
POLITECNICO DI TORINO

Master’s degree in Computer Engineering

Master Degree Thesis

Design and development of WiFi access
with eIDAS for cross border

authentication

Supervisors
prof. Antonio Lioy
ing. Diana Berbecaru

Candidate

Muhammad Ali Anjum

December 2019

To my family, who helped

me during this journey

Summary

There is a significant increase of devices with wireless LAN (Local Area Network) capabilities
from the start of 21st century and the use of these devices has become a requirement in every
profession. This increases the need for wireless connectivity and at the same time security of
wireless LAN has become more important. Which led to many national and international initia-
tives for secure WLAN connectivity. That includes eduroam and govroam, that provides roaming
services for educational and government sectors respectively. But there are some limitations to
these projects, they don’t support complex authorisation mechanism and are based on RADIUS
servers infrastructure, which needs to be maintained in the entire federated hierarchy.

In this thesis we provide a solution to access WiFi connectivity for citizens of European
countries with eIDAS (electronic identification and trust services) infrastructure. eIDAS is EU
Regulation (EU)910/2014 on electronic identification and trusted services for cross border elec-
tronic transaction, which is adopted by all European countries. It provides mutual recognition
of electronic identification between member states by establishing interoperability between ex-
isting national eID infrastructures for cross border authentication using their own national eID
credentials. We developed and tested two solutions, first one using software based approach and
second one using eIDAS code and hardware (wireless) infrastructure deployed in Politecnico di
Torino university. In first solution we used Zeroshell, which is a Linux based distribution, specifi-
cally designed to provide routers and firewall services. We created a Captive Portal and modified
Shibboleth authentication to send and receive messages in eIDAS compatible format to provide
authentication. The eIDAS framework for authentication is consists of eIDAS Nodes (specific for
each country) and Identity Providers (IdP). In second solution we integrated eIDAS-SP code with
Politecnico di Torino wireless infrastructure. Authentication is provided by Wifi-Auth eIDAS-
SP application with eIDAS framework. Whereas wireless infrastructure includes Cisco WLC
(Wireless LAN Controller), Cisco AP (Access Point) and Fortigate-60D firewall, which is respon-
sible for providing Captive Portal, management of authenticated users and network management.
We have tested our solution successfully using Italy-SPID (Public System for Digital Identity),
Portugal-Chave Mòvel Digital and Spain-DNIe (Documento Nacional de Identidad electrónico).

4

Acknowledgements

I would like to thank my supervisor, prof. Antonio Lioy, whose extensive knowledge was invalu-
able. I would also like to thank my supervisor, ing. Diana Berbecaru, the completion of my
thesis would not have been possible without her unparalleled knowledge of the field, continuous
guidance and advice, specially during the writing phase.

A special thank goes to my father, who has always supported me. I also want to thank my
brother and sisters for their support, which helped me to get through the ups and downs of my
research.

My deepest appreciation goes to Cesare Cameroni, who has always been tolerant and support-
ive throughout the thesis. I would also like to thank Ignazio Pedone and Marco De Benedictis,
PhD students inside the TORSEC research group. A general thanks goes to all the members of
the TORSEC research group, which were always available to help me when needed.

Finally, I would like to thank the Higher Education Commission of Pakistan and Politecnico
di Torino for providing the funding and resources to undertake this research opportunity.

5

Contents

List of Figures 10

1 Introduction 12

2 Background 14

2.1 User authentication . 14

2.2 Identity management . 15

2.2.1 Digital identity . 15

2.2.2 Identity Management System . 15

2.3 SAML . 16

2.3.1 Introduction . 16

2.3.2 Overview . 16

2.3.3 Drivers of SAML adoption . 17

2.3.4 SAML participants . 17

2.3.5 Basic concepts . 18

2.3.6 SAML components . 18

2.3.7 Privacy in SAML . 22

2.3.8 Security in SAML . 23

2.4 Shibboleth . 23

2.5 eIDAS . 23

2.5.1 Main problems addressed by eIDAS . 24

2.5.2 eIDAS specification . 24

2.5.3 eIDAS cryptography requirements for trust between eIDAS entities 25

2.5.4 eIDAS protocol . 27

2.5.5 Attributes . 28

2.6 Related work . 29

2.6.1 eduroam . 29

2.6.2 govroam . 33

2.7 Review of possible networking tools for implementing Captive Portal with SAML . 34

2.7.1 PacketFence . 34

2.7.2 NoDogSplash . 35

2.7.3 Zeroshell . 36

6

3 Design and implementation of WiFi access with eIDAS through Zeroshell 37

3.1 Introduction . 37

3.2 Authentication flow . 38

3.3 Zeroshell setup . 40

3.3.1 Virtual Box initialisation . 40

3.3.2 Accessing web interface . 41

3.3.3 Profile creation . 41

3.3.4 Network configuration . 42

3.3.5 Captive Portal . 43

3.3.6 Shibboleth authentication . 43

3.3.7 Shibboleth configuration files . 44

3.4 Configuring Shibboleth authentication with eIDAS 44

3.4.1 EntityID of the SP . 45

3.4.2 ApplicationDefaults element . 45

3.4.3 MetadataProvider . 45

3.4.4 Cryptography certificates . 45

3.4.5 Node-Country selection . 46

3.4.6 SessionInitiator AuthnRequest element . 47

3.4.7 Attributes configuration . 47

3.4.8 White-listing . 47

3.4.9 Problems encountered . 48

3.5 Authentication cycle . 48

4 Design of WiFi access with eIDAS through WiFi-Auth eIDAS-SP and Polito
wireless infrastructure 53

4.1 Introduction . 53

4.2 Authentication process . 54

4.2.1 Wifi-Auth eIDAS-SP set-up . 54

4.3 Authentication flow . 54

4.3.1 Authentication flow Italian scenario . 55

4.3.2 Authentication flow detail: request part . 57

4.3.3 Authentication flow detail: response part 60

4.4 Wifi-Auth eIDAS-SP implementation . 63

4.4.1 SSH library . 63

4.4.2 Guest user properties . 63

4.4.3 Function createUser . 64

4.4.4 Function createCMD . 64

4.4.5 Functions randomString and randomPassword 64

4.4.6 Login form . 64

4.4.7 Cryptography certificates . 65

7

4.5 Configuration of network elements . 66

4.5.1 Fortigate-60D introduction . 66

4.5.2 Cisco WLC 2504 . 68

4.6 Script for creating ACL rules . 69

4.7 Testing authentication cycle using TestCafe . 70

4.8 Authentication cycle . 71

5 Installation and configuration of WiFi access with eIDAS-SP and Polito wire-
less infrastructure 77

5.1 Installation of Wifi-Auth eIDAS-SP application . 77

5.1.1 Architecture . 77

5.1.2 Docker and Docker-compose installation . 78

5.1.3 Source code . 78

5.2 Fortigate-60D . 79

5.2.1 Firewall interfaces . 79

5.2.2 Firewall policy . 79

5.2.3 Virtual IP . 80

5.3 Cisco WLC 2504 . 80

5.3.1 WLAN . 81

5.3.2 Creating WLAN . 82

5.3.3 ACL (Access Control List) . 82

5.3.4 WebAuth SecureWeb . 84

6 Results 85

7 Conclusion 88

Bibliography 89

A SAML message flow 92

A.1 SAML message flow example with Zeroshell . 92

A.1.1 Zeroshell to eIDAS-Connector . 92

A.1.2 eIDAS-Connector to eIDAS-Service . 93

A.1.3 eIDAS-Service to IdP-Proxy . 95

A.1.4 IdP-Proxy to IdP . 97

A.1.5 IdP to IdP-Proxy . 98

A.1.6 IdP-Proxy to eIDAS-Service . 100

A.1.7 eIDAS-Service to eIDAS-Connector . 102

A.1.8 eIDAS-Connector to Zeroshell . 103

A.2 SAML message flow example with Wifi-Auth eIDAS-SP 105

A.2.1 Wifi-Auth eIDAS-SP to eIDAS-Connector 105

A.2.2 eIDAS-Connector to eIDAS-Service . 107

8

A.2.3 eIDAS-Service to IdP-Proxy . 108

A.2.4 IdP-Proxy to IdP . 110

A.2.5 IdP to IdP-Proxy . 111

A.2.6 IdP-Proxy to eIDAS-Service . 113

A.2.7 eIDAS-Service to eIDAS-Connector . 115

A.2.8 eIDAS-Connector to Wifi-Auth eIDAS-SP 117

9

List of Figures

1.1 Example of eIDAS cross border authentication . 12

2.1 Relationship between SAML core components (source: cse.wustl.edu). 18

2.2 eIDAS basic architecture (source: IEEE) . 24

2.3 eIDAS architecture for cross border authentication (source: IEEE access [32]) . . 25

2.4 eID Schemes notified in Europe (source: EUROSMART [34]) 26

2.5 TLS recommended cipher suites (source: eIDAS [37]) 26

2.6 eIDAS authentication Level of Assurance (source: SCRIVE) 29

2.7 eduroam confederation structure (source: GEANT). 31

2.8 Tunnelled authentication (source: Alfa&Ariss). 31

2.9 eduroam basic authentication flow (source: Belnet). 32

2.10 PacketFence components (source: PacketFence). 34

2.11 PacketFence architecture (source: PacketFence). 35

3.1 Zeroshell Captive Portal infrastructure in test environment 37

3.2 Zeroshell authentication flow . 38

3.3 Zeroshell web interface . 40

3.4 Network interfaces of Zeroshell . 41

3.5 Zeroshell command line interface . 41

3.6 Zeroshell profile creation . 42

3.7 Zeroshell profile creation parameters . 42

3.8 Zeroshell network configuration . 43

3.9 Enabling Captive Portal on Zeroshell . 43

3.10 Enabling Captive Portal on Zeroshell . 44

3.11 Configuration of Shibboleth files . 44

3.12 Captive Portal White-listing for eIDAS-nodes/IDP 48

3.13 Zeroshell Captive Portal authentication Step-1 . 49

3.14 Zeroshell Captive Portal authentication Step-2 . 49

3.15 Zeroshell Captive Portal authentication Step-3 . 49

3.16 Zeroshell Captive Portal authentication Step-4 . 50

3.17 Zeroshell Captive Portal authentication Step-5 . 50

3.18 Zeroshell Captive Portal authentication Step-6 . 50

3.19 Zeroshell Captive Portal authentication Step-7 . 51

10

https://www.cse.wustl.edu/~jain/cse571-09/ftp/soa/index.html
https://ieeexplore.ieee.org/abstract/document/8754671
https://www.scrive.com/eidas-electronic-identity-in-the-eu/
https://www.geant.org
www.alfa-ariss.com
https://www.eduroam.be/node/13
https://packetfence.org/
https://packetfence.org/

3.20 Zeroshell Captive Portal authentication Step-8 . 51

3.21 Zeroshell Captive Portal authentication Step-9 . 51

3.22 Zeroshell Captive Portal authentication Step-10 52

4.1 WiFi access test-bed setup with Polito wireless infrastructure 53

4.2 WiFi access test-bed setup with Wifi-Auth eIDAS-SP and Polito wireless infras-
tructure . 54

4.3 Overview of authentication flow for generic scenario 55

4.4 Overview of authentication flow for Italian scenario 56

4.5 Detailed authentication flow request for Italian scenario 59

4.6 Detailed authentication flow response for Italian scenario 62

4.7 jsch library for user creation. 63

4.8 Attributes configuration file. 64

4.9 Function for creating user on WLC. 65

4.10 Function for user creation command for WLC. 66

4.11 Function for generating string for username and password. 66

4.12 Fortigate firewall interfaces . 67

4.13 Fortigate firewall policies . 67

4.14 Virtual IP for Wifi-Auth SP . 68

4.15 Addresses and Address Group for policies . 68

4.16 Wifi-Auth eIDAS-SP Captive Portal authentication Step-1 71

4.17 Wifi-Auth eIDAS-SP Captive Portal authentication Step-2 72

4.18 Wifi-Auth eIDAS-SP Captive Portal authentication Step-3 72

4.19 Wifi-Auth eIDAS-SP Captive Portal authentication Step-4 73

4.20 Wifi-Auth eIDAS-SP Captive Portal authentication Step-5 73

4.21 Wifi-Auth eIDAS-SP Captive Portal authentication Step-6 74

4.22 Wifi-Auth eIDAS-SP Captive Portal authentication Step-7 74

4.23 Wifi-Auth eIDAS-SP Captive Portal authentication Step-8 75

4.24 Wifi-Auth eIDAS-SP Captive Portal authentication Step-9 75

4.25 Wifi-Auth eIDAS-SP Captive Portal authentication Step-10 76

5.1 Fortigate-60D . 79

5.2 Fortigate-60D GUI interface configuration . 79

5.3 Fortigate-60D GUI policy configuration . 80

5.4 Virtual IP configuration GUI . 81

5.5 Cisco WLC web interface . 81

5.6 Attributes configuration file. 82

5.7 ACL part 1 . 83

5.8 ACL part 2 . 83

6.1 IdP used by number of users for authentication . 86

6.2 Operating system/browser used by users for authentication 86

6.3 Survey Answer: After testing this pilot, I would like the inclusion of this initiative
in the academic services of other European universities. 87

11

Chapter 1

Introduction

Wireless LANs (WLAN) provides network communication to devices within a limited area such
as home, restaurant, organisation etc. WLAN also referred as WiFi networks have become a
basic requirement for it’s enhanced mobility and increased number of devices supporting wireless
connectivity. To provide a seamless connectivity within a large area such as in a university using
multiple Access Points (AP) is called roaming. It is a common practice to provide roaming
between different campuses of university or offices of an organisation.

Demand for secure wireless roaming between organisation have increased due to partnerships
between different organisations. As well as programs like Erasmus, which provide students the
facility to study or gain experience in a different European country. Therefore various initiates
have been stated to provide national and international roaming services including eduroam and
govroam.

eduroam [1] is an international roaming services which provides WiFi access connectivity to
users in educational sector. It provides secure network connectivity to students, teachers and re-
searchers in institutions other than their own. govroam is an other roaming service which provides
roaming services to users from different professions. It provides secure network authentication
to individuals from different organisations. These services are widely used but are specific to an
individual sector e.g education, government.

eIDAS-SP eIDAS-
Connector

[4]

eIDAS-Service IDPUser

[1]

[2]

[3]

[7]

[8]

[9]
[10]

[5]
[6]

Figure 1.1: Example of eIDAS cross border authentication

In this thesis we provide a WiFi access service for network connectivity. This service is a part of
European eID4U [2] project, which aims to use national electronic identities to provide advanced
cross border services for European environment by integrating new attributes [3] in the eIDAS
network. eIDAS provides a framework for secure cross border electronic identification between

12

1 – Introduction

member states using interoperability between existing national eID infrastructure. eIDAS frame-
work is composed of eIDAS-Nodes, Service Provider (SP) and IdP (Identity Provider). Member
states are responsible for implementing eIDAS nodes to securely exchange identity information
between IdP and SP present in another state using eIDAS protocol. eIDAS-Connector node and
eIDAS-Service node are responsible for cross border identification in the eIDAS framework. A
part from these it can also include proxy nodes (specific to a country) such as SP-Proxy which
will create a bridge between SP and eIDAS-Connector or IdP-Proxy which will create a bridge
between eIDAS-Service and IdP. Member states have to implement an eIDAS-Connector node
which will be responsible for the communication between SP/SP-Proxy and eIDAS-Service node.
Whereas eIDAS-Service node is responsible for communication between eIDAS-Connector node
and IdP/IdP-Proxy.

An overview of authentication for SP in Italy using Spanish eID is shown in Figure 1.1. The
authentication cycle starts with a user connecting to a eIDAS-SP. In the first step user will select
Spain in the citizen country and start authentication (step 1). eIDAS-SP will generate an eIDAS
AuthnRequest and send it to Italian eIDAS-Connector using user’s browser (step 2). eIDAS-
Connector will create an eIDAS AuthnRequest and send it to Spanish eIDAS-Service using user’s
browser (step 3). eIDAS-Service will create an eIDAS AuthnRequest for Spanish IdP and send
it using user’s browser (step 4). IdP will authenticate user using its authentication mechanism
(credential-based/mobile-based/certificate-based) (step 5-6). IdP will then create an eIDAS Re-
sponse for Spanish eIDAS-SP and send it using user’s browser (step 7). eIDAS-SP will create an
eIDAS Response for Italian eIDAS-Connector and send it using user’s browser (step 8). eIDAS-
Connector will create an eIDAS Response for eIDAS-SP and send it using user’s browser (step 9).
eIDAS-SP will get the identification of the user and will allow access to the internet (step 10).

Our goal was to create a solution for WiFi access for European environment using eIDAS
framework. For which we created wireless network and setup a captive portal to only allow
network access to authenticated users. We will provide two solutions, a software based and a
hardware based solution for the development of eIDAS SP. First we discuss the software based
solution using Zeroshell Linux distribution, which provides router and firewall services. It has
the ability to create a captive portal using SAML 2.0, a service provider (SP) for authentication
using Shibboleth, a DHCP server for dynamic allocation of IP address and an access control list
(ACL) for allowing to access eIDAS-Nodes/IdP during authentication. Secondly we discuss the
hardware based solution by using the eIDAS code and the wireless infrastructure of Politecnico
di Torino for wireless access. We created a eIDAS-SP service which provides authentication using
eIDAS framework for the Captive Portal. Wireless infrastructure is consisted of Cisco WLC,
Cisco AP (Access Point) and Fortigate-60D, that are responsible for implementation of Captive
Portal, management of users, ACL and network management.

13

Chapter 2

Background

This chapter contains concepts and underlying technologies important for the understanding Fed-
erated Identity Management.

2.1 User authentication

In the last couple of decades there is a massive increase in the number of organisations providing
online service, with each service there is a necessity of authenticating user’s identity to allow
access to private resources. Recognition paradigms provides the authentication of an identity
by confirming the credentials belongs to the user. Authentication protocols are the basics of
user identification, because they provide the verification of the claims used in every step of the
communication afterwards. Multiple approaches can be used for user authentication depending on
the security constraints. Authentication can be provided using something user knows (password,
key), something user is (face, fingerprint) or something user has (card) [4].

The study of exchanging secret for authentication and confidentiality of messages was an
important subject in last decade. In the context of online services, secret can be exchanged in
multiple ways: directly in the form Basic HTTP Authentication [5], encrypted in the form of
EKE (Encrypted Key Exchange) [6] or with a challenge/response exchange of messages. The last
one is very popular because it doesn’t require transferring of secret on the insecure network. It
provides a challenge (e.g. pseudo-random string) which is created by the private key and can only
be processed if the receiver has the key. In a symmetric challenge/response exchange of messages
both sender and receiver needs to know the private key to complete the verification. Whereas
in an asymmetric challenge/response exchange both sender and receiver has a private key and a
public key. The sender encrypts the message using its private key and receiver verifies the message
using public key of the sender.

In both of these cases, symmetric or asymmetric the mechanism for securely distribution of
key is very important. It can be symmetric or asymmetric with addition of a third party for
distribution. Symmetric distribution can be done using Needham-Schroeder Symmetric Key
Authentication [7] protocol, which allows to create a session key between sender and receiver
without exchange of the private key. This requires a third party which will provide authenticity
of the parties included by verifying the private keys. Another protocol that do not requires a third
party for symmetric key distribution is ISO One-pass Symmetric Key Unilateral Authentication
Protocol [8].

Asymmetric key distribution can be provided using digital certificates of identity such as X.509
[9] or using cryptography algorithm such as Diffie and Hellman. [10]. The digital certificates
are provided by a trusted entity called Certification Authority (CA), it provides at least identifier
of the subject, its public key, cryptography algorithm such as RSA [11] and digital signature of
the Certification Authority. This used Public Key Infrastructure (PKI) [12] which guarantees
identification of the subject of certificate without previous knowledge through a trusted infras-
tructure. The Certificate Authority issues digital certificates to the user or other intermediate

14

2 – Background

Certification Authority. The digital certificate provides trust by a chain of ordered list of certifi-
cates from user certificate to the root certificate. By trusting the root certificate means to trust in
all certificates issued by the root and also by intermediate certification authorities. A part from
this, Diffie and Hellman cryptography algorithm can be used to negotiate a shared session key
between two parties without inclusion of a third party. Both parties shares a secret key by means
of Diffie-Hellman and use it to create a private key to encrypt the communication. This private
key allow them to communicate using symmetric cryptography algorithms, which by its nature
can be made computationally fast by using hardware accelerator and by encrypting whole blocks.

2.2 Identity management

In this section we will focus on Identity Management, that refers to process for managing iden-
tities in the administrative environment, controlling access to the private resources and Identity
Management Systems (IDM) which are tools and technologies used to provide identity manage-
ment.

2.2.1 Digital identity

Each entity in Information and Communication Technology (ICT) is represented by a digital
identity [13]. It contains information used to describe an internal or external entity. An entity
can be user, organisation or a device. The entity requires to prove its identity by providing a
secret known by the ICT system such as user credentials (username, password).

2.2.2 Identity Management System

In each Identity Management System there are three entities involved in the authentication cycle:
user, Identity Provider and Service Provider. A user is the entity which wants to consume a service
and is registered in one or more Identity Provider. Identity Provider is the entity which manages
identities of a user and their respective credentials. It provides authentication and authorisation
services for the user to access various services. The Service Provider is the entity which relies on
Identity Provider for authentication of the user and provide services to the authenticated user.

An Identity Management System on the basis of data storage and entity roles can be classified
into Isolated, Centralised and Federated Model [14].

Isolated model

In this model Service Provider and Identity Provider are combined together on the same server.
This is the most simple approach in which both authentication and authorisation are carried
out at the same point but there are several problems with this approach. For each service user
wants to use, it requires to create a separate identity. If identities are created properly (separate
credentials for each service), with the increase of online services it will not be possible for user to
remember all those credentials and If identities are not created properly (same credentials for all
services), there will be a lack of security.

Centralised model

In this model there is a single central Identity Provider, which provides authentication to users of
multiple Service Providers. Identity Provider store identifiers/information of the user and Service
Provider authenticate user using Identity Provider. A most common use of Centralised Model is
single sign-on, which allows user to use multiple web services using single identification instance.
In model user only need to manage one credential to use all the service but this is also a problem:
as there is a single point of failure.

15

2 – Background

Federated model

This model is a improvement of centralised model and solves the problem of single point of
failure. In this entities involved in Identity Management System has established an agreement
on how the entities are going to be refereed and on configuration parameters of the entities
involved in authentication. Using this model a user can authenticate in multiple service within an
organisation or services across other organisations. Service Provider in one enterprise can allow
access to its services by exchanging identity, attribute, authorisation and authentication with an
Identity Provider in another domain. In this way a group of Service Providers can identify users
from other Service Providers within a federated domain using a common federated Identity [22].

Entities in the Federated Model defines Federated Identity Architecture (FIA), in which Iden-
tity Providers and Service Provides exchange digital identities/information of the user preserving
their privacy. The IdP and SP across enterprises in the federated domain exchange agreements
and configuration in the form metadata. Metadata provides agreement between the system enti-
ties, bindings, endpoints, certificates, keys, cryptography algorithms, security and privacy policies.
Discovery and exchange of metadata make it easy to establish trust and determine policies for
obtaining services.

The federated approach makes it easy to map identities across organisations and reduces the
need to handle many credentials from the user perspective.

2.3 SAML

2.3.1 Introduction

The Security Assertion Markup Language (SAML) standard defines a framework for exchanging
security information between online business partners. It was developed by the Security Services
Technical Committee (SSTC) of the standards organisation OASIS (the Organisation for the Ad-
vancement of Structured Information Standards). This document provides a technical description
of SAML V2.0.

2.3.2 Overview

SAML defines a XML framework for describing and exchanging cross domain authentication and
authorisation information about users, usually between a Service Provider and Identity Provider.
It exchanges messages in the form of SAML assertions for which the standard precisely defines
the syntax and rules to be followed for requesting, creating and using these assertions.

SAML 2.0 was developed on the basis of already existing standards such as:

• eXtensible Markup Language (XML) [17] Defines the syntax for exchanging messages
between entities

• XML Signature [18] Specifies the rules and syntax for calculation of signature. Which
provides integrity, message authentication and signer authentication of the SAML messages.

• XML Encryption [19] Specifies the process for encryption and representation of the result
in XML. The result of encryption data is an encryption element, which contains or references
the cipher data.

• Hypertext Transfer Protocol (HTTP) [20] A protocol to transfer hypertext requests
and information between server and browsers.

• Simple Object Access Protocol (SOAP) [21] A protocol used for the exchange of
structured information in web services.

16

2 – Background

2.3.3 Drivers of SAML adoption

Single Sign-On (SSO))

SAML 2.0 is able to solve problem related to cross domain single sign-on by providing a protocol
standard that allows to transfer information of a user from a web server to another without
using the cookies. Previously most of the products claiming to provide web-based SSO use
cookies to maintain user session and doesn’t require to authenticate again to access the system.
However, browser cookies are only accessible through the same DNS (Domain Name Service),
therefore session’s information is never available to other domain. Therefore they used proprietary
mechanism for multi-domain SSO, which is specific to the single enterprise. This type of specific
mechanism is viable in products from same enterprise but is not practical for products of business
partners. Because of heterogeneous environments which make the use of proprietary protocol
impossible. SAML solves this problem by providing a vendor-independent protocol for transferring
session information between one web server to another independent of the DNS domains.

Federated identity

When different services creates a collaborative environment for mutual users, they don’t only need
to understand the syntax and protocol of the exchange information; they must have a common
understanding of the user. Usually each provider maintains a local identifier for a user to interact
with the service. In a federated identity a common shared identifier is used for identifying a user
across organisational boundaries. This kind of common identity used between partners to refer
a user is called federated identity. This will also decrease the management cost of individually
maintaining user identity by each service. This kind of identity can reside with the user rather
than on the service side.

Web services and other industry standards

SAML can be used to provide security assertion format to be used for non native SAML-based
protocol. This allows it to be useful for other authorisation services (IETF, OASIS), identity
frameworks, web services, etc. It provides a standard based approach for exchanging information,
which is not easily conveyed using other WS-Security token formats. The OASIS WS-Security
Technical Committee has defined a profile to provide SAML’s rich assertion constructs within a
WS-Security token for the transmission of SOAP messages.

2.3.4 SAML participants

In every SAML exchange there is a SAML asserting party and a relying party. SAML asserting
party is the one which creates statement about a subject and issued in the form of statements,
which are consumed by the relying party. When a asserting party or a relying party make a
request to another entity, the one making the request is called requester and the one to whom the
request is made is called the responder.

SAML entities can take variety of SAML roles. In the case of multi-domain Single Sign-On
scenario, the entity providing the assertions is called the IdP and the one consuming the assertions
is called SP. SP makes the decisions relating to the access control after authentication depending
on the assertions.

At the heart of each SAML exchange there is a subject, which is trying to authenticate. A sub-
ject is a principal, which can be a human, computer or a company that needs to be authenticated
to access service resources.

A typical assertion from a IdP provides the information about the subject. It can provide
information about the identity of the subject and status of the authentication. SP can use the
information and depending on the access policies can deny or allow access to the service resources.

17

2 – Background

2.3.5 Basic concepts

SAML is composed of smaller components which when combined together can be used for various
use cases. These can be used for the transfer for identity, authorisation, authentication and
attribute information between services from different organisation. Structure of both assertion
and protocol messages for transfer of information are provided by SAML core.

Figure 2.1: Relationship between SAML core components (source: cse.wustl.edu).

• Assertions SAML assertions contain statement about the subject, which are consumed by
Service Provider to make decisions relating to access control after authentication. SAML
assertions structure and contents are defined by SAML-defined assertion XML schema.
These are created and digitally signed by the authentication authority (IdP), which also
handles the authentication process.

• Protocols SAML protocols are used to for making SAML-defined request and return re-
spective responses. SAML protocols structure and contents are defined by SAML-defined
protocol XML schema.

• Bindings SAML bindings are the lover layer of the communication network with which
SAML protocols are transferred between entities such as SOAP or HTTP.

• Profiles SAML profiles defines how SAML assertions, bindings and protocol must be com-
bined for a specific use case such as multiple domain SSO. It defines constraints on the
contents of these components to solve a use case in an appropriate way.

• Metadata Metadata is a XML document which is used to define and share configuration
between SAML entities. It provides information about supported bindings, identity infor-
mation, supporting identity attribute, cryptography algorithms and certificates. It is defined
by it’s own XML schema.

• Authentication context Authentication Context is used to provide details about the
authentication at identity provider such as type and strength of authentication. An assertion
authentication statement is used to carry this information. In some cases Service Provider
can also ask Identity Provider to use specific type of authentication such as multi-factor
authentication for resources that are critical. Authentication context is defined by XML
schema and a set of SAML-defined Authentication Context Classes, which provide commonly
used authentication methods.

2.3.6 SAML components

This will provide detail about each of the components that represent the assertion, protocol,
binding, and profile concepts in a SAML environment.

18

https://www.cse.wustl.edu/~jain/cse571-09/ftp/soa/index.html

2 – Background

Assertions

SAML Assertions provide information about the principal in the form of statements. These are
created and digitally signed by the authentication authority. For example when a user invokes
the login operation on a Service Provider, that Service Provider redirect to the Identity Provider.
Identity Provider validates the credentials and issues the SAML assertion with user information
stating that the authentication was successful. Because it is digitally signed by the Identity
Provider, the respective Service Provider on receiving the information can validate that it was
created and issued by the user Identity Provider. SAML assertions has three kind of statements

• Authentication statement It provides information about the type of method used for
authentication and time of the authentication for a successful operation.

• Attribute statement It provides user specific information of the authenticated user. Ser-
vice Provider can use this information for allowing or denying access to the service resources.

• Authorisation decision statement It provide information about something that authen-
ticated subject is allowed to do such as is entitled to access service resources as a user.

SAML assertion is consist of one or more statements and information relating to all common
statement content. The first of these information is SAML:Assertion - that provide namespace of
the assertion, version of SAML used and time of the creation of message. A SAML:Assertion tag
has following syntax

<saml:Assertion xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"

Version="2.0" IssueInstant="2019-11-05T09:22:05Z">

SAML:Assertion tag contains the information of the issuer inside SAML:Issuer tag. A example
of SAML:Issuer tag is as follow

<saml2:Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">

https://wifi-auth-eid4u.polito.it/SP/metadata

</saml2:Issuer>

It also contains information about the subject inside SAML:Subject tag. It contains the name
identity associated with it inside the SAML:NameID. The attribute Format is used to specify the
format for the name identifier of the subject. It can specify different types of formats, such as
email address, the value of the subject field of the X.509 certificate.

<saml:Subject>

<saml:NameID

Format="urn:oasis:names:tc:SAML:2.0:nameid-format:transient">

3f7b3dcf-1674-4ecd-92c8-1544f346baf8

</saml:NameID>

</saml:Subject>

SAML:Assertion tag also contains SAML:Conditions tag which provide the conditions which
are used to validate the assertions. For example in the example below it provides that the
assertions are valid only if the time is in-between the notBefore and NotOnOrAfter time period.

<saml:Conditions

NotBefore="20019-11-05T09:17:05Z"

NotOnOrAfter="2019-11-05T09:27:05Z">

<saml:AudienceRestriction>

It also provide SAML:AuthnStatement tag which contains information about when and with
which mechanism subject is authenticated. An example is as following

19

2 – Background

<saml:AuthnStatement

AuthnInstant="2019-11-05T09:22:00Z"

SessionIndex="104e3435542aad34">

<saml:AuthnContext>

<saml:AuthnContextClassRef>

urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport

</saml:AuthnContextClassRef>

</saml:AuthnContext>

</saml:AuthnStatement>

The above example shows that the user is authenticated using password that was sent to the
Identity Provider using secure communication channel. Other mechanism that can be used for
authentication are

• Password In this authentication is done using password over an insecure communication
channel HTTP.

• Internet protocol In this authentication is provided using IP address of the user.

• Internet protocol password In this authentication is provided using both IP address and
password of the user.

• Previous session In this authentication is provided by a previous authenticated session of
the user.

In addition assertions also provide additional information about the user form Identity Provider
to Service Provide in SAML:AttributeStatement tag. This transfer of extra information is a
powerful SAML feature that can be used for allowing access to the resources. These can be use
to provide profile information of the user, which can be used to create a local account of the
user or if required to provide consent of the usage of the information. For example to apply for
driving license it requires the age of the user to verify that user is above 16 and is eligible for
driving. These information can also be used to provide access to service resources depending on
the attribute. The Service Provider and Identity Provider need to agree on the attribute name
and values in the assertions.

<saml:AttributeStatement>

<saml:Attribute Name="uid" NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-

format:basic">

<saml:AttributeValue xsi:type="xs:string">test</saml:AttributeValue>

</saml:Attribute>

<saml:Attribute Name="mail" NameFormat="urn:oasis:names:tc:SAML:2.0:attrname

-format:basic">

<saml:AttributeValue xsi:type="xs:string">test@example.com</saml:

AttributeValue>

</saml:Attribute>

<saml:Attribute Name="eduPersonAffiliation" NameFormat="urn:oasis:names:tc:

SAML:2.0:attrname-format:basic">

<saml:AttributeValue xsi:type="xs:string">users</saml:AttributeValue>

<saml:AttributeValue xsi:type="xs:string">examplerole1</saml:

AttributeValue>

</saml:Attribute>

</saml:AttributeStatement>

Protocols:

SAML Protocols defines request/response protocols for SAML elements including assertions. It
also provides rules that SAML entities must follow in order to exchange messages. The following
protocols are defined in SAML 2.0

20

2 – Background

• Authentication request protocol This protocol is used to support web Browser SSO
Profile to establish a security context for the user at Service Provider. In this a (AuthnRe-
quest) message is issued from Service Provider to Identity Provider to create a (Response)
message containing one or more assertions pertaining to a principal.

• Single logout protocol This protocol is used to logout principal from all authenticated
sessions. The logout can be initiated by the principal or because of a session time-out from
Service Provider or Identity Provider.

• Assertion query and request protocol This provides a set of queries by which assertion
may be obtained. The Request form of this protocol defines how a relying party (SP) can
ask for an assertion to an asserting party (IdP) providing its assertion ID. The Query form
of this request provides how a relying party can ask for assertion on the basis of a reference,
subject or the statement type.

• Artefact resolution protocol This provides a mechanism to obtain a previously created
assertion by providing a reference to relying party. The artefact is a small, fixed-length
value used as a reference in SAML. The SAML protocol can refer to a artefact and Service
Provider can obtains the assertion by using the artefact protocol. The artefact is typically
passed using one SAML binding, such as HTTP-Redirect while resolution of the artefact
take place over synchronous binding, such as SOAP.

• Name identifier management protocol This provides the mechanism to change the
value or format of the the name identifier of the principal. It can be issued by a Service
Provider or a Identity Provider. This protocol can also be used to terminate an already
existing association of a name identifier between Service Provider and Identity Provider.

• Name identifier mapping protocol This provide the mechanism to map SAML name
identifier from one Service Provider to another Service Provider. This can be used to
provide interoperability between different Service Provider in an application integration
environment.

Bindings

SAML bindings provides in detail how the various SAML protocol messages can be transported
in the the lower network communication layer. These are the bindings provided by SAML 2.0

• HTTP redirect binding This provides a mechanism to transport SAML protocol messages
using HTTP redirect messages (302 status code response).

• HTTP POST binding This provides a mechanism to transport SAML protocol messages
using base64-encoded content in HTML form control.

• HTTP artefact binding This provides a mechanism to transport artefact using HTTP
protocol either using HTML form control or a query string in the URL from a sender to a
receiver.

• SAML SOAP binding This provides a mechanism to transport SAML protocol messages
using SOAP over HTTP.

• Reverse SOAP (PAOS) binding This provides a mechanism to exchange SOAP/HTTP
messages in a multi-stage environment. This is used in enhanced Clients and Proxy profile
to assist in IdP discovery.

• SAML URI binding This provides a mechanism to obtain a existing SAML assertion
resolving a URI.

21

2 – Background

Profiles

SAML Profiles define in details how the SAML assertion, protocol and bindings must be combined
for a particular scenario. The primary use case of SAML Profile is Web Browser SSO. These are
the Profiles provided in SAML 2.0

• Web browser SSO profile This Profile defines how Service Provider and Identity Provider
uses SAML protocol for authentication request, SAML response messages and assertions to
achieve single sign-on with standard web browser. It defines how these messages are used
in combination HTTP POST, HTTP Redirect and HTTP Artefact bindings.

• Enhanced Client and Proxy (ECP) profile This profile defines a specialised single
sign-on in which Reverse-SOAP (PAOS) and SOAP bindings are used by specialised clients
or gateway proxies.

• Identity provider discovery profile This Profile defines a way in which the Service
Provider can use the common domain cookies to check which of the Identity Providers are
already visited by a user. When a request is received from a user, Service Provider requests
the common domain cookie read service to check the Identity Providers previously visited.

• Single logout profile This Profile defines how Single Logout Protocol can be used using
HTTP Redirect, HTTP Post, SOAP and HTTP Artefact bindings.

• Assertion query/request profile This Profile defines how to use SAML Query and Re-
quest Protocol for SAML assertions over a synchronous binding, such as SOAP.

• Artefact resolution profile This Profile defines how Artefact Resolution Protocol can be
used to obtain a artefact over a synchronous binding, such as SOAP.

• Name identifier management profile This Profile defines how Name Identifier Map-
ping Protocol can be used with HTTP POST, HTTP Redirect, SOAP and HTTP Artefact
bindings.

• Name identifier mapping profile This Profile defines how Name Identifier Mapping
Protocol can be used over a synchronous binding, such as SOAP.

2.3.7 Privacy in SAML

In an information technology context, privacy generally refers to both a user’s ability to control
how their identity data is shared and used, and to mechanisms that inhibit their actions at multiple
service providers from being inappropriately correlated.

SAML is often deployed in scenarios where such privacy requirements must be accounted for
(as it is also often deployed in scenarios where such privacy need not be explicitly addressed, the
assumption being that appropriate protections are enabled through other means and/or layers).

SAML has a number of mechanisms that support deployment in privacy .

• SAML supports the establishment of pseudonyms established between an identity provider
and a service provider. Such pseudonyms do not themselves enable inappropriate correlation
between service providers (as would be possible if the identity provider asserted the same
identifier for a user to every service provider, a so-called global identifier).

• SAML supports one-time or transient identifiers - such identifiers ensure that every time
a certain user accesses a given service provider through a single sign-on operation from
an identity provider, that service provider will be unable to recognise them as the same
individual as might have previously visited (based solely on the identifier, correlation may
be possible through non-SAML handles).

• SAML Authentication Context mechanisms allow a user to be authenticated at a sufficient
(but not more than necessary) assurance level, appropriate to the resource they may be
attempting to access at some service provider.

22

2 – Background

• SAML allows the claimed fact of a user consenting to certain operations (e.g. the act of
federation) to be expressed between providers. How, when or where such consent is obtained
is out of scope for SAML.

2.3.8 Security in SAML

Just providing assertions from an asserting party to a relying party may not be adequate to ensure
a secure system. How does the relying party trust what is being asserted to it? In addition, what
prevents a “man-in-the-middle” attack that might grab assertions to be illicitly “replayed” at a
later date? A brief description of these mechanism are provided below.

SAML defines a number of security mechanisms to detect and protect against such attacks.
The primary mechanism is for the relying party and asserting party to have a pre-existing trust
relationship which typically relies on a Public Key Infrastructure (PKI). While use of a PKI is
not mandated by SAML, it is recommended.

Use of particular security mechanisms are described for each SAML binding. A general
overview of what is recommended is provided below:

• Where message integrity and message confidentiality are required, then HTTP over SSL 3.0
or TLS 1.0 is recommended.

• When a relying party requests an assertion from an asserting party, bi-lateral authentication
is required and the use of SSL 3.0 or TLS 1.0 using mutual authentication or authentication
via digital signatures is recommended.

• When a response message containing an assertion is delivered to a relying party via a user’s
web browser (for example using the HTTP POST binding), then to ensure message integrity,
it is mandated that the response message be digitally signed using XML Signature

2.4 Shibboleth

Shibboleth is a open source SAML implementation by Shibboleth Consortium. It provides the
development of a Shibboleth SP and IdP among others [23]. It provides authentication, authori-
sation and single sign-on services across a range of Identity Providers. It is composed of different
component: Identity Provider, Service Provider and Discovery Services (DS). These can be de-
ployed together or separately to provide specific functionality to an organisation. It supports
most of the profile defined by SAML 1.1 and SAML 2.0.

2.5 eIDAS

Since the start of XXI century European countries have developed digital identities for their
nationals such as Italian SPID [24], Portugal-Chave Mòvel Digital [25] and Spain-DNIe [26]. These
lead to a very diverse landscape of electronic identity management. Therefore to provide cross
border identification for European citizens, multiple initiative were stated to provide federated
identity management using existing electronic Identification (eID) systems.

STORK [27] and STORK 2.0 [28] projects showed that it is possible to create a electronic iden-
tity European infrastructure to provide electronic authentication and attribute management by
providing interoperability between existing national eID. The feasibility of these projects become
the base of the federated identity solution [29] in anticipation of the adoption of the Regulation
(EU)910/2014 [30], also called eIDAS Regulation. Which will be in force in all member states.
This regulation provides a framework to provides secure and trusted electronic identification across
European countries by providing interoperability between existing National eID. This creates a
European level trust network for electronic services across borders. This Regulation also ensures
that this electronic identification has the same legal status as traditional paper.

23

2 – Background

This federated identity solution was consisted of member states, each member state is respon-
sible to deploy a eIDAS Node to act as a Identity Provider for national eID scheme for any country.
To maintain the security and trustfulness of the network, a governmental institution is responsi-
ble for the implementation and deployment of the eIDAS Node. All the Service Provider in the
network are subscribed to the eIDAS Node of the country. Through this federated infrastructure
every citizen of a member state is able to consume services in another member state.

Figure 2.2: eIDAS basic architecture (source: IEEE)

2.5.1 Main problems addressed by eIDAS

The key agenda of the eIDAS regulation was to provide a federated authentication system for
cross border authentication. This will allows the citizens of each member states to authenticate
themselves using their nation eID across all member states. Which will allow public and private
businesses to provide their services to all European citizens through a secure and trustworthy
network.

This will also provide a framework for legal authentication across borders of member states,
which has the same legal status as the traditional paper documentation. The eIDAS regulation
provide these three key elements:

• “It upgrades the legal framework of electronic signatures replacing, the existing eSignature
Directive. For instance, it allows you to “sig” with a mobile phone; it requires higher
accountability for security; and it provides clear and stronger rules for the supervision of
eSignature and related services.

• Through requiring mutual recognition between various national eID systems (different to
harmonisation or centralisation), the Regulation extends the capabilities - the opportunities
available with your existing eID - by making it functional across EU borders.

• Other trust services are included in the Regulation for the first time, meaning there will be a
clear legal framework and more safeguards through strong supervision services of electronic
seals, time stamping, electronic document acceptability, electronic delivery and website au-
thentication.” [31]

2.5.2 eIDAS specification

The eIDAS specification defines that eIDAS Node can act in two federated modes: eIDAS-
Connector and eIDAS-Service. All the Service Providers are subscribed to eIDAS-Connector
Node in the same country and all the Identity Providers are subscribed to eIDAS-Service Node of
that country. eIDAS-Connector Node will be responsible to request authentication across mem-
ber states and eIDAS-Service Node will be responsible to provide authentication across member
states. This interconnection of secure and trusted nodes across borders provides a trust network
for cross border authentication, which is shown in Figure 2.3.

24

https://ieeexplore.ieee.org/abstract/document/8754671

2 – Background

Figure 2.3: eIDAS architecture for cross border authentication (source: IEEE access [32])

The infrastructure is based on SAML 2.0 and defines a set of profiles/bindings that must
be supported in order to implement network. Each Service Provider is subscribed to a Node-
Connector in that member state, each Node-Connector is connected to Node-Services of all mem-
ber state and each Node-Service is connected to Identity Providers in that member state. Iden-
tity Provider should support SAML profiles and bindings defined in the eIDAS specifications
to be compatible with other nodes present in the federated network. It can implement its own
mechanism for authentication and authorisation, but has to provide translation between SAML
assertions.

To enable interoperability between eID schemes of member states, a process known as “noti-
fication” is defined for formalising the approved eID schemes. Once the Member State meet all
the eIDAS security and quality requirement, it notifies its own eID scheme. Once the eID scheme
is officially added, the member states have to recognise it “no later than 12 months after the
publication to the Official Journal of the European Union” [33]. Figure 2.4 shows eID schemes
status of Member States.

Each entity involved in the eIDAS network publish a standardised signed SAML metadata file
to negotiate agreements between system entities about Identifiers, binding endpoints, certificates,
cryptography algorithms, security and privacy policies [35]. SAML metadata is part of the SAML
specification and it is closely related to eIDAS framework standard using SAML as format for
message exchange. It is supported by SAML implementation and libraries.

2.5.3 eIDAS cryptography requirements for trust between eIDAS en-
tities

The communication between eIDAS entities is performed via user’s browser. To secure the com-
munication the SAML messages are protected with cryptography and transported using TLS [36]
on the transport layer.

If supported by user’s browser, eIDAS-Nodes must only use TLS version 1.2. Otherwise it can
use TLS version 1.1. It must use cipher suites that provide perfect forward secrecy. Recommending
cipher suites are provided in the Figure 2.5. eIDAS-Nodes also should not use TLS compression,
heartbeat extension [38], Session Renegotiation and truncated HMAC [39].

SAML is used for confidentiality, integrity of the information transferred and identification
of the communication endpoints. It uses authentication based on X.509 certificates for XML
Encryption and XML Signatures. In eIDAS, entities must sign the SAML request/response and
encrypt SAML assertion within the SAML response. For XML Encryption/Signature, SHA-2
algorithm must be used with minimum length of 256.

25

2 – Background

Figure 2.4: eID Schemes notified in Europe (source: EUROSMART [34])

Figure 2.5: TLS recommended cipher suites (source: eIDAS [37])

XML Encryption with SAML

For XML Encryption a hybrid cryptography system is used. For each transmission a random
symmetric key (session key) is generated to encrypt SAML assertion via symmetric algorithm
and symmetric key is encrypted with the public key of the receiver entity. For Encryption of
SAML assertion entities must use one of the algorithm provided below

• http://www.w3.org/2009/xmlenc11#aes128-gcm

• http://www.w3.org/2009/xmlenc11#aes192-gcm

• http://www.w3.org/2009/xmlenc11#aes256-gcm

26

2 – Background

For key Encryption entities must use either key transport or key agreement mechanism. In
case of key agreement, the session key is encrypted using the public key of the receiver X.509
certificate. Otherwise a symmetric key pair is derived by means of a ECDH key agreement using
an ephemeral key pair and the public key of the receiver X.509 certificate. Then the derived key
is used to wrap the session key.

XML signature for SAML and SAML metadata

SAML messages and metadata are signed for verification of the entities involved in the communi-
cation. For the generation/verification of the signatures, one of the following algorithms provided
in the Table 2.1 must be used.

Algorithm Minimal key length
RSASSA-PSS 3072
ECDSA 256

Table 2.1: Signature algorithms for SAML

2.5.4 eIDAS protocol

1. To access a web-based service using eIDAS framework, the SP asks user to select the home
country in which he/she will authenticate. Upon country selection, the SP retrieves the
respective eIDAS-Connector metadata and validates it using its metadata signing certifi-
cate stored locally in SP. Next it gets the endpoint from metadata file, generates a eIDAS
authentication request (AuthnRequest), which is a special type of SAML2 AuthnRequest,
next it digitally signed it with SP (asymmetric) “signing” private-key stored locally, and
sent it to the eIDAS-Connector Node through the user’s browser. The eIDAS AuthnRe-
quest contained a set of identification and authentication attributes requested by the SP
to grant access to the service, e.g. CurrentFamilyName, CurrentGivenName, DateOfBirth,
PersonIdentifier. It also send the RequestedAuthnContext level i.e. the minimum au-
thentication level required to authenticate the user. The citizen country was sent to the
eIDAS-Connector as well, e.g. as a parameter in the HTTP POST request: country: IT.

2. Next, the eIDAS-Connector Node validates the SP by retrieving and validating metadata
with SP metadata signing certificate stored locally. Then it validates the AuthnRequest
received from the SP by using its “signing” public-key, which is provided by the metadata
file of the SP. After validation of the eIDAS AuthnRequest, eIDAS-Connector Node creates a
new eIDAS AuthnRequest depending on the attribute received from SP, which was digitally
signed with the eIDAS-Connector (asymmetric) “signing” private-key and subsequently it
was sent to the eIDAS-Service Node depending on the home country of the user by using
the SAML2 POST Binding.

3. The eIDAS-Service Node validates the eIDAS-Connector by retrieving and validating meta-
data with eIDAS-Connector metadata signing certificate stored locally. Then it validates
the eIDAS AuthnRequest received from eIDAS-Connector Node by using its (asymmetric)
“signing” public-key, which is provided by the metadata file. After that it constructs a
new eIDAS AuthnRequest, which was digitally signed with the eIDAS-Service (asymmetric)
“signing” private-key. It can ask the user to select the IdP to which it wants to authenticate
and sent the eIDAS AuthnRequest to the respective IdP using the SAML2 POST Binding.
For example, in Italy, the support for multiple IdP is provided and user can select from a
list of IdPs at Italian eIDAS-Service node.

4. The IdP validates validates the eIDAS-Service by retrieving and validating metadata using
eIDAS-Service’s metadata signing certificate stored locally. Then it validates the eIDAS
AuthnRequest received from eIDAS-Service Node by using its (asymmetric) “signing” public-
key, which is provided by the metadata file. Next it authenticates the citizen by using

27

2 – Background

national authentication credential(s) and an authentication process/protocol specific to each
country.

5. After successful authentication the IdP constructs a eIDAS Response, which was also a spe-
cial type of SAML2 Response element. The authentication response included the requested
identification and authentication information in a SAML2 Assertion element. Every identi-
fication and authentication attribute was packaged in a specific SAML2 Attribute element,
which has been defined in the SAML2 eIDAS profile. Then the eIDAS attributes element is
encrypted by a session key generated randomly and session is encrypted using (asymmetric)
“encryption” public key of the eIDAS-Service Node, which is provided by the metadata
file. Next the authentication response was digitally signed by the IdP with its private-key
stored locally and was sent to the eIDAS-Service Node by using the SAML2 POST binding
provided by the metadata file of the eIDAS-Service Node.

6. The eIDAS-Service Node validates the IdP by retrieving and validating metadata with IdP
metadata signing certificate stored locally. Next it validates the signature on the SAML2
Response using IdP public-key, which is provided in the metadata file. Then eIDAS-Service
Node decipher the SAML2 Response session key using its (asymmetric) “encryption” private-
key and use the session key to decipher encrypted attributes element to get the identifica-
tion/attributes information. All the attributes were extracted from the SAML2 Assertion
element, then they were filtered, meaning that attributes that have not been requested were
discarded, while the ones that have been requested were checked if they have been val-
ued. In case mandatory attributes have not been returned, an error was generated and the
transaction stopped. In addition, the eIDAS-Service requires the user’s consent to forward
his attributes to the eIDAS-Connector Node. If the consent was given, the eIDAS-Service
encrypts SAML attributes using a session key generated randomly and session is encrypted
using (asymmetric) “encryption” public key of the eIDAS-Connector Node and creates a
newly signed SAML2 Response using its (asymmetric) “signing” private-key. Next, sent it
to the eIDAS-Connector through the user’s browser with the HTTP POST binding.

7. The eIDAS-Connector Node validates the eIDAS-Service by retrieving and validating meta-
data with eIDAS-Service metadata signing certificate stored locally. Next it validates the
signature on the SAML2 Response by using the public key of eIDAS-Service Node provided
in the metadata file available online, the eIDAS-Connector Node decipher the SAML2 Re-
sponse session key using its (asymmetric) “encryption” private-key and use the session key
to decipher encrypted attributes element to get the identification/attributes information.
Next, it extracts all the attributes from the SAML2 Assertion element and mapped them
(if necessary) to a format recognised by the SP. Since eIDAS protocol was used in the com-
munication between SP and eIDAS-Connector, no mapping/filtering of attributes had to
be further done on eIDAS-Connector Node. The eIDAS-Connector Node creates a newly
signed and encrypted SAML2 Response containing the valued attributes and sent it to the
SP, where the certified attributes were extracted and verified to grant access to the user.

2.5.5 Attributes

eIDAS extended the SAML 2.0 format to hold the most common personal user attributes, e.g.
PersonIdentifier, CurrentFamilyName, CurrentGivenName, DateOfBirth, or even the marital
status, TaxReference and Nationality. Moreover, it also defined the authentication Level of

Assurance (LoA) level indicating the quality of authentication being requested. To establish
trust, the authentication methods used by the national eID systems were classified into three
LoA assurance classes (low, substantial, and high). The details of the LoA levels are provided
in Figure 2.6 [41]. To provide access to a service, an SP can request a certain LoA level in the
authentication request, which was sent to the IdP in charge of the actual authentication process
of the citizen. If the IdP authenticated the citizen with a method whose assurance level met the
requested LoA (or above), then the authentication response and the attributes were sent to the
SP, otherwise an error was generated and the transaction was stopped.

Note that most of these personal attributes had a simple structure, typically each attribute
had one value. A selection of some important attributes for natural persons used for cross-border

28

2 – Background

Figure 2.6: eIDAS authentication Level of Assurance (source: SCRIVE)

identification and authentication is presented in Table 2.2, while the complete set of attributes
defined in eIDAS is found at [40].

SAML Attribute Description
PersonIdentifier Unique identifier of a natural person
CurrentGivenName Given name of a natural person
CurrentFamilyName Family name of a natural person
DateOfBirth Date of birth of a natural person

Table 2.2: A selection of natural person attributes in eIDAS infrastructures

The eIDAS infrastructure supports a number of person attributes to be exchanged through
the eIDAS nodes. The so-called eIDAS minimum data set for natural persons contains the
following mandatory attributes: unique identifier (PersonIdentifier), current family name(s)
(CurrentFamilyName), current first name (s) (CurrentGivenName), date of birth (DateOfBirth).
Additionally, the following attributes are also defined for persons, but they are considered op-
tional: first name(s) and family name(s) at birth, place of birth, current address and gender.
eIDAS defines also attributes for legal persons, e.g. the legal name, legal address, VAT registra-
tion number, the tax registration number or the legal entity identifier. The eIDAS Regulation
establishes three levels of assurance (LoA) for identification schemes that are directly proportional
to their legal value: low, substantial and high.

2.6 Related work

In the last couple of decades due to the rapid increase in the number of wireless devices, which lead
to many initiates to provide federated solution for wireless roaming. We will provide an overview
of the technologies that are related to the work done in this thesis and are already available.

2.6.1 eduroam

eduroam (education roaming) is a solution proposed by the TERENA Task Force on Mobility [43]
to provide a international roaming network. It would provide Internet access securely at academic
campuses across Europe to the users of National Research and Educational Networks (NRENs).
eduroam works as the authentication of a user is carried out at the home institution of the user
using home institution credentials remotely and authorisation to allow access to the resources is
managed by the visited institution by trusting the infrastructure.

29

https://www.scrive.com/eidas-electronic-identity-in-the-eu/

2 – Background

Introduction

eduroam is a international roaming network to allow secure Internet access to the user in research
and higher education across academic campuses. To develop eduroam, TERENA has developed
requirement specifications for the infrastructure with the following characteristics [44]

• Overhead of managing each user

• Ease of usability

• Security requirements for all entities

• Ease of scaling of network

The architecture that would be able to abide by these characteristics is based on a number of
technologies and agreements, which would provide the eduroam experience “open your laptop
and be online” [45]. These are defined by a set of technical and organisational requirements,
which should be agreed upon by each member of the eduroam Confederation (by signing and
following the European eduroam Confederation policy declaration) [46]. The crucial mechanism
underpinning the authentication and authorisation of eduroam involves [47]

• Authentication of a user provided by an Identity Provider using its own authentication
mechanism.

• After successful authentication, proper authorisation of the user at Service Provider to allow
access to the network resources.

TERENA Task Force Mobility finalise 802.1X [48] authentication with a RADIUS (Remote Au-
thentication Dial-In User Service) [49] hierarchy based back-end for the development of eduroam
because of the fact that WPA and 802.11i security standards are all build on 802.1X. Even though
not all institutions supports it because of the their legacy equipment.

eduroam specification

The European eduroam service provides this facility as a confederated service, built hierarchically.
At the top level sits the confederation level service, which primarily provides the confederation
infrastructure required to grant network access to all participating members of the eduroam service
at any time. This confederation service is built upon the national roaming services, operated by
the national roaming operators (NROs) (in most cases, NRENs). National roaming services make
use of other entities, for example, campuses and regional facilities.

A hierarchy consists of RADIUS servers at the participating institutions, national RADIUS
servers and regional top-level RADIUS are used to transport authentication request form the
visited institution to the home institution of the user. Each institution included in the network
has a Radius server with the local database of the users of that institution. It is responsible to
provide the identification of its users.

Because the user’s credentials travel via a number of intermediate servers, not under the
control of the home institution of the user, it is important that the credentials are protected.
This requirement limits the types of authentication methods that can be used. Basically there are
two categories of useful authentication methods: those that use credentials in the form of some
public-key mechanism with certificates and those that use so-called tunnelled authentication.
Most institutions use a tunnelled authentication method that only requires server certificates.
These server certificates are used to set up a secure tunnel between the mobile device and the
authentication server, through which the user credentials are securely transported.

30

2 – Background

Figure 2.7: eduroam confederation structure (source: GEANT).

Figure 2.8: Tunnelled authentication (source: Alfa&Ariss).

eduroam protocol

1. The authentication starts with a user with username “toto@institution b.be” form insti-
tution B trying to authenticate at institution A. From realm institution b.be (realm is
the home institution’s DNS domain name often of the form institution.tld (tld=top-level
domain; both country-code TLDs and generic TLDs are supported)) of the user, institution
b gets the institution of the user. The user is from another institution so it proxies to the
national RADIUS server.

2. The national Radius server checks that institution B is in another country, it will proxies it
to regional top-level Radius server.

3. The regional top-level Radius server will proxies it to the national Radius server of the
country in which institution B is located.

4. The national server has the list of the all the institutions participating in the eduroam
network in that country and forwards the credentials to the home institution B.

5. The Radius server of the institution B verifies the credentials and “acknowledge” of the
authentication travels back over the proxy-hierarchy to the visited institution A and the
user is granted access.

31

https://www.geant.org
www.alfa-ariss.com

2 – Background

Figure 2.9: eduroam basic authentication flow (source: Belnet).

Elements of the eduroam infrastructure

• European Top-level RADIUS Servers (ETLRS) Currently, the European Top-level
RADIUS Servers (ETLRS) for the European Confederation are located in the Netherlands
and Denmark. Each server has a list of connected, federation top-level domains (.nl, .dk,
.hr, .de, .be etc.) serving the appropriate NRENs. The servers also maintain exception
rules for domains whose federation membership is not immediately identifiable in the realm
(typically gTLD realms such as ‘.edu’, ‘.eu’, ‘.net’, etc.). The servers accept requests for
the federation domains they are responsible for, and subsequently forward them to the
associated RADIUS server for that federation, and transport the response (i.e. result of the
authentication request) back. Requests for the federation domains that the servers are not
responsible for are forwarded to the proper federation TLRS. As well as European NRENs,
there are eduroam participants in other parts of the world (.au, .jp, .cn etc). These realms
are also handled by the TLRS in Europe (ETLRS), although these NRENs are not members
of the European confederation.

• Federation-level RADIUS Server (FLRS) A federation RADIUS server has a list
of connected eduroam IdP servers and their associated realms, as well as the connected
eduroam Service Providers within a federation. It is connected to the ETLRS. The purpose
of the FLRS is to receive requests from the ETLRS and eduroam SPs, and forward these
requests to the responsible eduroam Identity Provider (either using static routing, or by
performing DNS lookups for dynamic request routing).

• eduroam Identity Providers (IdPs) An eduroam IdP’s RADIUS server is responsible
for authenticating its own users (at home or remotely when visiting another institution) by
checking the credentials against a local Identity Management System. The Identity Man-
agement System contains information on end users (for example, usernames and passwords).
They must be kept up-to-date by the eduroam Identity Provider. Note that the eduroam
Identity Provider’s RADIUS server has the most complex task of all. Whereas the other
RADIUS servers merely proxy requests, the Identity Provider’s server also needs to actually
authenticate users, and therefore, needs to be able to terminate EAP requests and perform
identity management system lookups.

• eduroam Service Providers (SPs) An eduroam Service Provider’s (SP) RADIUS server
is responsible for forwarding requests from users visiting this SP to the responsible eduroam
IdP, either by forwarding the request along the hierarchy, or by discovering the responsible
server with DNS. Upon proper authentication of a user, the eduroam SP’s RADIUS server
may assign a VLAN to the user.

Small SP that do not require VLAN assignment do not necessarily need their own RADIUS
server, and can instead connect their network access elements to the respective FLRS.

In most cases, an educational institution participating in eduroam acts as an IdP and SP
at the same time.

32

https://www.eduroam.be/node/13

2 – Background

2.6.2 govroam

govroam (government roaming) [50] is another solution by TERENA to provide roaming for
government agencies. It is developed on the same architecture as eduroam. It started from
Netherlands and is adopted by many countries. The operations of govroam are still managed
by TERENA worldwide. govroam is based on policies and principles provided by “NL Service
Policy” document [51], which has to be agreed and followed by all the organisations participating
in the roaming network.

govroam supports the trend toward multi-disciplinary activities across organisations, such as
the convergence of health and social care. It make possible connectivity to the Internet and avail-
ability of resources present at home organisation by connecting from the network of a visiting
organisation. The staff can access the govroam network provided by any participating organisa-
tion, using a single, securely-authenticated sign-on managed by their organisation.

govroam specification

govroam is developed by creating a trust relationship between the organisation present in the
network. NL policy document provides responsibilities of the entities involved in the federated
network, so all entities have a clear understanding of their responsibilities to provide there services
in a trusted manner. These responsibilities are also enforced by sanctions against organisations
that do not comply with these policies and results in suspension or ejection from the govroam
community.

govroam is a loose federation of related organisations. In order to work successfully, it depends
on an implicit tripartite trust relationship between an IdP, a SP and the RO (Roaming Operator).
The IdP advertises the govroam service to its users, and trusts that the SP will provide the service
in a manner consistent with expectations, recognising that its users will sometimes rely on govroam
services to the exclusion of making other arrangements. IdPs further trust that SPs will secure
their users’ credentials and respect the confidentiality of their users’ communications.

SPs trust that the user identities asserted by an IdP are verified members of their organisa-
tion in good standing, and that an IdP has a contractual hold over those users in the form of
an acceptable use policy or equivalent. SPs trust that IdPs will take action in terms of their
organisational policies should abuse be reported. Some SPs have legal or governance obligations
to retain information about the people they provide their service to, and trust that IdPs will do
so on their behalf in exchange for reducing the complexity of gaining access.

Both IdPs and SPs trust RO to both provide the necessary infrastructure and oversight, and
to respect the privacy of their respective users and their communications.

Elements of govroam infrastructure

1. govroam Identity Provider (IdP) It is responsible for authenticating its own users
by checking the credentials against a local identity management system. IdPs assert the
identity of their users to govroam Service Providers when required. As they hold information
about the organisation a user is affiliated with, IdPs are often referred to as a user’s Home
Organisation or Home Institution and the terms are sometimes used interchangeably.

2. govroam Service Provider (SP) It maintains a network and provides Internet access,
usually wirelessly, to govroam visitors from other organisations once they are successfully
authenticated. For this reason, Service Providers are often and interchangeably referred to
as a user’s Visited Organisation or Visited Institution.

3. Roaming Operator (RO) It performs a coordinating role - it provides RADIUS proxy
servers to ensure that authentication requests from the SP reach the right IdP, which in
the future may involve govroam them to other Roaming Operators in other countries. The
Roaming Operator also maintains governance and oversight of govroam within the coun-
try in which they operate. In The Netherlands the Roaming Operator is the Foundation

33

2 – Background

Government Roaming Nederland (the Foundation). In the course of their on-going collab-
oration, the Foundation has assigned the provision of some aspects of the govroam services
to SURFnet, who also performs operational tasks for the Roaming Operator of govroam.

Because other countries are also starting govroam services it is foreseen that, likewise the
eduroam structure, a future Roaming Confederation (RC) may bring together a number of
ROs serving a geographical region is. This is yet to be decided.

2.7 Review of possible networking tools for implementing
Captive Portal with SAML

2.7.1 PacketFence

PacketFence [52] is an open source. trusted, free and full support tool for network access control
(NAC) solution. It provides the capability to create Captive Portal for registration and remedia-
tion. It also features a unified wired and wireless management, 802.1X support, layer-2 isolation
of problematic devices. It can be integrated with other network security applications [54] such as
Snort IDS and the Nesses vulnerability scanner to provide an effective secure network for small
to very large organisation network [53].

Figure 2.10: PacketFence components (source: PacketFence).

Enforcement mode

Packet fence provide both out-of-band and inline mode of deployment. Although out-of-line is
preferred because it allows to scale the solution geographically and is more resilient to failures.
When used with proper technology out-of-line mode can secure hundreds of switches and many
thousands nodes connected to them. On the other hand inline mode is the only solution for
unmanageable wired and wireless network. These two modes can also coexist very well together
in a network.

34

https://packetfence.org/

2 – Background

Figure 2.11: PacketFence architecture (source: PacketFence).

Authentication and registration

PacketFence provide authentication for Captive Portal with a number of mechanism which in-
cludes Microsoft Active Directory (AD) [55], OAuth2 Authentication, eduroam, SAML Authen-
tication and External API Authentication. The SAML based authentication can be extended to
provide eIDAS authentication.

2.7.2 NoDogSplash

NoDogSplash (NDS) [56] is a high performance with small footprint Captive Portal. By default
it provides a simple HTML splash page with restricted connectivity to Internet, along with that
it incorporates an API which can be integrated with sophisticated authentication applications.
NoDogSplash can control data rate on the basis of IP connection by integrating with Smart Queue
Management (SQM) configured separately, with NDS being fully compatible.

NDS is composed of two main functions, which allows to integrate different authentication
mechanism

• Capturing Functionality for capturing clients

• Authentication Functionality for authenticating clients.

35

https://packetfence.org/

2 – Background

Authentication and registration

NDS provide simple web-page to authenticate user using local credentials (email, password).
Along with that it also provides the tool to create customise sophisticated authentication mech-
anism for Captive Portal.

• Forward Authentication Service (FAS) FAS provides user validation by forwarding the
authenticating process to another application, which can be present on local area network
or on the the Internet .

• PreAuth It is a special case of FAS where authentication application is served by the NDS.
It doesn’t requires the full implementation of the FAS and is good for NDS with limited
memory resources.

• BinAuth It provides authentication using a POST authentication script or by running an
extension.

2.7.3 Zeroshell

Zeroshell is a Linux based distribution for servers and embedded devices to provide network
services [57]. The main features of Zeroshell are load balancing and failover of multiple Internet
connections, UMTS/HSDPA connections by using 3G modems, RADIUS server for providing
secure authentication and automatic management of encryption keys to wireless networks, Captive
Portal to support web login [58]. Description of some of the important features are given below

• Balancing and Failover of multiple Internet connections;

• RADIUS server to provide authentication and automatic management of encryption keys
to Wireless networks.

• Captive Portal for web login support on wireless and wired networks. Zeroshell provide
native implementation of Captive Portal without using any other application. It allows to
authenticate using various mechanism, that includes credential based and Shibboleth based.

• QoS management (Quality of Service) and traffic shaping for traffic control on congested
networks.

• Support for Wireless Access Point functionality with Multi SSID.

• Firewall Packet Filter and Stateful Packet Inspection (SPI) with filters applicable both in
routing and in bridging on all types of network interfaces.

36

Chapter 3

Design and implementation of
WiFi access with eIDAS through
Zeroshell

3.1 Introduction

Zeroshell is a pre-build Linux based distribution that aims to provide network services like firewall,
Dynamic DNS, VPN, RADIUS server, Captive Portal e.t.c. We selected Zeroshell [64] because of
it’s ability to create a captive portal to authenticate users against an Identity Provider (IdP) using
Shibboleth SAML 2.0, a DHCP server for dynamic allocation of IP address and easy management
of white-listing for eIDAS-nodes/IdP. Zeroshell provide two interfaces for configuration, a CLI
(command line interface) and a web interface. As the name says, all of it’s configuration can be
done using web interface.

Guest Network (VLAN 20)

Host-only Adapter
vboxnet0

IP: 192.168.56.x
GW: 192.168.56.75

Mobile

Wifi/Ethernet
Bridged Adapter

Zeroshell-SP
GW: 192.168.1.254
zeroshell.example.com:12081

Management Network (VLAN 10)

Internet

eIDAS-Connector
eIDAS-Service IDP

Interface 1
IP: 192.168.56.75

Interface 2
IP: 192.168.1.75

Figure 3.1: Zeroshell Captive Portal infrastructure in test environment

We set up a dedicated machine to act as eIDAS-enabled Service provider. We installed Ze-
roshell on it using virtual box and modified the configuration of the Shibboleth SP (in Zeroshell) to
generate an eIDAS authentication request (instead of a plain SAML request) which is sent to the
eIDAS-Connector, and then subsequently through the eIDAS infrastructure until the user reaches

37

3 – Design and implementation of WiFi access with eIDAS through Zeroshell

his IdP. User will authenticate itself on IdP and it’s identity will sent to Zeroshell Shibboleth SP
through the eIDAS infrastructure. Shibboleth-SP will then allow access to Internet.

3.2 Authentication flow

The user will start the authentication by connecting to the internal network of the Zeroshell.
Zeroshell will assign IP address to the user dynamically using DHCP. The user will try to access
http URL, in our case we entered www.abc.com. Zeroshell will detect that user is not authenticated
and redirects to login page of Captive Portal at URL https://192.168.56.75:12081/cgi-bin/

zscp. It will pass following parameters in the URL.

Section: CPAuth

Action: Show

ZSCPRedirect: abc.com:::http://abc.com/?

Browser Zeroshell
eIDAS-SP

eIDAS-
Connector eIDAS-Service

Send Authentication eIDAS samlResponse-1

IDP-ProxyUser

Connects to AP and
access Internet

Send http request

Redirect to authentication

Send Authentication eIDAS samlRequest-2

Send Authentication eIDAS samlRequest-3

Send Authentication eIDAS samlResponse-2

Authenticated
User can access

Internet

Send Authentication eIDAS samlRequest-1

Send Authentication eIDAS samlResponse-3

IDP

Send user credenticals
Send Login page

Send Authentication SAML request

Send Authentication SAML response

Figure 3.2: Zeroshell authentication flow

It will then show Captive Portal login page, we are using eIDAS framework for authentication for
which we clicked AAI (Authentication Authorisation Infrastructure) button. That will create eI-
DAS (AuthnRequest) for eIDAS-Connector and send it at URL https://connector-test-eid4u.

polito.it/EidasNode/ServiceProvider using user’s browser. It will pass following parameters
in the request.

country: IT

sendmethods: POST

postLocationUrl: https://connector-test-eid4u.polito.it/EidasNode/

ServiceProvider

redirectLocationUrl: https://connector-test-eid4u.polito.it/EidasNode/

ServiceProvider

RelayState: ss:mem:17419df78809c9d7b59631cf6edab9ad

SAMLRequest: <SAMLRequest>

eIDAS-connector receives eIDAS (AuthnRequest) and verifies with the metadata and certificate
present locally in eIDAS-Connector for Zeroshell eIDAS-SP. After successfully verification of
the request, it will create a eIDAS (AuthnRequest) for eIDAS-Service depending on the coun-
try parameter. In this case it will create a eIDAS (AuthnRequest) for Italian eIDAS-Service

38

www.abc.com
https://192.168.56.75:12081/cgi-bin/zscp
https://192.168.56.75:12081/cgi-bin/zscp
https://connector-test-eid4u.polito.it/EidasNode/ServiceProvider
https://connector-test-eid4u.polito.it/EidasNode/ServiceProvider

3 – Design and implementation of WiFi access with eIDAS through Zeroshell

at URL https://service-test-eid4u.polito.it/EidasNode/ColleagueRequest and send it
using user’s browser. It will pass following parameters in the request.

RelayState: ss:mem:a1bf8bbf23f2a688b8e57e6372bbdc3f

token: 2sjjhlvPMkUkTZCM-mEGUIUAl5k$
SAMLRequest: <SAMLRequest>

eIDAS-Service receives eIDAS (AuthnRequest) and verifies with the metadata and certificates of
eIDAS-Connector. After successfully verification of the request, it will create a eIDAS (Au-
thnRequest) for IdP-Proxy because IdP-proxy is used in Italian hierarchy to create a bridge
between eIDAS-Service and IdP. It exchanges messages with eIDAS-Service in eIDAS message
format and with IdP in SPID message format. eIDAS-Service will send eIDAS (AuthnRequest) to
IdP-Proxy at URL https://idp-proxy-test-eid4u.polito.it/idpproxy/idpeurequest us-
ing user’s browser. It will pass following parameters in the request.

messageFormat: eidas

SAMLRequest: <SAMLRequest>

IdP-Proxy receives eIDAS (AuthnRequest) and verifies with the metadata and certificates of the
eIDAS-Service. After successful verification of the request, it ask for the selection of IdP provider.
We are using InfoCert IdP for the test and clicked on InfoCert button. IdP-Proxy will create a
SPID (AuthnRequest) for InfoCert IdP and send it at URL https://identitycl.infocert.it/

spid/samlsso using user’s browser. It will pass following parameters in the request.

RelayState: SPID_REQUEST_RELAYSTATE

SAMLRequest: <SAMLRequest>

InfoCert IdP receives SPID (AuthnRequest) and verifies with the metadata and certificates of
the IdP-Proxy. After successful verification of the request, it will ask for user credentials using
HTML page at URL https://identitycl.infocert.it/spid/basicauth.page. We provided
test credentials and clicked on “Entra con SPID” button. After verifying user’s credentials, it will
create a SPID (Response) for IdP-Proxy at URL https://idp-proxy-test-eid4u.polito.it/

idpproxy/spidresponse and send it using user’s browser. It will pass following parameters in
the response.

RelayState: SPID_REQUEST_RELAYSTATE

SAMLResponse: <SAMLResponse>

IdP-Proxy receives SPID (Response) and verifies it with IdP metadata. Next it gets attributes
element from the (Response). It will then create an eIDAS (Response) for eIDAS-Service and
send it at URL https://service-test-eid4u.polito.it/EidasNode/IdpResponse using user’s
browser. It will pass following parameters in the response.

username: username

SAMLResponse: <SAMLResponse>

eIDAS-Service receives eIDAS (Response) and verifies it with IdP-Proxy metadata. Next it de-
cipher the session key using its “encryption” private-key and decipher attributes element us-
ing the session key. It will then create an eIDAS (Response) for eIDAS-Connector at URL
https://connector-test-eid4u.polito.it/EidasNode/ColleagueResponse and send it using
user’s browser. It will pass following parameters in the response.

RelayState: MyRelayState

SAMLResponse: <SAMLResponse>

eIDAS-Connector receives eIDAS (Response) and verifies it with eIDAS-Service metadata. Next
it decipher the session key using its “encryption” private-key and decipher attributes element
using the session key. It will then create an eIDAS (Response) for Zeroshell eIDAS-SP at URL
https://zeroshell.example.com:12081/Shibboleth.sso/SAML2/POST and send it using user’s
browser. It will pass following parameters in the response.

39

https://service-test-eid4u.polito.it/EidasNode/ColleagueRequest
https://idp-proxy-test-eid4u.polito.it/idpproxy/idpeurequest
https://identitycl.infocert.it/spid/samlsso
https://identitycl.infocert.it/spid/samlsso
https://identitycl.infocert.it/spid/basicauth.page
https://idp-proxy-test-eid4u.polito.it/idpproxy/spidresponse
https://idp-proxy-test-eid4u.polito.it/idpproxy/spidresponse
https://service-test-eid4u.polito.it/EidasNode/IdpResponse
https://connector-test-eid4u.polito.it/EidasNode/ColleagueResponse
https://zeroshell.example.com:12081/Shibboleth.sso/SAML2/POST

3 – Design and implementation of WiFi access with eIDAS through Zeroshell

RelayState: ss:mem:99e78aaa4f6d4e7ebc79bd47072c5d39

SAMLResponse: <SAMLResponse>

Zeroshell eIDAS-SP receives eIDAS (Response) and verifies it with eIDAS-Connector metadata.
Next it decipher the session key using its “encryption” private-key and decipher attributes element
using the session key. It will then authenticate the user and redirect to URL http://www.abc.com.
It will also create another window to manage the session of the user at https://zeroshell.

example.com:12081/cgi-bin/zscp.

3.3 Zeroshell setup

First we installed and configured Zeroshell on virtual box. Then we used CLI for network config-
uration of Zeroshell web interface. Once we are able to access web interface, we created a profile,
which will enable us to save out work. Then we created two network interfaces, one for internal
network of Captive Portal and other one to connect to the Internet. After that we enabled captive
portal and changed Shibboleth SP to provide authentication using eIDAS framework. Finally we
will discuss the problems encountered while connecting Zeroshell with eIDAS infrastructure.

Figure 3.3: Zeroshell web interface

3.3.1 Virtual Box initialisation

For this set-up we used a Ubuntu machine with Zeroshell installed on a Virtual Box. The version
we use for Zeroshell is 3.9.0. First step was to download and install the virtual box. Then we
configure virtual box and installed Zeroshell. We created a new Virtual Machine for Zeroshell.
We provided 2048 MB of RAM and created a new hard drive of type VDI. We choose dynamic
allocation and provided 10 GB of space. We provided the Zeroshell ISO image downloaded from
the official Zeroshell website at URL https://zeroshell.org/download/. Then we created two
interfaces one Host-only Adapter for guest clients to connect to internal network and the other

40

http://www.abc.com
https://zeroshell.example.com:12081/cgi-bin/zscp
https://zeroshell.example.com:12081/cgi-bin/zscp
https://zeroshell.org/download/

3 – Design and implementation of WiFi access with eIDAS through Zeroshell

one Bridged Adapter to connect to the Internet. We created the Host-only Adapter “vboxnet0”
with network 192.168.56.0/24. After that we started the VM and it takes to the CLI. The CLI
interface is shown in Figure 3.5.

(a) Interface 1 (b) Interface 2

Figure 3.4: Network interfaces of Zeroshell

3.3.2 Accessing web interface

Command line interface is required to configure IP for the web interface and some other basic
parameters. The Zeroshell interface is set by default to 192.168.0.0/24 network, more precisely
with IP address 192.168.0.75. To access the network we either set a static IP address within
the 192.168.0.0/24 network or we can change the IP of Zeroshell using the CLI. As we have two
interfaces on Zeroshell, we decided to use the Host-only Adapter “vboxnet0” network to access
the web interface. We change the IP of the eth0 of Zeroshell from the CLI to 192.168.56.75.
After that we are able to access the web interface from browser at https://192.168.56.75/. We
provided the Zeroshell credentials to access the configuration which is by default as username:
admin and password: zeroshell.

Figure 3.5: Zeroshell command line interface

3.3.3 Profile creation

Now we can create profile and configure captive portal using web interface. Profile is created
using Profiles tab, which is accessible from the web interface at

41

https://192.168.56.75/

3 – Design and implementation of WiFi access with eIDAS through Zeroshell

Setups > Profiles

By selecting the hard disk you want to save the profile, it will show the profile creation button. It
is shown in Figure 3.6, after clicking the button Zeroshell opens a new window for configuration
of the profile Figure 3.7. We used default parameters for most of the configuration. We select our
internal network interface in the Ethernet Interface and given IP address 192.168.56.75. After
that we have to configure network configuration in the profile. After creating the profile, select

Figure 3.6: Zeroshell profile creation

Figure 3.7: Zeroshell profile creation parameters

the profile and click Activate button to activate the profile. This will reboot the Zeroshell and
requires to login again using the credentials.

3.3.4 Network configuration

Network is configured from the web interface and is accessible at

Setups > Network

We have two interfaces, one for the internal network and another for the Internet. On ETH00
we have our ip 192.168.56.75 on vboxnet0 and on ETH01 we add a IP on the Ethernet or WiFi
network. In our case we are using 192.168.1.75 to get to the Internet. It is shown in Figure 3.8.
Then we set the gateway to router IP which in our case is 192.168.1.1. We also enabled DHCP
on ETH00 interface to provide dynamic IP address to the guest users.

42

3 – Design and implementation of WiFi access with eIDAS through Zeroshell

Figure 3.8: Zeroshell network configuration

3.3.5 Captive Portal

Zeroshell allows to create a Captive Portal through the use of default gateway that captures
request from guest clients. We have interface (ETH00) as internal network to which we want to
enable Captive Portal. So from Captive Portal tab we selected the interface (ETH00) from the
drop down and then checked the “GW” check-box to enable Captive Portal. Now At this stage
Captive Portal is working on ETH00 which allows to authenticate using username/password.

Figure 3.9: Enabling Captive Portal on Zeroshell

3.3.6 Shibboleth authentication

Zeroshell out of the box provide the ability to use shibboleth authentication for captive Portal.
It is enabled by going to Authentication and change the Shibboleth Authentication drop-down to
Enabled as shown in Figure 3.10. Now it will allow to authenticate using both username/password
and Shibboleth SAML 2.0. It is accessible at

Captive Portal > Authentication > Shibboleth Authentication

43

3 – Design and implementation of WiFi access with eIDAS through Zeroshell

Figure 3.10: Enabling Captive Portal on Zeroshell

3.3.7 Shibboleth configuration files

Zeroshell provides a basic “Web File Editor” for Shibboleth configuration. Which is accessible at

Captive Portal > Authentication > Shibboleth Authentication > Config

Figure 3.11: Configuration of Shibboleth files

3.4 Configuring Shibboleth authentication with eIDAS

To enable Captive Portal to authenticate with eIDAS framework, it should send an eIDAS Au-
thnRequest to eIDAS-Connector. Changes to send an eIDAS AuthnRequest are discussed in this
section.

44

3 – Design and implementation of WiFi access with eIDAS through Zeroshell

3.4.1 EntityID of the SP

We need to specify the entityID in the Host element to zeroshell.example.com for metadata.

<Host name="zeroshell.example.com" port="12081" scheme="https">

<Path name="secure" authType="shibboleth" requireSession="true"/>

</Host>

3.4.2 ApplicationDefaults element

In the ApplicationDefaults, entityID is set to “https://zeroshell.example.com:12081/shibboleth”.
Remote User parameter is used to identify the user after authentication. In our case we are
using “FirstName PersonIdentifier DateOfBirth” as Remote User. We also enabled signing and
encryption for XML messages.

<ApplicationDefaults entityID="https://zeroshell.example.com:12081/shibboleth"

REMOTE_USER="FirstName PersonIdentifier DateOfBirth"

signing="true" encryption="true">

3.4.3 MetadataProvider

eIDAS SAML communication requires agreement between system entities regarding identifiers,
binding support and endpoints, certificates and keys, and so forth. A metadata specification
is useful for describing this information in a standardised way. To communicate with eIDAS-
Connector, Zeroshell needs to get it’s metadata/certificate and vice-versa. We provided eIDAS-
Connector’s metadata and certificate locally in MetadataProvider.

<MetadataProvider type="XML" file="partner-metadata.xml">

<MetadataFilter type="Signature" certificate="fedsigner.pem" />

</MetadataProvider>

3.4.4 Cryptography certificates

Cryptography certificates are used for confidentiality/integrity of the messages and verification of
the endpoints. Three certificates are used

• SAML Metadata signature It is used for verifying the Metadata.

• SAML signature It is used for integrity/authenticity of the SAML message.

• XML encryption It is used for encrypting the attributes information in the eIDAS re-
sponse.

Two certificates are used for signing and one for encryption. These configuration are provided
in openssl.cnf configuration file. The content of the file is as following

[eidas_sign]

basicConstraints=critical,CA:FALSE

keyUsage=digitalSignature,nonRepudiation

[eidas_enc]

basicConstraints=critical,CA:FALSE

keyUsage=keyEncipherment

These certificates are generated using a shell script create cert.sh. The contents of the file
is provided below.

45

3 – Design and implementation of WiFi access with eIDAS through Zeroshell

DIR="$(pwd)"

service="zeroshell"

SSLCONF="${DIR}/openssl.cnf"

_KEYLEN=${KEY_LEN:-4096}

_KEYTYPE=${KEY_TYPE:-"rsa"}

_DIGEST=${DIGEST:-"sha512"}

_BASE_NAME=${BASE_NAME:-"zeroshell"}

_SIGN="-saml-signature"

_ENC="-saml-encryption"

_METASIGN="-metadata-signature"

_C=${C:-"IT"}

_O=${O:-"None"}

_OU=${OU:-"None"}

_CN_PREFIX=${CN_PREFIX:-""}

#Sign

NAME=${_BASE_NAME}${_SIGN}

EXT="eidas_sign"

openssl req -new -nodes -config ${SSLCONF} \

-newkey ${_KEYTYPE}:${_KEYLEN} -passout file:${NAME}.key.pass \

-keyout ${NAME}.key -x509 -${_DIGEST} -days 3650 -out ${NAME}.pem \

-subj "/C=${_C}/O=${_O}/OU=${_OU}/CN=${_CN_PREFIX}SAML Signature" \

-extensions ${EXT}

#Metadata

NAME=${_BASE_NAME}${_METASIGN}

EXT="eidas_sign"

openssl req -new -nodes -config ${SSLCONF} \

-newkey ${_KEYTYPE}:${_KEYLEN} -passout file:${NAME}.key.pass \

-keyout ${NAME}.key -x509 -${_DIGEST} -days 3650 -out ${NAME}.pem \

-subj "/C=${_C}/O=${_O}/OU=${_OU}/CN=${_CN_PREFIX}Metadata Signature" \

-extensions ${EXT}

ENC

NAME=${_BASE_NAME}${_ENC}

EXT="eidas_enc"

openssl req -new -nodes -config ${SSLCONF} \

-newkey ${_KEYTYPE}:${_KEYLEN} -passout file:${NAME}.key.pass \

-keyout ${NAME}.key -x509 -${_DIGEST} -days 3650 -out ${NAME}.pem \

-subj "/C=${_C}/O=${_O}/OU=${_OU}/CN=${_CN_PREFIX}SAML Encryption" \

-extensions ${EXT}

Cryptography certificates for signature and encryption of the eIDAS messages are added in
CredentialResolver element in shibboleth2.xml. We have two CredentialResolver elements, one
for encrypting the request and and second for signing the request.

<CredentialResolver type="File" key="zeroshell-saml-signature.key"

certificate="zeroshell-saml-signature.pem" use="signing"/>

<CredentialResolver type="File" key="zeroshell-saml-encryption.key"

certificate="zeroshell-saml-encryption.pem" use="encryption"/>

3.4.5 Node-Country selection

The Node-Country provides the user’s country of origin. The eIDAS-Connector is responsible for
connecting to the respective eIDAS-Service depending on this. The Node country of the user is
send as parameter to the post request as in the case of Italian scenario it is send as country: IT.

46

3 – Design and implementation of WiFi access with eIDAS through Zeroshell

3.4.6 SessionInitiator AuthnRequest element

We are using AuthnRequest element, this is used as a template for the request issued. It is useful
for supplying advanced request content that cannot be configured in a simpler way.

<saml2p:AuthnRequest

xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

xmlns:eidas="http://eidas.europa.eu/saml-extensions"

xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion" ForceAuthn="true"

IsPassive="false" Consent="urn:oasis:names:tc:SAML:2.0:consent:unspecified"

Destination="https://connector-test-eid4u.polito.it/EidasNode/ServiceProvider"

ProviderName="zeroshell-SP"

ID="foo" Version="2.0" IssueInstant="2012-01-01T00:00:00Z">

<saml2:Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">

https://zeroshell.example.com:12081/shibboleth</saml2:Issuer>

<saml2p:Extensions>

<eidas:SPType>public</eidas:SPType>

<eidas:RequestedAttributes>

<eidas:RequestedAttribute FriendlyName="FamilyName"

Name="http://eidas.europa.eu/attributes/naturalperson/CurrentFamilyName"

NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri" isRequired="true"/>

<eidas:RequestedAttribute FriendlyName="FirstName"

Name="http://eidas.europa.eu/attributes/naturalperson/CurrentGivenName"

NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri" isRequired="true"/>

<eidas:RequestedAttribute FriendlyName="DateOfBirth"

Name="http://eidas.europa.eu/attributes/naturalperson/DateOfBirth"

NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri" isRequired="true"/>

<eidas:RequestedAttribute FriendlyName="PersonIdentifier"

Name="http://eidas.europa.eu/attributes/naturalperson/PersonIdentifier"

NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri" isRequired="true"/>

</eidas:RequestedAttributes>

</saml2p:Extensions>

<saml2p:NameIDPolicy AllowCreate="true"

Format="urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified"/>

<saml2p:RequestedAuthnContext Comparison="minimum">

<saml2:AuthnContextClassRef>http://eidas.europa.eu/LoA/low

</saml2:AuthnContextClassRef>

</saml2p:RequestedAuthnContext>

</saml2p:AuthnRequest>

3.4.7 Attributes configuration

Configuration of attributes requested after authentication are provided in attribute-map.xml file.
We are using “eIDAS minimum dataset”, that includes FamilyName, FirstName, DateOfBirth
and PersonIdentifier. The configuration for attribute-map file are as following

<Attributes xmlns="urn:mace:shibboleth:2.0:attribute-map"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<Attribute name="http://eidas.europa.eu/attributes/naturalperson/CurrentFamilyName"

id="FamilyName" nameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri" />

<Attribute name="http://eidas.europa.eu/attributes/naturalperson/CurrentGivenName"

id="FirstName" nameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri" />

<Attribute name="http://eidas.europa.eu/attributes/naturalperson/DateOfBirth"

id="DateOfBirth" nameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri" />

<Attribute name="http://eidas.europa.eu/attributes/naturalperson/PersonIdentifier"

id="PersonIdentifier" nameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri" />

</Attributes>

3.4.8 White-listing

In general, since the user has not been authenticated yet, the captive portal deny all access
to Internet, But we need to configure the captive to allow access to eIDAS-nodes and IdP in

47

3 – Design and implementation of WiFi access with eIDAS through Zeroshell

Internet, while all the other Internet traffic would not be allowed (until the user is successfully
authenticated). This problem is identified previously in the paper [65], to solve it we add them
manually in the“whitelist”, which is shown in Figure 3.12. Whitelist is accessible at

Captive Portal > Authentication > Shibboleth Authentication > Config > WAYF/IDP Whitelist

Figure 3.12: Captive Portal White-listing for eIDAS-nodes/IDP

3.4.9 Problems encountered

There were several problems faced while developing Shibboleth SP in Zeroshell.

1. Incompatibilities between the cryptography algorithms supported by the Zeroshell (AES256-
CBC) and the security requirements of the eIDAS node (requires AES 128-GCM, AES192-
GCM, AES256-GCM) as described in the session 2.5.3.

2. White-listing (auto-discovery). There is no automatic discovery of all the actors (IdPs,
eIDAS Node’s components, other element such as the IdP Proxy) that need to be reached
by the user’s browser and thus they have to be white-listed on the Zeroshell SP. It is required
to manually add the location (names) of these elements in the Zeroshell SP.

3. Citizen country selection. By default, Zeroshell does not allow to select a citizen country
where the user will be authenticated. When enabled with eIDAS, it is required to make
modification on Zeroshell SP side to allow to select the country in which the citizen will be
authenticated.

4. Rendering public the Zeroshell SP’s metadata. In the default installation, Zeroshell SP’s
metadata is statically configured on the IdP. When enabled with eIDAS, the eIDAS Connec-
tor requires a public URL from where the Zeroshell SP’s metadata would be downloaded.
However, since Zeroshell does not expose as a public URL its metadata this would again
require a modification in Zeroshell’ source code.

3.5 Authentication cycle

48

3 – Design and implementation of WiFi access with eIDAS through Zeroshell

Figure 3.13: Zeroshell Captive Portal authentication Step-1

Figure 3.14: Zeroshell Captive Portal authentication Step-2

Figure 3.15: Zeroshell Captive Portal authentication Step-3

49

3 – Design and implementation of WiFi access with eIDAS through Zeroshell

Figure 3.16: Zeroshell Captive Portal authentication Step-4

Figure 3.17: Zeroshell Captive Portal authentication Step-5

Figure 3.18: Zeroshell Captive Portal authentication Step-6

50

3 – Design and implementation of WiFi access with eIDAS through Zeroshell

Figure 3.19: Zeroshell Captive Portal authentication Step-7

Figure 3.20: Zeroshell Captive Portal authentication Step-8

Figure 3.21: Zeroshell Captive Portal authentication Step-9

51

3 – Design and implementation of WiFi access with eIDAS through Zeroshell

Figure 3.22: Zeroshell Captive Portal authentication Step-10

52

Chapter 4

Design of WiFi access with eIDAS
through WiFi-Auth eIDAS-SP
and Polito wireless infrastructure

4.1 Introduction

This chapter focuses on the hardware based solution for the development of a captive portal to
authenticate guest users. This solution exploits the WiFi infrastructure of Politecnico di Torino
and extends it using eIDAS code for federated authentication. For that we developed an ad hoc
application Wifi-Auth eIDAS-SP to authenticate using eIDAS framework. Next we configured
hardware infrastructure consists of Cisco-WLC, Cisco AP 3700, HP Switch and Fortigate-60D to
provide Captive Portal functionality and use Wifi-Auth for authentication as shown in Figure 4.1.
This is the same infrastructure deployed in Politecnico di Torino, which makes it extremely easy
to deploy in production.

Guest Network (VLAN 20)

Mobile

AP	Cisco	3700

HP	Switch

Power	Injector

FortiGate	60D
192.168.10.1
192.168.20.1

Public	IP
130.192.1.110

Management Network (VLAN 10)
VLAN 10

Trunk VLAN 10, 20

Trunk VLAN 10, 20

Cisco	WLC
192.168.10.10
192.168.20.10

Internet

eIDAS-Connector eIDAS-Service IDP

Management	Machine
192.168.10.200

Figure 4.1: WiFi access test-bed setup with Polito wireless infrastructure

53

4 – Design of WiFi access with eIDAS through WiFi-Auth eIDAS-SP and Polito wireless infrastructure

4.2 Authentication process

In a typical scenario a user from a device will connect to the AP using WiFi. In the modern
browser it will automatically detect Captive Portal is present on the network and makes a http
request to get to the authentication page. The user can also manually make a http request and
it will be redirected by the WLC to the authentication page. The WLC gets the request and
checks users authentication. If user is not authenticated, it redirects to Wifi-Auth eIDAS-SP for
authentication. Wifi-Auth eIDAS-SP used eIDAS framework for authentication using national
credentials. In case of Italian citizen authentication will be done using SPID credentials. A
generic authentication flow is shown in Figure 4.3. After authentication is completed, Wifi-Auth
will create a guest user on WLC. The guest credentials are send to the browser and submitted
automatically on WLC using user’s browser. WLC verifies the credentials and authenticate the
user to access the internet.

4.2.1 Wifi-Auth eIDAS-SP set-up

Our set-up includes a Wifi-Auth eIDAS-SP and Polito wireless infrastructure. Polito wireless
infrastructure consists of Cisco-WLC, Cisco-AP 3500 and Fortigate-60D. Wifi-Auth eIDAS-SP
provides authentication through eIDAS infrastructure. Cisco-WLC is used for managing authen-
ticated users, Captive Portal and separating network traffic. Fortigate-60D is used for firewall
policies and protecting the internal network. As shown in the Figure 4.2 we dedicated a separate
machine for the deployment of Wifi-Auth eIDAS-SP in the management network and use another
machine in the management network for configuring eIDAS-SP.

Guest Network (VLAN 20)

Mobile

AP	Cisco	3700

Wifi-Auth	eIDAS-SP
192.168.10.200
wifi-auth-eid4u.polito.it

HP	Switch

Power	Injector

FortiGate	60D
192.168.10.1
192.168.20.1

Public	IP
130.192.1.110

Management Network (VLAN 10)

VLAN 10

Trunk VLAN 10, 20

Trunk VLAN 10, 20

Cisco	WLC
192.168.10.10
192.168.20.10

Internet

eIDAS-Connector
eIDAS-Service IDP

Management Machine
191.168.10.201

Figure 4.2: WiFi access test-bed setup with Wifi-Auth eIDAS-SP and Polito wireless infrastruc-
ture

4.3 Authentication flow

This section describes an overview of the authentication process. It is shown in Figure 4.3. The
process is composed of a request part and a response part. In a generic scenario the work-flow
will be like this.

The request part starts with the guest user connecting to the public “eIDAS” AP using Wi-Fi.
Next the user tries to access the internet. WLC detects that user is not authenticated and redirects
to Wifi-Auth eIDAS-SP for authentication. eIDAS-SP asks for user’s country and creates a eI-
DAS (AuthnRequest) to get minimum data set. It then sends the request to the eIDAS-Connector

54

4 – Design of WiFi access with eIDAS through WiFi-Auth eIDAS-SP and Polito wireless infrastructure

Browser Cisco WLC Wifi-Auth
eIDAS-SP

eIDAS-
Connector eIDAS-Service

Authentication response samlResponse-1

IDPUser

Connects to WLC and
access Internet

Send http request

Not Authorized, Redirect to eIDAS-SP

Start Authentication samlRequest-1

Start Authentication samlRequest-2

Start Authentication samlRequest-3

Authentication response samlResponse-2

Authentication response samlResponse-3

Authenticate on WLC
User can access

Internet

Figure 4.3: Overview of authentication flow for generic scenario

using browser. eIDAS-Connector validates eIDAS-SP, verifies eIDAS (AuthnRequest), get user’s
country and other parameters from eIDAS (AuthnRequest). It then creates an eIDAS (Authn-
Request) for respective eIDAS-Service and sends using user’s browser. eIDAS-Service validates
eIDAS-Connector, verifies eIDAS (AuthnRequest), get parameters from eIDAS (AuthnRequest)
and creates an eIDAS (AuthnRequest) for IdP and sends using user’s browser. IdP validates
eIDAS-Service, verifies eIDAS (AuthnRequest), get parameters from eIDAS (AuthnRequest). It
then asks for user credentials and verifies user.

After successful verification IdP sends an eIDAS (Response) to eIDAS-Service with user’s
minimum data set. eIDAS-Service validates IdP, verifies eIDAS (Response), decipher eIDAS
attributes and creates an eIDAS (Response) and sends to the eIDAS-Connector using browser.
eIDAS-Connector validates eIDAS-Service, verifies eIDAS (Response), decipher eIDAS attributes
and creates an eIDAS (Response) and sends to the Wifi-Auth eIDAS-SP using browser. eIDAS-SP
validates eIDAS-Connector, verifies eIDAS (Response), decipher eIDAS attributes and gets user
data. It then connects to WLC using SSH and creates a guest user with user’s person identifier.
It then sends guest user credentials to WLC using a form from user’s browser. WLC checks the
request and authenticate the user. After authentication user can successfully use the internet.

4.3.1 Authentication flow Italian scenario

In Italian scenario we have a specific case where we have another node IdP-Proxy between eIDAS-
Service and IdP. Instead of eIDAS-Service talking directly to IdP, it exchanges messages to IdP-
Proxy using eIDAS protocol and IdP-proxy exchange messages to IdP using SPID protocol. Re-
quest part of authentication flow for Italian scenario looks like this

1. Guest user starts the authentication process by connecting to the public eIDAS AP using
WiFi. Then the user tries to access the internet.

2. WLC detects that user is not authenticated and redirects to Wifi-Auth eIDAS-SP for au-
thentication.

55

4 – Design of WiFi access with eIDAS through WiFi-Auth eIDAS-SP and Polito wireless infrastructure

Browser Cisco WLC Wifi-Auth
eIDAS-SP

eIDAS-
Connector eIDAS-Service

Authentication response samlResponse-2

Start Authentication samlRequest-4

IDP-ProxyUser

Connects to WLC and
access Internet

Send http request

Not Authorized, Redirect to eIDAS-SP

Start Authentication samlRequest-1

Start Authentication samlRequest-2

Start Authentication samlRequest-3

Authentication response samlResponse-3

Authentication response samlResponse-4

Authenticate on WLC
User can access

Internet

IDP

Authentication response samlResponse-1

Figure 4.4: Overview of authentication flow for Italian scenario

3. eIDAS-SP asks for user’s country and creates a eIDAS (AuthnRequest) to get minimum data
set after authentication. It then sends request to the eIDAS-Connector using user’s browser.

4. eIDAS-Connector Node retrieves and validates eIDAS-SP metadata using its metadata sign-
ing certificate stored locally. Next it validates eIDAS (AuthnRequest) using eIDAS-SP “sign-
ing” public-key, which is provided by the metadata file. After validation, it gets user’s coun-
try and other parameters provided by the eIDAS (AuthnRequest). It then creates an eIDAS
(AuthnRequest) for respective eIDAS-Service and sends it using user’s browser.

5. eIDAS-Service Node retrieves and validates eIDAS-Connector metadata using its metadata
signing certificate stored locally. Next it validates eIDAS (AuthnRequest) using eIDAS-
Connector “signing” public-key, which is provided by the metadata file. After validation, it
gets parameters provided by the eIDAS (AuthnRequest). It then creates eIDAS (AuthnRe-
quest) for IdP-Proxy and sends it using user’s browser.

6. IdP-proxy retrieves and validates eIDAS-Service metadata using eIDAS-Service’s metadata
signing certificate stored locally. Next it validates eIDAS (AuthnRequest) using eIDAS-
Connector “signing” public-key, which is provided by the metadata file. After validation, it
gets parameters provided by the eIDAS (AuthnRequest). It then creates SPID (AuthnRe-
quest) for IdP and sends it using user’s browser.

7. IdP retrieves and validates IdP-Proxy metadata using IdP-Proxy’s metadata signing certifi-
cate stored locally. Next it validates SPID (AuthnRequest) using eIDAS-Connector “signing”
public-key, which is provided by the metadata file. After validation, it gets parameters pro-
vided by the SPID (AuthnRequest). It then asks for user credentials and authenticate user.

Response part for authentication flow for Italian scenario follows these steps

8. After successful authentication IdP creates an SPID (Response) for IdP-Proxy with user’s
minimum data set. Next IdP digitally signs the response with its private-key stored locally
and sends it to IdP-Proxy using user’s browser.

56

4 – Design of WiFi access with eIDAS through WiFi-Auth eIDAS-SP and Polito wireless infrastructure

9. IdP-Proxy validates the SPID (Response) using IdP “signing” public-key, which is provided
by the metadata file. It then creates an eIDAS (Response) with user’s minimum data set.
Attribute information was packaged in a specific SAML2 Attribute element, which has been
defined in the SAML2 eIDAS profile. Then the eIDAS attributes element is encrypted by a
session key generated randomly and session key is encrypted by (asymmetric) “encryption”
public key of the eIDAS-Service Node, which is provided by the metadata file of eIDAS-
Service. Next the authentication response was digitally signed by the IdP-Proxy with its
private-key stored locally and sends to eIDAS-Service Node using user’s browser.

10. eIDAS-Service validates the eIDAS (Response) using IdP “signing” public-key, which is pro-
vided by the metadata file. Next it decipher session key using its (asymmetric) “encryption”
private-key and use session key to decipher the SAML2 (Response) encrypted element to get
the identification/attributes information. All the attributes were extracted from the SAML2
Assertion element, eIDAS-Service requests the user’s consent to forward his attributes for
authentication. If the consent was given, the eIDAS-Service creates a SAML2 (Response)
by encrypting SAML attributes using session key generated randomly and session key is en-
crypted by (asymmetric) “encryption” public key of the eIDAS-Connector Node. Next it is
digitally signed using its (asymmetric) “signing” private-key and sends to eIDAS-Connector
Node using user’s browser.

11. eIDAS-Connector validates the eIDAS (Response) using eIDAS-Service’s “signing” public-
key, which is provided by the metadata file. Next it decipher session key using its (asym-
metric) “encryption” private-key and use session key to decipher the SAML2 (Response) en-
crypted element to get the identification/attributes information. eIDAS-Connector encrypts
SAML attributes using session key generated randomly and session key is encrypted by
(asymmetric) “encryption” public key of the eIDAS-SP and creates a newly signed SAML2
(Response) using its (asymmetric) “signing” private-key and sends to eIDAS-SP using user’s
browser.

12. eIDAS-SP validates the eIDAS (Response) using eIDAS-Connector’s “signing” public-key,
which is provided by the metadata file. Next it decipher session key using its (asymmetric)
“encryption” private-key and use session key to decipher the SAML2 (Response) encrypted
element using its (asymmetric) “encryption” private-key to get the identification/attributes
information. It then connects to WLC using SSH and creates a guest user with user’s
PersonIdentifier. It then sends guest user credentials to WLC using a auto-submit form
using user’s browser.

13. WLC validates the request, authenticate the user and allow access to the internet.

4.3.2 Authentication flow detail: request part

1. As a Guest user, I starts the authentication process by connecting to the public eIDAS AP
using WiFi. Then I writes a http URL http://www.giornalone.it in the browser and
press enter. The browser tries to access the URL and sends a request on the internet.

2. The request gets from AP to WLC. A Captive Portal is implemented on WLC, it checks
if user is authenticated to access the internet. This is a new connection so user is not
authenticated and there is no record available in the WLC. WLC creates a http redirect
response and redirects to https://wifi-auth-eid4u.polito.it/SP/populateIndexPage

on Wifi-Auth eIDAS-SP for authentication.

[4]

switch_url: http://1.1.1.1/login.html

ap_mac: f4:cf:e2:4e:b7:80

client_mac: 5c:e0:c5:26:c7:e4

wlan: eIDAS

redirect: abc.co

57

http://www.giornalone.it
https://wifi-auth-eid4u.polito.it/SP/populateIndexPage

4 – Design of WiFi access with eIDAS through WiFi-Auth eIDAS-SP and Polito wireless infrastructure

3. The browser receives the request and sends a get request to SP/populateIndexPage On
Wifi-Auth eIDAS-SP. Wifi-Auth replies with a HTML page asking user to select eIDAS-
Connector (Test, Pre-Production, Production) and its country. For this test I am using the
Italian test credentials for completing the cycle. So I selected Test Connector and IT, then
I clicked “Login with eIDAS”. Which sends a POST request at SP/IndexPage.action with
all attributes.

[7]

nodeMetadataUrl:

https://connector-test-eid4u.polito.it/EidasNode/ConnectorResponderMetadata

eidasNameIdentifier: urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified

eidasloa: http://eidas.europa.eu/LoA/low

eidasloaCompareType: minimum

eidasSPType: public

spType: public

switch_url: http://1.1.1.1/login.html

citizenEidas: IT

http://eidas.europa.eu/attributes/naturalperson/PersonIdentifier: http://eidas.

europa.eu/attributes/naturalperson/PersonIdentifier

http://eidas.europa.eu/attributes/naturalperson/PersonIdentifierType: true

http://eidas.europa.eu/attributes/naturalperson/CurrentFamilyName: http://eidas.

europa.eu/attributes/naturalperson/CurrentFamilyName

http://eidas.europa.eu/attributes/naturalperson/CurrentFamilyNameType: true

http://eidas.europa.eu/attributes/naturalperson/CurrentGivenName: http://eidas.

europa.eu/attributes/naturalperson/CurrentGivenName

http://eidas.europa.eu/attributes/naturalperson/CurrentGivenNameType: true

http://eidas.europa.eu/attributes/naturalperson/DateOfBirth: http://eidas.europa.

eu/attributes/naturalperson/DateOfBirth

http://eidas.europa.eu/attributes/naturalperson/DateOfBirthType: true

After getting the attributes Wifi-Auth creates a digitally signed eIDAS (AuthnRequest)
for the selected eIDAS-Connector with its (asymmetric) “signing” private-key, which is
stored locally. It then send the (AuthnRequest) to eIDAS-Connector using user’s browser at
https://connector-test-eid4u.polito.it/EidasNode/ServiceProvider.

[9]

postLocationUrl: https://connector-test-eid4u.polito.it/EidasNode/

ServiceProvider

redirectLocationUrl: https://connector-test-eid4u.polito.it/EidasNode/

ServiceProvider

country: IT

RelayState: MyRelayState

SAMLRequest:

4. eIDAS-Connector receives the eIDAS (AuthnRequest) at EidasNode/ServiceProvider. It
checks and verifies the authenticity of the request and SP using metadata file as described
in subsection 2.5.4. Then it gets the attributes from the request and creates a eIDAS
(AuthnRequest) for the respective eIDAS-Service depending on selected country. In this
case it creates a digitally signed eIDAS (AuthnRequest) for Italian eIDAS-Service Node
with its (asymmetric) “signing” private-key, which is stored locally and sends it to https:

//service-test-eid4u.polito.it/EidasNode/ColleagueRequest.

[11]

SAMLRequest:

RelayState: MyRelayState

token: -CyVdin41Ps34qss77hotqLYlpI$

5. eIDAS-Service receives the POST eIDAS (AuthnRequest) at EidasNode/ColleagueRequest.
It checks and verifies the authenticity of the request and eIDAS-Connector using metadata
file. It then replies with a HTML page asking for consent. It shows the attributes requested
by the SP. First it shows the “Basic Information”, I clicked on the “Next” button. After

58

SP/populateIndexPage
SP/IndexPage.action
https://connector-test-eid4u.polito.it/EidasNode/ServiceProvider
EidasNode/ServiceProvider
https://service-test-eid4u.polito.it/EidasNode/ColleagueRequest
https://service-test-eid4u.polito.it/EidasNode/ColleagueRequest
EidasNode/ColleagueRequest

4 – Design of WiFi access with eIDAS through WiFi-Auth eIDAS-SP and Polito wireless infrastructure

eIDAS-SP

Cisco WLC

eIDAS-Connector

eIDAS-Service

User Browser

[2] Send http request to
http://www.giornalone.it

[1] Insert SP url e.g
http://www.giornalone.it

[3] Capture request, checks user is not authenticated and
redirect to https://wifi-auth-eid4u.polito.it/SP/populateIndexPage

[4] Send https request to
https://wifi-auth-eid4u.polito.it/SP/populateIndexPage

[7] Send Post request to
https://wifi-auth-eid4u.polito.it/SP/IndexPage.action

[5] returns page
https://wifi-auth-eid4u.polito.it/SP/populateIndexPage

[6] Select citizen country
and node to test from
Test | Pre | Production.

Press "Login with eIDAS"

[8] create eIDAS samlRequest and redirect to eIDAS-Connector

[9] Send eIDAS samlRequest to
https://connector-test-eid4u.polito.it/EidasNode/ServiceProvider

[10] create eIDAS samlRequest and redirect to eIDAS-Service

[11] Send eIDAS samlRequest to
https://service-test-eid4u.polito.it/EidasNode/ColleagueRequest

[12] Show attribute requested and their detail

[14] Send POST request at
https://service-test-eid4u.polito.it/EidasNode/CitizenConsent

[13] Give consent and
press "Next"

[15] create eIDAS samlRequest and redirect to IDP-Proxy

[16] Send eIDAS samlRequest to
https://idp-proxy-test-eid4u.polito.it/idpproxy/idpeurequest

[17] Ask to login with SPID

[19] Send POST request at
https://idp-proxy-test-eid4u.polito.it/idpproxy/spidrequest

[18] "Log in with SPID"
and select IDP "InfoCert"

[20] Redirect to IDP

[23] Send Get request at
https://identitycl.infocert.it/spid/basicauth.page

[25] write username and
password and click
"Log in with SPID"

[24] Ask for user credentioals

[26] Send user credentials
https://identitycl.infocert.it/spid/api/basic

IDP Proxy

IDP

[21] Send Post samlRequest to
https://identitycl.infocert.it/spid/samlsso

[22] Redirect for authentication at
https://identitycl.infocert.it/spid/basicauth.page

Figure 4.5: Detailed authentication flow request for Italian scenario

that it shows “Additional Information” requested if any, I clicked on the “Next” button.
Which sends a POST request with the attributes at EidasNode/CitizenConsent.

[14]

59

EidasNode/CitizenConsent

4 – Design of WiFi access with eIDAS through WiFi-Auth eIDAS-SP and Polito wireless infrastructure

token: mduXkEmKDs__duKCFuQzdWfa90o$
requestId: _T4O6JgPLEUzsqKksRgNBIQJMWw0oZ-

aPipax93gy68_ZQ_5CSYMHyyaDpHxScuP

http://eidas.europa.eu/attributes/naturalperson/CurrentFamilyName: http

://eidas.europa.eu/attributes/naturalperson/CurrentFamilyName

http://eidas.europa.eu/attributes/naturalperson/CurrentGivenName: http://

eidas.europa.eu/attributes/naturalperson/CurrentGivenName

http://eidas.europa.eu/attributes/naturalperson/DateOfBirth: http://eidas

.europa.eu/attributes/naturalperson/DateOfBirth

http://eidas.europa.eu/attributes/naturalperson/PersonIdentifier: http://

eidas.europa.eu/attributes/naturalperson/PersonIdentifier

Which creates a digitally signed eIDAS (AuthnRequest) for IdP-Proxy with its (asymmetric)
“signing” private-key, which is stored locally and sends it using user’s browser at https:

//idp-proxy-test-eid4u.polito.it/idpproxy/idpeurequest.

[16]

SAMLRequest:

messageFormat: eidas

6. IdP-proxy receives the POST eIDAS (AuthnRequest) at idpproxy/idpeurequest. It checks
and verifies the authenticity of the request and eIDAS-Service using metadata file. Then it
replies with a HTML page asking for the type of identification. I am using SPID for the
authentication, so I clicked on “Login with SPID”. Which then shows all the available IdP’s
for the verification of SPID. I am using test credentials for InfoCert IdP, so I clicked on
“INFOCERT ID”. It sends a POST request at idpproxy/spidrequest.

[19]

idpEntityId: https://identitycl.infocert.it

selectedNode: https://identitycl.infocert.it/metadata/metadata.xml

EidasSAMLID:

_m5IJ5xXKgLndDs5O_VAOnmypQt8vATktTfRgL78L5XMKjZrd2catOQl1Aafy3N3

Which creates a digitally signed SPID (AuthnRequest) for IdP with its (asymmetric) “sign-
ing” private-key, which is stored locally and sends it using user’s browser at https://

identitycl.infocert.it/spid/samlsso.

[21]

RelayState: SPID_REQUEST_RELAYSTATE

SAMLRequest:

7. IdP receive the POST (AuthnRequest) and replies with HTML page at spid/basicauth.

page, which ask for user’s credential. I entered username, password and clicked “Log in
with SPID”. It sends a POST request with user’s credential at spid/api/basic.

[26]

consenso: true

hsfl8jt38e21boaugela8n15ah: 84d1eb5f-f1a6-4fe7-a185-226b009dd920

password: <password>

username: <username>

Which redirect to spid/consent.page and ask for the consent of the attributes requested.
I clicked on “Go on”, which sends a POST request at spid/api/consent. Which sends a
POST request at spid/samllead, then a GET request at spid/samlout, finally creates a
digitally signed SPID (Response) for IdP-Proxy.

4.3.3 Authentication flow detail: response part

8. After successful authentication IdP creates a digitally signed SPID (Response) for IdP-proxy
with its (asymmetric) “signing” private-key, which is stored locally and sends using user’s
browser at https://idp-proxy-test-eid4u.polito.it/idpproxy/spidresponse.

60

https://idp-proxy-test-eid4u.polito.it/idpproxy/idpeurequest
https://idp-proxy-test-eid4u.polito.it/idpproxy/idpeurequest
idpproxy/idpeurequest
idpproxy/spidrequest
https://identitycl.infocert.it/spid/samlsso
https://identitycl.infocert.it/spid/samlsso
spid/basicauth.page
spid/basicauth.page
spid/api/basic
spid/consent.page
spid/api/consent
spid/samllead
spid/samlout
https://idp-proxy-test-eid4u.polito.it/idpproxy/spidresponse

4 – Design of WiFi access with eIDAS through WiFi-Auth eIDAS-SP and Polito wireless infrastructure

[9]

RelayState: SPID_REQUEST_RELAYSTATE

SAMLResponse:

9. IdP-proxy receives (Response) at idpproxy/spidresponse. It checks and verifies the au-
thenticity of the response and IdP using metadata file. It get the attributes from the SPID
(Response) and creates an encrypted and digitally signed eIDAS (Response) for eIDAS-
Connector as described in subsection 2.5.4. It then sends the eIDAS (Response) using user’s
browser at https://service-test-eid4u.polito.it/EidasNode/IdpResponse.

[11]

SAMLResponse:

username: username

10. eIDAS-Service receives eIDAS (Response) at EidasNode/IdpResponse. It checks and verifies
the authenticity of the response and IdP-Proxy using metadata file. It decipher the attribute
and replies with a HTML page showing the attribute values received to get user’s consent.
I clicked on “Submit” button, which sends a POST request at EidasNode/LogSaml.

[14]

consentOk:

logSamlToken: NTM5M2EwNGMtM2JkZi00NDM2LThhMjEtNTU0NDQyNzgzZDgy

token: mVuxO0zp3MzuM8OrdZF_Y_zB0bY$

Which then creates an encrypted and digitally signed eIDAS (Response) for eIDAS-Connector
and sends it using user’s browser at https://connector-test-eid4u.polito.it/EidasNode/
ColleagueResponse.

[16]

SAMLResponse:

RelayState: MyRelayState

11. eIDAS-Connector receives eIDAS (Response) at EidasNode/ColleagueResponse. It checks
and verifies the authenticity of the response and eIDAS-Service using metadata file. It
gets the attributes by deciphering the attributes element and creates an encrypted and
digitally signed eIDAS (Response) with the attributes for eIDAS-SP. It then sends the eIDAS
(Response) using browser at https://wifi-auth-eid4u.polito.it/SP/ReturnPage.

[18]

SAMLResponse:

RelayState: MyRelayState

12. Wifi-Auth eIDAS-SP receives eIDAS (Response) at SP/ReturnPage. It checks and verifies
the authenticity of the response and eIDAS-Connector using metadata file. It then decipher
the eIDAS (Response) and sends the attributes at SP/populateReturnPage. Where it
connects to the WLC using SSH at the IP “192.168.10.10” and port “20”. It then creates
a guest user using Person Identifier attribute on WLC and replies with a HTML page
containing a auto-submit form with user credentials at http://1.1.1.1/login.html (IP
address of the WLC).

[22]

username: <username>

password: <password>

buttonClicked: 4

redirect_url: https://www.google.com/

13. WLC receives the POST request at urllogin.html. It validate credentials and authenticate
the user. It then redirects the user to http://www.giornalone.it because it is provided
in the “redirect url” parameter.

61

idpproxy/spidresponse
https://service-test-eid4u.polito.it/EidasNode/IdpResponse
EidasNode/IdpResponse
EidasNode/LogSaml
https://connector-test-eid4u.polito.it/EidasNode/ColleagueResponse
https://connector-test-eid4u.polito.it/EidasNode/ColleagueResponse
EidasNode/ColleagueResponse
https://wifi-auth-eid4u.polito.it/SP/ReturnPage
SP/ReturnPage
SP/populateReturnPage
http://1.1.1.1/login.html
http://www.giornalone.it

4 – Design of WiFi access with eIDAS through WiFi-Auth eIDAS-SP and Polito wireless infrastructure

IDP-Proxy

IDP

eIDAS-Service

eIDAS-Connector

User Browser
[1] User authenticated and redirect to

https://identitycl.infocert.it/spid/consent.page

[2] Send GET request at
https://identitycl.infocert.it/spid/consent.page

[5] Send POST request at
 https://identitycl.infocert.it/spid/api/consent

[6] redirect to
https://identitycl.infocert.it/spid/samlout

[8] create SAML response and redirect to IDP-Proxy

[9] Send SAML response to
https://idp-proxy-test-eid4u.polito.it/idpproxy/spidresponse

[10] create SAML eIDAS response and redirect to eIDAS-Service

[11] Send eIDAS samlResponse to
https://service-test-eid4u.polito.it/EidasNode/IdpResponse

[3] Show attribute requested and ask for consent[4] Give consent and
press "Continua"

[16] Send eIDAS samlResponse to
https://connector-test-eid4u.polito.it/EidasNode/ColleagueResponse

eIDAS-SP

WLC

[7] Send GET request to
https://identitycl.infocert.it/spid/samlout

[12] Show user information and ask for consent
[13] Click "Submit" [14] Send POST response at

https://service-test-eid4u.polito.it/EidasNode/LogSaml

[15] create SAML eIDAS response and redirect to eIDAS-Connector

[17] create SAML eIDAS response and redirect to eIDAS-SP

[18] Send eIDAS samlResponse to
https://wifi-auth-eid4u.polito.it/SP/ReturnPage

[19] Redirect eIDAS samlResponse at
https://wifi-auth-eid4u.polito.it/SP/populateReturnPage

[20] Send eIDAS samlResponse at
https://wifi-auth-eid4u.polito.it/SP/populateReturnPage

[21] Return html Page embedded with auto-submit
form containing user credentials

[22] Auto-submit form to WLC on page load
http://1.1.1.1/login.html

[23] Authorize user and redirect to
http://www.giornalone.it

Figure 4.6: Detailed authentication flow response for Italian scenario

62

4 – Design of WiFi access with eIDAS through WiFi-Auth eIDAS-SP and Polito wireless infrastructure

4.4 Wifi-Auth eIDAS-SP implementation

4.4.1 SSH library

After authenticating using eIDAS framework Wifi-Auth connects to WLC using SSH connection
and creates a guest user. This is implemented using jsch library. It also uses slf4j library for
log purposes. Both of these libraries are added in pom file, which is present in the project directory
at location:

eidas > build > EIDAS-WIFI-AUTH > pom.xml

slf4j library is already included in the code, lines of code for adding jsch library is provide in
Figure 4.7.

<dependency>

<groupId>com.jcraft</groupId>

<artifactId>jsch</artifactId>

<version>0.1.55</version>

</dependency>

Figure 4.7: jsch library for user creation.

4.4.2 Guest user properties

All of the properties for creating user is present in a separate file to make the changes easier.
These are present in user.properties file. Which includes both the properties for creating the
guest user on WLAN and also for connecting to the WLC using SSH. Properties for creating user
are as following:

• u wlan: The SSID of the WLAN.

• u type: The type of the user created, in our case it is guest.

• u lifetime: This is the time in seconds for how long user will last. After that it will be
deleted automatically.

• u description: This fields gives a description of the user.

• tokenString: This string is compose of characters which are used for creating a ran-
dom token. We are using eIDAS PersonIdentifier attribute and combining it with a
random string of 10 characters to create username. The username looks like PersonIdenti-
fier xxxxxxxxxx.

• passwordString: We have a separate string for creating password because it also includes
special characters. These are not included in tokenString because special characters are not
allowed in username field.

Properties for SSH connection are as following

• sshIP: This field includes the IP of the WLC.

• sshPort: The port to connect. In our case it is 22.

• sshUsername: Username of the user for authenticating SSH.

• sshPassword: Password of the user for authenticating SSH.

63

4 – Design of WiFi access with eIDAS through WiFi-Auth eIDAS-SP and Polito wireless infrastructure

u_wlan=2

u_type=guest

u_lifetime=600

u_description=guest

tokenString=0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz

passwordString=0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuv

wxyz!@#$%^&*_+

sshIP=192.168.10.10

sshPort=22

sshUsername=admin.user

sshPassword=abcdef12345

Figure 4.8: Attributes configuration file.

4.4.3 Function createUser

Guest user is created after the authentication is completed in emReturnAction.java file. The
function is provided in Figure 4.9. It takes person identifier return from the authentication as
parameter for creating the user. First it create the command to create user using emcreateCMD
function. After that it creates a session using jsch library and set the configurations. After
connecting in SSH with WLC, it requires the admin to login first. So three commands are send
for creating the guest user: username as first, password as second and create user command as
third.

4.4.4 Function createCMD

This function takes as parameter person identifier and use it to create username. It creates
random string of 10 characters using randomString() function and password of 15 characters using
randomPassword() function. It then creates username as a combination of random string and
person identifier (PersonIdentifier|xxxxxxxxx). Finally it creates the command for creating
guest user using the parameters and return it as a string to send to WLC. It is shown in Figure 4.10.

4.4.5 Functions randomString and randomPassword

These functions implement the functionality to generate random String and password using char-
acters provided by tokenString and passwordString respectively. These are shown in Figure 4.11

4.4.6 Login form

After guest user is created its username and password is provided as a form to the returnPage.jsp.
Which is automatically submitted on load to WLC to authenticate automatically.

POST: http://1.1.1.1/login.html

buttonClicked: 4

password: FXotwYSW^qbEZIL

redirect_url: https://www.google.com/

username: IT/IT/INFC0001TESTEU_nSHrZAM61w

64

4 – Design of WiFi access with eIDAS through WiFi-Auth eIDAS-SP and Polito wireless infrastructure

public void createUser(String PID) throws IOException, JSchException,

InterruptedException {

logger.error("create user");

sshCMD = createCMD(PID);

logger.error(sshCMD);

java.util.Properties configuration = new java.util.Properties();

configuration.put("kex",

"diffie-hellman-group1-sha1,diffie-hellman-group-exchange-sha1,

diffie-hellman-group14-sha1,diffie-hellman-group-exchange-sha256");

configuration.put("StrictHostKeyChecking", "no");

try {

final JSch jsch = new JSch();

final Session session = jsch.getSession(sshUsername, sshIP,22);

session.setPassword(sshPassword);

session.setConfig(configuration);

session.connect();

if (!session.isConnected()) {

throw new RuntimeException("cannot connect session");

}

List<String> commands = new ArrayList<String>();

commands.add(sshUsername);

commands.add(sshPassword);

commands.add(sshCMD);

Channel channel=session.openChannel("shell");

channel.setOutputStream(System.out,true);

PrintStream shellStream = new PrintStream(channel.getOutputStream());

channel.connect();

for(String command: commands) {

shellStream.println(command);

shellStream.flush();

}

TimeUnit.MILLISECONDS.sleep(1000);

channel.disconnect();

session.disconnect();

} catch (Exception e) {

logger.error("ERROR");

System.err.println("ERROR: Connecting via shell to "+sshIP);

e.printStackTrace();

}

}

Figure 4.9: Function for creating user on WLC.

4.4.7 Cryptography certificates

Cryptography certificates for integrity, authenticity of the messages and identification of the
entities involved are created by docker container: letsencrypt and certs. letsencrypt is a
docker container, which uses certbot [62] to provide TLS/SSL certificates from Let’s Encrypt [63].
We use certbot to generate a certificate and use it in certs container to generate SAML/SAML
Metadata Signing and XML Encryption certificates.

First we generate a certificate using letsencrypt by running the Dockerfile present at

65

4 – Design of WiFi access with eIDAS through WiFi-Auth eIDAS-SP and Polito wireless infrastructure

public String createCMD(String pid) {

String cmd;

userUsername = pid + "_";

String usertoken = randomString(10);

userUsername += usertoken;

userPassword = randomPassword(15);

cmd = "config netuser add " + userUsername + " " + userPassword + "

wlan " + u_wlan +

" userType "+ u_type + " lifetime " + u_lifetime + "

description " + u_description;

return cmd;

}

Figure 4.10: Function for user creation command for WLC.

static SecureRandom rnd = new SecureRandom();

String randomString(int len){

StringBuilder sb = new StringBuilder(len);

for(int i = 0; i < len; i++)

sb.append(tokenString.charAt(rnd.nextInt(tokenString.length())));

return sb.toString();

}

String randomPassword(int len){

StringBuilder sb = new StringBuilder(len);

for(int i = 0; i < len; i++)

sb.append(passwordString.charAt(rnd.nextInt(passwordString.length()))

);

return sb.toString();

}

Figure 4.11: Function for generating string for username and password.

location

letsencrypt > test > docker-compose.yml

It will generate two files fullchain.pem and privkey.pem. We need to copy these files to
“certs/test/rev-proxy” with name rev-proxt-tls.pem and rev-proxt-tls.key respectively. Next
we need to delete certificates from “certs/test/wifi-auth” and restart the Wifi-Auth docker. On-
start it will check if certificates are present, if not it will generate all three certificates using the
certificate present inrev-proxy file.

4.5 Configuration of network elements

4.5.1 Fortigate-60D introduction

Fortigate-60D provides all in one security solution for organisations. It allows to create a secure
network using firewall policies and interfaces.

66

4 – Design of WiFi access with eIDAS through WiFi-Auth eIDAS-SP and Polito wireless infrastructure

Firewall interfaces

Interface either physical or virtual allow the flow of traffic between internal networks and internet.
For our specific set-up we are using two physical interfaces internal7 as internal network and
wan1 as external network (Internet). In internal7 we created two VLAN (Virtual LAN), one for
management network and other one for WiFi clients. Virtual LAN makes the flow of data isolated
at data link layer. This is to allow only users from management network to access configuration
interface.

Figure 4.12: Fortigate firewall interfaces

Firewall policy

After creating the interfaces we need to specify firewall policies for communicating between inter-
faces. As shown in the Figure 4.13 we have created 5 policies.

Figure 4.13: Fortigate firewall policies

• management2internet: This policy allow all devices in management network to access inter-
net.

• management2wifi clients: This policy allows all devices in management network to access
all devices in wifi clients network.

• internet2authserver: This policy allows only authorised IP (eIDAS-Connector, IdP) from
internet to have access to Wifi-Auth server in internal management network.

• wifi clients2internet: This policy allows all devices in wifi clients network to access internet.

• Implicit Deny: This policy deny all communication which is not allowed by any other policy.

Virtual IP

Fortigate is used as NAT for the communication between external and internal network. NAT is
the mapping of one IP to another IP address. When NAT is not used Fortigate call these Virtual

67

4 – Design of WiFi access with eIDAS through WiFi-Auth eIDAS-SP and Polito wireless infrastructure

IP addresses IP. [59]. This allows the mapping of a public IP to an internal network IP. Wifi-Auth
eIDAS SP is present in the internal network, So it is not possible to access it from outside network.
To make it accessible from outside a virtual IP is created as shown in Figure 4.14. Which will
redirect connections from outside on port 443 (HTTPS) to Wifi-Auth server.

Figure 4.14: Virtual IP for Wifi-Auth SP

Address and Address Group

Address or address ranges are created to apply a specific security policy. We have created following
addresses as shown in Figure 4.13.

• connector-test-eid4u: Address for testing connector machine.

• connector-pre: Address for pre production connector machine.

• connector-pro-1: Address 1 for production connector machine.

• connector-pro-2: Address 2 for production connector machine.

• internaladdresses: Address range for management network for testing.

Address groups can also be created in Fortigate to make it easy to apply same policies on a group
of addresses or address ranges. In our case we have created a group of address to allow access
to Wifi-Auth eIDAS SP. All eIDAS eIDAS-Connector are added in this group to have access to
Wifi-Auth eIDAS SP metadata.

Figure 4.15: Addresses and Address Group for policies

4.5.2 Cisco WLC 2504

Cisco WLC provides a single solution for configuring, managing and supporting corporate wireless
network. It provides a centralised solution for providing network access in a large network with

68

4 – Design of WiFi access with eIDAS through WiFi-Auth eIDAS-SP and Polito wireless infrastructure

multiple Access Point. It provides both CLI and web GUI for configuration. The CLI interface
is required to assign a IP to the WLC and some other important parameters. After that all
configuration can be done using web GUI. Web GUI is shown in the Figure 5.5. Web GUI
provides two interfaces Simple and Advanced. For our configuration we will be using Advanced
interface as it provides more control. For our set-up we created a WLAN (Wireless LAN) for
guest user to connect. To provide authentication to guest users we are using Captive Portal with
eIDAS SP authentication. Once user is authenticated it allows them to access internet.

Access Control List (ACL)

ACL works as white-listing to filter traffic to enter or leave WLAN. For our set-up, before authen-
tication we need to only allow traffic to pass through to the entities involved in eIDAS network
e.g Wifi-Auth eIDAS SP, eIDAS Connector, IdP etc.

WebAuth SecureWeb for HTTPS

Once eIDAS authentication cycle is completed, it requires to submit a form on WLC with the
respective credentials to allow access to the internet. To make this request on HTTPS it requires
a valid certificate on WLC. If valid certificate is not present, it will show warning on submitting
the form. Once a valid certificate is downloaded on the WLC using Web GUI, the warning will
not we received. In our set-up we don’t have a valid certificate in this phase of project. So we have
disabled WebAuth SecureWeb to make this request on http for the testing phase. For production
environment, a valid SSL certificate is required and local DNS server needs to redirect to the
WLC. Which will allow to send authentication request to WLC over HTTPS.

4.6 Script for creating ACL rules

The script is created in python to connect to the WLC using SSH and create ACL rules on WLC
for domain names. A list of domain names are provided to the script. It loops through the domain
names and find all the IP’s associated with that domain name. It is using socket library function
gethostbyname ex(dns name) to get IP’s registered to a domain name. Then it adds two
ACL rule for each IP, one for inbound and other for outbound. The important parts of the script
is provided below

ips = ["192.168.10.10"] # WLC

urls = ["posteid.poste.it", "idp-proxy.pre.eid.gov.it",

"identity.infocert.it", "connector.eid.gov.it",

"wifi-auth-eid4u.polito.it", "connector-test-eid4u.polito.it", "identitycl

.infocert.it", "connector.pre.eid.gov.it",

"sipeps-test.gov.si", "sicas.setcce.si", "vidp.gv.at",

"test1.a-trust.at", "identity.sieltecloud.it"]

for ip in ips:

cisco_wlc = {

’device_type’: ’cisco_wlc’,

’ip’: ip,

’username’: un,

’password’: pw}

devices.append(cisco_wlc)

for device in devices:

logger.info("Connecting to %s", device[’ip’])

connect to the device w/ netmiko

try:

net_connect = netmiko.ConnectHandler(**device)

except:

logger.error("Failed to connect to %s", device[’ip’])

69

4 – Design of WiFi access with eIDAS through WiFi-Auth eIDAS-SP and Polito wireless infrastructure

continue

commands = [] # commands to run

create ACL

commands.append("config acl create acl-guest ")

i = 1

for url in urls:

getting all ips from domain name

url_ips = socket.gethostbyname_ex(url)[2]

for url_ip in url_ips:

outbound

commands.append("config acl rule add acl-guest " + str(i))

commands.append("config acl rule action acl-guest " + str(i) + "

permit")

commands.append("config acl rule source address acl-guest "+ str(i)

+" "+ url_ip +" 255.255.255.255")

i+=1

inbound

commands.append("config acl rule add acl-guest " + str(i))

commands.append("config acl rule action acl-guest " + str(i) + "

permit")

commands.append("config acl rule destination address acl-guest "+

str(i) +" "+ url_ip +" 255.255.255.255")

i+=1

for cmd in commands:

logger.info("Sending cmd: %s", cmd)

this_cmd = net_connect.send_command(cmd)

config_filename_f = open(config_filename, ’a’)

config_filename_f.write(this_cmd)

config_filename_f.write(’\n’)

config_filename_f.close()

4.7 Testing authentication cycle using TestCafe

For rigorously testing the Wifi-Auth eIDAS-SP with the eIDAS network. We create a automated
test for authentication of a test user using Node.js [60] tool TestCafe [61]. TestCafe allows to
create tests using JavaScript and run them on different browsers. The code for testing the service
is provided below

import { Selector } from ’testcafe’;

import { ClientFunction } from ’testcafe’;

const getLocation = ClientFunction(() => document.location.href);

fixture ’Getting Started’

.page ’https://wifi-auth-eid4u.polito.it/SP/populateIndexPage’;

for(let c = 0; c < 1; c++)

test(’eIDAS Authentication test’+c, async t => {

await t

.click(’#citizeneidas[value=IT]’)

.click(’.button-spid-fix’)

.click(’#buttonNextSlide1’)

.click(’#buttonNextSlide2’)

.click(’.showBTN2’)

70

4 – Design of WiFi access with eIDAS through WiFi-Auth eIDAS-SP and Polito wireless infrastructure

.click(Selector("a").withAttribute(’title’, ’Inforcert S.P.A.’))

.typeText(’#username’,’TESTE01’)

.typeText(’#password’,’abcdef1234’)

.click(’.button-spid’)

.click(’.button-spid’) // keep it going

.click(’#buttonNext’) //service

.expect(getLocation()).contains(’https://1.1.1.1/login.html’);

});

4.8 Authentication cycle

Figure 4.16: Wifi-Auth eIDAS-SP Captive Portal authentication Step-1

71

4 – Design of WiFi access with eIDAS through WiFi-Auth eIDAS-SP and Polito wireless infrastructure

Figure 4.17: Wifi-Auth eIDAS-SP Captive Portal authentication Step-2

Figure 4.18: Wifi-Auth eIDAS-SP Captive Portal authentication Step-3

72

4 – Design of WiFi access with eIDAS through WiFi-Auth eIDAS-SP and Polito wireless infrastructure

Figure 4.19: Wifi-Auth eIDAS-SP Captive Portal authentication Step-4

Figure 4.20: Wifi-Auth eIDAS-SP Captive Portal authentication Step-5

73

4 – Design of WiFi access with eIDAS through WiFi-Auth eIDAS-SP and Polito wireless infrastructure

Figure 4.21: Wifi-Auth eIDAS-SP Captive Portal authentication Step-6

Figure 4.22: Wifi-Auth eIDAS-SP Captive Portal authentication Step-7

74

4 – Design of WiFi access with eIDAS through WiFi-Auth eIDAS-SP and Polito wireless infrastructure

Figure 4.23: Wifi-Auth eIDAS-SP Captive Portal authentication Step-8

Figure 4.24: Wifi-Auth eIDAS-SP Captive Portal authentication Step-9

75

4 – Design of WiFi access with eIDAS through WiFi-Auth eIDAS-SP and Polito wireless infrastructure

Figure 4.25: Wifi-Auth eIDAS-SP Captive Portal authentication Step-10

76

Chapter 5

Installation and configuration of
WiFi access with eIDAS-SP and
Polito wireless infrastructure

5.1 Installation of Wifi-Auth eIDAS-SP application

We developed Wifi-Auth eIDAS SP compatible with eIDAS version 1.4.4. We added a separate
machine on the management network to work as eIDAS SP as shown in Figure 4.2. We selected
Ubuntu server 18.04 as platform for SP, because it is latest LTS (Long Term Support) version
available and will be supported for next five years till 2023. After successful installation, we were
able to connect to the SP machine using SSH from management machine. We are using docker
and docker-compose for easier management and re-usability of code. Also we are using git for
version control of the code.

5.1.1 Architecture

The code is available on our git repository https://git-sec.polito.it/electronic-identity/

wifi-auth-eid4u.git. Which allows us to clone the repository on new machine. We are using
docker and docker-compose for the easier management and re-usability. The architecture of our
code is shown below.

/

1: certs

1.1: test

1.1.1: Dockerfile

1.2: Dockerfile

2: eidas

2.1: build

2.1.1: EIDAS-WIFI-AUTH

2.1.2: Dockerfile

2.2: config

2.3: wifi-auth

2.3.1: test

2.3.1.1: Dockerfile

3: haproxy

3.1: test

3.1.1: Dockerfile

4: letsencrypt

4.1: test

4.1.1: docker-compose.yml

77

https://git-sec.polito.it/electronic-identity/wifi-auth-eid4u.git
https://git-sec.polito.it/electronic-identity/wifi-auth-eid4u.git

5 – Installation and configuration of WiFi access with eIDAS-SP and Polito wireless infrastructure

5: maven

5.1: Dockerfile

6: tomcat

6.1: Dockerfile

7: docker-compose.yml

5.1.2 Docker and Docker-compose installation

- We installed Docker and it’s pre-requisites following installations instruction provided in docker
documentation [66]. The steps we followed are given below

1. Installing packages to allow apt to use a repository over HTTPS:

sudo apt-get install apt-transport-https ca-certificates curl gnupg-agent

software-properties-common

2. Adding Docker’s official GPG (GNU Privacy Guard) [67] key

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key

add -

3. Setting up the stable repository

sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/

linux/ubuntu \

$(lsb_release -cs) stable"

4. Updating the apt package index and installing latest docker engine

sudo apt-get update

sudo apt-get install docker-ce docker-ce-cli containerd.io

- Then we installed docker compose on the machine following from tutorial provided at https:
//docs.docker.com/compose/install/. Docker-Compose is a tool for defining and running
multi-container Docker applications. It use a YAML file to configure application’s services.

1. Downloading the current stable release of Docker Compose

sudo curl -L "https://github.com/docker/compose/releases/download/1.24.1/

docker-\

compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose

2. Applying executable permissions to the binary

sudo chmod +x /usr/local/bin/docker-compose

5.1.3 Source code

To access the code from repository we added SSH key to our GItLab. We created SSH key, which
we will use to authenticate and clone the repository.

1. Creating SSH key

ssh-keygen -t rsa -b 4096 -C "muhammadali.anjum@studenti.polito.it"

2. Cloning the repository form git

78

https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/

5 – Installation and configuration of WiFi access with eIDAS-SP and Polito wireless infrastructure

git config user.email "muhammadali.anjum@studenti.polito.it"

git clone git@git-sec.polito.it:electronic-identity/wifi-auth-eid4u.git

3. Finally running Wifi-Auth using docker-compose

sudo docker-compose -f docker-compose.test.yml up --build

5.2 Fortigate-60D

Fortigate-60D is acting as a firewall and NAT. Only authorised devices can access Wifi-Auth
eIDAS-SP from outside the network. It provides a web interface for configuration. To configure
network interface In the Figure 4.12 it shows the interfaces and their configuration.

Figure 5.1: Fortigate-60D

5.2.1 Firewall interfaces

In this section it will describe how to create and configure interfaces in Fortigate-60D using web
GUI. Configuration of interfaces can be find at:

Network > Interfaces

Figure 5.2: Fortigate-60D GUI interface configuration

5.2.2 Firewall policy

Configuration of policies can be find at:

79

5 – Installation and configuration of WiFi access with eIDAS-SP and Polito wireless infrastructure

Policy & Objects > IPv4 Policy

Figure 5.3: Fortigate-60D GUI policy configuration

5.2.3 Virtual IP

Virtual IP can be configured from GUI at:

Policy & Objects > Virtual IPs

Creating a Virtual IP

1. Go to Policy & Objects >Virtual IPs

2. Click Create New >Virtual IP

3. Write a unique name in the Name Field

4. Write the public IP in the External IP Address/Range field

5. Write the internal IP in the Mapped IP Address/Range field. In over case we added
the IP of the Wifi-Auth eIDAS SP.

6. Enable Port Forwarding and select TCP port 443 in both External Service Port and
Map to Port

7. press OK to complete creation of Virtual IP.

5.3 Cisco WLC 2504

Cisco WLC provides a web interface as well as command line interface for configuration. Basic web
interface provides a user friendly dashboard to display network summary and to configure some
basic functionality. For more complicated configurations it provides a Advanced web interface,
which is shown in Figure 5.5

80

5 – Installation and configuration of WiFi access with eIDAS-SP and Polito wireless infrastructure

Figure 5.4: Virtual IP configuration GUI

Figure 5.5: Cisco WLC web interface

5.3.1 WLAN

WLAN is a local area network of two or more devices using wireless communication. The config-
uration of WLAN is accessible from WLAN tab from advanced web interface.

81

5 – Installation and configuration of WiFi access with eIDAS-SP and Polito wireless infrastructure

5.3.2 Creating WLAN

The steps needed to create a WLAN is as following:

1. Go to WLANs

2. Select Create New and press Go

3. Write unique profile name up to 32 characters in Profile Name field.

4. Write SSID up to 32 characters in SSID.

5. Press Apply to commit.

6. Enable Status to make WLAN enable.

7. Select wifi clients from Interface/Interface Group(G)

8. Go to Security >Layer 3

9. Select Web Policy from drop down.

10. Select Authentication radio button

11. Select specific ACL (Access Control List) from drop down in Preauthentication ACL.
Creating and editing ACL is explained later.

12. In Web Auth type select External(Re-direct to external server) from drop down.

13. Write URL of the Wifi-Auth eIDAS SP in the URL field.

14. Press Apply to commit

15. Press Save Configuration to make changes permanent.

5.3.3 ACL (Access Control List)

ACL is created to allow guest user to access eIDAS nodes without authentication. We have to
add ACL for domain names for eIDAS SP, eIDAS Connector and eIDAS IdP. In our configuration
ACl we have allowed access to following domain names:

["wifi-auth-eid4u.polito.it", "connector-test-eid4u.polito.it", "

identitycl.infocert.it", "connector.pre.eid.gov.it",

"idp-proxy.pre.eid.gov.it", "identity.infocert.it", "connector.eid.gov.it

", "posteid.poste.it",

"sipeps-test.gov.si", "sicas.setcce.si", "vidp.gv.at", "test1.a-trust.at",

"identity.sieltecloud.it"]

Figure 5.6: Attributes configuration file.

We have to add inbound and outbound rule for each domain name and our ACL looks like
this

Creating ACL

1. Go to Security >Access Control List

2. Press New

3. Write name of ACL up to 32 characters in Access Control List Name

82

5 – Installation and configuration of WiFi access with eIDAS-SP and Polito wireless infrastructure

Figure 5.7: ACL part 1

Figure 5.8: ACL part 2

4. Press Apply to commit

5. Press Save Configuration to make changes permanent.

To allow traffic to flow between and IP, It is required to create two ACL rule per IP. One for
outbound traffic and other one for inbound traffic. Creating a rule to allow outbound traffic from
IP in ACL

1. Press Add New Rule

2. Select IP Address from drop down in Source

3. Write IP in IP Address and 255.255.255.255 in Netmask

83

5 – Installation and configuration of WiFi access with eIDAS-SP and Polito wireless infrastructure

4. Select Outbound from drop down in Direction

5. Select Permit from drop down in Action

6. Press Apply to commit.

Creating a rule to allow inbound traffic from IP in ACL

1. Press Add New Rule

2. Select IP Address from drop down in Destination

3. Write IP in IP Address and 255.255.255.255 in Netmask

4. Select Inbound from drop down in Direction

5. Select Permit from drop down in Action

6. Press Apply to commit.

7. Press Save Configuration to make changes permanent.

5.3.4 WebAuth SecureWeb

Disabling HTTPS for WebAuth SecureWeb

1. Go to Management >HTTP-HTTPS

2. Select Disabled in drop down for WebAuth SecureWeb

3. Press Apply to commit changes

4. Press Save and Reboot from COMMANDS >Reboot to reboot WLC.

84

Chapter 6

Results

The requirement for using the deployed service is to have a valid digital national eID from the
home country of the user. Depending on the specific country and IdP the authentication schema
can be a credential based (username, password), a mobile-based or a digital certificate based
authentication. The Wifi-Auth eIDAS-SP allows to authenticate using national eID of all the
countries part of eIDAS framework. Table 6.1 shows the list countries and their electronic identity
that has been tested successfully for our service.

Country eID
Italy SPID
Austria Buergerkarte
Spain DNIe
Portugal Chave Mòvel Digital
Slovenia National eID card

Table 6.1: eID of countries used for testing the Wifi-Auth eIDAS-SP

We also validated the deployed service and done a survey using the users (students, researchers,
entrepreneur) from Turin. We collected data about the IdP, browser and operating system used
by the user to access the service.

Identity Provider Number of users
Aruba 2
InfoCert 1
Poste 14
Sielte 3

Table 6.2: IdPs used by number of users for authentication

Table 6.2 shows the number of users who used specific IdP for authentication. During the
test we have to add the IdPs used by users in the ACL to allow access for authentication. In
most cases we add IP based ACL rule and in some cases we added URL based ACL. As in the
case of authentication using Poste IdP, it provides the ability to authenticate using credential-
based schema and mobile-based schema. In case of mobile based schema it uses an another service
separate from the Poste IdP, which provide authentication by scanning bar-code from Poste mobile
application. The service is hosted at URL secureholder.mobile.poste.it and attached with
multiple IP address. For that we have added in the URL based ACL.

Figure 6.1 shows in percentage the IdP used by users for authentication. 70% of the users
used Poste for the identification of the electronic identity. Sielte, Aruba and InfoCert are among
the other IdPs used by users to authenticate.

85

secureholder.mobile.poste.it

6 – Results

Figure 6.1: IdP used by number of users for authentication

Figure 6.2(a) shows the operating system used by the users. 55% of the users used windows
operating system. A part from windows, others operating systems which were used are Ubuntu,
iOS and Android.

(a) Operating system (b) Browser

Figure 6.2: Operating system/browser used by users for authentication

Figure 6.2(b) shows the statistics of the browser used for testing the service. Chrome and
Firefox were the browser used by most, 70% of the users one of them. A part from these two, the
browser which were used includes Chromium, Brave, Safari and Opera.

We also asked users to fill a survey after testing the service. In Figure 6.3 it shows that more
than 97% of the users says that they would want the inclusion of this initiative in other academic
services from European universities.

86

6 – Results

Figure 6.3: Survey Answer: After testing this pilot, I would like the inclusion of this initiative in
the academic services of other European universities.

87

Chapter 7

Conclusion

The thesis proposed a solution to provide WiFi access services to European citizens. It was
developed as a part of eID4u project: which wants to use the eIDAS infrastructure to provide
advanced cross-border services to the European academic environment. We developed two test-
beds for the WiFi access service, first using software based approach and second using eIDAS
code with Polito wireless infrastructure.

In first approach we used Zeroshell, a Linux based distribution for the development of our
service. We configured a WiFi access point to authenticate user’s using eIDAS federated in-
frastructure. The eIDAS federated infrastructure specifies a list of cryptography algorithms for
Signing and Encryption of SAML messages to ensure secure communication between endpoints in
eIDAS network as described in section 2.5.3. The service developed was able to authenticate using
eIDAS infrastructure but with the use of an older version of Encryption algorithm not specified
by eIDAS.

In second approach we used eIDAS code to develop Wifi-Auth eIDAS-SP with Polito wireless
infrastructure to provide WiFi access. We tested our service successfully using test credentials
from various countries including Italy, Spain, Slovenia, Portugal and Austria.

For validation of the solution, we set-up a test-bed in Politecnico di Torino by deploying
Wifi-Auth eIDAS-SP on a server and integrate it with the wireless infrastructure implemented in
Polito. More than Twenty users tested our service with their national eID using various Identity
Providers in the eIDAS infrastructure. After testing the pilot, more than 97 % of the users think
that the inclusion of this initiative in academic services of other European universities will be
useful.

The solution can be improved by providing a valid certificate for WLC (Wireless LAN Con-
troller) to secure the communication between user’s device and WLC after authentication. Also
we are adding entities involved in the eIDAS network for authentication manually in the Access
Control List (ACL), which also has a limit of maximum 64 IP based and 20 Domain Name based
rules.

Finally this service is a validation of the eIDAS infrastructure to provide electronic identifica-
tion across European countries with the same legal value as paper document. This infrastructure
could be used by organisations to provide their services to European citizens. It would unifies the
identification/verification process of the users for organisation.

88

Bibliography

[1] L.Florio, K.Wierenga, “Eduroam, providing mobility for roaming users”, Proceedings of the
EUNIS 2005 Conference, Manchester (England), June 2005

[2] eID4U, https://ec.europa.eu/inea/en/connecting-europe-facility/cef-telecom/

2017-eu-ia-0051

[3] D.Berbecaru, A.Lioy, C.Cameroni, “Electronic identification for universities: Building cross-
border services based on the eIDAS infrastructure”, Information (Switzerland), Vol. 10, No.
210, June 2019, DOI 10.3390/info10060210

[4] L.O’Gorman, “Comparing passwords, tokens, and biometrics for user authentication”, Pro-
ceedings of the IEEE, Vol. 91, No. 12, December 2003, pp. 2021-2040

[5] J.Reschke, “The ‘Basic’ HTTP Authentication Scheme”, Internet Requests for Comments,
RFC-7617, September 2015, DOI 10.17487/RFC7617

[6] S.M.Bellovin, M.Merritt, “Encrypted key exchange: Password-based protocols secure against
dictionary attacks”, In Proceedings 1992 IEEE Computer Society Symposium on Research
in Security and Privacy, May 1992, pp. 72-84

[7] R.M.Needham, M.D.Schroeder, “Using encryption for authentication in large networks of
computers”, Communications of the ACM, Vol. 21, No. 12, December 1978, pp. 993-999 DOI
10.1145/359657.359659

[8] J.Clark, J.L.Jacob, “Using encryption for authentication in large networks of computers”,
December 1997

[9] R.Housley, W.Polk, W.Ford, D.Solo, “Internet X.509 Public Key Infrastructure Cer-
tificate and Certificate Revocation List (CRL) Profile”, RFC-3280, April 2002, DOI
10.17487/RFC3280

[10] W.Diffie, M.E.Hellman, “New directions in cryptography”, IEEE transactions on Information
Theory, Vol. 21, No. 6, November 1976, pp. 644-654

[11] R.L.Rivest, A.Shamir, L.Adleman, “A method for obtaining digital signatures and public-key
cryptosystems”, Communications of the ACM, Vol. 21, No. 2, February 1978, pp. 120-126

[12] S.Chokhani, W.Ford, R.Sabett, C.Merrill, S.Wu, “Public Key Infrastructure Certificate Pol-
icy and Certification Practices Framework”, Internet Engineering Task Force (IETF), RFC-
2527, March 1999, DOI 10.17487/RFC2527

[13] J.L.Camp, “Digital identity”, IEEE Technology and society Magazine, October 2004, pp.
34-41

[14] Y.Cao, L.Yang, “A survey of identity management technology”, 2010 IEEE International
Conference on Information Theory and Information Security, December 2010, pp. 287-293

[15] Security Assertion Markup Language (SAML) V2.0 Technical Overview, http://docs.

oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html

[16] S.Cantor, J.Moreh, R.Philpott, E.Maler, “Metadata for the OASIS Security Asser-
tion Markup Language (SAML) V2.0”, OASIS Standard, March 2005, http://docs.

oasis-open.org/security/saml/v2.0/saml-metadata-2.0-os.pdf

[17] T.Bray, J.Paoli, CM.Sperberg-McQueen, E.Maler, F.Yergeau, “Extensible markup language
(XML) 1.0”, February 1998, http://www.renderx.com/~renderx/Demos/fo2html/xml.pdf

[18] D.Eastlake, J.Reagle, D.Solo, F.Hirsch, M.NystrÃ¶m, T.Roessler, K.Yiu, “XML Signa-
ture Syntax and Processing”, W3C Recommendation, April 2013, https://www.w3.org/

TR/xmldsig-core/

[19] D.Eastlake, J.Reagle, F.Hirsch, T.Roessler, “XML Encryption Syntax and Processing”, W3C
Recommendation, April 2013, https://www.w3.org/TR/xmlenc-core1/

89

https://ec.europa.eu/inea/en/connecting-europe-facility/cef-telecom/2017-eu-ia-0051
https://ec.europa.eu/inea/en/connecting-europe-facility/cef-telecom/2017-eu-ia-0051
https://doi.org/10.3390/info10060210
https://doi.org/10.17487/RFC7617
https://doi.org/10.1145/359657.359659
https://doi.org/10.17487/RFC3280
https://doi.org/10.17487/RFC2527
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html
http://docs.oasis-open.org/security/saml/v2.0/saml-metadata-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-metadata-2.0-os.pdf
http://www.renderx.com/~renderx/Demos/fo2html/xml.pdf
https://www.w3.org/TR/xmldsig-core/
https://www.w3.org/TR/xmldsig-core/
https://www.w3.org/TR/xmlenc-core1/

Bibliography

[20] R.Fielding, J.Gettys, J.Mogul, H.Frystyk, L.Masinter, P.Leach, T.Berners-Lee, “Hypertext
transfer protocol – HTTP/1.1”, RFC-2616, June 1999, DOI 10.17487/RFC2068

[21] D.Box, D.Ehnebuske, G.Kakivaya, A.Layman, N.Mendelsohn, HF.Nielsen, S.Thatte,
D.Winer, “Simple object access protocol (SOAP) 1.1”, W3C Note, May 2000, https:

//www.w3.org/TR/2000/NOTE-SOAP-20000508/

[22] S.S.Y.Shim, G.Bhalla, V.Pendyala, “Federated identity management”, Computer, Vol. 38,
No. 12, December 2005, pp. 120-122

[23] R.L.Morgan, S.Cantor, S.Carmody, W.Hoehn, K.Klingenstein, “Federated security: The
shibboleth approach”, Educause Quarterly, Vol. 27, No. 4, 2004, pp. 12-17

[24] SPID - Sistema Pubblico di IdentitÃ Digitale, https://www.spid.gov.it/
[25] Chave Móvel Digital, https://www.autenticacao.gov.pt/a-chave-movel-digital
[26] DNIe - Electronic Identity Card https://firmaelectronica.gob.es/Home/en/

Ciudadanos/DNI-Electronico.html?idioma=en

[27] J.L.Hernandez-Ardieta, J.Heppe, J.F.Carvajal-Vion, “STORK: The European electronic
identity interoperability platform”, IEEE Latin America Transactions, vol. 8, No. 2, July
2010, pp. 190-193

[28] H.Leitold, A.Lioy, C.Ribeiro, “Stork 2.0: Breaking new grounds on eid and mandates”, In
Proceedings of ID World International Congress, November 2014, pp. 1-8

[29] D.Berbecaru, A.Lioy, C.Cameroni, “Providing digital identity and academic attributes
through European eID infrastructures: Results achieved, limitations, and future steps”,
Software: Practice and Experience, Vol. 49, No. 11, November 2019, pp. 1643-1662, DOI
10.1002/spe.2738

[30] J.Dumortier, “Regulation (EU) No 910/2014 on Electronic Identification and Trust Services
for Electronic Transactions in the Internal Market (eIDAS Regulation)”, EU Regulation of
E-Commerce, April 2017, pp. 256-289, DOI 10.4337/9781785369346.00017

[31] “Electronic identification, signatures and trust services: Questions & Answers”, Euro-
pean Commission MEMO, June 2012, https://ec.europa.eu/commission/presscorner/
detail/en/MEMO_12_403

[32] J.Carretero, G.Izquierdo-Moreno, M.Vasile-Cabezas, J.Garcia-Blas, “Federated Identity Ar-
chitecture of the European eID System”, IEEE Access, November 2018, DOI 10.1109/AC-
CESS.2018.2882870

[33] “Overview of pre-notified and notified eID schemes under eIDAS”, https://ec.europa.eu/
cefdigital/wiki/display/EIDCOMMUNITY/Overview+of+pre-notified+and+notified+

eID+schemes+under+eIDAS

[34] “ON THE APPLICATION OF EIDAS REGULATION”, EUROSMART, October 2019
[35] “eIDAS-Node and SAML 1.0”, European Commission, October 2017, pp. 29-34, https:

//e-gov.github.io/eIDAS-Connector/MetadataSeletus

[36] T. Dierks, E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2”, RFC-
5246, August 2008, DOI 10.17487/RFC5246

[37] “eIDAS - Cryptographic requirements for the Interoperability Framework Version 1.0”,
November 2015, https://ec.europa.eu/cefdigital/wiki/download/attachments/

82773108/eidas_-_crypto_requirements_for_the_eidas_interoperability_

framework_v1.0.pdf?version=1&modificationDate=1497252920224&api=v2

[38] R. Seggelmann, M. Tuexen, M. Williams, “Transport Layer Security (TLS) and Datagram
Transport Layer Security (DTLS) Heartbeat Extension”, Internet Engineering Task Force
(IETF), RFC-6520, February 2012, DOI 10.17487/RFC6520

[39] D. Eastlake, “Transport Layer Security (TLS) Extensions: Extension Definitions”, Internet
Engineering Task Force (IETF), RFC-6066, January 2011, DOI 10.17487/RFC6066

[40] “Overview of available attributes of pre-notified and notified eID schemes”,
https://ec.europa.eu/cefdigital/wiki/display/EIDCOMMUNITY/Overview+of+

available+attributes+of+pre-notified+and+notified+eID+schemes

[41] “eIDAS: Standardising Digital Identity in the EU”, Scrive, https://www.scrive.com/

eidas-electronic-identity-in-the-eu/

[42] Á.Alonso, A.Pozo, J.Choque, G.Bueno, J.Salvachúa, L.Diez, J.Maŕın, P.L.C.Alonso, “An
Identity Framework for Providing Access to FIWARE OAuth 2.0-Based Services Accord-
ing to the eIDAS European Regulation” IEEE Access 7, July 2019, DOI 10.1109/AC-
CESS.2019.2926556

90

https://doi.org/10.17487/RFC2068
https://www.w3.org/TR/2000/NOTE-SOAP-20000508/
https://www.w3.org/TR/2000/NOTE-SOAP-20000508/
https://www.spid.gov.it/
https://www.autenticacao.gov.pt/a-chave-movel-digital
https://firmaelectronica.gob.es/Home/en/Ciudadanos/DNI-Electronico.html?idioma=en
https://firmaelectronica.gob.es/Home/en/Ciudadanos/DNI-Electronico.html?idioma=en
https://doi.org/10.1002/spe.2738
https://doi.org/10.4337/9781785369346.00017
https://ec.europa.eu/commission/presscorner/detail/en/MEMO_12_403
https://ec.europa.eu/commission/presscorner/detail/en/MEMO_12_403
https://doi.org/10.1109/ACCESS.2018.2882870
https://doi.org/10.1109/ACCESS.2018.2882870
https://ec.europa.eu/cefdigital/wiki/display/EIDCOMMUNITY/Overview+of+pre-notified+and+notified+eID+schemes+under+eIDAS
https://ec.europa.eu/cefdigital/wiki/display/EIDCOMMUNITY/Overview+of+pre-notified+and+notified+eID+schemes+under+eIDAS
https://ec.europa.eu/cefdigital/wiki/display/EIDCOMMUNITY/Overview+of+pre-notified+and+notified+eID+schemes+under+eIDAS
https://e-gov.github.io/eIDAS-Connector/MetadataSeletus
https://e-gov.github.io/eIDAS-Connector/MetadataSeletus
https://doi.org/10.17487/RFC5246
https://ec.europa.eu/cefdigital/wiki/download/attachments/82773108/eidas_-_crypto_requirements_for_the_eidas_interoperability_framework_v1.0.pdf?version=1&modificationDate=1497252920224&api=v2
https://ec.europa.eu/cefdigital/wiki/download/attachments/82773108/eidas_-_crypto_requirements_for_the_eidas_interoperability_framework_v1.0.pdf?version=1&modificationDate=1497252920224&api=v2
https://ec.europa.eu/cefdigital/wiki/download/attachments/82773108/eidas_-_crypto_requirements_for_the_eidas_interoperability_framework_v1.0.pdf?version=1&modificationDate=1497252920224&api=v2
https://doi.org/10.17487/RFC6520
https://doi.org/10.17487/RFC6066
https://ec.europa.eu/cefdigital/wiki/display/EIDCOMMUNITY/Overview+of+available+attributes+of+pre-notified+and+notified+eID+schemes
https://ec.europa.eu/cefdigital/wiki/display/EIDCOMMUNITY/Overview+of+available+attributes+of+pre-notified+and+notified+eID+schemes
https://www.scrive.com/eidas-electronic-identity-in-the-eu/
https://www.scrive.com/eidas-electronic-identity-in-the-eu/
https://doi.org/10.1109/ACCESS.2019.2926556
https://doi.org/10.1109/ACCESS.2019.2926556

Bibliography

[43] TERENA Task Force on Mobility, https://www.terena.org/activities/tf-mobility/
[44] L.Florio, K.Wierenga, “Eduroam, providing mobility for roaming users”, InProceedings of

the EUNIS 2005 Conference, Manchester(), June 2005
[45] M.Milinović, “eduroam Policy Service Definition”, Technischer Bericht, GEANT, July 2012
[46] “European eduroam Confederation Policy Declaration”, GEANT, May 2012
[47] eduroam in a nutshell (BEGINNER), https://wiki.geant.org/pages/viewpage.action?

pageId=121346286

[48] P.Congdon, B.Aboba, A.Smith, G.Zorn, J.Roese, “IEEE 802.1X Remote Authentication Dial
In User Service (RADIUS) Usage Guidelines”, RFC-3580, September 2003

[49] C.Rigney, S.Willens, A.Rubens, W.Simpson, “Remote Authentication Dial In User Service
(RADIUS)”, IETF, JUNE 2000, DOI 10.17487/RFC2865

[50] Govroam Explanation, https://govroam.nl/english/
[51] Govroam NL Service Policy, https://govroam.nl/wp-content/uploads/2015/02/

govroam-NL-service-policy-jan2015.pdf

[52] PacketFence Overview, https://packetfence.org/about.html
[53] H.Annuar, B.Shanmugam, A.Ahmad, N.B.Idris, S.H.AlBakri, G.N.Samy, “Enhancement of

network access control architecture with virtualization”, International Conference on Infor-
matics and Creative Multimedia (ICICM), September 2013, DOI 10.1109/ICICM.2013.68

[54] PacketFence Advanced Features, https://packetfence.org/about.html#/features
[55] J.Dias, “A guide to microsoft active directory (ad) design”, Lawrence Livermore National

Lab. (LLNL), Livermore, CA (United States), April 2002, DOI 10.1109/SP.2006.4
[56] NoDogSplash Overview, https://nodogsplashdocs.readthedocs.io/en/stable/

overview.html

[57] Zeroshell Firewall Router, http://www.zeroshell.net/
[58] Zeroshell distro, https://distrowatch.com/table.php?distribution=zeroshell
[59] FortigateOS 6.0.0 Cookbook, http://docs.fortinet.com/document/fortigate/6.0.0/

cookbook/509275/getting-started

[60] Node.js, https://nodejs.org/en/
[61] TestCafe, https://devexpress.github.io/testcafe/
[62] Certbot, https://hub.docker.com/r/certbot/certbot/
[63] Let’s Encrypt, https://letsencrypt.org/
[64] Zeroshell Linux distribution, https://zeroshell.org/
[65] D.Berbecaru, A.Lioy, M.D.Aime, “Exploiting Proxy-Based Federated Identity Management

in Wireless Roaming Access”, In Proceeding of TrustBus 2011: 8th International Conference
on Trust, Privacy and Security in Digital Business, Toulouse (France), August-September
2011, Vol. 6863, pp. 13-23, DOI 10.1007/978-3-642-22890-2 2

[66] Get Docker Engine - Community for Ubuntu, https://docs.docker.com/install/linux/
docker-ce/ubuntu/

[67] J.Callas, L.Donnerhacke, H.Finney, D.Shaw, R.Thayer, “OpenPGP Message Format (RFC
4880)”, Informe técnico, Internet Engineering Task Force (IETF), November 2007, DOI
10.17487/RFC4880

91

https://www.terena.org/activities/tf-mobility/
https://wiki.geant.org/pages/viewpage.action?pageId=121346286
https://wiki.geant.org/pages/viewpage.action?pageId=121346286
https://doi.org/10.17487/RFC2865
https://govroam.nl/english/
https://govroam.nl/wp-content/uploads/2015/02/govroam-NL-service-policy-jan2015.pdf
https://govroam.nl/wp-content/uploads/2015/02/govroam-NL-service-policy-jan2015.pdf
https://packetfence.org/about.html
https://doi.org/10.1109/ICICM.2013.68
https://packetfence.org/about.html#/features
https://doi.org/10.1109/SP.2006.4
https://nodogsplashdocs.readthedocs.io/en/stable/overview.html
https://nodogsplashdocs.readthedocs.io/en/stable/overview.html
http://www.zeroshell.net/
https://distrowatch.com/table.php?distribution=zeroshell
http://docs.fortinet.com/document/fortigate/6.0.0/cookbook/509275/getting-started
http://docs.fortinet.com/document/fortigate/6.0.0/cookbook/509275/getting-started
https://nodejs.org/en/
https://devexpress.github.io/testcafe/
https://hub.docker.com/r/certbot/certbot/
https://letsencrypt.org/
https://zeroshell.org/
https://doi.org/10.1007/978-3-642-22890-2_2
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://doi.org/10.17487/RFC4880

Appendix A

SAML message flow

A.1 SAML message flow example with Zeroshell

A.1.1 Zeroshell to eIDAS-Connector

eIDAS Request

1 <saml2p:AuthnRequest

2 xmlns:saml2p="urn:oasis:names:tc:SAML:2.0:protocol"

3 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

4 xmlns:eidas="http://eidas.europa.eu/saml-extensions"

5 xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion"

6 AssertionConsumerServiceIndex="1"

7 Consent="urn:oasis:names:tc:SAML:2.0:consent:unspecified"

8 Destination="https://connector-test-eid4u.polito.it/EidasNode/

ServiceProvider"

9 ForceAuthn="true" ID="_ca4107656fd18b527ae2ebeffeae4596" IsPassive="false"

10 IssueInstant="2019-12-05T11:59:34Z" ProviderName="zeroshell-SP" Version="2.0

">

11 <saml2:Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">

12 https://zeroshell.example.com:12081/shibboleth</saml2:Issuer>

13 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

14 <ds:SignedInfo>

15 <ds:CanonicalizationMethod

16 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

17 <ds:SignatureMethod

18 Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha512" />

19 <ds:Reference URI="#_ca4107656fd18b527ae2ebeffeae4596">

20 <ds:Transforms>

21 <ds:Transform

22 Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature" /

>

23 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

24 </ds:Transforms>

25 <ds:DigestMethod

26 Algorithm="http://www.w3.org/2001/04/xmldsig-more#sha384" />

27 <ds:DigestValue>

28 +3fzna29LgIJGdu7tNSRSbatyvFtZImrXecEiuTVOApkw4lW3ltKqsy9QN77bjbI

29 </ds:DigestValue>

30 </ds:Reference>

92

A – SAML message flow

31 </ds:SignedInfo>

32 <ds:SignatureValue>

33 oFK2UCgSCMHOw64OCn3frpIqjEJQN/T4a2QydHfDkD4P8u+0PQGwBvjEj0fA==

34 </ds:SignatureValue>

35 <ds:KeyInfo>

36 <ds:KeyName>SAML Signature</ds:KeyName>

37 <ds:X509Data>

38 <ds:X509SubjectName>CN=SAML Signature,OU=None,O=None,C=IT

39 </ds:X509SubjectName>

40 <ds:X509Certificate>

41 MIIDKDCCAhCgAwIBAgIJAI57OE1syoDFMA0GCSqbhHSxZlwAzTyHoZfo=

42 </ds:X509Certificate>

43 </ds:X509Data>

44 </ds:KeyInfo>

45 </ds:Signature>

46 <saml2p:Extensions>

47 <eidas:SPType xmlns:eidas="http://eidas.europa.eu/saml-extensions">public

48 </eidas:SPType>

49 <eidas:RequestedAttributes

50 xmlns:eidas="http://eidas.europa.eu/saml-extensions">

51 <eidas:RequestedAttribute FriendlyName="FamilyName"

52 Name="http://eidas.europa.eu/attributes/naturalperson/

CurrentFamilyName"

53 NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri"

54 isRequired="true" />

55 <eidas:RequestedAttribute FriendlyName="FirstName"

56 Name="http://eidas.europa.eu/attributes/naturalperson/CurrentGivenName

"

57 NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri"

58 isRequired="true" />

59 <eidas:RequestedAttribute FriendlyName="DateOfBirth"

60 Name="http://eidas.europa.eu/attributes/naturalperson/DateOfBirth"

61 NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri"

62 isRequired="true" />

63 <eidas:RequestedAttribute FriendlyName="PersonIdentifier"

64 Name="http://eidas.europa.eu/attributes/naturalperson/PersonIdentifier

"

65 NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri"

66 isRequired="true" />

67 </eidas:RequestedAttributes>

68 </saml2p:Extensions>

69 <saml2p:NameIDPolicy AllowCreate="true"

70 Format="urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified" />

71 <saml2p:RequestedAuthnContext Comparison="minimum">

72 <saml2:AuthnContextClassRef>http://eidas.europa.eu/LoA/low

73 </saml2:AuthnContextClassRef>

74 </saml2p:RequestedAuthnContext>

75 </saml2p:AuthnRequest>

A.1.2 eIDAS-Connector to eIDAS-Service

eIDAS Request

93

A – SAML message flow

1 <saml2p:AuthnRequest

2 xmlns:saml2p="urn:oasis:names:tc:SAML:2.0:protocol"

3 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

4 xmlns:eidas="http://eidas.europa.eu/saml-extensions"

5 xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion"

6 Consent="urn:oasis:names:tc:SAML:2.0:consent:unspecified"

7 Destination="https://service-test-eid4u.polito.it/EidasNode/ColleagueRequest

"

8 ForceAuthn="true"

9 ID="_FjbjwldU1NU1AhQy62czTmiZXGC4xveAXQrkxQA86i8bI6OFoY2a02CAfmw_T8E"

10 IsPassive="false" IssueInstant="2019-12-05T11:59:34.520Z"

11 ProviderName="zeroshell-SP" Version="2.0">

12 <saml2:Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">

13 https://connector-test-eid4u.polito.it/EidasNode/ConnectorMetadata

14 </saml2:Issuer>

15 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

16 <ds:SignedInfo>

17 <ds:CanonicalizationMethod

18 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

19 <ds:SignatureMethod

20 Algorithm="http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha512" />

21 <ds:Reference

22 URI="#_FjbjwldU1NU1AhQy62czTmiZXGC4xveAXQrkxQA86i8bI6OFoY2a02CAfmw_T8E

">

23 <ds:Transforms>

24 <ds:Transform

25 Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature" /

>

26 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

27 </ds:Transforms>

28 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha512" /

>

29 <ds:DigestValue>

30 n4yqJJ2dCk9gsIS90IHKYXVGjENpxsCxPtoDKFBJxYllmNcTEtbgg==

31 </ds:DigestValue>

32 </ds:Reference>

33 </ds:SignedInfo>

34 <ds:SignatureValue>

35 qH1dNUk3y1YXQu8pqSI8Dsc+UhTXv6qg7IrJsYT9eEPWqTwrv/wsOs59x6tIT

36 </ds:SignatureValue>

37 <ds:KeyInfo>

38 <ds:X509Data>

39 <ds:X509Certificate>

40 MIICkTCCAhegAwIBAgIJAMIxa5E225l8LbVTpYnHEB8ORHag==

41 </ds:X509Certificate>

42 </ds:X509Data>

43 </ds:KeyInfo>

44 </ds:Signature>

45 <saml2p:Extensions>

46 <eidas:RequestedAttributes>

47 <eidas:RequestedAttribute FriendlyName="FamilyName"

48 Name="http://eidas.europa.eu/attributes/naturalperson/

CurrentFamilyName"

49 NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri"

50 isRequired="true" />

51 <eidas:RequestedAttribute FriendlyName="FirstName"

94

A – SAML message flow

52 Name="http://eidas.europa.eu/attributes/naturalperson/CurrentGivenName

"

53 NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri"

54 isRequired="true" />

55 <eidas:RequestedAttribute FriendlyName="DateOfBirth"

56 Name="http://eidas.europa.eu/attributes/naturalperson/DateOfBirth"

57 NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri"

58 isRequired="true" />

59 <eidas:RequestedAttribute FriendlyName="PersonIdentifier"

60 Name="http://eidas.europa.eu/attributes/naturalperson/PersonIdentifier

"

61 NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri"

62 isRequired="true" />

63 </eidas:RequestedAttributes>

64 </saml2p:Extensions>

65 <saml2p:NameIDPolicy AllowCreate="true"

66 Format="urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified" />

67 <saml2p:RequestedAuthnContext Comparison="minimum">

68 <saml2:AuthnContextClassRef>http://eidas.europa.eu/LoA/low

69 </saml2:AuthnContextClassRef>

70 </saml2p:RequestedAuthnContext>

71 </saml2p:AuthnRequest>

A.1.3 eIDAS-Service to IdP-Proxy

eIDAS Request

1 <saml2p:AuthnRequest

2 xmlns:saml2p="urn:oasis:names:tc:SAML:2.0:protocol"

3 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

4 xmlns:eidas="http://eidas.europa.eu/saml-extensions"

5 xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion"

6 Consent="urn:oasis:names:tc:SAML:2.0:consent:unspecified"

7 Destination="https://idp-proxy-test-eid4u.polito.it/idpproxy/idpeurequest"

8 ForceAuthn="true"

9 ID="_.EZpVuMOZd7ZnGsMDB5TpyVfoCI5-tsP.Cylt-4gjHrE1gpMTnp6jpHB2M0zT5g"

10 IsPassive="false" IssueInstant="2019-12-05T11:59:40.046Z"

11 ProviderName="zeroshell-SP" Version="2.0">

12 <saml2:Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">

13 https://service-test-eid4u.polito.it/EidasNode/ServiceRequesterMetadata

14 </saml2:Issuer>

15 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

16 <ds:SignedInfo>

17 <ds:CanonicalizationMethod

18 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

19 <ds:SignatureMethod

20 Algorithm="http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha512" />

21 <ds:Reference

22 URI="#_.EZpVuMOZd7ZnGsMDB5TpyVfoCI5-tsP.Cylt-4gjHrE1gpMTnp6jpHB2M0zT5g

">

23 <ds:Transforms>

24 <ds:Transform

95

A – SAML message flow

25 Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature" /

>

26 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

27 </ds:Transforms>

28 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha512" /

>

29 <ds:DigestValue>

30 TJfCtQFcaBB2+VhTkk9g4L57fRHsB54qfP5pGAACWhZ+UboAmie5Jq8MMQ==

31 </ds:DigestValue>

32 </ds:Reference>

33 </ds:SignedInfo>

34 <ds:SignatureValue>

35 3817n/10nMJOmETI5xoDtmkFGoibnRb5cSV4OxNxj5rzYBKeEf4ntHa6VzWpAS0ThIYfGgK

36 </ds:SignatureValue>

37 <ds:KeyInfo>

38 <ds:X509Data>

39 <ds:X509Certificate>

40 MIICkjCCAhmgAwIBAgIJAPpljjIeOUbmhqZhWe5szL0E=</ds:X509Certificate>

41 </ds:X509Data>

42 </ds:KeyInfo>

43 </ds:Signature>

44 <saml2p:Extensions>

45 <eidas:SPType>public</eidas:SPType>

46 <eidas:RequestedAttributes>

47 <eidas:RequestedAttribute FriendlyName="FamilyName"

48 Name="http://eidas.europa.eu/attributes/naturalperson/

CurrentFamilyName"

49 NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri"

50 isRequired="true" />

51 <eidas:RequestedAttribute FriendlyName="FirstName"

52 Name="http://eidas.europa.eu/attributes/naturalperson/CurrentGivenName

"

53 NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri"

54 isRequired="true" />

55 <eidas:RequestedAttribute FriendlyName="DateOfBirth"

56 Name="http://eidas.europa.eu/attributes/naturalperson/DateOfBirth"

57 NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri"

58 isRequired="true" />

59 <eidas:RequestedAttribute FriendlyName="PersonIdentifier"

60 Name="http://eidas.europa.eu/attributes/naturalperson/PersonIdentifier

"

61 NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri"

62 isRequired="true" />

63 </eidas:RequestedAttributes>

64 </saml2p:Extensions>

65 <saml2p:NameIDPolicy AllowCreate="true"

66 Format="urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified" />

67 <saml2p:RequestedAuthnContext Comparison="minimum">

68 <saml2:AuthnContextClassRef>http://eidas.europa.eu/LoA/low

69 </saml2:AuthnContextClassRef>

70 </saml2p:RequestedAuthnContext>

71 </saml2p:AuthnRequest>

96

A – SAML message flow

A.1.4 IdP-Proxy to IdP

eIDAS Request

1 <saml2p:AuthnRequest

2 xmlns:saml2p="urn:oasis:names:tc:SAML:2.0:protocol"

3 AssertionConsumerServiceIndex="0" AttributeConsumingServiceIndex="1"

4 Destination="https://identitycl.infocert.it" ForceAuthn="true"

5 ID="_8584766c-8a1a-4b6b-9e8c-9ef2ec7a0f69"

6 IssueInstant="2019-12-05T11:59:45.137Z" Version="2.0">

7 <saml2:Issuer xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion"

8 Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity"

9 NameQualifier="https://idp-proxy.test.eid.gov.it/idpproxy">

10 https://idp-proxy-test-eid4u.polito.it/idpproxy</saml2:Issuer>

11 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

12 <ds:SignedInfo>

13 <ds:CanonicalizationMethod

14 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

15 <ds:SignatureMethod

16 Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha256" />

17 <ds:Reference URI="#_8584766c-8a1a-4b6b-9e8c-9ef2ec7a0f69">

18 <ds:Transforms>

19 <ds:Transform

20 Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature" /

>

21 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

22 </ds:Transforms>

23 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256" /

>

24 <ds:DigestValue>rFF8heVddt/9QPdycK77aFDpxOZGslAgWXdrGj7ON+g=

25 </ds:DigestValue>

26 </ds:Reference>

27 </ds:SignedInfo>

28 <ds:SignatureValue>

29 EfltmO8NV5/8gUrqPC7mqKUnYFMtBJ+RJkEpdsnKHqlku39Z1HjaFeoDsNwp6yWcdCfiw==

30 </ds:SignatureValue>

31 <ds:KeyInfo>

32 <ds:X509Data>

33 <ds:X509Certificate>

34 MIIDcDCCAligAwIBAgIJAPTLdfHNBxl5ZkMvG3fs/xk=

35 </ds:X509Certificate>

36 </ds:X509Data>

37 </ds:KeyInfo>

38 </ds:Signature>

39 <saml2p:NameIDPolicy

40 Format="urn:oasis:names:tc:SAML:2.0:nameid-format:transient" />

41 <saml2p:RequestedAuthnContext Comparison="minimum">

42 <saml2:AuthnContextClassRef

43 xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion">

44 https://www.spid.gov.it/SpidL1</saml2:AuthnContextClassRef>

45 </saml2p:RequestedAuthnContext>

46 </saml2p:AuthnRequest>

97

A – SAML message flow

A.1.5 IdP to IdP-Proxy

eIDAS Response

1 <saml2p:Response

2 xmlns:saml2p="urn:oasis:names:tc:SAML:2.0:protocol"

3 Destination="https://idp-proxy-test-eid4u.polito.it/idpproxy/spidresponse"

4 ID="_3c8e40824598082a3ebe4de11cff5dbf"

5 InResponseTo="_8584766c-8a1a-4b6b-9e8c-9ef2ec7a0f69"

6 IssueInstant="2019-12-05T11:59:51.529Z" Version="2.0">

7 <saml2:Issuer xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion"

8 Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">

9 https://identitycl.infocert.it</saml2:Issuer>

10 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

11 <SignedInfo>

12 <CanonicalizationMethod

13 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

14 <SignatureMethod

15 Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha256" />

16 <Reference URI="#_3c8e40824598082a3ebe4de11cff5dbf">

17 <Transforms>

18 <Transform

19 Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature" /

>

20 <Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

21 </Transforms>

22 <DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256" />

23 <DigestValue>S6/v6uUp3vXajKbzKIqLMrAKkEh938ybfCUfd1VDG2Y=</DigestValue

>

24 </Reference>

25 </SignedInfo>

26 <SignatureValue>

27 ZSNMYM4gQzWbAHRisWhSiDLQswkX9X6bjnv8++6t0JVfapDizNy8zIVSH8UBtg==

28 </SignatureValue>

29 <KeyInfo>

30 <X509Data>

31 <X509Certificate>

32 MIIGbjCCBVagAwIBAgIDFI91MA0GCSqGSIb3DQEBCwUAMIGG3pdz+AzeNQ92mtk

33 </X509Certificate>

34 </X509Data>

35 </KeyInfo>

36 </Signature>

37 <saml2p:Status>

38 <saml2p:StatusCode Value="urn:oasis:names:tc:SAML:2.0:status:Success" />

39 </saml2p:Status>

40 <saml2:Assertion xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion"

41 ID="_9c2c3e33ffaec0f91368fadae2b18286"

42 IssueInstant="2019-12-05T11:59:51.529Z" Version="2.0">

43 <saml2:Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">

44 https://identitycl.infocert.it</saml2:Issuer>

45 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

46 <SignedInfo>

47 <CanonicalizationMethod

48 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

49 <SignatureMethod

50 Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha256" />

98

A – SAML message flow

51 <Reference URI="#_9c2c3e33ffaec0f91368fadae2b18286">

52 <Transforms>

53 <Transform

54 Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"

/>

55 <Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

56 </Transforms>

57 <DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256" />

58 <DigestValue>KYYVLvoNHl6Sbdr5ma1QHt5pkZOHwFy6CERRM7oC5wI=

59 </DigestValue>

60 </Reference>

61 </SignedInfo>

62 <SignatureValue>

63 DLBlEU1apuSaktgCG4p1YUP6Hor8x72997KuVXEU1/c6stX91O9I8hU1mZcD1ysw==

64 </SignatureValue>

65 <KeyInfo>

66 <X509Data>

67 <X509Certificate>

68 MIIGbjCCBVagAwIBAgIDFI91MA0GCSqGSIb3DQEB+AzeNQ92mtk

69 </X509Certificate>

70 </X509Data>

71 </KeyInfo>

72 </Signature>

73 <saml2:Subject>

74 <saml2:NameID Format="urn:oasis:names:tc:SAML:2.0:nameid-

format:transient"

75 NameQualifier="https://identitycl.infocert.it">

76 _9bc06745b840b6844dc1567fa52dd4ca</saml2:NameID>

77 <saml2:SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:bearer

">

78 <saml2:SubjectConfirmationData

79 InResponseTo="_8584766c-8a1a-4b6b-9e8c-9ef2ec7a0f69"

80 NotOnOrAfter="2019-12-05T12:00:21.529Z"

81 Recipient="https://idp-proxy-test-eid4u.polito.it/idpproxy/

spidresponse" />

82 </saml2:SubjectConfirmation>

83 </saml2:Subject>

84 <saml2:Conditions NotBefore="2019-12-05T11:59:50.529Z"

85 NotOnOrAfter="2019-12-05T12:00:21.529Z">

86 <saml2:AudienceRestriction>

87 <saml2:Audience>https://idp-proxy-test-eid4u.polito.it/idpproxy

88 </saml2:Audience>

89 </saml2:AudienceRestriction>

90 </saml2:Conditions>

91 <saml2:AuthnStatement AuthnInstant="2019-12-05T11:59:51.529Z"

92 SessionIndex="_9e00984bef4aa4d02f8ba5f6687d3143"

93 SessionNotOnOrAfter="2019-12-05T12:29:51.529Z">

94 <saml2:AuthnContext>

95 <saml2:AuthnContextClassRef>https://www.spid.gov.it/SpidL1

96 </saml2:AuthnContextClassRef>

97 </saml2:AuthnContext>

98 </saml2:AuthnStatement>

99 <saml2:AttributeStatement>

100 <saml2:Attribute FriendlyName="Codice identificativo SPID"

101 Name="spidCode">

102 <saml2:AttributeValue xmlns:xs="http://www.w3.org/2001/XMLSchema"

103 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

99

A – SAML message flow

104 xsi:type="xs:string">INFC0001TESTEU</saml2:AttributeValue>

105 </saml2:Attribute>

106 <saml2:Attribute FriendlyName="Nome" Name="name">

107 <saml2:AttributeValue xmlns:xs="http://www.w3.org/2001/XMLSchema"

108 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

109 xsi:type="xs:string">Arianna</saml2:AttributeValue>

110 </saml2:Attribute>

111 <saml2:Attribute FriendlyName="Cognome" Name="familyName">

112 <saml2:AttributeValue xmlns:xs="http://www.w3.org/2001/XMLSchema"

113 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

114 xsi:type="xs:string">Garbini</saml2:AttributeValue>

115 </saml2:Attribute>

116 <saml2:Attribute FriendlyName="Data di nascita" Name="dateOfBirth">

117 <saml2:AttributeValue xmlns:xs="http://www.w3.org/2001/XMLSchema"

118 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

119 xsi:type="xs:date">1968-05-22</saml2:AttributeValue>

120 </saml2:Attribute>

121 </saml2:AttributeStatement>

122 </saml2:Assertion>

123 </saml2p:Response>

A.1.6 IdP-Proxy to eIDAS-Service

eIDAS Response

1 <saml2p:Response

2 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

3 xmlns:eidas="http://eidas.europa.eu/attributes/naturalperson"

4 xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion"

5 xmlns:saml2p="urn:oasis:names:tc:SAML:2.0:protocol"

6 Consent="urn:oasis:names:tc:SAML:2.0:consent:obtained"

7 Destination="https://service-test-eid4u.polito.it/EidasNode/IdpResponse"

8 ID="_ZQzG0YhpTqMUJbWTxsQ33h8KuZHpL6oapTXjVOkh282Rb1vKAuiM1bcyp5ed2T8"

9 InResponseTo="_.EZpVuMOZd7ZnGsMDB5TpyVfoCI5-tsP.Cylt-4

gjHrE1gpMTnp6jpHB2M0zT5g"

10 IssueInstant="2019-12-05T11:59:52.038Z" Version="2.0">

11 <saml2:Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">

12 https://idp-proxy-test-eid4u.polito.it/idpproxy/idpeumetadata</

saml2:Issuer>

13 <ds:Signature>

14 <ds:SignedInfo>

15 <ds:CanonicalizationMethod

16 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

17 <ds:SignatureMethod

18 Algorithm="http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha512" />

19 <ds:Reference

20 URI="#_ZQzG0YhpTqMUJbWTxsQ33h8KuZHpL6oapTXjVOkh282Rb1vKAuiM1bcyp5ed2T8

">

21 <ds:Transforms>

22 <ds:Transform

23 Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature" /

>

24 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

100

A – SAML message flow

25 </ds:Transforms>

26 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha512" /

>

27 <ds:DigestValue>

28 lRodIi87qEvmZRIOYsd24hojAOFBM4Ki+DY6Y1o9RVKXerEHOPHOuUv3Lw==

29 </ds:DigestValue>

30 </ds:Reference>

31 </ds:SignedInfo>

32 <ds:SignatureValue>

33 UalcLx/Pw8BgbsZrM7m2Da+Cfedd7iS3ah2Y1Lq57NTF13/6gNgR4BO9o

34 </ds:SignatureValue>

35 <ds:KeyInfo>

36 <ds:X509Data>

37 <ds:X509Certificate>

38 MIICKzCCAbKgAwIBAgIULN+lE5fV1h5DCYZIUA/X1jBO4NKgd5LacxXfSAA==

39 </ds:X509Certificate>

40 </ds:X509Data>

41 </ds:KeyInfo>

42 </ds:Signature>

43 <saml2p:Status>

44 <saml2p:StatusCode Value="urn:oasis:names:tc:SAML:2.0:status:Success" />

45 <saml2p:StatusMessage>urn:oasis:names:tc:SAML:2.0:status:Success

46 </saml2p:StatusMessage>

47 </saml2p:Status>

48 <saml2:EncryptedAssertion>

49 <xenc:EncryptedData xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"

50 Id="_9edfcba8f58bfdc4113781a84f15cfc7"

51 Type="http://www.w3.org/2001/04/xmlenc#Element">

52 <xenc:EncryptionMethod

53 Algorithm="http://www.w3.org/2009/xmlenc11#aes256-gcm" />

54 <ds:KeyInfo>

55 <xenc:EncryptedKey Id="_f8ee973cef7ae93d8ec4d44356891aba">

56 <xenc:EncryptionMethod

57 Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p">

58 <ds:DigestMethod

59 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

60 </xenc:EncryptionMethod>

61 <ds:KeyInfo>

62 <ds:X509Data>

63 <ds:X509Certificate>

64 MIIF5DCCA8ygAwIBAgIJ/jp1OA33sCi6SZKgR9Q2Fzp3HkLQF</

ds:X509Certificate>

65 </ds:X509Data>

66 </ds:KeyInfo>

67 <xenc:CipherData>

68 <xenc:CipherValue>

69 oH3ZPDFzj2lY3mOadg5BhReSUCdEt2wXDuJ9lo9ArdNu3seemV3cQ=

70 </xenc:CipherValue>

71 </xenc:CipherData>

72 </xenc:EncryptedKey>

73 </ds:KeyInfo>

74 <xenc:CipherData>

75 <xenc:CipherValue>

76 RTkNNq5nSxSttWv3mTNMcJYmWrj5PV9Tdkm4xbGESvGJYdkEzO0

77 </xenc:CipherValue>

78 </xenc:CipherData>

79 </xenc:EncryptedData>

101

A – SAML message flow

80 </saml2:EncryptedAssertion>

81 </saml2p:Response>

A.1.7 eIDAS-Service to eIDAS-Connector

eIDAS Response

1 <saml2p:Response

2 xmlns:saml2p="urn:oasis:names:tc:SAML:2.0:protocol"

3 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

4 xmlns:eidas="http://eidas.europa.eu/attributes/naturalperson"

5 xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion"

6 Consent="urn:oasis:names:tc:SAML:2.0:consent:obtained"

7 Destination="https://connector-test-eid4u.polito.it/EidasNode/

ColleagueResponse"

8 ID="_QTFr0xaKSBn9GXDKsSbaeDN7uAHDgYsvxgusylX2YsP7bVsvO.xEk-5k6Uv5DvC"

9 InResponseTo="

_FjbjwldU1NU1AhQy62czTmiZXGC4xveAXQrkxQA86i8bI6OFoY2a02CAfmw_T8E"

10 IssueInstant="2019-12-05T11:59:53.014Z" Version="2.0">

11 <saml2:Issuer xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion"

12 Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">

13 https://service-test-eid4u.polito.it/EidasNode/ServiceMetadata

14 </saml2:Issuer>

15 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

16 <ds:SignedInfo>

17 <ds:CanonicalizationMethod

18 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

19 <ds:SignatureMethod

20 Algorithm="http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha512" />

21 <ds:Reference

22 URI="#_QTFr0xaKSBn9GXDKsSbaeDN7uAHDgYsvxgusylX2YsP7bVsvO.xEk-5k6Uv5DvC

">

23 <ds:Transforms>

24 <ds:Transform

25 Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature" /

>

26 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

27 </ds:Transforms>

28 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha512" /

>

29 <ds:DigestValue>

30 DXXdUY2ulkd0HYH8gug5FgR+R80e1yEHuY44vm21i7+Qz3IQST9wzmA==

31 </ds:DigestValue>

32 </ds:Reference>

33 </ds:SignedInfo>

34 <ds:SignatureValue>

35 KOEyyjKl/YngVVZZLZ+wo12Uxn+9J7MAEWfdd4XOPVBIkRFL/tIuVr8nLmRIi

36 </ds:SignatureValue>

37 <ds:KeyInfo>

38 <ds:X509Data>

39 <ds:X509Certificate>

40 MIICkjCCAhmgAwIBAgIJD/kZEHLTjIeOUbmhqZhWe5szL0E=</ds:X509Certificate>

41 </ds:X509Data>

102

A – SAML message flow

42 </ds:KeyInfo>

43 </ds:Signature>

44 <saml2p:Status xmlns:saml2p="urn:oasis:names:tc:SAML:2.0:protocol">

45 <saml2p:StatusCode Value="urn:oasis:names:tc:SAML:2.0:status:Success" />

46 <saml2p:StatusMessage>urn:oasis:names:tc:SAML:2.0:status:Success

47 </saml2p:StatusMessage>

48 </saml2p:Status>

49 <saml2:EncryptedAssertion xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion

">

50 <xenc:EncryptedData xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"

51 Id="_ca63412f5d01634d007beed3021b48e5"

52 Type="http://www.w3.org/2001/04/xmlenc#Element">

53 <xenc:EncryptionMethod xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"

54 Algorithm="http://www.w3.org/2009/xmlenc11#aes256-gcm" />

55 <ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

56 <xenc:EncryptedKey xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"

57 Id="_e2d5815d15fff5d0ba4726bffd9f326d">

58 <xenc:EncryptionMethod xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"

59 Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p">

60 <ds:DigestMethod xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

61 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

62 </xenc:EncryptionMethod>

63 <ds:KeyInfo>

64 <ds:X509Data>

65 <ds:X509Certificate>

66 MIIF4jCCA8qgAwIBAgIJAMlkjGOLNh9TEekfKjQTA==</ds:X509Certificate

>

67 </ds:X509Data>

68 </ds:KeyInfo>

69 <xenc:CipherData xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">

70 <xenc:CipherValue>

71 Le4qm56nQ7vAFYalDCCQl+oSWte71RtcSkmRIe4/mEP8LjvvrnI=

72 </xenc:CipherValue>

73 </xenc:CipherData>

74 </xenc:EncryptedKey>

75 </ds:KeyInfo>

76 <xenc:CipherData xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">

77 <xenc:CipherValue>

78 wwdgMtOmV63Vwn0CNsolufalAVt6ePHxBuQyKcs0VumD4m+etMIj93bs=

79 </xenc:CipherValue>

80 </xenc:CipherData>

81 </xenc:EncryptedData>

82 </saml2:EncryptedAssertion>

83 </saml2p:Response>

A.1.8 eIDAS-Connector to Zeroshell

eIDAS Response

1 <saml2p:Response

2 xmlns:saml2p="urn:oasis:names:tc:SAML:2.0:protocol"

3 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

4 xmlns:eidas="http://eidas.europa.eu/attributes/naturalperson"

103

A – SAML message flow

5 xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion"

6 Consent="urn:oasis:names:tc:SAML:2.0:consent:obtained"

7 Destination="https://zeroshell.example.com:12081/Shibboleth.sso/SAML2/POST"

8 ID="_eUOwabdGEH00WQzrkxyQcBCYGiuKRGzLMh8eJPfRlZbH_dFACIoV3c3-O0YcSq6"

9 InResponseTo="_ca4107656fd18b527ae2ebeffeae4596"

10 IssueInstant="2019-12-05T12:00:08.907Z" Version="2.0">

11 <saml2:Issuer xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion"

12 Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">

13 https://connector-test-eid4u.polito.it/EidasNode/

ConnectorResponderMetadata

14 </saml2:Issuer>

15 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

16 <ds:SignedInfo>

17 <ds:CanonicalizationMethod

18 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

19 <ds:SignatureMethod

20 Algorithm="http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha512" />

21 <ds:Reference

22 URI="#_eUOwabdGEH00WQzrkxyQcBCYGiuKRGzLMh8eJPfRlZbH_dFACIoV3c3-O0YcSq6

">

23 <ds:Transforms>

24 <ds:Transform

25 Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature" /

>

26 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

27 </ds:Transforms>

28 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha512" /

>

29 <ds:DigestValue>

30 PaAqtga4al15ZLj3spWntEPiWPSi0hPKQPqaEkR1k6rcMDnV9bddzVt1DjcQ==

31 </ds:DigestValue>

32 </ds:Reference>

33 </ds:SignedInfo>

34 <ds:SignatureValue>

35 97SNue/47xd11dT/XmEQJuSENSFHWDSc4MbFjHBmA0HSg+MYTTboFZa/FK

36 </ds:SignatureValue>

37 <ds:KeyInfo>

38 <ds:X509Data>

39 <ds:X509Certificate>

40 MIICkTCCAhegAwIBAgIJ5xIKP225l8LbVTpYnHEB8ORHag==</ds:X509Certificate>

41 </ds:X509Data>

42 </ds:KeyInfo>

43 </ds:Signature>

44 <saml2p:Status xmlns:saml2p="urn:oasis:names:tc:SAML:2.0:protocol">

45 <saml2p:StatusCode Value="urn:oasis:names:tc:SAML:2.0:status:Success" />

46 <saml2p:StatusMessage>urn:oasis:names:tc:SAML:2.0:status:Success

47 </saml2p:StatusMessage>

48 </saml2p:Status>

49 <saml2:EncryptedAssertion xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion

">

50 <xenc:EncryptedData xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"

51 Id="_20202c9bc18ec474dcb604bf966d6a3a"

52 Type="http://www.w3.org/2001/04/xmlenc#Element">

53 <xenc:EncryptionMethod xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"

54 Algorithm="http://www.w3.org/2001/04/xmlenc#aes256-cbc" />

55 <ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

56 <xenc:EncryptedKey xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"

104

A – SAML message flow

57 Id="_c84fc55617c1200daeabf0349bcdc629">

58 <xenc:EncryptionMethod xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"

59 Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p">

60 <ds:DigestMethod xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

61 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

62 </xenc:EncryptionMethod>

63 <ds:KeyInfo>

64 <ds:X509Data>

65 <ds:X509Certificate>

66 MIIFKjCCAxKgAwIBAgIJeXgwLVUVCTjEeNOGZ</ds:X509Certificate>

67 </ds:X509Data>

68 </ds:KeyInfo>

69 <xenc:CipherData xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">

70 <xenc:CipherValue>

71 QXsLafFQwx6M3JMlne94nFQb2GD+Cb5MGgj5EpRvmXQJBodG9yIEHmy5c=

72 </xenc:CipherValue>

73 </xenc:CipherData>

74 </xenc:EncryptedKey>

75 </ds:KeyInfo>

76 <xenc:CipherData xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">

77 <xenc:CipherValue>

78 IjZ0ZTpNBvV1aIHh/574jnsUJeu1gpYQUEYzlC2CRC0zmrJg/zkiMHC1eAMCn/Qa/7

Kt4mFFg/TA=

79 </xenc:CipherValue>

80 </xenc:CipherData>

81 </xenc:EncryptedData>

82 </saml2:EncryptedAssertion>

83 </saml2p:Response>

A.2 SAML message flow example with Wifi-Auth eIDAS-
SP

A.2.1 Wifi-Auth eIDAS-SP to eIDAS-Connector

eIDAS Request

1 <saml2p:AuthnRequest xmlns:saml2p="urn:oasis:names:tc:SAML:2.0:protocol"

2 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

3 xmlns:eidas="http://eidas.europa.eu/saml-extensions"

4 xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion"

5 Consent="urn:oasis:names:tc:SAML:2.0:consent:unspecified"

6 Destination="https://connector-test-eid4u.polito.it/EidasNode/

ServiceProvider"

7 ForceAuthn="true"

8 ID="_sRmCiBCyS21tAgWrQeJcpWr.PefcyCiGQbsDvjHE5xn27Wxhh0uqF1.anRGGpBq"

9 IsPassive="false" IssueInstant="2019-12-05T12:40:44.725Z"

10 ProviderName="WIFI-AUTH" Version="2.0">

11 <saml2:Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">

12 https://wifi-auth-eid4u.polito.it/SP/metadata</saml2:Issuer>

13 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

14 <ds:SignedInfo>

15 <ds:CanonicalizationMethod

105

A – SAML message flow

16 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

17 <ds:SignatureMethod

18 Algorithm="http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha512" />

19 <ds:Reference

20 URI="#_sRmCiBCyS21tAgWrQeJcpWr.PefcyCiGQbsDvjHE5xn27Wxhh0uqF1.anRGGpBq

">

21 <ds:Transforms>

22 <ds:Transform

23 Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature" /

>

24 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

25 </ds:Transforms>

26 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha512" /

>

27 <ds:DigestValue>

28 wTkyL8TbnF32cn8pL7tVVuLjXLYV4iYP13rJJ

29 </ds:DigestValue>

30 </ds:Reference>

31 </ds:SignedInfo>

32 <ds:SignatureValue>

33 bCsn2tlq2bXDu9ElLd31ddxU8Dbexqv5aj9KBD0LY

34 </ds:SignatureValue>

35 <ds:KeyInfo>

36 <ds:X509Data>

37 <ds:X509Certificate>

38 MIICXzCCAeagAwIBAgIUNBxE8ZRQ/bOv83di7pXzA2IzaQxN92qYyC+oOIkw=

39 </ds:X509Certificate>

40 </ds:X509Data>

41 </ds:KeyInfo>

42 </ds:Signature>

43 <saml2p:Extensions>

44 <eidas:SPType>public</eidas:SPType>

45 <eidas:RequestedAttributes>

46 <eidas:RequestedAttribute FriendlyName="FamilyName"

47 Name="http://eidas.europa.eu/attributes/naturalperson/

CurrentFamilyName"

48 NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri"

49 isRequired="true" />

50 <eidas:RequestedAttribute FriendlyName="FirstName"

51 Name="http://eidas.europa.eu/attributes/naturalperson/CurrentGivenName

"

52 NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri"

53 isRequired="true" />

54 <eidas:RequestedAttribute FriendlyName="DateOfBirth"

55 Name="http://eidas.europa.eu/attributes/naturalperson/DateOfBirth"

56 NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri"

57 isRequired="true" />

58 <eidas:RequestedAttribute FriendlyName="PersonIdentifier"

59 Name="http://eidas.europa.eu/attributes/naturalperson/PersonIdentifier

"

60 NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri"

61 isRequired="true" />

62 </eidas:RequestedAttributes>

63 </saml2p:Extensions>

64 <saml2p:NameIDPolicy AllowCreate="true"

65 Format="urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified" />

66 <saml2p:RequestedAuthnContext Comparison="minimum">

106

A – SAML message flow

67 <saml2:AuthnContextClassRef>http://eidas.europa.eu/LoA/low

68 </saml2:AuthnContextClassRef>

69 </saml2p:RequestedAuthnContext>

70 </saml2p:AuthnRequest>

A.2.2 eIDAS-Connector to eIDAS-Service

eIDAS Request

1 <saml2p:AuthnRequest xmlns:saml2p="urn:oasis:names:tc:SAML:2.0:protocol"

2 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

3 xmlns:eidas="http://eidas.europa.eu/saml-extensions"

4 xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion"

5 Consent="urn:oasis:names:tc:SAML:2.0:consent:unspecified"

6 Destination="https://service-test-eid4u.polito.it/EidasNode/ColleagueRequest

"

7 ForceAuthn="true"

8 ID="_882EW-EpjxyDF_YTH0Ow0KUlFYNPzhXmurz31yHJ6N0Cht.dr0pZaMYO3t1suh6"

9 IsPassive="false" IssueInstant="2019-12-05T12:40:46.796Z"

10 ProviderName="WIFI-AUTH" Version="2.0">

11 <saml2:Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">

12 https://connector-test-eid4u.polito.it/EidasNode/ConnectorMetadata

13 </saml2:Issuer>

14 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

15 <ds:SignedInfo>

16 <ds:CanonicalizationMethod

17 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

18 <ds:SignatureMethod

19 Algorithm="http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha512" />

20 <ds:Reference

21 URI="#_882EW-EpjxyDF_YTH0Ow0KUlFYNPzhXmurz31yHJ6N0Cht.dr0pZaMYO3t1suh6

">

22 <ds:Transforms>

23 <ds:Transform

24 Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature" /

>

25 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

26 </ds:Transforms>

27 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha512" /

>

28 <ds:DigestValue>

29 UZ6y1xmE5UaAbjQLttZlu+ypdlMdXF7SYcFEkcbV2BZYh+

30 </ds:DigestValue>

31 </ds:Reference>

32 </ds:SignedInfo>

33 <ds:SignatureValue>

34 ugStb0y0s4yoMpbwsINurQnKaYMCGsDzXC67sJSPUPjcX

35 </ds:SignatureValue>

36 <ds:KeyInfo>

37 <ds:X509Data>

38 <ds:X509Certificate>

39 MIICkTCCAhegAwIBAgIJAMIxa5EPQZdFMAoGbVTpYnHEB8ORHag==

40 </ds:X509Certificate>

107

A – SAML message flow

41 </ds:X509Data>

42 </ds:KeyInfo>

43 </ds:Signature>

44 <saml2p:Extensions>

45 <eidas:RequestedAttributes>

46 <eidas:RequestedAttribute FriendlyName="FamilyName"

47 Name="http://eidas.europa.eu/attributes/naturalperson/

CurrentFamilyName"

48 NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri"

49 isRequired="true" />

50 <eidas:RequestedAttribute FriendlyName="FirstName"

51 Name="http://eidas.europa.eu/attributes/naturalperson/CurrentGivenName

"

52 NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri"

53 isRequired="true" />

54 <eidas:RequestedAttribute FriendlyName="DateOfBirth"

55 Name="http://eidas.europa.eu/attributes/naturalperson/DateOfBirth"

56 NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri"

57 isRequired="true" />

58 <eidas:RequestedAttribute FriendlyName="PersonIdentifier"

59 Name="http://eidas.europa.eu/attributes/naturalperson/PersonIdentifier

"

60 NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri"

61 isRequired="true" />

62 </eidas:RequestedAttributes>

63 </saml2p:Extensions>

64 <saml2p:NameIDPolicy AllowCreate="true"

65 Format="urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified" />

66 <saml2p:RequestedAuthnContext Comparison="minimum">

67 <saml2:AuthnContextClassRef>http://eidas.europa.eu/LoA/low

68 </saml2:AuthnContextClassRef>

69 </saml2p:RequestedAuthnContext>

70 </saml2p:AuthnRequest>

A.2.3 eIDAS-Service to IdP-Proxy

eIDAS Request

1 <saml2p:AuthnRequest xmlns:saml2p="urn:oasis:names:tc:SAML:2.0:protocol"

2 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

3 xmlns:eidas="http://eidas.europa.eu/saml-extensions"

4 xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion"

5 Consent="urn:oasis:names:tc:SAML:2.0:consent:unspecified"

6 Destination="https://idp-proxy-test-eid4u.polito.it/idpproxy/idpeurequest"

7 ForceAuthn="true"

8 ID="_-7T6xlFmkoz71PO3Kl9vKLYXl6ZVyaSw.QSHmLrmnFwKEJiUymd-HmX3ELnRBVL"

9 IsPassive="false" IssueInstant="2019-12-05T12:40:56.889Z"

10 ProviderName="WIFI-AUTH" Version="2.0">

11 <saml2:Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">

12 https://service-test-eid4u.polito.it/EidasNode/ServiceRequesterMetadata

13 </saml2:Issuer>

14 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

15 <ds:SignedInfo>

108

A – SAML message flow

16 <ds:CanonicalizationMethod

17 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

18 <ds:SignatureMethod

19 Algorithm="http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha512" />

20 <ds:Reference

21 URI="#_-7T6xlFmkoz71PO3Kl9vKLYXl6ZVyaSw.QSHmLrmnFwKEJiUymd-HmX3ELnRBVL

">

22 <ds:Transforms>

23 <ds:Transform

24 Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature" /

>

25 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

26 </ds:Transforms>

27 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha512" /

>

28 <ds:DigestValue>

29 DiiQHHPZemttkPc25niwtQ6YScGi/q8S8WadVAJH0hNe

30 </ds:DigestValue>

31 </ds:Reference>

32 </ds:SignedInfo>

33 <ds:SignatureValue>

34 z8y/gjXEoI4dutsqGjqVmX1Onc1Ed3dv4+cqhA1kCptVOhlOCJgQ7

35 </ds:SignatureValue>

36 <ds:KeyInfo>

37 <ds:X509Data>

38 <ds:X509Certificate>

39 MIICkjCCAhmgAwIBAgIJAPpljANQoDs1MAoGCCqGSM49BbmhqZhWe5szL0E=

40 </ds:X509Certificate>

41 </ds:X509Data>

42 </ds:KeyInfo>

43 </ds:Signature>

44 <saml2p:Extensions>

45 <eidas:SPType>public</eidas:SPType>

46 <eidas:RequestedAttributes>

47 <eidas:RequestedAttribute FriendlyName="FamilyName"

48 Name="http://eidas.europa.eu/attributes/naturalperson/

CurrentFamilyName"

49 NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri"

50 isRequired="true" />

51 <eidas:RequestedAttribute FriendlyName="FirstName"

52 Name="http://eidas.europa.eu/attributes/naturalperson/CurrentGivenName

"

53 NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri"

54 isRequired="true" />

55 <eidas:RequestedAttribute FriendlyName="DateOfBirth"

56 Name="http://eidas.europa.eu/attributes/naturalperson/DateOfBirth"

57 NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri"

58 isRequired="true" />

59 <eidas:RequestedAttribute FriendlyName="PersonIdentifier"

60 Name="http://eidas.europa.eu/attributes/naturalperson/PersonIdentifier

"

61 NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri"

62 isRequired="true" />

63 </eidas:RequestedAttributes>

64 </saml2p:Extensions>

65 <saml2p:NameIDPolicy AllowCreate="true"

66 Format="urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified" />

109

A – SAML message flow

67 <saml2p:RequestedAuthnContext Comparison="minimum">

68 <saml2:AuthnContextClassRef>http://eidas.europa.eu/LoA/low

69 </saml2:AuthnContextClassRef>

70 </saml2p:RequestedAuthnContext>

71 </saml2p:AuthnRequest>

A.2.4 IdP-Proxy to IdP

eIDAS Request

1 <saml2p:AuthnRequest xmlns:saml2p="urn:oasis:names:tc:SAML:2.0:protocol"

2 AssertionConsumerServiceIndex="0" AttributeConsumingServiceIndex="1"

3 Destination="https://identitycl.infocert.it" ForceAuthn="true"

4 ID="_7861263d-c009-4ea1-b39e-bf041148ed92"

5 IssueInstant="2019-12-05T12:41:04.283Z" Version="2.0">

6 <saml2:Issuer xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion"

7 Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity"

8 NameQualifier="https://idp-proxy.test.eid.gov.it/idpproxy">

9 https://idp-proxy-test-eid4u.polito.it/idpproxy</saml2:Issuer>

10 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

11 <ds:SignedInfo>

12 <ds:CanonicalizationMethod

13 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

14 <ds:SignatureMethod

15 Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha256" />

16 <ds:Reference URI="#_7861263d-c009-4ea1-b39e-bf041148ed92">

17 <ds:Transforms>

18 <ds:Transform

19 Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature" /

>

20 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

21 </ds:Transforms>

22 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256" /

>

23 <ds:DigestValue>5oEsIZbMjN67wEAY3zNAaQ/oYaPFLef3Laih+Ac1GEI=

24 </ds:DigestValue>

25 </ds:Reference>

26 </ds:SignedInfo>

27 <ds:SignatureValue>

28 h0S1DDSmQ+rcYPcgz+z41NU1pGYQ3dj0cSovMzcoHOohdkrb

29 </ds:SignatureValue>

30 <ds:KeyInfo>

31 <ds:X509Data>

32 <ds:X509Certificate>

33 MIIDcDCCAligAwIBAgIJAPTLdfHNBOuRMA0GCSqGG3fs/xk=

34 </ds:X509Certificate>

35 </ds:X509Data>

36 </ds:KeyInfo>

37 </ds:Signature>

38 <saml2p:NameIDPolicy

39 Format="urn:oasis:names:tc:SAML:2.0:nameid-format:transient" />

40 <saml2p:RequestedAuthnContext Comparison="minimum">

41 <saml2:AuthnContextClassRef

110

A – SAML message flow

42 xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion">

43 https://www.spid.gov.it/SpidL1</saml2:AuthnContextClassRef>

44 </saml2p:RequestedAuthnContext>

45 </saml2p:AuthnRequest>

A.2.5 IdP to IdP-Proxy

eIDAS Response

1 <saml2p:Response xmlns:saml2p="urn:oasis:names:tc:SAML:2.0:protocol"

2 Destination="https://idp-proxy-test-eid4u.polito.it/idpproxy/spidresponse"

3 ID="_cedfaf7594c9aef38cecafaf593cb125"

4 InResponseTo="_7861263d-c009-4ea1-b39e-bf041148ed92"

5 IssueInstant="2019-12-05T12:41:11.698Z" Version="2.0">

6 <saml2:Issuer xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion"

7 Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">

8 https://identitycl.infocert.it</saml2:Issuer>

9 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

10 <SignedInfo>

11 <CanonicalizationMethod

12 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

13 <SignatureMethod

14 Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha256" />

15 <Reference URI="#_cedfaf7594c9aef38cecafaf593cb125">

16 <Transforms>

17 <Transform

18 Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature" /

>

19 <Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

20 </Transforms>

21 <DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256" />

22 <DigestValue>sgYxg5mKk9XS44uyyQQGcXESxv2eMpnqN6RNb3Lh8RI=</DigestValue

>

23 </Reference>

24 </SignedInfo>

25 <SignatureValue>

26 JpUZ+lbSgcTpaVhHsz2h96DiGOecq6c1tpa0QZwaoXpM7im

27 </SignatureValue>

28 <KeyInfo>

29 <X509Data>

30 <X509Certificate>

31 MIIGbjCCBVagAwIBAgIDFI91MA0GCSqGSIb3DQEBCwUAMI+AzeNQ92mtk

32 </X509Certificate>

33 </X509Data>

34 </KeyInfo>

35 </Signature>

36 <saml2p:Status>

37 <saml2p:StatusCode Value="urn:oasis:names:tc:SAML:2.0:status:Success" />

38 </saml2p:Status>

39 <saml2:Assertion xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion"

40 ID="_98fda83df8ae11e7110bcd55616085a1"

41 IssueInstant="2019-12-05T12:41:11.698Z" Version="2.0">

42 <saml2:Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">

111

A – SAML message flow

43 https://identitycl.infocert.it</saml2:Issuer>

44 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

45 <SignedInfo>

46 <CanonicalizationMethod

47 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

48 <SignatureMethod

49 Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha256" />

50 <Reference URI="#_98fda83df8ae11e7110bcd55616085a1">

51 <Transforms>

52 <Transform

53 Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"

/>

54 <Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

55 </Transforms>

56 <DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256" />

57 <DigestValue>NlXYPey2JqjdEWLOjYx/Unu1s3BafBBHtT4ikDjQ0XM=

58 </DigestValue>

59 </Reference>

60 </SignedInfo>

61 <SignatureValue>

62 pSmAQwbFC/VhOhkzNnbbPOmjyjIn7T39GaFS6/6ujmfv2jTQlouFg6

63 </SignatureValue>

64 <KeyInfo>

65 <X509Data>

66 <X509Certificate>

67 MIIGbjCCBVagAwIBAgIDFI91MA0GCSqGSIb3DQEBCwUAMIGGMQ+AzeNQ92mtk

68 </X509Certificate>

69 </X509Data>

70 </KeyInfo>

71 </Signature>

72 <saml2:Subject>

73 <saml2:NameID Format="urn:oasis:names:tc:SAML:2.0:nameid-

format:transient"

74 NameQualifier="https://identitycl.infocert.it">

75 _3bee572907e174f4b4e34e5dca106b61</saml2:NameID>

76 <saml2:SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:bearer

">

77 <saml2:SubjectConfirmationData

78 InResponseTo="_7861263d-c009-4ea1-b39e-bf041148ed92"

79 NotOnOrAfter="2019-12-05T12:41:41.698Z"

80 Recipient="https://idp-proxy-test-eid4u.polito.it/idpproxy/

spidresponse" />

81 </saml2:SubjectConfirmation>

82 </saml2:Subject>

83 <saml2:Conditions NotBefore="2019-12-05T12:41:10.698Z"

84 NotOnOrAfter="2019-12-05T12:41:41.698Z">

85 <saml2:AudienceRestriction>

86 <saml2:Audience>https://idp-proxy-test-eid4u.polito.it/idpproxy

87 </saml2:Audience>

88 </saml2:AudienceRestriction>

89 </saml2:Conditions>

90 <saml2:AuthnStatement AuthnInstant="2019-12-05T12:41:11.698Z"

91 SessionIndex="_8f8cb76addf6c22d1ea84da9457a7ca3"

92 SessionNotOnOrAfter="2019-12-05T13:11:11.698Z">

93 <saml2:AuthnContext>

94 <saml2:AuthnContextClassRef>https://www.spid.gov.it/SpidL1

95 </saml2:AuthnContextClassRef>

112

A – SAML message flow

96 </saml2:AuthnContext>

97 </saml2:AuthnStatement>

98 <saml2:AttributeStatement>

99 <saml2:Attribute FriendlyName="Codice identificativo SPID"

100 Name="spidCode">

101 <saml2:AttributeValue xmlns:xs="http://www.w3.org/2001/XMLSchema"

102 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

103 xsi:type="xs:string">INFC0001TESTEU</saml2:AttributeValue>

104 </saml2:Attribute>

105 <saml2:Attribute FriendlyName="Nome" Name="name">

106 <saml2:AttributeValue xmlns:xs="http://www.w3.org/2001/XMLSchema"

107 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

108 xsi:type="xs:string">Arianna</saml2:AttributeValue>

109 </saml2:Attribute>

110 <saml2:Attribute FriendlyName="Cognome" Name="familyName">

111 <saml2:AttributeValue xmlns:xs="http://www.w3.org/2001/XMLSchema"

112 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

113 xsi:type="xs:string">Garbini</saml2:AttributeValue>

114 </saml2:Attribute>

115 <saml2:Attribute FriendlyName="Data di nascita" Name="dateOfBirth">

116 <saml2:AttributeValue xmlns:xs="http://www.w3.org/2001/XMLSchema"

117 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

118 xsi:type="xs:date">1968-05-22</saml2:AttributeValue>

119 </saml2:Attribute>

120 </saml2:AttributeStatement>

121 </saml2:Assertion>

122 </saml2p:Response>

A.2.6 IdP-Proxy to eIDAS-Service

eIDAS Response

1 <saml2p:Response xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

2 xmlns:eidas="http://eidas.europa.eu/attributes/naturalperson"

3 xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion"

4 xmlns:saml2p="urn:oasis:names:tc:SAML:2.0:protocol"

5 Consent="urn:oasis:names:tc:SAML:2.0:consent:obtained"

6 Destination="https://service-test-eid4u.polito.it/EidasNode/IdpResponse"

7 ID="_I4HYGVHFIjlFEf4dgW7sW6TqXvrwBatziQiAUez3nS.j4QmyVPOHtFPFJRwBNdN"

8 InResponseTo="_-7T6xlFmkoz71PO3Kl9vKLYXl6ZVyaSw.QSHmLrmnFwKEJiUymd-

HmX3ELnRBVL"

9 IssueInstant="2019-12-05T12:41:12.706Z" Version="2.0">

10 <saml2:Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">

11 https://idp-proxy-test-eid4u.polito.it/idpproxy/idpeumetadata</

saml2:Issuer>

12 <ds:Signature>

13 <ds:SignedInfo>

14 <ds:CanonicalizationMethod

15 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

16 <ds:SignatureMethod

17 Algorithm="http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha512" />

18 <ds:Reference

113

A – SAML message flow

19 URI="#_I4HYGVHFIjlFEf4dgW7sW6TqXvrwBatziQiAUez3nS.j4QmyVPOHtFPFJRwBNdN

">

20 <ds:Transforms>

21 <ds:Transform

22 Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature" /

>

23 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

24 </ds:Transforms>

25 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha512" /

>

26 <ds:DigestValue>

27 PaV/864iNZEjTUedrNmFsUXEpo1JLbmrB5iWABAR4o

28 </ds:DigestValue>

29 </ds:Reference>

30 </ds:SignedInfo>

31 <ds:SignatureValue>

32 OtBxYdJTYIG35sEwXnG3oQbmzYLHsfsPkpy0QPMrD1z4Vl

33 </ds:SignatureValue>

34 <ds:KeyInfo>

35 <ds:X509Data>

36 <ds:X509Certificate>

37 MIICKzCCAbKgAwIBAgIULN+lE5fJs4K2dOEkpCYZIUA/X1jBO4NKgd5LacxXfSAA==

38 </ds:X509Certificate>

39 </ds:X509Data>

40 </ds:KeyInfo>

41 </ds:Signature>

42 <saml2p:Status>

43 <saml2p:StatusCode Value="urn:oasis:names:tc:SAML:2.0:status:Success" />

44 <saml2p:StatusMessage>urn:oasis:names:tc:SAML:2.0:status:Success

45 </saml2p:StatusMessage>

46 </saml2p:Status>

47 <saml2:EncryptedAssertion>

48 <xenc:EncryptedData xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"

49 Id="_6103a746f246bbe2bd48905d3550cc6b"

50 Type="http://www.w3.org/2001/04/xmlenc#Element">

51 <xenc:EncryptionMethod

52 Algorithm="http://www.w3.org/2009/xmlenc11#aes256-gcm" />

53 <ds:KeyInfo>

54 <xenc:EncryptedKey Id="_22ec0155b2f341ed6212dbdff9bac6fd">

55 <xenc:EncryptionMethod

56 Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p">

57 <ds:DigestMethod

58 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

59 </xenc:EncryptionMethod>

60 <ds:KeyInfo>

61 <ds:X509Data>

62 <ds:X509Certificate>

63 MIIF5DCCA8ygAwIBAgIJANMSzeK2MkKgR9Q2Fzp3HkLQF

64 </ds:X509Certificate>

65 </ds:X509Data>

66 </ds:KeyInfo>

67 <xenc:CipherData>

68 <xenc:CipherValue>

69 gCGKz2mmdykxE5/e5RsTZ7napK01jadr3l4FEEt24qXCKqX6BrL+

XVWgTsU7xxdBKD2BG4Q=

70 </xenc:CipherValue>

71 </xenc:CipherData>

114

A – SAML message flow

72 </xenc:EncryptedKey>

73 </ds:KeyInfo>

74 <xenc:CipherData>

75 <xenc:CipherValue>

76 KvW5v9We8RpDrrOhHU48wc/5VqWJkXw8jtgzzNRzysscRIKd5admeTPMOLmpn

77 </xenc:CipherValue>

78 </xenc:CipherData>

79 </xenc:EncryptedData>

80 </saml2:EncryptedAssertion>

81 </saml2p:Response>

A.2.7 eIDAS-Service to eIDAS-Connector

eIDAS Response

1 <saml2p:Response xmlns:saml2p="urn:oasis:names:tc:SAML:2.0:protocol"

2 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

3 xmlns:eidas="http://eidas.europa.eu/attributes/naturalperson"

4 xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion"

5 Consent="urn:oasis:names:tc:SAML:2.0:consent:obtained"

6 Destination="https://connector-test-eid4u.polito.it/EidasNode/

ColleagueResponse"

7 ID="_s8zPRr1PcaF.mY0waaX8H82emMPCnZE8cqfF08l.xYyFXssDZmIQEL3wk.o8gt_"

8 InResponseTo="_882EW-EpjxyDF_YTH0Ow0KUlFYNPzhXmurz31yHJ6N0Cht.

dr0pZaMYO3t1suh6"

9 IssueInstant="2019-12-05T12:41:14.425Z" Version="2.0">

10 <saml2:Issuer xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion"

11 Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">

12 https://service-test-eid4u.polito.it/EidasNode/ServiceMetadata

13 </saml2:Issuer>

14 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

15 <ds:SignedInfo>

16 <ds:CanonicalizationMethod

17 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

18 <ds:SignatureMethod

19 Algorithm="http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha512" />

20 <ds:Reference

21 URI="#_s8zPRr1PcaF.mY0waaX8H82emMPCnZE8cqfF08l.xYyFXssDZmIQEL3wk.o8gt_

">

22 <ds:Transforms>

23 <ds:Transform

24 Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature" /

>

25 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

26 </ds:Transforms>

27 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha512" /

>

28 <ds:DigestValue>

29 YjdkfGaHbqysyfc2w150zWaNrPnVJDu/nCB+GpTQDNXHYAvNle5qCN

30 </ds:DigestValue>

31 </ds:Reference>

32 </ds:SignedInfo>

33 <ds:SignatureValue>

115

A – SAML message flow

34 T2ETPYZIflBC+lDpbN/ACmwV3/V7s1wS51nhqX3+h46nY+pXsbKeB8k

35 </ds:SignatureValue>

36 <ds:KeyInfo>

37 <ds:X509Data>

38 <ds:X509Certificate>

39 MIICkjCCAhmgAwIBAgIJAPpljANQoDsIeOUbmhqZhWe5szL0E=

40 </ds:X509Certificate>

41 </ds:X509Data>

42 </ds:KeyInfo>

43 </ds:Signature>

44 <saml2p:Status xmlns:saml2p="urn:oasis:names:tc:SAML:2.0:protocol">

45 <saml2p:StatusCode Value="urn:oasis:names:tc:SAML:2.0:status:Success" />

46 <saml2p:StatusMessage>urn:oasis:names:tc:SAML:2.0:status:Success

47 </saml2p:StatusMessage>

48 </saml2p:Status>

49 <saml2:EncryptedAssertion xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion

">

50 <xenc:EncryptedData xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"

51 Id="_e1a9908ba3027759a999a662551fce10"

52 Type="http://www.w3.org/2001/04/xmlenc#Element">

53 <xenc:EncryptionMethod xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"

54 Algorithm="http://www.w3.org/2009/xmlenc11#aes256-gcm" />

55 <ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

56 <xenc:EncryptedKey xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"

57 Id="_26d9ef9391adf41cf3ad3ab864b18e6f">

58 <xenc:EncryptionMethod xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"

59 Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p">

60 <ds:DigestMethod xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

61 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

62 </xenc:EncryptionMethod>

63 <ds:KeyInfo>

64 <ds:X509Data>

65 <ds:X509Certificate>

66 MIIF4jCCA8qgAwIBAgIJAMlk7Nh9TEekfKjQTA==

67 </ds:X509Certificate>

68 </ds:X509Data>

69 </ds:KeyInfo>

70 <xenc:CipherData xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">

71 <xenc:CipherValue>

72 nRFeSg1gxkPaJ29CutFYhAPU0dmSfNJGQq6JvwRUf+nJGiR3THC9KA=

73 </xenc:CipherValue>

74 </xenc:CipherData>

75 </xenc:EncryptedKey>

76 </ds:KeyInfo>

77 <xenc:CipherData xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">

78 <xenc:CipherValue>

79 GehFeepq7gTv17EgVxDSUy6+XPCkvfr0jvt66OT68qJni2l9wN06JKOZgHMo6vt7TE=

80 </xenc:CipherValue>

81 </xenc:CipherData>

82 </xenc:EncryptedData>

83 </saml2:EncryptedAssertion>

84 </saml2p:Response>

116

A – SAML message flow

A.2.8 eIDAS-Connector to Wifi-Auth eIDAS-SP

eIDAS Response

1 <saml2p:Response xmlns:saml2p="urn:oasis:names:tc:SAML:2.0:protocol"

2 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

3 xmlns:eidas="http://eidas.europa.eu/attributes/naturalperson"

4 xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion"

5 Consent="urn:oasis:names:tc:SAML:2.0:consent:obtained"

6 Destination="https://wifi-auth-eid4u.polito.it/SP/ReturnPage"

7 ID="_.A0tCg20zdDuQmbjqXowaZkOsh_zT89nwB.gQbCR5ni9yHvrjkzkyhOlGQL4Qxq"

8 InResponseTo="_sRmCiBCyS21tAgWrQeJcpWr.PefcyCiGQbsDvjHE5xn27Wxhh0uqF1.

anRGGpBq"

9 IssueInstant="2019-12-05T12:41:19.478Z" Version="2.0">

10 <saml2:Issuer xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion"

11 Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">

12 https://connector-test-eid4u.polito.it/EidasNode/

ConnectorResponderMetadata

13 </saml2:Issuer>

14 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

15 <ds:SignedInfo>

16 <ds:CanonicalizationMethod

17 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

18 <ds:SignatureMethod

19 Algorithm="http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha512" />

20 <ds:Reference

21 URI="#_.A0tCg20zdDuQmbjqXowaZkOsh_zT89nwB.gQbCR5ni9yHvrjkzkyhOlGQL4Qxq

">

22 <ds:Transforms>

23 <ds:Transform

24 Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature" /

>

25 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

26 </ds:Transforms>

27 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha512" /

>

28 <ds:DigestValue>

29 ytktCbKhUrjNfUI6BDJ3Wqdu0qoSRUpf8gu6/8ZaOEzJKsYqnrEw==

30 </ds:DigestValue>

31 </ds:Reference>

32 </ds:SignedInfo>

33 <ds:SignatureValue>

34 64sDgGmwG/atbLFEIk2Ui0lLr1OET9ErLnhoIka8YDl1aKJlGXwZ+PhLIBUw1ZcsYM

35 </ds:SignatureValue>

36 <ds:KeyInfo>

37 <ds:X509Data>

38 <ds:X509Certificate>

39 MIICkTCCAhegAwIBAgIJAMIxa5EPQZdFMAoGCCqertT5W5xIKP225l8LbVTpYnHEB8ORHag

==

40 </ds:X509Certificate>

41 </ds:X509Data>

42 </ds:KeyInfo>

43 </ds:Signature>

44 <saml2p:Status xmlns:saml2p="urn:oasis:names:tc:SAML:2.0:protocol">

45 <saml2p:StatusCode Value="urn:oasis:names:tc:SAML:2.0:status:Success" />

46 <saml2p:StatusMessage>urn:oasis:names:tc:SAML:2.0:status:Success

117

A – SAML message flow

47 </saml2p:StatusMessage>

48 </saml2p:Status>

49 <saml2:EncryptedAssertion xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion

">

50 <xenc:EncryptedData xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"

51 Id="_69d27882cf8be2cb8a7aa62536215bef"

52 Type="http://www.w3.org/2001/04/xmlenc#Element">

53 <xenc:EncryptionMethod xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"

54 Algorithm="http://www.w3.org/2009/xmlenc11#aes256-gcm" />

55 <ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

56 <xenc:EncryptedKey xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"

57 Id="_e7e3d60e63c655de569e8a1ba008faa0">

58 <xenc:EncryptionMethod xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"

59 Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p">

60 <ds:DigestMethod xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

61 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

62 </xenc:EncryptionMethod>

63 <ds:KeyInfo>

64 <ds:X509Data>

65 <ds:X509Certificate>

66 MIIDsTCCApmgAwIBAgIUOBopz8Pq+/fB6mN0t2Hv5Mxewgcs8dsMcOVM/

ZeuOFnQ==

67 </ds:X509Certificate>

68 </ds:X509Data>

69 </ds:KeyInfo>

70 <xenc:CipherData xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">

71 <xenc:CipherValue>

72 EIUjJtlVjPT707LRsch7c1T+juVixoPKr72ybL5YVgPOsn8vPEwvRZQGMHA==

73 </xenc:CipherValue>

74 </xenc:CipherData>

75 </xenc:EncryptedKey>

76 </ds:KeyInfo>

77 <xenc:CipherData xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">

78 <xenc:CipherValue>

79 Ajx39Du2CKVo9nz9ViMp8E3PPDlSNXn0nCi6wgcFMcc5Cq6gdOoMzeoMFtvo=

80 </xenc:CipherValue>

81 </xenc:CipherData>

82 </xenc:EncryptedData>

83 </saml2:EncryptedAssertion>

84 </saml2p:Response>

118

	List of Figures
	Introduction
	Background
	User authentication
	Identity management
	Digital identity
	Identity Management System

	SAML
	Introduction
	Overview
	Drivers of SAML adoption
	SAML participants
	Basic concepts
	SAML components
	Privacy in SAML
	Security in SAML

	Shibboleth
	eIDAS
	Main problems addressed by eIDAS
	eIDAS specification
	eIDAS cryptography requirements for trust between eIDAS entities
	eIDAS protocol
	Attributes

	Related work
	eduroam
	govroam

	Review of possible networking tools for implementing Captive Portal with SAML
	PacketFence
	NoDogSplash
	Zeroshell

	Design and implementation of WiFi access with eIDAS through Zeroshell
	Introduction
	Authentication flow
	Zeroshell setup
	Virtual Box initialisation
	Accessing web interface
	Profile creation
	Network configuration
	Captive Portal
	Shibboleth authentication
	Shibboleth configuration files

	Configuring Shibboleth authentication with eIDAS
	EntityID of the SP
	ApplicationDefaults element
	MetadataProvider
	Cryptography certificates
	Node-Country selection
	SessionInitiator AuthnRequest element
	Attributes configuration
	White-listing
	Problems encountered

	Authentication cycle

	Design of WiFi access with eIDAS through WiFi-Auth eIDAS-SP and Polito wireless infrastructure
	Introduction
	Authentication process
	Wifi-Auth eIDAS-SP set-up

	Authentication flow
	Authentication flow Italian scenario
	Authentication flow detail: request part
	Authentication flow detail: response part

	Wifi-Auth eIDAS-SP implementation
	SSH library
	Guest user properties
	Function createUser
	Function createCMD
	Functions randomString and randomPassword
	Login form
	Cryptography certificates

	Configuration of network elements
	Fortigate-60D introduction
	Cisco WLC 2504

	Script for creating ACL rules
	Testing authentication cycle using TestCafe
	Authentication cycle

	Installation and configuration of WiFi access with eIDAS-SP and Polito wireless infrastructure
	Installation of Wifi-Auth eIDAS-SP application
	Architecture
	Docker and Docker-compose installation
	Source code

	Fortigate-60D
	Firewall interfaces
	Firewall policy
	Virtual IP

	Cisco WLC 2504
	WLAN
	Creating WLAN
	ACL (Access Control List)
	WebAuth SecureWeb

	Results
	Conclusion
	Bibliography
	SAML message flow
	SAML message flow example with Zeroshell
	Zeroshell to eIDAS-Connector
	eIDAS-Connector to eIDAS-Service
	eIDAS-Service to IdP-Proxy
	IdP-Proxy to IdP
	IdP to IdP-Proxy
	IdP-Proxy to eIDAS-Service
	eIDAS-Service to eIDAS-Connector
	eIDAS-Connector to Zeroshell

	SAML message flow example with Wifi-Auth eIDAS-SP
	Wifi-Auth eIDAS-SP to eIDAS-Connector
	eIDAS-Connector to eIDAS-Service
	eIDAS-Service to IdP-Proxy
	IdP-Proxy to IdP
	IdP to IdP-Proxy
	IdP-Proxy to eIDAS-Service
	eIDAS-Service to eIDAS-Connector
	eIDAS-Connector to Wifi-Auth eIDAS-SP

