# POLITECNICO DI TORINO 

## Master Course in Mechatronic Engineering

## MASTER OF SCIENCE THESIS

## Modelling and Control of Robots for Cooking



Supervisor
Prof. Giovanni Gerardo Muscolo signature

Candidate Nicola Vincenzo GIUZIO
signature
A.Y. 2018/2019

## CONTENTS

ABSTRACT ..... 4
ACRONYSMS AND SYMBOLS ..... 7
DEVELOPED FILES AND SOFTWARE ..... 9
1 THESIS AIM AND OBJECTIVES ..... 10
2 GENERAL ROBOTICS ..... 11
2.1 STATE OF ART FOR COOKING ROBOTS ..... 12
2.2 HYBRID ROBOTICS ..... 15
3 PROBLEM STATEMENT ..... 17
3.1 WORKSTATION LAYOUT ..... 18
3.2 ARCHITECTURE DESIGN ..... 19
3.2.1 LONGITUDINAL DESIGN ..... 20
3.2.2 LINKS LENGTH ..... 21
3.2.3 STABILITY CONSIDERATIONS ..... 22
3.3 ROBOT MODEL ..... 24
4 DESIGN OPTIMIZATION OF THE COOKING ROBOT ..... 26
4.1 SELECTED COLLABORATIVE HYBRID MANIPULATOR ..... 28
4.2 MOBILE MANIPULATOR NEOBOTIX MMO-700 WITH UR10 ..... 34
4.3 ROBOTIQ 2F-85 GRIPPER FOR UR10 ..... 36
4.4 MMO-700 TOTAL MASS AND STABILITY CHECK ..... 39
4.5 GRIPPING POINT COORDINATES AT REST RESPECT UR10 BASE ..... 42
4.6 OPTIMISED WORKSTATION AND KITCHEN LAYOUT ..... 44
4.6.1 WORKSTATION GEOMETRY AND LAYOUT ..... 45
4.7 PROPOSED SOLUTIONS FOR ROBOT CONFIGURATIONS ..... 52
5 TASK LIST AND CONFIUGURATIONS LAYOUT ..... 54
5.1 CONFIGURATION NR. 1 TASKS AND LAYOUT ..... 54
5.1.1 ROBOT 2 and 1 TASKS IN CONFIGURATION NR. 1 ..... 62
5.1.1.1 C1 Robot 2 tasks ..... 64
5.1.1.2 C1 Robot 1 tasks ..... 70
5.2 CONFIGURATION NR. 2 TASKS AND LAYOUT ..... 78
5.2.1 Robot 2 and 1 tasks in Configuration nr. 2 ..... 83
5.2.1.1 C2 Robot 2 tasks ..... 83
5.2.1.2 C2 Robot 1 tasks ..... 84
5.3 CONFIGURATION NR. 3 TASKS AND LAYOUT ..... 85
5.3.1 ROBOT 2 and 1 TASKS IN CONFIGURATION NR. 3 ..... 92
5.3.1.1 C3 Robot 2 tasks ..... 92
5.3.1.2 C3 Robot 1 tasks ..... 93
5.3.1.3 C3 Robot 3 tasks ..... 94
6 CONTROL ARCHITECTURE AND SIMULATION ..... 97
6.1 GRIPPING POINT TASK PATHS AND TIME-OPTIMAL TRAJECTORIES ..... 100
6.2 SIMULATION ASSUMPTIONS ..... 108
6.3 SIMULATION LOGIC ..... 115
6.4 SIMULINK ARCHITECTURE ..... 118
7 SIMULATION RESULTS AND DISCUSSION ..... 123
7.1 SCENARIO 1 ..... 123
7.2 SCENARIO 2 ..... 131
7.2.1 MISSION PERFORMANCE TIMES ..... 131
7.2.2 CONFIGURATION EFFECTIVENESS ..... 137
7.2.3 CONFIGURATION ADVANTAGES AND DISADVANTAGES ..... 146
8 CONCLUSIONS ..... 147
REFERENCES ..... 151
APPENDIX A ..... 153
A1 FEASIBILITY STUDY FOR THE DESIGN OF A PIZZA MAKER HYBRID ROBOT ARCHITECTURE ..... 153
A2 PIZZA MAKER HYBRID ROBOT GEOMETRY DEFINITION ..... 155
A2.1 ADOPTED REQUIREMENTS ..... 155
A2.1.1 LONGITUDINAL DESIGN (X AXIS) ..... 155
A2.1.2 WORKSTATION FEATURES AND KITCHEN GENERAL ARRANGEMENT ..... 156
A2.1.3 LINKS LENGTH ..... 156
A2.1.4 STABILITY (VERTICAL AND LATERAL DESIGN) ..... 156
A2.2 ROBOT LONGITUDINAL DESIGN ..... 156
A2.3 ROBOT WORKSTATION FEATURES AND KITCHEN ARRANGEMENT ..... 160
A2.3.1 WORKSTATION LAY OUT ..... 160
A2.3.2 WORKSTATION SPECIAL FEATURES ..... 163
A2.3.2.1 Rotating mechanism at pizza dough roll out location ..... 163
A2.3.2.2 Tomato sauce dispenser ..... 164
A2.3.2.3 Smart location for tools ..... 165
A2.3.3 PIZZA MAKER ROBOT ALLOCATION ..... 165
A2.4 LINKS LENGTH ..... 168
A2.5 STABILITY CONSIDERATIONS ..... 173
A3 FEASIBILITY STUDY ROBOT MATHEMATICAL MODEL ..... 182
A3.1 SIMPLE MODEL - FORWARD KINEMATICS ..... 182
A3.2 INTERACTION BETWEEN SIMPLE MODELS ..... 185
A3.3 INVERSE KINEMATICS ..... 186
APPENDIX B ..... 189
B1 OPTIMIZED WORKSTATION DETAILS ..... 189
B1.1 MODULE 1 (PIZZA PREPARATION MODULE) ..... 189
B1.1.1 PIZZA PREPARATION LOCATION. ..... 190
B1.1.2 PIZZA SHOVEL 1 ..... 191
B1.1.3 CONDIMENT CONTAINERS ..... 192
B1.1.4 TOMATO SAUCE DISPENSER AND LADLE ..... 196
B1.1.5 TOOL TO SPREAD CONDIMENTS ..... 199
B1.1.6 ORIGAN CONTAINER ..... 201
B1.1.7 SALT CONTAINER ..... 203
B1.1.8 GARLIC CONTAINER ..... 205
B1.1.9 OLIVE OIL CONTAINER. ..... 207
B1.2 MODULE 2 (PIZZA DOUGH ROLL OUT MODULE) ..... 209
B1.2.1 PIZZA DOUGH ROLL OUT LOCATION ..... 210
B1.2.2 PiZZA SHOVEL 2 ..... 211
B1.2.3 RoLL PIN TOOL ..... 212
B1.2.4 FLOUR CONTAINER ..... 216
B1.2.5 PIZZA DOUGH PARTITIONS TRAYS ..... 218
APPENDIX C ..... 222
APPENDIX D ..... 262


#### Abstract

In war time science and technologies were mainly focused on the development and production of military offending and defending materials as well as war machines, i.e. tanks, missiles, fighter planes, U-boats, military ships, etc.

After the last world war, the stability of peace time and the growth of social wellness encouraged the progressive development of new technologies and the transition from handicraft production of low quantities of consumer goods towards large scale series production.

Therefore, a lot of humans repetitive or dangerous tasks have been replaced by automatic machines, the so-called robots.


The evolution of these machines allowed also to perform tasks that humans are unable to perform, for workspace size limitations or for extreme environment operation, such as outer space or bottom of the sea operations.

In the present work a practical application of robots for cooking activity is dealt with. In particular the study is focused on the design, modelling and control of a pizza maker robot to be introduced in a restaurant kitchen to replace all the human pizzaiolo activities related to pizza doughs roll out and condiments filling in order to reduce the customer waiting time between the incoming order and the prepared pizza ready to be cooked.

The initial idea has been to use a simple hybrid robot architecture (cart-like type) to be used both in single unit, with different tasks assigned, and in an assembled configuration of two units for the execution of high complexity tasks.

The final objective is the evaluation by simulation of the production times of ten pizzas of different tastes by different robot configurations, in order to identify the most performant one.

The robot identified in the feasibility study, according with a defined list of requirements, has resulted too big, occupying a large kitchen space. The result has not encouraged to carry out the performance simulation with this robot architecture, even if the forward and inverse kinematics equations have been derived. Therefore, the use of a commercial and collaborative manipulator arm of more complex design is investigated.

Accounting for the payload requirement identified in the feasibility study the selected manipulator is the UR10, by Universal Robots Company, also available in a wheeled cart version named Neobotix MMO-700. To complete the robot architecture the commercial gripper with a suitable force fit ROBOTIQ $2 \mathrm{~F}-85$ is adopted. The workstation and the kitchen lay out have been adapted to the selected commercial manipulator.

Three different configurations of two robots, using always the same type of manipulator arm, are investigated, upon the definition of a different list of tasks for each robot unit in each configuration.

MATLAB and SIMULINK models are derived to accomplish the performance analysis and to identify the most performant configuration.

Cooking and delivery times are taken outside of the performance analysis, as part of kitchen assistant work; however, a dedicated robot to these tasks is included in one configuration for future implementation of pizza cooking and
delivery activities.

For the analysed configurations one robot is dedicated to the pizza dough roll out activity, called Robot 2, and another one to the pizza preparation activity (filling with condiments), called Robot 1.

A third robot, called Robot 3, is dedicated to the activities of pizza cooking and delivery at a desk; its tasks have been developed only for one configuration (Configuration nr. 3) but are excluded from the performance simulation.

The results of the simulation show that the configuration using two fixed manipulator arms (Configuration nr. 3) is the most effective. This is justified by the lower speed of the cart in comparison with the manipulator one (cart speed $0,9 \mathrm{~m} / \mathrm{s}$, manipulator speed $1 \mathrm{~m} / \mathrm{s}$ ).

The two robots operate with good coherence of task times, in fact the periods of not productive activity are acceptably small for all the three configurations, i.e. they are less than $20 \%$ for Robot 2 (pizza roll out activity) and about $10 \%$ for Robot 1 (pizza preparation activity).

The total time required to prepare the defined set of ten pizzas is in a range of 24 -26 min , being Configuration nr. 3 the most performant one and Configuration nr. 1 the less performant. These times are well competitive with a human pizzaiolo performance times.

Final considerations are included in the conclusions.

## ACRONYSMS AND SYMBOLS

| $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ | Feasibility study hybrid robot dimensions |
| :---: | :---: |
| A1 | Feasibility study hybrid robot revolution Joint 1 gap |
| cci | Condiment container $\mathrm{i}=\{1, \ldots, 10\}$ |
| cjpsti | Pizza storage table position i in Configuration $\mathrm{j} . \mathrm{i}, \mathrm{j}=\{1,2,3\}$ |
| cpi | Cooked pizza position i on the delivery table. $\mathrm{i}=\{1,2,3\}$ |
| cs | Condiments spreading tool |
| d or D | Also feasibility study hybrid robot CoG distance from cart CL |
| dpti | Pizza dough partition tray $\mathrm{i}=\{1,2,3\}$ |
| dro | Pizza dough partition roll out area |
| h or Hrcgz | Feasibility study hybrid robot CoG height |
| CoG or CG | Centre of Gravity |
| CL | Centre Line |
| Cx | Feasibility study hybrid robot cart longitudinal dimension |
| CjRkTi-x | Performance study Task i of Robot $k$ in Configuration $j$ $\mathrm{i}=\{1,2,3,4,5,6\}, \mathrm{j}=\{1,2,3\}, \mathrm{k}=\{1,2,3\}$ |
|  | $\begin{aligned} & \mathrm{x}=\operatorname{dpti}(\mathrm{i}=\{1, \ldots, 10\}) \text { OR } \mathrm{x}=\operatorname{cipsti}(\mathrm{i}=\{1,2,3\}) \text { OR } \mathrm{x}=\mathrm{cci} \\ & (\mathrm{i}=\{1, \ldots, 8\}) \text { OR } \mathrm{x}=\mathrm{gc} \text { OR } \mathrm{x}=\mathrm{oc} \text { OR } \mathrm{x}=\mathrm{ooc} \text { OR } \mathrm{x}=\mathrm{sc} \end{aligned}$ |
| C3R3T1-c3pstiov | Performance study Task 1 of Robot 3 in Config. 3, $\mathrm{i}=\{1,2,3\}$ |
| C3R3T2-ovepi | Performance study Task 2 of Robot 3 in Config. 3, $\mathrm{i}=\{1,2,3\}$ |
| DH | Denavit-Hartenberg |
| DOF | Degrees Of Freedom |
| E | Eastwise direction |
| fc | Flour container |
| gc | Garlic container |
| G1, G2, G3 | Feasibility study hybrid robot revolution Joints gap |
| GP | Manipulator Gripping Point |
| HMRR | Hybrid Modular Reconfigurable Robot |
| J1,.., J4 | Feasibility study hybrid robot revolution Joints |
| L1, L2, L3 | Feasibility study hybrid robot Links length |
| L1,.., L30 | Optimised work station locations |
| M1,.., M5 | Feasibility study hybrid robot masses |


| M6 | Feasibility study hybrid robot workload |
| :---: | :---: |
| MDH | Modified Denavit-Hartenberg |
| MRR | Modular Reconfigurable Robot |
| Mt | Feasibility study hybrid robot total mass |
| N | Northwise direction |
| NE | North-Eastwise direction |
| NW | North-Westwise direction |
| oc | Origan container |
| ooc | Olive oil container |
| ov | Oven |
| pp | Pizza preparation area |
| pst | Pizza storage table position |
| P1 | Closest operating point of the feasibility study hybrid robot |
| P2 | More distant operating point of the feasibility study hybrid robot |
| qi | Joint coordinate $\mathrm{i}=\{1,2,3,4,5,6\}$ |
| rp | Roll pin |
| R | Feasibility study hybrid robot cart wheels radius |
| $\mathbf{R}^{\mathbf{b}}{ }_{\mathbf{a}}$ | Rotation matrix of reference a represented in reference b |
| sc | Salt container |
| S | Southwise direction |
| Sc | Feasibility study hybrid robot Hrcgz longitudinal position |
| SE | South-Eastwise direction |
| SW | South-Westwise direction |
| tsl | Tomato sauce ladle |
| $\mathbf{t}^{\text {b }}$ | Translation vector from reference a to reference b |
| $\mathbf{T}^{\mathbf{b}}{ }_{\mathbf{a}}$ | Reference a transformation matrix represented in reference b |
| W | Westwise direction |
| Wa | Feasibility study hybrid robot longitudinal overall dimension |
| Wb | Feasibility study hybrid robot cart wheelbase |
| WbCL | Feasibility study hybrid robot cart wheelbase centre line |

## DEVELOPED FILES AND SOFTWARE

1. Task paths.xlsx, EXCEL file collecting robot task paths
2. TRAJ, software developed in $\mathbf{C}++$ code that generates the gripping point trajectories in terms of manipulator joints angles (uses library from [13] )
3. Task trajectories Conf_1.xlsx, EXCEL file collecting Conf. 1 task trajectories
4. Task trajectories Conf_2.xlsx, EXCEL file collecting Conf. 2 task trajectories
5. Task trajectories Conf_3.xlsx, EXCEL file collecting Conf. 3 task trajectories
6. SIM_Configuration_1.slx, SIMULINK file developed for simulate Conf. 1 Mission
7. SIM_Configuration_2.slx, SIMULINK file developed for simulate Conf. 2 Mission
8. SIM_Configuration_3.slx, SIMULINK file developed for simulate Conf. 3 Mission
9. Single pizza production times.xlsx, EXCEL file collecting Scenario 1 plots
10. Mission performance times.xlsx, EXCEL file collecting Scenario 2 plots

These and further files are available at the link http://bit.ly/GiuzioMT
or write at the following email address

## 1 THESIS AIM AND OBJECTIVES

The aim of this thesis is to study how to introduce a robotic assistant inside a restaurant kitchen. The robot should replace all the human pizzaiolo activities related to pizza doughs roll out and condiments filling in order to reduce the customer waiting time between the incoming order and the prepared pizza ready to be cooked.

The initial objective is to perform a feasibility study for the design of a simple cart-like type robot to be used for a pizza maker application both as an independent robot unit and in an assembled configuration of two robots of the same type.

The final objective is the evaluation by simulation of the production times of ten pizzas of different tastes by different robot configurations, in order to identify the most performant one.

## 2 GENERAL ROBOTICS

The term robot identifies an electro-mechanical assembled machine capable to perform easy or complex actions and tasks automatically, mainly if programmable by a computer. Movements can be controlled either by an external device or by an embedded controller.

Robots can be autonomous or semi-autonomous and finalised for a wide range of applications: toys, patient's assistance, surgical operations, human prostheses, industrial manufacturing processes, inspection and operation in dangerous environments, car drivers, etc.

Robotics is the branch of technology that deals with robots' design, construction, operation and application as well as computer systems for their control, sensors feedback and information processing.

Many of today's robots are inspired by human and animal nature and converge to the field of bio-inspired robotics.

Modular reconfigurable robots (MRRs) are complex autonomous kinematical machines realised through the assembly of independent modules. Each module is capable of independent movements and can be connected to other modules to allow the formation of different required configurations. Modification of kinematic and dynamic parameters of the system is essential to allow the assembled configurations to perform specific tasks.

MRRs are developed through the adoption of traditional robotics technologies by serial or parallel assembly of units. They are widely used in industry field for
a variety of applications, for example automation, welding, screwing, packaging, pick-and-place operations, but also for medical assistance like surgical operations, for recreational applications like flight simulators or for 3D printers.

### 2.1 STATE OF ART FOR COOKING ROBOTS

Nowadays a lot of humans repetitive or dangerous tasks have been replaced by automatic machines, the so-called robots.

The evolution of these machines allowed also to reproduce, sometime by selflearning procedures, the human movements for specific tasks.

In the cooking field different applications can be found as reported in the references, whose details are described in the following.

The video in [1] shows a pizzaiolo robot designed by French start-up Ekim. This robot can spread tomato sauce on the pizza base, put the pizza in the oven, take a cardboard box, put the pizza inside, cut the pizza and put oil and pepper on top. The pizza preparation with taste condiments is demanded to human work. The robot is able to perform several tasks at once and is composed by three commercial and collaborative arms (UR10 plus Robotiq gripper).

The video in [2] shows the Zume robotic pizza factory. Here there is a robotic line were humans and robots work together sharing a list of tasks. Humans are demanded to roll out the doughs and put them on a conveyor belt where a tomato sauce-dispensing robot, nicknamed Pepe, and a sauce-spreading robot, nicknamed Marta, add tomato sauce on the rolled out doughs. Then humans are
also involved in pizza filling with proper taste condiments, whilst a six-axis robot, nicknamed Bruno, picks up pizzas at the end of the conveyor line and put them into the oven. After the pizza comes out of the oven, it is boxed by humans in specialty pizza boxes that alleviate the effects of steam on the crispness of the pizza crust.

The video in [3] shows the robot, nicknamed Rodyman, developed and manufactured by the Prisma Lab of Federico II Naples University by a team of international researchers based in Naples and managed by the Professor Bruno Siciliano. The robot, provided with two arms with five fingers hands, can roll out a pizza dough partition after having self-learned the movements of a skilled pizzaiolo through the signals generated by the sensors of a suit dressed by the human pizza maker.

The video in [4] shows the robot barista, nicknamed Toni, developed in Turin in 2018 and presented in Milan on July 2019. Toni takes cocktails orders from an app and is featured with two 6-axis robotics arms. One arm picks up all the ingredients from the bar counter, mixes or shakes them and pours the cocktail in a glass taken by the other robotic arm that deliver it to the customer. Toni can tear off the mint leaves, cut lemon slices, crush the ice, pick up bottle of cocktail ingredients, pour all in a shaker and shake them like a human barista. It is declared the preparation of up to 80 drinks an hour.

The video in [5] shows the Bubble Lab, based in Beijing, China, Robot barista showed at CES 2017. The robot can prepare a cappuccino in 3 min reproducing the human barista movements. Actually, the machine cleaning is still demanded to human intervention, but next generation could be self-cleaning. The robot is formed by two UR3 manipulator arms each one equipped with a Robotiq
gripper.

The video in [6] shows the first robotic barista in U.S., nicknamed Gordon, developed and manufactured by Café-X Technologies, San Francisco. It is featured like a robotic arm that can serves up to 120 customized coffee orders an hour.

The video in [7] shows the first collaborative robot, nicknamed NEPO, created from an idea of Franco Filippi of EPF, an industrial automation company based in Carrù (CN) Italy, to draw beer reproducing human movements. It is an innovative project for a new generation automatic dispenser to serve draft beer in locations were the human presence is not available.

The [8] and [9] journal articles present biologically inspired actuators that utilize pneumatic muscles actuators (PMAs) and pneumatic bellows actuators (PBAs) both able to realize only contractive or extractive motions. It is possible to interconnect several of such modules forming a high redundant snake-like robotic structure for industrial applications.

In the conference [10] there is a description of a hybrid robot that has been developed for a robotic competition known as Robocon. This robot can handle and transport some objects such as balls. It is composed by three parts: the main frame with locomotion ability, a scoop with a ball guide and a ball shooter that is used to drop the balls in a fuel disk.

### 2.2 HYBRID ROBOTICS

A new generation of MRRs named modular self-reconfigurable robots (MSRRs) is currently of high interest for investigation and development due to their unique advantage despite the traditional robots of reconfigurability, reusability and easy manufacturing and maintenance.

Those classified as hybrid, due to their mixed structural design that can include also wheels for locomotion, respond to the current growing demands in different domain of applications.

A good example of hybrid reconfigurable robot is the Ijspeert salamander. In [11] the author presents his robot that can both swim and walk, alternating the two motions depending on the terrain it needs to cross. The robot design is inspired by the salamander movements, whose locomotion performed study is also showed. In detail the paper explains how the spinal cord model was used as the key implementation of the robot. In particular it walks by means of four limbs and "produces lateral undulations of the spine with six actuated hinge joints".

Figures 2.2-1 and 2.2-2 report shape and model characteristics of the Ijspeert salamander.


Figure 2.2-1 - Ijspeert salamander hybrid reconfigurable robot.


Figure 2.2-2 - Two dimensional biomechnical simulation of the salamander body modified by Ijspeert.

## 3 PROBLEM STATEMENT

As declared in Section 1 the aim of this thesis is to design a robotic assistant to be introduced inside a restaurant kitchen to replace the human pizzaiolo activities related to pizza doughs roll out and condiments filling in order to reduce the customer waiting time between the incoming order and the prepared pizza ready to be cooked.

To achieve this, the following steps are identified:

1. Definition of a working table suitable for the dimensions of a kitchen.
2. Carry out a feasibility study for the design of a possible simple cart-like robot architecture, hybrid and reconfigurable, composed by a cart and a manipulator arm.
3. Consider the operational feature of two simple cart-like robots to be assembled for the execution of a high complexity task, identified in the roll out operation of pizza dough partitions using a roll pin.
4. After disassembly consider each robot to proceed in parallel for the preparation of its own pizza in an independent way.

In this section a brief description of the workstation definition, the robot design feasibility study and the obtained results are reported, whilst all the design feasibility study details, including robot kinematics, are given in Appendix $\mathbf{A}$.

### 3.1 WORKSTATION LAYOUT

The basic idea is to reproduce as much as possible the way of working of a human pizzaiolo. Consequently, the pizza maker workstation is provided with all tools for pizza doughs roll out and duplicated tools for pizza preparation, i.e. filling it with condiments.

Due to the robot simple architecture, a rotating roll pin (i.e. featured with an internal shaft allowing the rotation of the external wooden part) jointly with an automatic rotating mechanism of the roll out area are identified as necessary to allow the roll out of the pizza dough in all directions to produce an almost circular pizza.

A table for placing the already prepared pizzas is foreseen on the rear of the robots. The oven is assumed to stay on the right side of the workstation.

In Figure 3.1-1 there is a representation of the workstation and its dimensions, which are 2100 mm length, 1000 mm depth, 750 mm height.


Figure 3.1-1 - Workstation and work environment layout realized with SKETCH UP.

The pizza maker robot carts are placed at a convenient distance from the workstation to preserve easy transit to any assistant personnel during the workstation preparation phase. This distance is contained to the value of 550 mm to limit the robot Links extension.

### 3.2 ARCHITECTURE DESIGN

Once the definition of the table is done the next step is to carry out the feasibility study for the design of a non-complex self-reconfigurable robot.

The leading idea is to start from a set of two similar simple robot units of cartlike form. They are composed by a cart with wheels that permit the robot motion on a plane in one direction only, then on top of it there is a robotic arm composed by four revolute joints attached to links of different lengths and finally there is an end effector, i.e. a gripper, at the end of the chain (Figure 3.2-1).

The simple cart-like robots are then characterized by 5 degrees of freedom (DOF).

The definition of each robot unit geometry and the design of the overall work environment arrangement requires a sort of loop, because of the different requirements to be satisfied all together. The adopted list of requirements includes:

- constrains on the cart dimensions, which have influence on the workstation dimensions and roll pin length;
- proper length of the links to pick up all the tools available on the
workstation;
- free from overturning;
- no interference of links when closest tools are to be collected and used, which means that the robot cannot stay too close to the workstation;
- a free corridor between the robots and the workstation to allow human personnel assistance in the preparation of the workstation, as mentioned above.


Figure 3.2-1 - Simple cart-like robot sketch.

### 3.2.1 LONGITUDINAL DESIGN

The overall longitudinal size of the robot unit is imposed by the length of the cart, which is equivalent to the minimum distance between the end effectors gripping points of two robots when assembled and, therefore, equivalent to the extension of the roll pin.

This dimension is also relevant for the overall workstation extension, to avoid interferences between the two robots in specific cases of pizza preparation. On the contrary the cart depth dimension is important for the design against overturning during operation. Here the cart length is defined to be 550 mm .

### 3.2.2 LINKS LENGTH

Accounting for the distance of the robot from the workstation and from the rear storage table and considering also the position of the most distant and closest tool, the resulting lengths of the three links are: Link $1=1200 \mathrm{~mm}$, Link 2=980 mm , Link $3=300 \mathrm{~mm}$. The cart depth is fixed to be 700 mm .

Figure 3.2.2-1 gives a sketch of the overall arrangement and robot movements to store the prepared pizza.


Figure 3.2.2-1 - Schematic view of the work environment arrangement and robotic arm movements.

### 3.2.3 STABILITY CONSIDERATIONS

The design geometry is completed by verifying that the robot architecture is free from overturning during its operation.

Once estimated the robot masses, assumed to be concentrated in the middle of each joint including half mass of any link concurring to that joint, the need of a balance mass is evident.

Considering an aluminium and plastic structure, the following (probably underestimated) masses have are for the analysis:

M1 (Cart) $=50 \mathrm{~kg}$
M2 (Base + Joint $1+$ half Link 1$)=12 \mathrm{~kg}$
M3 (Joint $2+$ half Link $1+$ half Link 2) $=10 \mathrm{~kg}$
M4 (Joint $3+$ half Link $2+$ half Link 3) $=8 \mathrm{~kg}$
M5 $($ Gripper + half Link 3) $=10 \mathrm{~kg}$
M6 $($ maximum workload $)=6 \mathrm{~kg}$

The calculated balance mass is 70 kg and is attached on the opposite side of Link 1 at a distance from Joint 1 of 300 mm . Therefore, the overall robot unit mass Mt is 160 kg .

Figure 3.2.3-1 gives a sketch of the final robot architecture.


Dawing not in scale - Hybrid robot in non-work position - Masses in kg - Quotes in mm

Figure 3.2.3-1 - Schematic representation of final feasibility study robot architecture.

### 3.3 ROBOT MODEL

The dynamic model is made starting from the study of the kinematics motion of a single cart. The model used for this is a three massless links composing a robot with the Denavit-Hartenberg (DH) parameters in Table 3.3-1.

From given DH parameters the homogeneous transformation matrix representing the end effector movements in the base coordinate system is calculated.

However, because the study must be carried out with respect to a global reference frame, coinciding with the bottom right and rear corner of the workstation, the homogeneous transformation matrix is transformed in the global reference frame.

| $\theta(\mathrm{rad})$ | $\mathrm{d}(\mathrm{m})$ | $\mathrm{a}(\mathrm{m})$ | $\alpha(\mathrm{rad})$ |
| :---: | :---: | :---: | :---: |
| 0 | $\mathrm{q}_{1}$ | 0 | $\pi$ |
| $\pi / 2$ | $\mathrm{q}_{2}$ | A 1 | $\pi$ |
| $\mathrm{q}_{3}$ | -G 1 | L 1 | 0 |
| $\mathrm{q}_{4}$ | G 2 | L 2 | 0 |
| $\mathrm{q}_{5}$ | G 3 | 0 | $-\pi / 2$ |
| $\mathrm{q}_{6}$ | L 3 | 0 | 0 |

Table 3.3-1 - DH parameters obtained from the robotic model.

## InVERSE KINEMATICS

The study of the inverse kinematics is carried out by examining rotations and translations separately from the homogeneous transformation matrix obtained from DH parameters and successive transformation.

The joint angle values depend as follows:

- q6 from rotations only
- q3 and q4 from translations and rotations
- q5 from a combination between q3 and q4
- q1 $\mathbf{1}$ and $\mathbf{q 2}$ from translations only

The robot is redundant with respect to joint $\mathbf{q 4}$, i.e. the fact that the robot can reach a given point both in elbow-up and elbow-down configuration.

## 4 DESIGN OPTIMIZATION OF THE COOKING ROBOT

The performed feasibility study shows that for the application under analysis the identified simple cart-like robot (5 Degrees of Freedom), based on the assumed requirements, results too big occupying a lot of the restaurant kitchen space.

In fact, the total height of the robot, with the arm fully extended and including the cart, is more than 3 m . Therefore, a very big kitchen would be necessary to accommodate the two robots and to allow their operation, mainly for the pizza transfer phase on the storage table.

In synthesis the big dimensions of the designed hybrid robot are related to:

- the requirement to use a simple cart-like type of robot configuration, with monodirectional cart and no manipulator arm rotation around the vertical axis, which implies a large arm movement through the upper side to put the prepared pizza on the rear table;
- the requirement to perform a complex task by having two robots working in assembled configuration, which implies a large workstation;
- the requirement to have two robots working in parallel to perform simultaneously the same pizza preparation tasks without interferences and, therefore, the need to have a big workstation to accommodate the duplicated tools.

Therefore, as an alternative, different solutions are investigated considering the use of a commercial and collaborative robotic arm and cart, giving priority to characteristics of small size, light weight, compatibility with the workstation and safe for human interaction.

Among a list of products available on the market (see Section 4.1), the UR10 manipulator manufactured by the Universal Robots Company is chosen for its dimensions and compliance with the payload requirement. Moreover, it is very useful for the pizza maker application the availability on the market of a mobile version of this manipulator known as MMO-700, which is composed by the mobile platform MPO-700 and the robotic arm UR10 installed on the top.

Similarly, among different types of commercially available grippers, the selected one that guarantees a payload very close to the one identified in the preliminary study in terms of force fit (or gripping force) is the ROBOTIQ 2F-85 gripper.

The selected commercial UR10 manipulator is a 6 DOF robotic manipulator of light weight, high speed movements, easy to program, flexible and safe for human interaction. Its reduced dimensions allow an adaptation of the workstation, with a slight reduction of its quotes. Moreover, the limit value of 5 kg force fit for the selected gripper requires also a small resizing of the condiment containers. As a further optimization step, a more functional distribution of tools and an increment of the number of pizza dough partitions to be allocated, i.e. up to 10 , is done.

The use of a commercial collaborative robot removes the initial requirement of robots assembly for the execution of a complex task, therefore the roll pin length is reduced to the minimum necessary. In addition, the smaller workstation dimensions allow its preparation and containers refilling from the lateral sides, eliminating the need of a free corridor between the robot and the workstation. Finally, the availability of the rotational movement of the manipulator arm around the vertical axis allows to remove the complex pizza dough roll out rotating mechanism.

### 4.1 SELECTED COLLABORATIVE HYBRID MANIPULATOR

As mentioned, the cooking robot optimization design is now oriented to the investigation of existing commercial collaborative robots suitable for our application.

The operational range and the payload characteristics of a variety of commercial products are reported in the following Table 4.1-1, jointly with manufacturer name and web site.

Among all the market available products the Universal Robots Company UR10 Manipulator is selected.

The UR10 is the bigger robotic arm of the commercial and collaborative manipulator series UR3, UR5 and UR10.

It is a lightweight, fast, easy to program, flexible and safe robotic arm with 6axis and 6 degrees of freedom featured with six rotating joints named Base, Shoulder, Elbow, Wrist 1, Wrist 2 and Wrist 3.

The main UR10 technical data, which are of interest for the present study, are reported in the following Table 4.1-2, whilst Figure 4.1-1 reports same UR10 geometric data available on the web.

A picture of the UR 10 manipulator is given in Figure 4.1-2

| Manufacturer <br> Web site | Model type <br> Web site | Reached <br> distance | Payload |
| :--- | :--- | :---: | :---: |
| Universal Robot <br> https://www.universal- <br> robots.com/it/ | UR3 <br> https://www.universal- <br> robots.com/it/prodotti/robot-ur3/ | 500 mm | 3 Kg |
|  | UR3e <br> https://www.universal- <br> robots.com/it/prodotti/robot-ur3/ | 500 mm | 3 Kg |
|  | UR5 <br> https://www.universal- <br> robots.com/it/prodotti/robot-ur5/ | 850 mm | 5 kg |
|  | UR5e <br> https://www.universal- <br> robots.com/it/prodotti/robot-ur5/ | 850 mm | 5 kg |
|  | UR10 <br> https://www.universal- <br> robots.com/it/prodotti/robot-ur10/ | 1300 mm | 10 kg |
| robs | UR10 <br> https://www.universal- <br> robots.com/it/prodotti/robot-ur10/ | 1300 mm | 10 kg |
| Rethink Robotics <br> https://www.rethinkrobotics.c <br> om/ | Sawyer <br> https://www.rethinkrobotics.com/s <br> awyer/ | 1260 mm | 4 kg |
| Fanuc <br> https://www.fanuc.eu/it/it/rob <br> ot/robot-filter-page/robot- <br> collaborativi | CR-4iA <br> https://www.fanuc.eu/it/it/robot/ro <br> bot-filter-page/robot- <br> collaborativi/collaborative-cr4ia | 550 mm | 4 Kg |
| https://www.fanuc.co.jp/en/pr <br> oduct/robot/f_r_collabo.html | CR-7iA <br> https://www.fanuc.eu/it/it/robot/ro <br> bot-filter-page/robot- <br> collaborativi/collaborative-cr7ial | 717 mm | 7 Kg |
| http://www.technifutur.be/do <br> wnloads/cobotique/11- <br> fanuc.pdf | CR-7iA/L <br> https://www.fanuc.eu/it/it/robot/ro <br> bot-filter-page/robot- <br> collaborativi/collaborative-cr7ial | 911 mm | 7 Kg |
| bot-filter-page/robot- |  |  |  |

Table 4.1-1 - A list of commercially available manipulator arms (part 1).

| Manufacturer Web site | Model type Web site | Reached distance | Payload |
| :---: | :---: | :---: | :---: |
| ABB | Yumi <br> https://new.abb.com/products/robo tics/industrial-robots/irb-14000yumi https://new.abb.com/products/robo tics/industrial-robots/irb-14050-single-arm-yumi https://new.abb.com/products/robo tics/industrial-robots/irb-14050-single-arm-yumi https://new.abb.com/products/robo tics/industrial-robots/irb-14050-single-arm-yumi https://new.abb.com/news/detail/1 3774/abbs-yumi-collaborative-robot-named-2016-best-industrialrobot <br> https://new.abb.com/products/robo tics/industrial-robots/irb-14000-yumi/irb-14000-yumi-data https://new.abb.com/products/robo tics/case-studies/abb-elektro-praga-czech-republic <br> https://new.abb.com/products/robo tics/case-studies/deonetnetherlands | 559 mm | $0,5 \mathrm{~kg}$ |
| Siasun Robot \& Automation Co., Ltd. <br> http://www.siasunin.com/plus/list.php?tid=69 | https://www.youtube.com/watch?v =GjGbogLv_jw http://www.siasun-in.com/en/ http://www.siasunin.com/en/Press_Center/Company _News/20180523/469.html |  |  |
|  | SIASUN DUCO Hybrid Cobot HCR20 <br> http://www.siasunin.com/en/Robotic_World/SIASU N_Flexible_7_Axis_Robot/20180 926/570.html | Natural Navigation and 20 kg payload Cobot technology | Cobot Payload up to 20 kg, Load Tolerance 100 kg |
|  | SIASUN DUCO GCR20-1100 <br> http://www.siasunin.com/en/Robotic_World/SIASU N_Flexible_7_Axis_Robot/20180 926/571.html | 1100 mm | 20 kg <br> Body Weight 50 kg |
|  | SIASUN DUCO GCR14-1400 <br> http://www.siasunin.com/en/Robotic World/SIASU N_Flexible_7_Axis_Robot/20190 201/611.html | 1400 mm | 14 kg |

Table 4.1-1 - A list of commercially available manipulator arms (part 2).

| Manufacturer Web site | Model type Web site | Reached distance | Payload |
| :---: | :---: | :---: | :---: |
|  | SIASUN DUCO Cobot SCR5 http://www.siasunin.com/plus/view.php?aid=289 | 800 mm | 5 kg |
|  | SCR3 <br> http://www.siasunin.com/plus/view.php?aid=479 | 600 mm | 3 kg |
|  | HSCR5 <br> http://www.siasunin.com/plus/view.php?aid=480 |  | Grasping load 5 kg |
| ST Robotics http://strobotics.com/ | r12 collaborative robot arm R12-5 <br> Low cost 5 -axis 500 mm jointed (articulated) robot arm. <br> Fast and quiet, amazing performance for the price. Wide range of grippers, end effectors and accessories. Optional tool changer and mountings for tools. <br> Safe collaborative robots. Optional sensors and safety devices. <br> Optional linear track. <br> R12-six <br> Low cost 6-axis 500 mm jointed (articulated) robot arm. | R12-5 http://strobotic s.com/small-articulatedrobot.htm $500 \mathrm{~mm}$ | http://stro botics.co m/endarm 2.htm $0,5 \mathrm{~kg}$ |
| https://www.franka.de/ | https://www.franka.de/technology | 855 mm | 3 kg |

Table 4.1-1 - A list of commercially available manipulator arms (part 3).

| Weight | $28,9 \mathrm{~kg}$ |
| :--- | :--- |
| Payload | 10 kg |
| Working area | 1300 mm for $+/-360^{\circ}$ |
| Operational speed | Base and Shoulder $=120{ }^{\circ} / \mathrm{s}$ <br> Elbow and Wrists $1,2,3=180 \%$ <br> End effector $=1 \mathrm{~s} / \mathrm{s}$ |
| Base footprint | $\phi 190 \mathrm{~mm}$ |
| Materials | Aluminum and plastic |
| Temperature | Working range $0-50^{\circ} \mathrm{C}$ |
| Base centre height | 128 mm |
| Base vs. Shoulder gap | 176 mm |
| Link 1 length | 612 mm - contributing to the operational range |
| Link 1 vs. Link 2 gap | 128 mm |
| Link 2 length | 572 mm - contributing to the operational range |
| Wrist 1 vs. Wrist 2 gap | 116 mm |
| Wrist 2 vs. Wrist 3 gap | 116 mm - contributing to the operational range |
| Wrist 3 vs. End effector length | 92 mm |

Table 4.1-2 - UR10 main technical data.


All dimension is in mm for public use


UR10 working area top view


UR10 working area, side view


Figure 4.1-1 - Geometric UR10 data for public use.


Figure 4.1-2 - UR10 manipulator.

### 4.2 MOBILE MANIPULATOR NEOBOTIX MMO-700 WITH UR10

Very attractive for our application is the mobile manipulator Neobotix MMO700 , which combines the omnidirectional mobile platform MPO-700 with the UR10 manipulator.

The mobile manipulator Neobotix MMO-700 main technical data, which are of interest for the present study, are reported in the following Table 4.2-1, whilst geometric data available on the web are given in Figure 4.2-1.

Some images of the MMO-700 with UR10 are given in Figure 4.2-2.

| Weight | 120 kg |
| :--- | :--- |
| Payload | 400 kg |
| Operational speed | Less than $1 \mathrm{~m} / \mathrm{s}$, omnidirectional |
| Number of wheels | 4 |
| Wheel pitch | 480 mm |
| Wheel gauge | 480 mm |
| Base dimensions | Length $=821 \mathrm{~mm}$ <br> Width $=521 \mathrm{~mm}$ <br> Heigth $=767 \mathrm{~mm}$ |
| Position of the manipulator <br> arm base | Middle of the width, i.e. 260,5 mm <br> 148 mm in length from the cart centre (calculated) <br> Heigth $=767 \mathrm{~mm}$ |
| Sensors | Laser scanner Sick S300 |

Table 4.2-1 - MMO-700 main technical data.


Figure 4.2-1 - MMO-700 with UR10 geometric data.


Figure 4.2-2 - MMO-700 with UR10.

### 4.3 ROBOTIQ 2F-85 GRIPPER FOR UR10

As far as the end effector is concerned the 2 fingers ROBOTIQ 2F-85 gripper, compatible with the UR10 (plug and play), is used. This is a low weight and small dimensions gripper offering a grip payload compatible with the weight of
all the tools to be manipulated in the pizza maker application.

The two fingers ROBOTIQ 2F-85 gripper technical data of interest for the present study are reported in the following Table 4.3-1, whilst the gripper geometric data are represented in Figure 4.3-1.

An image of the Robotiq 2F-85 gripper is shown in Figure 4.3-2.

| Weight | $0,9 \mathrm{~kg}$ |
| :--- | :--- |
| Form fit | 5 kg |
| Force fit (grip payload) | 5 kg with silicon covered fingertips |
| Grip force | 20 to 235 N |
| Stroke | 85 mm |
| Finger speed | 20 to $150 \mathrm{~mm} / \mathrm{s}$ at steps of $0,4 \mathrm{~mm}$ <br> (max value used here) |
| Gripper dimensions | Length fully open $=149,3 \mathrm{~mm}$ <br> Length fully closed $=162,8 \mathrm{~mm}$ <br> Width fully open $=152,7 \mathrm{~mm}$ <br> Width fully closed $=126,9 \mathrm{~mm}$ |
| Fingertip | Length $=38 \mathrm{~mm}$ <br> Thickness $=6,5 \mathrm{~mm}(e a c h ~ f i n g e r) ~$ <br> Depth $=22 \mathrm{~mm}$ <br> Contact area $=22 \times 38 \mathrm{~mm}$ |
| Interface with UR10 | ф75 mm |

Table 4.3-1 - ROBOTIQ 2F-85 gripper main technical data.

From the Table 4.3-1 data come out that the gripping area moves forward during the fingers closure. Assuming the gripping point to be in the middle of the finger length, the manipulator control is done assuming a gripper length of $(162,8-19)$ $=143,8 \mathrm{~mm}$. Considering the thickness of tools to be gripped the closed length results a little bit less than $162,8 \mathrm{~mm}$. Therefore, in this study the assumed gripper length is 143 mm after the UR10 interface.


Figure 4.3-1 - Geometric data of Robotiq 2F-85 gripper.


Figure 4.3-2 - Robotiq 2F-85 gripper in open position.

### 4.4 MMO-700 TOTAL MASS AND STABILITY CHECK

It is sure that the MMO-700 with UR10 manipulator and the maximum prescribed payload of 10 kg is stable in the whole manufacturer recommended working range of 1300 mm . However, a simple check has been performed using the following mass and geometric data available on the web.

- UR10 Base mass = 7,1 kg
- UR10 Shoulder plus part of Link 1 mass $=12,7 \mathrm{~kg}$ at 380 mm from the Base axis
- UR10 Elbow mass plus part of Link 1 and Link 2 masses $=4,7 \mathrm{~kg}$ at $240+380=620$ mm from the Base axis
- UR10 Wrist 1 mass $=2 \mathrm{~kg}$ at $612+572=1184 \mathrm{~mm}$ from the Base axis
- UR10 Wrist 2 mass $=2 \mathrm{~kg}$ at $612+572=1184 \mathrm{~mm}$ from the Base axis
- UR10 Wrist 3 mass $=0,365 \mathrm{~kg}$ at $612+572+116=1300 \mathrm{~mm}$ from the Base axis
- UR10 Payload $=10 \mathrm{~kg}$ at $612+572+116=1300 \mathrm{~mm}$ from the Base axis
- Robotiq $2 \mathrm{~F}-85$ gripper mass $=0.9 \mathrm{~kg}$ at $612+572+116=1300 \mathrm{~mm}$ from the Base axis
- MMO-700 cart mass $=120 \mathrm{~kg}$ assumed centered on the wheelbase
- MMO-700 wheel pitch $=480 \mathrm{~mm}$
- MMO-700 wheel gauge $=480 \mathrm{~mm}$
- UR10 Base on MMO-700 lateral position $=260,5 \mathrm{~mm}$ (middle of cart width)
- UR10 Base on MMO-700 longitudinal position $=148 \mathrm{~mm}$ from the cart center
- UR10 Base on MMO-700 height position $=767 \mathrm{~mm}$

The stability check, which is positive, is reported in Figure 4.4-1 for the lateral operation and in Figure 4.4-2 and Figure 4.4-3 for the longitudinal operation. In all cases the resulting center of gravity remains inside the wheelbase.

Anticipating here the use of the same cart MMO-700 with the installation of two UR 10 manipulators, by means of a steel plate interface of dimensions 260 x $1100 \times 20 \mathrm{~mm}$ and weighing about 45 kg (steel specific weight $=7,85 \mathrm{~kg} / \mathrm{dm}^{3}$ ),
it is of more interest the lateral stability check for this configuration.

In longitudinal operations one manipulator acts like a balance mass for the other one. Therefore, the stability check is not necessary for this case. As far as the lateral stability is concerned, the check shows that even considering the limit operating conditions and the maximum payload for both manipulators, which is a condition never occurring in the present application, the resulting center of gravity remains inside the wheelbase (see Figure 4.4-4).


$$
\begin{gathered}
12,7 * 380+4,27 * 620+4 * 1184+11,265 * 1300=159,335 * \mathrm{~d} \\
\mathrm{~d}=\mathbf{1 6 8 , 5 4 \mathrm { mm } < 2 4 0 \mathrm { mm }}
\end{gathered}
$$

Figure 4.4-1 - Stability check of MMO-700 with UR10 manipulator and Robotiq $2 \mathrm{~F}-85$ gripper for lateral operation.


$$
\begin{gathered}
7,1 *(-148)+12,7 * 232+4,27 * 472+4 * 1036+11,265 * 1152=159,335 * \mathrm{~d} \\
\mathrm{~d}=\mathbf{1 3 2 , 0 0} \mathrm{mm}<240 \mathrm{~mm}
\end{gathered}
$$

Figure 4.4-2 - Stability check for MMO-700 with UR10 manipulator and Robotiq 2F-85 gripper for longitudinal operation (one side).


$$
\begin{gathered}
7,1 * 148+12,7 * 528+4,27 * 768+4 * 1332+11,265 * 1448=159,335 * \mathrm{~d} \\
d=\mathbf{2 0 5 , 0 7} \mathrm{mm}<240 \mathrm{~mm} \\
\hline
\end{gathered}
$$

Figure 4.4-3 - Stability check for MMO-700 with UR10 manipulator and Robotiq 2F-85 gripper for longitudinal operation (other side).


$$
\begin{gathered}
(12,7 * 380+4,27 * 620+4 * 1184+11,265 * 1300) * 2=243,67 * \mathrm{~d} \\
d=\mathbf{2 2 0 , 4 1} \mathrm{mm}<240 \mathrm{~mm}
\end{gathered}
$$

Figure 4.4-4 - Stability check for MMO-700 with two UR10 manipulators and Robotiq 2F-85 grippers for lateral operation.

### 4.5 GRIPPING POINT COORDINATES AT REST RESPECT UR10 BASE

Figure 4.5-1 gives a sketch of the UR10 manipulator plus the gripper with the relevant quotes at rest position. From this sketch the coordinates of the gripping point (GP) or control point with respect to the manipulator Base center are derived.
$\mathrm{X}_{\mathrm{GP}}=545-572-116=\mathbf{- 1 4 3} \mathrm{mm}$ or $\mathrm{Y}_{\mathrm{GP}}$ if the manipulator is turned $90^{\circ}$
$\mathrm{Y}_{\mathrm{GP}}=176-128+116=\mathbf{1 6 4} \mathbf{m m}$ or $\mathrm{X}_{\mathrm{GP}}$ if the manipulator is turned $90^{\circ}$
$\mathrm{Z}_{\mathrm{GP}}=128+278-92-143=\mathbf{1 7 1} \mathrm{mm}$

However, in the following performance study, the GP coordinates at rest are derived case by case in the global reference system.


Figure 4.5-1 - UR10 manipulator geometric data at rest position for gripping point coordinates derivation referred to the Base.

### 4.6 OPTIMISED WORKSTATION AND KITCHEN LAYOUT

The new and optimised workstation is defined with a modular concept. In detail there is a module dedicated to the activity of pizza dough roll out and another one dedicated to the pizza preparation (filling with condiments).

On the pizza roll out module there are the roll pin, the flour container, nr. 10 pizza doughs partitions above the relative trays, and a shovel.

On the pizza preparation module there are nr. 8 containers for nr. 8 different condiment types, the condiments spreading tool, the tomato sauce ladle with an automatic sauce dispenser and the relevant accommodation, a shovel, the origan container, the salt container, the garlic container, and the olive oil container.

Condiments, allowing the preparation of nr. 6 basic pizza tastes are the same foreseen for the workstation designed in the feasibility study. They are listed below reporting in parenthesis the workstation location and the container code, which are introduced later:

- mozzarella cheese (L3, cc1),
- aubergines (L4, cc2),
- zucchini (L5, cc3),
- peppers (L6, cc4),
- wurstels (L7, cc5),
- sausages (L8, cc6),
- mushrooms (L9, cc7), and
- ham (L10, cc8).

The pizzas taste that can be prepared are:

1. marinara (tomato sauce, salt, origan, garlic, and olive oil)
2. margherita (tomato sauce, salt, mozzarella cheese and olive oil)
3. ortolana (tomato sauce, salt, mozzarella cheese, aubergines, zucchini, peppers, origan and olive oil)
4. wurstel (tomato sauce, salt, mozzarella cheese, wurstel and olive oil)
5. salsiccia (tomato sauce, salt, mozzarella cheese, sausages and olive oil)
6. prosciutto e funghi (tomato source, salt, mozzarella cheese, ham, mushrooms and olive oil)

The set of containers must be filled with condiments cut in small pieces in order to be sure of their falling down on the pizza once the container has been overturned and shaken. A grid on the top is introduced to provide a sort of dosage adjustment of the condiment. Differentiated grids are considered for flour, taste condiments, salt, origan and garlic.

The use of containers is preferred to the dispensers because these are normally used for dry food or fully liquid food. There is a high probability that wet food could be compacted inside the dispenser not falling down when requested.

### 4.6.1 WORKSTATION GEOMETRY AND LAYOUT

The two workstation modules are placed against a wall and side by side, with the pizza preparation module on the right. From now on the pizza preparation module will be called Module 1 and the pizza roll out module will be called Module 2.

Similarly, Robot 1 will be the robot unit performing tasks on the Module 1, whilst Robot 2 will be the robot unit performing tasks on the Module 2.

The pizza shovel is a duplicated tool and will be differentiated with numbers 1 (on Module 1) and 2 (on Module 2). There is also a third shovel of slightly different design for oven use, but it will be introduced later jointly with Robot 3 .

The sequence of robot tasks, reproducing the way of working of a human pizzaiolo, are listed in the following.

Robot 2

- flour spreading on the pizza roll out area;
- pick up and drop on the pizza roll out area one pizza dough partition;
- pick up the roll pin and roll out the pizza dough partition;
- pick up the pizza shovel and transfer the rolled pizza dough on the pizza preparation area.


## Robot 1

- fill the ladle with tomato sauce and spread it on the rolled pizza dough;
- pick up the salt container and distribute it on the pizza;
- pick up in sequence the condiments containers required by the pizza taste to be prepared and distribute them on the pizza;
- pick up the condiments spreading tool and distribute uniformly them on the pizza;
- pick up the olive oil container and distribute it on the pizza;
- pick up the origan and garlic containers and distribute them on the pizza, when required;
- pick up the pizza shovel and transfer the prepared pizza on the rear storage table.

Robot 3 (introduced later)

- pick up the prepared pizza from the storage table and put it in the oven for cooking;
- pick up the cooked pizza from the oven and put it on the delivery table.

The global reference system has its origin at the bottom right and rear corner of the workstation Module 1 (see Figure 4.6.1-1).


Figure 4.6.1-1 - Workstation and Global Reference System.

The location of any tool on the work station is realized with a recess of 2 mm in depth with respect to the work station surface, enlarged by 2 mm in diameter and provided with an indentation to accommodate the special featured handle of tools to avoid human wrong positioning of them during the work station preparation. The indentation is not foreseen for final condiments origan, salt,
garlic and olive oil because of the slim diameter of these containers, which allows the gripper to directly pick up them. A deeper recess is foreseen for the condiments spreading tool and a particular special feature is arranged for the tomato sauce ladle and tomato sauce dispenser.

The overall dimensions of the workstation result 1600 mm length, 920 mm depth and 750 mm height. On the Module 1 there is an area raised by 100 mm , as explained later.

Special attention has been given to the pizza dough roll out area. In fact, unlike the feasibility study solution, now the availability of the omnidirectional cart and the feature of $360^{\circ}$ rotational manipulator arm allows to eliminate the automatic rotating mechanism, even if its absence introduces some complexity in the robot movements control.

First of all sufficient space is required to move the roll pin not only in the fore and aft directions, which will be called $0^{\circ}$ direction or North/Southwise directions, but also in the alternate movements at $+/-45^{\circ}(\mathrm{NE} / \mathrm{SW})$ and $+/-90^{\circ}$ (E/W) directions.

Looking at Figure 4.6.1-2 the space to reserve to the pizza dough roll out operation must be at least 470 mm for a roll pin having a total length of 342 mm , including the special handle and considering a stroke of 320 mm . The designed roll out area is higher than $470 \times 470 \mathrm{~mm}$.

On the rear side of the robots is placed a table for the storage of three prepared pizzas, i.e. pizzas which are ready for cooking. The kitchen assistant (or Robot 3) picks up these pizzas for their cooking and final delivery at desk.

In the Appendix B there is a brief description of any tool of each Module and the geometric coordinates of the relevant allocation and of the pick-up point of the tools in the global reference system. A simplified layout of the workstation is showed in Figure 4.6.1-3.


Figure 4.6.1-2 - Area to be reserved for the roll pin movements.


Figure 4.6.1-3 - Workstation simplified lay out.

Despite the considerations done in the feasibility study, the reduced dimensions of the workstation allow to put the mobile manipulator as close as possible to the work table, having the possibility to refill the table with any kind of condiments from the lateral side. By the other hand having focused this study on the comparative production times of nr. 10 pizzas of various tastes, from the available menu list, the foreseen capacity of the containers is considered fully compliant with the production of these number of pizzas.

Figure 4.6.1-4 gives a sketch of the workstation with the indication of the location number and tools code.

Finally, the reduced dimensions of the workstation allow the use of a fixed manipulator as an alternative to the mobile version. For this reason, this option is included inside the configurations identified for the performance study.


Figure 4.6.1-4 - Workstation sketch with locations number and tools code.

The position of the manipulators varies as function of the configuration type. Similarly, the table where the already prepared pizzas will be stored for the further phase of cooking is situated in front of the workstation and behind the pizza maker robots at a position depending from the selected configuration of the manipulators, mobile or fixed.

The overall dimensions for the pizza storage table, considering a continuous cooking activity, are reduced to $1200 \mathrm{~mm} \mathbf{X}$ axis length, $400 \mathrm{~mm} \mathbf{Y}$ axis depth and $750 \mathrm{~mm} \mathbf{Z}$ axis height, which allow to store three pizzas at the same time. The personnel or the mobile robot dedicated to the pizzas cooking operates on the other side of this table.

The oven is placed on the right side in front of the workstation. Finally, there is a desk at the exit of the oven for the final delivery of the cooked pizzas to the customer.

The schematic arrangement of the workstation is given in Figure 4.6.1-5, realized with the tool SKETCH UP.


Figure 4.6.1-5 - Workstation overall lay out realized with the tool SKETCH UP.

### 4.7 PROPOSED SOLUTIONS FOR ROBOT CONFIGURATIONS

Three different robot configurations, for the evaluation of the time spent for the preparation of ten pizzas, are considered and detailed in the following:

1. two identical mobile robots (MMO-700 cart with UR10 manipulator), performing different tasks;
2. one cart MMO-700 with two identical UR10 manipulators, performing different tasks;
3. two fixed and identical UR10 manipulators, performing different tasks, plus one mobile robot, using the same types of cart and manipulator, performing the cooking phase of the pizza production process till its delivery at customer desk.

The second configuration has the disadvantage that when one manipulator requires the use of the cart the other manipulator must stop its activities. However, as the not moving cart corresponds to Configuration nr. 3, for the Configuration nr. 2 the cart use is limited to a minimum.

## 5 TASK LIST AND CONFIUGURATIONS LAYOUT

In this Section are detailed all the tasks foreseen for each Robot. The tasks are described in a general way and are applicable to any configuration. Small differences are in the use or not use of the robot mobility and/or in specific adaptations due to the different disposal of the manipulators and prepared pizza storage table, as required by the configuration.

It is useful to remember the declared identification of Robot 1 as the robot localized in front of work station Module 1 and dedicated to the pizza preparation activity, and of Robot 2 as the robot localized in front of work station Module 2 and dedicated to the roll out activity of the pizza dough partitions. Robot 3 is the robot identified in Configuration nr. 3 for pizza cooking and final delivery at desk.

### 5.1 CONFIGURATION NR. 1 TASKS AND LAYOUT

For this configuration the mobility of the robots is used as much as possible.

First, the position of the two Robots is specified. Considering the cart dimensions given in Sections 4.2 and 4.5 the two carts cannot be placed side-byside, otherwise the cart movements of one robot will interfere with the activities of the other robot.

However, there are two big advantages: one is that the cart has omnidirectional movements and the other one is that the manipulator can operate at $360^{\circ}$.
Because the Robot 2 mobility is foreseen for pizza dough roll out activity and
for pizza transfer from the roll out location to the preparation location, the two carts are placed sufficiently spaced to allow the needed movements.

To better understand the adopted orientation and position of the two carts, the roll out sequence is here clarified.

In the feasibility study the nature of the monodirectional cart-like manipulator and its reduced degrees of freedom suggested the need to install an automatic mechanism to rotate the pizza dough during the roll out. In fact, in order to produce a pizza with an almost circular shape the dough must be rolled in all directions. Now the rotational degree of freedom of the manipulator around the vertical axis allows to eliminate the automatic rotating mechanism.

Following the observation of the movements done by a human pizzaiolo in using the roll pin, the following procedure has been implemented upon the assumptions of an initial height of 50 mm for the pizza dough partitions, a final pizza thickness of 4 mm and a roll out stroke of 320 mm .

To avoid that the pizza dough may remain attached to the table surface, some flour is distributed over the roll out area before putting there the dough partition.

1. Put the roll pin external surface at a height of 40 mm from the table top level and at the center of the roll out area (location L17), i.e. roll pin pick up point at coordinates $X=1200 \mathrm{~mm}, Y=670 \mathrm{~mm}, Z=901 \mathrm{~mm}$.
2. Move the roll pin Northwise for a stroke of 80 mm while moving progressively down up to 4 mm (roll pin external bottom surface gap to the table top level at the end of the 80 mm stroke $=36 \mathrm{~mm}$ ).
3. Move the roll pin Southwise for a stroke of 160 mm maintaining the
same distance from the table top level.
4. Move the roll pin Northwise back to the center of the roll out area maintaining the same distance from the table top level.
5. Rotate clockwise the roll pin by $90^{\circ}$.
6. Move the roll pin Eastwise for a stroke of 80 mm while moving progressively down by 4 mm (gap to table top level at the end of the stroke $=32 \mathrm{~mm}$ ) .
7. Move the roll pin Westwise for a stroke of 160 mm maintaining the same distance from the table top level.
8. Move the roll pin Eastwise back to the center of the roll out area maintaining the same distance from the table top level.
9. Rotate counterclockwise the roll pin by $45^{\circ}$.
10. Move the roll pin North-Eastwise for a stroke of 120 mm while moving progressively down by 4 mm (gap to table top level at the end of the stroke $=28 \mathrm{~mm}$ ).
11. Move the roll pin South-Westwise for a stroke of 240 mm maintaining the same distance from the table top level.
12. Move the roll pin North-Eastwise back to the center of the roll out area maintaining the same distance from the table top level.
13. Rotate counterclockwise the roll pin by $90^{\circ}$.
14. Move the roll pin North-Westwise for a stroke of 120 mm while moving progressively down by 4 mm (gap to table top level at the end of the stroke $=24 \mathrm{~mm}$ ) .
15. Move the roll pin South-Eastwise for a stroke of 240 mm maintaining the same distance from the table top level.
16. Move the roll pin North-Westwise back to the center of the roll out area maintaining the same distance from the table top level.
17. Rotate clockwise the roll pin by $45^{\circ}$.
18. Move the roll pin Northwise for a stroke of 160 mm while moving progressively down by 4 mm (gap to table top level at the end of the stroke $=20 \mathrm{~mm}$ ) .
19. Move the roll pin Southwise for a stroke of 320 mm maintaining the same distance from the table top level.
20. Move the roll pin Northwise back to the center of the roll out area maintaining the same distance from the table top level.
21. Rotate clockwise the roll pin by $90^{\circ}$.
22. Move the roll pin Eastwise for a stroke of 160 mm while moving progressively down by 4 mm (gap to table top level at the end of the stroke $=16 \mathrm{~mm})$.
23. Move the roll pin Westwise for a stroke of 320 mm maintaining the same distance from the table top level.
24. Move the roll pin Eastwise back to the center of the roll out area maintaining the same distance from the table top level.

25 . Rotate counterclockwise the roll pin by $45^{\circ}$.
26. Move the roll pin North-Eastwise for a stroke of 160 mm while moving progressively down by 4 mm (gap to table top level at the end of the stroke $=12 \mathrm{~mm}$ ).
27. Move the roll pin South-Westwise for a stroke of 320 mm maintaining the same distance from the table top level.
28. Move the roll pin North-Eastwise back to the center of the roll out area maintaining the same distance from the table top level.
29. Rotate counterclockwise the roll pin by $90^{\circ}$.
30. Move the roll pin North-Westwise for a stroke of 160 mm while moving progressively down by 4 mm (gap to table top level at the end of the stroke $=8 \mathrm{~mm}$ ) .
31. Move the roll pin South-Eastwise for a stroke of 320 mm maintaining the
same distance from the table top level.
32. Move the roll pin North-Westwise back to the center of the roll out area maintaining the same distance from the table top level.
33. Rotate clockwise the roll pin by $45^{\circ}$.
34. Move the roll pin Northwise for a stroke of 160 mm while moving progressively down by 1 mm (gap to table top level at the end of the stroke $=7 \mathrm{~mm}$ ).
35. Move the roll pin Southwise for a stroke of 320 mm maintaining the same distance from the table top level.
36. Move the roll pin Northwise back to the center of the roll out area maintaining the same distance from the table top level.
37. Rotate clockwise the roll pin by $90^{\circ}$.
38. Move the roll pin Eastwise for a stroke of 160 mm while moving progressively down by 1 mm (gap to table top level at the end of the stroke $=6 \mathrm{~mm}$ ).
39. Move the roll pin Westwise for a stroke of 320 mm maintaining the same distance from the table top level.
40. Move the roll pin Eastwise back to the center of the roll out area maintaining the same distance from the table top level.
41. Rotate counterclockwise the roll pin by $45^{\circ}$.
42. Move the roll pin North-Eastwise for a stroke of 160 mm while moving progressively down by 1 mm (gap to table top level at the end of the stroke $=5 \mathrm{~mm})$.
43. Move the roll pin South-Westwise for a stroke of 320 mm maintaining the same distance from the table top level.
44. Move the roll pin North-Eastwise back to the center of the roll out area maintaining the same distance from the table top level.
45. Rotate counterclockwise the roll pin by $90^{\circ}$.
46. Move the roll pin North-Westwise for a stroke of 160 mm while moving progressively down by 1 mm (gap to table top level at the end of the stroke $=4 \mathrm{~mm}$ ).
47. Move the roll pin South-Eastwise for a stroke of 320 mm maintaining the same distance from the table top level.
48. Move the roll pin North-Westwise back to the center of the roll out area maintaining the same distance from the table top level.
49. Rotate clockwise the roll pin by $45^{\circ}$.
50. Stop

Now it is clear that during the application of this procedure the cart of Robot 2 moves fore and aft, right to left and in diagonal $+/-45^{\circ}$. Therefore, the two carts are initially spaced as per Figure 5.1-1 with respect to the workstation. Robot 1 will move Westwise by 800 mm to reach the working position, whilst the Base of Robot 1 at rest position is 1600 mm Eastwise of Robot 2 Base.

In Figure 5.1-1 it is also showed the position of the prepared pizzas stored table.

Figure 5.1-2 shows the overall kitchen lay out realized with the tool SKETCHUP. In detail the cart of Robot 1 is placed parallel to the Module 1 with the Base of manipulator at coordinates:

$$
\begin{aligned}
\mathrm{X}_{\mathrm{ClR} 1} & =-400 \mathrm{~mm} \\
\mathrm{Y}_{\mathrm{ClR} 1} & =1220 \mathrm{~mm} \\
\mathrm{Z}_{\mathrm{C} 1 \mathrm{R} 1} & =767 \mathrm{~mm}
\end{aligned}
$$

The Robot 1 gripping point coordinates at rest position in the global reference system are:

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{ClGP1}}=-400+143=-257 \mathrm{~mm} \\
& \mathrm{Y}_{\mathrm{ClGP1}}=1220+164=1384 \mathrm{~mm} \\
& \mathrm{Z}_{\mathrm{ClGPI}}=767+171=938 \mathrm{~mm}
\end{aligned}
$$

The cart of Robot 1 when moved at the working position is parallel to the Module 1 with the Base of manipulator at coordinates:

$$
\begin{aligned}
\mathrm{X}_{\mathrm{ClR} 1} & =400 \mathrm{~mm} \\
\mathrm{Y}_{\mathrm{C} 1 \mathrm{R} 1} & =1220 \mathrm{~mm} \\
\mathrm{Z}_{\mathrm{C} 1 \mathrm{R} 1} & =767 \mathrm{~mm}
\end{aligned}
$$

The Robot 1 gripping point coordinates at working position in the global reference system are:

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{ClGP1}}=400+143=543 \mathrm{~mm} \\
& \mathrm{Y}_{\mathrm{ClGP1}}=1220+164=1384 \mathrm{~mm} \\
& \mathrm{Z}_{\mathrm{ClGP1}}=767+171=938 \mathrm{~mm}
\end{aligned}
$$

The cart of Robot 2 is placed parallel to the Module 2 with the Base of manipulator at coordinates:

$$
\begin{aligned}
\mathrm{X}_{\mathrm{C} 1 \mathrm{R} 2} & =1200 \mathrm{~mm} \\
\mathrm{Y}_{\mathrm{C} 1 \mathrm{R} 2} & =1220 \mathrm{~mm} \\
\mathrm{Z}_{\mathrm{ClR} 2} & =767 \mathrm{~mm}
\end{aligned}
$$

The Robot 2 gripping point coordinates at rest position in the global reference system are:

$$
\begin{aligned}
\mathrm{X}_{\mathrm{C} 1 \mathrm{GP} 2} & =1200-143=1057 \mathrm{~mm} \\
\mathrm{Y}_{\mathrm{ClGP} 2} & =1220-164=1056 \mathrm{~mm} \\
\mathrm{Z}_{\mathrm{C} 1 \mathrm{GP} 2} & =767+171=938 \mathrm{~mm}
\end{aligned}
$$

The coordinates of prepared pizza locations on the storage table are:

| $\mathrm{X}_{\text {CIPST1 }}=500 \mathrm{~mm}$ | $\mathrm{X}_{\text {CIPST2 }}=100 \mathrm{~mm}$ | $\mathrm{X}_{\text {CIPST3 }}=-300 \mathrm{~mm}$ |
| :---: | :---: | :---: |
| $\mathrm{Y}_{\text {CIPST1 }}=1920 \mathrm{~mm}$ | $\mathrm{Y}_{\text {CIPST2 }}=1920 \mathrm{~mm}$ | $\mathrm{Y}_{\text {ClPST3 }}=1920 \mathrm{~mm}$ |
| $\mathrm{Z}_{\text {CIPSTI }}=750 \mathrm{~mm}$ | $\mathrm{Z}_{\mathrm{CIPST} 2}=750 \mathrm{~mm}$ | $\mathrm{Z}_{\text {CIPST3 }}=750 \mathrm{~mm}$ |



TOP VIEW - Drawing not in scale - Ouotes in

Figure 5.1-1 - Kitchen lay out for Configuration nr. 1.


Figure 5.1-2 - Configuration nr. 1 kitchen lay out realized with the tool SKETCHUP.

### 5.1.1 ROBOT 2 and 1 tasks in CONFIGURATION NR. 1

In the following it is described the sequence of tasks once the two. When the robot mobility is required the words "CART USE" are specified. Robot 1 moves from the rest position to the working position before to start its tasks sequence. Normally the two robot units operate in an independent way, with two exceptions.

Exception 1: When Robot 2 has completed the pizza dough roll out task it needs to transfer the rolled out pizza on the preparation location in front of Robot 1. For this action Robot 2 must check if the transfer is allowed by Robot 1, who has to remain in stand-by at rest. If transfer is not yet allowed, Robot 2 will
remain in stand-by (pizza cannot be transferred until the pizza preparation area is free); on the contrary, if the transfer is allowed the rolled out pizza will be transferred at the pizza preparation area by the use of the pizza shovel 2; Robot 2 will send to Robot 1 the information of completed transfer once the pizza shovel 2 has been placed in its location L18.

Exception 2: When Robot 1 must transfer the prepared pizza on the pizza storage table. For this action Robot 1 must check if the transfer is allowed by Robot 2, who stays in stand-by at rest. If the transfer is not yet allowed, Robot 1 will remain in stand-by but not at rest; on the contrary, if the transfer is allowed the prepared pizza is transferred on the pizza storage table by the use of the pizza shovel 1 ; Robot 1 will send to Robot 2 the information of transfer completed once the pizza shovel 1 has been placed in its location $\mathbf{L} 2$ and Robot 1 has put itself in stand-by at rest (Robot 1 can work only if the preparation area is occupied). In parallel Robot 1 will inform the kitchen assistant that a pizza is ready for cooking on the pizza storage table.

The logic of task accomplishment is better explained in the Section 6.3. However globally speaking Robot 1 starts its tasks from the rest position and proceeds till the last task of pizza transfer on the storage table, through the execution of each task starting from the position reached in the previous task and waiting in the position reached in the last task until the pizza transfer consent from Robot 2 is received. After the pizza transfer on the storage table Robot 1 puts itself at rest, informs Robot 2 and the kitchen assistant for transfer completed and waits for a new pizza to be prepared.

Similarly, Robot 2 starts from the rest position and continues its tasks till the transfer of the rolled-out pizza at the pizza preparation location upon the consent
from Robot 1. Nevertheless Robot 2 will complete the performing task and will put at rest if Robot 1 sends the request for pizza transfer on the storage table.

### 5.1.1.1 C1 Robot 2 tasks

All the actions are referred to the gripping point GP, unless otherwise specified. Tasks are listed following the chronological sequence of execution and may be summarized as follows:

- flour container use: i.e. distribute flour on the roll out area to avoid pizza dough adhesion;
- dough partition tray use: i.e. pick up the tray and revers the pizza dough partition on the roll out area;
- pizza dough roll out by the use of the roll pin;
- transfer the rolled-out pizza at pizza preparation location.


## C1R2T1 - Flour container use (see also Figure 5.1.1.1-1)

1. move with the gripper open by 10 mm , fingers with rest orientation $\left(\mathrm{W} 3=0^{\circ}\right)$ and robot terminal part horizontal and perpendicular to the front wall, to position $\mathbf{f c}$ at location $\mathbf{L 2 0}$;
2. close the gripper, pick up the flour container and raise up by 100 mm ;
3. move at a position 210 mm above location $\mathbf{L 1 7}$ maintaining robot terminal part horizontal; 210 mm is a value greater than the distance of the container bottom corner, opposite to the pick-up point [in this case $\left.210>\left(180^{2}+100^{2}\right)^{1 / 2}\right]$, to allow free overturning;
4. rotate clockwise Wrist 3 in 6 seconds at $180^{\circ} / \mathrm{s}$ while moving at a speed of $100 \mathrm{~mm} / \mathrm{s}$ with a sort of spiral trajectory in a plan parallel to the Module 2 table top surface;
5. move back at 100 mm above position $\mathbf{f c}$ at location $\mathbf{L 2 0}$, move down by 100 mm , open the gripper for 10 mm and raise up by 100 mm .


| Flour container trajectory referring to Loc 17 centre |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| X | [mm] | 0 | 20 | 42 | 87 | 100 | 87 | 71 | 50 | 0 | -50 | -71 | -87 | -100 | -87 | -71 | -50 | 0 |
| Y | [mm] | 0 | 35 | 42 | 50 | 0 | -50 | -71 | -87 | -100 | -87 | -71 | -50 | 0 | 50 | 71 | 87 | 100 |
| W3 | [deg] | 0 | 60 | 120 | 180 | 270 | 360 | 60 | 120 | 180 | 240 | 300 | 360 | 90 | 180 | 240 | 300 | 360 |
| T | [sec] |  |  |  | 1 |  | 2 |  |  | 3 |  |  | 4 |  | 5 |  |  | 6 |

Figure 5.1.1.1-1 - Flour container trajectory above the roll out area.

C1R2T2 - Typical dough partition tray use (see also Figure 5.1.1.1-2)

1. move the gripper open by 10 mm , fingers with rest orientation $\left(0^{\circ}\right)$ and robot terminal part vertical, to position dpt1 at location L21;
2. close the gripper, pick up the pizza dough partition, raise up by 100 mm;
3. move at a position 70 mm above the center of location $\mathbf{L 1 7}$ and shifted Southwise by 40 mm and Westwise by 60 mm , maintaining robot terminal part vertical;
4. rotate counterclockwise Wrist 2 by $45^{\circ}$ at $180^{\circ} / \mathrm{s}$;
5. move up by 20 mm and suddenly down by 20 mm ;
6. move Northwise by 100 mm , then raise up by 60 mm and rotate
clockwise Wrist 2 by $45^{\circ}$ at $180^{\circ} / \mathrm{s}$;
7. move back at 100 mm above position dpt1 at location $\mathbf{L 2 1}$, maintaining robot terminal part vertical, move down vertically by 100 mm , open the gripper for 10 mm and raise up by 100 mm .


To leave the dough partition at the centre of the roll out area the tray extremity must be 60 mm beyond the roll out location centre. Therefore, the gripping point GP) will stay 60 mm Westside of the location centre, according to the tray handle position, and:
$40 \mathrm{~mm}(60-20)$ beyond of location centre (Southwise) $\left[\mathrm{d}=60 * \cos 45^{\circ}-32 * \sin 45^{\circ}=20 \mathrm{~mm}\right]$ $\mathbf{6 5} \mathrm{mm}$, at least, above the table top level $\left[\mathrm{h}=60 * \sin 45^{\circ}+32 * \cos 45^{\circ}=65 \mathrm{~mm}\right]$

Figure 5.1.1.1-2 - Dough partition tray rotation above the roll out area.

For the other trays the task is the same. Only the position code and location number will change from code dpt2 to code dpt10 and from location $\mathbf{L} 21$ to location L30. The task name will change from C1R2T1-dpt1 to C1R2T1dpt10.

C1R2T3 - Pizza dough roll out using the roll pin (see also Figure 5.1.1.1-3)

1. move the gripper open by 10 mm , fingers with rest orientation $\left(0^{\circ}\right)$ and robot terminal part vertical, to position rp at location L19;
2. close the gripper, pick up the roll pin, move rightwise by 15 mm and raise up by 100 mm ;
3. move to 40 mm above the center of location $\mathbf{L} \mathbf{1 7}$ maintaining robot terminal part vertical;
4. apply the roll pin operational procedure (see Section 5.1) by rotating step by step Wrist 3 clockwise from $0^{\circ}$ to $90^{\circ}$ and counterclockwise to $45^{\circ}$ and to $-45^{\circ}$ at $180^{\circ} / \mathrm{s}-$ CART USE;
5. move back at 100 mm above position $\mathbf{r p}$ at location L19, maintaining robot terminal part vertical, move down vertically by 100 mm , then 15 mm leftwise, open the gripper for 10 mm and raise up by 100 mm .


Figure 5.1.1.1-3 - Roll pin above the roll out area.

C1R2T4 - Transfer the rolled-out pizza at pizza preparation location (see also
Figure 5.1.1.1-4)

1. inform Robot 1 to be ready to transfer the rolled-out pizza to location 1 at position pp;
2. waiting for Robot 1 confirmation move the gripper open by 10 mm at 70 mm before (Northwise) position $\mathbf{p s 2}$ at location L18, fingers with rest orientation $\left(0^{\circ}\right)$ and robot terminal part angled counterclockwise by $45^{\circ}$ to the vertical (Wrist 2);
3. close the gripper, pick up the pizza shovel 2, raise up by 340 mm ;
4. rotate Wrist 2 counterclockwise by further $90^{\circ}$;
5. move down and leftside to have the extremity of the shovel 2 at 160 mm to the left of location $\mathbf{L 1 7}$ center (assuming 348 mm as the gripping point, or pick up point, distance to the extremity of the shovel and 28 mm as the gripping point distance to the bottom of the shovel), i.e. GP coordinates $X=1708 \mathrm{~mm}, Y=670 \mathrm{~mm}, \mathrm{Z}=778 \mathrm{~mm}$;
6. now move rightwise by 320 mm , not changing Wrist 2 orientation and GP height, towards location L17 - CART USE;
7. stand by till Robot 1 confirmation, then move up and towards location $\mathbf{L} 1$ to have the extremity of the shovel on the point at 160 mm beyond location 1 center after be angled by $15^{\circ}$, i.e. GP coordinates $X=719$ $\mathrm{mm}, \mathrm{Y}=670 \mathrm{~mm}, \mathrm{Z}=867 \mathrm{~mm}-$ CART USE - Robot 1 cart need to move Eastwise by 800 mm to avoid the impact with the Robot 2 cart;
8. now rotate clockwise Wrist 2 by $15^{\circ}$;
9. perform a Westwise and Eastwise movement of 20 mm ;
10. move back (Westwise) not changing Wrists 2 and 3 orientation and GP height, to the position reached at step 3 above;
11. rotate clockwise by $90^{\circ}$ and then move down vertically by 330 mm ;
12. open the gripper, disengage the shovel by moving Northwise by 70 mm , inform Robot 1 that can start or restart its tasks and go at rest.


To pick up the pizza the extremity of the shovel must be 160 mm before the location centre and the bottom of the shovel must be at table top level. Considering the shovel geometry, the gripping point must be:
$160+320+40 * \cos 45^{\circ}=\mathbf{5 0 8} \mathrm{mm}$ before, and $40 * \sin 45^{\circ}=\mathbf{2 8} \mathrm{mm}$ above the table top level


Location 1


To leave the pizza the extremity of the shovel must be 160 mm ahead of the location centre and the bottom of the shovel must be at table top level. Considering the shovel geometry, the gripping point must be:
$320 * \cos 15^{\circ}+40 * \cos 60^{\circ}-160=\mathbf{1 6 9} \mathrm{mm}$ before the location centre, and $320 * \sin 15^{\circ}+40 * \sin 60^{\circ}=\mathbf{1 1 7} \mathrm{mm}$ above the table top level

Figure 5.1.1.1-4 - Pizza shovel pick up and pizza transfer.

## C1R2Ti - Further tasks

- Now Robot 2 has to repeat all the above tasks with the only exception that the pizza dough trays to be picked up will be in sequence from dpt2 to dpt10 at locations from L22 to L30.


### 5.1.1.2 C1 Robot 1 tasks

All the actions are referred to the gripping point GP, unless otherwise specified. Tasks are listed following the chronological sequence of execution and may be summarized as follows:

- tomato sauce ladle use: i.e. collect tomato sauce, reverse it on the pizza and spread over the pizza;
- condiment container use: i.e. fill the pizza with the required condiments for a given taste;
- condiment spreading tool use: i.e. spread condiments over the pizza;
- origan, salt and garlic containers use, i.e. reverse salt always, origan and garlic only for specific pizza tastes over the pizza;
- olive oil container use: i.e. reverse olive oil over the pizza for any taste;
- transfer the prepared pizza on the storage table.


## C1R1T1 - Tomato sauce ladle use (see also Figure 5.1.1.2-1)

1. move the gripper open by 10 mm , fingers at $0^{\circ}$, robot terminal part horizontal and parallel to the front wall, to position tsl at location $\mathbf{L 1 1}$;
2. close the gripper, pick up the tomato sauce ladle and move forward (Northwise) by 60 mm and wait 3 seconds;
3. move back the tomato sauce ladle by 40 mm and raise up by 145 mm (120+25);
4. rotate W 2 by $90^{\circ}$ counterclockwise;
5. move above location L1, maintaining robot terminal part horizontal, and stop at the centre of the location; 120 mm is a value at least 5 mm (accounting for pizza thickness) greater than the distance of the ladle bottom corner, opposite to the pick-up point plus 5 mm [in this case $\left.120>\left(70^{2}+80^{2}\right)^{1 / 2}\right] ;$
6. rotate clockwise by $360^{\circ}$ at $180^{\circ} / \mathrm{s}$;
7. move down vertically by 115 mm and perform a spiral movement from the centre to the border of the pizza at a speed of $100 \mathrm{~mm} / \mathrm{s}$ remaining 5 mm above the Module 1 table top surface, i.e. on the pizza;
8. raise up by 100 mm and move back above the position tsl at location

## L11;

9. rotate W 2 by $90^{\circ}$ clockwise;
10. move down vertically by 60 mm , open the gripper for 10 mm and raise up by 100 mm .


| Tomato sauce ladle trajectory referring to pizza centre |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| X | [mm] | 0 | 10 | 28 | 40 | 28 | 0 | -28 | -40 | -52 | -50 | 0 | 55 | 95 | 110 | 95 | 55 | 0 | -55 | -95 | -110 | -78 | -35 | 0 |
| Y | [mm] | 0 | 17 | 28 | 0 | -28 | -40 | -28 | 0 | 30 | 87 | 110 | 95 | 55 | 0 | -55 | -95 | -110 | -95 | -55 | 0 | 45 | 20 | 0 |

Figure 5.1.1.2-1 - Tomato sauce ladle pick up and spreading.

## C1R1T2 - Typical condiment container use (see also Figure 5.1.1.2-2)

1. move the gripper open by 10 mm , fingers at $0^{\circ}$, robot terminal part horizontal and perpendicular to the front wall, to position cc1 at location L3;
2. close the gripper, pick up the condiment container and raise up by 120 mm;
3. move at a position 270 mm above location 1 and at a distance of 80 mm on the left of the center of the location maintaining robot terminal part horizontal; 270 mm is a value greater than the distance of the container bottom corner, opposite to the pick-up point, to the pizza plus any possible other condiment level [in this case $270>\left(200^{2}+\right.$ $\left.\left.160^{2}\right)^{1 / 2}\right] ;$
4. rotate counterclockwise Wrist 3 by $180^{\circ}$ at $180^{\circ} /$ s;
5. move down vertically by 150 mm and suddenly move up by 20 mm in order to force the condiment fall down;
6. repeat the condiment shaking by moving vertically 150 mm up and suddenly 20 mm down and rotate clockwise by $180^{\circ}$ Wirst 3 at $180^{\circ} / \mathrm{s}$;
7. move back at 100 mm above position ce1 at location $\mathbf{L 3}$;
8. move down vertically by 100 mm , open the gripper for 10 mm and raise up by 100 mm ready to catch another container, depending from the pizza taste.

For the other condiment containers, the task is the same. Only the position code and location number will change from code cc2 to code cc8 and from location $\mathbf{L 4}$ to location L10. The task name will change from C1R2T1-cc1 to C1R2T1cc8.


Figure 5.1.1.2-2 - Condiment container above the roll out area.

## C1R1T3 - Condiment spreading tool use (see also Figure 5.1.1.2-3)

1. move the gripper open by 10 mm , fingers at $0^{\circ}$, robot terminal part horizontal and parallel to the front wall, to position ts at location L12;
2. close the gripper, pick up the condiment spreading tool and raise it up by 100 mm ;
3. rotate W 2 by $90^{\circ}$ counterclockwise;
4. move the gripping point above location $\mathbf{2}$, maintaining robot terminal part horizontal, and stop at the centre of the location;
5. move down vertically by 65 mm and perform a spiral movement from the centre to the border of the pizza at a speed of $100 \mathrm{~mm} / \mathrm{s}$ remaining at the reached vertical position of 5 mm above the Module 1 table top surface, i.e. at pizza level;
6. raise up by 65 mm and move back at 100 mm above the position cs at location L12;
7. rotate W 2 by $90^{\circ}$ clockwise;
8. move down vertically by 100 mm , open the gripper for 10 mm and raise up by 100 mm .


Module 1 table top surface plus pizza

Condiment spreading tool trajectory referring to pizza centre

| X | $[\mathrm{mm}]$ | 0 | 10 | 28 | 40 | 28 | 0 | -28 | -40 | -52 | -50 | 0 | 55 | 95 | 110 | 95 | 55 | 0 | -55 | -95 | -110 | -78 | -35 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Y | $[\mathrm{mm}]$ | 0 | 17 | 28 | 0 | -28 | -40 | -28 | 0 | 30 | 87 | 110 | 95 | 55 | 0 | -55 | -95 | -110 | -95 | -55 | 0 | 45 | 20 | 0 |

Figure 5.1.1.2-3 - Condiment spreading tool pick up and spreading.

C1R1T4 - Origan, salt and garlic containers use (see also Figure 5.1.1.2-4)

1. open the gripper at full width $(85 \mathrm{~mm})$, fingers at $0^{\circ}$, with robot terminal part horizontal and parallel to the front wall, and move towards the position oc (or sc or ge) at location L13 (or L14 or L15), but staying 142 mm above the pick-up point, i.e. $\mathrm{Z}=950 \mathrm{~mm}$ to overcome the container CART USE;
2. move down by 142 mm , close the gripper, pick up the origan (or salt or garlic) container, raise it up by 130 mm ;
3. move above location $\mathbf{L} 1$ at 80 mm Northwise and at 80 mm Westwise with respect to the center of location $\mathbf{1}$, maintaining the height of 130 mm from the table top surface and Wrist 3 horizontal - CART USE;
4. rotate Wrist 3 clockwise by $135^{\circ}$ at $180^{\circ} / \mathrm{s}$;
5. move up vertically by 20 mm and suddenly move down by 20 mm in order to force the origan, salt or garlic to fall down;
6. move 160 mm Eastwise and repeat the 20 mm up and down movement CART USE;
7. move 160 mm Southwise and repeat the 20 mm up and down movement CART USE;
8. move 160 mm Westwise and repeat the 20 mm up and down movement CART USE;
9. rotate Wrist 3 counterclockwise by $135^{\circ}$ at $180^{\circ} / \mathrm{s}$;
10. move back at 142 mm above position oc (or sc or gc) at location L13 (or L14 or L15), maintaining robot terminal part horizontal, move down vertically by 142 mm , fully open the gripper rise up by 142 mm and move at center of location L1 - CART USE.




Module 1 table top surface plus pizza

Figure 5.1.1.2-4 - Origan, salt or garlic container pick up and operation above the pizza.

C1R1T5 - Olive oil container use (see also Figure 5.1.1.2-5)

1. open the gripper at full width ( 85 mm ), fingers at $0^{\circ}$, with robot terminal part horizontal and parallel to the front wall, and move towards the position ooc at location L16, but staying at 142 mm above
the pick-up point, i.e. $Z=950 \mathrm{~mm}$ to overcome the container - CART USE;
2. move down by 142 mm , close the gripper, pick up the olive oil container, raise up by 142 mm ;
3. move above the center of location $\mathbf{L} 1$, maintaining the height of 200 mm from the table top surface and Wrist 3 horizontal - CART USE;
4. rotate Wrist 3 clockwise by $135^{\circ}$ at $180^{\circ} / \mathrm{s}$;
5. start a sort of spiral movement over the pizza maintaining height, Wrist 3 and robot terminal part position;
6. once completed the circle rotate Wrist 3 counterclockwise by $135^{\circ}$ at $180^{\circ}$ /s;
7. move back above position ooc at location L16, maintaining Wrist 3 horizontal, move down vertically by 142 mm , fully open the gripper, raise up by 142 mm and move to center of location L1-CART USE.


Figure 5.1.1.2-5 - Olive oil container pick up and operation above the pizza.

C1R1T6 - Transfer the prepared pizza on the storage table (see also Figure

### 5.1.1.1-4)

1. inform Robot 2 (and Robot 3 for Configuration nr. 3) that is ready to transfer the prepared pizza on the rear storage table;
2. upon Robot 2 (and 3) confirmation, move the gripper open by 10 mm at 70 mm before (Northwise) position $\mathbf{p s} 1$ at location $\mathbf{L 2}$, fingers with rest orientation $\left(0^{\circ}\right)$ and robot terminal part angled clockwise by $45^{\circ}$ to the vertical (Wrist 2);
3. close the gripper, pick up the pizza shovel 1, raise up by 340 mm ;
4. rotate Wrist 2 further counterclockwise by $90^{\circ}$;
5. move down and Westwise to have the extremity of the shovel 1 at 160 mm to the left of location $\mathbf{L} \mathbf{1}$ center (assuming 348 mm as the gripping point, or pick up point, distance to the extremity of the shovel and 28 mm as the gripping point distance to the bottom of the shovel the, i.e. GP position will be at $X=1008 \mathrm{~mm}, \mathrm{Y}=670 \mathrm{~mm}, \mathrm{Z}=778 \mathrm{~mm}$ );
6. now move Eastwise by 320 mm , not changing Wrist 2 orientation and GP height, towards location L1 - CART USE;
7. move up vertically and rotate clockwise around the Base to have the extremity of the shovel 1 on the point at 160 mm beyond the center of location C1PST1 when angled by $15^{\circ}$, i.e. GP at $\mathrm{X}=-131 \mathrm{~mm}, \mathrm{Y}=1920$ $\mathrm{mm}, \mathrm{Z}=967 \mathrm{~mm}$; note that before the rotation around the base the GP height has been increased by 100 mm to avoid shovel interference with tools;
8. to be sure of manipulator clockwise rotation add first the crossing point aligned with the Base and then the calculated ones at $\alpha=30^{\circ}$, $60^{\circ}, 120^{\circ}, 150^{\circ}$, as necessary, according with the following equations:

$$
\begin{aligned}
& \mathrm{X}=\mathrm{X}_{\mathrm{B}}-\left(\mathrm{Y}_{\mathrm{B}}-\mathrm{Y}_{\mathrm{loc} 1}\right) * \sin \alpha \\
& \mathrm{Y}=\mathrm{Y}_{\mathrm{B}}-\left(\mathrm{Y}_{\mathrm{B}}-\mathrm{Y}_{\mathrm{loc} 1}\right) * \cos \alpha
\end{aligned}
$$

9. move down by 100 mm and rotate Wrist 2 clockwise by $15^{\circ}$;
10. perform a Westwise and Eastwise movement of 20 mm ;
11. move back (Westwise) by 340 mm not changing Wrist 3, robot terminal part orientation and GP height - CART USE;
12. raise up 100 mm more to avoid interference with tools during Base counterclockwise rotation according with steep 8 ;
13. move to the position reached at step 3 above;
14. rotate Wrist 2 clockwise by $90^{\circ}$ and then move down vertically by 340 mm;
15. open the gripper disengage the shovel by moving Northwise by 70 mm;
16. raise by 100 mm , go at rest and inform Robot 2 that can start or restart its tasks.

After the accomplishment of this task Robot 1 has also to inform the kitchen assistant for pizza cooking that a prepared pizza has been stored on the storage table at location c1pst1, then c1pst2 and c1pst3. From the fourth, the seventh and the tenth pizza the storage will restart from c1pst1.

The pizza transfer at locations c1pst2 and c1pst3 will be done as for c1pst1.

### 5.2 CONFIGURATION NR. 2 TASKS AND LAYOUT

For this configuration just one MMO-700 mobile manipulator is used but with a rigid structure on the top for the installation of a second UR10 manipulator arm. The two manipulators arms are spaced each other by 800 mm and more or less centered on the base, i.e. the left one axis is spaced by 250 mm from the axis of
the standard installation point present on MMO-700 and the right one axis is spaced by 550 mm on the other side of the standard installation point (see the sketch in Figure 5.2-1). The rigid structure raises the Base height up to 787 mm (+20 mm)

It is evident for this configuration that when the mobility is required for the execution of the task by one robot, the other robot must be in standby.

There are two possibilities. One is to not use the mobile platform, but this means to cancel the Configuration nr.2, resulting equivalent to Configuration nr. 3. The other one is to optimize the cart movements in order to reduce as much as possible the dead times.

The second approach is followed, and the cart movements are limited to the tasks of pizza transfer from location $\mathbf{L 1 7}$ to location $\mathbf{L} 1$ and from location $\mathbf{L 1}$ to the prepared pizza storage table.

The pizza dough partitions roll out task is performed not using the cart because of the long execution time required, which will have a negative impact on the other robot activities, in fact this robot is forced to be stopped for all the roll out task time.

For this configuration the mobile platform and the pizza storage table is placed as shown in Figure 5.2-2.

Figure 5.2-3 shows the overall kitchen lay out realized with the tool SKETCHUP. In detail the cart is placed parallel to the workstation and the axis of the Base of Robot 1 manipulator is at coordinates:

$$
\begin{aligned}
\mathrm{X}_{\mathrm{C} 2 \mathrm{R} 1} & =400 \mathrm{~mm} \\
\mathrm{Y}_{\mathrm{C} 2 \mathrm{R} 1} & =1220 \mathrm{~mm} \\
\mathrm{Z}_{\mathrm{C} 2 \mathrm{R} 1} & =787 \mathrm{~mm}
\end{aligned}
$$

The Robot 1 gripping point coordinates at rest position in the global reference system are:

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{C} 2 \mathrm{GP} 1}=400+143=543 \mathrm{~mm} \\
& \mathrm{Y}_{\mathrm{C} 2 \mathrm{GP} 1}=1220+164=1384 \mathrm{~mm} \\
& \mathrm{Z}_{\mathrm{C} 2 \mathrm{GP} 1}=787+171=958 \mathrm{~mm}
\end{aligned}
$$

Consequently, the axis of the Base of Robot 2 manipulator stays at coordinates:

$$
\begin{aligned}
\mathrm{X}_{\mathrm{C} 2 \mathrm{R} 2} & =1200 \mathrm{~mm} \\
\mathrm{Y}_{\mathrm{C} 2 \mathrm{R} 2} & =1220 \mathrm{~mm} \\
\mathrm{Z}_{\mathrm{C} 2 \mathrm{R} 2} & =787 \mathrm{~mm}
\end{aligned}
$$

and the Robot 2 gripping point coordinates at rest position in the global reference system are:

$$
\begin{aligned}
\mathrm{X}_{\mathrm{C} 2 \mathrm{GP} 2} & =1200-143=1057 \mathrm{~mm} \\
\mathrm{Y}_{\mathrm{C} 2 \mathrm{GP} 2} & =1220-164=1056 \mathrm{~mm} \\
\mathrm{Z}_{\mathrm{C} 2 \mathrm{GP} 2} & =787+171=958 \mathrm{~mm}
\end{aligned}
$$

The coordinates of prepared pizza locations on the storage table are:

$$
\begin{array}{lll}
\mathrm{X}_{\mathrm{C} 2 P S T 1}=500 \mathrm{~mm} & \mathrm{X}_{\mathrm{C} 2 \mathrm{PST} 2}=100 \mathrm{~mm} & \mathrm{X}_{\mathrm{C} 2 \text { PST3 }}=-300 \mathrm{~mm} \\
\mathrm{Y}_{\mathrm{C} 2 P S T 1}=2020 \mathrm{~mm} & \mathrm{Y}_{\mathrm{C} 2 P S T 2}=2020 \mathrm{~mm} & \mathrm{Y}_{\text {C2PST3 }}=2020 \mathrm{~mm} \\
\mathrm{Z}_{\mathrm{C} 2 P S T 1}=750 \mathrm{~mm} & \mathrm{Z}_{\mathrm{C} 2 P S T 2}=750 \mathrm{~mm} & \mathrm{Z}_{\text {C2PST3 }}=750 \mathrm{~mm}
\end{array}
$$



FRONT \& TOP VIEW - Drawing not in scale - Quotes in mm

Figure 5.2-1 - UR10 manipulators disposition on MMO-700 for Configuration nr. 2.


TOP VIEW - Drawing not in scale - Quotes in mm

Figure 5.2-2 - Kitchen lay out for Configuration nr. 2.


Figure 5.2-3 - Configuration nr. 2 kitchen lay out realized with the tool SKETCHUP.

### 5.2.1 ROBOT 2 AND 1 TASKS IN CONFIGURATION NR. 2

In the following it is described the sequence of tasks once the two robots have been positioned. When mobility is required the words "CART USE" are specified. Normally the two robot units operate in an independent way, with the same two exceptions described for Configuration nr. 1.

### 5.2.1.1 C2 Robot 2 tasks

C2R2T1 - Flour container use (see also Figure 5.1.1.1-1)
The sequence of movements is the same as per Configuration nr. 1.

C2R2T2 - Typical dough partition try use (see also Figure 5.1.1.1-2)
The sequence of movements is the same as per Configuration nr. 1.

C2R2T3 - Pizza dough roll out using the roll pin (see also Figure 5.1.1.1-3) The sequence of movements is the same as per Configuration nr. 1.

C2R2T4 - Transfer the rolled-out pizza at pizza preparation location (see also

## Figure 5.1.1.1-4)

The sequence of movements is the same as per Configuration nr. 1. Obviously Robot 1 will move jointly with Robot 2.

C2R2Ti - Further tasks
As per Configuration nr. 1, Robot 2 has to repeat all the above tasks with the only exception that the pizza dough partition trays to be picked up will be in sequence from dpt2 to dpt10 at locations from $\mathbf{L} 22$ to $\mathbf{L 3 0}$.

### 5.2.1.2 C2 Robot 1 tasks

C2R1T1 - Tomato sauce ladle use (see also Figure 5.1.1.2-1)
The sequence of movements is the same as per Configuration nr. 1.

C2R1T2 - Typical condiment container use (see also Figure 5.1.1.2-2)
The sequence of movements is the same as per Configuration nr. 1.

C2R1T3 - Condiment spreading tool use (see also Figure 5.1.1.2-3)
The sequence of movements is the same as per Configuration nr. 1.

C2R1T4 - Origan, salt and garlic containers use (see also Figure 5.1.1.2-4) The sequence of movements is the same as per Configuration nr. 1 but the cart will not be used.

C2R1T5 - Olive oil container use (see also Figure 5.1.1.2-5)
The sequence of movements is the same as per Configuration nr. 1 but the cart will not be used.

C2R1T6 - Transfer the prepared pizza on the storage table (see also Figure

### 5.1.1.2-6)

The sequence of movements is the same as per Configuration nr. 1. The cart will be used both in right and left directions. After the position of shovel 1 at location $\mathbf{L} 2$ and after the restart information sent to Robot 2, Robot 1 has to inform the kitchen assistant for pizza cooking that a prepared pizza has been stored on the storage table at location c2pst1, then c2pst2 and c2pst3. From the fourth, the seventh and the tenth pizza the storage will restart from c2pst1.

The pizza transfer at locations c2pst1, c2pst2 and c2pst3 will be done as for c1pst1.

### 5.3 CONFIGURATION NR. 3 TASKS AND LAYOUT

For this configuration the pizza dough roll out and pizza preparation activities are performed by two UR10 manipulators installed at fixed positions close to the work station.

In addition, one mobile manipulator MMO-700 is used to transfer the prepared pizza in the oven, wait for cooking, extract the pizza from the oven and delivery it at desk. A special pizza shovel 3 is provided for Robot 3, which will be permanently gripped, also at rest position.

Pizza shovel 3 is a stainless-steel panel of 1 mm thickness and featured with a Z shape. The base is a flat squared panel $320 \times 320 \mathrm{~mm}$. The handle is achieved by a double fold of the panel with the first part trapezoidal and angled by $60^{\circ}$ and the other part rectangular and parallel to the base, with two additional reinforced strips of 2 mm thickness on both sides (see Figure 5.3-1). The calculated weight of the shovel 3 is approximately $1,05 \mathrm{~kg}$ (stainless steel specific weight $=7,85$ $\mathrm{kg} / \mathrm{dm}^{3}$ ).


Drawing not in scale Quotes in mm

Figure 5.3-1 - Geometry of pizza shovel 3 used by Robot 3.

The two UR10 manipulators are spaced each other by 800 mm and centered in front of each Module, with the Base axis at a distance of 300 mm from the front edge of the respective Module.

The Robot 3 configuration at rest is as shown in Figure 5.3-2.


FRONT \& TOP VIEW - Drawing not in scale - Quotes in

Figure 5.3-2 - Robot 3 configuration at rest.

The sketch in Figure 5.3-3 shows the position of the two UR10 manipulators and the kitchen arrangement, which includes the pizza storage table, the oven and the desk (or cooked pizzas delivery table).

Figure 5.3-4 and Figure 5.3-5 show the overall kitchen lay out realized with the tool SKETCHUP. In detail:

Robot 1 (UR10 manipulator arm) is fixed with its Base axis at coordinates:

$$
\begin{aligned}
\mathrm{X}_{\mathrm{C} 3 \mathrm{R} 1} & =400 \mathrm{~mm} \\
\mathrm{Y}_{\mathrm{C} 3 \mathrm{RI}} & =1220 \mathrm{~mm} \\
\mathrm{Z}_{\mathrm{C} 3 \mathrm{R} 1} & =767 \mathrm{~mm}
\end{aligned}
$$

The Robot 1 gripping point coordinates at rest position in the global reference system are:

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{C} 3 \mathrm{GP} 1}=400+143=543 \mathrm{~mm} \\
& \mathrm{Y}_{\mathrm{C} 3 \mathrm{GP} 1}=1220+164=1384 \mathrm{~mm} \\
& \mathrm{Z}_{\mathrm{C} 3 \mathrm{GP} 1}=767+171=938 \mathrm{~mm}
\end{aligned}
$$

Robot 2 manipulator is fixed with its Base axis at coordinates:

$$
\begin{aligned}
\mathrm{X}_{\mathrm{C} 3 \mathrm{R} 2} & =1200 \mathrm{~mm} \\
\mathrm{Y}_{\mathrm{C} 3 \mathrm{R} 2} & =1220 \mathrm{~mm} \\
\mathrm{Z}_{\mathrm{C} 3 \mathrm{R} 2} & =767 \mathrm{~mm}
\end{aligned}
$$

The Robot 2 gripping point coordinates at rest position in the global reference system are:

$$
\begin{aligned}
\mathrm{X}_{\mathrm{C} 3 \mathrm{GP} 2} & =1200-143=1057 \mathrm{~mm} \\
\mathrm{Y}_{\mathrm{C} 3 \mathrm{GP} 2} & =1220-164=1056 \mathrm{~mm} \\
\mathrm{Z}_{\mathrm{C} 3 \mathrm{GP} 2} & =767+171=938 \mathrm{~mm}
\end{aligned}
$$

Robot 3 initial position is with its Base axis at coordinates:

$$
\begin{aligned}
\mathrm{X}_{\mathrm{C} 3 \mathrm{~B} 3} & =1300 \mathrm{~mm} \\
\mathrm{Y}_{\mathrm{C} 3 \mathrm{R} 3} & =2570 \mathrm{~mm} \\
\mathrm{Z}_{\mathrm{C} 3 \mathrm{R} 3} & =767 \mathrm{~mm}
\end{aligned}
$$

The Robot 3 gripping point coordinates at rest position in the global reference system are:

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{C} 3 \mathrm{GP} 3}=1300-143=1157 \mathrm{~mm} \\
& \mathrm{Y}_{\mathrm{C} 3 \mathrm{GP} 3}=2570-164=2406 \mathrm{~mm} \\
& \mathrm{Z}_{\mathrm{C} 3 \mathrm{GP} 3}=767+171=938 \mathrm{~mm}
\end{aligned}
$$

The coordinates of prepared pizzas locations on the storage table are:

$$
\begin{array}{lll}
\mathrm{X}_{\mathrm{C} 3 \mathrm{PST} 1}=800 \mathrm{~mm} & \mathrm{X}_{\mathrm{C} 3 P S T 2}=400 \mathrm{~mm} & X_{\mathrm{C} 3 \mathrm{PST}}=0 \mathrm{~mm} \\
\mathrm{Y}_{\mathrm{C} 3 \mathrm{PST} 1}=1920 \mathrm{~mm} & \mathrm{Y}_{\mathrm{C} 3 P S T 2}=1920 \mathrm{~mm} & \mathrm{Y}_{\mathrm{C} 3 \mathrm{PST} 3}=1920 \mathrm{~mm} \\
\mathrm{Z}_{\mathrm{C} 3 P S T 1}=750 \mathrm{~mm} & \mathrm{Z}_{\mathrm{C} 3 P S T 2}=750 \mathrm{~mm} & \mathrm{Z}_{\mathrm{C} 3 \mathrm{PST} 3}=750 \mathrm{~mm}
\end{array}
$$

The coordinates of pizza location in the oven are:

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{OVEN}}=-700 \mathrm{~mm} \\
& \mathrm{Y}_{\mathrm{OVEN}}=2570 \mathrm{~mm} \\
& \mathrm{Z}_{\mathrm{OVEN}}=1000 \mathrm{~mm}
\end{aligned}
$$

The coordinates of cooked pizzas locations on the desk, including the dish, are:

$$
\begin{array}{lll}
\mathrm{X}_{\mathrm{CP} 1}=0 \mathrm{~mm} & \mathrm{X}_{\mathrm{CP} 2}=400 \mathrm{~mm} & \mathrm{X}_{\mathrm{CP} 3}=800 \mathrm{~mm} \\
\mathrm{Y}_{\mathrm{CP} 1}=3520 \mathrm{~mm} & \mathrm{Y}_{\mathrm{CP} 2}=3520 \mathrm{~mm} & \mathrm{Y}_{\mathrm{CP} 3}=3520 \mathrm{~mm} \\
\mathrm{Z}_{\mathrm{CP} 1}=770 \mathrm{~mm} & \mathrm{Z}_{\mathrm{CP} 2}=770 \mathrm{~mm} & \mathrm{Z}_{\mathrm{CP} 3}=770 \mathrm{~mm}
\end{array}
$$

Also, for this configuration the execution of the pizza transfer task by one Robot requires the other Robot to be in standby at rest to avoid interferences.


TOP VIEW - Drawing not in scale - Quotes in mm

Figure 5.3-3 - Manipulators position and kitchen lay out for Configuration nr. 3.


Figure 5.3-4 - Configuration nr. 3 kitchen lay out realized with the tool SKETCHUP (view from the left).


Figure 5.3-5 - Configuration nr. 3 kitchen lay out realized with the tool SKETCHUP (view from the right).

### 5.3.1 ROBOT 2 AND 1 TASKS IN CONFIGURATION NR. 3

In the following it is described the sequence of tasks of the three robots.
Mobility is always required for Robot 3, which has all time its shovel 3 well tight in the gripper. Normally Robot 1 and 2 operate in an independent way, with the same two exceptions described for Configuration nr. 1.

### 5.3.1.1 C3 Robot 2 tasks

C3R2T1 - Flour container use (see also Figure 5.1.1.1-1)
The sequence of movements is the same as per Configuration nr. 1.

C3R2T2 - Typical dough partition try use (see also Figure 5.1.1.1-2)
The sequence of movements is the same as per Configuration nr. 1.

C3R2T3 - Pizza dough roll out using the roll pin (see also Figure 5.1.1.1-3) The sequence of movements is the same as per Configuration nr. 1 excluding the cart use.

C3R2T4 - Transfer the rolled-out pizza at pizza preparation location (see also Figure 5.1.1.1-4)

The sequence of movements is the same as per Configuration Nr. 1 excluding the cart use.

C3R2Ti - Further tasks
As per Configuration nr. 1, Robot 2 has to repeat all the above tasks with the only exception that the pizza dough partition trays to be picked up will be in sequence from dpt2 to dpt10 at locations from L22 to L30.

### 5.3.1.2 C3 Robot 1 tasks

C3R1T1 - Tomato sauce ladle use (see also Figure 5.1.1.2-1)
The sequence of movements is the same as per Configuration nr. 1.

C3R1T2 - Typical condiment container use (see also Figure 5.1.1.2-2)
The sequence of movements is the same as per Configuration nr. 1.

C3R1T3 - Condiment spreading tool use (see also Figure 5.1.1.2-3)
The sequence of movements is the same as per Configuration nr. 1.

C3R1T4 - Origan, salt and garlic containers use (see also Figure 5.1.1.2-4) The sequence of movements is the same as per Configuration nr. 1 excluding the cart use.

C3R1T5 - Olive oil container use (see also Figure 5.1.1.2-5)
The sequence of movements is the same as per Configuration Nr. 1 excluding the cart use.

C3R1T6 - Transfer the prepared pizza on the storage table (see also Figure

### 5.1.1.2-6)

The sequence of movements is the same as per Configuration nr. 1 excluding the cart use. After the position of shovel 1 at location 2 and after the restart information sent to Robot 2, Robot 1 has to inform Robot 3 that a prepared pizza has been placed on the storage table at location c3pst1, then c3pst2 and c3pst3. From the fourth, the seventh and the tenth pizza the storage will restart from c3pst1.

The pizza transfer at locations c3pst1, c3pst2 and c3pst3 will be done as for c1pst1.

### 5.3.1.3 C3 Robot 3 tasks

All the actions are referred to the gripping point GP, unless otherwise specified. Tasks are listed following the chronological sequence of execution and may be summarized as follows:

- pick up the prepared pizza from the storage table and put it in the oven;
- pick up the cooked pizza from the oven and put it on the delivery desk.

C3R3T1 - Pick up the prepared pizza from the storage table and put in the oven (see also Figure 5.3.1.3-1)

1. From the rest position, after receiving the information from Robot 1 , move at location c3pst1, first pizza, with the base of shovel 3 horizontal, the axis perpendicular to the $\mathbf{X}-\mathbf{Z}$ plane and at the height of 750 mm , i.e. GP at $Z=850 \mathrm{~mm}$, and the extremity at distance of 160 mm before the center of the storage location; robot terminal part horizontal (GP is 408 mm from the extremity and 100 mm from the base);
2. move horizontally the shovel along the pizza location radial direction (Northwise) by 320 mm ;
3. raise up by $(1000+202)-(750+100)=352 \mathrm{~mm}$ and move towards the oven location with no Wrist 3 rotations and with the shovel axis or robot terminal part perpendicular to the oven entry;
4. move the shovel inside the oven till the shovel extremity reaches the X coordinate $-700+208=-492 \mathrm{~mm}$ and rotate Wrist 2 clockwise by $15^{\circ}-$ CART USE;
5. perform a fore and aft movement (Eastwise-Westwise) of 20 mm ;
6. move back the shovel at the position before entry;
7. move back the cart to the initial position and return at rest waiting for the cooking time - CART USE.

Next similar tasks will consider the pick-up of a pizza stored at locations c3pst2 and c3pst3; then other two cycles from c3pst1 to c3pst3; finally, to complete the mission of ten pizzas at location c3pst1. The pick-up of the pizza at location c3pst3 could require an additional cart movement.

C3R3T2 - Pick up the cooked pizza from the oven and put on the delivery desk (see also Figure 5.3.1.3-1)

1. At the end of the cooking time move in front of the oven from the rest position with the base of shovel 3 horizontal and the axis perpendicular to the oven (Y-Z plane);
2. with robot terminal part horizontal move inside the oven at a height of 1100 mm till the extremity of the shovel reaches the X coordinate - 700 -$160=-860 \mathrm{~mm}$, i.e. $\mathbf{G P}$ at $X=460 \mathrm{~mm}$;
3. raise up by 10 mm and move back by 1000 mm ;
4. proceed towards location cp1 with the shovel axis perpendicular to the desk achieving a point at 208 mm before the center of location $\mathbf{c p} 1$ and at a height of $202+20=222 \mathrm{~mm}$ above the desk surface ( 20 mm in the dish thickness);
5. rotate Wrist 2 counterclockwise by $15^{\circ}$ and perform a fore and aft movement of 20 mm ;
6. move back the shovel by 1000 mm ;
7. rotate Wrist 2 clockwise by $75^{\circ}$, turn the shovel by $180^{\circ}$ and come back at rest position;
8. inform the kitchen assistant that one cooked pizza is ready for delivery.

Next similar tasks will consider the delivery of cooked pizzas at locations ep2 and cp3; then other two cycles from cp1 to cp3; finally, to complete the mission of ten pizzas at location cp1.



Location centre


At storage or delivery locations c3pst1 or cp1 the GP position when the extremity E1 of the shovel inclined by $15^{\circ}$ is at 160 mm beyond the centre of the location is:

$$
208 \mathrm{~mm}(=368-160) \text { before the location centre }
$$

$$
\begin{aligned}
& \text { [i.e. } \left.30 * \cos 15^{\circ}+\left(100 / \sin 60^{\circ}\right) * \sin 15^{\circ}+320 * \cos 15^{\circ}=368 \mathrm{~mm}\right] \\
& \quad \mathbf{2 0 2} \mathrm{mm} \text { above the table top level } \\
& {\left[\text { i.e. } 30 * \sin 15^{\circ}+\left(100 / \sin 60^{\circ}\right) * \cos 15^{\circ}+320 * \sin 15^{\circ}=202 \mathrm{~mm}\right]}
\end{aligned}
$$

Figure 5.3.1-1 - Explanation of shovel 3 use.

## 6 CONTROL ARCHITECTURE AND SIMULATION

The mathematical model of the collaborative robot (UR10) used for the control architecture is derived referring to [12].

In this paper it is shown how to set the modified DH parameters for the UR5 manipulator and how to perform the inverse kinematics (since the UR3, UR5 and UR10 have similar geometry the study is also valid for the chosen UR10 manipulator).

By performing the inverse kinematics from a given task space position it is possible to obtain up to 8 possible set of joints coordinates values matching that position. Therefore, each task has been previously investigated in order to select the best set of joints coordinates matching the task scope.

## FORWARD KINEMATICS

Starting from the definition of a zero position for the robot, the various references frames needed to describe the joints are set (see Figure 6-1).

(a) Frames describing the UR5 robot.

(b) Visualization

Figure 6-1 - Manipulator zero position and joints reference frames (from [12]).

The modified DH parameters for the defined configuration are reported in Table 6-1.

| $\alpha$ <br> $[\mathrm{rad}]$ | a <br> $[\mathrm{m}]$ | d <br> $[\mathrm{m}]$ | $\theta$ <br> $[\mathrm{rad}]$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | d 1 | q 1 |
| $\pi / 2$ | 0 | 0 | q 2 |
| 0 | a 2 | 0 | q 3 |
| 0 | a 3 | d 4 | q 4 |
| $\pi / 2$ | 0 | d 5 | q 5 |
| $-\pi / 2$ | 0 | d 6 | q 6 |

Table 6-1 - MDH parameters obtained from the robotic model (from [12]).

Using the homogeneous transformation matrix derived from the composition of basic transformations defined by MDH parameters it is possible to obtain the description for the forward kinematics.

## INVERSE KINEMATICS

The study on the inverse kinematics is carried out considering the geometric constraints of the robot. The joints values are (equations from [12]):

$$
\begin{gathered}
\theta_{1}=\operatorname{atan} 2\left({ }^{0} P_{5 y},{ }^{0} P_{5 x}\right) \pm \operatorname{acos}\left(\frac{d_{4}}{\sqrt{{ }^{0} P_{5 x}{ }^{2}+{ }^{0} P_{5 y}{ }^{2}}}\right)+\frac{\pi}{2} \\
\theta_{2}=\operatorname{atan} 2\left(-{ }^{1} P_{4 z},-{ }^{1} P_{4 x}\right)-\operatorname{asin}\left(\frac{-a_{3} \sin \theta_{3}}{\left|{ }^{1} P_{4 x z}\right|}\right) \\
\theta_{3}= \pm \operatorname{acos}\left(\frac{\left|{ }^{1} P_{4 x z}\right|{ }^{2}-a_{2}{ }^{2}-a_{3}{ }^{2}}{2 a_{2} a_{3}}\right)
\end{gathered}
$$

$$
\begin{gathered}
\theta_{4}=\operatorname{atan} 2\left({ }^{3} \hat{X}_{4 y},{ }^{3} \hat{X}_{4 x}\right) \\
\theta_{5}= \pm \operatorname{acos}\left(\frac{{ }^{0} P_{6 x} \sin \theta_{1}-{ }^{0} P_{6 y} \cos \theta_{1}-d_{4}}{d_{6}}\right) \\
\theta_{6}=\operatorname{atan} 2\left(\frac{-{ }^{6} \hat{X}_{0 y} \cdot \sin \theta_{1}+{ }^{6} \hat{Y}_{0 y} \cdot \cos \theta_{1}}{\sin \theta_{5}}, \frac{{ }^{6} \hat{X}_{0 x} \cdot \sin \theta_{1}-{ }^{6} \hat{Y}_{0 x} \cdot \cos \theta_{1}}{\sin \theta_{5}}\right)
\end{gathered}
$$

## MATLAB MODEL

Using the MDH parameters of the UR10 model inside the Robotic Toolbox a model in MATLAB is derived. This model (see Figure 6-1) is useful for the study of the trajectories needed to accomplish the assigned tasks.


Figure 6-1 - MATLAB model using Robotic ToolBox.

### 6.1 GRIPPING POINT TASK PATHS AND TIME-OPTIMAL TRAJECTORIES

Once assigned and defined the positions of all the tools needed to prepare the pizza, a list of points that the gripper needs to cross to perform the tasks has been compiled for each robot and each configuration.

Then starting from this list, the entire trajectories for the robots' end effectors has been determined and imported in MATLAB for the further SIMULINK time performance analysis.

## TASK PATHS

For each crossing point defined by its position in the task space it is initially evaluated, by performing the inverse kinematics analysis, which one among the set of nr. 8 possible manipulator configurations in terms of Joints angles (i.e. Elbow or Wrists orientations) is matching at best the required task.

Having discussed the gripper geometry at Section 4.5, the end effector control point, here also called Gripping Point (GP), is considered at 143 mm forward to the UR10 interface for the end effector.

The GP task paths are expressed in a matrix format with the following contents. It is assumed that at rest position the reference angles of the manipulator Joints are according to Table 6.1-1.

All the tasks normally start from the position reached in the previous task or from the rest position. The appropriate set of joint coordinates matching the task is specified in the top right cell. Sometimes one set only is not appropriated to
perform the entire task, therefore a manually change of the set is introduced.

The 3D visualization of the tool ARTE has been used to verify the absence of interferences during the execution of the task. Appropriate changes have been introduced in case of discovered interferences.

| UR10 Joint | Configuration nr. 1 |  | Configuration nr. 2 |  | Configuration nr. 3 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Robot 1 | Robot 2 | Robot 1 | Robot 2 | Robot 1 | Robot 2 | Robot 3 |
| Base | 90 | -90 | 90 | -90 | 90 | -90 | -90 |
| Shoulder | -153 | -153 | -153 | -153 | -153 | -153 | -153 |
| Elbow | 153 | 153 | 153 | 153 | 153 | 153 | 153 |
| Wrist 1 | -90 | -90 | -90 | -90 | -90 | -90 | -90 |
| Wrist 2 | -90 | -90 | -90 | -90 | -90 | -90 | -90 |
| Wrist 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Table 6.1-1 - UR10 manipulator reference joints angle at rest.

## TASK PATH MATRIX DESCRIPTION

$\mathbf{1}^{\text {st }}$ row - a general requirement for the accomplishment of the task;
Intermediate rows - key crossing points for the accomplishment of the task or specific action to be performed;

Last row - specific action to be performed, like stand by at rest position or continue with next task.
$1^{\text {st }}$ column - brief sub-task description; $\mathbf{2}^{\text {nd }}$ column - GP global reference system X coordinate in mm ; $3^{\text {rd }}$ column - GP global reference system $Y$ coordinate in mm ;
$4^{\text {th }}$ column - GP global reference system Z coordinate in mm ;
$5^{\text {th }}$ column - global reference system rotation around X axis to match the required position of the GP in degrees;
$6^{\text {th }}$ column - global reference system rotation around $Y$ axis to match the
required position of the GP in degrees;
$7^{\text {th }}$ column - global reference system rotation around Z axis to match the required position of the $\mathbf{G P}$ in degrees;

From $8^{\text {th }}$ to $\mathbf{1 0}^{\text {th }}$ column - required priority for the specified global reference system rotations around $\mathrm{X}, \mathrm{Y}$ and Z axes (i.e. 3, 1, 2 means that rotation around Y axis is required first, then rotation around Z axis and finally rotation around X axis);
$11^{\text {th }}$ column - specifies the gripper status $0=$ open, $1=$ closed;
$\mathbf{1 2}^{\text {th }}$ column - specific clarification of requirement for waiting time, commands for other Robots, Wrists, Elbow, Shoulder or Base orientations, Cart use, Manipulator Joints set change, etc.

All the task paths have been included in an EXCEL file named Task paths.xlsx and are reported as images in the Appendix C for each robot and each robot configuration.

## Optimized trajectories

To generate the time-optimal gripper trajectories a novel method described in [12] is used. This method applies to differentiable joint-space paths within boundary limits of joints acceleration and velocity and includes a preprocessing method to convert non differentiable paths, i.e. those derived in Appendix C, in differentiable ones by adding circular blends to smooth the path's corner points, or waypoints connected by straight lines.

At the waypoint the path is instantaneously changing its direction, then it is not differentiable. To avoid the robot to stop at each waypoint a circular blend is added, which starts tangential to the linear path segment at a distance $\boldsymbol{l i}$ before the waypoint and ends tangential to the linear path segment at a distance $\boldsymbol{l}$ after
the waypoint. Moreover, a parameter $\delta$ is set to be sure that the circular segment stays within a minimum distance from the waypoint (see Figure 6.1-1 derived from [13]).

An adaptation of the open-source software, available for download at http://www.golems.org/node/1570, is herein used by introducing the joints velocity and acceleration limits specified by the UR10 manufacturer.


Figure 6.1-1 - Circular blend around waypoint (from [13]).

The software for the herein specific application has been named TRAJ and is developed using the $\mathbf{C}++$ code.

The software TRAJ generates the gripping point trajectories in terms of manipulator joints angles, therefore a conversion of the task paths is initially made to pass from gripping point space coordinates into joints angles (Base, Shoulder, Elbow, Wrist 1, Wrist 2, Wrist 3), in degrees, through the inverse kinematics.

Once obtained the joint angles at the crossing points, the joints performance
speed $\left[\%\right.$ s] and acceleration $\left[\% / s^{2}\right]$ limits and the above defined parameters $\boldsymbol{l}$ and $\boldsymbol{\delta}$ are added as input data to the software TRAJ in order to obtain the manipulator continuous trajectories with an integration interval of $10 \mu \mathrm{~s}$ and a time step definition of 1 ms .

The TRAJ executable code generates two files:

1. joints angles in degree $\left({ }^{\circ}\right)$ for steps of 1 ms ;
2. joints speed in $\%$ for steps of 1 ms .

From the speed plots some singular points where the joint speed is fast changing in a very short time generating acceleration peaks exceeding the performance limits have been found. In most cases this occurs when a shaking movement is introduced to help the fall down of condiments, pizza dough partitions, rolled out pizza and prepared pizza.

To avoid robot stops at these singularities the trajectory is split in two parts by keeping all the trajectory before the singular point and adding all the trajectory after the singular point. This, from a physic point of view, implies a very short robot stop, i.e. of 1 ms , but the joints acceleration remains inside the performance limits.

The final task trajectories are collected per sheet in three EXCEL files, one for each configuration. Despite the task paths, here some time rows are added to include the opening and closing times of the gripper for each specific task. Moreover, the gripper status is redefined as follows:
$-1=$ Open at $70,6 \mathrm{~mm}$ (fully open 85 mm minus 18 steps of $0,8 \mathrm{~mm}$ );
$0=$ Open at 25 mm (fully open 85 mm minus 75 steps of $0,8 \mathrm{~mm}$ );
$1=$ Closed at a width depending from the tool.

In fact, the gripper is normally open 25 mm (status 0 ). When the manipulator reaches the tool pick up point it stops for the time needed to catch the tool.

Considering the single finger speed movement of $150 \mathrm{~mm} / \mathrm{s}$ for steps of $0,4 \mathrm{~mm}$, i.e. closing/opening speed of $300 \mathrm{~mm} / \mathrm{s}$ for steps of $0,8 \mathrm{~mm}$, the gripper activation movement is performed with time steps of $(0,8 / 300) \mathrm{s}$.

When the tool pick-up point thickness is 2 mm (flour container, dough partition trays, condiment containers, tomato sauce ladle, condiment spreading tool) the closing steps are $(25-2) / 0,8=28,75$, i.e. 29 , and the closing time is $28,75 *$ $0,8 / 300=0,07667 \mathrm{~s}$ (used 77 ms , which means 28,875 or 29 steps and that the last closing step, for a tight grip, will be completed after manipulator restart).

When the tool pick-up point thickness is 3 mm (roll pin), the closing steps are $(25-3) / 0,8=27,5$, i.e. 28 , and the closing time is $27,5 * 0,8 / 300=0,07333 \mathrm{~s}$ (used 75 ms , which means 28,125 or 29 steps and that the last closing step, for a tight grip, will be completed after manipulator restart).

When the tool pick-up point thickness is 5 mm (pizza shovels), the closing steps are $(25-5) / 0,8=25$ steps, and the closing time is $25 * 0,8 / 300=0,06667 \mathrm{~s}$ (used 67 ms , which means 25,125 or 26 steps and that the last closing step, for a tight grip, will be completed after manipulator restart).

When the tool pick-up point thickness is 50 mm (origan, salt, garlic and olive oil containers) the gripper must open first up to $70,6 \mathrm{~mm}$, i.e. the opening steps are $(70,6-25) / 0,8=57$ and the opening time is $57 * 0,8 / 300=0,152 \mathrm{~s}($ used 151
ms, which means 56,625 or 57 steps and that the last opening step will be completed before manipulator restart). Then the gripper must close at 50 mm , i.e. the closing steps are $(70,6-50) / 0,8=25,75$ or 26 and the closing time is $25,75 * 0,8 / 300=0,06867 \mathrm{~s}$ (used 68 ms , which means 25,5 or 26 steps and that the last closing step, for a tight grip, will be completed before manipulator restart).

The EXCEL files collecting the task trajectories are named:

Task trajectories Conf_1.xlsx
Task trajectories Conf_2.xlsx
Task trajectories Conf_3.xlsx

## EXCEL FILES FOR MATLAB SIMULATION

For the execution of the time performance analysis by SIMULINK, the above files have been imported in MATLAB to have them correctly structured for the SIMULINK analysis.

The following Figures 6.1-2, Figures 6.1-3 and Figures 6.1-4 give an example of task path and the relevant task trajectory EXCEL file plus its final MATLAB version.

| C2R2T1 | $\underset{[\mathrm{mm}]}{\mathrm{X}}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\underset{[\mathrm{mm}]}{\mathrm{Z}}$ | RX [deg] | RY [deg] | RZ [de] |  | of r |  | Gripper [mm] | Best joint manipulator set |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| before to start check if a request to go at rest position arrives from R1 |  |  |  |  |  |  |  |  |  |  |  |
| at pos fc | 1001 | 81 | 928 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| pick up fc | 1001 | 81 | 928 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| raise up 100 | 1001 | 81 | 1028 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| over Loc 17 | 1200 | 670 | 960 | 90 | 90 | 180 | 2 | 1 | 3 |  |  |
| flour spread | 1220 | 705 | 960 | 90 | 90 | 240 | 2 | 1 | 3 | 1 |  |
|  | 1242 | 712 | 960 | 90 | 90 | 300 | 2 | 1 | 3 | 1 |  |
| * | 1287 | 720 | 960 | 90 | 90 | 360 | 2 | 1 | 3 | 1 |  |
| * | 1300 | 670 | 960 | 90 | 90 | 90 | 2 | 1 | 3 | 1 |  |
| * | 1287 | 620 | 960 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| " | 1271 | 599 | 960 | 90 | 90 | 240 | 2 | 1 | 3 | 1 |  |
| * | 1250 | 583 | 960 | 90 | 90 | 300 | 2 | 1 | 3 | 1 |  |
| " | 1200 | 570 | 960 | 90 | 90 | 360 | 2 | 1 | 3 | 1 |  |
| * | 1150 | 583 | 960 | 90 | 90 | 60 | 2 | 1 | 3 | 1 |  |
| " | 1129 | 599 | 960 | 90 | 90 | 120 | 2 | 1 | 3 | 1 |  |
| " | 1113 | 620 | 960 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| " | 1100 | 670 | 960 | 90 | 90 | 240 | 2 | 1 | 3 | 1 |  |
| " | 1113 | 720 | 960 | 90 | 90 | 360 | 2 | 1 | 3 | 1 |  |
| " | 1129 | 741 | 960 | 90 | 90 | 60 | 2 | 1 | 3 | 1 |  |
| " | 1150 | 757 | 960 | 90 | 90 | 120 | 2 | 1 | 3 | 1 |  |
| " | 1200 | 770 | 960 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| above pos fc | 1001 | 81 | 1028 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| leave fc | 1001 | 81 | 928 | 90 | 90 | 180 | 2 | 1 |  | 1 |  |
| open gripper | 1001 | 81 | 928 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |

Figures 6.1-2 - Example of C1R2T1 task path EXCEL file.


Figures 6.1-3 - Example of C1R2T1 task trajectory EXCEL file.

| time | q1 | q2 | q3 | q4 | q5 | q6 | gripper |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $-182,212$ | $-133,47$ | $-77,5957$ | $-148,935$ | $-92,2118$ | 90,0002 | 0 |
| 0,001 | $-182,212$ | $-133,47$ | $-77,5957$ | $-148,935$ | $-92,2118$ | 90,0002 | 0,01298701 |
| 0,002 | $-182,212$ | $-133,47$ | $-77,5957$ | $-148,935$ | $-92,2118$ | 90,0002 | 0,02597403 |
| 0,003 | $-182,212$ | $-133,47$ | $-77,5957$ | $-148,935$ | $-92,2118$ | 90,0002 | 0,03896104 |
| 0,004 | $-182,212$ | $-133,47$ | $-77,5957$ | $-148,935$ | $-92,2118$ | 90,0002 | 0,05194805 |
| 0,005 | $-182,212$ | $-133,47$ | $-77,5957$ | $-148,935$ | $-92,2118$ | 90,0002 | 0,06493506 |
| 0,006 | $-182,212$ | $-133,47$ | $-77,5957$ | $-148,935$ | $-92,2118$ | 90,0002 | 0,07792208 |
| 0,007 | $-182,212$ | $-133,47$ | $-77,5957$ | $-148,935$ | $-92,2118$ | 90,0002 | 0,09090909 |
| 0,008 | $-182,212$ | $-133,47$ | $-77,5957$ | $-148,935$ | $-92,2118$ | 90,0002 | 0,1038961 |
| 0,009 | $-182,212$ | $-133,47$ | $-77,5957$ | $-148,935$ | $-92,2118$ | 90,0002 | 0,11688312 |
| 0,01 | $-182,212$ | $-133,47$ | $-77,5957$ | $-148,935$ | $-92,2118$ | 90,0002 | 0,12987013 |
| 0,011 | $-182,212$ | $-133,47$ | $-77,5957$ | $-148,935$ | $-92,2118$ | 90,0002 | 0,14285714 |
| 0,012 | $-182,212$ | $-133,47$ | $-77,5957$ | $-148,935$ | $-92,2118$ | 90,0002 | 0,15584416 |
| 0,013 | $-182,212$ | $-133,47$ | $-77,5957$ | $-148,935$ | $-92,2118$ | 90,0002 | 0,16883117 |
| 0,014 | $-182,212$ | $-133,47$ | $-77,5957$ | $-148,935$ | $-92,2118$ | 90,0002 | 0,18181818 |
| 0,015 | $-182,212$ | $-133,47$ | $-77,5957$ | $-148,935$ | $-92,2118$ | 90,0002 | 0,19480519 |
| 0,016 | $-182,212$ | $-133,47$ | $-77,5957$ | $-148,935$ | $-92,2118$ | 90,0002 | 0,20779221 |
| 0,017 | $-182,212$ | $-133,47$ | $-77,5957$ | $-148,935$ | $-92,2118$ | 90,0002 | 0,22077922 |
| 0,018 | $-182,212$ | $-133,47$ | $-77,5957$ | $-148,935$ | $-92,2118$ | 90,0002 | 0,23376623 |
| 0,019 | $-182,212$ | $-133,47$ | $-77,5957$ | $-148,935$ | $-92,2118$ | 90,0002 | 0,24675325 |
| 0,02 | $-182,212$ | $-133,47$ | $-77,5957$ | $-148,935$ | $-92,2118$ | 90,0002 | 0,25974026 |

Figures 6.1-4 - Example of C1R2T1 task trajectory imported in MATLAB (first 20 ms ).

### 6.2 SIMULATION ASSUMPTIONS

To identify the most time performant robot configuration, among the three, a specific mission has been defined for an objective comparison.

The Mission is the preparation of nr. 10 pizzas of different tastes among those possible with the available condiments.

These are the nr. 6 basic pizza tastes listed below.

1. marinara (tomato sauce, salt, origan, garlic, and olive oil).
2. margherita (tomato sauce, salt, mozzarella cheese and olive oil).
3. ortolana (tomato sauce, salt, mozzarella cheese, aubergines, zucchini, peppers, origan
and olive oil).
4. wurstel (tomato sauce, salt, mozzarella cheese, wurstel and olive oil).
5. salsiccia (tomato sauce, salt, mozzarella cheese, sausages and olive oil).
6. prosciutto e funghi (tomato sauce, salt, mozzarella cheese, ham, mushrooms and olive oil).

The available condiments are the following (in parenthesis the workstation location and the container code):

- mozzarella cheese (L3, cc1),
- aubergines (L4, cc2),
- zucchini (L5, cc3),
- peppers (L6, cc4),
- wurstels (L7, cc5),
- sausages (L8, cc6),
- mushrooms (L9, cc7),
- ham (L10, cc8),
- tomato sauce ( $\mathbf{L} 11, \mathbf{t s l})$,
- origan (L13, oc),
- salt (L14, sc),
- garlic (L15, gc), and
- olive oil (L16, ooc).

The pizza taste can be prepared upon a random generation, like normally occurring in pizzeria. However, for the comparative performance analysis it is important to compare the same tasks. For this reason, a specific Pizza

Preparation Mission or Mission is defined. Details are given in the following, where in parenthesis is indicated the sequence of tools to be used, identified by the robot number ( $\mathbf{R} \mathbf{3}$ only for Configuration nr. 3) and the workstation location.

A graphic representation of the Mission is given by Figure 6.2-1.


Figures 6.2-1 - Sequence of pizza tastes to be prepared for the performance analysis (Mission)

- Nr. 1 pizza margherita
- (R2: L20, L21, L19, L18; R1: L11, L14, L3, L12, L16, L2; R3: pst1, oven, cp1)
- Nr. 1 pizza ortolana
- (R2: L20, L24, L19, L18; R1: L11, L14, L3, L4, L5, L6, L12, L13, L16, L2; R3: pst2, oven, cp2)
- Nr. 1 pizza margherita
- (R2: L20, L21, L19, L18; R1: L11, L14, L3, L12, L16, L2; R3: pst3, oven, cp3)
- Nr. 1 pizza prosciutto e funghi
- (R2: L20, L26, L19, L18; R1: L11, L14, L3, L10, L9, L12, L16, L2; R3: pst1, oven, cp1)
- Nr. 1 pizza salsiccia
- (R2: L20, L28, L19, L18; R1: L11, L14, L3, L8, L12, L16, L2; R3: pst2, oven, cp2)
- Nr. 1 pizza margherita
- (R2: L20, L21, L19, L18; R1: L11, L14, L3, L12, L16, L2; R3: pst3, oven, cp3)
- Nr. 1 pizza marinara
- (R2: L20, L29, L19, L18; R1: L11, L14, L13, L15, L16, L2; R3: pst1, oven, cp1)
- Nr. 1 pizza ortolana
- (R2: L20, L24, L19, L18; R1: L11, L14, L3, L4, L5, L6, L12, L13, L16, L2; R3: pst2, oven, cp2)
- Nr. 1 pizza prosciutto e funghi
- (R2: L20, L26, L19, L18; R1: L11, L14, L3, L10, L9, L12, L16, L2; R3: pst3, oven, cp3)
- Nr. 1 pizza wurstel
- (R2: L20, L30, L19, L18; R1: L11, L14, L3, L7, L12, L16, L2; R3: pst1, oven, cp1)

The activities for pizza cooking, oven extraction and final delivery at desk are not part of the simulation and are left to a human kitchen assistant. For the third robot inside the Configuration nr. 3 only task paths and gripper point trajectories for pizza cooking and final delivery are derived.

## TASK SEQUENCE TO ACCOMPLISH THE MISSION

## CONFIGURATION NR. 1

## ROBOT 2

1. C1R2T1, C1R2T2-dpt1, C1R2T3, C1R2T4;
2. C1R2T1, C1R2T2-dpt2, C1R2T3, C1R2T4;
3. C1R2T1, C1R2T2-dpt3, C1R2T3, C1R2T4;
4. C1R2T1, C1R2T2-dpt4, C1R2T3, C1R2T4;
5. C1R2T1, C1R2T2-dpt5, C1R2T3, C1R2T4;
6. C1R2T1, C1R2T2-dpt6, C1R2T3, C1R2T4;
7. C1R2T1, C1R2T2-dpt7, C1R2T3, C1R2T4;
8. C1R2T1, C1R2T2-dpt8, C1R2T3, C1R2T4;
9. C1R2T1, C1R2T2-dpt9, C1R2T3, C1R2T4;
10. C1R2T1, C1R2T2-dpt10, C1R2T3, C1R2T4.

## ROBOT 1

1. C1R1T1, C1R1T4-sc, C1R1T2-cc1, C1R1T3, C1R1T5, C1R1T6-c1pst1;
2. C1R1T1, C1R1T4-sc, C1R1T2-cc1, C1R1T2-cc2, C1R1T2-cc3, C1R1T2-cc4, C1R1T3, C1R1T4-oc, C1R1T5, C1R1T6-c1pst2;
3. C1R1T1, C1R1T4-sc, C1R1T2-cc1, C1R1T3, C1R1T5, C1R1T6-c1pst3;
4. C1R1T1, C1R1T4-sc, C1R1T2-cc1, C1R1T2-cc8, C1R1T2-cc7, C1R1T3, C1R1T5, C1R1T6-c1pst1;
5. C1R1T1, C1R1T4-sc, C1R1T2-cc1, C1R1T2-cc6, C1R1T3, C1R1T5, C1R1T6-c1pst2;
6. C1R1T1, C1R1T4-sc, C1R1T2-cc1, C1R1T3, C1R1T5, C1R1T6-c1pst3;
7. C1R1T1, C1R1T4-sc, C1R1T4-oc, C1R1T4-gc, C1R1T5, C1R1T6c1pst1;
8. C1R1T1, C1R1T4-sc, C1R1T2-cc1, C1R1T2-cc2, C1R1T2-cc3, C1R1T2-cc4, C1R1T3, C1R1T4-oc, C1R1T5, C1R1T6-c1pst2;
9. C1R1T1, C1R1T4-sc, C1R1T2-cc1, C1R1T2-cc8, C1R1T2-cc7, C1R1T3, C1R1T5, C1R1T6-c1pst3;
10. C1R1T1, C1R1T4-sc, C1R1T2-cc1, C1R1T2-cc5, C1R1T3, C1R1T5, C1R1T6-c1pst1.

## CONFIGURATION NR. 2

## ROBOT 2

1. C2R2T1, C2R2T2-dpt1, C2R2T3, C2R2T4;
2. C2R2T1, C2R2T2-dpt2, C2R2T3, C2R2T4;
3. C2R2T1, C2R2T2-dpt3, C2R2T3, C2R2T4;
4. C2R2T1, C2R2T2-dpt4, C2R2T3, C2R2T4;
5. C2R2T1, C2R2T2-dpt5, C2R2T3, C2R2T4;
6. C2R2T1, C2R2T2-dpt6, C2R2T3, C2R2T4;
7. C2R2T1, C2R2T2-dpt7, C2R2T3, C2R2T4;
8. C2R2T1, C2R2T2-dpt8, C2R2T3, C2R2T4;
9. C2R2T1, C2R2T2-dpt9, C2R2T3, C2R2T4;
10. C2R2T1, C2R2T2-dpt10, C2R2T3, C2R2T4.

## ROBOT 1

1. C2R1T1, C2R1T4-sc, C2R1T2-cc1, C2R1T3, C2R1T5, C2R1T6-c2pst1;
2. C2R1T1, C2R1T4-sc, C2R1T2-cc1, C2R1T2-cc2, C2R1T2-cc3, C2R1T2-cc4, C2R1T3, C2R1T4-oc, C2R1T5, C2R1T6-c2pst2;
3. C2R1T1, C2R1T4-sc, C2R1T2-cc1, C2R1T3, C2R1T5, C2R1T6-c2pst3;
4. C2R1T1, C2R1T4-sc, C2R1T2-cc1, C2R1T2-cc8, C2R1T2-cc7, C2R1T3, C2R1T5, C2R1T6-c2pst1;
5. C2R1T1, C2R1T4-sc, C2R1T2-cc1, C2R1T2-cc6, C2R1T3, C2R1T5, C2R1T6-c2pst2;
6. C2R1T1, C2R1T4-sc, C2R1T2-cc1, C2R1T3, C2R1T5, C2R1T6-c2pst3;
7. C2R1T1, C2R1T4-sc, C2R1T4-oc, C2R1T4-gc, C2R1T5, C2R1T6c2pst1;
8. C2R1T1, C2R1T4-sc, C2R1T2-cc1, C2R1T2-cc2, C2R1T2-cc3, C2R1T2-cc4, C2R1T3, C2R1T4-oc, C2R1T5, C2R1T6-c2pst2;
9. C2R1T1, C2R1T4-sc, C2R1T2-cc1, C2R1T2-cc8, C2R1T2-cc7, C2R1T3,

C2R1T5, C2R1T6-c2pst3;
10. C2R1T1, C2R1T4-sc, C2R1T2-cc1, C2R1T2-cc5, C2R1T3, C2R1T5, C2R1T6-c2pst1.

## CONFIGURATION NR. 3

## ROBOT 2

1. C3R2T1, C3R2T2-dpt1, C3R2T3, C3R2T4;
2. C3R2T1, C3R2T2-dpt2, C3R2T3, C3R2T4;
3. C3R2T1, C3R2T2-dpt3, C3R2T3, C3R2T4;
4. C3R2T1, C3R2T2-dpt4, C3R2T3, C3R2T4;
5. C3R2T1, C3R2T2-dpt5, C3R2T3, C3R2T4;
6. C3R2T1, C3R2T2-dpt6, C3R2T3, C3R2T4;
7. C3R2T1, C3R2T2-dpt7, C3R2T3, C3R2T4;
8. C3R2T1, C3R2T2-dpt8, C3R2T3, C3R2T4;
9. C3R2T1, C3R2T2-dpt9, C3R2T3, C3R2T4;
10. C3R2T1, C3R2T2-dpt10, C3R2T3, C3R2T4.

## ROBOT 1

1. C3R1T1, C3R1T4-sc, C3R1T2-cc1, C3R1T3, C3R1T5, C3R1T6-c3pst1;
2. C3R1T1, C3R1T4-sc, C3R1T2-cc1, C3R1T2-cc2, C3R1T2-cc3, C3R1T2-cc4, C3R1T3, C3R1T4-oc, C3R1T5, C3R1T6-c3pst2;
3. C3R1T1, C3R1T4-sc, C3R1T2-cc1, C3R1T3, C3R1T5, C3R1T6-c3pst3;
4. C3R1T1, C3R1T4-sc, C3R1T2-cc1, C3R1T2-cc8, C3R1T2-cc7, C3R1T3, C3R1T5, C3R1T6-c3pst1;
5. C3R1T1, C3R1T4-sc, C3R1T2-cc1, C3R1T2-cc6, C3R1T3, C3R1T5, C3R1T6-c3pst2;
6. C3R1T1, C3R1T4-sc, C3R1T2-cc1, C3R1T3, C3R1T5, C3R1T6-c3pst3;
7. C3R1T1, C3R1T4-sc, C3R1T4-oc, C3R1T4-gc, C3R1T5, C3R1T6-
c3pst1;
8. C3R1T1, C3R1T4-sc, C3R1T2-cc1, C3R1T2-cc2, C3R1T2-cc3, C3R1T2-cc4, C3R1T3, C3R1T4-oc, C3R1T5, C3R1T6-c3pst2;
9. C3R1T1, C3R1T4-sc, C3R1T2-cc1, C3R1T2-cc8, C3R1T2-cc7, C3R1T3, C3R1T5, C3R1T6-c3pst3;
10. C3R1T1, C3R1T4-sc, C3R1T2-cc1, C3R1T2-cc5, C3R1T3, C3R1T5, C3R1T6-c3pst1.

## ROBOT 3 (excluded from the simulation)

- C3R3T1-c3pst1ov; C3R3T2-ovcp1;
- C3R3T1-c3pst2ov; C3R3T2-ovcp2
- C3R3T1-c3pst3ov; C3R3T2-ovcp3;
- C3R3T1-c3pst1ov; C3R3T2-ovcp1;
- C3R3T1-c3pst2ov; C3R3T2-ovcp2
- C3R3T1-c3pst3ov; C3R3T2-ovcp3;
- C3R3T1-c3pstlov; C3R3T2-ovcp1;
- C3R3T1-c3pst2ov; C3R3T2-ovcp2
- C3R3T1-c3pst3ov; C3R3T2-ovcp3;
- C3R3T1-c3pst1ov; C3R3T2-ovcp1.


### 6.3 SIMULATION LOGIC

The simulation analysis is performed using SIMULINK.

The time performance evaluation starts from the workstation fully equipped with tools, the containers filled with condiments cut in small pieces, the origan, salt, garlic, flour and olive oil containers full, the pizza dough partitions ready on the trays with flour below and above. Each robot at rest and for Configuration nr. 3
the shovel tight in the gripper of Robot 3 .

As anticipated in the previous Sections, the two robots operate in parallel with few exceptions. Robot 3 has been not included in the performance study comparison analysis. The Robot 3 logic, as well as the kitchen assistant logic, is described but not included in the SIMULINK structure.

The logic of the actions sequence considers the fact that Robot 1 can operate only if a rolled-out pizza is at location $\mathbf{L 1}$, similarly Robot 2 can transfer the rolled-out pizza to location $\mathbf{L} 1$ only when this location is free. In addition, during the transfer of the rolled-out pizza and during the liberation of location L1, i.e. prepared pizza transfer on the pizza storage table, the robot not busy in these tasks must be at rest, including Robot 3 but only if the busy robot is Robot

## L1.

As a consequence Robot 1 starts from the rest position and goes back to the rest position after completing the pizza preparation tasks till the storage of the prepared pizza on the rear table with no interruptions, but could remain in standby after the last pizza preparation task to wait for Robot 2 to go at rest after having sent a proper request for pizza transfer on the storage table. When at rest, after completing the pizza transfer at storage table, Robot 1 informs Robot 2 that another rolled out pizza dough partition is expected at location L1.

On the contrary Robot 2 starts its tasks from the rest position but may be interrupted upon the request of pizza transfer on the storage table from Robot 1. In this case Robot 2 completes the task in course and will put itself at rest. The sequence of its tasks is completed after receiving the restart message from Robot 1.

Considering also the information that Robot 1 must send to the kitchen assistant or Robot 3 for Configuration nr. 3, i.e. pizza ready for cooking at the specified location, the control logic is based on Questions \& Answers and is summarized as follows.

## Robot 2:

- before each task, check if there is a request to go at rest from R 1 ; if yes go at rest, if not continue with next task;
- terminating the roll out sequence, check if the rolled pizza transfer has been authorized by R1; if yes transfer the pizza, if not wait for authorization.


## Robot 1:

- from rest position, after confirmation from R2 of pizza presence at location L1, complete the own cycle of pizza preparation tasks and wait for R2 and R3 transfer authorizations at last reached position;
- after transfer completion inform R2 and kitchen assistant, or R3, and stay at rest waiting for next pizza on location $\mathbf{L} 1$.


## Robot 3 (not implemented):

- from rest position, after confirmation from R1 of pizza presence at location psti complete the pizza put in the oven task and inform R1 for location psti free;
- before the pizza delivery task, check if there is a request to go at rest from R 1 ; if yes and there is time greater than 25 sec to the pizza exit from the oven task, allow R1 for transfer and remain at rest till R1 pizza transfer task is completed; if there is no request from R 1 or if its request arrives when there are less than 25 sec to the pizza exit from the oven task,
complete the pizza delivery task and inform the kitchen assistant for pizza ready at desk, then go to rest and allow R1 pizza transfer. Note that the calculated (by simulation) overall time required by R1 from request sent to prepared pizza transferred on the pizza storage table is $24,875 \mathrm{sec}$ (the task alone lasts 3 sec less).


## Kitchen assistant (not implemented):

- after confirmation from R1 of pizza presence at location psti pick up the pizza for cooking and inform R1 for location psti free;
- after confirmation from R3 of pizza presence at location cpi pick up the pizza for customer delivery and inform R3 for location cpi free.


### 6.4 SIMULINK ARCHITECTURE

The SIMULINK time performance analysis is structured as described in the following and replicated per each robot configuration. A schematic block diagram is showed in Figure 6.4-1.

At top level there is a chart named SIM_Configuration_i.slx (i=1,2,3) representing the overview of the "Mission" execution process by the given robot configuration. Here there are collected the time variation values during the execution of the "Mission" of any parameter of interest, like Robot status, pizza taste in execution, task in execution, etc..

A representation of this chart is given in Figure 6.4-2.


Figure 6.4-1 - SIMULINK model structure - Schematic block diagram.

At level one there is a chart named SIM_Core_Configuration_i $(i=1,2,3)$ representing the overall management of the "Mission" execution process by the given robot configuration. Here each Robot is managed in the execution of the "Mission" through dedicated libraries of high-level tasks and simple tasks.

A representation of the Core chart is given in Figure 6.4-3.

The high-level tasks are those requiring specific logic checks or inputs before and/or after their execution; simple tasks are those requiring execution only.


Figure 6.4-2 - Top level chart SIM_Configuration_i.


Figure 6.4-3 - Level 1 chart SIM_Core_Configuration_i.

The high-level tasks, contained in Ci_utilityBlocks.slx ( $i=1,2,3$ ) file, are the followings, see also Figure 6.4-4:

1. Pizza taste definition: chart name Pizza_taste
2. Selection of position where a prepared pizza must be allocated: chart name Select_pstx
3. Selection of which pizza dough partition tray must be used: chart name

## Select_dptx

4. Execution start required: chart name Roll_task
5. Execution start required: chart name Flour_task
6. Execution start required: chart name Transfer_task
7. Execution start required: chart name R2_at_rest_task
8. Execution start required: chart name R1_at_rest_task


Figure 6.4-4 - High-level tasks (utility chart) for Configuration nr. 3.

The low-level tasks are those that can be performed in sequence with no interruption once the mission pizza taste has been demanded. Each low-level chart includes the transition action from the final step of the preceding task and the task to be executed.

The low-level tasks for each pizza taste are managed by the Chart Ci_pizza_taste ( $i=1,2,3$ ), see Figure 6.4-5.


Figure 6.4-5 - Low-level tasks management chart Ci-pizza_taste. In sequence from the upper side Marinara, Margherita, Ortolana, Wurstel, Salsiccia, Prosciutto e Funghi.

## 7 SIMULATION RESULTS AND DISCUSSION

The simulation analysis includes two scenarios:

1. scenario 1 to compare the times spent by each configuration to prepare each single pizza taste of the six possible defined tastes;
2. scenario $\mathbf{2}$ to compare the total times spent by each configuration to complete the then pizzas of the defined mission.

Most relevant results are herein reported by post processing using EXCEL the SIMULINK outputs. The more detailed SIMULINK outputs are collected in Appendix D.

### 7.1 SCENARIO 1

This scenario helps to understand the task time execution differences among the robot configurations.

The set of plots in figures from Figure 7.1-1 to Figure 7.1-12 shows the progressive times spent by each robot configuration to accomplish each task and the single task duration times, noting that the different sub tasks needed to prepare each pizza taste by Robot 1 are grouped in one task.

The overall time, represented by the last bar of the progressive task times histograms, is always lower for the Configuration nr. 3 and this is justified by the lower speed of the cart in comparison with the manipulator one (cart speed
$0,9 \mathrm{~m} / \mathrm{s}$, manipulator speed $1 \mathrm{~m} / \mathrm{s}$ ).

When the cart is used, see tasks R2T3, R2T4 and R1-P_prep, the task time is always higher. The time increment is small for tasks R2T3 and R2T4, which use the cart only one time, but is higher for task R1-P_prep as function of the number of tasks using the cart included in the pizza taste preparation, i.e. 4 times for the marinara taste and 2 times for the other pizza taste (see Figure 7.1-2 as an example).. A special case is the pizza Ortolana taste, which includes two tasks using the cart but requires more ingredients and, therefore, more tasks in total (see Table 7.1-1 third raw).

In summary Configuration nr. 3 gains the number of seconds reported in Table 7.1-1 versus the other two robot configurations. The table includes also the Configuration nr. 2 gain of seconds versus the Configuration nr. 1.

The SIMULINK output data used in this Section are collected in an EXCEL file named Single pizza production times.xlsx.

| Pizza taste | Time gain [sec] |  |  | Pizza taste |
| :--- | :---: | :---: | :---: | :---: |
|  | C3 vs C1 | C3 vs C2 | C2 vs C1 |  |

Table 7.1-1 - Delta times among the configurations for each single pizza taste.


Figure 7.1-1 - Pizza Marinara progressive production task times.


Figure 7.1-2 - Pizza Marinara production task times.


Figure 7.1-3 - Pizza Margherita progressive production task times.


Figure 7.1-4 - Pizza Margherita production task times.


Figure 7.1-5 - Pizza Ortolana progressive production task times.


Figure 7.1-6 - Pizza Ortolana production task times.


Figure 7.1-7 - Pizza Wurstel progressive production task times.


Figure 7.1-8 - Pizza Wurstel production task times.


Figure 7.1-9 - Pizza Salsiccia progressive production task times.


Figure 7.1-10 - Pizza Salsiccia production task times.


Figure 7.1-11 - Pizza Prosciutto \& Funghi progressive production task times.


Figure 7.1-12 - Pizza Prosciutto \& Funghi production task times.

### 7.2 SCENARIO 2

In this scenario the full mission production times are simulated and compared among the three robot configurations.

This scenario allows also to evaluate the influence of each robot operating activity on the other robot tasks and the effectiveness of the configuration in terms of operating and not operating times.

The SIMULINK output data used in this Section are collected in an EXCEL file named Mission performance times.xlsx.

### 7.2.1 MISSION PERFORMANCE TIMES

The plot in Figure 7.2.1-1 shows the progressive pizza taste execution time inside the mission for each robot configuration, whilst the details of task progressive times are reported in Table 7.2.1-1. Here the different sub tasks needed to prepare each pizza taste by Robot 1 are grouped in one task (R1Pi_Prep, $\mathrm{i}=\{1,, 10\}$ ).

The main outcoming is that the configuration using two fixed manipulator arms (Configuration nr. 3) is the most performant, which is a good result being this configuration the less expensive among the three.

The better performance of Configuration nr. 3 is evident not only on the final mission result, but also on the production times of any pizza taste, as showed in Figure 7.2.1-2 and Figure 7.2.1-3 and in Table 7.2.1-2 and Table 7.2.1-3,
which report each pizza production time inside the Mission both as progressive time and dedicated time.

As expected, the first pizza production requires more time than the time dedicated to the same pizza inside the mission, see Margherita pizza 1 time compared with Margherita pizza 2 and 3 times in Figure 7.2.1-3 and Table 7.2.1-3. The reason for this is related to the fact that at starting of the mission production process Robot 1 is in standby to wait the first pizza on its location. After the completion of the first pizza the two robots work in parallel reducing the single pizza production time.

The total time required to prepare the defined set of ten pizzas is in a range of 24 - 26 min , being Configuration nr. 3 the most performant one and Configuration nr. 1 the less performant. These times are well competitive with a human pizzaiolo performance times.

In detail the Configuration nr. 3 gains about 150 sec on Configuration nr. 1 and about 37 sec on Configuration nr. 2. Similarly Configuration nr. 2 gains about 113 sec on Configuration nr. 1. This result is detailed in Figure 7.2.1-4.
Progressive pizza taste execution time inside the mission

-     -         -             -                 - Conf. 1 — . . -Conf. $2 \longrightarrow$ Conf. 3

on inside the mission
Figure 7.2.1-1 - Missiondperforniance progressive time of e




| Robot 1 or 2 task | Grouped tasks | Progessive time [sec] |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Conf. 1 | Conf. 2 | Conf. 3 |
|  |  | R1 + R2 | R1 + R2 | R1 + R2 |
| R2_Start |  | 0,000 | 0,000 | 0,000 |
| R2T1 |  | 15,627 | 15,556 | 15,627 |
| R2T2-dpt1 |  | 26,355 | 26,294 | 26,355 |
| R2T3 |  | 76,244 | 75,024 | 75,294 |
| R2T4-R1_Start |  | 94,256 | 93,144 | 92,211 |
| R2T1 |  | 109,883 | 108,700 | 107,838 |
| R2T2-dpt2 |  | 120,517 | 119,342 | 118,472 |
| R1-P1_Prep | [T1+T4-sc+T2-ccl+T3+T5] | 185,264 | 174,687 | 173,491 |
| R2T3 |  | 185,265 | 174,688 | 173,492 |
| R1T6-pst1 |  | 213,624 | 203,041 | 198,387 |
| R2T4-R1_Start |  | 234,638 | 224,163 | 218,306 |
| R2T1 |  | 250,265 | 239,719 | 233,933 |
| R2T2-dpt3 |  | 260,854 | 250,322 | 244,522 |
| R1-P2_Prep | [T1+T4-sc+T2-cc1+T2-cc2+T2-cc3+T2-cc4+T3+T4-oc+T5] | 388,421 | 363,959 | 357,558 |
| R2T3 |  | 388,422 | 363,960 | 357,559 |
| R1T6-pst2 |  | 414,568 | 390,139 | 381,964 |
| R2T4-R1_Start |  | 435,582 | 411,261 | 401,883 |
| R2T1 |  | 451,209 | 426,817 | 417,510 |
| R2T2-dpt4 |  | 461,801 | 437,422 | 428,102 |
| R1-P3_Prep | [T1+T4-sc+T2-cc1+T3+T5] | 526,590 | 492,804 | 483,163 |
| R2T3 |  | 526,591 | 492,805 | 483,164 |
| R1T6-pst3 |  | 551,842 | 518,158 | 507,763 |
| R2T4-R1_Start |  | 572,856 | 539,280 | 527,682 |
| R2T1 |  | 588,483 | 554,836 | 543,309 |
| R2T2-dpt5 |  | 599,126 | 565,487 | 553,952 |
| R1-P4_Prep | [T1+T4-sc+T2-cc1+T2-cc8+T2-cc7+T3+T5] | 692,211 | 649,344 | 637,309 |
| R2T3 |  | 692,212 | 649,345 | 637,310 |
| R1T6-pst1 |  | 720,571 | 677,698 | 662,205 |
| R2T4-R1_Start |  | 741,585 | 698,820 | 682,124 |
| R2T1 |  | 757,212 | 714,376 | 697,751 |
| R2T2-dpt6 |  | 767,639 | 724,839 | 708,178 |
| R1-P5_Prep | [T1+T4-sc+T2-ccl+T2-cc6+T3+T5] | 846,518 | 794,365 | 777,329 |
| R2T3 |  | 846,519 | 794,366 | 777,330 |
| R1T6-pst2 |  | 872,665 | 820,545 | 801,735 |
| R2T4-R1_Start |  | 893,679 | 841,667 | 821,654 |
| R2T1 |  | 909,306 | 857,223 | 837,281 |
| R2T2-dpt7 |  | 919,643 | 867,598 | 847,618 |
| R1-P6_Prep | [T1+T4-sc+T2-cc 1+T3+T5] | 984,687 | 923,210 | 902,934 |
| R2T3 |  | 984,688 | 923,211 | 902,935 |
| R1T6-pst3 |  | 1009,939 | 948,564 | 927,534 |
| R2T4-R1_Start |  | 1030,953 | 969,686 | 947,453 |
| R2T1 |  | 1046,580 | 985,242 | 963,080 |
| R2T2-dpt8 |  | 1056,869 | 995,571 | 973,369 |
| R1-P7_Prep | [T1+T4-sc+T4-oc+T4-gc+T2-cc 1+T5] | 1130,988 | 1050,624 | 1028,109 |
| R2T3 |  | 1130,989 | 1050,625 | 1028,110 |
| R1T6-pst1 |  | 1159,348 | 1078,978 | 1053,005 |
| R2T4-R1_Start |  | 1180,362 | 1100,100 | 1072,924 |
| R2T1 |  | 1195,989 | 1115,656 | 1088,551 |
| R2T2-dpt9 |  | 1206,285 | 1125,990 | 1098,847 |
| R1-P8_Prep | [T1+T4-sc+T2-cc1+T2-cc2+T2-cc3+T2-cc4+T3+T4-oc+T5] | 1334,145 | 1239,896 | 1212,176 |
| R2T3 |  | 1334,146 | 1239,897 | 1212,177 |
| R1T6-pst2 |  | 1360,292 | 1266,076 | 1236,582 |
| R2T4-R1_Start |  | 1381,306 | 1287,198 | 1256,501 |
| R2T1 |  | 1396,933 | 1302,754 | 1272,128 |
| R2T2-dpt10 |  | 1407,311 | 1313,179 | 1282,506 |
| R1-P9_Prep | [T1+T4-sc+T2-cc1+T2-cc8+T2-cc7+T3+T5] | 1500,661 | 1397,262 | 1366,128 |
| R2T3 |  | 1500,662 | 1397,263 | 1366,129 |
| R1T6-pst3 |  | 1525,913 | 1422,616 | 1390,728 |
| R2T4-R1_Start |  | 1546,927 | 1443,738 | 1410,647 |
| R1-P10_Prep | [T1+T4-sc+T2-ccl+T2-cc5+T3+T5] | 1651,916 | 1539,335 | 1505,908 |
| R1T6-pst1 |  | 1677,275 | 1564,688 | 1527,803 |
|  | C1-C2 C1-C3 |  | 112,587 | 149,472 |
|  | C2-C3 |  |  | 36,885 |

Table 7.2.1-1 - Mission performance progressive time of each robot configuration.

MISSION PERFORMANCE PROGRESSIVE TIME


Figure 7.2.1-2 - Mission performance progressive time of each mission pizza taste.

| Mission's pizza | Progessive mission time [sec] |  |  |
| :--- | :---: | :---: | :---: |
|  | Conf. 1 | Conf. 2 | Conf. 3 |
| Pizza 1 - Margherita 1 | 213,624 | 203,041 | 198,387 |
| Pizza 2 - Ortolana 1 | 414,568 | 390,139 | 381,964 |
| Pizza 3 - Margherita 2 | 551,842 | 518,158 | 507,763 |
| Pizza 4 - Prosciutto e funghi 1 | 720,571 | 677,698 | 662,205 |
| Pizza 5 - Salsiccia | 872,665 | 820,545 | 801,735 |
| Pizza 6 - Margherita 3 | 1009,939 | 948,564 | 927,534 |
| Pizza 7 - Marinara | 1159,348 | 1078,978 | 1053,005 |
| Pizza 8 - Ortolana 2 | 1360,292 | 1266,076 | 1236,582 |
| Pizza 9 - Prosciutto e funghi 2 | 1525,913 | 1422,616 | 1390,728 |
| Pizza 10 - Wurstel | 1677,275 | 1564,688 | 1527,803 |

Table 7.2.1-2 - Mission performance progressive time of each mission pizza taste.


Figure 7.2.1-3 - Mission performance dedicated time to each mission pizza taste.

| Mission's pizza | Single pizza time inside the mission [sec] |  |  |
| :--- | :---: | :---: | :---: |
|  | Conf. 1 | Conf. 2 | Conf. 3 |
| Pizza 1 - Margherita 1 | 213,624 | 203,041 | 198,387 |
| Pizza 2 - Ortolana 1 | 200,944 | 187,098 | 183,577 |
| Pizza 3 - Margherita 2 | 137,274 | 128,019 | 125,799 |
| Pizza 4 - Prosciutto e funghi 1 | 168,729 | 159,540 | 154,442 |
| Pizza 5 - Salsiccia | 152,094 | 142,847 | 139,530 |
| Pizza 6 - Margherita 3 | 137,274 | 128,019 | 125,799 |
| Pizza 7 - Marinara | 149,409 | 130,414 | 125,471 |
| Pizza 8 - Ortolana 2 | 200,944 | 187,098 | 183,577 |
| Pizza 9 - Prosciutto e funghi 2 | 165,621 | 156,540 | 154,146 |
| Pizza 10 - Wurstel | 151,362 | 142,072 | 137,075 |

Table 7.2.1-3 - Mission performance dedicated time to each mission pizza taste.


Figure 7.2.1-4 - Mission performance times comparison among the three robot configurations.

### 7.2.2 CONFIGURATION EFFECTIVENESS

The two robot operates with good coherence and synchronization of task times, in fact the waiting time periods are acceptably small for each robot configuration, as can be seen in figures from Figure 7.2.2-1 to Figure 7.2.2-6 and in tables from Table 7.2.2-1 to Table 7.2.2-3.

The not productive times are acceptably small for all the three configurations; in detail they are less than $20 \%$ for Robot 2 (pizza roll out activities) and about $10 \%$ for Robot 1 (pizza preparation activities). This result is shown in Figure

### 7.2.2-7 and Figure 7.2.2-8.

The task requiring more time is the pizza dough roll out task, which results to be of the same order of the pizza taste preparation time, not including the pizza transfer on the storage table. However, its impact on the total mission time is not relevant because the pizza roll out activity is always in the shadow of the pizza taste preparation activity, i.e. it terminates before the completion of the pizza preparation (see figures from Figure 7.2.2-1 to Figure 7.2.2-6 and tables from Table 7.2.2-1 to Table 7.2.2-3).

From all the above considerations, no performance improvements can be obtained by the reduction of Robot 2 activity time, for example by substituting the pin roll use with a press for the spreading of the pizza dough partitions.

The total mission time can be instead reduced with a more performant manipulator arm for Configuration nr. 3 and more performant cart and manipulator for Configuration nr. 1 and 2.


Figure 7.2.2-1 - Robots mission status for Configuration nr. 1.


Figure 7.2.2-2 - Robots mission status for Configuration nr. 1 - Zoom on first 500 sec .

| Configuration 1 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R2 |  |  |  | R1 |  |  |  |
| Time [sec] | Task/Status | Detail | Pizza | Time [sec] | Task/Status | Detail | Pizza |
| 0,000 | None |  |  | 0,000 | None |  |  |
| 0,000 | None |  |  | 0,000 | IDLE1 |  |  |
| 0,000 | FLOUR_TASK | Task start |  | 93,213 | C3_pizza_taste | Task start |  |
| 15,627 | DPTx_SELECTOR | Task start | P1 | 185,264 | IDLE1 | Task end | P1 |
| 26,355 | ROLL_TASK | Task start | P1 | 188,266 | PSTx_SELECTOR | Task start |  |
| 76,244 | T4_TRSM | Task start | P1 | 213,624 | R1_REST | Task start - Transfer end | P1 |
| 94,256 | FLOUR_TASK | Task start | P1 | 216,626 | IDLE1 |  |  |
| 109,883 | DPTx_SELECTOR | Task start | P2 | 233,595 | C3_pizza_taste | Task start |  |
| 120,517 | ROLL_TASK | Task start | P2 | 388,421 | IDLE1 | Task end | P2 |
| 185,265 | R2_REST | Task start | P2 | 391,423 | PSTx_SELECTOR | Task start |  |
| 212,587 | R1_CT |  |  | 414,568 | R1_REST | Task start - Transfer end | P2 |
| 216,626 | T4_TRSM | Task start |  | 417,570 | IDLE1 |  |  |
| 234,638 | FLOUR_TASK | Task start | P2 | 434,539 | C3_pizza_taste | Task start |  |
| 250,265 | DPTx_SELECTOR | Task start | P3 | 526,590 | IDLE1 | Task end | P3 |
| 260,854 | ROLL_TASK | Task start | P3 | 529,592 | PSTx_SELECTOR | Task start |  |
| 388,422 | R2_REST | Task start | P3 | 551,842 | R1_REST | Task start - Transfer end | P3 |
| 413,531 | R1_CT |  |  | 554,844 | IDLE1 |  |  |
| 417,570 | T4_TRSM | Task start |  | 571,813 | C3_pizza_taste | Task start |  |
| 435,582 | FLOUR_TASK | Task start | P3 | 692,211 | IDLE1 | Task end | P4 |
| 451,209 | DPTx_SELECTOR | Task start | P4 | 695,213 | PSTx_SELECTOR | Task start |  |
| 461,801 | ROLL_TASK | Task start | P4 | 720,571 | R1_REST | Task start - Transfer end | P4 |
| 526,591 | R2_REST | Task start | P4 | 723,573 | IDLE1 |  |  |
| 550,805 | R1_CT |  |  | 740,542 | C3_pizza_taste | Task start |  |
| 554,844 | T4_TRSM | Task start |  | 846,518 | IDLE1 | Task end | P5 |
| 572,856 | FLOUR_TASK | Task start | P4 | 849,520 | PSTx_SELECTOR | Task start |  |
| 588,483 | DPTx_SELECTOR | Task start | P5 | 872,665 | R1_REST | Task start - Transfer end | P5 |
| 599,126 | ROLL_TASK | Task start | P5 | 875,667 | IDLE1 |  |  |
| 692,212 | R2_REST | Task start | P5 | 892,636 | C3_pizza_taste | Task start |  |
| 719,534 | R1_CT |  |  | 984,687 | IDLE1 | Task end | P6 |
| 723,573 | T4_TRSM | Task start |  | 987,689 | PSTx_SELECTOR | Task start |  |
| 741,585 | FLOUR_TASK | Task start | P5 | 1009,939 | R1_REST | Task start - Transfer end | P6 |
| 757,212 | DPTx_SELECTOR | Task start | P6 | 1012,941 | IDLE1 |  |  |
| 767,639 | ROLL_TASK | Task start | P6 | 1029,910 | C3_pizza_taste | Task start |  |
| 846,519 | R2_REST | Task start | P6 | 1130,988 | IDLE1 | Task end | P7 |
| 871,628 | R1_CT |  |  | 1133,990 | PSTx_SELECTOR | Task start |  |
| 875,667 | T4_TRSM | Task start |  | 1159,348 | R1_REST | Task start - Transfer end | P7 |
| 893,679 | FLOUR_TASK | Task start | P6 | 1162,350 | IDLE1 |  |  |
| 909,306 | DPTx_SELECTOR | Task start | P7 | 1179,319 | C3_pizza_taste | Task start |  |
| 919,643 | ROLL_TASK | Task start | P7 | 1334,145 | IDLE1 | Task end | P8 |
| 984,688 | R2_REST | Task start | P7 | 1337,147 | PSTx_SELECTOR | Task start |  |
| 1008,902 | R1_CT |  |  | 1360,292 | R1_REST | Task start - Transfer end | P8 |
| 1012,941 | T4_TRSM | Task start |  | 1363,294 | IDLE1 |  |  |
| 1030,953 | FLOUR_TASK | Task start | P7 | 1380,263 | C3_pizza_taste | Task start |  |
| 1046,580 | DPTx_SELECTOR | Task start | P8 | 1500,661 | IDLE1 | Task end | P9 |
| 1056,869 | ROLL_TASK | Task start | P8 | 1503,663 | PSTx_SELECTOR | Task start |  |
| 1130,989 | R2_REST | Task start | P8 | 1525,913 | R1_REST | Task start - Transfer end | P9 |
| 1158,311 | R1_CT |  |  | 1528,915 | IDLE1 |  |  |
| 1162,350 | T4_TRSM | Task start |  | 1545,884 | C3_pizza_taste | Task start |  |
| 1180,362 | FLOUR_TASK | Task start | P8 | 1651,916 | IDLE1 | Task end | P10 |
| 1195,989 | DPTx_SELECTOR | Task start | P9 | 1651,917 | PSTx_SELECTOR | Task start |  |
| 1206,285 | ROLL_TASK | Task start | P9 | 1677,275 | R1_REST | Task start - Transfer end | P10 |
| 1334,146 | R2_REST | Task start | P9 | 1680,277 | IDLE1 |  |  |
| 1359,255 | R1_CT |  |  | 1680,277 | C3_pizza_taste |  |  |
| 1363,294 | T4_TRSM | Task start |  |  |  |  |  |
| 1381,306 | FLOUR_TASK | Task start | P9 |  |  |  |  |
| 1396,933 | DPTx_SELECTOR | Task start | P10 |  |  |  |  |
| 1407,311 | ROLL_TASK | Task start | P10 |  |  |  |  |
| 1500,662 | R2_REST | Task start | P10 |  |  |  |  |
| 1524,876 | R1_CT |  |  |  |  |  |  |
| 1528,915 | T4_TRSM | Task start |  |  |  |  |  |
| 1546,927 | FLOUR_TASK |  | P10 |  |  |  |  |
| 1546,927 | R2end |  |  |  |  |  |  |

Table 7.2.2-1 - Robots mission status for Configuration nr. 1.


Figure 7.2.2-3 - Robots mission status for Configuration nr. 2.


Figure 7.2.2-4 - Robots mission status for Configuration nr. 2 - Zoom on first 500 sec .

| Configuration 2 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R2 |  |  |  | R1 |  |  |  |
| Time [sec] | Task/Status | Detail | Pizza | Time [sec] | Task/Status | Detail | Pizza |
| 0,000 | None |  |  | 0,000 | None |  |  |
| 0,000 | None |  |  | 0,000 | IDLE1 |  |  |
| 0,000 | FLOUR_TASK | Task start |  | 92,089 | C3_pizza_taste | Task start |  |
| 15,556 | DPTx_SELECTOR | Task start | P1 | 174,687 | IDLE1 | Task end | P1 |
| 26,294 | ROLL_TASK | Task start | P1 | 177,689 | PSTx_SELECTOR | Task start |  |
| 75,024 | T4_TRSM | Task start | P1 | 203,041 | R1_REST | Task start - Transfer end | P1 |
| 93,144 | FLOUR_TASK | Task start | P1 | 206,043 | IDLE1 |  |  |
| 108,700 | DPTx_SELECTOR | Task start | P2 | 223,108 | C3_pizza_taste | Task start |  |
| 119,342 | ROLL_TASK | Task start | P2 | 363,959 | IDLE1 | Task end | P2 |
| 174,688 | R2_REST | Task start | P2 | 366,961 | PSTx_SELECTOR | Task start |  |
| 201,997 | R1_CT |  |  | 390,139 | R1_REST | Task start - Transfer end | P2 |
| 206,043 | T4_TRSM | Task start |  | 393,141 | IDLE1 |  |  |
| 224,163 | FLOUR_TASK | Task start | P2 | 410,206 | C3_pizza_taste | Task start |  |
| 239,719 | DPTx_SELECTOR | Task start | P3 | 492,804 | IDLE1 | Task end | P3 |
| 250,322 | ROLL_TASK | Task start | P3 | 495,806 | PSTx_SELECTOR | Task start |  |
| 363,960 | R2_REST | Task start | P3 | 518,158 | R1_REST | Task start - Transfer end | P3 |
| 389,095 | R1_CT |  |  | 521,160 | IDLE1 |  |  |
| 393,141 | T4_TRSM | Task start |  | 538,225 | C3_pizza_taste | Task start |  |
| 411,261 | FLOUR_TASK | Task start | P3 | 649,344 | IDLE1 | Task end | P4 |
| 426,817 | DPTx_SELECTOR | Task start | P4 | 652,346 | PSTx_SELECTOR | Task start |  |
| 437,422 | ROLL_TASK | Task start | P4 | 677,698 | R1_REST | Task start - Transfer end | P4 |
| 492,805 | R2_REST | Task start | P4 | 680,700 | IDLE1 |  |  |
| 517,114 | R1_CT |  |  | 697,765 | C3_pizza_taste | Task start |  |
| 521,160 | T4_TRSM | Task start |  | 794,365 | IDLE1 | Task end | P5 |
| 539,280 | FLOUR_TASK | Task start | P4 | 797,367 | PSTx_SELECTOR | Task start |  |
| 554,836 | DPTx_SELECTOR | Task start | P5 | 820,545 | R1_REST | Task start - Transfer end | P5 |
| 565,487 | ROLL_TASK | Task start | P5 | 823,547 | IDLE1 |  |  |
| 649,345 | R2_REST | Task start | P5 | 840,612 | C3_pizza_taste | Task start |  |
| 676,654 | R1_CT |  |  | 923,210 | IDLE1 | Task end | P6 |
| 680,700 | T4_TRSM | Task start |  | 926,212 | PSTx_SELECTOR | Task start |  |
| 698,820 | FLOUR_TASK | Task start | P5 | 948,564 | R1_REST | Task start - Transfer end | P6 |
| 714,376 | DPTx_SELECTOR | Task start | P6 | 951,566 | IDLE1 |  |  |
| 724,839 | ROLL_TASK | Task start | P6 | 968,631 | C3_pizza_taste | Task start |  |
| 794,366 | R2_REST | Task start | P6 | 1050,624 | IDLE1 | Task end | P7 |
| 819,501 | R1_CT |  |  | 1053,626 | PSTx_SELECTOR | Task start |  |
| 823,547 | T4_TRSM | Task start |  | 1078,978 | R1_REST | Task start - Transfer end | P7 |
| 841,667 | FLOUR_TASK | Task start | P6 | 1081,980 | IDLE1 |  |  |
| 857,223 | DPTx_SELECTOR | Task start | P7 | 1099,045 | C3_pizza_taste | Task start |  |
| 867,598 | ROLL_TASK | Task start | P7 | 1239,896 | IDLE1 | Task end | P8 |
| 923,211 | R2_REST | Task start | P7 | 1242,898 | PSTx_SELECTOR | Task start |  |
| 947,520 | R1_CT |  |  | 1266,076 | R1_REST | Task start - Transfer end | P8 |
| 951,566 | T4_TRSM | Task start |  | 1269,078 | IDLE1 |  |  |
| 969,686 | FLOUR_TASK | Task start | P7 | 1286,143 | C3_pizza_taste | Task start |  |
| 985,242 | DPTx_SELECTOR | Task start | P8 | 1397,262 | IDLE1 | Task end | P9 |
| 995,571 | ROLL_TASK | Task start | P8 | 1400,264 | PSTx_SELECTOR | Task start |  |
| 1050,625 | R2_REST | Task start | P8 | 1422,616 | R1_REST | Task start - Transfer end | P9 |
| 1077,934 | R1_CT |  |  | 1425,618 | IDLE1 |  |  |
| 1081,980 | T4_TRSM | Task start |  | 1442,683 | C3_pizza_taste | Task start |  |
| 1100,100 | FLOUR_TASK | Task start | P8 | 1539,335 | IDLE1 | Task end | P10 |
| 1115,656 | DPTx_SELECTOR | Task start | P9 | 1539,336 | PSTx_SELECTOR | Task start |  |
| 1125,990 | ROLL_TASK | Task start | P9 | 1564,688 | R1_REST | Task start - Transfer end | P10 |
| 1239,897 | R2_REST | Task start | P9 | 1567,690 | IDLE1 |  |  |
| 1265,032 | R1_CT |  |  | 1567,690 | C3_pizza_taste |  |  |
| 1269,078 | T4_TRSM | Task start |  |  |  |  |  |
| 1287,198 | FLOUR_TASK | Task start | P9 |  |  |  |  |
| 1302,754 | DPTx_SELECTOR | Task start | P10 |  |  |  |  |
| 1313,179 | ROLL_TASK | Task start | P10 |  |  |  |  |
| 1397,263 | R2_REST | Task start | P10 |  |  |  |  |
| 1421,572 | R1_CT |  |  |  |  |  |  |
| 1425,618 | T4_TRSM | Task start |  |  |  |  |  |
| 1443,738 | FLOUR_TASK |  | P10 |  |  |  |  |
| 1443,738 | R2end |  |  |  |  |  |  |

Table 7.2.2-2 - Robots mission status for Configuration nr. 2.


Figure 7.2.2-5 - Robots mission status for Configuration nr. 3.


Figure 7.2.2-6 - Robots mission status for Configuration nr. 3 - Zoom on first 500 sec .

| Configuration 3 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R2 |  |  |  | R1 |  |  |  |
| Time [sec] | Task/Status | Detail | Pizza | Time [sec] | Task/Status | Detail | Pizza |
| 0,000 | None |  |  | 0,000 | None |  |  |
| 0,000 | None |  |  | 0,000 | IDLE1 |  |  |
| 0,000 | FLOUR_TASK | Task start |  | 91,168 | C3_pizza_taste | Task start |  |
| 15,627 | DPTx_SELECTOR | Task start | P1 | 173,491 | IDLE1 | Task end | P1 |
| 26,355 | ROLL_TASK | Task start | P1 | 176,493 | PSTx_SELECTOR | Task start |  |
| 75,294 | T4_TRSM | Task start | P1 | 198,387 | R1_REST | Task start - Transfer end | P1 |
| 92,211 | FLOUR_TASK | Task start | P1 | 201,389 | IDLE1 |  |  |
| 107,838 | DPTx_SELECTOR | Task start | P2 | 217,263 | C3_pizza_taste | Task start |  |
| 118,472 | ROLL_TASK | Task start | P2 | 357,558 | IDLE1 | Task end | P2 |
| 173,492 | R2_REST | Task start | P2 | 360,560 | PSTx_SELECTOR | Task start |  |
| 197,350 | R1_CT |  |  | 381,964 | R1_REST | Task start - Transfer end | P2 |
| 201,389 | T4_TRSM | Task start |  | 384,966 | IDLE1 |  |  |
| 218,306 | FLOUR_TASK | Task start | P2 | 400,840 | C3_pizza_taste | Task start |  |
| 233,933 | DPTx_SELECTOR | Task start | P3 | 483,163 | IDLE1 | Task end | P3 |
| 244,522 | ROLL_TASK | Task start | P3 | 486,165 | PSTx_SELECTOR | Task start |  |
| 357,559 | R2_REST | Task start | P3 | 507,763 | R1_REST | Task start - Transfer end | P3 |
| 380,927 | R1_CT |  |  | 510,765 | IDLE1 |  |  |
| 384,966 | T4_TRSM | Task start |  | 526,639 | C3_pizza_taste | Task start |  |
| 401,883 | FLOUR_TASK | Task start | P3 | 637,309 | IDLE1 | Task end | P4 |
| 417,510 | DPTx_SELECTOR | Task start | P4 | 640,311 | PSTx_SELECTOR | Task start |  |
| 428,102 | ROLL_TASK | Task start | P4 | 662,205 | R1_REST | Task start - Transfer end | P4 |
| 483,164 | R2_REST | Task start | P4 | 665,207 | IDLE1 |  |  |
| 506,726 | R1_CT |  |  | 681,081 | C3_pizza_taste | Task start |  |
| 510,765 | T4_TRSM | Task start |  | 777,329 | IDLE1 | Task end | P5 |
| 527,682 | FLOUR_TASK | Task start | P4 | 780,331 | PSTx_SELECTOR | Task start |  |
| 543,309 | DPTx_SELECTOR | Task start | P5 | 801,735 | R1_REST | Task start - Transfer end | P5 |
| 553,952 | ROLL_TASK | Task start | P5 | 804,737 | IDLE1 |  |  |
| 637,310 | R2_REST | Task start | P5 | 820,611 | C3_pizza_taste | Task start |  |
| 661,168 | R1_CT |  |  | 902,934 | IDLE1 | Task end | P6 |
| 665,207 | T4_TRSM | Task start |  | 905,936 | PSTx_SELECTOR | Task start |  |
| 682,124 | FLOUR_TASK | Task start | P5 | 927,534 | R1_REST | Task start - Transfer end | P6 |
| 697,751 | DPTx_SELECTOR | Task start | P6 | 930,536 | IDLE1 |  |  |
| 708,178 | ROLL_TASK | Task start | P6 | 946,410 | C3_pizza_taste | Task start |  |
| 777,330 | R2_REST | Task start | P6 | 1028,109 | IDLE1 | Task end | P7 |
| 800,698 | R1_CT |  |  | 1031,111 | PSTx_SELECTOR | Task start |  |
| 804,737 | T4_TRSM | Task start |  | 1053,005 | R1_REST | Task start - Transfer end | P7 |
| 821,654 | FLOUR_TASK | Task start | P6 | 1056,007 | IDLE1 |  |  |
| 837,281 | DPTx_SELECTOR | Task start | P7 | 1071,881 | C3_pizza_taste | Task start |  |
| 847,618 | ROLL_TASK | Task start | P7 | 1212,176 | IDLE1 | Task end | P8 |
| 902,935 | R2_REST | Task start | P7 | 1215,178 | PSTx_SELECTOR | Task start |  |
| 926,497 | R1_CT |  |  | 1236,582 | R1_REST | Task start - Transfer end | P8 |
| 930,536 | T4_TRSM | Task start |  | 1239,584 | IDLE1 |  |  |
| 947,453 | FLOUR_TASK | Task start | P7 | 1255,458 | C3_pizza_taste | Task start |  |
| 963,080 | DPTx_SELECTOR | Task start | P8 | 1366,128 | IDLE1 | Task end | P9 |
| 973,369 | ROLL_TASK | Task start | P8 | 1369,130 | PSTx_SELECTOR | Task start |  |
| 1028,110 | R2_REST | Task start | P8 | 1390,728 | R1_REST | Task start - Transfer end | P9 |
| 1051,968 | R1_CT |  |  | 1393,730 | IDLE1 |  |  |
| 1056,007 | T4_TRSM | Task start |  | 1409,604 | C3_pizza_taste | Task start |  |
| 1072,924 | FLOUR_TASK | Task start | P8 | 1505,908 | IDLE1 | Task end | P10 |
| 1088,551 | DPTx_SELECTOR | Task start | P9 | 1505,909 | PSTx_SELECTOR | Task start |  |
| 1098,847 | ROLL_TASK | Task start | P9 | 1527,803 | R1_REST | Task start - Transfer end | P10 |
| 1212,177 | R2_REST | Task start | P9 | 1530,805 | IDLE1 |  |  |
| 1235,545 | R1_CT |  |  | 1530,805 | C3_pizza_taste |  |  |
| 1239,584 | T4_TRSM | Task start |  |  |  |  |  |
| 1256,501 | FLOUR_TASK | Task start | P9 |  |  |  |  |
| 1272,128 | DPTx_SELECTOR | Task start | P10 |  |  |  |  |
| 1282,506 | ROLL_TASK | Task start | P10 |  |  |  |  |
| 1366,129 | R2_REST | Task start | P10 |  |  |  |  |
| 1389,691 | R1_CT |  |  |  |  |  |  |
| 1393,730 | T4_TRSM | Task start |  |  |  |  |  |
| 1410,647 | FLOUR_TASK |  | P10 |  |  |  |  |
| 1410,647 | R2end |  |  |  |  |  |  |

Table 7.2.2-3 - Robots mission status for Configuration nr. 3.

ROBOTS PRODUCTIVE AND NOT PRODUCTIVE MISSION TIMES


Figure 7.2.2-7 - Robots productive and not productive mission times for each configuration.


Figure 7.2.2-8 - Robots productive and not productive percentage of mission times for each configuration.

### 7.2.3 CONFIGURATION ADVANTAGES AND DISADVANTAGES

The contents of Table 7.2.3-1 report the main advantages and disadvantages of each robot configuration.

From this table it is possible to derive an optimized solution that can completely substitute a human pizzaiolo in the pizza preparation process.

In fact, the roll out process can be optimized using a fixed manipulator, taking advantage of its better performance and low costs. Similarly, the pizza preparation process can be demanded to a mobile manipulator in order to take advantage of its mobility to pick up a variety of condiment containers, by extending the workstation, in order to produce a big list of pizza taste.

| Robot <br> configuration | Advantages | Disadvantages |
| :---: | :--- | :--- |
| Nr. 1 | 1. Cart mobility gives the <br> possibility to extend the <br> workstation longitudinal <br> dimension in order to allocate <br> more condiment containers to <br> increase the number of pizza <br> taste preparation | 1. High costs <br> 2. Cart speed lower than <br> manipulator end effector speed |
| Nr. 2 | 1. Reduced costs if compared with <br> Config. nr. 1 | 1. Cart speed lower than <br> manipulator end effector speed <br> 2. Cart mobility cannot be <br> extended for Robot 1 otherwise <br> Robot 2 is forced to be stopped |
| Nr. 3 | 1. Lower cost <br> 2. Best time performance | 1. Limited range of action, which <br> does not allow to increase the <br> number of condiment containers <br> and then the number of pizza <br> taste preparation |

Table 7.2.3-1 - Advantages and disadvantages of each robot configuration.

## 8 CONCLUSIONS

The feasibility study for the design of a pizza maker robot using of a simple architecture of hybrid robot (cart-like type) with the possibility to assemble two identical robot units for the execution of high complexity tasks has led to the definition of a robot and relevant workstation of big dimensions requiring a very large kitchen space for their accommodation. This result, which is strictly dependent from the choice to use a 5 DOF cart-like type robot, has not encouraged to carry out a performance study using this robot type.

Consequently, it has been investigated the possibility to use a commercial and collaborative manipulator arm of more complex design (6 DOF) and available on the market also in a mobile version.

Then the workstation and the kitchen lay out have been adapted to the selected commercial UR10 manipulator and its mobile version MMO-700. For this robot a MATLAB model has been developed using the characterisation of the end effector forward and inverse kinematics.

Three different configurations of two robots, using always the same type of manipulator arm, have been investigated, upon the definition of a different list of tasks for each robot unit.

The task paths of the end effector (commercial Robotiq $2 \mathrm{~F}-85$ gripper) have been derived and the performance time for the preparation of a number of ten pizzas of different taste has been evaluated by SIMULINK for each configuration, in order to find the most time performant one and to evaluate if some configuration changes using the same available robot could be done to
improve the time performance. Cooking and delivery time have been taken outside of the performance analysis, as part of kitchen assistant work, but a dedicated robot to these tasks has been included in one configuration for further implementation of pizza cooking and delivery activities.

For the analysed configurations one robot is dedicated to the pizza dough roll out activity, called Robot 2, and another one to the pizza preparation activity (filling with condiments), called Robot 1.

A third robot, called Robot 3, is dedicated to the activities of pizza cooking and delivery at a desk; its tasks, as already said before, have been developed only for one configuration (Configuration nr. 3) but have been excluded from the simulation.

The results of the performance simulation show that for any configuration the pizza preparation times are well competitive if compared with a human pizzaiolo performance times. Moreover, the configuration using two fixed manipulator arms (Configuration nr. 3) is the most effective. This is justified by the lower speed of the cart in comparison with the manipulator one (cart speed $0,9 \mathrm{~m} / \mathrm{s}$, manipulator speed $1 \mathrm{~m} / \mathrm{s}$ ).

The two robot operates with good coherence of task times, in fact the periods of not productive activity are acceptably small for all the three configurations, i.e. they are less than $20 \%$ for Robot 2 (pizza roll out activity) and about $10 \%$ for Robot 1 (pizza preparation activity).

The total time required to prepare the defined set of ten pizzas is in a range of 24 - 26 min, being Configuration nr. 3 the most performant one and Configuration
nr. 1 the less performant. These times are well competitive with a human pizzaiolo performance times.

The robot task requiring more time is the pizza dough roll out, which results to be of the same order of the pizza taste preparation time, not including the pizza transfer on the storage table. However, its impact on the total mission time is not relevant because the pizza roll out activity is always in the shadow of the pizza taste preparation activity, i.e. it terminates before the completion of the pizza preparation.

From all the above, no performance improvements can be obtained by the reduction of Robot 2 activity time, for example by substituting the roll pin use with a press for the spreading of the pizza dough partitions.

The total mission time can be instead reduced with a more performant manipulator arm for Configuration nr. 3 and more performant cart and manipulator for Configuration nr. 1 and 2.

Finally, an optimized solution to fully cover the variety of pizza tastes normally available in a pizzeria, could be a fixed manipulator dedicated to the pizza dough roll out activity, to take advantage of its better performance and low costs, and a mobile manipulator dedicated to the pizza preparation process, to take advantage of its mobility to pick up a variety of condiment containers in order to produce a big list of pizza taste. Of course, a workstation extension would be necessary.

Figure 8-1 gives a sketch of the layout for this configuration.


Figure 8-1 - Optimized robot configuration layout to extend the pizza taste variety that could be prepared.

## REFERENCES

1. "Pizza-making robot to challenge traditional pizzaiolos worldwide," 27 Jun 2018. [Online]. Available:
https://www.youtube.com/watch?v=h9vPCSvx9nM.
2. "Zume delivers made-to-order pizza with robots," 5 Sep 2016. [Online]. Available: https://www.youtube.com/watch?v=uFSdxwRVh8A.
3. "Rodyman: nasce a Napoli il robot pizzaiolo del futuro," 6 May 2016. [Online]. Available: https://www.youtube.com/watch?v=xvnnB8_Ap2o.
4. "The VIEW by Makr Shakr Rooftop," 22 Jul 2019. [Online]. Available: https://www.instagram.com/p/B0N2-
dDoVnh/?utm_source=ig_embed\&utm_campaign=embed_video_watch_ag ain.
5. "The Robot Barista could doom human baristas," 6 Jan 2017. [Online]. Available: https://www.youtube.com/watch?v=sgwD3UQXTRE.
6. "Meet the first robot barista in the U.S.," 30 Jan 2017. [Online]. Available: https://www.youtube.com/watch?v=T5GXK1onZWc.
7. "Nepo, Open Baladin Cobot Machine By Epf Electronics," [Online]. Available: https://www.facebook.com/baladin/videos/622388041592439/.
8. Surdilovic D., Radojicic J., Schulze M. and Dembek M., "Modular Hybrid Robots with Biologically Inspired Actuators and Joint Stiffness Control," in Proceedings of the 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics Scottsdale, AZ, USA, 2008, October 19-22.
9. Radojicic J., Surdilovic D. and Schreck G., "Modular Hybrid Robots for

Safe Human-Robot Interaction," World Academy of Science, Engineering and Technology International Journal of Mechanical and Mechatronics Engineering, vol. 3, no. 12, 2009.
10. Aftab M.K., Vasant P., Ahmad A., Elamvazuthi I. and Rajendran S., "Design and construction of Hybrid Robots for robotics competition," in 2009 Conference on Innovative Technologies in Intelligent Systems and Industrial Applications (CITISIA 2009), Malaysia, 2009.
11. Ijspeert AJ, Crespi A, Ryczko D, Cabelguen JM.; From swimming to walking with a salamander robot driven by a spinal cord model; Science. 2007 Mar 9; 315(5817):1416-20.
12. Andersen R.S., "Kinematics of a UR5," Aalborg University, 2018 May 31.
13. Kunz T. and Stilman M., "Time-Optimal Trajectory Generation for Path Following with Bounded Acceleration and Velocity," Georgia Institute of Technology, Atlanta.
14. "Disciplinare Internazionale per l'ottenimento del marchio collettivo "Verace Pizza Napoletana"," Associazione Verace Pizza Napoletana.

## APPENDIX A

## A1 FEASIBILITY STUDY FOR THE DESIGN OF A PIZZA MAKER HYBRID ROBOT ARCHITECTURE

The criterion adopted for the feasibility study of a pizza maker hybrid robot is to use of a simple robot configuration, whose complexity of performed tasks could be increased by the assembly of two or more similar units.

As a consequence, the identified architecture for each robot unit is a hybrid modular reconfigurable robot (HMRR) composed by a cart with wheels that permits the mono-directional motion on a plane, a robotic arm composed by four revolute joints attached to arm links of different lengths on top of it and finally an end effector, i.e. a gripper, at the end of the chain provided with rotational characteristics (4 DOF for the robotic arm plus 1 DOF for the cart).

The first three joints, starting from the cart, which could move along the $\mathbf{X}$ axis only, permit the rotation of the links around the $\mathbf{X}$ axis. The fourth joint allows the rotation of the end effector around the third link axis.

The first two links are assembled in a serial configuration in a Y-Z plan. The final link with a gripper moves in a plan parallel to the other two links $\mathbf{Y}-\mathbf{Z}$ plan, but with an offset imposed by the tasks to be performed. Physically the offset is a small link orthogonal to the $\mathbf{Y}-\mathbf{Z}$ plan.

The feasibility study model has then 5 degrees of freedoms (DOF) and is schematically shown in Figure A1-1.

The initial foreseen list of tasks to be performed by two robot units is:

- assembly;
- pizza dough partition placement at workstation roll out position;
- roll pin pick up and pizza dough partition roll out;
- disassembly;
- pizza filling with condiments;
- store filled pizzas at a place for later cooking in the oven;
- repositioning of the two robot units at the starting position.


Figure A1-1 - Physical model sketch for the feasibility study single robot unit.

## A2 PIZZA MAKER HYBRID ROBOT GEOMETRY DEFINITION

The definition of each robot unit geometry and the design of the overall work environment arrangement requires a sort of loop, because different requirements are to be satisfied all together. In the following there are details of the list of the adopted requirements.

## A2.1 ADOPTED REQUIREMENTS

In the following there is the list of the used requirements to avoid the risk that some adopted dimensions result in conflict with some tasks to be performed.

## A2.1.1 Longitudinal design (Xaxis)

- the cart length ( $\mathbf{X}$ axis dimension) must be reduced to a minimum because it represents the distance between the grippers of the two robot units in the assembled configuration, having influence on the workstation overall dimensions;
- Link 3 (L3) must have an offset from Link 2 (L2) in order to avoid interferences with the pizza shovel when the prepared pizza is moved to the storage position (manipulator base rotation is not foreseen).


## A2.1.2 WORKSTATION FEATURES AND KITCHEN GENERAL ARRANGEMENT

- The workstation must be wide enough to allow the execution of robot tasks, both in the assembled and single unit configuration, without interferences;
- a free corridor for human personnel assistance in the preparation of the workstation must be left in between the workstation and the cart.


## A2.1.3 LINKS LENGTH

- The gripper of the robotic arm must reach the more distant operating point; worst case is with $\mathbf{L} \mathbf{3}$ vertical;
- the robotic arm must not have Links interferences when operating at the closest point; worst case is with $\mathbf{L} \mathbf{3}$ horizontal.


## A2.1.4 STABILITY (VERTICAL AND LATERAL DESIGN)

- the robotic arm must be free from overturning if the gripper reaches the more distant operating point with $\mathbf{L} 3$ vertical, worst case.


## A2.2 ROBOT LONGITUDINAL DESIGN

One of the main parameters influencing the geometric design of both robot and relevant workstation is the dimension of the available robot components.

In this feasibility study the dimensions of the components have been fixed by capturing them from the robotics visualization toolbox.

The adopted robot components dimensions are reported in Figure A2.2-1 for the single robot unit. They allow to define the overall longitudinal size ( $\mathbf{X}$ axis) of the robotic arm Wa. This quote is a constrain for the overall length of the cart body $\mathbf{X}$ axis dimension $\mathbf{C x}$, which is equivalent to the minimum distance between the gripping points of the two assembled robots.

The $\mathbf{X}$ axis dimension of the cart is also relevant for the overall workstation extension along the $\mathbf{X}$ axis to avoid interferences between the two robots in specific cases of pizza preparation. This point will be discussed later, when the workstation lay out design is described. On the contrary the $\mathbf{Y}$ axis cart dimension is important for the design against overturning during movements.

From Figure A2.2-1 it is possible to derive the minimum overall Wa dimension of the robot arm, by taking into consideration also the filled pizza movement towards the rear table. In fact, during this movement the pizza shovel of 160 mm radius will pass close to the second link from the bottom (L2). Then the center of the gripper must be at least 160 mm from the outer surface of the $\mathbf{L 2}$, or $(\mathbf{a}+$ $\mathbf{b}+\mathbf{c}+\mathbf{d})$ must be at a minimum $(120+160+110+130)=520 \mathrm{~mm}$.

In order to have a little margin in the robot design the value of $\mathbf{b}$ has been taken as 170 mm and the cart length of 550 mm .

The pizza shovel, has been shaped like a disk of 320 mm diameter, assuming a standard pizza diameter of 300 mm .

The extension of the wooden rolling surface of the roll pin is linked to the pizza diameter. However, in this design the longer value of 530 mm has been used to limit the flexibility of the internal shaft of the special rotative roll pin to be adopted.

As a summary, the robot parameters defined in this chapter are showed below:

- cart length $(\mathbf{X}$ axis dimension $)=550 \mathrm{~mm}$
- distance between the two pick up points of the roll pin $=550 \mathrm{~mm}$
- roll pin wooden rolling surface extension $=530 \mathrm{~mm}$
- manipulator revolution joint diameter $(2 \mathbf{a})=240 \mathrm{~mm}$
- manipulator revolution joint extension $(2 \mathbf{c})=260 \mathrm{~mm}$
- manipulator links diameter $(2 \mathbf{d})=220 \mathrm{~mm}$
- gap between joint and link $=4 \mathrm{~mm}$
- distance of the end effector gripper point from $\mathbf{L} 2$ axis $(\mathbf{b}+\mathbf{c})=280 \mathrm{~mm}$


Figure A2.2-1 - Robot components dimensions in mm.

## A2.3 ROBOT WORKSTATION FEATURES AND KITCHEN ARRANGEMENT

In the following there are reported some considerations done for the definition of the workstation and kitchen arrangement using the currently identified architecture of the hybrid robot. However, as outlined in body of the thesis, the operational and performance study for this robot has not been continued due to its big overall dimensions, occupying large kitchen space.

## A2.3.1 Workstation lay out

The basic idea has been a robot reproducing as much as possible the way of working of a human pizzaiolo. Consequently, the pizza maker work environment has been identified as follows:

- a workstation where there are specific locations:
- for the pizza dough partitions allocation, for the roll pin allocation and for the flour container allocation: these locations are unique because in the sequence of robot tasks they will be used only when the robot is in the assembled configuration;
- for pizza dough partition roll out operation: this location is duplicated even if it is used by the two robot units in assembled configuration, because it will be also used for pizza preparation;
- for pizza preparation, for tomato sauce dispenser and ladle allocation, for condiment containers allocation, for condiments spreading tool allocation: these locations are duplicated because the two robot units when disassembled will proceed in parallel and
simultaneously in the execution of the pizza preparation tasks for each own pizza;
- a table for placing the already prepared pizzas;
- an oven location.

In comparison with the real sequence of operations of a human pizzaiolo, this feasibility study has left to the human intervention its final condiment with salt, origan, garlic and olive oil, other than the pizza placing in the oven and its cooking.

The pizza maker workstation has been assumed to be placed against a wall. Taking into consideration the identified tools geometry the workstation overall derived dimensions are 2100 mm X axis length, 1000 mm Y axis depth and 750 $\mathrm{mm} \mathbf{Z}$ axis height at the level of pizza preparation. The condiment containers are at two levels of nominal height of 848 mm and 973 mm to avoid occasional interferences of the robotic arm with tools placed ahead of them. Moreover, the first row of containers axis is placed at 544 mm from the front edge of the workstation and the second row of containers axis at 874 mm .

The reason for the raised levels of condiment containers is to maintain the possibility for the manipulator final link with gripper to pick up them arriving in horizontal position. In fact, being necessary the container overturning above the pizza, to allow condiments fall, the horizontal link position guarantees that the gripper will be out of the condiment falling path. The same applies to the tomato sauce ladle. On the contrary the requirement is not necessary for the pizza doughs trays because the presence of flour between the tray and the dough will allow the dough drop down with a smaller tray rotation.

Two areas have been identified, both for pizza doughs roll out and for pizza preparation. The first activity has been assumed to be accomplished by the two robots in assembled configuration, the second activity to be performed by each robot in parallel and in an independent way.

Nr. 8 types of condiments, allowing the preparation of at least nr. 6 pizza tastes, have been identified:

- mozzarella cheese,
- aubergines,
- zucchini,
- peppers,
- wurstels,
- sausages,
- mushrooms,
- ham.

Therefore, two sets of nr. 8 containers with relevant locations have been foreseen. The two sets have been sufficiently spaced so that the handle of the last one of set number 2 (the left one looking at the work table, i.e. the area reserved to Robot 2 operativity) is distant more than 550 mm from the handle of the first container of set number 1 (the right one looking at the work table, i.e. the area reserved to Robot 1 operativity) in order to avoid interferences between the two robot arms in case of contemporarily use of these containers. Practically the above distance has resulted to be 1010 mm , nominally.

## A2.3.2 WORKSTATION SPECIAL FEATURES

Some special features have been identified for the correct operability of the Robots and to guarantee an almost circular shaped pizza.

## A2.3.2.1 Rotating mechanism at pizza dough roll out location

As already mentioned, for the currently defined robot configuration the use of the roll pin requires the availability of a rotating mechanism at pizza roll out location to be sure to realize an almost circular shaped pizza.

Therefore at both pizza roll out locations the pizza shovel, which is shaped like a disc of 320 mm diameter, will rest over a sort of record player activated by the release of a button situated in the roll pin accommodation place, when the roll pin is picked up for use.

In addition, when the roll pin applies pressure on the pizza shovel the motor below will be stopped and put in standby; when the roll pin does not apply pressure, the motor will rotate one time the pizza shovel by $45^{\circ}$, always in the same direction. Therefore, once completed the sequence of roll out actions, the pizza dough will result rolled out in all directions with a high probability to achieve an almost circular shaped pizza. The mechanism will be disabled when the roll pin will return on its allocation place.

The pizza shovel rotating mechanism will be accommodated into a recess of the workstation ( 12 mm in depth and 324 mm of diameter) in order to allow the pizza dough roll out at the same level of the workstation surface.

Figure A2.3.2.1-1 gives a representation of this mechanism where the workstation top surface has been removed.


Figure A2.3.2.1-1 - Pizza shovel rotating mechanism, roll pin and tomato sauce dispenser accommodation. The workstation top surface has been removed.

## A2.3.2.2 Tomato sauce dispenser

Regarding the tomato sauce, in order to be sure to use always the same quantity of sauce, it has been foreseen a dispenser that will be activated one time when a button will be pushed by the ladle. The robot has to pick up the ladle, move it against the push button, wait for tomato sauce supply, move back the ladle to have it far away from the dispenser obstruction and rise up the ladle to complete the list of tasks related to the use of this tool. A special allocation with a recess of 25 mm has been foreseen for the tomato sauce ladle. The container of sauce dispenser will be allocated below the work table surface (see Figure A2.3.2.11).

## A2.3.2.3 Smart location for tools

The location on the work station of any tool is realized with a recess of 2 mm with respect to the work station surface, enlarged by 2 mm in diameter and provided with an indentation to accommodate the special featured handle of the tools to avoid human wrong positioning of them during the work station preparation. A special feature, as described in the previous Section A2.3.2.2, has been arranged for the tomato sauce ladle. Figure A2.3.2.3-1 gives a representation of the smart location for tools feature.


Figure A2.3.2.3-1 - Smart location for tools.

## A2.3.3 PIZZA MAKER ROBOT ALLOCATION

The bodies of pizza maker robot carts are to be placed at a convenient lateral distance ( $\mathbf{Y}$ axis) from the workstation to preserve easy transit to the assistant personnel during the workstation preparation phase. Of course, this distance is to be contained as much as possible to limit the robot Links extension. Here a distance value of 550 mm of the carts body from the workstation has been used.

The table where the already prepared pizzas are to be stored has been placed in front of the workstation and behind the pizza maker robots at a distance from the carts body of 180 mm . This distance is enough to allow robot arms movements without interferences and is not cause of other design constraints.

The overall dimensions for the pizzas storage table, according to the pizza shovel diameter and the number of 6 pizzas to be stored, will result 2400 mm X axis length, $400 \mathrm{~mm} \mathbf{Y}$ axis depth and $750 \mathrm{~mm} \mathbf{Z}$ axis height. The dedicated personnel for pizzas cooking will operate on the other side of this table. The oven has been placed on the right side of the workstation.

The schematic arrangement of the pizza maker robot workstation and the overall kitchen arrangement is given in Figure A2.3.3-1, realized with the tool SKETCHUP.


Figure A2.3.3-1 - Schematic arrangement of the pizza maker robot workstation and overall kitchen arrangement realised with the tool SKETCHUP.

As a summary, the workstation geometry and the overall environment disposition quotes derived in this chapter are showed below:

- workstation length $(\mathbf{X}$ axis dimension $)=2100 \mathrm{~mm}$
- $\quad$ workstation depth $(\mathbf{Y}$ axis dimension $)=1000 \mathrm{~mm}$
- workstation height at pizza roll out and preparation level ( $\mathbf{Z}$ axis dimension) $=750 \mathrm{~mm}$
- workstation height at first level of condiments containers ( $\mathbf{Z}$ axis dimension) $=850 \mathrm{~mm}$
- workstation height at second level of condiments containers ( $\mathbf{Z}$ axis dimension) $=975 \mathrm{~mm}$
- first row of containers axis distance from the workstation front edge $=544$ mm
- second row of containers axis distance from the workstation front edge $=$ 874 mm
- pizza diameter $=300 \mathrm{~mm}$
- pizza shovel diameter $=320 \mathrm{~mm}$
- tools locations featured with a recess on the workstation surface and with an indentation for proper accommodation of tools
- pizza shovel rotating mechanisms for uniform pizza dough roll out rotating steps $=45^{\circ}$
- cart body distance from the workstation ( $\mathbf{Y}$ axis direction) $=550 \mathrm{~mm}$
- cart body distance from the table for the storage of the already prepared pizzas $=180 \mathrm{~mm}$
- table for the storage of the already prepared pizzas length ( $\mathbf{X}$ axis dimension) $=2400 \mathrm{~mm}$
- table for the storage of the already prepared pizzas depth ( $\mathbf{Y}$ axis dimension) $=400 \mathrm{~mm}$
- table for the storage of the already prepared pizzas height ( $\mathbf{Z}$ axis dimension) $=750 \mathrm{~mm}$


## A2.4 LINKS LENGTH

To fix the lengths of the three robot links the following considerations from the schematic view in Figure A2.4-1 have been done.

- The distance of Joint $1(\mathbf{J} 1)$ axis from the workstation must be contained in order to minimize the length of Link $1(\mathbf{L} 1)$;
- the height of $\mathbf{J} \mathbf{1}$ axis influences the total height of the robot arm; i.e. a higher position of $\mathbf{J} \mathbf{1}$ will result in a higher value of the sum of lengths $\mathbf{L} 1$ plus L2;
- the Cart body width must be contained in order to reduce the overall area occupied by the robot during its operation and to minimize the length of


## L1;

- the sum of $\mathbf{L} \mathbf{1}$ and $\mathbf{L} \mathbf{2}$ lengths must have a value to allow the achievement of the more distant operating point $\mathbf{P} \mathbf{2}$ for the worst case of $\mathbf{L} \mathbf{3}$ vertical, with $\mathbf{J} \mathbf{2}$ axis higher than $\mathbf{P 2}$ height plus $\mathbf{L} \mathbf{3}$ length, to avoid robotic arm interferences with the workstation lay out;
- there must be no interference between $\mathbf{L} 1$ and $\mathbf{L} 2$ when the closest operating point $\mathbf{P 1}$ is achieved with $\mathbf{L} \mathbf{3}$ horizontal.

Once the $\mathbf{J 1}$ axis position has been fixed and $\mathbf{L} \mathbf{1}, \mathbf{L} \mathbf{2}, \mathbf{L} \mathbf{3}$ lengths have been defined, the stability of the robot to overturning around $\mathbf{X}$ axis must be verified.


Figure A2.4-1 - Schematic view of the working area arrangement and robotic arm movements.

Assuming:

- height of $\mathbf{J} \mathbf{1}$ axis $=600 \mathrm{~mm}$
- distance of $\mathbf{J 1}$ axis from the workstation $=900 \mathrm{~mm}$
- width of cart body $=700 \mathrm{~mm}$
- height of $\mathbf{P 1}=750 \mathrm{~mm}$
- height of $\mathbf{P 2}=1193 \mathrm{~mm}$
- length of $\mathbf{L} \mathbf{3}=300 \mathrm{~mm}$
and referring to Figure A2.4-2 we can also assume $\mathbf{L 1}=1200 \mathrm{~mm}$, obtaining a $=801,593 \mathrm{~mm}$. Now $\mathbf{L} 2$ must be greater than $1774-801,593=972,41 \mathrm{~mm}$.

Here $\mathbf{L} \mathbf{2}=980 \mathrm{~mm}$ has been assumed and the verification that there is no interference between $\mathbf{L} \mathbf{1}$ and $\mathbf{L} \mathbf{3}$ for the worst-case operating point $\mathbf{P} 1$ has been performed. The calculation gives $\gamma=27,92^{\circ}$ and is reported in the same Figure A2.4-2.

Being $\gamma_{\min }=17,029^{\circ}$, as can be seen from Figure A2.4-3, the criteria of no interference between $\mathbf{L} \mathbf{1}$ and $\mathbf{L} \mathbf{3}$ is verified.

As a summary the additional robot dimensions and overall environment disposition quotes derived in this Section are showed below:

- length of $\mathbf{L} \mathbf{1}=1200 \mathrm{~mm}$
- length of $\mathbf{L} \mathbf{2}=980 \mathrm{~mm}$
- length of $\mathbf{L 3}=300 \mathrm{~mm}$
- height of $\mathbf{J} \mathbf{1}$ axis $=600 \mathrm{~mm}$
- distance of $\mathbf{J 1}$ axis from the workstation $=900 \mathrm{~mm}$
- cart width (Y axis) 700 mm
- height of $\mathbf{P 1}=750 \mathrm{~mm}$
- height of $\mathbf{P 2}=1193 \mathrm{~mm}$


Design criteria: L2 greather than 1774-a


Figure A2.4-2 - Schematic representation of design worst case gripper operating points.

Drawing not in scale - Hybrid robot in non-work position - Quotes in mm

Figure A2.4-3 - Schematic view of contact angle between Link 1 and Link 3.

## A2.5 STABILITY CONSIDERATIONS

To complete the design geometry, it has been verified that the robot architecture is free from overturning during its operation.

To perform this analysis the robot masses have been quantified.

Referring to Figure A2.5-1 it is assumed that the robot may be schematically represented by concentrated masses in the middle of each Joint. Each Joint mass includes half mass of any Link concurring to that Joint.

Considering an aluminum and plastic structure, the following masses were used for the analysis:

- M1 $=50 \mathrm{~kg}$
- M2 = 12 kg
- M3 $=10 \mathrm{~kg}$
- M4 $=8 \mathrm{~kg}$
- M5 $=10 \mathrm{~kg}$
- M6 $=6 \mathrm{~kg}$

M6 is the maximum workload, which never exceeds 6 kg .

In fact, the pizza shovel is a stainless-steel disk of 320 mm diameter and 2 mm thickness. Its weight is:

$$
\pi * 1,60^{2} * 0,02 * 7,85=1,26 \mathrm{~kg},
$$

being $7,85 \mathrm{~kg} / \mathrm{dm}^{3}$ the stainless-steel specific weight.

The pizza weight is normally not more than $0,4 \mathrm{~kg}$. Therefore, the shovel plus pizza weight is less than 2 kg .

The special roll pin, having a stainless-steel bar in the middle has a weight of less than $3,5 \mathrm{~kg}$ and is used by the two robot units.

Its weight details are:

- body in dried beech wood (specific weight $0,73 \mathrm{~kg} / \mathrm{dm}^{3}$ )

$$
\pi *\left(0,4^{2}-0,11^{2}\right) * 5,3 * 0,73=1,8 \mathrm{~kg}
$$

- low friction plastic material tube (specific weight $2,2 \mathrm{~kg} / \mathrm{dm}^{3}$ )

$$
\pi *\left(0,11^{2}-0,10^{2}\right) * 5,3 * 2,2=0,078 \mathrm{~kg}
$$

- stainless steel shaft (specific weight $7,85 \mathrm{~kg} / \mathrm{dm}^{3}$ )

$$
\pi *\left(0,1^{2}\right) * 5,48 * 7,85=1,31 \mathrm{~kg}
$$

- nr. 2 stainless steel handles (specific weight $7,85 \mathrm{~kg} / \mathrm{dm}^{3}$ )

$$
2 *(0,02 * 0,4 \times 1,15) * 7,85=0,144 \mathrm{~kg}
$$

The heaviest loads are the containers filled with condiments. Considering the container structure in stainless steel composed by a cylinder of $0,5 \mathrm{~mm}$ thickness and a height of 200 mm , a disc base of 180 mm diameter and $0,5 \mathrm{~mm}$ thickness, a rectangular handle $40 \times 240 \times 2 \mathrm{~mm}$, and assuming a specific weight for the heaviest ingredient of $0,9 \mathrm{~kg} / \mathrm{dm}^{3}$ the resultant weight is:

$$
\begin{gathered}
{\left[\pi *\left(0,9^{2}\right) * 0,005+\pi * 1,8 * 2 * 0,005+0,4 * 2,4 * 0,02\right] * 7,85+} \\
+\pi *\left(0,9^{2}\right) * 2 * 0,9=5,27 \mathrm{~kg}
\end{gathered}
$$

If few grams of the grid above the container are added, the total weight does not exceed 6 kg .

Worst case for stability proof is the robotic arm fully extended, even if this is not a working condition. At the gripper point the workload of M6 $=6 \mathrm{~kg}$ has been concentrated.

From the mass moments balance referring to the cart wheelbase center line $\mathbf{W b C L}$ in the Y-Z plane gives (see Figure A2.5-2):

$$
\mathbf{M} 6 * 2480+(\mathbf{M} 5+\mathbf{M} 4) * 2180+\mathbf{M} 3 * 1200+\mathbf{M} \mathbf{2} * 0+\mathbf{M} 1 * 0=\mathbf{M t} * \mathbf{d}
$$

having assumed the mass of cart centered on the wheelbase ( $\mathbf{W b}$ ). By substituting the mass values, it is obtained:

$$
\mathbf{d}=688,75 \mathrm{~mm} \quad \text { for } \mathbf{M} \mathbf{1}=50 \mathrm{~kg}
$$

or

$$
\mathbf{d}=268,785 \mathrm{~mm} \quad \text { for } \mathbf{M 1}=200 \mathrm{~kg}
$$

Also, the height $\mathbf{h}$ of $\mathbf{M t}$ in the robot fully extended condition can be calculated:

$$
(\mathbf{M} 6+\mathbf{M} 5+\mathbf{M} 4+\mathbf{M} 3+\mathbf{M} 2) * 600+\mathbf{M} 1 * 200=\mathbf{M t} * \mathbf{h}
$$

i.e., for $\mathbf{M 1}=50 \mathrm{~kg}: \quad \mathbf{h}=392 \mathrm{~mm}$

In Figure A2.5-1 it is also showed the hybrid robot center of gravity height Hregz in the non-work configuration and the longitudinal position $\mathbf{S c}$ ( $\mathbf{X}$ axis) of the cart mass M1 to center on the Centre Line the overall hybrid robot CG.

$$
\mathbf{M 5} * 2780+\mathbf{M} 4 * 2780+\mathbf{M} 2 * 600+\mathbf{M} 1 * 200=\mathbf{M t} * \mathbf{H r c g z}
$$

i.e., now Mt $=90 \mathrm{~kg}: \quad \mathbf{H r c g z}=747,11 \mathrm{~mm}$
and

$$
\mathbf{M} 5 * 145+\mathbf{M} 3 * 109-\mathbf{M} 1 * \mathbf{S c}-\mathbf{M} 2 * 135-\mathbf{M} 4 * 135=0
$$

i.e.:

$$
\mathbf{S c}=-3,2 \mathrm{~mm}
$$

To avoid overturning the cart wheelbase must be at least the double of $\mathbf{d}$. Practically, from the above calculation, a very large or a very heavy cart should be realized. Moreover, it is not convenient to move the cart center of gravity far away from the wheelbase center line because the robotic arm will operate also on the other side for pizza storage.

To contain the width of the cart it was necessary to foresee the application of a balance mass. In Figure A2.5-3 it is introduced a balance mass at the extremity of L1 with a center of gravity height MBcg at a distance of 300 mm from J1 axis. The accommodation of the balance mass requires a cart design modification to create a recovery area for it.

Now the robot stability can be verified using the mass moments balance referred to the cart wheelbase center line $\mathbf{W b C L}$ in the $\mathbf{Y}-\mathbf{Z}$ plane (see Figure A2.5-4):

$$
\begin{gathered}
\mathbf{M} 6 * 2480+(\mathbf{M} 5+\mathbf{M} 4) * 2180+\mathbf{M} 3 * 1200+\mathbf{M} 2 * 0+\mathbf{M} 1 * 0- \\
\mathbf{M B} * 300=\mathbf{M t} * \mathbf{d}
\end{gathered}
$$

Using MB $=70 \mathrm{~kg}$ the total mass will be $\mathbf{M t}=166 \mathrm{~kg}$, and $\mathbf{d}=271,81 \mathrm{~mm}$.


Dawing not in scale - Hybrid robot in non-work position - Masses in kg - Quotes in mm

Figure A2.5-1 - Schematic representation of the hybrid robot masses before optimization.


Masses in kg - Quotes in mm

Figure A2.5-2 - Schematic representation for stability analysis with no balance mass.

Similarly, the height $\mathbf{h}$ of $\mathbf{M t}$ will result:
$(\mathbf{M 6}+\mathbf{M} 5+\mathbf{M} 4+\mathbf{M} 3+\mathbf{M} 2) * 600+\mathbf{M} 1 * 200+\mathbf{M B} * 600=\mathbf{M t} * \mathbf{h}$
or:

$$
\mathbf{h}=479,52 \mathrm{~mm}
$$

In Figure A2.5-3 it is also showed the hybrid robot center of gravity height Hrcgz in the non-work configuration and the longitudinal position $\mathbf{S c}$ ( $\mathbf{X}$ axis) of the cart mass M1 to center on the Centre Line the overall hybrid robot CG.
$\mathbf{M 5} * 2780+\mathbf{M} 4 * 2780+\mathbf{M} 2 * 600+\mathbf{M B} * 300+\mathbf{M 1} * 200=\mathbf{M t} * \mathbf{H r c g z}$
i.e., now $\mathbf{M t}=160 \mathrm{~kg} \quad \mathbf{H r c g z}=551,5 \mathrm{~mm}$
and

$$
\mathbf{M} 5 * 145+\mathbf{M} 3 * 109+\mathbf{M B} * 109-\mathbf{M} 1 * \mathbf{S c}-\mathbf{M} 2 * 135-\mathbf{M} 4 * 135=0
$$

i.e.:

$$
\mathbf{S c}=149,4 \mathrm{~mm}
$$

Finally, the last hybrid robot design parameters can be defined.

In fact, the cart wheelbase must be more than $2 \times 269=538 \mathrm{~mm}$.

The cart body width was already assumed to be 700 mm ; therefore, wheels 100 mm wide and a conservative value of 600 mm for the cart wheelbase can be adopted. As far as wheel diameter is concerned it is preferable to adopt small radius wheels in order to control higher values of revolution for small displacements of the cart. The assumed wheel diameter was 160 mm and the number of wheels 4 .

As a summary the final robot dimensions derived in this chapter are showed below:

- cart wheelbase $\mathbf{W b}=600 \mathrm{~mm}$
- number of cart wheels $=4$
- cart wheels diameter $=160 \mathrm{~mm}$
- cart wheels width $=100 \mathrm{~mm}$
- balance mass $\mathbf{M B}=70 \mathrm{~kg}$
- cart mass M1 $=50 \mathrm{~kg}$
- $\operatorname{robotic}$ arm mass $(\mathbf{M} 2+\mathbf{M} 3+\mathbf{M 4}+\mathbf{M 5})=40 \mathrm{~kg}$
- hybrid robot weight $=160 \mathrm{~kg}$
- balance mass arm length $=300 \mathrm{~mm}$


Dawing not in scale - Hybrid robot in non-work position - Masses in kg - Quotes in mm

Figure A2.5-3- Schematic representation of the hybrid robot masses optimized with a balance mass.


Figure A2.5-4 - Schematic representation for stability analysis with balance mass.

## A3 FEASIBILITY STUDY ROBOT MATHEMATICAL MODEL

To carry out the development of the mathematical model of the hybrid two robots layout a first simplification has been made by carrying out the study only for the kinematics motion of a single cart.

For the preliminary study, as already mentioned before, the simple robot model is composed by a prismatic joint (which represents the movement on a straight line, for positive and negative motion with respect to the initial base position) followed by four revolute joints (that compose the effective robotic arm).

## A3.1 SIMPLE MODEL - FORWARD KINEMATICS

The model used is a three massless links robot schematically reported in Figure
A3.1-1; the obtained Denavit-Hartenberg parameters are reported in Table A3.11.

In Figure A3.1-2 there is a plot of the robot generated by the robotic toolbox with the above-mentioned DH parameters.

In order to obtain the homogeneous transformation matrix representing the end effector position with respect to the coordinate system of the base, the composition of the various matrix that link a generic link to its previous one has been done giving the rotation and translation matrixes in Equation A3.1-1.


Figure A3.1-1 - Physical model sketch for the simpler robot module.


Figure A3.1-2 - A representation of the simpler model robot using Robotic Toolbox by Peter Corke.

| $\theta$ <br> $[\mathrm{rad}]$ | d <br> $[\mathrm{m}]$ | a <br> $[\mathrm{m}]$ | $\alpha$ <br> $[\mathrm{rad}]$ |
| :---: | :---: | :---: | :---: |
| 0 | q 1 | 0 | $\pi$ |
| $\pi / 2$ | q 2 | A 1 | $\pi$ |
| q 3 | -G 1 | L 1 | 0 |
| q 4 | G 2 | L 2 | 0 |
| q 5 | G 3 | 0 | $-\pi / 2$ |
| q 6 | L 3 | 0 | 0 |

Table A3.1-1 - DH parameters obtained from the robotic model.

$$
\begin{gathered}
\boldsymbol{R}_{\text {gripper }}^{\text {base }}=\left[\begin{array}{ccc}
\sin \left(q_{3}+q_{4}+q_{5}\right) * \cos \left(q_{6}\right) & -\sin \left(q_{3}+q_{4}+q_{5}\right) * \sin \left(q_{6}\right) & \cos \left(q_{3}+q_{4}+q_{5}\right) \\
-\cos \left(q_{3}+q_{4}+q_{5}\right) * \cos \left(q_{6}\right) & \cos \left(q_{3}+q_{4}+q_{5}\right) * \sin \left(q_{6}\right) & \sin \left(q_{3}+q_{4}+q_{5}\right) \\
-\sin \left(q_{6}\right) & 0
\end{array}\right] \\
\boldsymbol{t}_{\text {gripper }}^{\text {base }}=\left[q_{6}\right) \\
=\left[\begin{array}{c}
L_{1} * \sin \left(q_{3}\right)+L_{2} * \sin \left(q_{3}+q_{4}\right)+L_{3} * \cos \left(q_{3}+q_{4}+q_{5}\right) \\
-L_{1} * \cos \left(q_{3}\right)-L_{2} * \cos \left(q_{3}+q_{4}\right)+L_{3} * \sin \left(q_{3}+q_{4}+q_{5}\right)-A_{1} \\
G_{2}-G_{1}+G_{3}+q_{1}-q_{2}
\end{array}\right]
\end{gathered}
$$

Equation A3.1-1 - Rotation and translation matrixes using DH parameters.

However, the feasibility study has been carried out with respect to a global reference system having the origin at the rear bottom corner of the workstation. Therefore, the Equation A3.1-1 has to be transformed in order to obtain the homogeneous transformation matrix that represents the gripper position in the global reference system (Equation A3.1-2).

$$
\begin{gathered}
T_{\text {gripper }}^{\text {glooal }}=T_{\text {base }}^{\text {global }} * T_{\text {gripper }}^{\text {base }}=T\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right) * R_{z}\left(-\frac{\pi}{2}\right) * R_{x}\left(-\frac{\pi}{2}\right) * T_{\text {gripper }}^{\text {base }} \\
=\left[\begin{array}{cccc}
0 & 0 & 1 & x \\
-1 & 0 & 0 & y \\
0 & -1 & 0 & z \\
0 & 0 & 0 & 1
\end{array}\right] * T_{\text {gripper }}^{\text {base }}
\end{gathered}
$$

Equation A3.1-2 - Transformation to get the homogeneous matrix in the global reference system from the base system. $\mathrm{x}, \mathrm{y}$ depend on which robot is considered, z corresponds to R

The overall homogeneous transformation matrix that represents the gripper movements with respect to the global reference system is given by composition of rotation and translation of Equation A3.1-3 as a result of calculation with Equation A3.1-2.

$$
\begin{gathered}
R_{\text {gripper }}^{\text {global }}=\left[\begin{array}{ccc}
-\sin \left(q_{6}\right) & -\cos \left(q_{6}\right) & 0 \\
-\sin \left(q_{3}+q_{4}+q_{5}\right) * \cos \left(q_{6}\right) & \sin \left(q_{3}+q_{4}+q_{5}\right) * \sin \left(q_{6}\right) & -\cos \left(q_{3}+q_{4}+q_{5}\right) \\
\cos \left(q_{3}+q_{4}+q_{5}\right) * \cos \left(q_{6}\right) & -\cos \left(q_{3}+q_{4}+q_{5}\right) * \sin \left(q_{6}\right) & -\sin \left(q_{3}+q_{4}+q_{5}\right)
\end{array}\right] \\
\boldsymbol{t}_{\text {gripper }}^{\text {global }}=\left[\begin{array}{c}
x+G_{2}-G_{1}+G_{3}+q_{1}-q_{2} \\
y-L_{1} * \sin \left(q_{3}\right)-L_{2} * \sin \left(q_{3}+q_{4}\right)-L_{3} * \cos \left(q_{3}+q_{4}+q_{5}\right) \\
z+A_{1}+L_{1} * \cos \left(q_{3}\right)+L_{2} * \cos \left(q_{3}+q_{4}\right)-L_{3} * \sin \left(q_{3}+\boldsymbol{q}_{4}+q_{5}\right)
\end{array}\right]
\end{gathered}
$$

Equation A3.1-3 - The rotation and translation transformation matrixes of gripper represented in the global reference system.

The matrixes in Equation A3.1-3 are used to study the forward kinematics for the proposed model of the robot during the accomplishment of a defined list of tasks to be performed by each individual simpler robot.

## A3.2 INTERACTION BETWEEN SIMPLE MODELS

The above model is valid for only one robot-cart. Since the interaction between two copies of it is of interest a model has been developed using the Robotic Toolbox by Peter Corke (see Figure A3.2-1). It is composed with generic geometric shapes but preserves the DH parameters in Table A3.1-1, hence the Equation A3.1-1 can be still applied. Using this toolbox, the study of the two carts can be carried on.

## A3.3 INVERSE KINEMATICS

The study of the inverse kinematics has also been carried out starting from
Equation A3.1-3 and examining rotations and translations separately.

The rotation matrix is the composition of various rotations that include joint coordinates $\mathbf{q 3}, \mathbf{q 4} 4, \mathbf{q 5}, \mathbf{q 6}$. Due to this the rotation matrix given from Equation A3.1-3 has been decomposed in order to get at least one known Cardan angles triplet (refer to Equation A3.3-1).

$$
\begin{gathered}
R_{\text {gripper }}^{\text {global }}=R_{6}^{\text {global }} * R_{\text {gripper }}^{6}=R_{6}^{\text {global }} * R_{z}\left(q_{6}\right) \\
0 \\
=\left[\begin{array}{ccc}
-\sin \left(q_{3}+q_{4}+q_{5}\right) & 0 & \cos \left(q_{3}+q_{4}+q_{5}\right) \\
\cos \left(q_{3}+q_{4}+q_{5}\right) & 0 & -\sin \left(q_{3}+q_{4}+q_{5}\right)
\end{array}\right] *\left[\begin{array}{ccc}
\cos \left(q_{6}\right) & -\sin \left(q_{6}\right) & 0 \\
\sin \left(q_{6}\right) & \cos \left(q_{6}\right) & 0 \\
0 & 0 & 1
\end{array}\right] \\
=R_{z}(-\pi) * R_{y}\left(-\frac{\pi}{2}\right) * R_{z}\left(q_{3}+q_{4}+q_{5}\right) * R_{x}\left(-\frac{\pi}{2}\right) * R_{z}\left(q_{6}\right) \\
R_{\text {grobal }}^{\text {gloper }}=R_{3}^{\text {global }} * R_{5}^{3} * R_{6}^{5} * R_{z}\left(q_{6}\right) \\
R_{y}^{-1}\left(-\frac{\pi}{2}\right) * R_{z}^{-1}(-\pi) * R_{\text {gripper }}^{\text {global }} \\
=R_{z}\left(q_{3}+q_{4}+q_{5}\right) * R_{x}\left(-\frac{\pi}{2}\right) * R_{z}\left(q_{6}\right) \\
=R_{z}(\varphi) * R_{x}(\theta) * R_{z}(\gamma) \\
\left\{\begin{array}{c}
\varphi=q_{3}+q_{4}+q_{5} \\
\theta=-\frac{\pi}{2}
\end{array}\right\}
\end{gathered}
$$

Equation A3.3-1 - The joints variables q3, q4, q5, q6 in relation to cardan angles given by rotations around $\mathbf{Z}, \mathbf{X}, \mathbf{Z}$ axis.

The Equation A3.3-1 shows how to get the joint coordinates q3, q4, q5, q6 from a generic rotation matrix given that $\theta$ is always equal to $-\pi / 2$ otherwise the rotation is never obtainable from the given robot configuration.

Once given the translation vector, it is possible to get the joint variables $\mathbf{q 1}, \mathbf{q} 2$, q3, q4.

$$
\begin{gathered}
t_{\text {gripper }}^{\text {global }}=\left[\begin{array}{c}
x+G_{2}-G_{1}+G_{3}+q_{1}-q_{2} \\
y-L_{1} * \sin \left(q_{3}\right)-L_{2} * \sin \left(q_{3}+q_{4}\right)-L_{3} * \cos \left(q_{3}+q_{4}+q_{5}\right) \\
z+A_{1}+L_{1} * \cos \left(q_{3}\right)+L_{2} * \cos \left(q_{3}+q_{4}\right)-L_{3} * \sin \left(q_{3}+q_{4}+q_{5}\right)
\end{array}\right]=\left[\begin{array}{c}
t_{x} \\
t_{y} \\
t_{z}
\end{array}\right] \\
t_{x}=x+G_{2}-G_{1}+G_{3}+q_{1}-q_{2} \\
\rightarrow q_{1}-q_{2}=t_{x}-x-G_{2}+G_{1}-G_{3}=t_{x}-x_{0} \\
\rightarrow\left\{\begin{array}{c}
\left\{\begin{array}{c}
q_{1}=t_{x}-x_{0} \\
q_{2}=0
\end{array}\right\} t_{x} \geq x_{0} \\
\left.\begin{array}{c}
q_{1}=0 \\
q_{2}=t_{x}-x_{0}
\end{array}\right\} t_{x}<x_{0}
\end{array}\right\} \\
t_{y}=y-L_{1} * \sin \left(q_{3}\right)-L_{2} * \sin \left(q_{3}+q_{4}\right)-L_{3} * \cos \left(q_{3}+q_{4}+q_{5}\right) \\
=y-L_{1} * \sin \left(q_{3}\right)-L_{2} * \sin \left(q_{3}+q_{4}\right)-L_{3} * \cos (\varphi) \\
\rightarrow-t_{y}+y-L_{3} * \cos (\varphi)=L_{1} * \sin \left(q_{3}\right)+L_{2} * \sin \left(q_{3}+q_{4}\right)=\alpha \\
t_{z}=z+A_{1}+L_{1} * \cos \left(q_{3}\right)+L_{2} * \cos \left(q_{3}+q_{4}\right)-L_{3} * \sin \left(q_{3}+q_{4}+q_{5}\right) \\
=z+A_{1}+L_{1} * \cos \left(q_{3}\right)+L_{2} * \cos \left(q_{3}+q_{4}\right)-L_{3} * \sin (\varphi) \\
\rightarrow t_{z}-z-A_{1}+L_{3} * \sin (\varphi)=L_{1} * \cos \left(q_{3}\right)+L_{2} * \cos \left(q_{3}+q_{4}\right)=\beta
\end{gathered}
$$

These equations express the relation on $\mathbf{q} 1$ and $\mathbf{q} 2$ that, due to the idea of them acting like a prismatic joint on opposite directions, it is better to modify one or the other in the proper direction.

Also, a relation on $\mathbf{q 3}$ and $\mathbf{q 4}$ is obtained and gives the system:

$$
\left\{\begin{array}{c}
\alpha=L_{1} * \sin \left(\boldsymbol{q}_{3}\right)+\boldsymbol{L}_{2} * \sin \left(\boldsymbol{q}_{3}+\boldsymbol{q}_{4}\right) \\
\beta=L_{1} * \cos \left(\boldsymbol{q}_{3}\right)+L_{2} * \cos \left(\boldsymbol{q}_{3}+\boldsymbol{q}_{4}\right)
\end{array}\right\}
$$

Using this equations system with proper mathematical operations the following results are obtained:

$$
\begin{gathered}
\alpha^{2}+\beta^{2}=L_{2}^{2}+L_{1}^{2}+2 * L_{1} * L_{2} * \cos \left(q_{4}\right) \\
\rightarrow \cos \left(q_{4}\right)=\frac{\left[\left(\alpha^{2}+\beta^{2}\right)-\left(L_{1}^{2}+L_{2}^{2}\right)\right]}{\left(2 * L_{1} * L_{2}\right)} \\
\rightarrow q_{4}= \pm \cos ^{-1}\left(\frac{\left[\left(\alpha^{2}+\beta^{2}\right)-\left(L_{1}^{2}+L_{2}^{2}\right)\right]}{\left(2 * L_{1} * L_{2}\right)}\right) \\
\rightarrow\left\{\begin{array}{cc}
\alpha & -\beta \\
\beta & \alpha
\end{array}\right] *\left[\begin{array}{c}
\cos \left(q_{3}\right) \\
\sin \left(q_{3}\right)
\end{array}\right]=\left[\begin{array}{c}
L_{2} * \sin \left(q_{4}\right) \\
L_{2} * \cos \left(q_{4}\right)+L_{1}
\end{array}\right] \\
\left.\sin \left(q_{3}\right)=\frac{\left[\alpha * L_{1}+\alpha * L_{2} * \cos \left(q_{4}\right)-\beta * L_{2} * \sin \left(q_{4}\right)\right]}{\left(\alpha^{2}+\beta^{2}\right)}\right) \\
\rightarrow q_{3}=\tan ^{-1}\left(\frac{\left[\alpha * L_{1}+\alpha * L_{2} * \cos \left(q_{4}\right)-\beta * L_{2} * \sin \left(q_{4}\right)\right]}{\left[\beta * L_{1}+\beta * L_{2} * \cos \left(q_{4}\right)+\alpha * L_{2} * \sin \left(q_{4}\right)\right]}\right)
\end{gathered}
$$

$$
\varphi=q_{3}+q_{4}+q_{5} \rightarrow q_{5}=\varphi-\left(q_{3}+q_{4}\right)
$$

Solving the equation, a value for joints $\mathbf{q 3}, \mathbf{q 4}, \mathbf{q 5}$ is obtained. It is noticeable that the robot is redundant with respect to joint $\mathbf{q 4}$, i.e. the robot can reach a given point both in elbow-up and elbow-down configuration.

## APPENDIX B

## OPTIMIZED WORKSTATION MODULES DESIGN DETAILS

## B1 OPTIMIZED WORKSTATION DETAILS

The optimised workstation has been defined with a modular concept. In detail there is a module dedicated to the activity of pizza dough roll out and another one dedicated to the pizza preparation (filling with condiments).

## B1.1 MODULE 1 (PIZZA PREPARATION MODULE)

On the pizza preparation module there are:

- the pizza preparation location;
- nr. 8 containers for nr. 8 different condiment types;
- the condiments spreading tool;
- the tomato sauce ladle with an automatic sauce dispenser and the relevant accommodation;
- a shovel;
- the origan container;
- the salt container;
- the garlic container;
- the olive oil container.


## B1.1.1 Pizza preparation location

The location for pizza preparation is a flat area of more than $400 \times 400 \mathrm{~mm}$, where the pizza will be filled with condiments.

The center of the location on the work table top surface, identified with the number L1, is at the following coordinates (see also Figure B1.1.1-1):

$$
\begin{aligned}
& \mathrm{X}_{1}=500 \mathrm{~mm} \\
& \mathrm{Y}_{1}=670 \mathrm{~mm} \\
& \mathrm{Z}_{1}=750 \mathrm{~mm}
\end{aligned}
$$



Figure B1.1.1-1 - Pizza preparation location.

## B1.1.2 PIZZA SHOVEL 1

The pizza shovel 1 is placed in a vertical slit on the front left part of the module. It is featured as a stainless-steel material flat panel of $320 \times 320 \mathrm{~mm}$ and 1 mm thickness with a handle angled by $45^{\circ}$ to the vertical made by a part of the same panel and reinforced on both sides by two stainless steel plates of dimensions 40 $\times 50 \times 2 \mathrm{~mm}$. The calculated shovel weight is $0,9 \mathrm{~kg}$ (stainless steel specific weight $=7,85 \mathrm{~kg} / \mathrm{dm}^{3}$ ). The slit has dimensions of $3 \times 324 \mathrm{~mm}$ at work table top surface and has a depth of 325 mm . The shovel material has been preferred to be in stainless steel in order to benefit of its flexibility, avoiding deformations.

The center of the slit on the work table top surface, identified with the number L2, is at the following coordinates (see also Figure B1.1.2-1):

$$
\begin{aligned}
& \mathrm{X}_{2}=775 \mathrm{~mm} \\
& \mathrm{Y}_{2}=670 \mathrm{~mm} \\
& \mathrm{Z}_{2}=750 \mathrm{~mm}
\end{aligned}
$$



Figure B1.1.2-1 - Pizza shovel 1 geometry and relevant location.

The pizza shovel 1 pick-up point, identified with the code ps1, where the end effector has to arrive angled by $45^{\circ}$ to the vertical with the gripper fingers open, is at the following coordinates (see also Figure B1.1.2-2):

$$
\begin{aligned}
& X_{\mathrm{ps} 1}=775-40 \times \sin 45^{\circ}=747 \mathrm{~mm} \\
& \mathrm{Y}_{\mathrm{ps} 1}=670 \mathrm{~mm} \\
& \mathrm{Z}_{\mathrm{ps} 1}=750+40 \times \cos 45^{\circ}=778 \mathrm{~mm}
\end{aligned}
$$



Figure B1.1.2-2 - Pizza shovel 1 pick-up point and assumed gripper position.

## B1.1.3 CONDIMENT CONTAINERS

There are two rows of condiment containers, with the first row starting from the wall, which is raised by 100 mm . The reason for this is to maintain the possibility for the final manipulator link, with gripper, to pick up the containers
maintaining a horizontal position, perpendicular to the wall. Therefore, it must be free from interferences with the second row of condiment containers. As already mentioned in the feasibility study, the pizza preparation process requires the need to overturn the condiment containers above the pizza, to allow the condiment falling down. Only with the final manipulator arm (Wrist 3) horizontal it is guaranteed to maintain during the rotation the gripper out of the falling path of the condiment.

The same criteria apply to the tomato sauce ladle, the flour, origan, salt, garlic and olive oil containers.

On the contrary the requirement is not necessary for the pizza dough trays because of the presence of flour between the tray and the dough, which will allow the dough partition to drop down with a smaller tray rotation. However, a shaker movement is foreseen to be performed by the manipulator to force the falling down of any condiment and the pizza itself when transferred from one location to another.

Condiment containers are in stainless steel material with a cylindrical shape. The external diameter is 160 mm , the height 180 mm and the thickness is $0,5 \mathrm{~mm}$. The base is a disc of $0,5 \mathrm{~mm}$ thickness and 159 mm diameter. On the top there is a sort of grid to regulate the quantity of condiment falling down on the pizza. Finally, there is a simple flat bar handle of dimensions $2 \times 30 \times 210 \mathrm{~mm}$ starting from the base, which is also used for correct positioning of the container on the workstation. The calculated weight of each container is approximately $0,55 \mathrm{~kg}$ (stainless steel specific weight $=7,85 \mathrm{~kg} / \mathrm{dm}^{3}$ ). The maximum weight of the inside condiment (assuming a specific weight $=0,8 \mathrm{~kg} / \mathrm{dm}^{3}$ ) is approximately $2,8 \mathrm{~kg}$.

The accommodation site of each container is a recess of 2 mm depth and 162 mm diameter with an indentation of $2 \times 32 \mathrm{~mm}$ on the right side for proper positioning of the tool.

The centers of all the locations at the recess level, identified with the numbers from $\mathbf{L} 3$ to $\mathbf{L 1 0}$, have the following coordinates (see also Figure B1.1.3-1):

| $\mathrm{X}_{3}=683 \mathrm{~mm}$ | $\mathrm{X}_{4}=494 \mathrm{~mm}$ | $\mathrm{X}_{5}=305 \mathrm{~mm}$ | $\mathrm{X}_{6}=116 \mathrm{~mm}$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{Y}_{3}=116 \mathrm{~mm}$ | $\mathrm{Y}_{4}=116 \mathrm{~mm}$ | $\mathrm{Y}_{5}=116 \mathrm{~mm}$ | $\mathrm{Y}_{6}=116 \mathrm{~mm}$ |
| $\mathrm{Z}_{3}=848 \mathrm{~mm}$ | $\mathrm{Z}_{4}=848 \mathrm{~mm}$ | $\mathrm{Z}_{5}=848 \mathrm{~mm}$ | $\mathrm{Z}_{6}=848 \mathrm{~mm}$ |
|  |  |  |  |
| $\mathrm{X}_{7}=683 \mathrm{~mm}$ | $\mathrm{X}_{8}=494 \mathrm{~mm}$ | $\mathrm{X}_{9}=305 \mathrm{~mm}$ | $\mathrm{X}_{10}=116 \mathrm{~mm}$ |
| $\mathrm{Y}_{7}=328 \mathrm{~mm}$ | $\mathrm{Y}_{8}=328 \mathrm{~mm}$ | $\mathrm{Y}_{9}=328 \mathrm{~mm}$ | $\mathrm{Y}_{10}=328 \mathrm{~mm}$ |
| $\mathrm{Z}_{7}=748 \mathrm{~mm}$ | $\mathrm{Z}_{8}=748 \mathrm{~mm}$ | $\mathrm{Z}_{9}=748 \mathrm{~mm}$ | $\mathrm{Z}_{10}=748 \mathrm{~mm}$ |

The containers pick up points, identified with the codes from cc1 to cc8, where the end effector has to arrive horizontal and perpendicular to the front wall with the gripper fingers open in a plane parallel to $\mathbf{X}-\mathbf{Y}$ are at the following coordinates, (see also Figure B1.1.3-2):

| $\mathrm{X}_{\mathrm{cc} 1}=602 \mathrm{~mm}$ | $\mathrm{X}_{\mathrm{cc} 2}=413 \mathrm{~mm}$ | $\mathrm{X}_{\mathrm{cc} 3}=224 \mathrm{~mm}$ | $\mathrm{X}_{\mathrm{cc} 4}=35 \mathrm{~mm}$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{Y}_{\mathrm{cc} 1}=116 \mathrm{~mm}$ | $\mathrm{Y}_{\mathrm{cc} 2}=116 \mathrm{~mm}$ | $\mathrm{Y}_{\mathrm{cc} 3}=116 \mathrm{~mm}$ | $\mathrm{Y}_{\mathrm{cc} 4}=116 \mathrm{~mm}$ |
| $\mathrm{Z}_{\mathrm{cc} 1}=1048 \mathrm{~mm}$ | $\mathrm{Z}_{\mathrm{cc} 2}=1048 \mathrm{~mm}$ | $\mathrm{Z}_{\mathrm{cc} 3}=1048 \mathrm{~mm}$ | $\mathrm{Z}_{\mathrm{cc} 4}=1048 \mathrm{~mm}$ |
|  |  |  |  |
| $\mathrm{X}_{\mathrm{cc} 5}=602 \mathrm{~mm}$ | $\mathrm{X}_{\mathrm{cc} 6}=413 \mathrm{~mm}$ | $\mathrm{X}_{\mathrm{cc} 7}=224 \mathrm{~mm}$ | $\mathrm{X}_{\mathrm{cc} 8}=35 \mathrm{~mm}$ |
| $\mathrm{Y}_{\mathrm{cc} 5}=328 \mathrm{~mm}$ | $\mathrm{Y}_{\mathrm{cc} 6}=328 \mathrm{~mm}$ | $\mathrm{Y}_{\mathrm{cc} 7}=328 \mathrm{~mm}$ | $\mathrm{Y}_{\mathrm{cc} 8}=328 \mathrm{~mm}$ |
| $\mathrm{Z}_{\mathrm{cc} 5}=948 \mathrm{~mm}$ | $\mathrm{Z}_{\mathrm{cc} 6}=948 \mathrm{~mm}$ | $\mathrm{Z}_{\mathrm{cc} 7}=948 \mathrm{~mm}$ | $\mathrm{Z}_{\mathrm{cc} 8}=948 \mathrm{~mm}$ |



Figure B1.1.3-1 - Condiment containers geometry and relevant locations.


Figure B1.1.3-2 - Condiment containers pick up point and assumed gripper position.

## B1.1.4 TOMATO SAUCE DISPENSER AND LADLE

To be sure to use always the same quantity of tomato sauce, it has been foreseen an automatic sauce dispenser that will be activated one time when a button is pushed by the ladle. The robot has to pick up the ladle, move it against the push button, wait for tomato sauce supply, move back the ladle to have it far away from the dispenser obstruction and rise up the ladle to continue the completion of the list of tasks related to the use of this tool.

The tomato sauce ladle is used both to pour sauce on the pizza and to spread the poured sauce over the pizza.

The tool is in stainless steel material and is featured as showed in Figure B1.1.4-1. The bowl is circular with the external diameter of 80 mm , lateral and bottom thickness of 1 mm , height of 30 mm . Finally, the tool has a simple flat bar handle of dimensions $2 \times 20 \times 80 \mathrm{~mm}$ starting from the bottom of the bowl. The calculated ladle weight is $0,22 \mathrm{~kg}$ (stainless steel specific weight $=7,85$ $\mathrm{kg} / \mathrm{dm}^{3}$ ).

The accommodation site is a rectangular recess of 25 mm depth, 82 mm width and 140 mm length. The site extends in forward direction and has an indentation of $2 \times 22 \mathrm{~mm}$ for proper positioning of the tool on the front face. The recess has a grid on the bottom and below the workstation top table there is a tray to collect the residual sauce remaining on the bottom of the ladle.

On the opposite side of the ladle accommodation and inside the recess there is a button, which allows, when pushed, the supply of a fixed quantity of sauce by the dispenser (see Figure B1.1.4-1). The ladle has to be moved nominally by 60
mm towards the button to activate the sauce dispenser. The sauce container and the automatic mechanism are allocated below the workstation top table.


Figure B1.1.4-1 - detail of the tomato sauce ladle accommodation site.

The geometric center at recess level of the ladle accommodation site, identified with the number $\mathbf{L 1 1}$, is positioned at the following coordinates (see also Figure

## B1.1.4-2):

$$
\begin{aligned}
& \mathrm{X}_{11}=215 \mathrm{~mm} \\
& \mathrm{Y}_{11}=790 \mathrm{~mm} \\
& \mathrm{Z}_{11}=725 \mathrm{~mm}
\end{aligned}
$$

The recess for sauce ladle extends:

$$
\begin{aligned}
& \text { from } X=174 \mathrm{~mm} \text { to } X=256 \mathrm{~mm} \\
& \text { from } Y=720 \mathrm{~mm} \text { to } Y=860 \mathrm{~mm} \\
& Z \text { bottom }=725 \mathrm{~mm}
\end{aligned}
$$

The indentation is towards the front edge of the Module 1.


Figure B1.1.4-2 - Geometric details of tomato sauce ladle tool and its accommodation site.

The tomato ladle pick up point, identified with the code tsl, where the end effector has to arrive horizontal and parallel to the front wall with the gripper fingers open in a plane parallel to $\mathbf{X - Y}$, is at the following coordinates (see also Figure B1.1.4-3):

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{tsl}}=215 \mathrm{~mm} \\
& \mathrm{Y}_{\mathrm{tsl}}=861 \mathrm{~mm} \\
& \mathrm{Z}_{\mathrm{tsl}}=795 \mathrm{~mm}
\end{aligned}
$$



Figure B1.1.4-3 - Tomato sauce ladle pick up point and assumed gripper position.

## B1.1.5 TOOL TO SPREAD CONDIMENTS

When the condiments are poured on the pizza, they may remain accumulated somewhere. For this reason, a tool is provided to spread the condiments for an even distribution of them over the pizza.

The tool is in stainless steel material and is featured as showed in Figure B1.1.5-1. In detail there is a circular plate of 80 mm diameter and 5 mm thickness, which is provided on the bottom with two circumferential series of teeth spaced $45^{\circ}$ (nr. 4 plus nr .8 ) at a radius distance from the center of 16 mm (nr. 4 teeth) and 33 mm (nr. 8 teeth). The height of the teeth is 20 mm , the diameter is 4 mm . Also, this tool has a simple flat bar handle of dimensions 2 x
$20 \times 60 \mathrm{~mm}$ starting from the bottom of the circular plate. The calculated weight of this tool is $0,24 \mathrm{~kg}$ (stainless steel specific weight $=7,85 \mathrm{~kg} / \mathrm{dm}^{3}$ ).
The accommodation site is a recess of 25 mm depth and 82 mm diameter with an indentation of $2 \times 22 \mathrm{~mm}$ on the forward part for proper positioning of the tool. Its geometric center at recess level, identified with the number $\mathbf{L 1 2}$, is positioned at the following coordinates (see also Figure B1.1.5-1):

$$
\begin{aligned}
& \mathrm{X}_{12}=215 \mathrm{~mm} \\
& \mathrm{Y}_{12}=552 \mathrm{~mm} \\
& \mathrm{Z}_{12}=725 \mathrm{~mm}
\end{aligned}
$$





Figure B1.1.5-1 - Geometric details of condiments spreading tool and its accommodation site.

The condiments spreading tool pick up point, identified with the code cs, where the end effector has to arrive horizontal and parallel to the front wall with the gripper fingers open in a plane parallel to $\mathbf{X} \mathbf{- Y}$ is at the following coordinates (see also Figure B1.1.5-2):

$$
\begin{aligned}
& X_{\mathrm{cst}}=215 \mathrm{~mm} \\
& \mathrm{Y}_{\mathrm{cst}}=593 \mathrm{~mm} \\
& \mathrm{Z}_{\mathrm{cst}}=795 \mathrm{~mm}
\end{aligned}
$$



Figure B1.1.5-2 - Condiments spreading tool pick up point and assumed gripper position.

## B1.1.6 ORIGAN CONTAINER

The origan container is in stainless steel material and is featured as showed in Figure B1.1.6-1. In detail it is of cylindrical shape with the external diameter of

50 mm , the height is 120 mm and the thickness is $0,5 \mathrm{~mm}$. The base is a disc of $0,5 \mathrm{~mm}$ thickness and 49 mm diameter. On the top there is a grid to regulate the quantity of origan falling down on the pizza. The calculated weight of the container is approximately $0,1 \mathrm{~kg}$ (stainless steel specific weight $=7,85 \mathrm{~kg} / \mathrm{dm}^{3}$ ). The accommodation site is a recess of 2 mm depth and 52 mm diameter. Its geometric center at recess level, identified with the number L13, is positioned at the following coordinates (see also Figure B1.1.6-1):

$$
\begin{aligned}
& \mathrm{X}_{13}=100 \mathrm{~mm} \\
& \mathrm{Y}_{13}=552 \mathrm{~mm} \\
& \mathrm{Z}_{13}=748 \mathrm{~mm}
\end{aligned}
$$



Figure B1.1.6-1 - Geometric details of origan container and its accommodation site.

The origan container pick up point, identified with the code oc, where the end effector has to arrive horizontal from the external right side and parallel to the front wall with the gripper fingers fully open in a plane parallel to $\mathbf{X}-\mathbf{Y}$ is at the
following coordinates (see also Figure B1.1.6-2). In this case the gripper will pick up directly the container:

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{oc}}=100 \mathrm{~mm} \\
& \mathrm{Y}_{\mathrm{oc}}=552 \mathrm{~mm} \\
& \mathrm{Z}_{\mathrm{oc}}=808 \mathrm{~mm}
\end{aligned}
$$



Figure B1.1.6-2 - Origan container pick up point and assumed gripper position.

## B1.1.7 SALT CONTAINER

The salt container is in stainless steel material and is featured as showed in Figure B1.1.7-1. In detail it is of cylindrical shape with the external diameter of 50 mm , the height is 120 mm and the thickness is $0,5 \mathrm{~mm}$. The base is a disc of
$0,5 \mathrm{~mm}$ thickness and 49 mm diameter. On the top there is a grid to regulate the quantity of salt falling down on the pizza. The calculated weight of the container is approximately $0,1 \mathrm{~kg}$ (stainless steel specific weight $=7,85 \mathrm{~kg} / \mathrm{dm}^{3}$ ).

The accommodation site is a recess of 2 mm depth and 52 mm diameter. Its geometric center at recess level, identified with the number L14, is positioned at the following coordinates (see also Figure B1.1.7-1):

$$
\begin{aligned}
\mathrm{X}_{14} & =100 \mathrm{~mm} \\
\mathrm{Y}_{14} & =644 \mathrm{~mm} \\
\mathrm{Z}_{14} & =748 \mathrm{~mm}
\end{aligned}
$$



Figure B1.1.7-1 - Geometric details of salt container and of its accommodation site.

The salt container pick up point, identified with the code sc, where the end effector has to arrive horizontal from the external right side and parallel to the front wall with the gripper fingers fully open in a plane parallel to $\mathbf{X}-\mathbf{Y}$ is at the
following coordinates (see also Figure B1.1.7-2). In this case the gripper will pick up directly the container:

$$
\begin{aligned}
\mathrm{X}_{\mathrm{sc}} & =100 \mathrm{~mm} \\
\mathrm{Y}_{\mathrm{sc}} & =644 \mathrm{~mm} \\
\mathrm{Z}_{\mathrm{sc}} & =808 \mathrm{~mm}
\end{aligned}
$$



Figure B1.1.7-2 - Salt container pick up point and assumed gripper position.

## B1.1.8 GARLIC CONTAINER

The garlic container is in stainless steel material and is featured as showed in Figure B1.1.8-1. In detail it is of cylindrical shape with the external diameter of 50 mm , the height is 120 mm and the thickness is $0,5 \mathrm{~mm}$. The base is a disc of
$0,5 \mathrm{~mm}$ thickness and 49 mm diameter. On the top there is a grid to regulate the quantity of garlic falling down on the pizza. The calculated weight of the container is approximately $0,1 \mathrm{~kg}$ (stainless steel specific weight $=7,85 \mathrm{~kg} / \mathrm{dm}^{3}$ ). The accommodation site is a recess of 2 mm depth and 52 mm diameter. Its geometric center at recess level, identified with the number L15, is positioned at the following coordinates (see also Figure B1.1.8-1):

$$
\begin{aligned}
\mathrm{X}_{15} & =100 \mathrm{~mm} \\
\mathrm{Y}_{15} & =736 \mathrm{~mm} \\
\mathrm{Z}_{15} & =748 \mathrm{~mm}
\end{aligned}
$$



Figure B1.1.8-1 - Geometric details of garlic container and of its accommodation site.

The garlic container pick up point, identified with the code $\mathbf{g c}$, where the end effector has to arrive horizontal from the external right side and parallel to the front wall with the gripper fingers fully open in a plane parallel to $\mathbf{X}-\mathbf{Y}$ is at the following coordinates (see also Figure B1.1.8-2). In this case the gripper will pick up directly the container:
$\mathrm{X}_{\mathrm{gc}}=100 \mathrm{~mm}$
$\mathrm{Y}_{\mathrm{gc}}=736 \mathrm{~mm}$
$Z_{\text {cc }}=808 \mathrm{~mm}$


Figure B1.1.8-2 - Garlic container pick up point and assumed gripper position.

## B1.1.9 Olive oll container

The olive oil container is in stainless steel material and is featured as showed in Figure B1.1.9-1. In detail it is of cylindrical shape with the external diameter of 50 mm , the height is 120 mm and the thickness is $0,5 \mathrm{~mm}$. The base is a disc of $0,5 \mathrm{~mm}$ thickness and 49 mm diameter. On the top there is a typical conic nozzle 20 mm height to regulate the quantity of oil falling down on the pizza. The calculated weight of the container is approximately $0,1 \mathrm{~kg}$ (stainless steel specific weight $=7,85 \mathrm{~kg} / \mathrm{dm}^{3}$ ).

The accommodation site is a recess of 2 mm depth and 52 mm diameter. Its geometric center at recess level, identified with the number L16, is positioned at the following coordinates (see also Figure B1.1.9-1):

$$
\begin{aligned}
& \mathrm{X}_{16}=100 \mathrm{~mm} \\
& \mathrm{Y}_{16}=828 \mathrm{~mm} \\
& \mathrm{Z}_{16}=748 \mathrm{~mm}
\end{aligned}
$$



Figure B1.1.9-1 - Geometric details of olive oil container and its accommodation site.

The olive oil container pick up point, identified with the code ooc, where the end effector has to arrive horizontal from the external right side and parallel to the front wall with the gripper fingers fully open in a plane parallel to $\mathbf{X}-\mathbf{Y}$ is at the following coordinates (see also Figure B1.1.9-2). In this case the gripper will pick up directly the container:

$$
\begin{aligned}
\mathrm{X}_{\mathrm{ooc}} & =100 \mathrm{~mm} \\
\mathrm{Y}_{\mathrm{ooc}} & =828 \mathrm{~mm} \\
\mathrm{Z}_{\mathrm{ooc}} & =808 \mathrm{~mm}
\end{aligned}
$$



Figure B1.1.9-2 - Olive oil container pick up point and assumed gripper position.

## B1.2 MODULE 2 (PIZZA DOUGH ROLL OUT MODULE)

On the pizza roll out module there are:

- the pizza dough roll out location;
- the roll pin;
- the flour container;
- nr. 10 pizza doughs partitions above the relative trays;
- a shovel.


## B1.2.1 PIZZA DOUGH ROLL OUT LOCATION

The location for pizza dough roll out is a flat area of more than $470 \times 470 \mathrm{~mm}$, where the pizza dough partition will be rolled out by the use of the roll pin.

The center of the location on the workstation top surface, identified with the number L17, is at the following coordinates (see also Figure B1.2.1-1):

$$
\begin{aligned}
& \mathrm{X}_{17}=1200 \mathrm{~mm} \\
& \mathrm{Y}_{17}=670 \mathrm{~mm} \\
& \mathrm{Z}_{17}=750 \mathrm{~mm}
\end{aligned}
$$



Figure B1.2.1-1 - Pizza dough roll out location.

## B1.2.2 PIZZA SHOVEL 2

The pizza shovel 2 is placed in a vertical slit on the front left part of the module. It is featured as a stainless-steel material flat panel of $320 \times 320 \mathrm{~mm}$ and 1 mm thickness with a handle angled by $45^{\circ}$ to the vertical made by a part of the same panel and reinforced on both sides by two stainless steel plates of dimensions 40 $\times 50 \times 2 \mathrm{~mm}$. The calculated shovel weight is $0,9 \mathrm{~kg}$ (stainless steel specific weight $=7,85 \mathrm{~kg} / \mathrm{dm}^{3}$ ). The slit has dimensions of $3 \times 324 \mathrm{~mm}$ at work table top surface and has a depth of 325 mm . The shovel material has been preferred to be in stainless steel to benefit of its flexibility, avoiding deformations.

The center of the slit, identified with the number L18, on the work table top surface is at the following coordinates (see also Figure B1.2.2-1):

$$
\begin{aligned}
& \mathrm{X}_{18}=1575 \mathrm{~mm} \\
& \mathrm{Y}_{18}=670 \mathrm{~mm} \\
& \mathrm{Z}_{18}=750 \mathrm{~mm}
\end{aligned}
$$



Figure B1.2.2-1 - Pizza shovel geometry and relevant location.

The pizza shovel 2 pick-up point, identified with the code ps2, where the end effector has to arrive angled by $45^{\circ}$ to the vertical with the gripper fingers open is at the following coordinates (see also Figure B1.2.2-2):

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{p} s 2}=1575-40 \times \sin 45^{\circ}=1547 \mathrm{~mm} \\
& \mathrm{Y}_{\mathrm{p} 52}=670 \mathrm{~mm} \\
& \mathrm{Z}_{\mathrm{p} 52}=750+40 \times \cos 45^{\circ}=778 \mathrm{~mm}
\end{aligned}
$$



Figure B1.2.2-2 - Pizza shovel 2 pick-up point and assumed gripper position.

## B1.2.3 Roll pin tool

The roll pin has a dried beech wood rolling part and an internal stainless-steel shaft rotating inside a tube of low friction material, like polytetrafluoroethylene. The shaft is welded at both extremities to a continuous C shape stainless-steel flat bar, which has in the middle a gripping point allowing the use of the roll pin by the robot.

The roll pin geometry is shown in Figure B1.2.3-1. The wooden rolling part has a length of 320 mm , an external diameter of 80 mm and a hollow of 22 mm diameter for the full roll pin length. The stainless-steel shaft has a diameter of 20 mm and a length of 336 mm . The stainless-steel flat bar has total dimensions of $3 \times 40 \times 472 \mathrm{~mm}$, a "C" shape and is provided with a wing of dimensions $3 \times 40$ x 40 mm , which represents the pick-up point. The calculated weight of the assembly is $2,45 \mathrm{~kg}$ with the following details:

- dried beech wood (specific weight $0,73 \mathrm{~kg} / \mathrm{dm}^{3}$ ) $=1,09 \mathrm{~kg}$
- low friction material tube (specific weight $2,2 \mathrm{~kg} / \mathrm{dm}^{3}$ ) $=0,05 \mathrm{~kg}$
- stainless steel shaft (specific weight $7,85 \mathrm{~kg} / \mathrm{dm}^{3}$ ) $=0,83 \mathrm{~kg}$
- stainless steel flat bar handle (specific weight $7,85 \mathrm{~kg} / \mathrm{dm}^{3}$ ) $=0,48 \mathrm{~kg}$

The accommodation site is a rectangular support with a recess in the middle and extending along the full length of the support. On the left side of the support it is fixed a sort of fork where the flat bar of the roll pin acting as a handle has to be properly accommodated to prevent its falling down. The geometry of the roll pin base plus the fork is as follows (see also Figure B1.2.3-1):

```
length \(=350 \mathrm{~mm}\)
height \(=30 \mathrm{~mm}\)
width \(=100 \mathrm{~mm}\)
recess depth \(=6 \mathrm{~mm}\)
recess width \(=40 \mathrm{~mm}\)
recess length \(=350 \mathrm{~mm}\)
fork height \(=90 \mathrm{~mm}\)
fork thickness \(=2 \mathrm{~mm}\)
fork external width \(=60 \mathrm{~mm}\)
```

fork internal width $=42 \mathrm{~mm}$
teeth length $=10 \mathrm{~mm}$
teeth width $=9 \mathrm{~mm}$

Therefore, the roll pin pick-up sequence is:

- catch the pick-up point
- move the roll pin 15 mm on the right
- raise up the roll pin.

Similarly, the roll pin repositioning will require a left movement for the handle engagement.

The geometric center of the base support at recess level, identified with the number L19, is at the following coordinates (see also Figure B1.2.3-1):
$\mathrm{X}_{19}=1278 \mathrm{~mm}$
$\mathrm{Y}_{19}=60 \mathrm{~mm}$
$Z_{19}=774 \mathrm{~mm}$


Figure B1.2.3-1 - Geometric details of roll pin and relevant accommodation.

The roll pin pick-up point, identified with the code rp, where the end effector has to arrive vertical with the gripper fingers open in a plane parallel to $\mathbf{X}-\mathbf{Z}$ is at the following coordinates (see also Figure B1.2.3-2):

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{rp}}=1282 \mathrm{~mm} \\
& \mathrm{Y}_{\mathrm{rp}}=60 \mathrm{~mm} \\
& \mathrm{Z}_{\mathrm{rp}}=886 \mathrm{~mm}
\end{aligned}
$$



Figure B1.2.3-2 - Roll pin pick up points and assumed gripper position.

## B1.2.4 Flour container

The flour container is in stainless steel material and is featured as showed in Figure B1.2.4-1. In detail it is of cylindrical shape with the external diameter of 100 mm , the height is 160 mm and the thickness is $0,5 \mathrm{~mm}$. The base is a disc of $0,5 \mathrm{~mm}$ thickness and 99 mm diameter. On the top there is a narrow mesh grid for fine distribution of the flour. Also, this tool has a simple flat bar handle of dimensions $2 \times 20 \times 190 \mathrm{~mm}$ starting from the bottom of the container. The calculated weight of the container is approximately $0,3 \mathrm{~kg}$ (stainless steel specific weight $\left.=7,85 \mathrm{~kg} / \mathrm{dm}^{3}\right)$.

The accommodation site is a recess of 2 mm depth and 102 mm diameter with an indentation of dimensions $2 \times 22 \mathrm{~mm}$ on the left side for proper positioning on the work table during the preparation phase. The geometric center of the recess, identified with the number $\mathbf{L} \mathbf{2 0}$, is positioned at the following coordinates (see also Figure B1.2.4-1):

$$
\begin{aligned}
& \mathrm{X}_{20}=950 \mathrm{~mm} \\
& \mathrm{Y}_{20}=81 \mathrm{~mm} \\
& \mathrm{Z}_{20}=748 \mathrm{~mm}
\end{aligned}
$$



Figure B1.2.4-1 - Geometric details of flour container and its accommodation site.

The flour container pick up point, identified with the code $\mathbf{f c}$, where the end effector has to arrive horizontal and perpendicular to the front wall with the gripper fingers open in a plane parallel to $\mathbf{X}-\mathbf{Y}$ is at the following coordinates (see also Figure B1.2.4-2):
$\mathrm{X}_{\mathrm{fc}}=1001 \mathrm{~mm}$
$\mathrm{Y}_{\mathrm{fc}}=81 \mathrm{~mm}$
$Z_{\mathrm{fc}}=928 \mathrm{~mm}$


Figure B1.2.4-2 - Flour container pick up point and assumed gripper position.

## B1.2.5 PIZZA dough partitions trays

There are nr. 10 locations for the positioning of a dough partition tray in each location. The trays are in aluminum material and are featured like a disc with a simple flat bar handle starting from the bottom of the disc. Their geometry is as follows (see also Figure B1.2.5-1):

$$
\begin{aligned}
& \text { diameter }=120 \mathrm{~mm} \\
& \text { thickness }=2 \mathrm{~mm}
\end{aligned}
$$

$$
\text { handle }=2 \times 20 \times \mathrm{h} 42 \mathrm{~mm}
$$

The calculated weight of the tray is approximately $0,07 \mathrm{~kg}$ (aluminum specific weight $=2,7 \mathrm{~kg} / \mathrm{dm}^{3}$ ).

The accommodation site is a recess of 2 mm depth and 122 mm diameter with an indentation of $2 \times 22 \mathrm{~mm}$ on the left for proper positioning of the tool.

The geometric centers of the locations at recess level, identified with the numbers from $\mathbf{L 2 1}$ to $\mathbf{L 3 0}$, are at the following coordinates (see also Figure

## B1.2.5-1):

| $\mathrm{X}_{21}=1489 \mathrm{~mm}$ | $\mathrm{X}_{22}=1345 \mathrm{~mm}$ | $\mathrm{X}_{23}=1201 \mathrm{~mm}$ | $\mathrm{X}_{24}=1057 \mathrm{~mm}$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{Y}_{21}=217 \mathrm{~mm}$ | $\mathrm{Y}_{22}=217 \mathrm{~mm}$ | $\mathrm{Y}_{23}=217 \mathrm{~mm}$ | $\mathrm{Y}_{24}=217 \mathrm{~mm}$ |
| $\mathrm{Z}_{21}=748 \mathrm{~mm}$ | $\mathrm{Z}_{22}=748 \mathrm{~mm}$ | $\mathrm{Z}_{23}=748 \mathrm{~mm}$ | $\mathrm{Z}_{24}=748 \mathrm{~mm}$ |
|  |  |  |  |
| $\mathrm{X}_{25}=913 \mathrm{~mm}$ | $\mathrm{X}_{26}=1489 \mathrm{~mm}$ | $\mathrm{X}_{27}=1345 \mathrm{~mm}$ | $\mathrm{X}_{28}=1201 \mathrm{~mm}$ |
| $\mathrm{Y}_{25}=217 \mathrm{~mm}$ | $\mathrm{Y}_{26}=359 \mathrm{~mm}$ | $\mathrm{Y}_{27}=359 \mathrm{~mm}$ | $\mathrm{Y}_{28}=359 \mathrm{~mm}$ |
| $\mathrm{Z}_{25}=748 \mathrm{~mm}$ | $\mathrm{Z}_{26}=748 \mathrm{~mm}$ | $\mathrm{Z}_{27}=748 \mathrm{~mm}$ | $\mathrm{Z}_{28}=748 \mathrm{~mm}$ |
|  |  |  |  |
| $\mathrm{X}_{29}=1057 \mathrm{~mm}$ | $\mathrm{X}_{30}=913 \mathrm{~mm}$ |  |  |
| $\mathrm{Y}_{29}=359 \mathrm{~mm}$ | $\mathrm{Y}_{30}=359 \mathrm{~mm}$ |  |  |
| $\mathrm{Z}_{29}=748 \mathrm{~mm}$ | $\mathrm{Z}_{30}=748 \mathrm{~mm}$ |  |  |



Figure B1.2.5-1 - Geometric details of pizza dough partition trays and relevant locations.

The dough partition trays pick up points, identified with the code from dpt1 to dpt10, where the end effector has to arrive vertical to the work table top surface with the gripper fingers open and parallel to a plane $\mathbf{X}-\mathbf{Z}$ are at the following coordinates (see also Figure B1.2.5-2):

$$
\begin{array}{llll}
\mathrm{X}_{\mathrm{dpt1}}=1550 \mathrm{~mm} & \mathrm{X}_{\mathrm{dpt2}}=1406 \mathrm{~mm} & \mathrm{X}_{\mathrm{dpt}}=1262 \mathrm{~mm} & \mathrm{X}_{\mathrm{dpt4}}=1118 \mathrm{~mm} \\
\mathrm{Y}_{\mathrm{dpt1}}=217 \mathrm{~mm} & \mathrm{Y}_{\mathrm{dpt2}}=217 \mathrm{~mm} & \mathrm{Y}_{\mathrm{dpt}}=217 \mathrm{~mm} & \mathrm{Y}_{\mathrm{dpt4}}=217 \mathrm{~mm} \\
\mathrm{Z}_{\mathrm{dpt1}}=780 \mathrm{~mm} & \mathrm{Z}_{\mathrm{dpt2}}=780 \mathrm{~mm} & \mathrm{Z}_{\mathrm{dpt3}}=780 \mathrm{~mm} & \mathrm{Z}_{\mathrm{dpt4}}=780 \mathrm{~mm} \\
& & & \\
\mathrm{X}_{\mathrm{dpt5}}=974 \mathrm{~mm} & \mathrm{X}_{\mathrm{dpt6}}=1550 \mathrm{~mm} & \mathrm{X}_{\mathrm{dpt} 7}=1406 \mathrm{~mm} & \mathrm{X}_{\mathrm{dpt8}}=1262 \mathrm{~mm} \\
\mathrm{Y}_{\mathrm{dpt5} 5}=217 \mathrm{~mm} & \mathrm{Y}_{\mathrm{dpt6}}=359 \mathrm{~mm} & \mathrm{Y}_{\mathrm{dpt} 7}=359 \mathrm{~mm} & \mathrm{Y}_{\mathrm{dpt8}}=359 \mathrm{~mm} \\
\mathrm{Z}_{\mathrm{dpt5}}=780 \mathrm{~mm} & \mathrm{Z}_{\mathrm{dpt6}}=780 \mathrm{~mm} & \mathrm{Z}_{\mathrm{dpt7}}=780 \mathrm{~mm} & \mathrm{Z}_{\mathrm{dpt} 8}=780 \mathrm{~mm} \\
& & & \\
\mathrm{X}_{\mathrm{dpt9}}=1118 \mathrm{~mm} & \mathrm{X}_{\mathrm{dpt10}}=974 \mathrm{~mm} & & \\
\mathrm{Y}_{\mathrm{dpt9}}=359 \mathrm{~mm} & \mathrm{Y}_{\mathrm{dpt10}}=359 \mathrm{~mm} & & \\
\mathrm{Z}_{\mathrm{dpt9}}=780 \mathrm{~mm} & \mathrm{Z}_{\mathrm{dpt10}}=780 \mathrm{~mm} & &
\end{array}
$$



Figure B1.2.5-2 - Dough partition trays pick up points and assumed gripper position.

## APPENDIX C

GRIPPING POINT TASK PATHS FOR CONFIGURATION NR. 1

TOOLS LOCATION AND PICK UP POINT COORDINATES


## Robot 2

| C1R2T1 | $\underset{[\mathrm{mm}]}{\mathrm{X}}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\underset{[\mathrm{mm}]}{\mathrm{Z}}$ | $\begin{gathered} \mathrm{RX} \\ \text { [deg] } \end{gathered}$ | $\begin{gathered} \mathrm{RY} \\ \text { [deg] } \end{gathered}$ | $\begin{gathered} \text { RZ } \\ \text { [de] } \end{gathered}$ |  | of ro |  | Gripper [mm] | Best joint manipulator set <br> 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| before to start check if a request to go at rest position arrives from R1 |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| pick up fc | 1001 | 81 | 928 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| raise up 100 | 1001 | 81 | 1028 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| over Loc 17 | 1200 | 670 | 960 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| flour spread | 1220 | 705 | 960 | 90 | 90 | 240 | 2 | 1 | 3 | 1 |  |
| * | 1242 | 712 | 960 | 90 | 90 | 300 | 2 | 1 | 3 | 1 |  |
| " | 1287 | 720 | 960 | 90 | 90 | 360 | 2 | 1 | 3 | 1 |  |
| " | 1300 | 670 | 960 | 90 | 90 | 90 | 2 | 1 | 3 | 1 |  |
| " | 1287 | 620 | 960 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| " | 1271 | 599 | 960 | 90 | 90 | 240 | 2 | 1 | 3 | 1 |  |
| " | 1250 | 583 | 960 | 90 | 90 | 300 | 2 | 1 | 3 | 1 |  |
| " | 1200 | 570 | 960 | 90 | 90 | 360 | 2 | 1 | 3 | 1 |  |
| " | 1150 | 583 | 960 | 90 | 90 | 60 | 2 | 1 | 3 | 1 |  |
| " | 1129 | 599 | 960 | 90 | 90 | 120 | 2 | 1 | 3 | 1 |  |
| * | 1113 | 620 | 960 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| " | 1100 | 670 | 960 | 90 | 90 | 240 | 2 | 1 | 3 | 1 |  |
| " | 1113 | 720 | 960 | 90 | 90 | 360 | 2 | 1 | 3 | 1 |  |
| " | 1129 | 741 | 960 | 90 | 90 | 60 | 2 | 1 | 3 | 1 |  |
| " | 1150 | 757 | 960 | 90 | 90 | 120 | 2 | 1 | 3 | 1 |  |
| " | 1200 | 770 | 960 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| above pos fc | 1001 | 81 | 1028 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| leave fc | 1001 | 81 | 928 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| open gripper | 1001 | 81 | 928 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| raise up 100 | 1001 | 81 | 1028 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| continue with next task |  |  |  |  |  |  |  |  |  |  |  |


| C1R2T2-dpt1 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{RX} \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \mathrm{RY} \\ \text { [deg] } \end{gathered}$ | $\begin{gathered} \mathrm{RZ} \\ \text { [de] } \end{gathered}$ | Priority of rotation |  |  | Gripper [mm] | Best joint manipulator set 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| before to start check if a request to go at rest position arrives from R1 |  |  |  |  |  |  |  |  |  |  |  |
| at pos dpt1 | 1550 | 217 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| pick up dpt1 | 1550 | 217 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 100 | 1550 | 217 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| GP h70 over L17, shift $40 \mathrm{~S}, 60 \mathrm{~W}$ | 1260 | 710 | 820 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| turn $45^{\circ}$ | 1260 | 710 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Shaking -20 Northwise | 1260 | 690 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Shaking +20 Southwise | 1260 | 710 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| move 100 Northwise | 1260 | 610 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 60 | 1260 | 630 | 880 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Turn -45 | 1260 | 630 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| 100 above pos dpt1 | 1550 | 217 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| leave dpt1 | 1550 | 217 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| open gripper | 1550 | 217 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| raise up 100 | 1550 | 217 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| continue with next task |  |  |  |  |  |  |  |  |  |  |  |


| C1R2T2-dpt2 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \text { Z } \\ {[\mathrm{mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{RX} \\ \text { [deg] } \end{gathered}$ | $\begin{gathered} \mathrm{RY} \\ \text { [deg] } \end{gathered}$ | $\begin{gathered} \mathrm{RZ} \\ \text { [de] } \end{gathered}$ | Priority of rotation |  |  | Gripper [mm] | Best joint manipulator set $6$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| before to start check if a request to go at rest position arrives from R1 |  |  |  |  |  |  |  |  |  |  |  |
| at pos dpt2 | 1406 | 217 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| pick up dpt2 | 1406 | 217 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 100 | 1406 | 217 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| GP h70 over L17, shift 40 S, 60 W | 1260 | 710 | 820 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| turn $45^{\circ}$ | 1260 | 710 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Shaking -20 Northwise | 1260 | 690 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Shaking +20 Southwise | 1260 | 710 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| move 100 Northwise | 1260 | 610 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 60 | 1260 | 630 | 880 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Turn -45 | 1260 | 630 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| 100 above pos dpt2 | 1406 | 217 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| leave dpt2 | 1406 | 217 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| open gripper | 1406 | 217 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| raise up 100 | 1406 | 217 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| continue with next task |  |  |  |  |  |  |  |  |  |  |  |


| C1R2T2-dpt3 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{RX} \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \mathrm{RY} \\ \text { [deg] } \end{gathered}$ | $\begin{gathered} \mathrm{RZ} \\ \text { [de] } \end{gathered}$ | Priority of rotation |  |  | Gripper [mm] | Best joint manipulator set 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| before to start check if a request to go at rest position arrives from R1 |  |  |  |  |  |  |  |  |  |  |  |
| at pos dpt3 | 1262 | 217 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| pick up dpt3 | 1262 | 217 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 100 | 1262 | 217 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| GP h70 over L17, shift $40 \mathrm{~S}, 60 \mathrm{~W}$ | 1260 | 710 | 820 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| turn $45^{\circ}$ | 1260 | 710 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Shaking -20 Northwise | 1260 | 690 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Shaking +20 Southwise | 1260 | 710 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| move 100 Northwise | 1260 | 610 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 60 | 1260 | 630 | 880 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Turn -45 | 1260 | 630 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| 100 above pos dpt3 | 1262 | 217 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| leave dpt3 | 1262 | 217 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| open gripper | 1262 | 217 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| raise up 100 | 1262 | 217 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| continue with next task |  |  |  |  |  |  |  |  |  |  |  |


| C1R2T2-dpt4 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{RX} \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \mathrm{RY} \\ \text { [deg] } \end{gathered}$ | $\begin{gathered} \mathrm{RZ} \\ \text { [de] } \end{gathered}$ | Priority of rotation |  |  | Gripper [mm] | Best joint manipulator set 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| before to start check if a request to go at rest position arrives from R1 |  |  |  |  |  |  |  |  |  |  |  |
| at pos dpt4 | 1118 | 217 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| pick up dpt4 | 1118 | 217 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 100 | 1118 | 217 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| GP h70 over L17, shift 40 S, 60 W | 1260 | 710 | 820 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| turn $45^{\circ}$ | 1260 | 710 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Shaking -20 Northwise | 1260 | 690 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Shaking +20 Southwise | 1260 | 710 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| move 100 Northwise | 1260 | 610 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 60 | 1260 | 630 | 880 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Turn -45 | 1260 | 630 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| 100 above pos dpt4 | 1118 | 217 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| leave dpt4 | 1118 | 217 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| open gripper | 1118 | 217 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| raise up 100 | 1118 | 217 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| continue with next task |  |  |  |  |  |  |  |  |  |  |  |




| C1R2T2-dpt10 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{RX} \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \mathrm{RY} \\ \text { [deg] } \end{gathered}$ | $\begin{gathered} \mathrm{RZ} \\ \text { [de] } \end{gathered}$ |  | of |  | Gripper [mm] | Best joint manipulator set 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| before to start check if a request to go at rest position arrives from R1 |  |  |  |  |  |  |  |  |  |  |  |
| at pos dpt10 | 974 | 359 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| pick up dpt10 | 974 | 359 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 100 | 974 | 359 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| GP h70 over L17, shift $40 \mathrm{~S}, 60 \mathrm{~W}$ | 1260 | 710 | 820 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| turn $45^{\circ}$ | 1260 | 710 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Shaking -20 Northwise | 1260 | 690 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Shaking +20 Southwise | 1260 | 710 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| move 100 Northwise | 1260 | 610 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 60 | 1260 | 630 | 880 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Turn -45 | 1260 | 630 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| 100 above pos dpt10 | 974 | 359 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| leave dpt10 | 974 | 359 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| open gripper | 974 | 359 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| raise up 100 | 974 | 359 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| continue with next task |  |  |  |  |  |  |  |  |  |  |  |



| C1R2T4 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \text { RX } \\ \text { [degl } \end{gathered}$ | $\begin{gathered} \text { RY } \\ \text { [deg] } \end{gathered}$ | $\begin{array}{r} \text { RZ } \\ \text { [del } \end{array}$ | Priority of rotation |  |  | Gripper [mm] | Best joint manipulator set 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| before to start check if a request to go at rest position arrives from R1 |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| 70 \& $-30^{\circ}$ Northwise of ps2 | 1547 | 600 | 778 | 180 | 45 | 90 | 1 | 2 | 3 | 0 |  |
| at pos ps2 | 1547 | 670 | 778 | 180 | 45 | 90 | 1 | 2 | 3 | 0 |  |
| pick up ps2 | 1547 | 670 | 778 | 180 | 45 | 90 | 1 | 2 | 3 | 1 |  |
| raise 340 | 1547 | 670 | 1118 | 180 | 45 | 90 | 1 | 2 | 3 | 1 |  |
| rotation $90^{\circ}$ | 1547 | 670 | 1118 | 180 | -45 | 90 | 1 | 2 | 3 | 1 |  |
| GP h28 \& 508 Westwise Loc 17 | 1708 | 670 | 778 | 180 | -45 | 90 | 1 | 2 | 3 | 1 |  |
| pick up pizza move CART 320 Eastwise | 1388 | 670 | 778 | 180 | -45 | 90 | 1 | 2 | 3 | 1 | CART movement ONLY |
| stby for R1 conf \& R1 800 East raise up h104 | 1388 | 670 | 778 | 180 | -45 | 90 | 1 | 2 | 3 | 1 |  |
|  | 1388 | 670 | 867 | 180 | -45 | 90 | 1 | 2 | 3 | 1 |  |
| move to L1 CART 719 Eastwise | 669 | 670 | 867 | 180 | -45 | 90 | 1 | 2 | 3 | 1 | CART movement ONLY |
| rotation -15 ${ }^{\circ}$ | 669 | 670 | 867 | 180 | -30 | 90 | 1 | 2 | 3 | 1 |  |
| move 20 Westwise (shake) | 689 | 670 | 867 | 180 | -30 | 90 | 1 | 2 | 3 | 1 |  |
| move 20 Eastwise (shake) | 669 | 670 | 867 | 180 | -30 | 90 | 1 | 2 | 3 | 1 |  |
| Rotation $15^{\circ}$ | 669 | 670 | 867 | 180 | -45 | 90 | 1 | 2 | 3 | 1 | CART movement ONLY |
| move CART 1039 Westwise | 1708 | 670 | 867 | 180 | -45 | 90 | 1 | 2 | 3 | 1 |  |
| up to 1116 and right to 1560 | 1547 | 670 | 1118 | 180 | -45 | 90 | 1 | 2 | 3 | 1 |  |
| Rotation - $90^{\circ}$ | 1547 | 670 | 1118 | 180 | 45 | 90 | 1 | 2 | 3 | 1 |  |
| down to Loc 18 | 1547 | 670 | 778 | 180 | 45 | 90 | 1 | 2 | 3 | 1 |  |
| send finish info to R1 | 1547 | 670 | 778 | 180 | 45 | 90 | 1 | 2 | 3 | 1 |  |
|  | 1547 | 670 | 778 | 180 | 45 | 90 | 1 | 2 | 3 | 0 |  |
| disingage | 1547 | 600 | 778 | 180 | 45 | 90 | 1 | 2 | 3 | 0 |  |
| raise 100 | 1547 | 600 | 878 | 180 | 45 | 90 | 1 | 2 | 3 | 0 |  |
| continue with next task or stop at rest if dpti $=\mathrm{dpt} 10$ |  |  |  |  |  |  |  |  |  |  |  |

## Rовот 1

| C1R1T1 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{RX} \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \mathrm{RY} \\ \text { [deg] } \end{gathered}$ | $\begin{gathered} \mathrm{RZ} \\ \text { [de] } \end{gathered}$ | Priority of rotation | Gripper [mm] | Best joint manipulator set 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


| after R2 confirmation |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| at pos tsl | 215 | 861 | 795 | 0 | -90 | 0 | 2 | 1 | 3 | 0 |  |
| pick up tsl | 215 | 861 | 795 | 0 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| move forward 60 | 215 | 801 | 795 | 0 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| wait 3 sec to collect souce | 215 | 801 | 795 | 0 | -90 | 0 | 2 | 1 | 3 | 1 | souce from dispenser |
| move backward 40 | 215 | 821 | 795 | 0 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| raise by 145 | 215 | 821 | 940 | 0 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| W2 rotation +90 | 450 | 586 | 940 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| over Loc 1 centre | 500 | 670 | 940 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| W3 rotation +90 | 500 | 670 | 940 | 90 | -90 | -90 | 2 | 1 | 3 | 1 |  |
| W3 rotation +180 | 500 | 670 | 940 | 90 | -90 | -180 | 2 | 1 | 3 | 1 |  |
| W3 rotation +270 | 500 | 670 | 940 | 90 | -90 | -270 | 2 | 1 | 3 | 1 |  |
| W3 rotation +360 | 500 | 670 | 940 | 90 | -90 | -360 | 2 | 1 | 3 | 1 |  |
| move down by 115 | 500 | 670 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| spread tomato sauce | 510 | 687 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 528 | 698 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 540 | 670 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 528 | 642 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 500 | 630 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 472 | 642 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 460 | 670 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 448 | 700 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 450 | 757 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 500 | 780 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 555 | 765 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 595 | 725 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 610 | 670 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 595 | 615 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 555 | 575 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 500 | 560 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 445 | 575 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 405 | 615 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 390 | 670 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 422 | 715 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 465 | 690 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 500 | 670 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| raise up by 100 | 500 | 670 | 925 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| above pos tsl | 215 | 861 | 925 | 0 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| W2 rotation -90 | 215 | 861 | 925 | 0 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| leave tsl | 215 | 861 | 795 | 0 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| open gripper | 215 | 861 | 795 | 0 | -90 | 0 | 2 | 1 | 3 | 0 |  |
| raise up 100 | 215 | 861 | 895 | 0 | -90 | 0 | 2 | 1 | 3 | 0 |  |
| continue with next task |  |  |  |  |  |  |  |  |  |  |  |


| C1R1T2-cc1 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \\ \text { to be } \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{RX} \\ {[\mathrm{deg}]} \\ \text { pleted } \end{gathered}$ | $\begin{gathered} \mathrm{RY} \\ \text { [deg] } \end{gathered}$ | $\begin{gathered} \mathrm{RZ} \\ {[\mathrm{de}]} \end{gathered}$ | Priority of rotation |  |  | Gripper [mm] | Best joint manipulator set 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | ays co |  |  |  |  |  |  |  |  |
| at pos cc1 | 602 | 116 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| pick up cc1 | 602 | 116 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| raise up 100 | 602 | 116 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| GP h270 over L1, shift 80 left (West) | 580 | 670 | 1020 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| Rotate $90^{\circ}$ | 580 | 670 | 1020 | 90 | 90 | 90 | 2 | 1 | 3 | 1 |  |
| Rotate $90^{\circ}$ more | 580 | 670 | 1020 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| down 150 | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking +20 Upward | 580 | 670 | 890 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking -20 Downward | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking +20 Upward | 580 | 670 | 890 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking -20 Downward | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Up 150 | 580 | 670 | 1020 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| back rotation $90^{\circ}$ | 580 | 670 | 1020 | 90 | 90 | 90 | 2 | 1 | 3 | 1 |  |
| back rotation $90^{\circ}$ more | 580 | 670 | 1020 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| raise up | 580 | 670 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| 100 above pos cc1 | 602 | 116 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| leave cc1 | 602 | 116 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| open gripper | 602 | 116 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| raise up 100 | 602 | 116 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
|  |  | contin | with $n$ | t task |  |  |  |  |  |  |  |


| C1R1T2-cc2 | $\underset{[\mathrm{mm}]}{\mathrm{X}}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \end{gathered}$ | RX [deg] | RY <br> [deg] | $\begin{gathered} \mathrm{RZ} \\ {[\mathrm{de}]} \end{gathered}$ | Priority of rotation |  |  | Gripper [mm] | Best joint manipulator set 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| to be always completed |  |  |  |  |  |  |  |  |  |  |  |
| at pos cc2 | 413 | 116 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| pick up cc2 | 413 | 116 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| raise up 100 | 413 | 116 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| GP h270 over L1, shift 80 left (West) | 580 | 670 | 1020 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| Rotate $90^{\circ}$ | 580 | 670 | 1020 | 90 | 90 | 90 | 2 | 1 | 3 | 1 |  |
| Rotate $90^{\circ}$ more | 580 | 670 | 1020 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| down 150 | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking +20 Upward | 580 | 670 | 890 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking -20 Downward | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking +20 Upward | 580 | 670 | 890 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking -20 Downward | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Up 150 | 580 | 670 | 1020 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| back rotation $90^{\circ}$ | 580 | 670 | 1020 | 90 | 90 | 90 | 2 | 1 | 3 | 1 |  |
| back rotation $90^{\circ}$ more | 580 | 670 | 1020 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| raise up | 580 | 670 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| 100 above pos cc2 | 413 | 116 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| leave cc2 | 413 | 116 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| open gripper | 413 | 116 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| raise up 100 | 413 | 116 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| continue with next task |  |  |  |  |  |  |  |  |  |  |  |


| C1R1T2-cc3 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ |  | $\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{RX} \\ \text { [deg] } \\ \text { pleted } \end{gathered}$ | $\begin{gathered} \mathrm{RY} \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \mathrm{RZ} \\ \text { [de] } \end{gathered}$ | Priority of rotation |  |  | Gripper [mm] | Best joint manipulator set 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | ays co |  |  |  |  |  |  |  |  |
| at pos cc3 | 224 | 116 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| pick up cc3 | 224 | 116 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| raise up 100 | 224 | 116 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| GP h270 over L1, shift 80 left (West) | 580 | 670 | 1020 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| Rotate $90^{\circ}$ | 580 | 670 | 1020 | 90 | 90 | 90 | 2 | 1 | 3 | 1 |  |
| Rotate $90^{\circ}$ more | 580 | 670 | 1020 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| down 150 | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking +20 Upward | 580 | 670 | 890 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking -20 Downward | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking +20 Upward | 580 | 670 | 890 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking -20 Downward | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Up 150 | 580 | 670 | 1020 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| back rotation $90^{\circ}$ | 580 | 670 | 1020 | 90 | 90 | 90 | 2 | 1 | 3 | 1 |  |
| back rotation $90^{\circ}$ more | 580 | 670 | 1020 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| raise up | 580 | 670 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| 100 above pos cc3 | 224 | 116 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| leave cc3 | 224 | 116 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| open gripper | 224 | 116 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| raise up 100 | 224 | 116 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
|  |  | contin | with | t task |  |  |  |  |  |  |  |


| C1R1T2-cc4 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \\ \text { to be } \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{RX} \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \mathrm{RY} \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \mathrm{RZ} \\ \text { [de] } \end{gathered}$ | Priority of rotation |  |  | Gripper [mm] | Best joint manipulator set 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | ays co | pleted |  |  |  |  |  |  |  |
| at pos cc4 | 35 | 116 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| pick up cc4 | 35 | 116 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| raise up 100 | 35 | 116 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| GP h270 over L1, shift 80 left (West) | 580 | 670 | 1020 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| Rotate $90^{\circ}$ | 580 | 670 | 1020 | 90 | 90 | 90 | 2 | 1 | 3 | 1 |  |
| Rotate $90^{\circ}$ more | 580 | 670 | 1020 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| down 150 | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking +20 Upward | 580 | 670 | 890 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking -20 Downward | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking +20 Upward | 580 | 670 | 890 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking -20 Downward | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Up 150 | 580 | 670 | 1020 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| back rotation $90^{\circ}$ | 580 | 670 | 1020 | 90 | 90 | 90 | 2 | 1 | 3 | 1 |  |
| back rotation $90^{\circ}$ more | 580 | 670 | 1020 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| raise up | 580 | 670 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| 100 above pos cc4 | 35 | 116 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| leave cc4 | 35 | 116 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| open gripper | 35 | 116 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| raise up 100 | 35 | 116 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
|  |  | contin | with n | t task |  |  |  |  |  |  |  |


| C1R1T2-cc5 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{RX} \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \mathrm{RY} \\ \text { [deg] } \end{gathered}$ | $\begin{gathered} \mathrm{RZ} \\ \text { [de] } \end{gathered}$ | Priority of rotation |  |  | Gripper [mm] | Best joint manipulator set 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| to be always completed |  |  |  |  |  |  |  |  |  |  |  |
| at pos cc5 | 602 | 328 | 948 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| pick up cc5 | 602 | 328 | 948 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| raise up 100 | 602 | 328 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| GP h270 over L1, shift 80 left (West) | 580 | 670 | 1020 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| Rotate $90^{\circ}$ | 580 | 670 | 1020 | 90 | 90 | 90 | 2 | 1 | 3 | 1 |  |
| Rotate $90^{\circ}$ more | 580 | 670 | 1020 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| down 150 | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking +20 Upward | 580 | 670 | 890 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking -20 Downward | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking +20 Upward | 580 | 670 | 890 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking -20 Downward | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Up 150 | 580 | 670 | 1020 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| back rotation $90^{\circ}$ | 580 | 670 | 1020 | 90 | 90 | 90 | 2 | 1 | 3 | 1 |  |
| back rotation $90^{\circ}$ more | 580 | 670 | 1020 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| raise up | 580 | 670 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| 100 above pos cc5 | 602 | 328 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| leave cc5 | 602 | 328 | 948 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| open gripper | 602 | 328 | 948 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| raise up 100 | 602 | 328 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| continue with next task |  |  |  |  |  |  |  |  |  |  |  |


| C1R1T2-cc6 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ |  | Z RX <br> $[\mathrm{mm}]$ [deg] <br> [ays completed  |  | $\begin{gathered} \mathrm{RY} \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \text { RZ } \\ \text { [de] } \end{gathered}$ | Priority of rotation |  |  | Gripper [mm] | Best joint manipulator set 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |
| at pos cc6 | 413 | 328 | 948 | 90 |  | 90 | 180 | 2 | 1 | 3 | 0 |  |
| pick up cc6 | 413 | 328 | 948 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| raise up 100 | 413 | 328 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| GP h270 over L1, shift 80 left (West) | 580 | 670 | 1020 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| Rotate $90^{\circ}$ | 580 | 670 | 1020 | 90 | 90 | 90 | 2 | 1 | 3 | 1 |  |
| Rotate $90^{\circ}$ more | 580 | 670 | 1020 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| down 150 | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking +20 Upward | 580 | 670 | 890 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking -20 Downward | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking +20 Upward | 580 | 670 | 890 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking -20 Downward | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Up 150 | 580 | 670 | 1020 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| back rotation $90^{\circ}$ | 580 | 670 | 1020 | 90 | 90 | 90 | 2 | 1 | 3 | 1 |  |
| back rotation $90^{\circ}$ more | 580 | 670 | 1020 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| raise up | 580 | 670 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| 100 above pos cc6 | 413 | 328 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| leave cc6 | 413 | 328 | 948 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| open gripper | 413 | 328 | 948 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| raise up 100 | 413 | 328 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
|  |  | contin | with n | t task |  |  |  |  |  |  |  |


| C1R1T2-cc7 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{RX} \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \mathrm{RY} \\ \text { [deg] } \end{gathered}$ | $\begin{gathered} \mathrm{RZ} \\ \text { [de] } \end{gathered}$ | Priority of rotation |  |  | Gripper [mm] | Best joint manipulator set 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| to be always completed |  |  |  |  |  |  |  |  |  |  |  |
| at pos cc7 | 224 | 328 | 948 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| pick up cc7 | 224 | 328 | 948 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| raise up 100 | 224 | 328 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| GP h270 over L1, shift 80 left (West) | 580 | 670 | 1020 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| Rotate $90^{\circ}$ | 580 | 670 | 1020 | 90 | 90 | 90 | 2 | 1 | 3 | 1 |  |
| Rotate $90^{\circ}$ more | 580 | 670 | 1020 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| down 150 | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking +20 Upward | 580 | 670 | 890 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking -20 Downward | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking +20 Upward | 580 | 670 | 890 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking -20 Downward | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Up 150 | 580 | 670 | 1020 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| back rotation $90^{\circ}$ | 580 | 670 | 1020 | 90 | 90 | 90 | 2 | 1 | 3 | 1 |  |
| back rotation $90^{\circ}$ more | 580 | 670 | 1020 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| raise up | 580 | 670 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| 100 above pos cc7 | 224 | 328 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| leave cc7 | 224 | 328 | 948 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| open gripper | 224 | 328 | 948 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| raise up 100 | 224 | 328 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| continue with next task |  |  |  |  |  |  |  |  |  |  |  |


| C1R1T2-cc8 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \\ \text { to be } \end{gathered}$ | $\begin{gathered} \text { Z } \\ {[\mathrm{mm}]} \end{gathered}$ | RX[deg]pleted | $\begin{gathered} \mathrm{RY} \\ \text { [deg] } \end{gathered}$ | $\begin{gathered} \mathrm{RZ} \\ \text { [de] } \end{gathered}$ | Priority of rotation |  |  | Gripper [mm] | Best joint manipulator set 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | ays co |  |  |  |  |  |  |  |  |
| at pos cc8 | 35 | 328 | 948 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| pick up cc8 | 35 | 328 | 948 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| raise up 100 | 35 | 328 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| GP h270 over L1, shift 80 left (West) | 580 | 670 | 1020 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| Rotate $90^{\circ}$ | 580 | 670 | 1020 | 90 | 90 | 90 | 2 | 1 | 3 | 1 |  |
| Rotate $90^{\circ}$ more | 580 | 670 | 1020 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| down 150 | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking +20 Upward | 580 | 670 | 890 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking -20 Downward | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking +20 Upward | 580 | 670 | 890 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking -20 Downward | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Up 150 | 580 | 670 | 1020 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| back rotation $90^{\circ}$ | 580 | 670 | 1020 | 90 | 90 | 90 | 2 | 1 | 3 | 1 |  |
| back rotation $90^{\circ}$ more | 580 | 670 | 1020 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| raise up | 580 | 670 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| 100 above pos cc8 | 35 | 328 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| leave cc8 | 35 | 328 | 948 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| open gripper | 35 | 328 | 948 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| raise up 100 | 35 | 328 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
|  |  | contin | with n | t task |  |  |  |  |  |  |  |



| C1R1T4-oc | X | Y | Z | RX | RY | RZ | Priority of rotation |  |  | Gripper | Best joint manipulator set |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | [mm] | [mm] | [mm] | [deg] | [deg] | [de] |  |  |  | [mm] | 3 |
| to be always completed |  |  |  |  |  |  |  |  |  |  |  |
| above h950, 400 Westwise oc | 500 | 552 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| move CART 400 Eastwise | 100 | 552 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| at pos oc | 100 | 552 | 808 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| pick up oc | 100 | 552 | 808 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 142 | 100 | 552 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| move CART 400 Westwise | 500 | 552 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| GP 80W-80N from L1 centre \& h100 | 580 | 590 | 880 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| rotate $-135^{\circ}$ | 580 | 590 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking +20 up | 580 | 590 | 900 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking -20 down | 580 | 590 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| move 160 Eastwise | 420 | 590 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking +20 up | 420 | 590 | 900 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking -20 down | 420 | 590 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| move 160 Southwise | 420 | 750 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking +20 up | 420 | 750 | 900 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking -20 down | 420 | 750 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| move 160 Westwise | 580 | 750 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking +20 up | 580 | 750 | 900 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking -20 down | 580 | 750 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| rotate $+135^{\circ}$ | 580 | 750 | 880 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 70, 400 Westwise oc | 500 | 552 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| move CART 400 Eastwise | 100 | 552 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| leave oc | 100 | 552 | 808 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| open gripper | 100 | 552 | 808 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| raise up 142 | 100 | 552 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| move CART 400 Westwise | 500 | 552 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| continue with next task |  |  |  |  |  |  |  |  |  |  |  |


| C1R1T4-sc | X | Y | Z | RX | RY | RZ | Priority of rotation |  |  | Gripper | Best joint manipulator set |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | [mm] | [mm] | [mm] | [deg] | [deg] | [de] |  |  |  | [mm] | 3 |
| to be completed if after start the stand by request arrives from R1 |  |  |  |  |  |  |  |  |  |  |  |
| above h950, 400 Westwise sc | 500 | 644 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| move CART 400 Eastwise | 100 | 644 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| at pos sc | 100 | 644 | 808 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| pick up sc | 100 | 644 | 808 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 142 | 100 | 644 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| move CART 400 Westwise | 500 | 644 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| GP 80W-80N from L1 centre \& h100 | 580 | 590 | 880 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| rotate $-135^{\circ}$ | 580 | 590 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking +20 up | 580 | 590 | 900 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking -20 down | 580 | 590 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| move 160 Eastwise | 420 | 590 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking +20 up | 420 | 590 | 900 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking -20 down | 420 | 590 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| move 160 Southwise | 420 | 750 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking +20 up | 420 | 750 | 900 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking -20 down | 420 | 750 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| move 160 Westwise | 580 | 750 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking +20 up | 580 | 750 | 900 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking -20 down | 580 | 750 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| rotate $+135^{\circ}$ | 580 | 750 | 880 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 70, 400 Westwise sc | 500 | 644 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| move CART 400 Eastwise | 100 | 644 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| leave sc | 100 | 644 | 808 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| open gripper | 100 | 644 | 808 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| raise up 142 | 100 | 644 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| move CART 400 Westwise | 500 | 644 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |


| C1R1T4-gc | X | Y | Z | RX | RY | RZ | Priority of rotation |  |  | Gripper | Best joint manipulator set |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | [mm] | [mm] | [mm] | [deg] | [deg] | [de] |  |  |  | [mm] | 3 |
| to be completed if after start the stand by request arrives from R1 |  |  |  |  |  |  |  |  |  |  |  |
| above h950, 400 Westwise oc | 500 | 736 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| move CART 400 Eastwise | 100 | 736 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| at pos gc | 100 | 736 | 808 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| pick up gc | 100 | 736 | 808 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 142 | 100 | 736 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| move CART 400 Westwise | 500 | 736 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| GP 80W-80N from L1 centre \& h100 | 580 | 590 | 880 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| rotate $-135^{\circ}$ | 580 | 590 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking +20 up | 580 | 590 | 900 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking -20 down | 580 | 590 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| move 160 Eastwise | 420 | 590 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking +20 up | 420 | 590 | 900 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking -20 down | 420 | 590 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| move 160 Southwise | 420 | 750 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking +20 up | 420 | 750 | 900 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking -20 down | 420 | 750 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| move 160 Westwise | 580 | 750 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking +20 up | 580 | 750 | 900 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking -20 down | 580 | 750 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| rotate $+135^{\circ}$ | 580 | 750 | 880 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 70, 400 Westwise gc | 500 | 736 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| move CART 400 Eastwise | 100 | 736 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| leave gc | 100 | 736 | 808 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| open gripper | 100 | 736 | 808 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| raise up 142 | 100 | 736 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| move CART 400 Westwise | 500 | 736 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |


| C1R1T5 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{RX} \\ \text { [deg] } \end{gathered}$ | $\begin{gathered} \mathrm{RY} \\ \text { [deg] } \end{gathered}$ | $\begin{gathered} \mathrm{RZ} \\ \text { [de] } \end{gathered}$ | Priority of rotation |  |  | Gripper [mm] | Best joint manipulator set $3$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| to be always completed |  |  |  |  |  |  |  |  |  |  |  |
| h200, 400 Westwise ooc | 500 | 828 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| move CART 400 Eastwise | 100 | 828 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| at pos ooc | 100 | 828 | 808 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| pick up ooc | 100 | 828 | 808 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| above h200 | 100 | 828 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| move CART 400 Westwise | 500 | 828 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| GP over L1 centre \& h200 | 500 | 670 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| rotate - $135^{\circ}$ | 500 | 670 | 950 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| olive oil spread | 520 | 705 | 950 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| " | 542 | 712 | 950 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| " | 587 | 720 | 950 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| " | 600 | 670 | 950 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| " | 587 | 620 | 950 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| " | 571 | 599 | 950 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| " | 550 | 583 | 950 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| " | 500 | 570 | 950 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| " | 450 | 583 | 950 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| " | 429 | 599 | 950 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| " | 413 | 620 | 950 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| " | 400 | 670 | 950 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| " | 413 | 720 | 950 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| " | 429 | 741 | 950 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| " | 450 | 757 | 950 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| " | 500 | 770 | 950 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| rotate $+135^{\circ}$ | 500 | 770 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| above h200, 400 Westwise ooc | 500 | 828 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| move CART 400 Eastwise | 100 | 828 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| leave ooc | 100 | 828 | 808 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| open gripper | 100 | 828 | 808 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| above h200 | 100 | 828 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| move CART 400 Westwise | 500 | 828 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
|  |  | contin | with n | t task |  |  |  |  |  |  |  |



## go at rest

Unless dpti $=\mathrm{dpt10}$ remain at rest position till confirmation from R2 of new pizza left at location 1, otherwise stop at rest

| C1R1T6-c1pst2 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{RX} \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \mathrm{RY} \\ \text { [deg] } \end{gathered}$ | $\begin{gathered} \text { RZ } \\ \text { [de] } \end{gathered}$ | Priority of rotation |  |  | Gripper [mm] | Best joint manipulator set 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| to be always completed after R2 confirmation |  |  |  |  |  |  |  |  |  |  |  |
| send request to R1 stand by for R1 confirmation |  |  |  |  |  |  |  |  |  |  |  |
| $70 \&-45^{\circ}$ Northwise of ps1 | 747 | 600 | 778 | 180 | 45 | 90 | 1 | 2 | 3 | 0 | CART movement ONLY |
| at pos ps1 | 747 | 670 | 778 | 180 | 45 | 90 | 1 | 2 | 3 | 0 |  |
| pick up ps1 | 747 | 670 | 778 | 180 | 45 | 90 | 1 | 2 | 3 | 1 |  |
| raise 340 | 747 | 670 | 1118 | 180 | 45 | 90 | 1 | 2 | 3 | 1 |  |
| Rotation - $90^{\circ}$ | 747 | 670 | 1118 | 180 | -45 | 90 | 1 | 2 | 3 | 1 |  |
| GP h28 \& 508 Westwise Loc 1 | 1008 | 670 | 778 | 180 | -45 | 90 | 1 | 2 | 3 | 1 |  |
| pick up pizza CART 320 Eastwise | 688 | 670 | 778 | 180 | -45 | 90 | 1 | 2 | 3 | 1 |  |
| raise up GP h117 + 100 | 688 | 670 | 967 | 135 | 0 | 270 | 2 | 3 | 1 | 1 |  |
| GP at $\mathrm{X}=80$ (R1 pos) | 80 | 670 | 967 | 135 | 0 | 270 | 2 | 3 | 1 | 1 |  |
| turn around from Eastside | -309 | 831 | 967 | 135 | 0 | 225 | 2 | 3 | 1 | 1 |  |
| " | -470 | 1220 | 967 | 135 | 0 | 180 | 2 | 3 | 1 | 1 |  |
| " | -309 | 1609 | 967 | 135 | 0 | 135 | 2 | 3 | 1 | 1 |  |
| move to 169 Eastwise of c3pst2 | -69 | 1920 | 967 | 135 | 0 | 90 | 2 | 3 | 1 | 1 |  |
| down to h117 | -69 | 1920 | 867 | 135 | 0 | 90 | 2 | 3 | 1 | 1 |  |
| Rotation $15^{\circ}$ | -69 | 1920 | 867 | 150 | 0 | 90 | 2 | 3 | 1 | 1 |  |
| move 20 Eastwise (shake) | -89 | 1920 | 867 | 150 | 0 | 90 | 2 | 3 | 1 | 1 |  |
| move 20 Westwise (shake) | -69 | 1920 | 867 | 150 | 0 | 90 | 2 | 3 | 1 | 1 |  |
| Move CART 340 Eastwise more | -409 | 1920 | 867 | 150 | 0 | 90 | 2 | 3 | 1 | 1 | CART movement ONLY |
| rotation -15 ${ }^{\circ}$ | -409 | 1920 | 867 | 135 | 0 | 90 | 2 | 3 | 1 | 1 |  |
| move up 100 | -409 | 1920 | 967 | 135 | 0 | 90 | 2 | 3 | 1 | 1 |  |
| rotate back from Eastside | -649 | 1609 | 967 | 135 | 0 | 135 | 2 | 3 | 1 | 1 |  |
| " | -810 | 1200 | 967 | 135 | 0 | 180 | 2 | 3 | 1 | 1 |  |
| " | -649 | 831 | 967 | 135 | 0 | 225 | 2 | 3 | 1 | 1 |  |
| " | -260 | 670 | 967 | 135 | 0 | 270 | 2 | 3 | 1 | 1 |  |
| Move CART 660 Westwise | 400 | 670 | 967 | 135 | 0 | 270 | 2 | 3 | 1 | 1 | CART movement ONLY |
| move to X747, Y670,Z1118 | 747 | 670 | 1118 | 180 | -45 | 90 | 1 | 2 | 3 | 1 |  |
| rotation $90^{\circ}$ | 747 | 670 | 1118 | 180 | 45 | 90 | 1 | 2 | 3 | 1 |  |
| down to Loc 2 | 747 | 670 | 778 | 180 | 45 | 90 | 1 | 2 | 3 | 1 |  |
| send finish info to R1 | 747 | 670 | 778 | 180 | 45 | 90 | 1 | 2 | 3 | 1 |  |
| open gripper | 747 | 670 | 778 | 180 | 45 | 90 | 1 | 2 | 3 | 0 |  |
| disingage ps1 | 747 | 600 | 778 | 180 | 45 | 90 | 1 | 2 | 3 | 0 |  |
| raise 100 | 747 | 600 | 878 | 180 | 45 | 90 | 1 | 2 | 3 | 0 |  |
| send message to kitchen assistant go at rest |  |  |  |  |  |  |  |  |  |  |  |



## GRIPPING POINT TASK PATHS FOR CONFIGURATION NR. 2

TOOLS LOCATION AND PICK UP POINT COORDINATES


## Robot 2




| C2R2T2-dpt3 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{RX} \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \mathrm{RY} \\ \text { [deg] } \end{gathered}$ | $\begin{gathered} \mathrm{RZ} \\ \text { [de] } \end{gathered}$ |  | of r |  | Gripper [mm] | Best joint manipulator set $6$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| before to start check if a request to go at rest position arrives from R1 |  |  |  |  |  |  |  |  |  |  |  |
| at pos dpt3 | 1262 | 217 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| pick up dpt3 | 1262 | 217 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 100 | 1262 | 217 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| GP h70 over L17, shift 40 S, 60 W | 1260 | 710 | 820 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| turn $45^{\circ}$ | 1260 | 710 | 820 | 135 | 0 | 90 | 1 | 2 | 3 |  |  |
| Shaking -20 Northwise | 1260 | 690 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Shaking +20 Southwise | 1260 | 710 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| move 100 Northwise | 1260 | 610 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 60 | 1260 | 630 | 880 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Turn -45 | 1260 | 630 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| 100 above pos dpt3 | 1262 | 217 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| leave dpt3 | 1262 | 217 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| open gripper | 1262 | 217 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| raise up 100 | 1262 | 217 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| continue with next task |  |  |  |  |  |  |  |  |  |  |  |


| C2R2T2-dpt4 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \text { RX } \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \text { RY } \\ \text { [deal } \end{gathered}$ | $\begin{gathered} \mathrm{RZ} \\ {[\mathrm{de}]} \end{gathered}$ |  | of r |  | Gripper [mm] | Best joint manipulator set 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| before to start check if a request to go at rest position arrives from R1 |  |  |  |  |  |  |  |  |  |  |  |
|  | 1118 | 217 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| pick up dpt4 | 1118 | 217 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 100 | 1118 | 217 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| GP h70 over L17, shift $40 \mathrm{~S}, 60 \mathrm{~W}$ turn $45^{\circ}$ | 1260 | 710 | 820 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
|  | 1260 | 710 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Shaking -20 Northwise | 1260 | 690 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Shaking +20 Southwise | 1260 | 710 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| move 100 Northwise | 1260 | 610 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 60 | 1260 | 630 | 880 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Turn -45 | 1260 | 630 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| 100 above pos dpt4 | 1118 | 217 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| leave dpt4 | 1118 | 217 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| open gripper | 1118 | 217 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| raise up 100 | 1118 | 217 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
|  | continue with next task |  |  |  |  |  |  |  |  |  |  |



| C2R2T2-dpt7 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{RX} \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \mathrm{RY} \\ \text { [deg] } \end{gathered}$ | $\begin{gathered} \mathrm{RZ} \\ \text { [de] } \end{gathered}$ |  | of r |  | Gripper [mm] | Best joint manipulator set $6$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| before to start check if a request to go at rest position arrives from R1 |  |  |  |  |  |  |  |  |  |  |  |
| at pos dpt7 | 1406 | 359 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| pick up dpt7 | 1406 | 359 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 100 | 1406 | 359 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| GP h70 over L17, shift 40 S, 60 W | 1260 | 710 | 820 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| turn $45^{\circ}$ | 1260 | 710 | 820 | 135 | 0 | 90 | 1 | 2 | 3 |  |  |
| Shaking -20 Northwise | 1260 | 690 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Shaking +20 Southwise | 1260 | 710 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| move 100 Northwise | 1260 | 610 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 60 | 1260 | 630 | 880 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Turn -45 | 1260 | 630 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| 100 above pos dpt7 | 1406 | 359 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| leave dpt7 | 1406 | 359 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| open gripper | 1406 | 359 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| raise up 100 | 1406 | 359 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| continue with next task |  |  |  |  |  |  |  |  |  |  |  |


| C2R2T2-dpt8 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \text { RX } \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \text { RY } \\ \text { [deal } \end{gathered}$ | $\begin{gathered} \mathrm{RZ} \\ {[\mathrm{de}]} \end{gathered}$ |  | of r |  | Gripper [mm] | Best joint manipulator set 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| before to start check if a request to go at rest position arrives from R1 |  |  |  |  |  |  |  |  |  |  |  |
|  | 1262 | 359 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| pick up dpt8 | 1262 | 359 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 100 | 1262 | 359 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| GP h70 over L17, shift $40 \mathrm{~S}, 60 \mathrm{~W}$ turn $45^{\circ}$ | 1260 | 710 | 820 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
|  | 1260 | 710 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Shaking -20 Northwise | 1260 | 690 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Shaking +20 Southwise | 1260 | 710 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| move 100 Northwise | 1260 | 610 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 60 | 1260 | 630 | 880 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Turn -45 | 1260 | 630 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| 100 above pos dpt8 | 1262 | 359 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| leave dpt8 | 1262 | 359 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| open gripper | 1262 | 359 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| raise up 100 | 1262 | 359 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
|  | continue with next task |  |  |  |  |  |  |  |  |  |  |


| C2R2T2-dpt9 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{RX} \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \mathrm{RY} \\ \text { [deg] } \end{gathered}$ | $\begin{gathered} \mathrm{RZ} \\ \text { [de] } \end{gathered}$ |  |  |  | Gripper [mm] | Best joint manipulator set 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| before to start check if a request to go at rest position arrives from R1 |  |  |  |  |  |  |  |  |  |  |  |
| at pos dpt9 | 1118 | 359 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| pick up dpt9 | 1118 | 359 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 100 | 1118 | 359 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| GP h70 over L17, shift 40 S, 60 W | 1260 | 710 | 820 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| turn $45^{\circ}$ | 1260 | 710 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Shaking -20 Northwise | 1260 | 690 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Shaking +20 Southwise | 1260 | 710 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| move 100 Northwise | 1260 | 610 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 60 | 1260 | 630 | 880 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Turn -45 | 1260 | 630 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| 100 above pos dpt9 | 1118 | 359 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| leave dpt9 | 1118 | 359 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| open gripper | 1118 | 359 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| raise up 100 | 1118 | 359 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| continue with next task |  |  |  |  |  |  |  |  |  |  |  |


| C2R2T2-dpt10 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \text { Z } \\ {[\mathrm{mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{RX} \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \text { RY } \\ \text { [deg] } \end{gathered}$ | $\begin{gathered} \mathrm{RZ} \\ \text { [de] } \end{gathered}$ | Priority of rotation |  |  | Gripper [mm] | Best joint manipulator set 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| before to start check if a request to go at rest position arrives from R1 |  |  |  |  |  |  |  |  |  |  |  |
| at pos dpt10 | 974 | 359 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| pick up dpt10 | 974 | 359 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 100 | 974 | 359 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| GP h70 over L17, shift $40 \mathrm{~S}, 60 \mathrm{~W}$ | 1260 | 710 | 820 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| turn $45^{\circ}$ | 1260 | 710 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Shaking -20 Northwise | 1260 | 690 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Shaking +20 Southwise | 1260 | 710 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| move 100 Northwise | 1260 | 610 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 60 | 1260 | 630 | 880 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Turn -45 | 1260 | 630 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| 100 above pos dpt10 | 974 | 359 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| leave dpt10 | 974 | 359 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| open gripper | 974 | 359 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| raise up 100 | 974 | 359 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| continue with next task |  |  |  |  |  |  |  |  |  |  |  |



| C2R2T4 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{RX} \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \mathrm{RY} \\ \text { [deg] } \end{gathered}$ | $\begin{gathered} \text { RZ } \\ \text { [de] } \end{gathered}$ | Priority of rotation | Gripper [mm] | Best joint manipulator set 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| send request to R1 before to start check if a request to go at rest position arrives from R1 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| $70 \&-30^{\circ}$ Northwise of ps2 | 1547 | 600 | 778 | 180 | 45 | 90 | 1 | 0 |  |
| at pos ps2 | 1547 | 670 | 778 | 180 | 45 | 90 | 1 | 0 |  |
| pick up ps2 | 1547 | 670 | 778 | 180 | 45 | 90 | 1 | 1 |  |
| raise 340 | 1547 | 670 | 1118 | 180 | 45 | 90 | 1 | 1 |  |
| rotation $90^{\circ}$ | 1547 | 670 | 1118 | 180 | -45 | 90 | 1 | 1 |  |
| GP h28 \& 508 Westwise Loc 17 | 1708 | 670 | 778 | 180 | -45 | 90 | 1 | 1 |  |
| pick up pizza moving CART 320 Eastwise | 1388 | 670 | 778 | 180 | -45 | 90 | 1 | 1 | CART movement ONLY |
| stby for R1 conf \& R1 800 East | 1388 | 670 | 778 | 180 | -45 | 90 | 1 | 1 |  |
| raise up h104 | 1388 | 670 | 867 | 180 | -45 | 90 | 1 | 1 | CART movement ONLY |
| move to L1 CART 719 Eastwise | 669 | 670 | 867 | 180 | -45 | 90 | 1 | 1 |  |
| rotation -15 ${ }^{\circ}$ | 669 | 670 | 867 | 180 | -30 | 90 | 1 | 1 |  |
| move 20 Westwise (shake) | 689 | 670 | 867 | 180 | -30 | 90 | 1 | 1 |  |
| move 20 Eastwise (shake) | 669 | 670 | 867 | 180 | -30 | 90 | 1 | 1 |  |
| Rotation $15^{\circ}$ | 669 | 670 | 867 | 180 | -45 | 90 | 1 | 1 | CART movement ONLY |
| move CART 1039 Westwise | 1708 | 670 | 867 | 180 | -45 | 90 | 1 | 1 |  |
| up to 1116 and right to 1560 | 1547 | 670 | 1118 | 180 | -45 | 90 | 1 | 1 |  |
| Rotation - $90^{\circ}$ | 1547 | 670 | 1118 | 180 | 45 | 90 | 1 | 1 |  |
| down to Loc 18 | 1547 | 670 | 778 | 180 | 45 | 90 | 1 | 1 |  |
| send finish info to R1 | 1547 | 670 | 778 | 180 | 45 | 90 | 1 | 1 |  |
| open gripper | 1547 | 670 | 778 | 180 | 45 | 90 | 1 | 0 |  |
| disingage | 1547 | 600 | 778 | 180 | 45 | 90 | 1 | 0 |  |
| raise 100 |  | $600$ | $878$ |  |  | 90 | 1 | 0 |  |
| continue with next task or stop at rest if dpti $=\mathrm{dpt10}$ |  |  |  |  |  |  |  |  |  |

## Robot 1

| C2R1T1 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{RX} \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \text { RY } \\ \text { [deg] } \end{gathered}$ | $\begin{gathered} \text { RZ } \\ \text { [de] } \end{gathered}$ | Priority of rotation |  |  | Gripper [mm] | Best joint manipulator set 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| before to start check if a request to remain at rest position arrives from R2 after R2 confirmation |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| at pos tsl | 215 | 861 | 795 | 0 | -90 | 0 | 2 | 1 | 3 | 0 |  |
| pick up tsl | 215 | 861 | 795 | 0 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| move forward 60 | 215 | 801 | 795 | 0 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| wait 3 sec to collect souce | 215 | 801 | 795 | 0 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| move backward 40 | 215 | 821 | 795 | 0 | -90 | 0 | 2 | 1 | 3 | 1 | souce from dispenser |
| raise by 145 | 215 | 821 | 940 | 0 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| W2 rotation +90 | 450 | 586 | 940 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| over Loc 1 centre | 500 | 670 | 940 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| W3 rotation +90 | 500 | 670 | 940 | 90 | -90 | -90 | 2 | 1 | 3 | 1 |  |
| W3 rotation +180 | 500 | 670 | 940 | 90 | -90 | -180 | 2 | 1 | 3 | 1 |  |
| W3 rotation +270 | 500 | 670 | 940 | 90 | -90 | -270 | 2 | 1 | 3 | 1 |  |
| W3 rotation +360 | 500 | 670 | 940 | 90 | -90 | -360 | 2 | 1 | 3 | 1 |  |
| move down by 115 | 500 | 670 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| spread tomato sauce | 510 | 687 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 528 | 698 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 540 | 670 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 528 | 642 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 500 | 630 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 472 | 642 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 460 | 670 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 448 | 700 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 450 | 757 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 500 | 780 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 555 | 765 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 595 | 725 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 610 | 670 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 595 | 615 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 555 | 575 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 500 | 560 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 445 | 575 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 405 | 615 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 390 | 670 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 422 | 715 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 465 | 690 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 500 | 670 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| raise up by 100 | 500 | 670 | 925 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| above pos tsl | 215 | 861 | 925 | 0 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| W2 rotation -90 | 215 | 861 | 925 | 0 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| leave tsl | 215 | 861 | 795 | 0 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| open gripper | 215 | 861 | 795 | 0 | -90 | 0 | 2 | 1 | 3 | 0 |  |
| raise up 100 | 215 | 861 | 895 | 0 | -90 | 0 | 2 | 1 | 3 | 0 |  |
|  |  | contin | with | t task |  |  |  |  |  |  |  |


| C2R1T2-cc1 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ |  | $\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \\ \text { pays co } \end{gathered}$ | $\begin{gathered} \mathrm{RX} \\ \text { [deg] } \\ \text { pleted } \end{gathered}$ | $\begin{gathered} \text { RY } \\ \text { [deg] } \end{gathered}$ | $\begin{gathered} \mathrm{RZ} \\ \text { [de] } \end{gathered}$ | Priority of rotation |  |  | Gripper [mm] | Best joint manipulator set 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |
| at pos cc1 | 602 | 116 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| pick up cc1 | 602 | 116 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| raise up 100 | 602 | 116 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| GP h270 over L1, shift 80 left (West) | 580 | 670 | 1020 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| Rotate $90^{\circ}$ | 580 | 670 | 1020 | 90 | 90 | 90 | 2 | 1 | 3 | 1 |  |
| Rotate $90^{\circ}$ more | 580 | 670 | 1020 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| down 150 | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking +20 Upward | 580 | 670 | 890 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking -20 Downward | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking +20 Upward | 580 | 670 | 890 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking -20 Downward | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Up 150 | 580 | 670 | 1020 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| back rotation $90^{\circ}$ | 580 | 670 | 1020 | 90 | 90 | 90 | 2 | 1 | 3 | 1 |  |
| back rotation $90^{\circ}$ more | 580 | 670 | 1020 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| raise up | 580 | 670 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| 100 above pos cc1 | 602 | 116 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| leave cc1 | 602 | 116 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| open gripper | 602 | 116 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| raise up 100 | 602 | 116 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
|  |  | contin | with $n$ | t task |  |  |  |  |  |  |  |


| C2R1T2-cc2 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ |  | $\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{RX} \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \mathrm{RY} \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \mathrm{RZ} \\ \text { [de] } \end{gathered}$ | Priority of rotation |  |  | Gripper [mm] | Best joint manipulator set 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | ays co |  |  |  |  |  |  |  |  |
| at pos cc2 | 413 | 116 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| pick up cc2 | 413 | 116 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| raise up 100 | 413 | 116 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| GP h270 over L1, shift 80 left (West) | 580 | 670 | 1020 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| Rotate $90^{\circ}$ | 580 | 670 | 1020 | 90 | 90 | 90 | 2 | 1 | 3 | 1 |  |
| Rotate $90^{\circ}$ more | 580 | 670 | 1020 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| down 150 | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking +20 Upward | 580 | 670 | 890 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking -20 Downward | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking +20 Upward | 580 | 670 | 890 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking -20 Downward | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Up 150 | 580 | 670 | 1020 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| back rotation $90^{\circ}$ | 580 | 670 | 1020 | 90 | 90 | 90 | 2 | 1 | 3 | 1 |  |
| back rotation $90^{\circ}$ more | 580 | 670 | 1020 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| raise up | 580 | 670 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| 100 above pos cc2 | 413 | 116 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| leave cc2 | 413 | 116 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| open gripper | 413 | 116 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| raise up 100 | 413 | 116 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
|  |  | contin | with | t task |  |  |  |  |  |  |  |


| C2R1T2-cc3 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{RX} \\ {[\mathrm{deg}]} \end{gathered}$ | RY <br> [deg] | $\begin{gathered} \mathrm{RZ} \\ {[\mathrm{de}]} \end{gathered}$ | Priority of rotation |  |  | Gripper [mm] | Best joint manipulator set 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| to be always completed |  |  |  |  |  |  |  |  |  |  |  |
| at pos cc3 | 224 | 116 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| pick up cc3 | 224 | 116 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| raise up 100 | 224 | 116 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| GP h270 over L1, shift 80 left (West) | 580 | 670 | 1020 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| Rotate $90^{\circ}$ | 580 | 670 | 1020 | 90 | 90 | 90 | 2 | 1 | 3 | 1 |  |
| Rotate $90^{\circ}$ more | 580 | 670 | 1020 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| down 150 | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking +20 Upward | 580 | 670 | 890 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking -20 Downward | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking +20 Upward | 580 | 670 | 890 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking-20 Downward | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Up 150 | 580 | 670 | 1020 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| back rotation $90^{\circ}$ | 580 | 670 | 1020 | 90 | 90 | 90 | 2 | 1 | 3 | 1 |  |
| back rotation $90^{\circ}$ more | 580 | 670 | 1020 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| raise up | 580 | 670 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| 100 above pos cc3 | 224 | 116 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| leave cc3 | 224 | 116 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| open gripper | 224 | 116 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| raise up 100 | 224 | 116 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| continue with next task |  |  |  |  |  |  |  |  |  |  |  |




| C2R1T4-oc | X | Y | Z |  |  | RZ | Priority of rotation |  |  | Gripper | Best joint manipulator set |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | [mm] | [mm] | [mm] | [deg] | [deg] | [de] |  |  |  | [mm] | 3 |
| to be always completed |  |  |  |  |  |  |  |  |  |  |  |
| arrive from the above h950 | 100 | 552 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| at pos oc | 100 | 552 | 808 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| pick up os | 100 | 552 | 808 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 100 | 100 | 552 | 908 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| GP 80W-80N from L1 centre \& h100 | 580 | 590 | 880 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| rotate $-135^{\circ}$ | 580 | 590 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking +20 up | 580 | 590 | 900 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking -20 down | 580 | 590 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| move 160 Eastwise | 420 | 590 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking +20 up | 420 | 590 | 900 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking -20 down | 420 | 590 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| move 160 Southwise | 420 | 750 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking +20 up | 420 | 750 | 900 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking -20 down | 420 | 750 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| move 160 Westwise | 580 | 750 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking +20 up | 580 | 750 | 900 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking -20 down | 580 | 750 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| rotate $+135^{\circ}$ | 580 | 750 | 880 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| back to pos oc h950 | 100 | 552 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| leave oc | 100 | 552 | 808 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| open gripper | 100 | 552 | 808 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| raise up 142 | 100 | 552 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| continue with next task |  |  |  |  |  |  |  |  |  |  |  |


| C2R1T4-sc | X | Y | Z | RX | RY | RZ | Priority of rotation |  |  | Gripper | Best joint manipulator set |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | [mm] | [mm] | [mm] | [deg] | [deg] | [de] |  |  |  | [mm] | 3 |
| to be completed if after start the stand by request arrives from R1 |  |  |  |  |  |  |  |  |  |  |  |
| arrive from the above h950 | 100 | 644 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| at pos sc | 100 | 644 | 808 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| pick up sc | 100 | 644 | 808 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 100 | 100 | 644 | 908 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| GP 80W-80N from L1 centre \& h100 | 580 | 590 | 880 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| rotate $-135^{\circ}$ | 580 | 590 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking +20 up | 580 | 590 | 900 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking -20 down | 580 | 590 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| move 160 Eastwise | 420 | 590 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking +20 up | 420 | 590 | 900 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking -20 down | 420 | 590 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| move 160 Southwise | 420 | 750 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking +20 up | 420 | 750 | 900 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking -20 down | 420 | 750 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| move 160 Westwise | 580 | 750 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking +20 up | 580 | 750 | 900 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking -20 down | 580 | 750 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| rotate $+135^{\circ}$ | 580 | 750 | 880 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| back to pos sc h950 | 100 | 644 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| leave sc | 100 | 644 | 808 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| open gripper | 100 | 644 | 808 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| raise up 142 | 100 | 644 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| continue with next task |  |  |  |  |  |  |  |  |  |  |  |


| C2R1T4-gc |  | Y | Z | RX |  | RZ | Priority of rotation |  |  | Gripper | Best joint manipulator set |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | [mm] | [mm] | [mm] | [deg] | [deg] | [de] |  |  |  | [mm] | 3 |
| to be completed if after start the stand by request arrives from R1 |  |  |  |  |  |  |  |  |  |  |  |
| arrive from the above h950 | 100 | 736 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| at pos gc | 100 | 736 | 808 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| pick up gc | 100 | 736 | 808 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 100 | 100 | 736 | 908 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| GP 80W-80N from L1 centre \& h100 | 580 | 590 | 880 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| rotate $-135^{\circ}$ | 580 | 590 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking +20 up | 580 | 590 | 900 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking -20 down | 580 | 590 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| move 160 Eastwise | 420 | 590 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking +20 up | 420 | 590 | 900 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking -20 down | 420 | 590 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| move 160 Southwise | 420 | 750 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking +20 up | 420 | 750 | 900 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking -20 down | 420 | 750 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| move 160 Westwise | 580 | 750 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking +20 up | 580 | 750 | 900 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking -20 down | 580 | 750 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| rotate $+135^{\circ}$ | 580 | 750 | 880 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| back to pos gc h950 | 100 | 736 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| leave gc | 100 | 736 | 808 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| open gripper | 100 | 736 | 808 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| raise up 142 | 100 | 736 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| continue with next task |  |  |  |  |  |  |  |  |  |  |  |


| C2R1T5 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{RX} \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \mathrm{RY} \\ \text { [deg] } \end{gathered}$ | $\begin{gathered} \mathrm{RZ} \\ \text { [de] } \end{gathered}$ | Priority of rotation |  |  | Gripper [mm] | Best joint manipulator set 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| to be always completed |  |  |  |  |  |  |  |  |  |  |  |
| arrive from the above h200 | 100 | 828 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| at pos ooc | 100 | 828 | 808 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| pick up ooc | 100 | 828 | 808 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 142 | 100 | 828 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| GP over L1 centre \& h200 | 500 | 670 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| rotate - $135^{\circ}$ | 500 | 670 | 950 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| olive oil spread | 520 | 705 | 950 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| " | 542 | 712 | 950 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| " | 587 | 720 | 950 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| " | 600 | 670 | 950 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| " | 587 | 620 | 950 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| " | 571 | 599 | 950 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| " | 550 | 583 | 950 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| " | 500 | 570 | 950 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| " | 450 | 583 | 950 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| " | 429 | 599 | 950 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| " | 413 | 620 | 950 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| " | 400 | 670 | 950 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| " | 413 | 720 | 950 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| " | 429 | 741 | 950 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| " | 450 | 757 | 950 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| " | 500 | 770 | 950 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| rotate $+135^{\circ}$ | 500 | 770 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| back to pos oc h200 | 100 | 828 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| leave oc | 100 | 828 | 808 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| open gripper | 100 | 828 | 808 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| raise up 142 | 100 | 828 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| continue with next task |  |  |  |  |  |  |  |  |  |  |  |




| C2R1T6-c1pst3 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\underset{[\mathrm{mm}]}{\mathrm{Z}}$ | $\begin{gathered} \text { RX } \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \mathrm{RY} \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \text { RZ } \\ \text { [de] } \end{gathered}$ | Priority of rotation |  |  | Gripper [mm] | Best joint manipulator set 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| to be always completed after R2 confirmation |  |  |  |  |  |  |  |  |  |  |  |
| send request to R2 stand by for R2 confirmation |  |  |  |  |  |  |  |  |  |  |  |
| 70 \& $-45^{\circ}$ Northwise of ps1 | 747 | 600 | 778 | 180 | 45 | 90 | 1 | 2 | 3 | 0 |  |
| at pos ps1 | 747 | 670 | 778 | 180 | 45 | 90 | 1 | 2 | 3 | 0 |  |
| pick up ps1 | 747 | 670 | 778 | 180 | 45 | 90 | 1 | 2 | 3 | 1 |  |
| raise 340 | 747 | 670 | 1118 | 180 | 45 | 90 | 1 | 2 | 3 | 1 |  |
| Rotation - $90^{\circ}$ | 747 | 670 | 1118 | 180 | -45 | 90 | 1 | 2 | 3 | 1 |  |
| GP h28 \& 508 Westwise Loc 1 | 1008 | 670 | 778 | 180 | -45 | 90 | 1 | 2 | 3 | 1 |  |
| pick up pizza CART 320 Eastwise | 688 | 670 | 778 | 180 | -45 | 90 | 1 | 2 | 3 | 1 |  |
| raise up GP h117 + 100 | 688 | 670 | 967 | 135 | 0 | 270 | 2 | 3 | 1 | 1 |  |
| GP at $\mathrm{X}=80$ (R1 pos) | 80 | 670 | 967 | 135 | 0 | 270 | 2 | 3 | 1 | 1 |  |
| turn around from Eastside | -309 | 831 | 967 | 135 | 0 | 225 | 2 | 3 | 1 | 1 |  |
| move to 169 Northwise of c3pst3 | -300 | 1851 | 967 | 135 | 0 | 180 | 2 | 3 | 1 | 1 |  |
| down to h117 | -300 | 1851 | 867 | 135 | 0 | 180 | 2 | 3 | 1 | 1 |  |
| Rotation $15^{\circ}$ | -300 | 1851 | 867 | 150 | 0 | 180 | 2 | 3 | 1 | 1 |  |
| move 20 Northwise (shake) | -300 | 1851 | 867 | 150 | 0 | 180 | 2 | 3 | 1 | 1 |  |
| move 20 Southwise (shake) | -300 | 1851 | 867 | 150 | 0 | 180 | 2 | 3 | 1 | 1 |  |
| Move 340 NorthWise | -300 | 1511 | 867 | 150 | 0 | 180 | 2 | 3 | 1 | 1 |  |
| rotation -15 ${ }^{\circ}$ | -300 | 1511 | 867 | 135 | 0 | 180 | 2 | 3 | 1 | 1 |  |
| move up 100 | -300 | 1511 | 967 | 135 | 0 | 180 | 2 | 3 | 1 | 1 |  |
| turn around from Eastside | -309 | 831 | 967 | 135 | 0 | 225 | 2 | 3 | 1 | 1 |  |
| GP at $\mathrm{X}=80$ (R1 pos) | 80 | 670 | 967 | 135 | 0 | 270 | 2 | 3 | 1 | 1 |  |
| Move CART 320 Westwise | 400 | 670 | 967 | 135 | 0 | 270 | 2 | 3 | 1 | 1 |  |
| move to X747, Y670,Z1118 | 747 | 670 | 1118 | 180 | -45 | 90 | 1 | 2 | 3 | 1 |  |
| rotation $90^{\circ}$ | 747 | 670 | 1118 | 180 | 45 | 90 | 1 | 2 | 3 | 1 |  |
| down to Loc 2 | 747 | 670 | 778 | 180 | 45 | 90 | 1 | 2 | 3 | 1 |  |
| send finish info to R1 | 747 | 670 | 778 | 180 | 45 | 90 | 1 | 2 | 3 | 1 |  |
| open gripper | 747 | 670 | 778 | 180 | 45 | 90 | 1 | 2 | 3 | 0 |  |
| disingage ps1 | 747 | 600 | 778 | 180 | 45 | 90 | 1 | 2 | 3 | 0 |  |
| raise 100 | 747 | 600 | 878 | 180 | 45 | 90 | 1 | 2 | 3 | 0 |  |
| send message to kitchen assistant go at rest <br> remain at | osition ti | confirm | ion fro | 2 of | pizza | t at |  |  |  |  |  |

## GRIPPING POINT TASK PATHS FOR CONFIGURATION NR. 3

TOOLS LOCATION AND PICK UP POINT COORDINATES


Robot 2

| C3R2T1 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{RX} \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \mathrm{RY} \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \mathrm{RZ} \\ \text { [de] } \end{gathered}$ |  |  | Gripper [mm] | Best joint manipulator set 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| before to start check if a request to go at rest position arrives from R1 |  |  |  |  |  |  |  |  |  |  |
| at pos fc | 1001 | 81 | 928 | 90 | 90 | 180 | 2 | 3 | 0 |  |
| pick up fc | 1001 | 81 | 928 | 90 | 90 | 180 | 2 | 3 | 1 |  |
| raise up 100 | 1001 | 81 | 1028 | 90 | 90 | 180 | 2 | 3 | 1 |  |
| over Loc 17 | 1200 | 670 | 960 | 90 | 90 | 180 | 2 | 3 | 1 |  |
| flour spread | 1220 | 705 | 960 | 90 | 90 | 240 | 2 | 3 | 1 |  |
| " | 1242 | 712 | 960 | 90 | 90 | 300 | 2 | 3 | 1 |  |
| " | 1287 | 720 | 960 | 90 | 90 | 360 | 2 | 3 | 1 |  |
| " | 1300 | 670 | 960 | 90 | 90 | 90 | 2 | 3 | 1 |  |
| " | 1287 | 620 | 960 | 90 | 90 | 180 | 2 | 3 | 1 |  |
| " | 1271 | 599 | 960 | 90 | 90 | 240 | 2 | 3 | 1 |  |
| " | 1250 | 583 | 960 | 90 | 90 | 300 | 2 | 3 | 1 |  |
| " | 1200 | 570 | 960 | 90 | 90 | 360 | 2 | 3 | 1 |  |
| " | 1150 | 583 | 960 | 90 | 90 | 60 | 2 | 3 | 1 |  |
| " | 1129 | 599 | 960 | 90 | 90 | 120 | 2 | 3 |  |  |
| " | 1113 | 620 | 960 | 90 | 90 | 180 | 2 | 3 | 1 |  |
| " | 1100 | 670 | 960 | 90 | 90 | 240 | 2 | 3 | 1 |  |
| " | 1113 | 720 | 960 | 90 | 90 | 360 | 2 | 3 | 1 |  |
| " | 1129 | 741 | 960 | 90 | 90 | 60 | 2 | 3 | 1 |  |
| " | 1150 | 757 | 960 | 90 | 90 | 120 | 2 | 3 | 1 |  |
| " | 1200 | 770 | 960 | 90 | 90 | 180 | 2 | 3 | 1 |  |
| above pos fc | 1001 | 81 | 1028 | 90 | 90 | 180 | 2 | 3 | 1 |  |
| leave fc | 1001 | 81 | 928 | 90 | 90 | 180 | 2 | 3 | 1 |  |
| open gripper | 1001 | 81 | 928 | 90 | 90 | 180 | 2 | 3 | 0 |  |
| raise up 100 | 1001 | 81 | 1028 | 90 | 90 | 180 | 2 | 3 | 0 |  |
|  |  | contin | with $n$ | t task |  |  |  |  |  |  |



| C3R2T2-dpt3 | $\underset{[\mathrm{mm}]}{\mathrm{X}}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{RX} \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \text { RY } \\ \text { [degl } \end{gathered}$ | $\begin{gathered} \text { RZ } \\ \text { [de] } \end{gathered}$ |  |  |  | Gripper [mm] | Best joint manipulator set 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| before to start check if a request to go at rest position arrives from R1 |  |  |  |  |  |  |  |  |  |  |  |
| at pos dpt3 pick up dpt3 raise up 100 | 1262 | 217 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
|  | 1262 | 217 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
|  | 1262 | 217 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| GP h70 over L17, shift $40 \mathrm{~S}, 60 \mathrm{~W}$ | 1260 | 710 | 820 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
|  | 1260 | 710 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Shaking -20 Northwise | 1260 | 690 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Shaking +20 Southwise | 1260 | 710 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| move 100 Northwise | 1260 | 610 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 60 | 1260 | 630 | 880 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Turn -45 | 1260 | 630 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| 100 above pos dpt3 | 1262 | 217 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| leave dpt3 | 1262 | 217 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| open gripper | 1262 | 217 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| raise up 100 | 1262 | 217 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
|  | continue with next task |  |  |  |  |  |  |  |  |  |  |


| C3R2T2-dpt4 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \text { RX } \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \text { RY } \\ \text { [deal } \end{gathered}$ | $\begin{gathered} \mathrm{RZ} \\ {[\mathrm{de}]} \end{gathered}$ |  | of r |  | Gripper [mm] | Best joint manipulator set 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| before to start check if a request to go at rest position arrives from R1 |  |  |  |  |  |  |  |  |  |  |  |
|  | 1118 | 217 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| pick up dpt4 | 1118 | 217 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 100 | 1118 | 217 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| GP h70 over L17, shift $40 \mathrm{~S}, 60 \mathrm{~W}$ turn $45^{\circ}$ | 1260 | 710 | 820 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
|  | 1260 | 710 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Shaking -20 Northwise | 1260 | 690 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Shaking +20 Southwise | 1260 | 710 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| move 100 Northwise | 1260 | 610 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 60 | 1260 | 630 | 880 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Turn -45 | 1260 | 630 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| 100 above pos dpt4 | 1118 | 217 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| leave dpt4 | 1118 | 217 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| open gripper | 1118 | 217 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| raise up 100 | 1118 | 217 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
|  | continue with next task |  |  |  |  |  |  |  |  |  |  |



| C3R2T2-dpt7 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \text { Z } \\ {[\mathrm{mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{RX} \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \mathrm{RY} \\ \text { [deg] } \end{gathered}$ | $\begin{gathered} \mathrm{RZ} \\ \text { [de] } \end{gathered}$ | Priority of rotation |  |  | Gripper [mm] | Best joint manipulator set 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| before to start check if a request to go at rest position arrives from R1 |  |  |  |  |  |  |  |  |  |  |  |
| at pos dpt7 | 1406 | 359 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| pick up dpt7 | 1406 | 359 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 100 | 1406 | 359 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| GP h70 over L17, shift $40 \mathrm{~S}, 60 \mathrm{~W}$ | 1260 | 710 | 820 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| turn $45^{\circ}$ | 1260 | 710 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Shaking -20 Northwise | 1260 | 690 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Shaking +20 Southwise | 1260 | 710 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| move 100 Northwise | 1260 | 610 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 60 | 1260 | 630 | 880 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Turn -45 | 1260 | 630 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| 100 above pos dpt7 | 1406 | 359 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| leave dpt7 | 1406 | 359 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| open gripper | 1406 | 359 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| raise up 100 | 1406 | 359 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| continue with next task |  |  |  |  |  |  |  |  |  |  |  |


| C3R2T2-dpt8 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \text { RX } \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \text { RY } \\ \text { [deal } \end{gathered}$ | $\begin{gathered} \mathrm{RZ} \\ {[\mathrm{de}]} \end{gathered}$ |  | of r |  | Gripper [mm] | Best joint manipulator set 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| before to start check if a request to go at rest position arrives from R1 |  |  |  |  |  |  |  |  |  |  |  |
| at pos dpt8 | 1262 | 359 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| pick up dpt8 | 1262 | 359 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 100 | 1262 | 359 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| GP h70 over L17, shift $40 \mathrm{~S}, 60 \mathrm{~W}$ | 1260 | 710 | 820 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| turn $45^{\circ}$ | 1260 | 710 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Shaking -20 Northwise | 1260 | 690 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Shaking +20 Southwise | 1260 | 710 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| move 100 Northwise | 1260 | 610 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 60 | 1260 | 630 | 880 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Turn -45 | 1260 | 630 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| 100 above pos dpt8 | 1262 | 359 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| leave dpt8 | 1262 | 359 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| open gripper | 1262 | 359 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| raise up 100 | 1262 | 359 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| continue with next task |  |  |  |  |  |  |  |  |  |  |  |


| C3R2T2-dpt9 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{RX} \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \mathrm{RY} \\ {[\mathrm{deg}]} \end{gathered}$ | RZ |  | of |  | Gripper [mm] | Best joint manipulator set 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| before to start check if a request to go at rest position arrives from R1 |  |  |  |  |  |  |  |  |  |  |  |
| at pos dpt9 | 1118 | 359 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| pick up dpt9 | 1118 | 359 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 100 | 1118 | 359 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| GP h70 over L17, shift $40 \mathrm{~S}, 60 \mathrm{~W}$ | 1260 | 710 | 820 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| turn $45^{\circ}$ | 1260 | 710 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Shaking -20 Northwise | 1260 | 690 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Shaking +20 Southwise | 1260 | 710 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| move 100 Northwise | 1260 | 610 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 60 | 1260 | 630 | 880 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Turn -45 | 1260 | 630 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| 100 above pos dpt9 | 1118 | 359 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| leave dpt9 | 1118 | 359 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| open gripper | 1118 | 359 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| raise up 100 | 1118 | 359 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| continue with next task |  |  |  |  |  |  |  |  |  |  |  |


| C3R2T2-dpt10 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \text { Z } \\ {[\mathrm{mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{RX} \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \mathrm{RY} \\ \text { [deg] } \end{gathered}$ | $\begin{gathered} \mathrm{RZ} \\ \text { [de] } \end{gathered}$ |  | of r |  | Gripper [mm] | Best joint manipulator set 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| before to start check if a request to go at rest position arrives from R1 |  |  |  |  |  |  |  |  |  |  |  |
| at pos dpt10 | 974 | 359 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| pick up dpt10 | 974 | 359 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 100 | 974 | 359 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| GP h70 over L17, shift $40 \mathrm{~S}, 60 \mathrm{~W}$ | 1260 | 710 | 820 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| turn $45^{\circ}$ | 1260 | 710 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Shaking -20 Northwise | 1260 | 690 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Shaking +20 Southwise | 1260 | 710 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| move 100 Northwise | 1260 | 610 | 820 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 60 | 1260 | 630 | 880 | 135 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| Turn -45 | 1260 | 630 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| 100 above pos dpt10 | 974 | 359 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| leave dpt10 | 974 | 359 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 1 |  |
| open gripper | 974 | 359 | 780 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| raise up 100 | 974 | 359 | 880 | 180 | 0 | 90 | 1 | 2 | 3 | 0 |  |
| continue with next task |  |  |  |  |  |  |  |  |  |  |  |




## RobOt 1

| C3R1T1 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \text { Z } \\ {[\mathrm{mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{RX} \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \mathrm{RY} \\ \text { [deal } \end{gathered}$ | $\begin{gathered} \mathrm{RZ} \\ \text { [de] } \end{gathered}$ | Priority of rotation |  |  | Gripper [mm] | Best joint manipulator set 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| before to start check if a request to remain at rest position arrives from R2 ter R2 confirmation |  |  |  |  |  |  |  |  |  |  |  |
| at pos tsl | 215 | 861 | 795 | 0 | -90 | 0 | 2 | 1 | 3 | 0 | souce from dispenser |
| pick up tsl | 215 | 861 | 795 | 0 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| move forward 60 | 215 | 801 | 795 | 0 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| wait 3 sec to collect souce | 215 | 801 | 795 | 0 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| move backward 40 | 215 | 821 | 795 | 0 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| raise by 145 | 215 | 821 | 940 | 0 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| W2 rotation +90 | 450 | 586 | 940 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| over Loc 1 centre | 500 | 670 | 940 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| W3 rotation +90 | 500 | 670 | 940 | 90 | -90 | -90 | 2 | 1 | 3 | 1 |  |
| W3 rotation +180 | 500 | 670 | 940 | 90 | -90 | -180 | 2 | 1 | 3 | 1 |  |
| W3 rotation +270 | 500 | 670 | 940 | 90 | -90 | -270 | 2 | 1 | 3 | 1 |  |
| W3 rotation +360 | 500 | 670 | 940 | 90 | -90 | -360 | 2 | 1 | 3 | 1 |  |
| move down by 115 | 500 | 670 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| spread tomato sauce | 510 | 687 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 528 | 698 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 540 | 670 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 528 | 642 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 500 | 630 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 472 | 642 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 460 | 670 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 448 | 700 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 450 | 757 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 500 | 780 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 555 | 765 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 595 | 725 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 610 | 670 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 595 | 615 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 555 | 575 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 500 | 560 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 445 | 575 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 405 | 615 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 390 | 670 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 422 | 715 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 465 | 690 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " " | 500 | 670 | 825 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| raise up by 100 | 500 | 670 | 925 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| above pos tsl | 215 | 861 | 925 | 0 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| W2 rotation -90 | 215 | 861 | 925 | 0 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| leave tsl | 215 | 861 | 795 | 0 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| open gripper | 215 | 861 | 795 | 0 | -90 | 0 | 2 | 1 | 3 | 0 |  |
| raise up 100 | 215 | 861 | 895 | 0 | -90 | 0 | 2 | 1 | 3 | 0 |  |
|  |  | contin | with n | t task |  |  |  |  |  |  |  |


| C3R1T2-cc1 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{RX} \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \mathrm{RY} \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \mathrm{RZ} \\ \text { [de] } \end{gathered}$ | Priority of rotation |  |  | Gripper <br> [mm] | Best joint manipulator set 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| to be always completed |  |  |  |  |  |  |  |  |  |  |  |
| at pos cc1 | 602 | 116 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| pick up cc1 | 602 | 116 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| raise up 100 | 602 | 116 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| GP h270 over L1, shift 80 left (West) | 580 | 670 | 1020 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| Rotate $90^{\circ}$ | 580 | 670 | 1020 | 90 | 90 | 90 | 2 | 1 | 3 | 1 |  |
| Rotate $90^{\circ}$ more | 580 | 670 | 1020 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| down 150 | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking +20 Upward | 580 | 670 | 890 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking -20 Downward | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking +20 Upward | 580 | 670 | 890 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking -20 Downward | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Up 150 | 580 | 670 | 1020 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| back rotation $90^{\circ}$ | 580 | 670 | 1020 | 90 | 90 | 90 | 2 | 1 | 3 | 1 |  |
| back rotation $90^{\circ}$ more | 580 | 670 | 1020 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| raise up | 580 | 670 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| 100 above pos cc1 | 602 | 116 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| leave cc1 | 602 | 116 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| open gripper | 602 | 116 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| raise up 100 | 602 | 116 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| continue with next task |  |  |  |  |  |  |  |  |  |  |  |


| C3R1T2-cc2 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \\ \text { to be } \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \text { RX } \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \mathrm{RY} \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \mathrm{RZ} \\ \text { [de] } \end{gathered}$ | Priority of rotation |  |  | Gripper [mm] | Best joint manipulator set 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | ays co | leted |  |  |  |  |  |  |  |
| at pos cc2 | 413 | 116 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| pick up cc2 | 413 | 116 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| raise up 100 | 413 | 116 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| GP h270 over L1, shift 80 left (West) | 580 | 670 | 1020 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| Rotate $90^{\circ}$ | 580 | 670 | 1020 | 90 | 90 | 90 | 2 | 1 | 3 | 1 |  |
| Rotate $90^{\circ}$ more | 580 | 670 | 1020 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| down 150 | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking +20 Upward | 580 | 670 | 890 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking -20 Downward | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking +20 Upward | 580 | 670 | 890 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking -20 Downward | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Up 150 | 580 | 670 | 1020 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| back rotation $90^{\circ}$ | 580 | 670 | 1020 | 90 | 90 | 90 | 2 | 1 | 3 | 1 |  |
| back rotation $90^{\circ}$ more | 580 | 670 | 1020 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| raise up | 580 | 670 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| 100 above pos cc2 | 413 | 116 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| leave cc2 | 413 | 116 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| open gripper | 413 | 116 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| raise up 100 | 413 | 116 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
|  |  | contin | with n | t task |  |  |  |  |  |  |  |


| C3R1T2-cc3 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{RX} \\ \text { [deg] } \end{gathered}$ | $\begin{gathered} \text { RY } \\ \text { [deg] } \end{gathered}$ | $\begin{gathered} \mathrm{RZ} \\ \text { [de] } \end{gathered}$ | Priority of rotation |  |  | Gripper [mm] | Best joint manipulator set 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| to be always completed |  |  |  |  |  |  |  |  |  |  |  |
| at pos cc3 | 224 | 116 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| pick up cc3 | 224 | 116 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| raise up 100 | 224 | 116 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| GP h270 over L1, shift 80 left (West) | 580 | 670 | 1020 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| Rotate $90^{\circ}$ | 580 | 670 | 1020 | 90 | 90 | 90 | 2 | 1 | 3 | 1 |  |
| Rotate $90^{\circ}$ more | 580 | 670 | 1020 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| down 150 | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking +20 Upward | 580 | 670 | 890 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking -20 Downward | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking +20 Upward | 580 | 670 | 890 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking -20 Downward | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Up 150 | 580 | 670 | 1020 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| back rotation $90^{\circ}$ | 580 | 670 | 1020 | 90 | 90 | 90 | 2 | 1 | 3 | 1 |  |
| back rotation $90^{\circ}$ more | 580 | 670 | 1020 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| raise up | 580 | 670 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| 100 above pos cc3 | 224 | 116 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| leave cc3 | 224 | 116 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| open gripper | 224 | 116 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| raise up 100 | 224 | 116 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| continue with next task |  |  |  |  |  |  |  |  |  |  |  |


| C3R1T2-cc4 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{RX} \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \mathrm{RY} \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \mathrm{RZ} \\ \text { [de] } \end{gathered}$ | Priority of rotation |  |  | Gripper <br> [mm] | Best joint manipulator set 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| to be always completed |  |  |  |  |  |  |  |  |  |  |  |
| at pos cc4 | 35 | 116 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| pick up cc4 | 35 | 116 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| raise up 100 | 35 | 116 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| GP h270 over L1, shift 80 left (West) | 580 | 670 | 1020 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| Rotate $90^{\circ}$ | 580 | 670 | 1020 | 90 | 90 | 90 | 2 | 1 | 3 | 1 |  |
| Rotate $90^{\circ}$ more | 580 | 670 | 1020 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| down 150 | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking +20 Upward | 580 | 670 | 890 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking -20 Downward | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking +20 Upward | 580 | 670 | 890 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking -20 Downward | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Up 150 | 580 | 670 | 1020 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| back rotation $90^{\circ}$ | 580 | 670 | 1020 | 90 | 90 | 90 | 2 | 1 | 3 | 1 |  |
| back rotation $90^{\circ}$ more | 580 | 670 | 1020 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| raise up | 580 | 670 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| 100 above pos cc4 | 35 | 116 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| leave cc4 | 35 | 116 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| open gripper | 35 | 116 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| raise up 100 | 35 | 116 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| continue with next task |  |  |  |  |  |  |  |  |  |  |  |


| C3R1T2-cc5 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \\ \text { to be } \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{RX} \\ \text { [deg] } \end{gathered}$ | $\begin{gathered} \mathrm{RY} \\ \text { [deg] } \end{gathered}$ | $\begin{gathered} \mathrm{RZ} \\ \text { [de] } \end{gathered}$ | Priority of rotation |  |  | Gripper [mm] | Best joint manipulator set 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | ays co | leted |  |  |  |  |  |  |  |
| at pos cc5 | 602 | 328 | 948 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| pick up cc5 | 602 | 328 | 948 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| raise up 100 | 602 | 328 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| GP h270 over L1, shift 80 left (West) | 580 | 670 | 1020 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| Rotate $90^{\circ}$ | 580 | 670 | 1020 | 90 | 90 | 90 | 2 | 1 | 3 | 1 |  |
| Rotate $90^{\circ}$ more | 580 | 670 | 1020 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| down 150 | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking +20 Upward | 580 | 670 | 890 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking -20 Downward | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking +20 Upward | 580 | 670 | 890 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking -20 Downward | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Up 150 | 580 | 670 | 1020 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| back rotation $90^{\circ}$ | 580 | 670 | 1020 | 90 | 90 | 90 | 2 | 1 | 3 | 1 |  |
| back rotation $90^{\circ}$ more | 580 | 670 | 1020 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| raise up | 580 | 670 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| 100 above pos cc5 | 602 | 328 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| leave cc5 | 602 | 328 | 948 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| open gripper | 602 | 328 | 948 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| raise up 100 | 602 | 328 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
|  |  | contin | with $n$ | t task |  |  |  |  |  |  |  |


| C3R1T2-cc6 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{RX} \\ \text { [deg] } \end{gathered}$ | $\begin{gathered} \text { RY } \\ \text { [deg] } \end{gathered}$ | $\begin{gathered} \mathrm{RZ} \\ \text { [de] } \end{gathered}$ | Priority of rotation |  |  | Gripper [mm] | Best joint manipulator set 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| to be always completed |  |  |  |  |  |  |  |  |  |  |  |
| at pos cc6 | 413 | 328 | 948 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| pick up cc6 | 413 | 328 | 948 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| raise up 100 | 413 | 328 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| GP h270 over L1, shift 80 left (West) | 580 | 670 | 1020 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| Rotate $90^{\circ}$ | 580 | 670 | 1020 | 90 | 90 | 90 | 2 | 1 | 3 | 1 |  |
| Rotate $90^{\circ}$ more | 580 | 670 | 1020 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| down 150 | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking +20 Upward | 580 | 670 | 890 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking -20 Downward | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking +20 Upward | 580 | 670 | 890 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking -20 Downward | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Up 150 | 580 | 670 | 1020 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| back rotation $90^{\circ}$ | 580 | 670 | 1020 | 90 | 90 | 90 | 2 | 1 | 3 | 1 |  |
| back rotation $90^{\circ}$ more | 580 | 670 | 1020 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| raise up | 580 | 670 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| 100 above pos cc6 | 413 | 328 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| leave cc6 | 413 | 328 | 948 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| open gripper | 413 | 328 | 948 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| raise up 100 | 413 | 328 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| continue with next task |  |  |  |  |  |  |  |  |  |  |  |


| C3R1T2-cc7 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \end{gathered}$ | RX [deg] | RY [deg] | $\begin{gathered} \text { RZ } \\ \text { [de] } \end{gathered}$ | Priority of rotation |  |  | Gripper [mm] | Best joint manipulator set 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | to be always completed |  |  |  |  |  |  |  |  |  |  |
| at pos cc7 | 224 | 328 | 948 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| pick up cc7 | 224 | 328 | 948 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| raise up 100 | 224 | 328 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| GP h270 over L1, shift 80 left (West) | 580 | 670 | 1020 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| Rotate $90^{\circ}$ | 580 | 670 | 1020 | 90 | 90 | 90 | 2 | 1 | 3 | 1 |  |
| Rotate $90^{\circ}$ more | 580 | 670 | 1020 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| down 150 | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking +20 Upward | 580 | 670 | 890 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking -20 Downward | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking +20 Upward | 580 | 670 | 890 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking -20 Downward | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Up 150 | 580 | 670 | 1020 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| back rotation $90^{\circ}$ | 580 | 670 | 1020 | 90 | 90 | 90 | 2 | 1 | 3 | 1 |  |
| back rotation $90^{\circ}$ more | 580 | 670 | 1020 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| raise up | 580 | 670 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| 100 above pos cc7 | 224 | 328 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| leave cc7 | 224 | 328 | 948 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| open gripper | 224 | 328 | 948 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| raise up 100 | 224 | 328 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| continue with next task |  |  |  |  |  |  |  |  |  |  |  |


| C3R1T2-cc8 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{RX} \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \text { RY } \\ \text { [deg] } \end{gathered}$ | $\begin{gathered} \mathrm{RZ} \\ {[\mathrm{de}]} \end{gathered}$ | Priority of rotation |  |  | Gripper [mm] | Best joint manipulator set 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| to be always completed |  |  |  |  |  |  |  |  |  |  |  |
| at pos cc8 | 35 | 328 | 948 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| pick up cc8 | 35 | 328 | 948 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| raise up 100 | 35 | 328 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| GP h270 over L1, shift 80 left (West) | 580 | 670 | 1020 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| Rotate $90^{\circ}$ | 580 | 670 | 1020 | 90 | 90 | 90 | 2 | 1 | 3 | 1 |  |
| Rotate $90^{\circ}$ more | 580 | 670 | 1020 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| down 150 | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking +20 Upward | 580 | 670 | 890 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking -20 Downward | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking +20 Upward | 580 | 670 | 890 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Shaking -20 Downward | 580 | 670 | 870 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| Up 150 | 580 | 670 | 1020 | 90 | 90 | 0 | 2 | 1 | 3 | 1 |  |
| back rotation $90^{\circ}$ | 580 | 670 | 1020 | 90 | 90 | 90 | 2 | 1 | 3 | 1 |  |
| back rotation $90^{\circ}$ more | 580 | 670 | 1020 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| raise up | 580 | 670 | 1148 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| 100 above pos cc8 | 35 | 328 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| leave cc8 | 35 | 328 | 948 | 90 | 90 | 180 | 2 | 1 | 3 | 1 |  |
| open gripper | 35 | 328 | 948 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| raise up 100 | 35 | 328 | 1048 | 90 | 90 | 180 | 2 | 1 | 3 | 0 |  |
| continue with next task |  |  |  |  |  |  |  |  |  |  |  |


| C3R1T3 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \\ \text { to be } \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \\ \text { ways co } \end{gathered}$ | $\begin{gathered} \mathrm{RX} \\ \text { [deg] } \\ \text { pleted } \end{gathered}$ | $\begin{gathered} \text { RY } \\ \text { [deg] } \end{gathered}$ | $\begin{gathered} \mathrm{RZ} \\ \text { [de] } \end{gathered}$ | Priority of rotation |  |  | Gripper [mm] | Best joint manipulator set 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |
| at pos cs | 215 | 593 | 795 | 0 | -90 | 0 | 2 | 1 | 3 | 0 |  |
| pick up cs | 215 | 593 | 795 | 0 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| raise up 100 | 215 | 593 | 895 | 0 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| W2 rotation +90 | 450 | 358 | 895 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| over Loc 1 centre | 500 | 670 | 895 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| move down by 65 | 500 | 670 | 830 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| spread condiments | 510 | 687 | 830 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 528 | 698 | 830 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 540 | 670 | 830 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 528 | 642 | 830 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 500 | 630 | 830 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 472 | 642 | 830 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 460 | 670 | 830 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 448 | 700 | 830 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 450 | 757 | 830 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 500 | 780 | 830 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 555 | 765 | 830 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 595 | 725 | 830 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 610 | 670 | 830 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 595 | 615 | 830 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 555 | 575 | 830 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 500 | 560 | 830 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 445 | 575 | 830 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 405 | 615 | 830 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 390 | 670 | 830 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 422 | 715 | 830 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 500 | 690 | 830 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| " | 465 | 670 | 830 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| raise up by 65 | 465 | 670 | 895 | 90 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| back to 100 above pos cs | 215 | 593 | 895 | 0 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| W2 rotation -90 | 215 | 593 | 895 | 0 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| leave cs | 215 | 593 | 795 | 0 | -90 | 0 | 2 | 1 | 3 | 1 |  |
| open gripper | 215 | 593 | 795 | 0 | -90 | 0 | 2 | 1 | 3 | 0 |  |
| raise up 100 | 215 | 593 | 895 | 0 | -90 | 0 | 2 | 1 | 3 | 0 |  |
| continue with next task |  |  |  |  |  |  |  |  |  |  |  |


| C3R1T4-oc | $\underset{[\mathrm{mm}]}{\mathrm{X}}$ |  | $\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \text { RX } \\ \text { [deal } \end{gathered}$ | $\begin{gathered} \text { RY } \\ \text { [deg] } \end{gathered}$ | RZ [de] | Priority of rotation |  |  | Gripper [mm] | Best joint manipulator set |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| to be always completed |  |  |  |  |  |  |  |  |  |  |  |
| arrive from the above h950 | 100 | 552 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| at pos oc | 100 | 552 | 808 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| pick up os | 100 | 552 | 808 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 100 | 100 | 552 | 908 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| GP 80W-80N from L1 centre \& h100 | 580 | 590 | 880 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| rotate $-135^{\circ}$ | 580 | 590 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking +20 up | 580 | 590 | 900 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking -20 down | 580 | 590 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| move 160 Eastwise | 420 | 590 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking +20 up | 420 | 590 | 900 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking -20 down | 420 | 590 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| move 160 Southwise | 420 | 750 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking +20 up | 420 | 750 | 900 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking -20 down | 420 | 750 | 880 | 90 | 90 | -45 | 1 | 2 | 3 |  |  |
| move 160 Westwise | 580 | 750 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking +20 up | 580 | 750 | 900 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking -20 down | 580 | 750 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| rotate $+135^{\circ}$ | 580 | 750 | 880 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| back to pos oc h950 | 100 | 552 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| leave oc | 100 | 552 | 808 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| open gripper | 100 | 552 | 808 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| raise up 142 | 100 | 552 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| continue with next task |  |  |  |  |  |  |  |  |  |  |  |


| C3R1T4-sc | X | Y | Z | RX | RY | RZ | Priority of rotation |  |  | Gripper | Best joint manipulator set |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | [mm] | [mm] | [mm] | [deg] | [deg] | [de] |  |  |  | [mm] | 3 |
| to be always completed |  |  |  |  |  |  |  |  |  |  |  |
| arrive from the above h950 | 100 | 644 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| at pos sc | 100 | 644 | 808 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| pick up sc | 100 | 644 | 808 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 100 | 100 | 644 | 908 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| GP 80W-80N from L1 centre \& h100 | 580 | 590 | 880 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| rotate $-135^{\circ}$ | 580 | 590 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking +20 up | 580 | 590 | 900 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking -20 down | 580 | 590 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| move 160 Eastwise | 420 | 590 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking +20 up | 420 | 590 | 900 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking -20 down | 420 | 590 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| move 160 Southwise | 420 | 750 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking +20 up | 420 | 750 | 900 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking -20 down | 420 | 750 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| move 160 Westwise | 580 | 750 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking +20 up | 580 | 750 | 900 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking -20 down | 580 | 750 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| rotate $+135^{\circ}$ | 580 | 750 | 880 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| back to pos sc h950 | 100 | 644 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| leave sc | 100 | 644 | 808 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| open gripper | 100 | 644 | 808 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| raise up 142 | 100 | 644 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| continue with next task |  |  |  |  |  |  |  |  |  |  |  |


| C3R1T4-gc | X | Y | Z | RX | RY | RZ | Priority of rotation |  |  | Gripper | Best joint manipulator set |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | [mm] | [mm] | [mm] | [deg] | [deg] | [de] |  |  |  | [mm] | 3 |
| to be always completed |  |  |  |  |  |  |  |  |  |  |  |
| arrive from the above h950 | 100 | 736 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| at pos gc | 100 | 736 | 808 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| pick up gc | 100 | 736 | 808 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| raise up 100 | 100 | 736 | 908 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| GP 80W-80N from L1 centre \& h100 | 580 | 590 | 880 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| rotate $-135^{\circ}$ | 580 | 590 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking +20 up | 580 | 590 | 900 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking -20 down | 580 | 590 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| move 160 Eastwise | 420 | 590 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking +20 up | 420 | 590 | 900 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking -20 down | 420 | 590 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| move 160 Southwise | 420 | 750 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking +20 up | 420 | 750 | 900 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking -20 down | 420 | 750 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| move 160 Westwise | 580 | 750 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking +20 up | 580 | 750 | 900 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| shaking -20 down | 580 | 750 | 880 | 90 | 90 | -45 | 1 | 2 | 3 | 1 |  |
| rotate $+135^{\circ}$ | 580 | 750 | 880 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| back to pos gc h950 | 100 | 736 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| leave gc | 100 | 736 | 808 | 90 | 90 | 90 | 1 | 2 | 3 | 1 |  |
| open gripper | 100 | 736 | 808 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| raise up 142 | 100 | 736 | 950 | 90 | 90 | 90 | 1 | 2 | 3 | 0 |  |
| continue with next task |  |  |  |  |  |  |  |  |  |  |  |



| C3R1T6-c3pst2 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{RX} \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \mathrm{RY} \\ \text { [deg] } \end{gathered}$ | $\begin{gathered} \text { RZ } \\ \text { [de] } \end{gathered}$ | Priority of rotation |  |  | Gripper [mm] | Best joint manipulator set 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | to be always completed after R2 confirmation |  |  |  |  |  |  |  |  |  |  |
| send request to $\mathbf{R 2}$ stand by for R2 confirmation |  |  |  |  |  |  |  |  |  |  |  |
|  | 747 | 600 | 778 | 180 | 45 | 90 | 1 | 2 | 3 | 0 |  |
| at pos ps1 | 747 | 670 | 778 | 180 | 45 | 90 | 1 | 2 | 3 | 0 |  |
| pick up ps1 | 747 | 670 | 778 | 180 | 45 | 90 | 1 | 2 | 3 | 1 |  |
| raise 340 | 747 | 670 | 1118 | 180 | 45 | 90 | 1 | 2 | 3 | 1 |  |
| Rotation - $90^{\circ}$ | 747 | 670 | 1118 | 180 | -45 | 90 | 1 | 2 | 3 | 1 |  |
| GP H28 \& 508 Westwise Loc 1 | 1008 | 670 | 778 | 180 | -45 | 90 | 1 | 2 | 3 | 1 |  |
| pick up pizza move 320 Eastwise | 688 | 670 | 778 | 180 | -45 | 90 | 1 | 2 | 3 | 1 |  |
| raise up h117 + 100 | 688 | 670 | 967 | 180 | -45 | 90 | 1 | 2 | 3 | 1 |  |
| GP at $\mathrm{X}=400$ (R1 pos) | 400 | 670 | 967 | 180 | -45 | 90 | 1 | 2 | 3 | 1 |  |
| turn around from Eastside | 11 | 831 | 967 | 135 | 0 | 225 | 2 | 3 | 1 | 1 |  |
| " | -150 | 1220 | 967 | 135 | 0 | 180 | 2 | 3 | 1 | 1 |  |
| " | 11 | 1609 | 967 | 135 | 0 | 135 | 2 | 3 | 1 | 1 |  |
| Compl base rot \& 169 Ec c3pst2 | 231 | 1920 | 967 | 135 | 0 | 90 | 2 | 3 | 1 | 1 |  |
| down to h117 | 231 | 1920 | 867 | 135 | 0 | 90 | 2 | 3 | 1 | 1 |  |
| Rotation $15^{\circ}$ | 231 | 1920 | 867 | 150 | 0 | 90 | 2 | 3 | 1 | 1 |  |
| move 20 Eastwise (shake) | 211 | 1920 | 867 | 150 | 0 | 90 | 2 | 3 | 1 | 1 |  |
| move 20 Westwise (shake) | 231 | 1920 | 867 | 150 | 0 | 90 | 2 | 3 | 1 | 1 |  |
| Move 340 Eastwise | -109 | 1920 | 867 | 150 | 0 | 90 | 2 | 3 | 1 | 1 |  |
| rotation -15 ${ }^{\circ}$ | -109 | 1920 | 867 | 135 | 0 | 90 | 2 | 3 | 1 | 1 |  |
| move up 100 | -109 | 1920 | 967 | 135 | 0 | 90 | 2 | 3 | 1 | 1 |  |
| rotate back from Eastside | -150 | 1220 | 967 | 135 | 0 | 180 | 2 | 3 | 1 | 1 |  |
| " | 11 | 831 | 967 | 135 | 0 | 225 | 2 | 3 | 1 | 1 |  |
| GP at $X=400$ (R1 pos) | 400 | 670 | 967 | 180 | -45 | 90 | 1 | 2 | 3 | 1 |  |
| move to $\mathrm{X} 747, \mathrm{Y} 670, \mathrm{Z1118}$ | 747 | 670 | 1118 | 180 | -45 | 90 | 1 | 2 | 3 | 1 |  |
| rotation $90^{\circ}$ | 747 | 670 | 1118 | 180 | 45 | 90 | 1 | 2 | 3 | 1 |  |
| down to Loc 2 | 747 | 670 | 778 | 180 | 45 | 90 | 1 | 2 | 3 | 1 |  |
| send finish info to R2 | 747 | 670 | 778 | 180 | 45 | 90 | 1 | 2 | 3 | 1 |  |
| open gripper | 747 | 670 | 778 | 180 | 45 | 90 | 1 | 2 | 3 | 0 |  |
| disingage ps1 | 747 | 600 | 778 | 180 | 45 | 90 | 1 | 2 | 3 | 0 |  |
| raise 100 | 747 | 600 | 878 | 180 | 45 | 90 | 1 | 2 | 3 | 0 |  |
| send message to R3 go at rest |  |  |  |  |  |  |  |  |  |  |  |

remain at rest position till confirmation from R2 of new pizza left at location 1

| C3R1T6-c3pst3 | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{RX} \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \mathrm{RY} \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \mathrm{RZ} \\ \text { [de] } \end{gathered}$ | Priority of rotation |  |  | Gripper [mm] | Best joint manipulator set 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | to be always completed after R2 confirmation |  |  |  |  |  |  |  |  |  |  |
| send request to R2 stand by for R2 confirmation |  |  |  |  |  |  |  |  |  |  |  |
| 70 \& $-45^{\circ}$ Northwise of ps1 | 747 | 600 | 778 | 180 | 45 | 90 | 1 | 2 | 3 | 0 |  |
| at pos ps1 | 747 | 670 | 778 | 180 | 45 | 90 | 1 | 2 | 3 | 0 |  |
| pick up ps1 | 747 | 670 | 778 | 180 | 45 | 90 | 1 | 2 | 3 | 1 |  |
| raise 340 | 747 | 670 | 1118 | 180 | 45 | 90 | 1 | 2 | 3 | 1 |  |
| Rotation - $90^{\circ}$ | 747 | 670 | 1118 | 180 | -45 | 90 | 1 | 2 | 3 | 1 |  |
| GP H28 \& 508 Westwise Loc 1 | 1008 | 670 | 778 | 180 | -45 | 90 | 1 | 2 | 3 | 1 |  |
| pick up pizza move 320 Eastwise | 688 | 670 | 778 | 180 | -45 | 90 | 1 | 2 | 3 | 1 |  |
| raise up GP h117 + 100 | 688 | 670 | 967 | 135 | 0 | 270 | 2 | 3 | 1 | 1 |  |
| GP at $\mathrm{X}=400$ (R1 pos) | 400 | 670 | 967 | 180 | -45 | 90 | 1 | 2 | 3 | 1 |  |
| turn around from Eastside | 11 | 831 | 967 | 135 | 0 | 225 | 2 | 3 | 1 | 1 |  |
|  | -150 | 1220 | 967 | 135 | 0 | 180 | 2 | 3 | 1 | 1 |  |
| move to 169 Northwise of c3pst3 | 0 | 1751 | 967 | 135 | 0 | 180 | 2 | 3 | 1 | 1 |  |
| down to h117 | 0 | 1751 | 867 | 135 | 0 | 180 | 2 | 3 | 1 | 1 |  |
| Rotation $15^{\circ}$ | 0 | 1751 | 867 | 150 | 0 | 180 | 2 | 3 | 1 | 1 |  |
| move 20 Northwise (shake) | 0 | 1731 | 867 | 150 | 0 | 180 | 2 | 3 | 1 | 1 |  |
| move 20 Southwise (shake) | 0 | 1751 | 867 | 150 | 0 | 180 | 2 | 3 | 1 | 1 |  |
| Move 340 Northtwise | 0 | 1411 | 867 | 150 | 0 | 180 | 2 | 3 | 1 | 1 |  |
| rotation -15 ${ }^{\circ}$ | 0 | 1411 | 867 | 135 | 0 | 180 | 2 | 3 | 1 | 1 |  |
| move up 100 | 0 | 1411 | 967 | 135 | 0 | 180 | 2 | 3 | 1 | 1 |  |
| rotate back from Eastside | -150 | 1220 | 967 | 135 | 0 | 180 | 2 | 3 | 1 | 1 |  |
| - | 11 | 831 | 967 | 135 | 0 | 225 | 2 | 3 | 1 | 1 |  |
| GP at $X=400$ (R1 pos) | 400 | 670 | 967 | 180 | -45 | 90 | 1 | 2 | 3 | 1 |  |
| move to $\mathrm{X} 747, \mathrm{Y} 670, \mathrm{Z} 1118$ | 747 | 670 | 1118 | 180 | -45 | 90 | 1 | 2 | 3 | 1 |  |
| rotation $90^{\circ}$ | 747 | 670 | 1118 | 180 | 45 | 90 | 1 | 2 | 3 | 1 |  |
| down to Loc 2 | 747 | 670 | 778 | 180 | 45 | 90 | 1 | 2 | 3 | 1 |  |
| send finish info to R2 | 747 | 670 | 778 | 180 | 45 | 90 | 1 | 2 | 3 | 1 |  |
| open gripper | 747 | 670 | 778 | 180 | 45 | 90 | 1 | 2 | 3 | 0 |  |
| disingage ps1 | 747 | 600 | 778 | 180 | 45 | 90 | 1 | 2 | 3 | 0 |  |
| raise 100 | 747 | 600 | 878 | 180 | 45 | 90 | 1 | 2 | 3 | 0 |  |
| send message to R3 go at rest |  |  |  |  |  |  |  |  |  |  |  |
| remain at rest position till confirmation from R2 of new pizza left at location 1 |  |  |  |  |  |  |  |  |  |  |  |

## Robot 3

| C3R3T1-c3pst1ov | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{RX} \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \mathrm{RY} \\ \text { [deg] } \end{gathered}$ | $\begin{gathered} \mathrm{RZ} \\ \text { [de] } \end{gathered}$ |  | of |  | Gripper [mm] | Best joint manipulator set manually except |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| before to start check if there is confirmation of pizza presence from R1 upon request from R1 |  |  |  |  |  |  |  |  |  |  |  |
| from rest | 1157 | 2406 | 938 | 180 | 0 | -90 | 1 | 2 | 3 | 1 |  |
| W2 rotation 90 | 1157 | 2171 | 1173 | 90 | 0 | -90 | 1 | 2 | 3 | 1 |  |
| W1 rotation 90 | 1273 | 2171 | 1057 | 90 | 0 | 0 | 1 | 2 | 3 |  |  |
| $408+160$ Southwise c3pst1 \& h100 | 800 | 2488 | 850 | 90 | 0 | 0 | 1 | 2 | 3 | 1 |  |
| move 320 Northwise to pick up pizza | 800 | 2168 | 850 | 90 | 0 | 0 | 1 | 2 | 3 | 1 |  |
| raise at 1202 | 800 | 2168 | 1202 | 90 | 0 | 0 | 1 | 2 | 3 | 1 |  |
| orient towards oven (W2 rotation 90) | 408 | 2570 | 1202 | 90 | -90 | 0 | 1 | 2 | 3 | 1 |  |
| move CART 900 EastSide | -492 | 2570 | 1202 | 90 | -90 | 0 | 1 | 2 | 3 | 1 |  |
| inside the oven ( $\mathrm{X}=-492$ ) | -492 | 2570 | 1202 | 90 | -90 | 0 | 1 | 2 | 3 | 1 |  |
| rotation -15 ${ }^{\circ}$ | -492 | 2570 | 1202 | 105 | 0 | -90 | 2 | 3 | 1 | 1 |  |
| move 20 Eastwise (shake) | -502 | 2570 | 1202 | 105 | 0 | -90 | 2 | 3 | 1 | 1 |  |
| move 20 Westwise (shake) | -492 | 2570 | 1202 | 105 | 0 | -90 | 2 | 3 | 1 | 1 |  |
| move CART 900 WestSide | 408 | 2570 | 1202 | 105 | 0 | -90 | 2 | 3 | 1 |  |  |
| Rotation $15^{\circ}$ | 408 | 2570 | 1202 | 90 | -90 | 0 | 1 | 2 | 3 | 1 |  |
| rise up to $\mathrm{Z}=1400$ | 429 | 2406 | 1400 | -90 | -90 | 180 | 1 | 2 | 3 | 1 |  |
| W2 rotation -90 | 664 | 2171 | 1400 | 90 | 0 | 0 | 1 | 2 | 3 | 1 |  |
| W1 rotation -90 | 548 | 2171 | 1516 | 90 | 0 | -90 | 1 | 2 | 3 | 1 |  |
| W2 rotation -90 | 548 | 2406 | 1281 | 180 | 0 | -90 | 1 | 2 | 3 | 1 |  |
| at rest | 1157 | 2406 | 938 | 180 | 0 | -90 | 1 | 2 | 3 | 1 |  |
| send message to R1 | rema | at res | uring t | cooki | time |  |  |  |  |  |  |


| C3R3T1-c3pst2ov | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{RX} \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \mathrm{RY} \\ \text { [deg] } \end{gathered}$ | $\begin{gathered} \mathrm{RZ} \\ \text { [de] } \end{gathered}$ | Priority of rotation |  |  | Gripper [mm] | Best joint manipulator se manually except |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| before to start check if there is confirmation of pizza presence from R1 upon request from R1 |  |  |  |  |  |  |  |  |  |  |  |  |
| from rest | 1157 | 2406 | 938 | 180 | 0 | -90 | 1 | 2 | 3 | 1 |  |  |
| W2 rotation 90 | 1157 | 2171 | 1173 | 90 | 0 | -90 | 1 | 2 | 3 | 1 |  |  |
| W1 rotation 90 | 1273 | 2171 | 1057 | 90 | 0 | 0 | 1 | 2 | 3 | 1 |  |  |
| $408+160$ Southwise c3pst2 \& h100 | 400 | 2488 | 850 | 90 | 0 | 0 | 1 | 2 | 3 | 1 |  | 3 |
| move 320 Northwise to pick up pizza | 400 | 2168 | 850 | 90 | 0 | 0 | 1 | 2 | 3 | 1 |  | 1 |
| raise at 1202 | 400 | 2168 | 1202 | 90 | 0 | 0 | 1 | 2 | 3 | 1 |  | 1 |
| orient towards oven (W2 rotation 90) | 408 | 2570 | 1202 | 90 | -90 | 0 | 1 | 2 | 3 | 1 |  | 1 |
| move CART 900 EastSide | -492 | 2570 | 1202 | 90 | -90 | 0 | 1 | 2 | 3 | 1 |  | 1 |
| inside the oven ( $\mathrm{X}=-492$ ) | -492 | 2570 | 1202 | 90 | -90 | 0 | 1 | 2 | 3 | 1 |  | 1 |
| rotation -15 ${ }^{\circ}$ | -492 | 2570 | 1202 | 105 | 0 | -90 | 2 | 3 | 1 | 1 |  | 1 |
| move 20 Eastwise (shake) | -502 | 2570 | 1202 | 105 | 0 | -90 | 2 | 3 | 1 | 1 |  | 1 |
| move 20 Westwise (shake) | -492 | 2570 | 1202 | 105 | 0 | -90 | 2 | 3 | 1 | 1 |  | 1 |
| move CART 900 WestSide | 408 | 2570 | 1202 | 105 | 0 | -90 | 2 | 3 | 1 | 1 |  | 1 |
| Rotation $15^{\circ}$ | 408 | 2570 | 1202 | 90 | -90 | 0 | 1 | 2 | 3 | 1 |  | 1 |
| rise up to $\mathrm{Z}=1400$ | 429 | 2406 | 1400 | -90 | -90 | 180 | 1 | 2 | 3 | 1 |  |  |
| W2 rotation -90 | 664 | 2171 | 1400 | 90 | 0 | 0 | 1 | 2 | 3 | 1 |  |  |
| W1 rotation -90 | 548 | 2171 | 1516 | 90 | 0 | -90 | 1 | 2 | 3 | 1 |  |  |
| W2 rotation -90 | 548 | 2406 | 1281 | 180 | 0 | -90 | 1 | 2 | 3 | 1 |  |  |
| at rest | 1157 | 2406 | 938 | 180 | 0 | -90 | 1 | 2 | 3 | 1 |  |  |
| remain at rest during the cooking time |  |  |  |  |  |  |  |  |  |  |  |  |


| C3R3T1-c3pst3ov | $\begin{gathered} \mathrm{X} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{RX} \\ {[\mathrm{deg}]} \end{gathered}$ | $\begin{gathered} \mathrm{RY} \\ \text { [deg] } \end{gathered}$ | $\begin{gathered} \mathrm{RZ} \\ \text { [de] } \end{gathered}$ | Priority of rotation |  |  | Gripper [mm] | Best joint manipulator set manually except |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| before to start check if there is confirmation of pizza presence from R1 upon request from R1 |  |  |  |  |  |  |  |  |  |  |  |  |
| from rest | 1157 | 2406 | 938 | 180 | 0 | -90 | 1 | 2 | 3 | 1 |  |  |
| W2 rotation 90 | 1157 | 2171 | 1173 | 90 | 0 | -90 | 1 | 2 | 3 | 1 |  |  |
| W1 rotation 90 | 1273 | 2171 | 1057 | 90 | 0 | 0 | 1 | 2 | 3 | 1 |  |  |
| move CART 400 EastSide | 873 | 2171 | 1057 | 90 | 0 | 0 | 1 | 2 | 3 | 1 |  |  |
| $408+160$ Southwise c3pst2 \& h100 | 0 | 2488 | 850 | 90 | 0 | 0 | 1 | 2 | 3 | 1 |  | 3 |
| move 320 Northwise to pick up pizza | 0 | 2168 | 850 | 90 | 0 | 0 | 1 | 2 | 3 | 1 |  | 1 |
| raise at 1202 | 0 | 2168 | 1202 | 90 | 0 | 0 | 1 | 2 | 3 | 1 |  | 1 |
| move CART 400 WestSide | 400 | 2168 | 1202 | 90 | 0 | 0 | 1 | 2 | 3 | 1 |  | 1 |
| orient towards oven (W2 rotation 90) | 408 | 2570 | 1202 | 90 | -90 | 0 | 1 | 2 | 3 | 1 |  | 1 |
| move CART 900 EastSide | -492 | 2570 | 1202 | 90 | -90 | 0 | 1 | 2 | 3 | 1 |  | 1 |
| inside the oven ( $\mathrm{X}=-492$ ) | -492 | 2570 | 1202 | 90 | -90 | 0 | 1 | 2 | 3 | 1 |  | 1 |
| rotation $-15^{\circ}$ | -492 | 2570 | 1202 | 105 | 0 | -90 | 2 | 3 | 1 | 1 |  | 1 |
| move 20 Eastwise (shake) | -502 | 2570 | 1202 | 105 | 0 | -90 | 2 | 3 | 1 | 1 |  | 1 |
| move 20 Westwise (shake) | -492 | 2570 | 1202 | 105 | 0 | -90 | 2 | 3 | 1 | 1 |  | 1 |
| move CART 900 WestSide | 408 | 2570 | 1202 | 105 | 0 | -90 | 2 | 3 | 1 | 1 |  | 1 |
| Rotation $15^{\circ}$ | 408 | 2570 | 1202 | 90 | -90 | 0 | 1 | 2 | 3 | 1 |  | 1 |
| rise up to $\mathrm{Z}=1400$ | 429 | 2406 | 1400 | -90 | -90 | 180 | 1 | 2 | 3 | 1 |  |  |
| W2 rotation -90 | 664 | 2171 | 1400 | 90 | 0 | 0 | 1 | 2 | 3 | 1 |  |  |
| W1 rotation -90 | 548 | 2171 | 1516 | 90 | 0 | -90 | 1 | 2 | 3 | 1 |  |  |
| W2 rotation -90 | 548 | 2406 | 1281 | 180 | 0 | -90 | 1 | 2 | 3 | 1 |  |  |
| at rest | 1157 | 2406 | 938 | 180 | 0 | -90 | 1 | 2 | 3 | 1 |  |  |
| send message to R1 | rem | at res | uring | cooki | time |  |  |  |  |  |  |  |


| C3R3T2-ovcp1 | X [mm] | Y $[\mathrm{mm}]$ | Z $[\mathrm{mm}]$ | RX [deg] the coin | RY [deg] | $\begin{gathered} \mathrm{RZ} \\ \text { [de] } \end{gathered}$ | Priority of rotation |  |  | Gripper [mm] | Best joint manipulator set 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| from rest | 1157 | 2406 | 938 | 180 | 0 | -90 | 1 | 2 | 3 | 1 |  |
| W2 rotation 90 | 1157 | 2171 | 1173 | 90 | 0 | -90 | 1 | 2 | 3 | 1 |  |
| W1 rotation 90 | 1273 | 2171 | 1057 | 90 | 0 | 0 | 1 | 2 | 3 | 1 |  |
| orient towards oven (W2 rotation 90) | 768 | 2570 | 1100 | 90 | -90 | 0 | 1 | 2 | 3 | 1 |  |
| move CART 900 EastSide | -132 | 2570 | 1100 | 90 | -90 | 0 | 1 | 2 | 3 | 1 |  |
| 320 inside the oven | -452 | 2570 | 1100 | 90 | -90 | 0 | 1 | 2 | 3 | 1 |  |
| rise up 100 | -452 | 2570 | 1200 | 90 | -90 | 0 | 1 | 2 | 3 | 1 |  |
| move CART 400 WestSide | -52 | 2570 | 1200 | 90 | -90 | 0 | 1 | 2 | 3 | 1 |  |
| W2 rotation 90 | 183 | 2805 | 1200 | -90 | 0 | -180 | 1 | 2 | 3 | 1 |  |
| align with cp1 | 0 | 3012 | 972 | -90 | 0 | -180 | 1 | 2 | 3 | 1 |  |
| Rotation $15^{\circ}$ | 0 | 3012 | 972 | -105 | 0 | -180 | 1 | 2 | 3 | 1 |  |
| move 20 Northwise (shake) | 0 | 2992 | 972 | -105 | 0 | -180 | 1 | 2 | 3 | 1 |  |
| move 20 Soutwise (shake) | 0 | 3012 | 972 | -105 | 0 | -180 | 1 | 2 | 3 | 1 |  |
| move Northwise 340 | 0 | 2672 | 972 | -105 | 0 | -180 | 1 | 2 | 3 | 1 |  |
| rotation -15 ${ }^{\circ}$ | 0 | 2672 | 972 | -90 | 0 | -180 | 1 | 2 | 3 | 1 |  |
| orient towards oven (W2 rotation -90) | -71 | 2406 | 1400 | 90 | -90 | 0 | 1 | 2 | 3 | 1 |  |
| move CART 500 WestSide | 429 | 2406 | 1400 | 90 | -90 | 0 | 1 | 2 | 3 | 1 |  |
| rise up to $Z=1400$ | 429 | 2406 | 1400 | -90 | -90 | 180 | 1 | 2 | 3 | 1 |  |
| W2 rotation -90 | 664 | 2171 | 1400 | 90 | 0 | 0 | 1 | 2 | 3 | 1 |  |
| W1 rotation -90 | 548 | 2171 | 1516 | 90 | 0 | -90 | 1 | 2 | 3 | 1 |  |
| W2 rotation -90 | 548 | 2406 | 1281 | 180 | 0 | -90 | 1 | 2 | 3 | 1 |  |
| at rest | 1157 | 2406 | 938 | 180 | 0 | -90 | 1 | 2 | 3 | 1 |  |
| send info to kitchen assistant | stay at | st till | reque | arrive | om R |  |  |  |  |  |  |


| C3R3T2-ovcp2 | X $[\mathrm{mm}]$ | Y $[\mathrm{mm}]$ | Z $[\mathrm{mm}]$ | RX [deg] the c | RY [deg] king tim | $\begin{gathered} \mathrm{RZ} \\ \text { [de] } \end{gathered}$ | Priority of rotation |  |  | Gripper [mm] | Best joint manipulator set 1 and manually |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| from rest | 1157 | 2406 | 938 | 180 | 0 | -90 | 1 | 2 | 3 | 1 |  |
| W2 rotation 90 | 1157 | 2171 | 1173 | 90 | 0 | -90 | 1 | 2 | 3 | 1 |  |
| W1 rotation 90 | 1273 | 2171 | 1057 | 90 | 0 | 0 | 1 | 2 | 3 | 1 |  |
| orient towards oven (W2 rotation 90) | 768 | 2570 | 1100 | 90 | -90 | 0 | 1 | 2 | 3 | 1 |  |
| move CART 900 EastSide | -132 | 2570 | 1100 | 90 | -90 | 0 | 1 | 2 | 3 | 1 |  |
| 320 inside the oven | -452 | 2570 | 1100 | 90 | -90 | 0 | 1 | 2 | 3 | 1 |  |
| rise up 100 | -452 | 2570 | 1200 | 90 | -90 | 0 | 1 | 2 | 3 | 1 |  |
| move CART 600 WestSide | 148 | 2570 | 1200 | 90 | -90 | 0 | 1 | 2 | 3 | 1 |  |
| W2 rotation 90 | 383 | 2805 | 1200 | -90 | 0 | -180 | 1 | 2 | 3 | 1 |  |
| align with cp1 | 400 | 3012 | 972 | -90 | 0 | -180 | 1 | 2 | 3 | 1 |  |
| Rotation $15^{\circ}$ | 400 | 3012 | 972 | -105 | 0 | -180 | 1 | 2 | 3 | 1 |  |
| move 20 Northwise (shake) | 400 | 2992 | 972 | -105 | 0 | -180 | 1 | 2 | 3 | 1 |  |
| move 20 Soutwise (shake) | 400 | 3012 | 972 | -105 | 0 | -180 | 1 | 2 | 3 | 1 |  |
| move Northwise 340 | 400 | 2672 | 972 | -105 | 0 | -180 | 1 | 2 | 3 | 1 |  |
| rotation -15 ${ }^{\circ}$ | 400 | 2672 | 972 | -90 | 0 | -180 | 1 | 2 | 3 | 1 |  |
| orient towards oven (W2 rotation -90) | 129 | 2406 | 1400 | 90 | -90 | 0 | 1 | 2 | 3 | 1 |  |
| move CART 300 WestSide | 429 | 2406 | 1400 | 90 | -90 | 0 | 1 | 2 | 3 | 1 |  |
| rise up to $\mathrm{Z}=1400$ | 429 | 2406 | 1400 | -90 | -90 | 180 | 1 | 2 | 3 | 1 |  |
| W2 rotation -90 | 664 | 2171 | 1400 | 90 | 0 | 0 | 1 | 2 | 3 | 1 |  |
| W1 rotation -90 | 548 | 2171 | 1516 | 90 | 0 | -90 | 1 | 2 | 3 | 1 |  |
| W2 rotation -90 | 548 | 2406 | 1281 | 180 | 0 | -90 | 1 | 2 | 3 | 1 |  |
| at rest | 1157 | 2406 | 938 | 180 | 0 | -90 | 1 | 2 | 3 | 1 |  |
| send info to kitchen assistant | stay at | st till n | reque | arrive | om R1 |  |  |  |  |  |  |


| C3R3T2-ovcp3 | X [mm] be per | Y $[\mathrm{mm}]$ | Z <br> $[\mathrm{mm}$ <br> end | RX [deg] the | RY [deg] ing ti | $\begin{gathered} \text { RZ } \\ \text { [de] } \end{gathered}$ | Priority of rotation |  |  | Gripper [mm] | Best joint manipulator set 1 and manually |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| from rest | 1157 | 2406 | 938 | 180 | 0 | -90 | 1 | 2 | 3 | 1 |  |
| W2 rotation 90 | 1157 | 2171 | 1173 | 90 | 0 | -90 | 1 | 2 | 3 | 1 |  |
| W1 rotation 90 | 1273 | 2171 | 1057 | 90 | 0 | 0 | 1 | 2 | 3 |  |  |
| orient towards oven (W2 rotation 90) | 768 | 2570 | 1100 | 90 | -90 | 0 | 1 | 2 | 3 | , |  |
| move CART 900 EastSide | -132 | 2570 | 1100 | 90 | -90 | 0 | 1 | 2 | 3 | 1 |  |
| 320 inside the oven | -452 | 2570 | 1100 | 90 | -90 | 0 | 1 | 2 | 3 | 1 |  |
| rise up 100 | -452 | 2570 | 1200 | 90 | -90 | 0 | 1 | 2 | 3 | 1 |  |
| move CART 900 WestSide | 448 | 2570 | 1200 | 90 | -90 | 0 | 1 | 2 | 3 |  |  |
| W2 rotation 90 | 683 | 2805 | 1200 | -90 | 0 | -180 | 1 | 2 | 3 | 1 |  |
| align with cp1 | 800 | 3012 | 972 | -90 | 0 | -180 | 1 | 2 | 3 | 1 |  |
| Rotation $15^{\circ}$ | 800 | 3012 | 972 | -105 | 0 | -180 | 1 | 2 | 3 | 1 |  |
| move 20 Northwise (shake) | 800 | 2992 | 972 | -105 | 0 | -180 | 1 | 2 | 3 | 1 |  |
| move 20 Soutwise (shake) | 800 | 3012 | 972 | -105 | 0 | -180 | 1 | 2 | 3 | 1 |  |
| move Northwise 340 | 800 | 2672 | 972 | -105 | 0 | -180 | 1 | 2 | 3 | 1 |  |
| rotation -15 ${ }^{\circ}$ | 800 | 2672 | 972 | -90 | 0 | -180 | 1 | 2 | 3 | 1 |  |
| orient twrds oven at $Z=1400$ (W2 -90) | 429 | 2406 | 1400 | 90 | -90 | 0 | 1 | 2 | 3 | 1 |  |
| W2 rotation -90 | 664 | 2171 | 1400 | 90 | 0 | 0 | 1 | 2 | 3 | 1 |  |
| W1 rotation -90 | 548 | 2171 | 1516 | 90 | 0 | -90 | 1 | 2 | 3 | 1 |  |
| W2 rotation -90 | 548 | 2406 | 1281 | 180 | 0 | -90 | 1 | 2 | 3 | 1 |  |
| at rest | 1157 | 2406 | 938 | 180 | 0 | -90 | 1 | 2 | 3 | 1 |  |
| send info to kitchen assistant | stay at | st till n | requ | arrive | om R |  |  |  |  |  |  |

## APPENDIX D

SIMULINK OUTPUTS SCENARIO 1 (SINGLE PIZZA PREPARATION)

CONFIGURATION NR. 1 - MARINARA PIZZA


CONFIGURATION NR. 1 - MARGHERITA PIZZA


## CONFIGURATION NR. 1 - ORTOLANA PIZZA



CONFIGURATION NR. 1 - WURSTEL PIZZA


CONFIGURATION NR. 1 - SALSICCIA PIZZA



CONFIGURATION NR. 1 - PROSCIUTTO \& FUNGHI PIZZA


CONFIGURATION NR. 2 - MARINARA PIZZA


CONFIGURATION NR. 2 - MARGHERITA PIZZA


CONFIGURATION NR. 2 - ORTOLANA PIZZA


CONFIGURATION NR. 2 - WURSTEL PIZZA


## CONFIGURATION NR. 2 - SALSICCIA PIZZA



CONFIGURATION NR. 2 - PROSCIUTTO \& FUNGHI PIZZA


CONFIGURATION NR. 3 - MARINARA PIZZA


CONFIGURATION NR. 3 - MARGHERITA PIZZA


CONFIGURATION NR. 3 - ORTOLANA PIZZA


CONFIGURATION NR. 3 - WURSTEL PIZZA


## CONFIGURATION NR. 3 - SALSICCIA PIZZA



CONFIGURATION NR. 3 - PROSCIUTTO \& FUNGHI PIZZA


CONFIGURATION NR. 1 - BATCH (or MISSION) PROGRESSION


CONFIGURATION NR. 1 - PIZZA TASTE PROGRESSION


CONFIGURATION NR. 1 - TASK DETAILS PER PIZZA TASTE


CONFIGURATION NR. 2 - TASKS EXPLOSION


CONFIGURATION NR. 2 - BATCH (or MISSION) PROGRESSION


CONFIGURATION NR. 2 - PIZZA TASTE PROGRESSION


CONFIGURATION NR. 2 - TASK DETAILS PER PIZZA TASTE


CONFIGURATION NR. 2 - TASKS EXPLOSION


CONFIGURATION NR. 3 - BATCH (or MISSION) PROGRESSION


CONFIGURATION NR. 3 - PIZZA TASTE PROGRESSION


## CONFIGURATION NR. 3 - TASK DETAILS PER PIZZA TASTE



## CONFIGURATION NR. 3 - TASKS EXPLOSION







