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Abstract

In the near future, one of the most likely scenarios is the daily coexistence of hu-
mans and robots. This scenario will be witnessed, for instance, in assistive robots
for seniors, cleaning robots, reception robots in public or private shops.
Although there already exist technological tools to perform a secure motion in a
crowded environment, not too many authors have studied if a robot trajectory would
be pleasant and accepted by humans. The thesis fits in this scenario and is focused
on the trajectory generation for a mobile robot in order to be acceptable and not
annoying humans.
How can we reach this ambitious goal?
Humans are more successful in planning a collision-free trajectory with mutual avoid-
ance manoeuvres in a populated environment than any motion planning algorithm
developed so far.
While humans can easily deal with predicting the motion of surrounding people,
robotic systems are still facing problems.
Moreover, humans tend to attribute intentions and consciousness to non-human en-
tity. In literature, this behaviour is named anthropomorphizing. Here, we leverage
anthropomorphizing to improve human-robot interaction and, thus, raise the accep-
tance for humans. This is achieved by attempting to design the robot motion in a
human-like manner.
For these reasons, we want to improve the robot navigation starting from the study
of humans’ decisions.
The majority of the approaches concentrate their attention to predict human motion
individually without considering the interaction between humans.
Here, we model the motion of humans considering the interaction between and with
pedestrians using a game-theoretic approach.
Generally, many motion planning approaches at the state of the art have a reactive
behaviour, i.e. they avoid obstacles without considering the prediction of human
motion and the interaction with them.
Game theory has a lot of advantages over reactive methods, in fact, it can model the
mutual anticipation of the influence of other agents and adapt their own decisions
based on the possible actions of others.
In this thesis, non-cooperative game theory is applied to predict the decision of mul-
tiple humans that interact with each other during navigation.
Hence, the concept of Nash equilibrium in dynamic games is applied to solve our
model.
In the last decades, some scientists studied human motion from a game-theoretic
point of view, but their models comprised two people. Moreover, static obstacles



and groups of people were not accounted for. Here, we have reformulated the prob-
lem considering a different cost function, extending the model considering multiple
people and detecting groups of them, as well as evaluating patterns of natural in-
teraction between humans and static objects.
The model has been validated with real-world surveillance videos, qualitatively com-
paring real trajectories and the output of our model.
In the second part of the dissertation, we used the model previously developed, to
create a human-like trajectory for an autonomous robot that navigates among mul-
tiple humans, considering the robot as a player of the game.
In the end, with a variation of the Turing test, we tried to evaluate quantitatively
whether the final motion robot planning is socially acceptable for humans. This
quality has been measured considering the human likeness of the trajectory gener-
ated by our motion planner.
50 volunteers participated in our test and the collected data validates the proposed
approach.
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Chapter 1

Introduction and motivation

The adoption of robots in our daily life causes an important issue about the necessity
of humans to interact with them. Generally, in industrial applications, robots are
completely separated from the humans’ workspace, but this is not the case in the
near future applications, where robots will share the same environment with humans.
In order to accomplish a diverse set of objectives, navigation is an essential task for
autonomous mobile robots. As a matter of fact, to improve the collaboration with
humans, the robot should ensure:

• human-likeness motion: i.e., the robot’s trajectory should follow a smooth
behaviour similar to human motion;

• safe motion: i.e., the robot does not harm the human in a physical or psycho-
logical way;

• reliable and effective motion: i.e., the robot executes the task adequately and
reaches the goal considering its motion limit (i.e. minimum turning radius of
the robot, maximum linear and angular velocities, etc.);

• interaction awareness: i.e., the robot anticipates the human mutual collision
avoidance.

If a robot satisfies the above conditions, its interaction with humans becomes
easier and more intuitive for humans.
In particular, our object is to design a robot’s motion that is acceptable for humans.
How to measure the social acceptance of a robot?
Humans attribute sometimes, intentions and consciousness to non-human agent [55].
The term to explain this behaviour is anthropomorphizing. In this thesis, we use
anthropomorphizing to improve human-robot interaction [50]. This is achieved by
attempting to design the robot motion in a human-like manner.
This perspective opens up important research opportunities.
Since the robot should move like a human and should “know” the intentions of

3



1 – Introduction and motivation

humans, a model of human motion behaviour is necessary to compute a robust
socially-aware motion planning.

Definition 1 Socially-aware navigation is the strategy exhibited by a social robot
which identifies and follows social conventions in order to preserve a comfortable
interaction with humans. The resulting behaviour is predictable, adaptable and easily
understood by humans [41].

What are the advantages of modelling human’s intentions from the robotic point
of view?
A first benefit in predicting the human motion is that humans are no longer recog-
nised as dynamical obstacles but as social entities that interact with other pedestri-
ans.
In addition, the output of a human motion model can be used as a source of informa-
tion that allows robot to adapt its motion according to the predicted human motion.
Robot can promptly respond in a safe manner (Figure 1.1). Moreover, robot can
use their predictions of human motion to generate its own motion planning, in order
to achieve a given task. In this way, the “intention” of the robot becomes more
intelligible and natural to be predicted by humans [5]. Then, this, increases the
social acceptance of robots in daily life.
Last but not the least, it may happen that the robot locks in a place (or executes
unnecessary manoeuvres) while trying to avoid collisions with humans, since all
available trajectories are unsafe, it remains stuck in a deadlock. The name of this
situation is “freezing robot problem” (FRP), which can be avoided, for example, by
implementing an socially-aware motion navigation [48].

Figure 1.1: Socially-aware navigation in a crowd of humans [49].

From the literature, it is possible to summarise the requirements that socially-
aware navigation should have [23]:

4



1 – Introduction and motivation

• Respect personal space. When humans interact with others, they feel annoyed
if others are too close or too far away from their own personal space (the
proxemic interpersonal distance is shown in Table 4.1 and the personal space
in Figure 1.2a).
In particular, if the distance to someone is excessive, it indicates a dislike.
In this regard, also the robot must keep an appropriate social distance with
humans to avoid fear and discomfort.

• Respect activity spaces. Robot should avoid the space where humans can per-
form actions. In the related work [29], there is not a precise definition of the
shape of the activity space because it depends on the type of humans activities.

• Respect group of agents zone. In the literature, the area shared among in-
teracting people is called O-space [20], as shown in Figure 1.2b. In general,
the geometrical shape of the O-space depends on the posture and orientation
of humans. In [20] the authors show that, generally, humans are placed in a
circle.

• Avoid weird motion or noises that could cause a distraction for humans.

• Modulate the velocity based on the distance from humans or maintain the
same speed similar to human walking speeds. We used the latter situation to
increase the possibility of anthropomorphizing the robot as in [34].

Figure 1.2: During navigation, the robot should take into account: a) Personal
space; b) O-space of an interaction [41].

The following section starts with the presentation of our human motion model
and proceeds with the description of the requisites that have been implemented
among of those presented above, to achieve the goal of the socially-aware navigation.

5



1 – Introduction and motivation

1.1 Our approach

Game theory is a branch of mathematics that is useful to model situations in which
players make decisions that are interdependent with other participants. Indeed,
game theory is a powerful tool to investigate optimal decision-making by rational
players considering the other player’s possible decisions.
Before proceeding with the dissertation, for more clearness, it is necessary to un-
derline that from now the terms player, pedestrian, person and human are used as
synonyms.
Moreover, with the term agent, we denote any mobile entity, either human or robot.
This study uses a game-theoretic approach to model the decision process of pedes-
trians in a dynamic environment. Players are considered as rational agents, i.e. they
try to maximise their profits.
In general, we adopt a microscopic approach, i.e. we focus on predicting both the
interaction and the decision processes between humans in a crowd without consid-
ering the overall movement of the crowd (macroscopic analysis).
In this dissertation the interaction-aware decision making is modelled as a non-
cooperative, dynamic and non-zero-sum game (this nomenclature will be explained
in more detail in Chapter 3).
The pedestrians respect the other personal zones by maintaining a certain distance
based on the relationship between players.
In our approach, we consider the achievement of the Nash equilibrium [35] as the
solution of the game. The Nash equilibrium is the best response for all players,
though we give a more formal definition of Nash equilibrium in Chapter 3.
Generally, many human motion approaches at the state of the art have a reactive
behaviour, i.e. they avoid obstacles without considering the human motion and the
interaction with them [16, 17].
Our approach overcomes the reactive methods (see Section 2.1.1), since with game
theory we can predict the motion of other pedestrians. Thus, each player can adapt
its own decisions accordingly to the others strategies. In this way, our model is
considered predictive.
Recently (see Section 2.1.4), some authors studied human motion from a game-
theoretic point of view considering only two players, without focusing on the recog-
nition of groups, and avoiding a static obstacle in a human-like way [49].
Here, we have reformulated the problem considering a different cost function, ex-
tending the model considering multiple people and detecting groups of them, as well
as evaluating patterns of natural interaction between humans and static objects.
The group recognition is important because if a robot identifies a group, it avoids to
move through or too close to it, thus, increasing the quality of the interaction with
humans.
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Based on the prediction from our model, we created a socially-aware motion plan-
ning for an autonomous robot to navigate in a crowd. Thus, since our trajectory is
inspired by our human motion model, during navigation the robot satisfies some of
the requirements that we described in the previous section. In particular, the robot
does not invade the human personal zone and conserves the same speed as a human.
Moreover, the robot avoids weird motion because the cost function has a term con-
nected to the smoothness of the final trajectory.
The respect of the activity space is out of the scope of this dissertation, since we are
studying human motion in urban space, without involving specific activities.
About the recognition of the O-space shared by a group of people that are stuck in
a place, the robot identifies that group as a static obstacle, thus, it will maintain a
certain safe distance and it will avoid to pass through it.
In a nutshell, the final objects of this thesis are:

1. Modelling the intention of humans in populated environment using game the-
ory.

2. Improving existing motion planning for mobile robots, based on the model of
human behaviour described in the previous point.

1.2 Thesis organisation
The rest of the thesis is organised as follows.
Chapter 2 reviews models of pedestrian motion and the state of the art of reactive
robot navigation. The latter, will be used to implement the non-player robot for the
videos that we designed for the final experiment.
Chapter 3 illustrates the preliminaries on game theory. The detailed description of
our model is shown in Chapter 4. In Section 5, we discuss and validate the game
theoretical model through real-world surveillance videos. Besides, we describe the
setup and details of our variation of Turing experiment used to validate the human
motion model and the human likeness of our socially-aware motion planner.
Chapter 6 reports results coming from the collected data analysis of our experiment.
Finally, Chapter 7 draws the conclusions of this dissertation and devises future
avenues of research.
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Chapter 2

Related work

When a mobile robot moves in a dynamic scenario, where humans are goal-directed,
the sensors perceiving the environment and detect the human positions.
If the robot estimates the human motion with a realistic model, the robot can nav-
igate safely and comfortably with humans.
Thereby, a performing socially-aware navigation is strictly connects to a deep re-
search in human motion models.

2.1 State of art of human motion prediction
Lots of modelling and simulating pedestrian motion have been developed in the last
years in different areas to reach different objects such as: simulating evacuation
movements to design a safely public or private building, human motion analysis for
socially-aware robot navigation or gaming computer animation.
In general, the research studies about predict human decision in a crowd can be
divided into two big approaches: macroscopic and microscopic.
The macroscopic approach is normally used in the case of large crowd considering
the group of people as a whole. The macroscopic model is less computationally
intense than the microscopic model, because it considers fewer details among indi-
viduals interactions and between individuals and the environment.
On the other hand, the microscopic description focuses on predicting the interac-
tion and the decision processes between humans in a crowd without considering the
overall movement of the crowd.
In this dissertation, since one of the goals is find a good model that is able to pre-
dict the human motion in a crowd, we will take into account only the microscopic
approach.
We present in the following section, the state of the art of human motion prediction
considering an overview of the reactive models, predictive planners, learning-based
strategies and game theory models.
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In the scientific literature, there is not a stringent separation between the geometric
reasoning approach and the learning technique, because both models have things in
common and can be combined to obtain a hybrid approach.
Nevertheless, in this thesis, for simplicity, we try to divide the publications consid-
ering the approach they focus on.
For each class, we consider the advantages and disadvantages and we motivate the
choice of game theory.
In the end, we present an overview of robot navigation because it will be useful for
the test explained in Chapter 5.

2.1.1 Reactive model

Pioneering work of modelling humans as reactive particles is the social force method
[16]. In this model, the agents navigate in the environment considering attractive
forces that guide them towards the destination and repulsive forces that ensure
collision-avoidance depending on their relative distances (Figure 2.2a). It generates
plausible patterns about global motion. On the other hand, in local level, individual
trajectory is not human-like.
In most of the available research [2], the scientists assume a static world, where the
human prediction is simplified with the assumptions of proceeding to walk straight
with current direction and speed (Figure 2.2b).
One of the well-known models based on grid motion decisions is the Cellular Au-
tomaton (CA). This technique uses a discrete representation for the environment
and the human decision motion. The first research about CA is conducted by Ta-
dokoro et al. [46]. Human motion is predicted using a probability distribution maps
of movement in the near future, considering the status of neighbouring cells. The
main idea is visualised in Figure 2.2c, where the darkness of grid maps represents
the likelihood of the transition.
Schadschneider [44] proposes the concept of floor field to improve the CA technique.
Starting from the CA grid map, Schadschneider adds a second grid of cells that
can be static or dynamic. The first one does not depend on time and it is used to
model the most attractive region in the map (for instance an emergency exit). On
the other hand, the dynamic floor is adopted to take into account the interaction
between agents.
In contrast to this discrete approach, there are several instances of continuum mod-
els. For example, Hoeller et al. [17] define the human motion as the combination
of attractive and repulsive potential fields. The first one guides the pedestrian to
the possible destination and the other one is useful to avoid collision with obstacles.
Since the true destination of a person is unknown, Hoeller defines an attractor that
guess the possible destinations (Figure 2.2d).

The models examined so far consider the pedestrians as passive subjects that
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react only to external forces (Figure 2.1a). In this way, they ignore the interactive
nature of humans. Indeed, pedestrians are active agents that, during navigation,
repeat decision-making progress based on the surrounding humans prediction. This
aspect is taken into account in the predictive planner (as shown in Figure 2.1b) and
in the game theory models.

Figure 2.1: a) Reactive based planning: the pedestrian changes its direction when
another human appears in his way; b) Predictive planning: the human first predicts
the motion of the other agent and then, it calculates its path considering the mutual
avoidance manoeuvres in advance.

2.1.2 Predictive planners
Paris et al. [36], based on Fiorini and Shiller [8] approach, create a velocity-based
model that improves the Fiorini’s work. The main advantage of Paris’ technique is
the resolution of the oscillation between velocities due to the lack of the anticipation
of the surrounding agents. With this method, the reference entity is not repelled
by neighbouring pedestrians and static object, but humans actively find a free path
through the crowd. The considered agent computes the path planning evaluating:
the reachable space regarding all directions and a limited set of velocities, simul-
taneously, it researches for the possible collision with the surrounding pedestrians,
thus, it finds the optimal path for the near future.
Then, Karamouzas et al. [19], based on the Paris’ approach, tried to reduce the
computational effort focusing more on upcoming collisions.
In the last year, Warren [54] builds a model where the pedestrian motion is com-
puted considering the superposition of 3 frameworks: the closest, the furthest and
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Figure 2.2: Example of human motion prediction in literature: a) Social Force
model; b) Linear; c) Probable state transition in a grid map; d) Using potential
field; e) Growing uncertainty; f), g) Machine Learning technique [23].

the intermediate zone.
The closest pedestrians area is the repulsion zone that corresponds to the personal
Hall space [13], the furthest area is the zone where pedestrians move toward neigh-
bours, instead, the intermediate zone is the alignment area where the agent matches
the speed and the heading directions of neighbours.
In continuous models, the increasing prediction uncertainty is commonly represented
as in Figure 2.2e. In this regard, Trautman et al. [48] study dense human crowds
and evaluate the pedestrian motion considering the Gaussian process. The authors
start from the "freezing robot problem", where the motion planner cannot compute
safe decision because the environment is too crowded, thus, the robot freezes in a
place or performs unnecessary motions. In order to solve this problem, the robot
predicts human cooperation with interacting Gaussian processes.
The predictive methods adhere to the rules of human motion navigation. For this
reason, predictive humans planners are more feasible and incorporate much social
information than the reactive one.
On the other hand, the pedestrian prediction requires much computational effort,
especially when the crowd density becomes significant.
Furthermore, since humans take stochastic decisions, the long-time prevision is sig-
nificantly uncertain.
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2.1.3 Learning approach

In the previous approaches, predictions are based on how pedestrians behave in gen-
eral. In learning strategy, previsions are estimated considering the observations of
humans individually in particular situations and environments.
Recently, the machine learning technique is becoming significantly popular due to
the advantage of improving over time and adapting to special circumstances.
The greatest computational effort occurs offline with the training process that needs
a large amount of data, especially when the number of pedestrians increases.
Bennewitz et al. [3] create an algorithm that has a set of trajectories as input. As
start and target points, they identify the so called "resting place", where the pedes-
trians normally stop and stay for a certain amount of time.
The model learns observing human motion and clustering the trajectories into a set
of motion patterns through the use of Expectation-Maximisation algorithm (Figure
2.2f).
Foka et al. in [9] forecast trajectories and velocity of humans using neural network
approach. This technique is useful to predict non-linear behaviours for one step
ahead prediction (Figure 2.2g).
More recent works have developed models with a recurrent neural network (RNN)
to predict future human action as in [45]. However, this approach does not consider
the behaviour of other people in proximity, for this reason, Alahi et al. [1] propose a
social LSTM (Long short-term memory) that combine the forecasting of all agents
inside a crowd and the common sense rule in a shared environment with a "Social
pooling of hidden states". Nevertheless, this method evaluates pedestrian predic-
tion near the considered human without analysing interactions between all agents.
Furthermore, Alahi et al. have as output a single trajectory that is the "average
behaviour".
In this regards, Gupta et al. [12] try to overcome these restrictions and build a
model with Generative Adversarial Networks (GANs), that is also more competitive
about computational complexity.
Liang et al. [27] outperform the social LSTM model and the social GAN, forecasting
the future path and the possible activity in videos.
The main advantages of the machine learning technique are the natural behaviour
trajectory because the model is trained using real trajectory data, and the capability
to be accurate also in a complex crowded settings.
Learning structure incorporates the influence of other pedestrians considering the
forecasting state of other agents (interaction-awareness).
Nevertheless, the main problem is the scenario generalisation, indeed if the environ-
ment changes, the model should be trained again. This approach should deal with
the generalisation problem efficiency.
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2.1.4 Game theory modelling

The game theory has been tested in different scenarios to demonstrate the capability
of modelling cooperative behaviour of rational decision players. Some applications
of game theory are: biology, computer science, psychology, economics, political sci-
ence, evacuation process, electric power market, etc.
Despite the corroborated ability of the game theory to model different types of sit-
uations, in field of human motion prediction the literature is limited.
The pioneer of human motion prediction with the game theory is Hoogendoorn et
al. [18]. The study analyses the pedestrian navigation in a simulated environment.
In particular, the authors adopt differential game to model the human motion and
describe pedestrians as optimal feedback oriented controller that tries to reach their
goals minimising the cost of navigation, supposing the motions of the other agents.
However, the game solution is not an equilibrium but is computed as an optimal
control problem based on a pedestrian cost function that takes into account also the
running cost of the other agents.
In another study, game theory is joined with Cellular Automata [47] and after some
years, Mesmer and Bloebaum [32] present a model where human decision naviga-
tion is modelled considering game theory and velocity obstacle. Though, both mix
methods are modelled for an emergency evacuation situation.
Turnwald et al. [49] analyse the interaction during human navigation in a micro-
scopic way. They study five different cost functions for a non-cooperative game and
evaluate the best result with a real experiment (the experimental players are only
two). The most suitable cost function is related to the length of the trajectory.
However, the main framework of this work is the examination and validation of
the Nash equilibrium for human motion. In other words, they demonstrate that all
players choose the trajectory that generate a Nash equilibrium.
More recently, Ma et al. [31] combine the game theory and the deep learning ap-
proach to forecast future trajectories of multi-agents. The authors used the Brown’s
fictitious game to predict the long-term navigation considering the interaction with
the other players, instead, to customize the pattern for each pedestrian they used
the learning approach from a single image.
A similar procedure is adopted in [40], where pedestrian motion is modelled as two
games: the first is played with the closest agent in the visibility zone and the other
one with all surrounding humans modelled as the learning-based game. The game
with the nearest person is modelled as a static, non-cooperative and non-zero-sum
game. The method is validated considering a microscopic and macroscopic approach.
In another work, Roy et al. [43] investigate the avoidance technique of two interact-
ing pedestrians with the Fokker-Plank Nash game. The differential game is solved
considering the scenario as an optimal control problem, namely, each player tries to
minimise the collision cost function.
So far, we have shown an overview of methods considering the interaction with a
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limited number of players. If the amount of pedestrians increases, the computational
cost will become extremely hard to manage. To surmount this problem, some works
adopt the mean field game to handle a big crowd as in [6] and [37].

2.1.5 Proposed approach
Our goal is to study and model the human motion based only on game theory.
Game theory has a lot of benefits over the methods presented above. Specifically,
game theory overcomes the reactive method considering the possible pedestrian mo-
tion in advance. The learning approach is notably promising because can customise
the trajectory of each pedestrian collecting human motion data from the sensor. This
is at the same time a downside, because the model is not versatile for all scenarios
but it depends on trial data. With game theory, human motion is not customised
for each player, but the method is adaptable and can be used in a new environment
without passing through the training data.
The exclusive work that could be compared with our scenario is the Turnald et al
[49] method. Nonetheless, we overcome that model because we increase the number
of players, that in [49] were two, and we build a different cost function. In addition,
we also modelled the interaction between humans and static object considering the
avoidance in a natural (i.e. in a human-like) way.
In our model, we consider also the group recognition that improves the computa-
tional performance of the game theory algorithm. The last two features are the
main differences between the Turnald’s work [49].
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2.2 Robot navigation
Typically, the robot navigation can be summarised as follows:

• Localisation: is the method of figuring out where the robot is on the map;

• Mapping: is the process where the robot creates the map of the environment,
starting from the knowledge of its pose (localisation);

• Planning: the process where the robot finds a sequence of valid configurations
in order to reach its final goal;

• Motion control: moves the robot considering the path planning as a reference,
to reach the given goal;

Robots use active localisation that combines the measurements from odometry
(proprioceptive sensor) and from exteroceptive sensors through probabilistic filters.
The most famous approaches are: extended Kalman filter and Particle filters (Monte
Carlo Localisation methods). About mapping is possible to use two main methods:
landmarks and occupation grids. The first one builds stochastic maps with a proba-
bilistic description of static obstacles. Indeed, occupation grids create a map where
each cell is associated with the occupation probability.
In general, when a robot is moving in an unknown environment prefers to not solve
the two problems separately but concurrently.
For this reason, in most cases, robots use SLAM (Simultaneous Localisation And
Mapping).
The analysis of localisation and mapping is out of this work.
We did the hypothesis that the robot has the MAP with static obstacle before it
starts the navigation. Then, the robot uses the SLAM technique to localise itself and
map the positions of dynamic obstacles (Figure 2.3a) and finally, the robot utilises
our socially-aware motion planning.
On the other hand, we study also the non-player robot navigation (i.e. the reactive
motion) to compare the two scenarios with a variation of the Turing test (Figure
2.3b).
The next section gives an outline of the state of the art motion controller for robotics,
that we will use for the implementation of the non-player robot.

2.2.1 Motion controller review
The complementary framework of path planning with the motion controller (Figure
2.3a) is only the obstacle avoidance problem (Figure 2.3b).
The final goal is to reach the robot target considering the obstacles detection with
sensors. In this way, the robot adapts its motion in a local manner.

16



2.2 – Robot navigation

Figure 2.3: Overview of robot navigation: a)Player robot technique; b)Non-player
robot approach.

One of the first related work for motion controller problem is developed by Khatib
[21] with time-varying artificial potential field to avoid obstacles in real-time.
The robot navigates toward the target considering the superimposition of two types
of potential field: repulsive from the obstacle and attractive from the goal pose.
In [30], Lumelsky et al. create a Bug algorithm where the robot follows the perime-
ters of the obstacles if the latter are in the way toward the final target.
Boreinstein et al. [4] use the Vector Field Histogram algorithm (VFH), to compute
a polar obstacle density histogram over the sensor angular sector. To select the final
output direction, the algorithm studies each histogram and compares them with a
given threshold. The set of available directions (candidate valley) are the histograms
below the threshold and the final strategy is chosen considering three heuristics that
depend on the target position.
The main problems of this technique are: the oscillations between positions in the
case of environments with a lot of narrows, the absence of smooth trajectory and
the neglect of the robot dynamics and kinematics.
To solve these problems, after some years, the same authors develop VFH+ [51] and
VFH* [52] that are enhanced versions of VFH.
In VFH+ algorithm there are two phases: first, it is necessary to read from the
sensor the angles and the distance between the obstacle and the actual position of
the robot to build a polar histogram for obstacle locations. In the second phase,
the algorithm generates a masked histogram based on two hysteresis thresholds that
solve the indecisive robot behaviour of the basic VFH.
The VFH+ algorithm considers a set of steering directions based on a cost function
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(based on the smoothness of the navigation and the goal-distance) and chooses the
free direction with minimal cost. It is possible to set also the Robot radius that takes
into account the robot width.
Further work, related to obstacle avoidance, is proposed in [10] with the Dynamic-
Window Approach (DWA), where the motion commands are selected from the space
of velocities.
In [33], Minguez et al. develop a motion controller able to have a good performance
in an unknown and cluttered environment that is improved in [7].

So far we have considered only motion controllers that have local approach to
the environment. This is a limitation because an optimal local solution does not
guarantee the best solution for the final general path.
For this reason, some authors try to close the gap between global path planning
and local motion control. For instance, Quinlan and Khatib [38] present the Elastic
Band approach, where the algorithm deforms in real-time the general path planning
subject to internal and external force to obtain a smooth path and an appropriate
distance from obstacles. Rosmann et al. [42] expand that method with the Timed-
Elastic-Band.
However, the reason behind the research about motion robot control is to find a
reasonable state of the art obstacle avoidance to do the comparison with our socially-
aware trajectory planning.
We chose the VFH+ algorithm to implement the non-player robot because there is
a good trade-off between performance and ease of implementation.
As a matter of fact, in two parts of our experiment, we showed to volunteers some
videos with our player-robot and non-player robot to understand if they recognise
the difference or not.
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Chapter 3

Background on Game Theory

The purpose of this thesis section is to give to the reader the main concepts about
game theory, in order to work out the human motion model developed in Chapter
4. For completeness and clarity, at the end of this chapter is given also an example
of a simple navigation model with game theory.

3.1 Overview
Game theory is a vast discipline that has been studied for decades and has been
used in different fields as: economics, politics, biology, evacuation process, military
strategy, human motion forecasting, etc.
Game theory creates a mathematical model to study the strategy of rational decision-
maker. The pioneer on this field was Von Neumann that published in 1928 the
general theory for solving the zero-sum cooperative game. This work has been im-
proved in 1944 with [53]. Nevertheless, the most famous concept about game theory
was developed in 1950 by John Nash [35] with the Nash equilibrium theory in non-
cooperative game.
In the following section there is the most widely used terminology in game theory
useful to understand the following chapters.

3.1.1 Terminology
In a game, the participants are the players. Each player has an action set that
is used to make the decision during the game. The number of times in which the
player are called to make decision are the stages. The information about all players
in that particular stage is the state of the game.
Furthermore, a strategy in game theory, means a procedure in which the player
decides what to do for all situations throughout the game. In other words, when the
game starts, the player specifies the action that will take for each possible situation
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of the game. In particular, the specification can be deterministic (pure strategy), or
the specification can be gives as a probability distribution for every action of the
action set (mixed strategy).
For each player is defined a cost function that guides the choice of a certain action
during the game. The players have a rational behaviour, it means that they try to
maximise their profit (i.e. minimise the expected cost).
To study the interaction among players there are a different class of games that are
presented in more details in the following section.

3.1.2 Game types
Games can be classified according to certain attributes, but in the following, we
present only a summary of the common types of games [26] that we will use to
model the interaction and the behaviour of pedestrians in a crowded environment.

Non-cooperative or cooperative:
In non-cooperative games the focus is set on the individual player that tries to max-
imise the own profit. It does not mean that the players do not cooperate, but they
collaborate if the coalition can help them to reach their individual interest [26]. If
the game leads to a situation where all players maximise their profits, the game
reaches the equilibrium point, that in non cooperative game is the Nash equilibrium.
On the other hand, in cooperative games the unit is the group and the players put
the interest of the coalition before their own.

Zero-sum or Non-zero-sum
In zero-sum game the gain of one player corresponds to the same amount of loss of
the other player. Thus, the sum of the payoffs of all players is zero. This situation
is the most extreme circumstance of conflicting interest.
Meanwhile, in non-zero-sum game the player not wins the same amount that the
other player loses.

Static and dynamic game
In the static case the decisions of all players are taken simultaneously. Considering
the pedestrians scenario, if the condition is modelled as static game, the agents ob-
serve the situation and react instinctively. Instead, in dynamic game, the decisions
are taken sequentially [49]. In this last condition, it is necessary to describe the
amount of information that each player has about the current and previous state of
the other players.

Perfect information game:
If each player, when makes a decision, knows the previous actions of all players, the
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game is called perfect information game.

Finite game:
If the number of players and the corresponding actions are limited the game is called
finite.

3.1.3 Nash equilibrium of Non-cooperative game
The most famous solution for non-cooperative games is the Nash equilibrium concept
[35]. The equilibrium represents a game strategy where all players find a balance
between the self interests of all the agents. In other words:

"A Nash equilibrium is a combination of strategies where no agent can reduce
its own cost by changing its action if the other agents stick to their actions. A Nash
equilibrium is the best response for everyone [50]."

From now on we indicate the Nash equilibrium with an asterisk

sj∗
i = (sj∗

1 , ..., s
j∗
N )

this is the combination of the optimal strategies of all payers (subscript i). The
superscript j refers to the stage of the game.
In mathematical terms it is possible to define the Nash equilibrium as follows:
the N-tuple (a set on N items, where each item is correlated to a different player
[35]) of strategies sj∗

i is a Nash equilibrium if the following N inequalities are satisfied
[49]:
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where:
Ji is the cost function for the i-th player.

3.2 Navigation example with game theory
One of the simplest navigation decision problem scenario of two players is shown
in Figure 3.1. Two pedestrians, P1 and P2, walk toward each other. In this exam-
ple, for simplicity, the game is modelled as static, non-cooperative and non-zero sum.
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Figure 3.1: Example of human motion and interaction-aware navigation [49].

For each player (Pi) in Figure 3.2a is represented the action set (a1
i , a

2
i ..., a

5
i ) for

the stage j and the relative cost for each trajectory. The cost for each action (in this
case coincide with a trajectory), is computed considering the length of the path and
crossing right is more convenient than passing left. If the two trajectories collide
the cost is infinite (Figure 3.2b). Each cell of the table in Figure 3.2b contains the
cost pairs J1(ak

1) | J2(ak
2). According to the definition in Section 3.1.3, it is possible

to compute the Nash equilibrium at the j-th stage of the game as:
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In this example, we find four Nash equilibrium that is highlighted with a circle
in Figure 3.2b.
How to calculate the Nash equilibrium by looking only at the table?
At the same time 2 conditions should be observed:

• the cost column J1 is less or equal than all the other same column cells.

• the cost row J2 is less or equal than all the other same row cells.

This scenario was tested in [49] with a real experiment and the result was that
the two players during navigation adopted one of the Nash equilibrium solutions.
Nevertheless, this example originates the question about which equilibrium a player
should choose. It is possible to select the equilibrium trajectories reasonably. For
instance, for each player is computed the Nash equilibrium at each time step. In
order to select in the current time (t) the right equilibrium, the player should con-
sider the set of Nash equilibrium in the previous time step (t−1) and in the current
time (t) but also the set of observed trajectory in the previous time step (t− 1).
First of all, the player considers which observed trajectory is similar to the Nash
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Figure 3.2: a)Situation in Figure 3.1 modelled as static game; b)The action of each
player and the respective cost function is shown. If the two players collide the cost
is infinite. The Nash equilibrium is circled [49].

equilibrium in the previous time step, then, compares the chosen equilibrium with
the equilibrium set in the current time.
The main problem of this approach is the computation and evaluation of all equi-
librium each time for all players. For this reason, we modelled the human motion
behaviour considering a sequential best response, it means that the game is dynamic
and the solution is calculated considering the current observation of all agents and,
thus, the Nash equilibrium concept (this concept will be explained in the Chapter
4).
The best response strategy in our model is unique and overcomes the static approach.
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Chapter 4

Model of human motion prediction

4.1 Social behaviour
Socially-aware planning combines the typical information used to perform the mo-
tion planning (composed by the abstraction of the environment coming from the
proprioceptive and/or exteroceptive robot’s sensor) and the social conventions con-
nected to the society in which the robot will move.

Definition 2 The social conventions are behaviours created and accepted by the
society that help humans to understand intentions of others and facilitate the com-
munication [41].

In order to generate a safe and comfortable strategy for robot navigation in a
populated humans environment, it is essential to consider the main aspect of the
social conventions (Definition 2) during human motion.
In this regard, it is interesting to explore, during navigation, how humans manage
their surrounding area and, thus, the distance that human mutually respects to
prevent emotional discomfort.

4.2 Proxemic
The concept of "Proxemic" was proposed by Edward T.Hall in [13] for human-human
interaction scenario.

Definition 3 Proxemics is the study of spatial distances individuals maintain in
various social and interpersonal situations. These distances vary depending on en-
vironment or cultural factors [41].

Hall [13] studied the existence of particular unwritten rules that humans adhere
during the interaction depending on their relationship. He observed different social
distances that individuals maintain from others, as shown in Table 4.1.
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Zone Distance Intention or Relationship
Intimate ≤ 0.45 m Embracing, touching, whispering
Personal 0.45 - 1.2 m Friends
Social 1.2 - 3.6 m Acquaintances and strangers
Public >3.6m Public speaking

Table 4.1: Space around a person considering social interaction according to the
Hall’s study [13].

Based on the Theory of Mind [22], during navigation humans maintain a certain
space for themselves as those they imagine others would prefer.
It should be noted that our human motion model takes into account the proxemic
for all players, groups included.

4.3 Personal space
Definition 4 A personal space is the region around humans that they actively main-
tain into which others cannot intrude without causing discomfort [14].

An example of people that respect the individual personal space is shown in Fig-
ure 4.1, in which the personal space is illustrated using a blue circle and considering
the Hall’s theory.

Figure 4.1: Situation in which humans respect personal space (blue circle)[41].

In the scientific literature different shapes of personal space (Figure 4.2) have
been proposed.
Concentric Circle (Figure 4.2a). As shown in Table 4.1, it is possible to classify
the space around a human in four specific zones. It is necessary to highlight that
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the distances between people are not rigid and vary with the culture, age, type of
relationship and context. Indeed, in some cultures the physical contact is avoided,
instead of others that are more tolerant. For this reason, it is very important to
underline that the zones proposed by Hall are refereed to US citizens.

Egg shape (Figure 4.2b). Humans are more exigent regarding the respect of the
frontal area. Thus, the invasion of the frontal zone is considered as uncomfortable
[15].

Ellipse shape (Figure 4.2c). One of the most famous approach to represent hu-
man motion behaviour is the Social Force Model [16]. In this model, there are two
types of forces: attractive and repulsive. The first one guides humans to the desti-
nation. On the other hand, the repulsive force is used to avoid collisions between
pedestrians. The potential repulsive force is modelled as a monotonic decreasing
function with equipotential lines having the form of an ellipse directed to the direc-
tion of motion.

Asymmetric shape (Figure 4.2d). After physical experiments and virtual simula-
tions, the researchers in [11] concluded that the size of the personal space does not
change with the walking speed during the circumvention of a static obstacle. In
particular, the personal zone is smaller in the pedestrian’s dominant side.

Figure 4.2: Different forms of surrounding personal area: a) Concentric circles [13];
b) Egg shape [15]; c)Ellipse shape [16]; d)Asymmetric shape [11].

In our human motion model we designed the personal space as a concentric circle
(Figure 4.2a) considering a social zone greater than 1.2m diameter, as shown in
Table 4.1.
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4.4 Modelling navigation as a game
During navigation, human observes the environment and reacts to people and generic
obstacles, taking sequential decisions. To model this condition, we use a dynamic
game. In fact, in this scenario the player chooses the strategy after observing the
actions of other players.
It is necessary to highlight that each player has perfect information, i.e. knows the
current and previous actions of all players.
Each pedestrian wants to reach its own goal, thus, the game is non-cooperative.
Further, if a pedestrian "wins", it is not necessary that another player loses the same
amount, hence, the game is non-zero-sum.
Each player has a finite number of actions included in the action set. The proposed
approach uses an action set with 7 actions.
The solution used to solve this game is based on the Nash equilibrium, that is
explained in Section 3.1.3.
The solution of the dynamic game, with only two players, is presented in Figure
4.3. The player1 observes the player2 and notes that the player2 is moving in a
particular direction. Then, the player1 hypothesis that the player2 will move in the
same direction for the following time steps (T). This hypothesis is sketched with
"Initial Strategy2" in Figure 4.3. Thus, the player1 solves its optimisation problem
and the output is the "Strategy1". Subsequently, a control action is necessary to
verify if the actual total strategy is the same computed in the previous iteration.
During the first iteration the total strategy is completely composed by the actual
directions of the players.
If the Nash equilibrium is not reached, the player2 solves its optimisation problem
considering the Strategy1. The output of the optimisation problem is the Strategy2
and, then, the same control strategy previously presented is applied.
The solution is achieved if the process reaches the Nash equilibrium.
Resuming, the game is dynamic, finite, perfect information, non-cooperative and
non-zero sum and is solved with a Nash equilibrium.

In the following, we present in details the optimisation problem solved for each
pedestrian.
Furthermore, in general, the model considers three situations:

• single pedestrian that interacts with all people

• recognition and resolution of the game considering a group of people

• interaction between human and a static object.
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Figure 4.3: Resume of a dynamic game solution with two pedestrians.
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4.5 Optimisation problem
To produce a human-like prediction we use a constrained optimisation problem com-
posed by a cost function subject to a set of constraints.
A cost or objective function is a mathematical function that must be maximised
or minimised with respect to some variables, in order to search for the optimal 1

solution of the problem.
Constraints are mathematical concepts used to limit the variables evaluated by the
optimisation. Constraints are hard or soft: hard constraint is an absolute limit that
cannot be overcame; while soft constraint allows to relax the inflexible constraints
acting a penalty to the objective function.
The standard form of an optimisation problem is:

minimise
x

f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m.
hj(x) = 0, j = 1, . . . , p.

where:

• f(x) is the objective function to be minimised over the vector x with n-variable

• gi(x) ≤ 0 are m inequality constraints

• hj(x) = 0 are p equality constraints

• m ≥ 0 and p ≥ 0. If m and p are equal to zero, the optimisation problem is
unconstrained.

4.6 Constraints and objective function
We started assuming that pedestrians are always goal-directed, i.e. their motion is
always directed toward the goal. In this regard, an element of the objective function
(see Equation 4.1) is modelled minimising the overall path length; in this way, the
resulting path planned by people is the shortest one.

minimise
εi

γ1||pi(t)− p∗
i || (4.1)

where:

1Optimal solution is the best feasible result for a given problem
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• γ1 is a vector containing weighting factors.
In the simulation, we chose γ1 = [0.6; 0.7; 0.8; 1], considering the total prevision
time equal to 4 steps.
We chose those weighting factors because more the player is closer to the goal
more this term acquires importance.

• εi is a vector that contains the future directions (θi) of the i-th agent from 1
to T P rev (total prevision time).

εi =


θi(1)
θi(2)
...
...

θi(T P rev)


• pi(t) is the predicted position of human computed as follows:

pi(t) = pi(t− 1) + θi(t− 1)v∆t (4.2)
where:
∆t is the time between two time instants.

• p∗
i is the target position computed as:

p∗
Est(t) = pStart + θi(0)T P revv (4.3)

p∗
i (t) = p∗

i (t− 1)(1− α) + p∗
Est(t)α (4.4)

where:

• θi(0) is the observed direction of the player i.

• v is the velocity of the player.

• pStart is the initial player position at time instant zero.
In order to compute p∗

i (1), α is set equal to 1.

In our simulation, we set α equal to 0.7 when the time is different to 1. In this
way, the target computed in the previous time step counts only 30% of the final
target.
An example is shown in Figure 4.4.
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Moreover, we considered that people prefer to move in a straight line and would
avoid to change their direction every time. For this reason, we added in the objective
function a term that takes into account the smoothness of the future trajectory
(Equation 4.5).

minimise
εi

γ2

t=TØ
t=1
|θi(t)− θi(t− 1)| (4.5)

where:

• γ2 is a vector containing the weighting factors associated to this part of the
objective function. In our simulation, γ2 assumes the following value:

γ2 = 1− γ1

• θi(t) and θi(t− 1) are the direction at time t and (t− 1), respectively.

In summary, this term penalises changes in motion direction.
Moreover, since people avoid also obstacles with a smooth motion, we assign a cost
function that penalises small distance between pedestrian and obstacle (Equation
4.6).

minimise
εi

ρ

|pi(t)− y| (4.6)

where:

• ρ is a weighting factor. In our simulation we chose ρ equal to 7500.

• pi(t) is the human position at time t.

• y is the closest obstacle point to the pi(t) player position.

The overall objective function is:

minimise
εi

γ1||pi(ε1)− p∗
i ||+ γ2

t=TØ
t=1
|θi(t)− θi(t− 1)|+ ρ

|pi(t)− y|
(4.7)

The weighting factors imply the contribution of each term of the objective func-
tion adjusting the output of the optimisation problem.
In Figure 4.5a is shown a human cost map in a static environment considering only
the first and the last term of the cost function.
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In order to model the region around humans as personal spaces, that should not
be violated, we added an hard constraint with the following structure:

|pi(t)− pj(t)| ≥ β ∀t
i, j ∈ 1...N, i /= j

(4.8)

N is the number of players and β is the minimum distance allowed between two
pedestrians.
Equation 4.8 is a collision avoidance constraint. In this way, the distance between
pedestrians i and j must be greater or equal to a certain value β. The latter is
chosen according to the Hall observation [13]. As a result, the personal space is a
circle around human as in Figure 4.2a.

Each pedestrian can choose the future direction according to a finite set of op-
tions. Hence:

θi ∈ Θi

where Θi is a set of possible angles identified inside the human’s visibility zone.
In the simulation, we selected 7 options. In particular, the player can choose between
the actual position plus 0, -30, -60, -90, 30, 60 or 90 degrees. We selected these
relative angles because is a good trade-off between good performance and reasonable
computational complexity of the algorithm.
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Figure 4.4: Weight target at different time instant.
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(a) Pedestrian cost-map

(b) Zoom of the target position (c) Zoom of the obstacle

Figure 4.5: Cost map of human in a static environment. Blue areas are with the
smallest cost, while yellow areas are with the highest cost, i.e. with a cost equal or
greater than 1000.
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4.7 Motivation for the choice of a discrete ap-
proach

Before assuming continuous solutions for the optimisation problem and, thus, for
the game, it is necessary to classify the problem.
The outputs of the model, in this case, are the directions and the velocities, for each
pedestrian for the total prevision time.
Considering these quantities unknown and using the model shown in Section 4.6,
the optimisation problem is non-linear and non-convex.
Unfortunately, these types of problems are particularly difficult to solve. Non-convex
optimisation problems have multiple local optimal points and, therefore, the solu-
tion depends mainly on the starting point given as input. Further, is not always
guaranteed by the optimisation a feasible solution, due to the initial condition or
the unknown variables constraints.
We have analysed many Matlab mathematical programming solver at the state of
the art to solve this type of problem.
In [39], an interesting comparison (Figure 4.6) between fmincon solver, already
included in Matlab, and Knitro, a commercial non-linear optimisation solver, is pre-
sented.
In Figure 4.6b, Knitro outperforms fmincon, but it does not ensured a global opti-
mum solution. To improve the performance, Knitro offers a multi-start (MS) feature
where it is possible to set nMS different initial conditions. In this way, the solver
finds the best solution from the nMS starting points.
On the other hand, Knitro with MS increases enormously the execution time com-
pared to the fmincon and Knitro without MS (Figure 4.6a).
Thus, we solved our problem with both of these solvers to reach and find a reliable
solution. In Figure 4.7 the result considering the same starting point for both solvers
is summarised.
Curiously, with Knitro without MS, we found an unfeasible solution (Figure 4.7a),
while, in contrast with fmincon the solution is feasible. We tried with different
initial pedestrian position and different velocities constraints but with Knitro, the
solution is always unfeasible.
To overcome this problem, we tried to use the multi-start function, but with the
student trial version of Knitro we cannot exploit this feature.
Then, we focused on the fmincon solver, even if we discovered two main problems.
First of all, with the same optimisation problem shown in Section 4.6, and con-
sidering, in addition, velocity constraints, we found a maximum deceleration if the
pedestrian wants to avoid the other players, and, on the opposite, a maximum accel-
eration in the remaining cases, due to the cost function that searches for the shortest
and fast path.
Thus, the final trajectory is not human-like. For these reasons, we decided to model
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the human motion with a discrete approach.

Figure 4.6: Comparison between the performance of Knitro and fmincon [39].

Figure 4.7: Simulation results: a) Unfeasible solution with Knitro; b) Feasible solu-
tion with fmincon. In both graphs the axis identify the two-dimensional Cartesian
space.
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4.8 Algorithm

The algorithm, to solve the problem presented in Section 4.6, was implemented and
simulated in Matlab.
The pseudo-code is summarised in Algorithm 1.
First, some initialisation procedures are performed before computing the game so-
lution. The environment (AcquisitionImage) and the initial pedestrians data
(PedestrianSelection, InitialData) are acquired. Then, the algorithm tries to
recognise the group of people and save them in the group vector (GroupControl).
This process is useful to improve the computational complexity of the algorithm.
However, the main part of the code is the following.
The algorithm considers each pedestrian n (Line 8) and saves the strategy inside
the variable εt(n). If the Nash equilibrium (Line 35) is not reached, the pedestrian
strategy is computed again (Line 7), otherwise the final game solution is achieved
and saved. This process is repeated for T time steps.
In more details, for each player n, we evaluate if it belongs to one group. If n is in-
cluded in group and is not the first group-player, the algorithm extends the strategy
of the first group component to the n-player. Otherwise, the code estimates the final
target of the n-player (ComputationalTarget) and, thus, computes pF irstEst, that
is the first estimated trajectory (an example is shown in Figure 4.8) for all players
(FirstEstimation).
Afterwards, based on pF irstEst, the trajectory intersection between the n player and
the other agents, playerInter, is computed (Intersection).
Moreover, also the obstacle collision is evaluated, considering the first estimated
trajectory (examples in Figures 4.13a and 4.11a). Thereby, based on these informa-
tion, it is possible to divide the solutions into three main cases:
(i) If the estimated n-player trajectory does not collide with any obstacle and any
other player, the solution for the n-player is with: constant direction and constant
velocity (Line 14);
(ii) If the n-player trajectory collides with the trajectory of other players (line 18), the
algorithm solves the optimisation problem (OptGame) and computes a temporary
strategy εtemp1. Furthermore, another strategy (εtemp2) is computed, considering a
constant direction, but with the possibility to decelerate (DecelTree).
Then, comparing the cost connected to the optimisation problem and the one coming
from the DecelTree function, the code computes the strategy with the minimum
cost. Examples of this scenario are presented in Figures 4.11 and 4.12;
(iii) In the remaining case, i.e. when the pedestrian collides only with an obstacle
(example Figure 4.13a), the algorithm solves the optimisation problem only once
(when f is equal to 1) in order to improve the performance of our algorithm.
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Algorithm 1 Main
1: MAP ← AcquisitionImage(MapImage)
2: pStart, angles, players← PedestrianSelection(MAP )
3: nMAX , T, v,∆t, Choice, β, T prev ← InitialData()
4: group← GroupControl(pStart, angles, players)
5: for t = 1 : T do
6: exit=2;
7: for f = 1 : nMAX do
8: for n = 1 : players do
9: if n /= group then

10: p∗ ← ComputationalTarget(v, T P rev, pStart, angles, players)
11: pF irstEst ← FirstEstimation(players, pStart, T P rev, v, angles,∆t)
12: playerInter ← Intersection(pF irstEst, β, players, n, T P rev)
13: obst← Obstacle(pF irstEst,MAP )
14: if obst==0 ∧ isempty(playerInter)==1 then
15: pP rev(n) = pF irstEst(n)
16: εt(n) =angles(n)
17: end if
18: if isempty(playerInter) == 0 then
19: Cost1, εtemp1, pT emp ← OptGame(pStart, εt, pP rev,∆t, Beta, p∗,MAP, angles)
20: Cost2, εtemp2, pT empDecel ← DecelTree(pStart, εt, pP rev,∆t, p∗,MAP, angles)
21: if Cost1 > Cost2 then
22: pP rev = pT empDecel

23: εt(n) = εtemp2
24: else
25: pP rev(n) = pT emp

26: εt(n) = εtemp1
27: end if
28: end if
29: if obst == 1 ∧ isempty(playerInter) == 1) ∧ f == 1 then
30: εt, pP rev ← OptGame(pStart, εt, pP rev,∆t, Beta, p∗,MAP, angles)
31: end if
32: else
33: pP rev, εt ← UpdateGroupStrategy(εt, v, T prev, pStart)
34: end if
35: if εt == εt−1 then
36: exit = 1;
37: break
38: else
39: εt−1 = εt

40: end if
41: end for
42: if exit==1 then
43: break
44: end if
45: end for
46: angles, pStart ← UpdateInitialData(εt, pP rev)
47: end for
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4.8.1 Function explanation

AcquisitionImage. This function takes as input the MapImage, that is the full-
colour image of the environment, and returns the occupancy grid denoted as MAP
defined as a matrix, in which 0 denotes occupied cell and 1 a free cell.
PedestrianSelection. This function selects pedestrians in the environment (pStart)
and choose the initial direction (angles) of each agent. The function also counts the
number of pedestrians that is given as players variable.
InitialData. In order to use the starting data in a practical way, this function
gives: nMAX the maximum iteration for the following for loop, T total number of
time steps, ∆t the time between two time instants, v mean velocity for each pedes-
trian, Choice is the vector connected to the player action set, β is the minimum
distance between players and T prev is the prevision time steps of pedestrians.
GroupControl. If some pedestrians are close to each other and with similar initial
directions, the function classifies them as group.
ComputationalTarget. This function computes the weight target (as shown in
Section 4.6) for all pedestrians considering the initial data.
In our simulation, we set T P rev equal to 4 time steps and the targets were computed
considering 70% of the estimated target at time instant t and the remaining 30% of
the goal computed at the instant (t− 1).
FirstEstimation. Based on the initial data, this function computes a first pedes-
trians’ estimation (pF irstEst) assuming a constant direction and a constant velocity
for all players, as shown in Figure 4.8.
Intersection. Considering pF irstEst previously computed, the function evaluates
if the first estimated trajectory of the player n intersects or is too close to other
trajectories and save the results in playerInter.
Obstacle. Given the map of the environment (MAP) and pF irstEst, this function
analyses if the first estimated trajectory collides with an obstacle or not, and saves
the result in obst. The variable obst is a binary variable: 1 represents the presence
of an obstacle; 0 otherwise.
OptGame. This function solves the optimisation problem evaluating all possible
strategy combination and considering the constraints. Indeed, starting from the
initial angles, the function builds a choice tree and extends only the branches that
satisfy the personal space constraint. The best strategy (εtemp1) has a constant ve-
locity, minimum cost (Cost1) and satisfy all constraints.
DecelTree. In parallel with the resolution of the optimisation problem, Decel-
Tree builds another choice tree assuming a constant direction, but evaluating an
incremental deceleration (40%, 50%, 60%, 70%) considering the current velocity.
The strategy solution, the corresponding position and the cost are saved in εtemp2,
pT empDecel and Cost2, respectively.
UpdateGroupStrategy. Given the matrix with all pedestrians’ strategies εt at
time t and the other initial data (v, T prev, pStart), this function extends the strategy
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of the fist group player to the other members of the group.
UpdateInitialData. Considering the pedestrian strategy matrix εt and the posi-
tion prevision pP rev, UpdateInitialData upgrades the variables angles and pStart for
all players.
In the following subsections are shown and analysed some simulation results coming
from the Matlab code.

Figure 4.8: Simulation results in which agents do not intersect obstacles and other
pedestrians trajectories.

4.8.2 Group of people
The code is able to recognise the groups of people that are moving in the environ-
ment (MAP) with the function GroupControl.
Some examples are shown in Figures 4.9 and 4.10.
In particular, in Figure 4.9, the algorithm classifies the players one and two as be-
longing to one group, and the third one avoids the group.
In Figure 4.10, the situation is similar to Figure 4.9, but the group consists in 3
people. Similarly to the previous scenario, the fourth pedestrian avoids the group.
In both figures, the circles over the trajectories are the estimated positions that are
the outputs of the simulation.
Why is it so important to recognise groups?
For example, if in Figure 4.9 the pedestrian 1 and pedestrian 2 were classified as
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two different players, the algorithm would applied the personal space constraint for
each of them and, as a consequence, the final trajectory would be calculated to avoid
each other. This happened because normally, when pedestrians navigate in a group,
the distance between components inside the group is lower than the β parameter.
Further, the group recognition improves the computational complexity of the al-
gorithm. Indeed, if n is included in group and is not the first group-player, the
algorithm extends the strategy of the first group component to the n-player without
solving the game.
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Figure 4.9: Simulation results: a) First estimation and group recognition; b) Model
solution.
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Figure 4.10: Simulation results: a) First estimation and group recognition; b) Model
solution.
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4.8.3 Game solution
Figures 4.11 and 4.12 show the solution of the game considering the intersection
with other pedestrians.
In Figure 4.11a, the first pedestrian intersects the obstacle and the trajectory of the
second player. The solution of this scenario is shown in Figure 4.11b, where the
first pedestrian avoids the obstacle but is still goal-oriented, and the second player
decelerates to pass the first agent and, then, continues with his previous speed.
On the other hand, in Figure 4.12a, two couples of trajectories intersect. The
solution is presented in Figure 4.12b, where the first pedestrian decelerates to pass
the second one and the third player avoids the fourth agent.

4.8.4 Human-static object interaction
The last analysis is the intersection of the first estimated trajectory with obstacle
(Figure 4.13a).
The output trajectory is smooth and is not excessively close to the obstacle (Figure
4.13b), because of the cost function term (explained in Section 4.6).
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Figure 4.11: In a) the first estimation with the obstacle and intersection recognition;
In b) the model solution with game theory.

46



4.8 – Algorithm

Figure 4.12: In a) the first estimation with the intersection recognition. In b) the
model solution with game theory.
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Figure 4.13: Simulation results: a) First estimation and obstacles recognition; b)
Model solution.
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Chapter 5

Model validation and experiment

In this chapter, we discuss what kind of methods we adopted to validate our work.
In the first paragraph, we explain how we validated the human motion model based
on game theory with real-world surveillance videos. Afterwards, we present the
setup of the variation of the Turing test that we have done to validate our human
motion model and to understand the social acceptance of the player robot.

5.1 Human motion model validation with videos
The surveillance videos that we used to validate the model are completely open-
source [25]. In those videos, multiple pedestrians walk in an urban environment and
actively avoid each other during the navigation.
The qualitative comparison between real-trajectories and the output of the game
theory model are summarised in Figures from 5.1 to 5.4.

It is evident, in all cases (Figures 5.1-5.4), there are some differences but in the
following, we tried to explain the reasonable motivations and the possible future
improvement.
In general, the collision-free trajectories computed by our model are similar to the
real one but with an excessive reaction to the dynamic obstacles. For instance, in
Figure 5.2, the pedestrian with the green trajectory would avoid the blue one. The
output of our model gives a green collision-free trajectory but with a high distance
from the surrounding pedestrians during the last instances of the forecasting. The
same situation is shown in Figure 5.3 (red trajectory) and in Figure 5.4 (blue trajec-
tory). The main reason behind this phenomenon is that the model that we created
is discrete.
Precisely each pedestrian has an action set composed of 7 possible directions in his
visibility zone. The player can choose one of those actions to minimise the cost
function, considering the constraints and, thus, the all strategies of other players.
The first possible action, in order to avoid the obstacle, is the actual direction plus
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Figure 5.1: Validation with surveillance videos. On the left: the real trajectories are
shown; On the right: Trajectories output of the game theory model.

Figure 5.2: Validation with surveillance videos. The scenario is the same described
in Figure 5.1.

or minus 30 degrees. Clearly, this choice cannot give us a precise result, but we se-
lected 7 directions because they are the best trade-off between acceptable trajectory
and computational complexity of the algorithm.
In future, if we develop a more performing algorithm, surely, we will introduce for
each pedestrian as many directions as possible and, thus, will have more accurate
results.
However, in Figure 5.1, the yellow predicted trajectory is completely different from
the real one. This specific pedestrian has a special motion, indeed, watching the
video it is easy to deduce that the pedestrian is waiting for someone/something, but
obviously, the proposed model can not manage this situation.
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Figure 5.3: Validation with surveillance videos. The scenario is the same described
in Figure 5.1.

Figure 5.4: Validation with surveillance videos. The scenario is the same described
in Figure 5.1.

The human does not have a specific target to reach and then the goal that we esti-
mated is useless and therefore also the trajectory.
Furthermore in general, we observed that the long-term prediction is less reliable
than the short-term one, most likely because we do not know the real human target
but we estimated the goal as we explained in Chapter 4. This is not a real issue for
our scenario, because we have assumed that every 1 second we compute again the
trajectories for all pedestrians, thus, the most important prediction for our purpose
is the short-term one.
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5.2 Test

5.2.1 Evaluation method
With this experiment, we want to validate our human motion model based on game
theory and understand the social acceptance of the player robot.
How to measure the social acceptance of the robot?
Humans, attribute sometimes intentions and consciousness to non-human agent [55].
The term to explain this behaviour is anthropomorphizing. We can use anthropo-
morphizing to improve human-robot interaction during the robot motion [50].
This is reached by attempting to design the motion of the robot in a human-like
manner [34].
Thus, to measure the acceptance, during the experiment, we evaluate the human-
likeness of the player robot motion.

Definition 5 "Human-like motion planning consists of planning collision-free
motions for one or more agents such that they behave equivalent to, or indistinguish-
able from, a human [50]".

To reach the goals of the experiment, we formulate an experiment composed of four
sections (Figure 5.6).
We started with a training phase, in order to give to the participant a general idea
of the test scenario (Figure 5.5).

Figure 5.5: Training a) First section training; b) Training with arrows.
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Figure 5.6: Overview of the experiment.

From the first step onwards each participant watches only arrows that move as
pedestrians in the same environment of the training phase but without the visuali-
sation of the urban space (Figure 5.7).
We decided to not insert the map, in the majority of the videos, to prevent partic-
ipants from being bias by the environment. Instead, we want that the attention of
the test participants is focused on the agent motion, essential for our purposes.
The four phases have been designed respecting the rule of the “funnel”, that is,
starting from the general and arriving at the particular.
As a matter of fact, the second and the third phase of the experiment are used to
validate our socially-aware motion planning creating videos with real humans and
a robot (that is not distinguishable from the others arrows) that moves considering
our artificial walking motion or a reactive motion planner (non-player robot) based
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Figure 5.7: Arrows that are moving as agents in the same training urban environ-
ment. a) Second and fourth section set-up; b) Third phase set-up.

on the Enhanced Vector Field Histogram (VFH+) algorithm.
For more clarity and completeness, in Figure 5.8 is shown the main difference be-
tween the two algorithms.

Figure 5.8: a) Non-player robot behaviour (VFH+); b) Player robot behaviour.
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In Figure 5.8a, the navigation of the robot is with a reactive planner (VFH+)
and it does not forecast the trajectory of pedestrian. On the other hand, in Figure
5.8b, the robot predicts the pedestrian trajectory and in advance avoids the agent.
The implementation result of the two algorithms in an urban environment is shown
in Figure 5.9, where the robot trajectory is highlighted.
It is evident that in the VFH+ case (Figure 5.9a) the yellow arrow (non-player
robot) avoids pedestrian only if it is near to the human, on the contrary, in player
robot scenario (Figure 5.9b) the yellow arrow predicts human motion and avoids
the pedestrian in advance.
Another difference between the two algorithms is that in the VFH+ simulation, the
robot can move with a constant velocity that has been set as a human velocity,
conversely, the player robot starts with a constant human velocity (in order to be
more likely anthropomorphized) but can decrease its speed if necessary.
In particular, in the third section of the test, we want to concentrate the attention
of participants to one of the arrows in the video that can move as real humans,
non-player robot or player robot (as shown in Figure 5.7b).
In the last section of the experiment, we want to validate the human motion model
doing the comparison between videos. The motions in the videos are generated based
only on real humans or considering only agents controlled by our motion planner.

Figure 5.9: Robot in urban space: the yellow arrow, in both images, represents the
robot position at the same instant of pedestrians (blue points). a) Non-player robot
(VFH+); b) Player robot.

During the experiments, participants watch 25 videos (20 seconds each) and
answer some questions. In general, the answer should be binary, it means or yes or
not, but in some particular case, we ask to express the opinion on a Likert scale [28]
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from 1 to 5.
The study takes at least 8 minutes to complete successfully. The unique two rules
of the experiment are: (i) the participant can pause the video if watch something
abnormal (ii) cannot ask to watch again.
The following section presents in more details the questions in all steps with the
experimental video setup designed as a variation of the Turing test.

5.2.2 Experimental setup
General questions
For each person we asked: gender, age and their level of professional experience with
the robotics field on a Likert scale from 1 (no experience) to 5 (expert).

First section: Training
The videos showed pedestrians walking in a metropolitan space only in this section
(Figure 5.5a). In order to pass gradually to the format shown in Figure 5.7, we
designed a situation like in Figure 5.5b.

Second section: Validation and recognition of human likeness
In this case, we exhibited 9 videos in random way. Three of those had only real
humans, other three had real humans with our player robot and the remaining had
real humans and the non-robot player that was moving with a reactive planner
(VFH+).
We asked the participant to press pause and point out the arrow that was moving
abnormally. Then, we asked the following question:

1. Please, rate the degree of the naturalness motion of the arrow on a scale from
1 (completely unnatural) to 5 (completely natural).

With naturalness, we denoted the human-likeness of the arrow motion.

Third section: Recognition of human likeness of a circled arrow
In this phase we showed the same 9 videos of the previous section but in different
order, with the addition of a circled arrow that the participant should follow in the
video. The questions we asked the participants were:

1. Is the moving arrow a human?

2. Please, rate the degree of the naturalness motion of the arrow on a scale from
1 (completely unnatural) to 5 (completely natural).

Fourth section: Validation of the human motion model
In this phase we showed 4 videos in a random way. Two were real pedestrians and
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the remaining were the output of our human motion model. After the videos we
asked:

1. Are the moving arrows humans?

2. Please, rate the degree of the naturalness motion of all arrows on a scale from
1 (completely unnatural) to 5 (completely natural).
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Chapter 6

Test results

In this chapter, we summarise the main results of our study, in particular, the prin-
cipal outcomes of the variation of the Turing test.
50 volunteers participated in our test. At the beginning of the experiment, we asked
participants the general questions about gender, age and the level of professional
experience in the robotic field on a scale from 1 (no experience) to 5 (expert). These
information are summarised in Table 6.1 and in Figures 6.1-6.2.
Most of the participants were men aged 19-28 with no experience in the robotics
field. For each human, we showed 25 videos and asked the questions described in
detail in Chapter 5.
In the following sections, we describe and analyse the results for each phase of the
experiment and, at the end, we discuss and compare the test results of different
sections.

General information Collected data

Number of participants 50

Gender 30% Female and 70% Male

Age from 19 to 58

Table 6.1: General information collected from the participants.
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Figure 6.1: Level of experience of the participants in robotics.

Figure 6.2: Distribution of participants’ age.

60



6.1 – Second section test result

6.1 Second section test result

In this phase, the participant should indicate the arrow that in his opinion moves
in a strange way. If he/she has found the right arrow, we asked the degree of natu-
ralness of the arrow’s movement on a scale from one (completely unnatural) to five
(completely natural).
We showed 9 videos and, in the following, we present the result for each video, group-
ing them into 3 categories: only humans, humans with non-player robot, humans
with player robot.

6.1.1 Surveillance videos

In this section, we have summarised the recognition of at least one agent with a
weird behaviour in videos with only real humans (Figure 6.3).

Figure 6.3: Surveillance videos recognition.

In Figure 6.3a and 6.3c, we collected the answer we expected, indeed, the major-
ity of the participants (82% in Figure 6.3a and 72% in Figure 6.3c) did not recognise
strange arrow movement.
Instead, in the Figure 6.3b more than half (58%) participants identified something
weird, also in this case this is a trend that we supposed to achieve. In particular, the
second videos surveillance has been selected to test the focus of our participants, in
fact in that videos, there is an arrow that suddenly changes the direction of travel,
perhaps because it has changed the final goal during the navigation.
Despite the strange behaviour, in the 6.2.1, more than half of the participants clas-
sified the same arrow as human because of its natural and smooth motion.
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6.1.2 Humans with non-player robot
In this part, there is an overview of the recognition of a non-player robot (controlled
with the VFH+ algorithm) in a crowd of humans (left panels of Figure 6.4).
In addition, in Figure 6.4 on the right, is represented the degree of naturalness of the
recognised non-player robot arrow on a Likert scale from 1 (completely unnatural)
to 5 (completely natural).

Figure 6.4: On the left: recognition of the non-player robot; On the right: nat-
uralness of the recognised non-player robot on a Likert scale from 1 (completely
unnatural) to 5 (completely natural). Labels (a), (b) and (c) are used to identify
the specific video.

In the first video, Figure 6.4a, we placed a reactive robot that is easy to recognise
because it has a non-smooth trajectory and it changes directions several times dur-
ing navigation. Thus, as we expected, 86% of the participants identify the correct
arrow and assign the minimum of naturalness.
In the second video, Figure 6.4b, the non-player robot changes its movement less
time than the previous case and the final trajectory is not completely smooth.
As we supposed, the second video is less discernible than the first case (the second
case is noted by 78%, in contrast, the first video by 86%) with a greater distribution
of naturalness than the preceding instance.
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In the last situation, Figure 6.4c, only 44% of participants distinguish the non-player
robot from the real humans. This is a particular tricky scenario, indeed, the reactive
arrow does not change its directions quickly, but avoids the other arrows only when
it arrives in front of them. The reason why it was not recognised by the remaining
56% of participants will become clear by looking at the results of the section 6.2.2.
In general, the non-player robot is most of the time recognised for its strange move-
ment, except for the third video which is a special scenario.
The remaining 14% for the first case and 22% for the second, they did not identify
something weird. A possible reason for this result is: they were distracted by the
other arrows’ movement.

6.1.3 Humans with player robot

This result section is one of the most important because we show the outcomes of
videos with real humans and our player-robot.
As in the previous sections, in Figure 6.5 there is a summary of the recognition result
of the robot on the left, and an overview of the naturalness for the participants that
identified the correct arrow on the right.
The degree of naturalness is based on a Likert scale from 1 (completely unnatural)
to 5 (completely natural). It is evident in orange, in Figure 6.5, that the majority
of participants did not identify the arrow that was moving with our socially-aware
motion planning. Thus, the player robot easily blends into the real human crowd.
Moreover, if the player robot is identified (12%, 6%, 28% respectively), the degree
of naturalness is still medium-high.
We would also highlight that the player robot in the first two videos (Figure 6.5a,
6.5b) was created with the same simulation parameter (same time delta equal to
1.2 second), in fact we collected similar results.
In contrast, in the third case, (Figure 6.5c) the player robot computes its trajectory
considering a smaller time delta (0.7 second). This last project choice influences
the final trajectory of the robot and, thereby, also the recognition during the ex-
periment. In particular, the smaller is the forecast time, the lower is the readiness
to avoid the obstacle during navigation. Probably, for this reason in the third case
(Figure 6.5c) 28% of people identified our player robot.

63



6 – Test results

Figure 6.5: On the left: recognition player robot; On the right: naturalness of the
recognised player robot. Labels (a), (b) and (c) are used to identify the specific
video.

6.2 Third section test result
The videos, showed in this part, were the same of the second section but we inte-
grated a circled arrow to focus the human attention on a specific agent/arrow.
In the following, we present the main result grouping the outcome, again, as: only
humans, humans and non-player robot, humans and player robot.
The sequence in which the results are presented is the same as the previous section,
in order to compare the outcomes easily. Clearly, the order of analysis of the results
does not reflect the procedure in which we showed the videos to the participants.
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6.2.1 Surveillance videos

In Figure 6.6 is shown the main result of the circled arrow that was moving has a
real pedestrian.

Figure 6.6: On the left: recognition of the circled arrow as human; On the right:
naturalness of the circled arrow on a Likert scale from 1 (completely unnatural) to 5
(completely natural). Labels (a), (b) and (c) are used to identify the specific video.

As we supposed, the real human is perceived mostly as a pedestrian with 96%,
56% and 90%. However, also the naturalness is significantly high for the first and
third case (Figure 6.6a and 6.6c), with more than 50% with the highest value of the
Likert scale. Further discussion is necessary for the second video (Figure 6.6b).
As we have explained in Subsection 6.1.1, the second video is different from the
other, due to the weird behaviour of the pedestrian. Nevertheless, more than half
(56%) of humans classified that strange trajectory as likely for people.
The most frequent comment to justify that answer was: "it could be a human be-
cause it has too unpredictable behaviour".
The naturalness is distributed by all the Likert’s scale (Figure 6.6b), probably be-
cause of the unconventional nature of the arrow chosen.
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6.2.2 Humans with circled non-player robot
The overview of this section results is shown in Figure 6.7.

Figure 6.7: Each image row is labelled by a letter (it identifies the results of the
same videos). On the left: the recognition of the circled non-player robot as human;
On the right: the degree of naturalness of the circled arrow.

As we assumed, in the first two cases (Figure 6.7a, 6.7b) the non-robot player
is perceived as an artificial agent (90% and 78%) with a motion behaviour very far
from being natural. These outcomes are consistent with the results in Subsection
6.1.2, in fact the qualitative distribution of the naturalness shown in Figure 6.4a and
6.4b is very similar with the Figure 6.7a and 6.7b.
However, the third case, has achieved results in contrast to what we expected (Figure
6.7c). 60% of participants consider as human the non-player robot arrow with a
medium-high naturalness level. This result is very interesting and strange but can
explain why in the previous section (6.1.2) 56% of the participants do not recognise
the exact arrow.
As we said above, in this third video the robot avoids the pedestrians when it arrives
in front of them, but in general, it does not have sudden changes of direction.
For this reason, the main observation that the participants said to justify the human
choice was: "Probably the pedestrian is looking at the smartphone and does not
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notice the other pedestrian before arrives in front of them".

6.2.3 Humans with circled player robot
In these videos, the humans follow an arrow that is moving considering our algo-
rithm. In Figure 6.8 is shown a result summary of this part.

Figure 6.8: On the left: the recognition of the circled player robot as human; On
the right: the degree of naturalness of the circled arrow. The image row is labelled
by a letter in order to identify easily the final results of each video.

In all videos the majority of the participants classified out player robot as a hu-
man with 68%, 78% and 56% respectively.
As we highlighted in the Subsection 6.1.3, in the first two cases (Figure 6.8a and
6.8b) the robot has equal parameters. This similar design choice influences also
comparable results.
On the other hand, the results of the third video (Figure 6.8c) deviate somewhat
from the first two but the majority of people granted a medium-high naturalness.
This fundamental consideration can be generalised to all videos with circled robot
player. Indeed, comprehensively, the naturalness assigned to the socially-aware
robot is medium-high, even if the robot is identified as a non-human entity (Figure
6.9).
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Why do humans recognise the robot as something artificial but consider its navi-
gation as natural? One of the possible explanation for this phenomena is that the
arrow movements was too perfect to belong to a human being because it does not
have the uncertainty and the unpredictability like a real pedestrian, but despite
everything, the movement is perceived as natural because it is quite credible.
This hypothesis could be confirmed by looking at the graphs in Figure 6.9.
In fact, the first two videos have more performing robot than the third one and this
is visible also in the results in Figure 6.9a and 6.9b with 71% and 83% of medium-
high naturalness.

Figure 6.9: Graphs show the percentage of naturalness for the player robot that was
classified as an artificial arrow for the three videos.

6.3 Fourth section test result
This last section aims to validate the human likeness of our human motion model.
The arrows in the videos are or all real humans or totally artificial agents.
The results are summarised in the following.

6.3.1 Surveillance videos
Figure 6.10 shows that humans recognise successfully the movement of real pedes-
trians with 78% and 86%. Moreover, also the naturalness is consistent with the
previous result having a high degree of spontaneity.
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Figure 6.10: On the left: arrows categorized as human; On the right: naturalness of
arrows on a Likert scale from 1 (completely unnatural) to 5 (completely natural).

6.3.2 Human motion model
In this section, we tried to validate the human likeness of our model.
The results are presented in the Figure 6.11. In this case, an high percentage of
humans identify the arrows as artificial (50% and 42%), though the naturalness is
weirdly medium-high.

Figure 6.11: On the left: in orange is shown how many participants identified the
arrows’ movement as human motion; On the right: the naturalness of all arrows on
a Likert scale from 1 (completely unnatural) to 5 (completely natural).

This result could be prove considering that the movement of all arrows is too
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tidy and coordinated to be real (especially the grouped arrows).
However, in general, the trajectories are considered natural because they are quite
credible. Considering that our model is discrete, we expected that the participants
largely recognised the scenario as not-human. But it was less evident that the same
trajectories are catalogued as human-like.
Overall, we collected interesting outcomes, but we would highlight that the final goal
of this section was to validate the model and, then, use it for the robot trajectory.

6.4 Discussion
Although most of the participants have no experience in the robotic field (54%),
surely everyone found themselves navigating through a crowd daily. Thus, the work-
ing environment is very well known to all human beings, in fact, every day humans
predict in a completely natural way the behaviour of the other pedestrians even just
looking a few moves.
Comprehensively, the results are consistent with what we expected. In particu-
lar, the participants did not distinguish between our planner and real human but
detected the difference with the non-player robot (controlled with the VFH+ algo-
rithm).
In the third section, considering the videos with the circled player robot, we col-
lected the main result of the thesis. The player robot is classified, globally, as a
human with a high naturalness.
However, it is important to highlight an interesting and unexpected result. The
minority of participants that identified the player robot as an artificial pedestrian
still assign a medium-high degree of human-likeness.
Although the environment is aseptic and participants do not have great competence
on the robotic subject, it is incredible how the arrow is widely classified as not hu-
man but with a maximum naturalness.
We tried to explain this unexpected result comparing the outcomes of different sec-
tions. The player-robot arrow sometimes is classified as artificial because, clearly,
the movement is the output of a discrete model and the final trajectory is excessively
smooth and predictable. In contrast, unpredictable and imperfect trajectories are
perceived as human beings (like in Figure 6.7c and Figure 6.6b).
The other goal of this thesis is reached in the fourth section of the experiment, where
we tried to validate the human motion model based on game theory.
The players’ arrows were identified as artificial only by 50% and 42% with a medium-
high naturalness of motion (Figure 6.11). In this case, the result can be explained
by considering that the arrows’ movement is overly ordered compared to the real
case but with natural movement anyway.
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Chapter 7

Conclusions and future works

In this thesis, we studied the human-robot interaction focusing on the human be-
haviour. The main goal was to plan a trajectory for an autonomous robot that is
pleasing and acceptable for humans. How to reach this ambitious goal?
We first created a model that was useful to predict the human decision process dur-
ing motion in a crowded place. The model is based on a dynamics, non-cooperative
and non-zero sum game and it is solved with the Nash equilibrium.
The qualitative validation, with open source surveillance videos, gave us promising
results.
Subsequently, we created the motion planner for an autonomous robot based on our
model, considering the robot as a player.
With the experiment, we tried to quantitative validate the effectiveness of the
methodologies designed for the player robot. The participants of our test did not
distinguish the human motion and the output trajectory of our model.
In contrast, they recognised as an artificial entity the non-player robot that was
moved using a reactive method (VFH+).
In the third section of the test, the majority of the participants classified the player
robot as a human with a medium-high human-likeness. Nevertheless, from the lit-
erature [34], we found that if a robot moves like a human, is more likely to be
anthropomorphized, and this situation increases the acceptance between humans
and robots. Thus, with our experiment, we reached the ambitious goal that we
presented above.
However, it is important to highlight an interesting and unexpected result. The
minority of participants that identified the player robot as an artificial pedestrian
still assign a medium-high degree of human-likeness. It is incredible how, although
the environment is aseptic and participants do not have great competence on the
robotic subject (54%), the arrow is classified as not human, but with a maximum
naturalness. We tried to explain this unexpected result considering that humans
daily navigate in a crowd and have developed predicting skills about surrounding
people, only looking a few moves. These abilities also come out in the analysis of
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the arrows’ movement and most likely they have figured out that the final player
robot trajectory was excessively smooth and predictable.
Our human motion model based on game theory could have promising applications,
not only in the autonomous robotic field, but also in computer games or virtual
reality applications to simulate humans realistic motions.
Soon, this model could be useful also for autonomous cars to increase humans safety.
Clearly, our model could be improved, for example increasing the number of actions
for each player and developing another performing algorithm to solve the game in
real-time. Other types of solution for the game could be investigated and compared
with our approach.
Another possible improvement of the proposed work could be the combination of
the learning approach with the game theory. Indeed, learning algorithms have a
great performance, in particular, they have good customisation for every pedestrian
based on the data collected during the training phase.
In general, our motion planning method shows very promising results for robots that
navigate in a shared environment with humans. Some examples are: assistive robots
for seniors, cleaning robots, receptionist robots in public or private shop, delivery
robots, to name a few.
Based on our test results, we can affirm that in these scenarios our player robot
increases the acceptance and the cooperation with humans.
Moreover, one of the boundaries of our experiment, is the limited number of partic-
ipants (only about 50) and also the restricted number of the videos watched. Could
be interesting to repeat the same test with a bigger number of participants (at least
150), and at least 10 videos per types for each section to additionally corroborate
this thesis.
Further application is in a scenario where multiple robots are coordinated and
planned with our game-theoretic trajectory planning as in LaValle [24] works, or,
most recently, with Zhu et al. project [56]. Additionally, in that condition, might
be interesting to consider and study the uncertainties in the information of other
players, like in a Bayesian game.
Moreover, future works will principally focus on the implementation of our socially-
aware trajectory planner in a real robotic platform, for example, in an urban scenario
like in Figure 5.5a. Therefore, ask humans to judge the rank of safety and natural-
ness of robot trajectory.
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