In the block, thanks to an electrical and a mechanical
transfer functions, the voltage is converted in current and the latter is translated
into torque generated by the motor. The DC motor block receives as input the
supply voltage and provides as output the motor speed ( ˙✓mi);

- the integrator block allows to acquire the the motor position, ✓mi;

- the reduction ratio aim is to convert the motor position into the gimbal position
✓i, which must be really controlled. Since the motion transmission happens by
means of motor-reducer-pulley assembly, the motor speed is reduced while the
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motor torque is multiplied of a factor equal to: 159 · 6 ' 1e3. This quantity is
called reduction ratio, identified as n in the Matlab scripts. Once computed the
position gimbal, it is feed back to the control system in order to complete the
control action.

With reference to fig 7.2, are shown the controller and the plant blocks. In detail:

1. the controller consist of two action, which are the proportional and the integrative
ones. In the next picture the controller architecture is illustrated:

Figure 7.3: PI controller

2. the plant of the PI controller is the DC motor. It’s made of two transfer functions,
i.e. the electrical and the mechanical one because of, as known, it’s an electrome-
chanical system.

Figure 7.4: DC motor subsystem

More precisely, the electric transfer function and its pole are:

Gelect(s) =
1

0.000135s+ 1.46
=) pelect = − 1.46

0.000135
= −1.08 · 104

while the mechanical ones are:

Gmech(s) =
1

1.2 · 10−6s+ 1.7 · 10−6
=) pmech = − 1.7 · 10−6

1.2 · 10−6

= −1.41
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It’s possible to note that the electrical pole have too high frequency with respect to
the mechanical one: it means that pelect will never influences the DC motor dynamic
behavior. Another observation concerning the mechanical transfer function: it
takes into account also the gimbal inertia and viscous friction, so the plant is made
of both the gimbal and the motor dynamics.

The exploited control system is then simulated and the simulation results are provided
in the next section.

7.1.2 Simulation results

As always, the time domain given requirements are dealing with the rise time and the
overshoot of the system dynamic response, and are the same of the jet developed control
system. In this section, the control system is simulated when the input reference are:

- command input on azimuth axis: ✓1,ref = 58

◦;

- command input on elevation axis: ✓2,ref = 58

◦;

In terms of azimuth controlled rotation, the results shown that:

Figure 7.5: Pan angle response

Can be stated that the rise time, the overshoot and the steady-state tracking error
specification are totally fulfilled.
While the motion control on the elevation axis appears as:
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Figure 7.6: Tilt angle response

Also for this controller development all the requirements are satisfied.

7.2 A more realistic PI feedback control system

Theoretically, when one designs a PID regulator, it takes into account some typical
real problems, like as the actuator saturations, the anti-windup, which is dealing with
the actuator saturation and the backlash when the mechanics of the gearbox is analyzed.
These problems are the so-called non-linearities of a DC-motor. By means of the Simulink
blocks the non-linearities are integrated in the linear control system of the DC-motor in
order to verify if the desired requirements are once again satisfied.

7.2.1 Non-linearities

Saturation and anti-windup scheme

The most common actuator non-linearity is represented by the physical limitations of the
motors. Precisely, the torque provided by any motor is restricted due to the limit values
which the current flowing into the motor circuits can acquire. Then, also the voltage
supplying the motor must be in a range between a minimum and a maximum value. A
possible solution to the saturation problem, is add the anti windup scheme to the control
system. At the beginning the control system including the saturation phenomena is:
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Figure 7.7: Saturation block in the feedback control system

and the saturation function is defined as:

usat(t) = sat(u) =

8
><

>:

−Umin if u(t)  −Umin

u(t) if − Umin < u(t) < Umax

Umax if u(t) ≥ Umax

(7.3)

The simultaneous presence of integral action and saturation generates the anti windup
phenomena which deteriorates the control system performances. If the input signal is
saturated and the absolute value of the error remains of the same sign, the controller
continuously computes the integral of the error; if the error changes sign must wait for
an interval time before to have −Umin < u(t) < Umax again. The anti windup solution
purpose is to guarantee that the control signal evolves according to the real variables
influencing the control system (the output y(t)): it means that the control variable u(t)
must leave the saturation value as soon as the error changes its sign.
The control system, if the anti windup scheme is taking into consideration, is modified
as below. The basic idea is to intercept the control input values before and after the
saturation, then computing the difference

∆u = u(t)− usat(t)

is possible to give back the ∆u value to the integrator block. There is also the desaturation
device, represented through the F (s) transfer function:

F (s) =
1

Td

where Td value controls the interval time in which the desaturation happens. If Td

acquires small values, the desaturation action will be faster, and vice versa.
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Figure 7.8: Anti windup solution embedded in the control system

Note that in order to actually adopt an anti-windup solution, is needed to have values
that can be effectively measured. For this reason, the anti-windup scheme is not always
applicable and its feasibility depends on the available sensors and on the control system
characteristics.

Backlash of the reducer

As known, the electric motor is able to generates high angular speeds to the detriment
of the machine torque: for this reason is usually placed a suitable speed reducer between
motor and load. The role of the adaptor is to decrease the motor shaft speed while the
generated torque is multiplied by the reduction ratio value.
Usually the mechanical assembly made of motor, reducer and load is treated as a single
body, having an equivalent inertia equal to:

Jeff = Jm +

Jl
⌧2

where Jm and Jl are the motor and load inertias respectively, instead ⌧ is the reduction
ratio.
The backlash is a typical non-linearity of the mechanical system featuring the reducer: it
exists between two moving parts and it clearly deteriorates the performances of a control
system in terms of speed and positions. The effect of the backlash appears when a change
in the motion direction happens: it causes the loss of the motion transmission between
the motor and the load, due to the fact that the motor for a few moments is not able
to control the load which can autonomously moves. Since the rotating gears aren’t in
perfect traction conditions when the direction of the rotation changes, a delay in the
system response is present.
The Simulink tool provides a block, identified as Backlash block, which allows to model
this particular non-linearity. The only required parameter when the block is added to
the control system is the dead band (also called dead zone): the dead band, expressed
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in [

◦
] or [rad] corresponds to a range of values for which the output, i.e. the systems

position, is null.

Aerodynamic moment

In order to develop a complete control system the effects of the aerodynamics are ana-
lyzed and modeled. The aerodynamics represents an external force producing moments
on the gimbal system, which in standard operating condition is attached to a flying air-
craft. Is considered worthwhile to model the aerodynamic interference as if it is a noise
on the position measurements. In detail, it is considered as a disturbance on the bearings
of the mechanical system: then, an error on the position measurements provided by the
encoder, is added to the control system. The noise at issue is comparable to a sinusoidal
signal, having a frequency closed to the frequency at which the encoder works and a
small amplitude (in order to be considered as disturbance the signal amplitude should
be quite small).

7.2.2 Simulation results

As always, the control system is developed starting from the basic idea to have two
independent DC-motors. A decentralized control architecture is applied.

Rotation around azimuth axis

Taking into account all the non-linearities previously exploited, the gimbal control system
is the following one:

Figure 7.9: Realistic position control system

The previous one is the control system of the rotating part around azimuth axis, but
it’s obviously the same for the motion control on elevation axis. With reference to fig.
7.9, the PI controller block is shown in detail below:
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Figure 7.10: PI controller in the non linear scenario

Note that the gain KP and KI are the same chosen in the totally linear assumptions.
Moreover in the PI controller block is integrated the anti windup scheme, in which

∆u(t) = v(t)− vsat(t)

is given back to the integrator block. As usual, with reference to the general non-linear
control system of figure 7.9:

- the output of the plant is the motor speed ˙✓m1;

- the integrator block
✓
1

s

◆
is used to convert the motor speed into the motor position

✓m1;

- the reduction ratio block allows to obtain the real gimbal position ✓1 and the latter
variables is the feedback variable;

- the backlash block allows to model the backlash phenomena and causes a small
delay in the system response;

- the sinusoidal signal block represents the disturbance on the encoder measure-
ments.

Then, the control system response is observed:
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Figure 7.11: Azimuth axis angular position

Referring to fig. 7.11:

1. also if the system is make non linear by means of the Simulink blocks, the given
design requirements are satisfied:

- ŝ = 0% =) absence of the overshoot;
- |e1r | = 0;
- considering that the command input is given at simulation time tin = 1s, the

steady- state condition is reached at tss = 6.2 =) the rise time and the
settling time constraints are fulfilled, taking into account a small delay due to
the presence of the backlash;

2. the backlash effect can be observed at every rotation direction changes, as better
shown below:

96



7.2. A MORE REALISTIC PI FEEDBACK CONTROL SYSTEM

(a) Backlash effect when a reference of 58◦ is given (b) Backlash effect when a reference of −45◦ is given

Figure 7.12: Backlash phenomena when a change of the motion direction happens

As said, the backlash has as effect the delay in the system response: the introduced
lateness is equal to tdelay ' 0.5s.

Rotation around elevation axis

The control scheme of the systems rotating around the elevation axis is basically the
same of figure 7.9, then are quickly shown only the simulation results below:

Figure 7.13: Elevation axis angular position

From fig. 7.13 the fulfillment of the design requirements is confirmed:

- |e1r | = 0;

- ŝ = 0%;
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- tr = 5.56s, in spite of the command input is given at tsim = 1s and the delay
introduced by the backlash: =) tr ' 4.3s;
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Chapter 8

Motion control implementation

The last phase of the work is committed to the implementation of the designed controller
on the Arduino electronic platform, in order to test the real behavior of the existing
physical prototype. In fact, the corresponding code of the controller simulink model
is loaded on the Arduino shield. which is linked with the two DC-motors. In order to
provide the estimated results, the SIL (Software-in-the-Loop) and PIL (Processor-in-the-
Loop) phases are required. To this purposes comes in handy the Simulink tool with its
own code generation tool.

8.1 Arduino electronic platform

The Arduino platform is made of different electronic boards and devices; all of them
are provided of a microcontroller and they can be integrated each others thanks to the
Arduino IDE (Integrated Development Environment).
In this gimbal motion control problem will be used: the Arduino Mega 2560 as micro-
controller, the Arduino Pololu Dual VNH5019 as motor driver shield and several sensors
(we will focus on the IMU - Inertial Measurements Unit).
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8.1.1 Arduino Mega 2560

In the laboratory the available Arduino microcontroller is the Arduino Mega 2650, which
is shown in the next picture.

Figure 8.1: Arduino Mega 2560 Microcontroller

It has the following technical features:

Microcontroller ATMega2560

Operating voltage 5V

Input voltage (recommended) 5-12V

Input voltage (limits) 6-20V

Digital I/O pins 54 (of which 14 provide PWM output)

Analog Input Pins 16

DC Current per I/O Pin 40 mA

DC Current for 3.3V Pin 50 mA

Flash Memory 256 KB of which 8 KB used by bootloader

SRAM 8 KB

EEPROM 4 KB

Clock Speed 16 MHz

Table 8.1: Arduino Mega 2560 - technical specifications
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8.1.2 Arduino Pololu Dual VNH5019

The Arduino Pololu Dual VNH5019 is a motor shield, compatible with the Arduino
microcontroller board, and it is used in order to make easy the control of the two gimbal
DC-motors. It enables the control of two DC motor at the same time, and it is illustrated
in the next figure:

Figure 8.2: Arduino Pololu Dual VNH5019

In the following table, the motor shield technical features are listed:

Operating voltage 5.5-24 V

MOSFET on-resistance 18 m⌦

IMax PWM frequency 20 kHz

Current sense 0.14 V/A

Over-voltage shutoff 24 V min / 27 V typ

Logic input high threshold 2.1 V min

Time to overheat at 20 A 20 s

Time to overheat at 15 A 90 s

Current for infinite run time 12 A

Table 8.2: Arduino Pololu Dual VNH5019 - technical specifications
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8.1.3 IMU sensor

As known, the IMU is an electronic devices made of inertial sensors like as gyroscope
and accelerometers, able to monitor the dynamics of a moving body. Thanks to the IMU
sensor the current position of a body (i.e. of the gimbal for our purposes) is obtained,
and the IMU’s measurements should be employed to perform a correction action of the
motion. The available IMU is the Xsens MTi3 one.

Figure 8.3: Xsens MTi3

The technical specifications are listed below:

Input voltage 2.19-3.6 V

Package SMD, JEDEC PLCC-28

Interfaces I2C/SPI/UART

Output data rate 0-800 Hz

Interface protocol Xbus

Typical power consumption  100 mW

Weight <1g

Size 12.1 x 12.1 x 2.55 mm

Software interface Xsens Device API (open source)

Gyro bias stability 10 ◦/h

Roll/Pitch (Static | Dynamic) 0.5◦

Yaw 2◦

Table 8.3: Xsens MTi3 - technical specifications
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8.2 Sotware in the Loop Validation

The SIL (software in the loop) phase is subsequent to the system modeling and controller
design steps. In fact, it is useful to ensure the proper operation of the designed controller:
the controller model block is converted into C/C++ code and the generated code is tested
in software environment before to be loaded on the target hardware.

Figure 8.4: Software in the loop stage

As shown in fig.8.4 both controller and plant are running on the PC: while the con-
troller is running but it is an executable C/C++ code, the plant exists in native sim-
ulation language (Simulink’s model block). In this way the user avoids to damage the
hardware, and it can test the controller operating principles also in the most critical
scenarios.
To the SIL purpose 3 actions are necessaries:

1. the controller must be discretized;

2. the data type must be opportunely converted;

3. the executable in C/C++ language must be extracted by means of code generation
tools;

Since the controller discretization and the data type conversions represent approximations
introduced in the original control scheme, the aim of a SIL validation is to prove that the
system response is still admissible, in spite of the necessaries inserted approximations.
So, the generated code is restored in the Simulink environment by means of several
techniques: the method that will be used in this chapter is the S-function generation.
From now on will be exploited in detail the mandatory configurations needed to the code
generation, for the rotating system around the z-axis: it will be the same for the rotation
around the elevation axis.

103



8.2. SOTWARE IN THE LOOP VALIDATION

8.2.1 Controller discretization

First of all is required a discrete-time controller, because of the controller becomes a task
executed by the microcontroller. The discretization action happens in Matlab windows,
by means of the ’c2d’ command:
>> sys_d=c2d(sys_c , Ts, method)

Chosen the sampling time Ts = 0.001 and the discretization method as zoh:
>> C_dt=c2d(C_c , Ts, ’zoh’)

then the dicrete-time controller is:

C(z) =
23(z − 1)

(z − 1)

8.2.2 Data type conversion

A data type conversion is required so that a full executable, actually reusable on a target
software, is obtained starting from the Simulink model block. By default, Simulink
assigns double type values to the variables when not differently specified. Normally the
microcontrollers don’t support this data types: the conversion from double to single
(which means integer) data types is indispensable.
Since in standard operating conditions the controller runs on the software, it works with
single (integer) datas; on the contrary, the plant, which is a continuous system generates
double (float) data types. The solution is to introduce the data type conversion blocks
in the Simulink control scheme, like as:

Figure 8.5: Data type conversion blocks

In this way the controller is dealing with integer variables, instead the plant which
still exists in the simulation environment can accept and provide float variables.
For sure the data type conversion represents an approximation of the simulation results,
then a test after the code generation is recommended.

8.2.3 Code generation

Simulink offers the opportunity to automatically generate the code in C or C++ lan-
guage corresponding to the designed model block, through the so called Code Generation
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powerful tool. In this manner the Simulink model is converted into a full executable. In
order to obtain the C code a small number of steps are needed.

Modifications in the Model Configuration Parameter Pane

In Simulink environment, the model configuration parameters must be changed, by click
on the specific button, which will open the window concerning the model parameters:

Figure 8.6: Configuration parameters button

Figure 8.7: Configuration parameters window

In fig. 8.7 the section requiring changes are highlighted:

1. Solver pane: the controller becomes a model, executed by the microcontroller when
the corresponding C code is loaded on the shield. In order to make the controller
task similar to a periodic task, evaluated at the beginning of each fixed interval of
time, the Solver type must be forced to Fixed-step, discrete time as shown in the
following figure:
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Figure 8.8: Solver configuration

Once imposed the fixed-step and the discrete time integration time, the solver will
able to evaluate the controller model at regular time intervals (a priori chosen).
When the fixed step value decreases, the accuracy of the simulation results improves
while the simulation takes a longer time to give results.

2. Hardware implementation pane: when the hardware implementation section is con-
figured, the target hardware must be selected. In the thesis the microcontroller will
be loaded on the Arduino Mega 2560 board, as shown in the next picture:

Figure 8.9: Hardware implementation parameters

3. Code Generation pane: in the present window, all the code generation parameters
are set. First of all the System target file must be defined as ert.tlc, for embedded
coder target. The language also should be chosen (in our case the C language),
then the code generation objectives. Concerning the latter parameter, are selected
the execution efficiency, the ROM memory and the RAM memory to be optimized.

106



8.2. SOTWARE IN THE LOOP VALIDATION

Figure 8.10: Hardware implementation parameters

Configured all the necessaries model parameters, the code can be generated through the
code generation tool of Simulink. The control system scheme, as usually, is the following
one:

Figure 8.11: Control system scheme in normal mode simulation

With reference to fig. 8.11, the code generation is requested for the controller model
block, which really must be implemented on the Arduino board. Then, by right clicking
on the PI controller block and choosing the C/C++ Code option, the Build this subsystem
button must be selected. In order to clarify what said so far, the following figures are
added to the explanation:
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(a) Procedure to achieve the code generation (b) Build this subsystem button

Figure 8.12: Code generation steps

When the code is generated, a Code generation report is provided, which contains
the following files:

Figure 8.13: Files provided after the code generation

Among all these files, three are the essential ones in order to guarantee a right ex-
portation of the algorithm on the microcontroller board:

- PI_controller_z.c: is made of 3 main functions. The initialize function is the
first one: it resets the model states; instead the void function executes a fixed
integration step: here the control law is effectively implemented. Finally, through
the terminate function, the memory is cleaned after the model evaluation;
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- PI_controller_z.h is made of all the inlcude and define of the code: then it contains
the specifics model datas;

- rtwtypes.h: it translates the data type from the native simulation language into the
requested by the target hardware;

- ert_main.c: it represents the test branch of the model.

8.2.4 SIL validation

After the controller discretization, the data type conversion and the code generation is
recommended to verify that the system and controller performances are still acceptable.
To this purpose the software in the loop validation is the best technique, due to the fact
that is not possible, at least in this phase, damage the target hardware. In fact, the
generated code is replaced in the Simulink environment.
The setting of the model parameters doesn’t change with respect to the previous sec-
tion 8.2.3, but instead of select the option Build this subsystem, the S-function is now
generated, as shown in next figure:

(a) (b)

Figure 8.14: S-function generation

Again the code is generated; in addition to the executable code, the controller SIL
block is provided, within which the code is recompiled. In fact inside the block there
is the S-function, i.e. a computer language representation of the controller Simulink
block written in C. In this way, by means of the SIL block, the C code is replenished in
simulation environment.
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(a) SIL block (b) Look under SIL block mask

Figure 8.15: Provided SIL block

Once replaced the block of fig.8.15a in the Simulink control system scheme, the re-
sulting final scheme is:

Figure 8.16: Control scheme in SIL simulation mode

The simulation can be launched, and the normal and SIL simulation results are
compared thanks to the Simulation Data Inspector tool. Precisely the supply voltage
Va and the gimbal angular position ✓1 are of interest, because the first is the controller
output while the second represents the variable that we want to control.
As known, concerning the supply voltage, it is evaluated by the controller through the
proportional and integral action depending on the position error value. The simulations
results are shown in the next picture:
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Figure 8.17: Voltage supply comparison

From 8.17 note that by linking first the controller SIL block and then the native con-
troller block to the plant, two simulations are available in the Simulation Data Inspector
tool. There is a totally overlap between the two supply voltage shapes: it means that
the introduced approximations didn’t deteriorate the computations.
The same is made related to the gimbal angular position and the previous considerations
are still valid:
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Figure 8.18: Gimbal angular position comparison

8.3 Processor in the Loop Validation

In the Processor in the Loop (PIL) validation phase only the plant exists in native
simulation language and still runs in the simulation environment, while the code of the
controller model runs on the embedded target hardware (the microcontroller Arduino
Mega 2560), as shown in the following figure.

Figure 8.19: Processor in the loop stage
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The procedure to perform a processor in the loop test is the same as done in the
previous section, concerning the software in the loop validation. Also the setting of all
the configuration parameters doesn’t change, except the fact that is needed to explicitly
require the creation of a PIL block with the same function of the previous SIL block.
The PIL block generation happens by checking the option Create PIL block in the model
configuration parameter pane, as:

Figure 8.20: Processor in the loop block generation

For sure, the generated PIL block is the corresponding one to the controller subsystem;
in model configuration parameters the choosen hardware board is the Arduino Mega 2560.
Then, as in the SIL validation, the option C/C++ code must be selected. As shown in
the following figure, instead of requiring the build of the controller subsystem, the Deploy
this subsystem to hardware possibility is choosen:

Figure 8.21: Before to run the PIL simulation

As always the build button appears, as in fig.8.14. After the building step, a PIL
block is again provided by Simulink Embedded Coder tool, like as the SIL block in the
previous section.
By means of the Simulation Data Inspector tool again the simulation results can be
compared in order to complete the PIL validation. In fact, the first simulation starts with
the original controller model linked to the plant, then it is a normal mode simulation.
Instead in a second moment is the PIl block to be connected to the plant, while it is
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running on the hardware. A necessary condition is to have a stable USB connection
between the Arduino board and the PC before launching the simulation, because the
controller runs on hardware and the datas will be transmitted from Arduino board as
input to the SImulink plant model. The hardware setup is shown below:

Figure 8.22: USB connection between Arduino’s board and the PC

The simulated control scheme, similarly to the one illustrated in fig.8.16, is:
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Figure 8.23: Control scheme in PIL Mode simulation

Note that, during the simulation interval time, the RX,TX leds on the Arduino’s
board blinked: it means that an effective serial transmission and reception of byte data
between Simulink and Arduino happens.

Figure 8.24: RX and TX blinking led
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The simulation results are reported below:

Figure 8.25: Controller output: voltage

As expected, the voltage values effectively evaluated by the microcontroller corre-
spond to the ones computed in a purely simulation environment. The same can be stated
concerning the gimbal angular position ✓1, which we really should control, reported in
the next figure:

Figure 8.26: Control scheme output: ✓1
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8.4 Test and Validation on the physical system

To complete the study, the final tests on the existing physical system must take place. It
means understand how sensors, microcontroller and motors are connected each others;
then, is needed to identify the used communication protocol to guarantee a right inter-
pretation and evaluation of the exchanged datas.
The integration architecture is shown in the following figure:

Figure 8.27: Interconnection of the peripherals architecture

1. The reference positions (✓1,ref and ✓2,ref ), i.e. the angles that the gimbal should
reach, are given to the microcontroller throughout the joystick. Instead the effec-
tive positions of the gimbal (✓1 and ✓2) are provided by means of the IMU : they
correspond to the feedback measurements in the designed control system

- Both joystick and IMU establish a UART (Universal Asynchronous Receiver
Transmitter) communication with Arduino’s board in order to transmit or
receive the datas.

2. The controller is physically located on the Arduino’s board and it is responsible
for computing the value of the voltage supply needed to the motors actuating
the gimbal system. It receives the reference and the effective angles from the
jet mentioned external peripheral device, then it computes the error in terms of
difference between the desired angle values and the real ones.

- The computed voltage value will be opportunely converted into a PWM signal,
then it will be transmitted to the motor shield.

3. The motor shield is a board designed to enable Arduino’s board to control the
bidirectional motors. It is powered through the Arduino and receives PWM signals.
In this manner the PWM signals is converted into effective voltage value which
supply the motors.
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8.4. TEST AND VALIDATION ON THE PHYSICAL SYSTEM

8.4.1 Arduino’s IDE

A completely new code in C language is written in the IDE of Arduino to implement the
previously designed controllers in the Simulink environment. The choice of not integrate
the code automatically generated by Simulink is in order to avoid complications during
the implementation on microcontroller, because some internal variables are introduced
by the code generation process.
The Arduino’s IDE consist of two main void functions:

1. the setup function which appear as:

Here are passed to Arduino all the necessary informations before the program
execution. For example, the input or output ports are configured, or the serial
communications are established. In the setup function also some command can
be written but all the tasks inside the actual function are executed only once, i.e.
when the Arduino is powered up.

2. the loop function,

It contains all the routines performing the desired task. As the function name
suggests, these commands are repeatedly executed, at defined intervals of time
given via the delay command. Inside the loop function, the code is sequentially
run.

8.4.2 Controllers implementation on the microcontroller

In order to manage in a proper way the received datas and to perform a correct motion
control, the Arduino must be setup. To this scope, a sketch in the Arduino’s IDE has
been developed, and step by step exploited below.

Arduino set up: the setup function

As anticipated, the inputs to the board come from the joystick and IMU sensor. They
are transmitted based on serial communication protocols and are certainly of the float
data types. In the next picture are highlighted the chosen pins through which the UART
(or serial) transmissions should happen. In details, the TX1/RX1 couple is set as the
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8.4. TEST AND VALIDATION ON THE PHYSICAL SYSTEM

communication port between Arduino and the IMU; instead the TX2/RX2 couple will
receive angle values provided by the joystick.
The Arduino’s outputs are the voltage values which are computed by the microcontroller
and are transferred to the motor shield. Since the latter only accepts PWM signals, is
mandatory to set, among all the pins, two output pins configurable as PWM ones.

Figure 8.28: Configured I/O pins on Arduino’s board

Below is shown the C code corresponding to the previous explanation.

Outside from the setup function, a name is associated to each PWM pin: the pin 12
is named V_azimuth to indicate that on it will be written the PWM voltage value to
control the rotation around the azimuth axis. For the same reason, pin 13 is associated
to the name V_elevation.

• line 29-30: the command Serial1.begin enable the UART serial data transmission
between Arduino and the IMU. In the brackets the baud rate, also known as bps, is
specified: 115200 indicates that the serial port is able to transfer maximum 115200
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8.4. TEST AND VALIDATION ON THE PHYSICAL SYSTEM

bits per second. Through Serial2.begin the UART communication with the joystick
is opened;

• line 30-31: the pinMode(pin, mode) allows to configure the chosen pin as output.

The loop function

Inside the loop function the incoming datas are opportunely converted in data types
usable by the microcontroller to perform the required computations. Then the control
algorithm is developed and the output values are written on the specified output pins.

- Serial transmission Arduino/IMU

Concerning the angle values provided by the IMU, with a frequency of 100 Hz a message
is received by the Arduino. In particular, the IMU sends a string, called MTData2,
containing several informations including the Euler angles. The standard MTData2
message sent by the IMU Xsens, is structured as below:

Figure 8.29: MTData2 message structure

By the previous figure, appears that the Euler angles are the datas we’re interested to
and they’re contained in the Data field. Then, every 10 ms, Arduino receives a message:
the board must read the incoming string and has to skip the first 4 bytes in order to
extract the informations dealing with the angles. Outside from the loop function some
declarations are made in order to read the message coming from the IMU peripheral:

• line 7: the string IMU_raw is defined in order to allow Arduino to read the incoming
string from the board buffer and to save it into the declared string. In addition,
three substrings are defined as roll_raw, pitch_raw, yaw_raw to associate the
single Euler angle to the corresponding substring;
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8.4. TEST AND VALIDATION ON THE PHYSICAL SYSTEM

• line 9: since the Euler angles exist as char data types into the substrings is needed
to convert them into the float data types. For this reason three float variables (roll,
pitch, yaw) must be declared;

• line 10: a boolean variable IMU_rx is defined, to indicate that new bytes has been
received.

Inside the loop function, the code lines performing the reading action, are:

• line 34-35: the string IMU_raw is initialized as empty so that it’s filled by reading
the incoming bytes; the boolean variable IMU_rx is set as false, so if there are
available datas on the serial port it becomes true;

• line 37-40: by means of the while the serial buffer is read. The condition (Se-
rial1.available) guarantees that new datas are sent by the IMU sensor, and conse-
quentially the string IMU_raw is filled. At the same time, the boolean variable
changes its state.

The IMU_raw string, with reference to fig.8.29, contains the preamble, the bus identifier
(BID), the message identifier (MID), the length of the message itself (LEN) fields. For
sure these are informations of not relevance for the motion control goal. Then, these fields
can be skipped, to directly extract the Euler angles: this is done through the .substring
function.
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From line 44 to line 54 the parsing of the IMU_raw string takes place. In detail, is
known that:

• the first 4 bytes of the IMU_string can be skipped because they correspond to the
preamble, BID, MID, LEN fields;

• the message coming from the IMU sensors is made of 3 Euler angles, which are float
data types. Since 1 float occupies 4 bytes, then the Data field is made of 12 bytes:
the roll angle value is represented through the bytes of the MTData2 from 4 to 8;
the pitch angle is expressed by the bytes from 8 to 12; the yaw angle corresponds
to the bytes from 12 to 16 of the IMU’s message;

• by using the substring function, according to what said at the previous point:

roll_raw = IMU_raw.substring(4, 8);

The same is done for the pitch and yaw angles.

• from char data type each angle is converted in a float data via the .toFloat function,
as in lines 45,49,53;

• to simplify the error computation (the input to the controller) a float vector IMU
is generated and filled after the conversion process.

- Serial transmission Arduino/joystick

The angle values taken as references, are transmitted from the joystick to Arduino as
float datas. Then, the microcontroller only has to read 3 float value which should be
saved in a vector of three components. Outside the loop function:

Also the boolean variable ref_rx is introduced, in order to be set as true when new
data available are sent to the Serial2 port. Then, inside the loop function:

• line 72: the Serial2.available() function guarantees that new datas are sent to the
serial communication port;
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• line 73-74: through the for cicle the float values are read on the RX2 and saved
into the vector ref ;

• line 75: the boolean variable is set to true due to the reception of the datas;

- Prepare the inputs of the controllers

Once the board has received and converted opportunely the angle values coming from
the external peripherals, is necessary to compute the angle error between the desired
and the effective ones. In fact, each implemented controller expects the error value to
estimate the supply voltage for the DC motor. Then, throughout a for loop, the error
vector is computed, as shown below:

• note the presence, in line 77, of an if condition depending on the value assumed
from the boolean variables. It means that the new error vector is recomputed every
time a reference value is received, or whenever the balance of the gimbal changes
and the IMU notifies the swing;

• the error vector is made of 3 components, corresponding to the roll, pitch and yaw
error respectively. The errors of interest for us concern the pitch and yaw angles
(to actuate the tilt and pan correction);

• the error value on azimuth axis and on the elevation axis coincide with the inputs of
the controllers. Then, two functions Controller_azimuth and Controller_elevation
are created, outside the loop function;

• the lines 86-87 represent the call to the controller functions, having as inputs the
errors and providing as output the two supply voltages Vz_al and Vy_al.
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- Controller functions

When the controller functions are invoked, the control laws are computed. In each
controller function the algorithm of a PI controller is implemented: the explanation is
provided for the motion control law on azimuth axis, but is also valid for the tilt control.

The Controller_azimuth function expects as input the value of the error on the pan
axis (which is a float), and returns the float variable corresponding to the supply voltage.
As known, the expression of a PI controller is given by:

C(s) = KP · e(t) +KI ·
Z t

0
e(t)dt

Then, is necessary to know the error value (error_azimuth) and to compute the integral
error (int_err) in order to rightly compute the proportional and integral actions. Being
the integral of the error the an accumulated error signals since the start, the line through
which the integral error is evaluated is the 117th, clarified below:

• the integral error is computed as the error multiplied by the elapsed interval of
time;

• the function millis() returns the number of the millisecond passed since board runs
the actual program. The time value is saved into the currentTime variable. When
the task is performed the unsigned long lastTime is update with the currentTime
value;
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• known the two previous time instant the integral error can be estimated (line 117);

• the output of the controller can be also compute (line 119) and scaled of a factor
of 1000, because the controller works with [ms] and we need the voltage value in
[V].

- Write on the output pins

Obtained the voltages as float data type, is mandatory to convert them so that they’re in
the range of values expected by the motor shield. As mentioned, the Arduino’s outputs
coincide with the Motor shield’s inputs, which only accepts PWM signals in the range
between -255 and +255.
With the awareness that the maximum error concerning the yaw angle is of 360◦, and
the maximum error relative to the pitch angle is of 180◦, the maximum voltage values
are computed and normalized with respect to 255. For this reason the values to write on
the PWM configured pins are defined as in lines 104-105.

Thanks to the Arduino’s function analogWrite(pin, value) the voltage values are
passed to pin 12 and 13, being called Vz and Vy respectively.
In this way the written C code for the implementation phase is completely illustrated,
so all the peripherals can be integrated with the Arduino’s boards, which is ready to use
in the proper manner all the incoming datas.
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Chapter 9

DC motor survey

The development of the controller in chapter 6 had the aim to conduct a survey concern-
ing the DC motors. In fact, the final goal is to identify some DC motors ables to provide
to the modeled gimbal system the required torques, powers and angular velocities in the
most critical operating conditions. The control system chosen to be simulated is the
one containing the controller obtained by means of the loop-shaping techniques, because
of the latter design seems to be more accurate in the results with respect to the LQR
method.

9.1 Operating conditions and motor requirements

The control scheme of fig. 6.12 is then simulated by means of Simulink tool, under the
following reference inputs:

- ✓1,ref = 180

◦, due to the fact that from experimental considerations the rotation
around the azimuth axis should not exceed this given range;

- ✓2,ref = 90

◦, due to the same considerations explained in the previous row.

Once defined the most critical operating conditions, the given specifications in terms of
time response and overshoot are always the same: in fact if they are satisfied when 180

◦

and 90

◦ are required as references, they will be always fulfilled during a fly, for whatever
commanded rotation. However the static and dynamic specifications are listed below:

• ts,2%  4s;

• tr  5s;

• ŝ = 0%;

• |e1r | = 0.

126



9.2. FAULHABER MOTORS

In order to start the motor survey, some needed technical parameters should be identified,
i.e. required torque, power and the maximum angular velocities that the chosen motor
can achieve. For this aim must pay attention to the presence, in the real gimbal physical
system, of a pulley between the motor and the load: it introduces a reduction ratio
npul = 6. Since npul increases the required angular velocities of 6 times and decreases
the required torque value of 6 times, the collected values from simulations are converted
of a factor npul.
The feedback control scheme is simulated, and the following are the results related to
the desired torques and angular velocities at the output of the reducer:

1. dealing with the motion around azimuth axis:

- required torque: ⌧1 = 10 [N · m] =) ⌧1
npul

' 116 [mNm];

- required angular velocity: ˙✓1,max = 116 [◦/s] =) ˙✓1,max · npul ' 116 [RPM];

2. dealing with the motion around elevation axis:

- required torque: ⌧2 = 1 [N · m] =) ⌧2
npul

' 0.116 [mNm];

- required angular velocity: ˙✓2,max = 71 [◦/s] =) ˙✓2,max · npul ' 71 [RPM];

As clear, the most critical conditions are represented by the motion around the azimuth
axis, then those are chosen as technical parameters of the DC motor. Since the physical
system jet exists and has certain dimensions, all the features of the DC motor to look
for are listed in the following table:

Required torque ⌧ 115 [mNm]

Required speed n 7000 [min−1]

Diameter d 26 [mm]

Length L 63,2 [mm]

Table 9.1: DC motor needed technical parameters

9.2 Faulhaber motors

The first step of the suitable DC motor research concerns the Faulhaber motors. Faul-
haber company is committed in the production of motion control system offering ad-
vanced micro driver technologies. The Faulhaber’s drive solution are optimally designed
in order to achieve performances as possible closed to the desired needs, taking into con-
sideration also the reduced spaces in which the drivers will be probably placed.
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9.2. FAULHABER MOTORS

Starting from the requirements reported in tab. 9.1, the next recommended step is to
evaluate the expected power which should be provided by the chosen DC motor:

Poutput = ⌧ · 2⇡n = 115[mNm] · 2⇡ · 7000[min−1]
= 0.115[Nm] · 733.03[rad/s] = 85W

Once evaluated the necessary power, bearing in mind that the gimbal should be actuated
through motors able to work in continuous operation mode, below are listed the suitable
Faulhaber’s series DC motor:

• DC motors:

- 3272. . .CR;
- 3863. . .CR;

• Brushless DC motors(4 poles technology):

- 4490. . .B;
- 3268. . .BX4;
- 3274. . .BP4;

9.2.1 DC motors CR Graphite Communtation Series

3272024CR DC motor:

(
P = 85W

⌧ = 120mNm

Technical features:

Nominal voltage V 24 [V]

Terminal resistance R 0.82 [⌦]

Rotor Inductante L 185 [µH]

Rotor inertia J 63 [g·cm2]

Torque constant Km 41.6 [mNm/A]

Back-EMF constant KE 4.35 [mV/min−1]

Speed up to nmax 6000 [min−1]

Nominal speed n 5150 [min−1]

Diameter d 32 [mm]

Length L 94 [mm]

Table 9.2: 3272024CR DC motor technical parameters
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9.2. FAULHABER MOTORS

3863024CR DC motor: (
P = 110W

⌧ = 131mNm

Technical features:

Nominal voltage V 24 [V]

Terminal resistance R 0.64 [⌦]

Rotor Inductante L 180 [µH]

Rotor inertia J 120 [g·cm2]

Torque constant Km 39.8 [mNm/A]

Back-EMF constant KE 4.17 [mV/min−1]

Speed up to nmax 7000 [min−1]

Nominal speed n 5510 [min−1]

Diameter d 38 [mm]

Length L 106 [mm]

Table 9.3: 3863024CR DC motor technical parameters

9.2.2 Brushless DC motors Series

3274024BP4 Brushless DC motor

(
P = 150W

⌧ = 165mNm

Technical features:
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Nominal voltage V 24 [V]

Terminal resistance R 0.25 [⌦]

Rotor Inductante L 60 [µH]

Rotor inertia J 48 [g·cm2]

Torque constant Km 28.04 [mNm/A]

Back-EMF constant KE 2.97 [mV/min−1]

Speed up to nmax 16000 [min−1]

Nominal speed n 8700 [min−1]

Diameter d 32 [mm]

Length L 94.7 [mm]

Table 9.4: 3274024BP4 Brushless DC motor technical parameters

4490024B Brushless DC motor

(
P = 232W

⌧ = 190mNm

Technical features:

Nominal voltage V 24 [V]

Terminal resistance R 0.22 [⌦]

Rotor Inductante L 73 [µH]

Rotor inertia J 130 [g·cm2]

Torque constant Km 24.2 [mNm/A]

Back-EMF constant KE 2.53 [mV/min−1]

Speed up to nmax 18000 [min−1]

Nominal speed n 9700 [min−1]

Diameter d 44 [mm]

Length L 115 [mm]

Table 9.5: 4490024B Brushless DC motor technical parameters
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9.2.3 Compatible Gearheads and Encoders

The compatible gearheads and encoders are listed below. The symbol ⇥ affirms that one
specific component is compatible with the selected motor.

Gearheads Compatibility

3272024CR 3863024CR

32A ⇥

32ALN ⇥

32/3 ⇥

32/3 S ⇥

38A ⇥ ⇥

38/1 ⇥ ⇥

38/1 S ⇥ ⇥

38/2 ⇥ ⇥

38/2 S ⇥ ⇥

44/1 ⇥ ⇥

Table 9.6: Gearheads compatibility tabel

Encoders Compatibility

3272024CR 3863024CR

IE3-1024 ⇥ ⇥

IE3-1024L ⇥ ⇥

IERS3-500 ⇥ ⇥

IERS3-500L ⇥ ⇥

IER3-10000 ⇥ ⇥

IER3-10000L ⇥ ⇥

Table 9.7: Encoders compatibility tabel

For the brushless DC motors there is a total compatibility also.
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Chapter 10

Conclusions and further works

The gimbal electromechanical system will be mainly employed for a target tracking ap-
plication. In order to achieve this functionality, a lot of work is still left to do.
First of all, the generated C code must be loaded on the Arduino board in order to be
tested on the real HW and consequently optimized, if needed. The electrical wires sup-
plying the microcontroller and the external peripherals are already joined properly; the
cables enabling the data transmission between all sensors, the Arduino and the motors
are also successfully interfaced. After this step, the physical prototype is ready to be
validated.
If the controller works as expected, the next phase entails on integrating the control
law with an image acquisition algorithm, in charge of analyzing the camera recordings.
Therefore, given a sequence of images, the goal is to track a single target (which can be a
car or a truck) by centering the target in the view. Finally, the image acquisition process
should provide with a variable identifying an error as output. The latter is the controller
input variable, i.e. the distance between the target position into the picture of the cam-
era and the central point in the image view. In this way, the reference coordinates are
automatically generated throughout the image acquisition algorithm, which is a totally
pilot non-dependent and automated process. As a further work, the possibility to extend
both detection and tracking for the several classes of objects could be explored.
The tracking system idea introduces another issue, the so-called trajectory planning. In
fact, the trajectory planner is responsible of converting the signals coming from external
devices into reference signals that the gimbal controller can use. The gimbal motion
control, or in general the control in the robotics field, is strictly dependent on the trajec-
tory planner part of the system, since a coordinates conversion between local and global
frames is necessary.
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Appendix A

Loop-shaping scripts

Main of the loop shaping design script

clear all
close all
clc

s=tf(’s’);

%geometric parameters
J1z =0.0817408; %[kg*m^2]
J2x =0.01174741; %[kg*m^2]
J2y =0.008261759; %[kg*m^2]
J2z =0.01162105; %[kg*m^2]
m1 =4.87; %[kg]
m2 =1.957; %[kg]
g=9.81; %[m/s^2]
d3=500; %[m]
fv1 =0.2; %dimensionless
fv2 =0.002; %dimensionless

A33=-fv1/(J1z+J2z);
A44=-fv2/(J2x);

A=[0 0 1 0;
0 0 0 1;
0 0 A33 0;
0 0 0 A44];

B=[0 0 1/( J1z+J2z) 0;
0 0 0 1/( J2x)]’;

C=eye (4);
D=zeros (4,2);

sys_2axis=ss(A,B,C,D);
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%extract the plant t.o.f.
[NUM1 ,DEN1]=ss2tf(A,B,C,D,1);
sys11=tf(NUM1 (1,1:5), DEN1);
sys12=tf(NUM1 (2,1:5), DEN1);
sys13=tf(NUM1 (3,1:5), DEN1);
sys14=tf(NUM1 (4,1:5), DEN1);
SYS_Z=zpk(minreal ([sys11;sys12;sys13;sys14 ]));

[NUM2 ,DEN2]=ss2tf(A,B,C,D,2);
sys21=tf(NUM2 (1,1:5), DEN2);
sys22=tf(NUM2 (2,1:5), DEN2);
sys23=tf(NUM2 (3,1:5), DEN2);
sys24=tf(NUM2 (4,1:5), DEN2);
SYS_Y=zpk(minreal ([sys21;sys22;sys23;sys24 ]));

%Observability and Reachability
Mo=obsv(A,C);
rho_obs=rank(Mo);

Mr=ctrb(A,B);
rho_mr=rank(Mr);

%requirements
ts=5;
tr=4;
zed =0.7;

%requirements translation
wn_tr=pi -(acos(zed ))/(tr*sqrt(1-zed ^2));
wn_ts=-log (0.02)/( ts*zed);
wc_tr=wn_tr*sqrt(sqrt (1+4* zed ^4) -2* zed ^2);
wc_ts=wn_ts*sqrt(sqrt (1+4* zed ^4) -2* zed ^2);
wc_d=max(wc_tr ,wc_ts);

%chosen parameters md and wn for both the controllers
mdz =16;
wndz =0.25;

mdy =16;
wndy =0.3;

%function calls
C_z= control_z (tr , ts, zed , mdz , wndz);
C_y= control_y (tr , ts, zed , mdy , wndy);
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Function to compute motion controller on the azimuth axis

function C_z = control_z (ts, tr, zed , mdz , wndz)

%initial loop function and its Nichols plot
L_in=sys;
figure (1), myngridst(Tp0 ,Sp0), hold on, nichols(L_in)

%Lead network design and the new Nichols plot
zdz=wc_d/wndz;
Rdz =1+(s/zdz )/(1+(s/(mdz*zdz )));
L1=L_in*Rdz;
hold on, nichols(L1)

%Magnitude attenuation and final Nichols plot
[m,p]=bode(L1,wc_d);
kc_new =(1/m);
L_lead=kc_new*L1;
hold on, nichols(L_lead );

%Azimuth rotation controller
C_z=kc_new*Rdz;
L=C_z*sys;
W=L/(1+L);
figure , step(W)
end
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Function to compute motion controller on the elevation axis

function C_y = control_y(ts , tr, zed , mdy , wndy)

%initial loop function and its Nichols plot
p=pole(sys);
C_in=(s-p(2))/(s+1.5);
L_in=sys*C_in;
figure (1), myngridst(Tp0 ,Sp0), hold on, nichols(L_in)

%Lead network design and the new Nichols plot
md=16;
wnd =0.5;
zd=wc_d/wnd;
Rd=1+(s/zd )/(1+(s/(md*zd)));
L1=L_in*Rd;
hold on, nichols(L1)

%Magnitude attenuation and final Nichols plot
[m,p]=bode(L1,wc_d);
kc_new =(1/m);
L_lead=kc_new*L1;
hold on, nichols(L_lead)

%Azimuth rotation controller
C_y=C_in*Rd*kc_new;
L=C_y*sys;
W=L/(1+L);
figure , step(W)
end
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Appendix B

LQ Regulator script

clear all
close all
clc

s=tf(’s’);
Ts =0.001;

%geometric parameters
J1z =0.0817408; %[kg*m^2]
J2x =0.01174741; %[kg*m^2]
J2y =0.008261759; %[kg*m^2]
J2z =0.01162105; %[kg*m^2]
m1 =4.87; %[kg]
m2 =1.957; %[kg]
g=9.81; %[m/s^2]
d3=500; %[m]
fv1 =0.2; %dimensionless
fv2 =0.002; %dimensionless

A33=-fv1/(J1z+J2z);
A44=-fv2/(J2x);

%state -space matrices
A=[0 0 1 0;

0 0 0 1;
0 0 A33 0;
0 0 0 A44];

B=[0 0 1/( J1z+J2z) 0;
0 0 0 1/( J2x)]’;

C=eye (4);
D=0;

sys_c=ss(A,B,C,D);
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%observability and controllability
Mo=obsv(A,C);
rho_obs=rank(Mo);

Mr=ctrb(A,B);
rho_mr=rank(Mr);

%discretization
sys_d=c2d(sys_c ,Ts,’zoh’);
A_d=sys_d.a;
B_d=sys_d.b;
C_d=sys_d.c;
D_d=sys_d.d;

C_pos =[1 0 0 0;
0 1 0 0];

C_vel =[0 0 1 0;
0 0 0 1];

%QR design parameters
R=diag ([0.01 0.01]);
Q=diag ([100 100 10 10 1 1]);

%augmented state system matrices
A_tot=[eye (2) -Ts*C_pos;

zeros (4,2) A_d];
B_tot=[ zeros (2 ,2);

B_d];

k_lqr=dlqr(A_tot ,B_tot ,Q,R);
ki=[k_lqr (:,1) k_lqr (: ,2)];
ko=[k_lqr (: ,3:6)];
x0=[pi/2;pi /4;0;0];

%observer LTI system
C_obsv=C_pos;
lambda_obsv =[0.4 0.41 0.42 0.43];
L=place(A_d’,C_obsv ’,lambda_obsv)’;
sys_obs=ss(A_d -L*C_obsv ,[B_d L],eye(4),0,Ts);
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Appendix C

PI scripts

PI azimuth rotation controller

clear all
close all
clc

s=tf(’s’);
Ts =0.001; %sampling time

%Electromechanical parameters of the DC motor
n=159*6; %reduction ratio
Ra =1.46; %[ohm]
La =135*1e-6; %[ microH]
fv =1.7*1e-6; %dimensionless
J=0.0000012; %[kgcm ^2]
Jl_z =0.0817408;
Jeff_z=J+(Jl_z/(n^2));
fric_z=fv +(0.2/(n^2));
kt =0.0185; %[mNm/A]
kem =1.945*( pi /30)*1e-3;

%PI parameters choice
kp=20;
ki =0.02;

G_pos_z=zpk(kt/(s*((J*s+fv)*(La*s+Ra)+kt ^2)));
G_elect_z =1/(Ra);
G_mech_z =1/(J*s+fv);
G_vel_z=zpk(kt/(((J*s+fv)*(La*s+Ra)+kt ^2)));
p=pole(G_vel_z );

G_eff_z=zpk (1/( Jeff_z*s+fric_z ));
G_pos_eff_z=zpk(kt/(s*(( Jeff_z*s+fric_z )*(La*s+Ra)+kt ^2)));
Gp=zpk(kt/(s*(( Jeff_z*s+fric_z )*(Ra)+kt ^2)));
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PI elevation rotation controller

clear all
close all
clc

s=tf(’s’);
Ts =0.001; %sampling time

%Electromechanical parameters of the DC motor
n=159*6; %reduction ratio
Ra =1.46; %[ohm]
La =135*1e-6; %[ microH]
fv =1.7*1e-6; %dimensionless
J=0.0000012; %[kgcm ^2]
Jl_y =0.008261759+0.01162105;
Jeff_y=J+(Jl_y/(n^2));
fric_y=fv +(0.02/(n^2));
kt =0.0185; %[mNm/A]
kem =0.0185;

%PI parameter choice
kp=25;
ki =0.02;

G_pos_y=zpk(kt/(s*((J*s+fv)*(La*s+Ra)+kt ^2)));
G_elect_y =1/(La*s+Ra);
G_mech_y =1/(J*s+fv);
G_vel_y=zpk(kt/(((J*s+fv)*(La*s+Ra)+kt ^2)));
p=pole(G_vel_y );

G_eff_y=zpk (1/( Jeff_y*s+fric_y ));
G_pos_eff_y=zpk(kt/(s*(( Jeff_y*s+fric_y )*(La*s+Ra)+kt ^2)));
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