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I. Abstract 
 
In recent years the affirmation of industry 4.0 has marked a trending towards new means of 
production and more sophisticated control infrastructures. An example of this trend is the 
widespread application of additive manufacturing machine, alongside innovative software and 
control techniques, as testified by the application of Machine Learning in production processes 
and the shift towards an IoT approach. 
This thesis project is part of the application of a Machine Learning algorithm to a Selective 
Laser Melting (additive manufacturing technique) machine in order to optimize the machine 
parameter to prevent defect formation. In particular, the part covered by this thesis is the feature 
extraction from the process: using a photo camera, pictures of the building process in a Selective 
Laser Melting machine are taken, then such pictures are analyzed through Python methods to 
extract relevant features that will be later fed to the optimization and control part. 
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1. Introduction 
 
The Additive Manufacturing technology has been a breakthrough in the industrial sector, born 
for rapid prototyping and now starting to be implemented for production of pieces with a new 
set of rules for design made possible by the many advantage of the technology. The passage to 
the mainstream diffusion is still recent for Additive Manufacturing (AM), generating a growing 
interest in the applications surrounding the AM paradigm, from the characterization of new 
powder, to the application of innovative programs for control and optimization of the process.  
 
The latter is precisely the origin of this thesis project. 
 
Contemporary to the affirmation of new manufacturing technologies, new data analysis 
techniques are becoming more popular and increasingly more effective, like machine learning 
and its component (data mining, neural networks…). A growing amount of literature is now 

dedicated to the application of machine learning techniques to extract relevant features from 
production technologies and the usage of these features for early defect recognition, predictive 
maintenance, and parameters optimization., investigating the hidden link between measurable 
characteristics of the process and the overall performances. 
This project aim at performing a defect detection in the an AM process, namely a Selective 
Laser Melting process, by mining data in the form of images during the whole process, data 
that will be used to train an algorithm for early fault detection, allowing an early intervention, 
and possibly the design of a controller that exploit said data. 
 
The thesis is presented following the chronological development of the project, divided in two 
main parts. At first a study of the state of the art regarding AM technologies and how machine 
learning has been used in the field is presented, comprehending also some interesting 
publications on image analysis. The AM processes, in particular, will be looked at in depth to 
understand the context of the project, and the same will be done for the machinery used. 
The first practical part of the thesis is the design of an acquisition system that allows to collect 
raw sources of information from the manufacturing process, hence a camera will be used to 
capture images of the process in suitable moments, and store the images as the base of the data; 
this part will be analyzed both from the hardware design point of view and the software design, 
explaining the choices made based on requirements and constrains given by the environmental 
condition or by sensitivity of other elements of the overall system. 
The second part is the extraction from the image pool of the relevant features, that will be 
described. The filters exploited will be described, and based on those, the extraction algorithm 
will be presented, justifying the choices made for the design and the limitation that needed 
specific corrections. The main goal of this part is to create a valid algorithm with a design 
approach that favors further developments and optimization of the algorithm itself. 
 
Finally, the performances and the results of the designed algorithm will be presented and some 
preferential directions for future improvements will be proposed, based on the information 
gained during the creation and the testing of the program. 
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2. State of the art 
 
In the following a brief review of the state of the art is performed on topics interesting to the 
purpose of the project. In particular three areas will be covered: the first section covers papers 
regarding defect formation in Additive Manufacturing process, to provide some context on the 
importance of process parameters. In the second section some image analysis functions that 
provided useful tools are explained. Finally, some examples of how Machine Learning 
algorithm are used in Additive Manufacturing are analyzed, again to provide context and a base 
for future development. Although the papers reviewed in this chapter were used in the thesis, a 
lot of study material also came from publications such as books and manuals, which are not 
covered here being already well established as working procedures. 
 
Additive Manufacturing: 
 
D. Wang – Mechanism and characteristics of spatter generation in SLM processing and its 
effect on the properties [1] 
 
 The laser power and the spattering formations are put in correlation, establishing a 
positive correlation between the power given to the pool and liquid metal jetted out. 
Responsible for the generation of spattering are three factors: recoil pressure due to the high 
input energy, Marangoni effect due to gradient in surface tension between particles, which 
result in a kinetic manifestation, and heat effect in molten pool. The observed size of the 
spattering is relatively big in a powder bed, reaching 162µm, and assuming a different 
composition with respect to the original powder. This behavior causes a deterioration of the 
final fabricated part. 
 

 
(fig.2.1) Spattering generation is caused by ejection from the melting pool. Wang et al. [1] 
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T. Heeling – Investigation of selective laser melting spatter characteristics for single- and 
multi-beam strategies using high speed imaging [2] 
 
 An overview of the process dynamic using high speed camera is given, focusing on the 
spattering formation and characteristics. A Phantom V12 camera recording 30010 fps with 
512x256 frame and a 15µm/pixel resolution is used. Different scan strategies are used, such as 
single-beam scan, multi-beam with post-heating, pre-heating and wobbling. 
The acquisition are preprocessed by adjusting the greyscale, boosting the value of darker 
particles and setting to zero the samples below a threshold for noise reduction, and a filter is 
also applied to exclude the area near the laser from identification, as this will lead to the 
identification by gradient of the laser in action and the plume not related to spattering. To further 
reduce the noise and identify the single droplets, artifacts are tracked by computing the distance 
frame by frame and associating the object with a near artifact in the previous (fig. 2.2). This 
allows to track droplet of melted material mid-air and relate them to where the laser was when 
they were originated: the average identification rate is about 75%. 
 

 
(fig. 2.2) the spatter is tracked mid-air. It’s possible to notice how the area around the laser is excluded and dark 
spatter is enhanced on the right. Heeling at al. [2] 
 
Two kind of spatter are tracked, bright and dark spatter, depending on dimension and speed 
(and thus residual incandescence): results shows how scan speed has a positive correlation with 
the spatter count, although for higher scan speed there’s a lower spatter velocity. This is due to 

the reduction of energy density at higher speeds, which result in smaller and less deep melt 
pool, thus reducing the cohesion with layers underneath. This causes the increase of chances 
for liquid metal to escape the melting pool, being less homogeneous. 
Finally, a comparison with multi-beam strategies is performed, showing how preheating 
reduces the spattering by partially agglomerate the particles, while post-heating increases the 
spattering count by disintegrating larger particles into smaller ones. Wobbling strategies can be 
exploited to enlarge the positive effect of preheating. 
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B. Zhang - Defect formation mechanisms in selective laser melting: a review [3] 
 

The paper reviews the known defect in selective laser melting, proposes a classification 
in three groups and a comprehensive defect detection and control approach. The focus of the 
paper is on the effects of incorrectly tuned parameters that affect the energy density (described 
later), namely of the laser device. 
 
Three classes of defects are described: 

- Porosities: a porosity is a gas formation trapped inside the artifact, due to high 
energy density (low scan speed and high laser power). The high energy density may 
cause the vaporization of low melting point component of the alloy, which are 
unable to reach the surface due to the extreme cooling rate. Another cause of 
porosity is the low density of the powder in the deposition phase, causing the gas 
present between the grains to remain trapped as described before; 
 

 
(fig. 2.3) spherical porosities in an optical image. Zhang et al [3] 

 
- Incomplete fusion holes (fig. 2.4): also called lack of fusion (LOF), this defect is 

caused by low energy density that results, as the name suggests, in a lack of fusion 
in some areas, leaving un-melted metal powder or poor boding contact. Particularly 
sensitive to this defect are the border between different laser tracks and layers; 

 

 
(fig. 2.4) two cases of LOF. Zhang et al. [3] 
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- Cracks (fig. 2.5): this defect is caused by the extreme thermodynamic conditions of 

the melting pool, causing artifacts to build up severe residual thermal stress as a 
result. Although this may affect every artifact, depending on chamber conditions 
(low chamber temperature can result in this phenomena), alloys with high thermal 
expansion coefficient and low thermal conductivity are more prone to it. Crack 
likely start from built surface in contact with the partially melted metal powder, 
meaning it can be difficult to spot from the surface. 

 

 
(fig. 2.5) two images of crack formation, initiation from the edge and a focus on the microstructure. Zhang et al. 
[3] 
 
A brief description of energy density is then given, as the ration between laser power and the 
product of scan speed, hatch spacing, and layer thickness. This value is described as particularly 
useful to describe the process parameters, since it accounts the energy given to a volume unity, 
directly responsible for the melting conditions. 
Other than the parameters, powder materials composition is accounted for sensitivity to defect 
insurgence, as well as scan strategy. The latter, in particular, are intended as the kind of path 
the laser should follow layer by layer. The original observation is the higher chance of presence 
of defects in the borders between tracks in the same layer and between layers itself. Repeated 
scan strategy, so, are more likely to produce widespread defects in the artifact. Suggested paths 
are the partition of the surface in “island” and crossing of path in subsequent layers. Finally, a 

link between defects and mechanical properties is described (both tensile and fatigue 
properties), and a strategy is proposed based on the incorporation of numerical models, online 
monitoring, and the control of process parameters to promptly detect defects formation and 
implement control strategies and parameters optimization. 
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G. Dongdong – Balling phenomena in direct laser sintering of stainless-steel powder: 
Metallurgical mechanism and control methods [4] 
 

An investigation on the effects of process parameters and material quality on the balling 
phenomena is conducted, providing two kinds of powder with different sizes of the grains and 
a small quantity of de-oxidant in the finest powder. A uniform layer of 0.25mm is used, and 
different single line scan tests 50mm long are manufactured, with different combinations of 
scan speed and laser power. Subsequently other experiments are performed tuning the layer 
thickness. A digital camera is then used to record the result and a scanning electron microscope 
afterwards to characterize the artifact, after chemical preparation. Samples are categorized in 
four groups, divided by quality of the track evaluated with scanning electronic microscope. 
It is observed how for a given scan speed, the lowering of laser power provoke the increase of 
viscosity of the melt pool, causing the aggregation in spheres the diameter of the laser beam 
(first kind of balling phenomena, fig. 2.6) and preventing efficient bonding, possibly resulting 
in porosity, distortion and lamination. 
The second kind of balling phenomena occurs when high scan speed is used: this doesn’t allow 

stability of the melt pool, due to lower energy density and the influence of scan speed on the 
capillary stability of the liquid. The result of this instability is the formation of metallic droplet 
to escape the pool and preserve the shape after solidification. It is also observed how for even 
higher scan speed other defects occur, regardless of balling. 
It is also observed how the thickness of the layer also affects balling with a positive correlation 
(the thicker the layer, the more difficult is to correctly melt all the powder, thus the easier the 
formation of balling is). 
The combination of these three parameters is the volumetric energy density: 
 

𝜀 =
𝑃

𝑣ℎ𝑑
 

- P = laser power; 
- v = scan speed; 
- h = scan line spacing; 
- d = layer thickness; 
- ε = volumetric energy density (VED). 

 
Low VED results in low working temperature in the lower part of the layer, generating a steep 
temperature gradient in the vertical direction. This causes splashes of the melt pool and 
therefore the second kind of balling, requiring an appropriate layer thickness and a VED 
regulated accordingly. 
Finally, the powder composition is considered: composition with higher tendency to oxidation 
results in a lower wettability, leading to balling of the first kind. Oxidation is lower in powder 
with bigger grains, but the addition of traces of deoxidant also is proven to be effective. 
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J. Bi - Effect of process parameters on formability and surface quality of selective laser 
melted Al-Zn-Sc-Zr alloy from single track to block specimen [5] 
 
A particular alloy (Al-Zn-Sc-Zr) is used to demonstrate the effect of process parameters in 
Selective Laser Melting, pointing out how pieces manufactured with SLM have great 
mechanical properties due to the high thermal jump to which they are subject. 
The experiment was conducted with an Al-Zn-Sc-Zr alloy in a EOS M290 SLM machine, 
subjecting the powder to a combination of laser power and scan speed, while layer thickness 
is kept constant at 0.03mm and so is the hatching space at 0.08mm. The artifacts created are 
blocks of dimension 7x7x12 mm, while the characterization is performed by removing the 
artifacts from the base, chemically treated and the surface roughness measure by a scanning 
confocal microscope. Results are the average of three measurements. 
Final results show how laser power and scan speed can be related by the expression of energy 
density w = P/v, and that the characteristics of the track are influenced by this. In particular 
for low laser power and high speed a decrease in the width of the track is observed, as well as 
in the depth of the track. This behavior is smoothened when both parameters are non-ideal 
(power changes with fixed high scan speed doesn't achieve as much change as power changes 
with fixed low scan speed does, and vice versa). 
The effect on the morphology, observed with the microscope, is also positively correlated 
with high energy density, in terms of spreading of the melt pool and higher density. It is also 
observed, however, how excessive laser power lead to a disproportionate volume expansion, 
thus generating cracks with the subsequent contraction. Considering the scan speed, low 
speed is observed to allow a correct formation of the track, while an increase can lead to 
balling phenomena at the edge of the track, due to the increase in the solidification rate and 
the impossibility for the liquid to correctly spread. 
Surface quality observations related high scan speed with defect formation such as balling 
phenomena and cracks. The roughness of the surface decreases with the decrease of the scan 
speed, due to the fact that for low speed the liquid metal has more time to spread evenly. At 
low speed, finally, the air porosity has more time to escape the melted pool, with a beneficial 
effect in term of density. 
It is concluded that optimal parameters are those that ensure that high energy density is 
applied to the track, although a limit is applied to laser power to avoid cracks. Singularly, 
laser power and scan speed have an higher effect on the track dimensions than the energy 
density altogether, showing how different combination of the two can have a diverse effect: 
high laser power allows greater penetration in the powder bed, while the scan speed is greatly 
responsible for the width of the track, since it gives more time to the liquid to spread. A high 
energy density allows also a greater overlapping with the layer underneath and on the side. 
The comparison between results for different combination of parameters allows to find the 
optimal ones, with a process characterized with high repeatability for other material. 
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Image analysis: 
 
M. Kass – Snakes: active contour models [6] 
 

A method for active contouring is described, by using a so-called snake, an energy-
minimizing spline influenced by external constraints and image forces, proportionate through 
user-tunable parameters, with the goal to provide a method for active contouring that is not 
limited to one solution but can be customized by the user. 
An energy functional is presented as the sum of three components: internal energy (Eint), 
image energy (Eim), constraints energy (Econst). These three components are then singularly 
explained. 
The internal energy regulates the behavior of the snake, with a first order component causing 
the snake to act like a membrane, and a second order component causing the snake to act as a 
thin plate, both multiplied by tunable parameters. In this context a GUI to test the tuning is 
provided (“snake pit”). The image forces cause the snake to be attracted by image features 

such as lines, edges and corners. The attraction to lines, for example, works by using as 
energy (Elines) the intensity (I(x,y)) of the image; the tuning of the correspondent parameter can 
generate repulsion or attraction depending on the sign. The energy component of the edges 
(Eedge) is represented by a gradient of intensity multiplied by a Gaussian, thus attracting the 
snake to zero crossing edges. Applying again a Gaussian to smooth the image, the energy 
component for terminations (Eterm) is computed as a partial derivative of the gradient angle in 
the point with respect to the perpendicular direction. The application of both the edges and 
terminal energy causes the spline to fairly predict edges (fig. 2.6) 

 
(fig. 2.6) the smoothness of the curve depends on the internal energy. Kass et al. [6] 

 
The constraints energy is not explained in depth, due to its largely varying nature, but an 
example is given in presenting the interactive model in the form of elastic constraints (as 
springs between snakes) and a repulsion force originated in a specific point in the plane. 
An energy component to account for stereo effect is also applied, and finally an explanation 
on how the snake is able to follow edges in motion is given, with a frame-to-frame example. 

𝐸𝑠𝑛𝑎𝑘𝑒 = 𝐸𝑖𝑚 + 𝐸𝑐𝑜𝑛𝑠𝑡 + 𝐸𝑖𝑛𝑡; 

𝐸𝑖𝑛𝑡 =
𝛼|𝑣𝑠|2+𝛽|𝑣𝑠𝑠|2

2
; 

𝐸𝑖𝑚 = 𝑤𝑒𝑑𝑔𝑒𝐸𝑒𝑑𝑔𝑒 + 𝑤𝑙𝑖𝑛𝑒𝐸𝑙𝑖𝑛𝑒 + 𝑤𝑡𝑒𝑟𝑚𝐸𝑡𝑒𝑟𝑚 = 𝑤𝑒𝑑𝑔𝑒(−(𝐺𝜎𝛻2𝐼)2) + 𝑤𝑙𝑖𝑛𝑒𝐼(𝑥,𝑦) + 𝑤𝑡𝑒𝑟𝑚
𝜕𝜃

𝜕𝒏⟂
; 
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C. Galambos – Progressive probabilistic Hough transform for line detection [7] 
 

An algorithm is presented to perform a Hough Transform improving the already 
existing probabilistic approach. At first the previous algorithm is described: the probabilistic 
Hough Transform is a randomization of the standard Hough Transform, performed by using 
the HT to select a number of inputs points and use the set for the voting procedure instead of 
the whole pool of points available. The limitation of this approach is the necessity of some a-
priori knowledge to determine which points belong for sure to the line, thus making the 
approach not very feasible in countless real applications. The presented PPHT works by 
repeatedly select points for voting, and after a certain amount of points have voted, sample the 
resulting poll many times. The samples are then analyzed to check if a certain threshold of 
votes is exceeded, a threshold associated with random noise. If a sample has a number of 
votes above the threshold, it is considered an identified line. The liability of this process is the 
false positive, since all the lines detectable through HT are also detectable through PPHT, in 
principle. A precise outline of the algorithm is presented, point by point, then a comparison is 
performed on different images. Accuracy’s results are evaluated subjectively, while 

computational improvements are evaluated by number of vote casted, where the logic is 
similar, and CPU time where there isn’t a common parameter that can guarantee an accurate 

comparison. The PPHT is comparable to the HT in accuracy, with different behavior that are 
difficult to categorize as better or worse (for instance HT tends to detect long lines whereas 
PPHT tends to translate the info in multiple shorter lines). The main difference between the 
proposed approach and the existing ones is the computational effort: for simpler images 
PPHT casts almost a fifth of HT’s votes, and takes half the time as other approaches that are 

compared in CPU time. For more complex images the votes’ ratio is similar, while the CPU 

time is a sixth as for other algorithms. It is highlighted how this greater efficiency with similar 
result is promising for applications where a quick response is needed. 
 
F. Caltanissetta – characterization of in-situ measurements based on layer wise imaging in 
laser powder bed fusion [8] 
 

A method to detect deviations from the correct manufacturing process is proposed, 
exploiting an off-axis camera to acquire images of the artifact before and after each layer is 
posed, thus recognizing associating visual features to defect formation to allow the 
recognition of said defect before the occurrence. 
A particular attention was reserved to the acquisition conditions, as the availability of an 
experimental apparatus allowed to precisely control each variable, from the building 
parameters to the environmental conditions, such as inert atmosphere, lighting conditions and 
design of production. The control of lighting conditions, in particular, allows to characterize 
their influence on image analysis. 
The approach to the analysis follows the use of active contours for segmentation, analyzing its 
advantages and drawbacks as well as those of edge detection. In this experiment a-priori 
knowledge of the model is used to initialize the contour, then a preprocess is developed to 
enhance the foreground from the background to contain the weakness of active contour 
against inhomogeneity in the brightness. 
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(fig. 2.7) propagation of defects can be detected with layer by layer monitoring. Caltanissetta et al. [8] 

 
The actual acquisition is performed once the manufactured layer is cooled down, to account 
for shrinkage deformation. After the in-situ acquisition the artifact is removed and an ex-situ 
acquisition using an optical microscope is performed, to allow comparison and thus validation 
of the in-situ measurement as identification method of visual features. The results of the 
comparison validate the robustness of active contouring in laser powder bed fusion 
acquisitions expressing the geometrical error in around 100µm. The effect of brightness is 
measured computing the Dice’s index for segmentation techniques on both the original image 
and the transformed image. The results show how except for one case with low illumination 
in the front (resulting in a darker but more even pixel intensity) that showed from the start a 
high correspondence, the transformation improve significantly the Dice’s coefficient. 

Incidentally the dark field case is the one with higher accuracy, although the implementation 
of the transformation produces results comparable, with a lower accuracy in bright field cases. 
The experiment is carried out comparing the usage of active contouring with a methodology 
from the literature, concluding how the produced measurements are similar to each other, 
while computationally the active contour model can produce an accurate result in few 
iteration, as for the compared method, but executing each iteration much faster. It is pointed 
out how this is appealing for near real-time application. 
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Machine Learning for Additive Manufacturing: 
 
J. Alldredge - In-situ monitoring and modeling of metal AM powder bed fusion [9] 
 
 The paper targets the issue of having highly costly hardware and heavy computational 
demands for sensing and feedback control in additive manufacturing. The proposed solution is 
a low-cost thermal camera combined with a faster-than-real-time qualitative model to detect 
anomalies enabling corrective actions or the complete stop of the process. The exploited camera 
allows a relative temperature measurement, allegedly sufficient to identify the relevant features.  
A distinction is made between physic-based models and in-situ sensing, with the latter being 
better fitted for real-time application due to lower needs for computational resources. 
The conclusion of the paper is the validation of a low-cost solution to detect physical variation, 
through a comparison with previous experiments done with high resolution thermal camera. 
 
M. Grasso - A statistical learning method for image-based monitoring of the plume signature 
in laser powder bed fusion [10] 
 
 The paper proposes a statistical learning method to correctly separate cluster of features 
and apply an early diagnosis in laser melting manufacturing. The laser heating zone and the 
plume resulting from the partial material vaporization are regarded as signature of the quality 
of the process, referring to previous literature that perform such an association. 
The recording device is an infrared camera, hence the impossibility to distinguish the heat trace 
of the laser heating zone (LHZ) and the plume. Both are then considered as region of interest 
(ROI). 
The paper proposes to identify as a characteristic of defect presence, the out of range ROI. 
The challenge presented is the contemporary presence of the LHZ and the plume, thus not 
allowing a simple recognition (the dimension and shape of one of the two could be mistaken by 
the algorithm as a defect symptom). This is called “multimode” process, in which the “normal 

condition” can be one of multiple state. To face this challenge a nonparametric method is 

proposed, K-chart, based on one-class classification SVM called SVDD (support vector data 
description). 
Due to the fact that input data can be represented by two feature (area and distance from the 
origin) and that only a combination of the two represent spattered material (considered a sort 
of noise), K-chart methodology is also used for preprocessing, in order to correctly classify the 
data. Subsequently the ROI is extracted through image analysis and a statistical description of 
it allows another application of K-chart to define if the process is faulty or not. 
The conclusions show how the application of nonparametric statistical method allows to better 
represent the process real conditions in a multimode process, and how the plume can be used 
to perform early fault diagnosis. 
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3. Process description 
 

The term “Additive Manufacturing” (AM) indicates the manufacturing process based on the 

increase of the build volume instead of material subtraction as in traditional means of 
production. The selected material is added layer by layer in a different fashion depending on 
the technology and the material, and different constraints are applied to both the environmental 
conditions and the building strategies. 

 

 

 
(fig. 3.1) traditional steps for AM production. Gibson et al. [12] 
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Techniques differentiation: 
 
Born around the middle of the 20th century, the additive manufacturing began to be used for 
rapid prototyping in 1987 with the entering in the market of the Stereolithography Apparatus 
(SLA-1) [11], and thrived in the last two decades with the commercialization of different 
technologies from various company. 

The very basic principles of AM allow improvements with respect to the traditional 
manufacturing industry. The most obvious difference is the saving of material, since no longer 
the process implies the subtraction of material from a greater volume to reach the desired shape. 
At the same time, no specific set of tools is needed to create the object, with the exception of 
the ones involved in the normal functioning of the machine. This means that contrary to 
processes like turning, where different tools are needed for different parts or different objects, 
in AM no customization is needed. Another key improvement is the time saving character of 
this technique, not because of the build time in itself, as much as because of the reduction in 
the number of operations needed. 

Traditional manufacturing often requires different steps and different techniques to produce a 
finite piece, whereas AM always relies on the same chain, highlighted in (fig. 3.1) [12]. The 
first step of this chain is the CAD of the piece, a phase also affected by the means of production 
as the pieces are subject to different constraints with respect to traditional manufacturing. For 
instance, more articulate shapes are possible, since there’s no tool’s volume to consider, but 

since the construction happens one layer at a time is also necessary that the layer in construction 
can rely on a foundation. Therefore, supports are needed under overhanging areas and 
unsupported areas, in a configuration that optimize easy removal in post processing, fastest 
building time, and a minimization of the supports themselves (fig. 3.2, fig.3.3), also depending 
on the technology. In principle, the design should also take into account the so-called “staircase 

effect”, the thickness of the layers is usually lower than 50µm, nonetheless a certain limit on 

the border distance must be respected in the design phase. [11]. Once the CAD is completed, 
another file is created; this operation of slicing translates the original CAD in a file that 
distinguish different layers, and allows the machine to execute scan strategies, so the next step 
is the upload of the file to the machine and the manufacturing of the process. The scan strategies 
should also account the thermal gradient in the piece, since the nature of AM implies that the 
material is subject to sudden changes in temperature: it’s important that the material doesn’t 

cool down too much during the process or the next layer will cause a large temperature gradient. 
The path of the heat source (being the material itself or a laser applied to the material) must be 
decided accordingly. Finally, postprocessing operations are performed to remove the supports 
and reach a satisfactory quality (by exploiting mechanical or chemical properties of the 
material). 

 
(fig. 3.2) designs for supports: (a) block; (b) contour; (c) web; (d) cone. Zhang et al. [22] 
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(fig 3.3) tradeoff between different configuration of supports. Yang at al. [11] 

 

Different materials are already implemented, such as metallic powder, polymers, ceramic, and 
biological material. While the same principle of adding material one layer at a time is applied, 
different techniques are required accordingly to the material used. 

One such example is the aforementioned stereolithography, example of building process that 
start from a liquid component to generate the 3D object. Materials used in this application are 
photopolymer resins, namely polymer that starts in a liquid form and can be solidified by 
applying UV light, to which the material is sensitive. The principle for this process is the 
polymerization, a chain reaction that turns a liquid mixture of monomers into a defined 
polymeric string. In stereolithography the polymerization is perform accordingly to the desired 
shape of the layer, that defines the scan strategy. Two possible options are available to switch 
to the following layer, the continuous digital light processing (cDLP) and the SLA (fig. 3.4). 

 
(fig 3.4) difference between continuous Digital Light Processing and Stereolithography Apparatus. Wallace et al. 

[20] 
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In the first the resin is contained in a thin, transparent plate, that is refilled constantly, while the 
UV projector creates the layer from below the plate. The object is attached by the first layer to 
a platform that rise during the process, “extracting” the piece while it’s been manufactured. In 

the second configuration a platform is posed on the surface of a tank filled with resin, and as 
the layer are manufactured through a UV laser, the platform dives deeper into the tank, leaving 
only the last layer near to the surface. The final result will be the complete piece inside the tank 
full of resin. 

Thanks to the fact that stereolithography was the first technology commercialized, extensive 
literature exists that analyze the physic around the polymerization process and the energy 
distribution in the process [13]. 

The second kind of application covered is the extrusion methodology, consisting of preparing 
the material before the deposition and then depose the material on a section to create the 2D 
layer, the section being the support plate or the previous layer. A technology that exploit this 
application is Fused Deposition Model (FDM). 

In FDM a thermoplastic polymer is stored as filament and connected to the machine through a 
hose with a heated end (fig. 3.5), so that the polymer in exit melt and can be applied to the layer 
as a melted 1D track. The final product of FDM is a polymeric object that has, due to the 
filament shape in which is provided, an anisotropic behavior in terms of mechanical properties. 
In particular, along the filament length the strength is higher than in the other directions. As for 
stereolithography, extensive tests have been performed on this technology: the anisotropic 
behavior just mentioned was characterized in [13] and the ratio between tensile strength along 
the filament deposition direction and both the perpendicular on the same 2D plane and the 
vertical direction is estimated to be in the range of 10% to 65% (express by the so-called 
“strength isotropy factor” in [11] in the range 0.1 - 0.65), depending on the process parameters 
and, more importantly on this account, the environmental conditions, such as chamber 
temperature and the hose end temperature, that heavily influence the merging between the 
cooled pre-existing track and the new layer. This means that environmental condition plays an 
important role in the formation of an optimal product, thus posing technological requirements 
to the machines. 

 

 
(fig. 3.5) FDM schematic highlights the usage of different material for the supports. CustomPartNet [23] 
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Machine based on material’s extrusion present a very promising solution for simple 

manufacturing, that in recent years has seen a widespread commercialization not only for bigger 
industrial solutions, but also for home kits, opening possibilities for innovative logistic of 
production and object transferring. 

Another widespread AM technology is metal additive manufacturing. As the name suggests, 
the material used in manufacturing is a metallic powder, lay down on a building platform and 
subject to an aggregating process to create the solid piece (fig. 3.6). This process is mainly the 
action of a heat source like a laser or an electron beam, applied to each layer; in addition, the 
power needs to be enough to guarantee the adhesion between subsequent layers, and, at the 
beginning, between the platform and the first layer. Contrary to the solutions seen before, metal 
additive manufacturing is a branch of AM that intrinsically encounter greater difficulties in 
being commercialized for the end-user, mainly because of safety concerns, since the heat 
generation (being laser or electron beam) needs to work on metal material that requires higher 
powers, thus requiring much more careful handling. Other risk factors are related to the usage 
of metal powder (that requires protective equipment) ranging from irritation to explosion risk, 
exacerbated by the environment requirement for production. [16, 19]. 

Three main applications have been developed, Selective Laser Sintering (SLS), Electron Beam 
Melting (EBM) and Selective Laser Melting (SLM). A brief description of these will follow. 

SLS produce pieces with high yield strength and is commonly used for rapid prototyping and 
production of specialized part. In the building process, the powder is spread on a platform one 
layer on top of the other, and a high-power laser scan the desired section to liquefy the surface 
of the powder and allow the cohesion of close grains without reaching complete melting 
(sintering is by definition “the welding together of small particles of metal by applying heat [or 

pressure] below the melting point” [15]). This adhesion is characterized by lower density than 
complete melting due to the partial retainment of the form by the grains, thus binders with low 
melting point are often used. These, however, usually have different properties than those 
required, so in post process the binder might need to be removed. 

 
(fig. 3.6) the cohesion between grains in SLS is called necking. Gu at al. [4] 
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SLM (fig. 3.7) is also based on laser for heat generation, but contrary to SLS, complete melting 
is achieved, allowing greater density without postprocessing except for superficial precision 
and removal from the base plate. Density of the piece is guaranteed by optimal parameters such 
as hatch distance, laser power and speed, but also aforementioned environmental conditions. 
Building environment, in fact, is subject to control to different parameters, such as temperature, 
oxygen concentration and inert gas presence. The control of the air composition is performed 
to ensure both production quality (due to the high reactivity of the oxygen), and safety, since 
the reactivity of the compounds usually present in the air might cause violent reactions. From 
the perspective of manufacturing quality, chamber temperature isn’t less important, as it plays 

a key role in ensuring that the thermal gradient to which the powder is subject is maintained as 
low as possible, alongside a wise choice of scan strategies. The simplicity of building, the 
chance to achieve more complex geometry and to save time in tool application are the reasons 
for which SLM, although in itself time consuming due to the need to create thin layers for 
quality, is used for production of prototypes and small series parts, but also in sector in which 
high mechanical properties are required for customized parts (such examples are the usage of 
SLM for medical prothesis, dentistry, aerospace applications). 

 

 
(fig. 3.7) SLM schematic highlighting the mirror apparatus necessary for the manufacturing. Sidambe A. [24] 
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EBM relies on a process very similar to that of SLS/SLM, except the heat to achieve melting is 
generated by a concentrate electron beam (fig. 3.8). The key difference in the processes is that 
the higher atomic mass of the electron with respect to the photon allows greater fusion power 
to be transmitted, allowing for different mechanical characteristic to be attained, as reviewed in 
[17]. As for SLM and SLS, environmental conditions are a key factor to block interaction 
between the beam and the atmosphere, thus high vacuum is achieved (greater than 10-3 Torr), 
although in the process described by Murr at al., helium is injected to enhance heat conduction, 
increasing the pressure to 10-2 Torr. 

Compared to the early technologies like stereolithography, metal additive manufacturing is 
fairly new, fueling researches on parameter optimization, material characterization, 
applications, and control strategies. 

 
(fig. 3.8) EBM schematic. It’s evident the different machinery’s volume with respect to SLM. Sidambe A. [24] 
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Defects analysis in Selective Laser Melting: 
 
Defects in SLM occur mainly because of non-ideal process parameters or raw material quality 
issue. The latter issue regards the density of the powder before the process. Namely, a low-
density powder can cause the gas in between to remain trapped in the artifact during the 
formation of the melting pool, since the extreme cooling rate doesn’t allow the bubbles to 

escape the melted pool. This porosity results in lower fatigue resistance, even if it has a smaller 
impact compared with other defect influence (porosity leads to spherical defect, that are proven 
to be less influential on the fatigue resistance under a certain concentration), but at high enough 
concentration can lead to a decrease in tensile properties [18]. Porosity can also be the result of 
too high energy density applied in the process, that result in a vaporization of some components 
of the alloy, generating the gas bubble trapped in the melted pool. 

Non-ideal process parameters also generate other defects, related to incomplete fusion holes 
(also called LOF, Lack of Fusion). This category is caused by an energy density too low, which 
results in some area where the fusion is incomplete, thus leaving powder in some area of the 
artifact or poor bonding between material portions. LOF defects are more likely to presents 
themselves in the border regions of laser tracks or between layers (in case the laser power isn’t 

enough to correctly melt the lower strata. They result in a worsening of tensile properties and 
have a great effect on fatigue resistance of the piece. 

The working conditions are, themselves, a possible cause for defect formation: high 
temperature differences and the cyclic dilatations and contractions, for instance, may induce 
the material to exceed its elastic deformation limit, thus generating high internal tensions, 
especially in alloys with high thermal expansion coefficient and low thermal conductivity. This 
can result in cracks and compromise the fatigue duration of the piece. 

Finally, is worth mentioning a phenomenon called balling, caused by an incorrect selection of 
scan speed and laser power [4]. Balling is an issue in which the melted pool isn’t completely 

smooth, preventing the powder from forming the so called “sintering neck”, a connection 

between conglomerates of materials. The final result is a series of spherical imperfection instead 
of a continuous and smooth track. This issue can be caused by two conditions, namely a laser 
power too low in an ideal scan speed condition (resulting in imperfection approximately the 
size of the laser beam caused by limited liquid formation) or a scan speed too high with a 
sufficient laser power (resulting in a high number of small-sized balls induced by melt 
splashes). 

Defects can also occur due to process errors, mostly during the powder deposition. These will 
be described in depth during the description of the machine working principle. 

To avoid oxidation, the atmosphere of the chamber must be controlled, either with vacuum or 
inert gas: the machine used in this thesis project uses Argon to fill the chamber. Moreover, a 
big part of the literature on AM is related to finding the optimal machine parameters, combining 
the right laser power and scan speed, as well as track definition (see “Effect of scan strategy” 

in [8]), with correct environment conditions. 

The machine used in the thesis project, EOS MS290, use a patented method to prevent porosity, 
other than the tuning of the parameters: the employment of a gas flow (“air” would be incorrect, 

given the chamber controlled environment) to blow the smoke resulted from the laser action in 
a direction that guarantee it will not meet the laser, situation that could lead to occurrence of 
porosity [19]. 
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4. Infrastructure description 
 
The thesis project involved the use of a SLM machine in its normal working conditions, and a 
camera used to capture images of the working process. The camera was originally supplied with 
the machine, thus the necessary components to install the camera were already in place, such 
as the support bracket and the “window” in the upper part of the chamber to allow camera 
acquisition. The software version, however, did not included the camera control, that is the 
main reason for the development of a capture script to be run by an embedded board. A correct 
understanding of the process in its whole is deemed necessary to exploit the machine 
characteristics in order to acquire the images at the optimal moment. For this reason, the 
machine paragraph also contains a sketchy description of the building process common in 
selective laser melting. 
 
EOS M290 Laser Melting system for metallic powder: 
 

The SLM machine used in this project, as aforementioned, is a Selective Laser Melting machine 
produced by EOS GmbH, world leader in laser powder bed fusion systems (fig. 4.1). Some 
technologies hereby described are currently patented by EOS, thus not applied to the generic 
selective laser melting technology. The material used for manufacturing is AlSi10Mg to 
produce pieces of different dimension.  
 

 
(fig. 4.1) M290 datasheet [25] 
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As described in the chapter “Process description”, selective laser melting requires specific 

environmental condition to achieve a satisfactory manufacturing and control the process safety 
liability. In particular the raw material belongs to the metal powder class B, subject to fire and 
explosion hazard, and health hazard due to contact or ingestion [19], thus requiring the lowering 
of the oxygen percentage to reduce the reactivity: this is achieved by removing the air in the 
chamber and injecting in its place an inert gas until the oxygen percentage is below a safety 
threshold. Moreover, to achieve the desired quality of the melt pool and therefore of the piece, 
the building site is preheated before the job. 
The machine is composed, in a nutshell, of the following components: 
 

1. Chamber (fig. 4.2): a controlled environment in which the pieces are produced. It is 
composed of a building site, a mechanical recoater to move the powder, two tanks to 
store the powder, and an air blower studied to prevent balling effect due to the gas 
produced in the melting. It has an access in the front of the machine to perform manual 
operation (powder reloading, collecting of the product, maintenance), and two windows 
on the roof to allow image acquisition and to give the laser access to the chamber; 
 

a. Recoater: a mechanical arm that moves left-right to distribute the powder from 
the powder tank to the building site. The quantity of the powder is regulated by 
the vertical movements of the powder storage tank; 

 
b. Building site: a platform in which the powder is placed to be melted by the laser. 

Between the platform and the powder is fixed a metallic plate whose surface will 
be partially melted by the laser to fuse with the products. The platform descent 
vertically of a distance equal to the thickness of the layers in order to make room 
for the powder brought by the recoater; 

 
c. Powder tank: a platform placed on the right with respect to the building site in 

which the metallic powder is stored before the start of the cycle. It can ascend 
vertically to let the mechanical recoater swipe the powder on the building site. 
The height which it moves, however, can be less or more than the layer’s 

thickness, in order to guarantee a better distribution of the powder when the 
operator decide that is necessary by providing more powder, or to save powder 
if an alert is raised that the powder might be insufficient. The percentage of 
powder with respect to the nominal quantity given when the movement is 
precisely one layer’s thickness is called dosing factor. 

 
d. Recovery tank: a platform usually placed lower than the building site, on its left. 

It collects the extra powder after the recoating, that will be reused in another job. 
 

e. Laser regulation bracket: this bracket is fixed to the chamber’s roof, and it is 
made of reflective metal, so the laser system can determine its own position by 
catching the reflection of the laser as a reference point; 
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f. Gas blower: a patented system to prevent the interaction between the laser and 
the smoke generated by the heat, since this would result in a deviation of the 
laser and ultimately in a lowering of the quality of the track, if not defect 
formation (fig. 4.3); 

 

 
(fig. 4.2) the frame will be later cropped to exclude the chamber infrastructure 

 

 
(fig. 4.3) schematic of the gas flow implementation 

 
2. Laser system: it works by producing a high intensity laser pointed horizontally on top 

of the machine, and then directing it through a mirrors system on the desired plane’s 

coordinates of the layer. The mirrors movements are controlled to accurately match the 
laser speed set in the parameters; 
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3. Gas injector: it fills the chamber with an inert gas after the air is removed. The 

percentage of oxygen is constantly monitored, and the machine stops if the correct 
working conditions aren’t met; 
 

4. Heating system: it preheats the chamber to reach the working conditions in which the 
laser melting can successfully happen. Until the target temperature isn’t reached, the 

machine remains in an idle status; 
 

5. Illumination: a series of white light are installed on the chamber’s roof, illuminating the 

working plane. The illumination condition will be of pivotal importance for image 
analysis, as the management of areas with different intensity will be required; 
 

6. Electrical panel: where all the drivers and electrical connection are done. It will be key 
to give the embedded board signal of the different working points, as through schematic 
is possible to identify the drivers corresponding to components whose activation 
separate the working states of the machine; 
 

7. External components: these external accessories such as aspiration hoses, are needed to 
empty the chamber of all the remaining powder and load the new material, or to store 
the inert gas to feed the machine. 

 
The machine works as follow: 

- Preparation: the powder tank is lowered to the lowest and filled with new powder from 
the external tank, the plate is fixed to the building site, the central piston is moved until 
the plate’s surface reaches the zero z-coordinate, the recoater is moved to the extreme 
left, and finally the chamber is locked. The machine then prepares the environment by 
removing oxygen and injecting inert gas (Argon), and by preheating the plate until the 
target conditions (T=165°C, concentration of O2=0.10%) are reached, then it waits for 
the user to start the job; 

- Layer deposition: to pose a layer the recoater moves from left to right past the powder 
tank, then the tank itself lift of the height correspondent to the amount of powder of a 
layer times the dosing factor, and the recoater moves back from right to left posing the 
layer on the plate. In the process the recovery tank is kept low to allow the powder to 
fill it; 

- Laser action: once the powder is in place, laser is activated to melt it accordingly to the 
slicing model; 

- Postprocess: at the end of the process the pieces are let cooled down until the heat hazard 
is manageable with personal protection devices, and the gas concentration is reduced 
below risk threshold. 

 
If preparation and postprocess are performed once at the beginning and at the end of the process, 
layer deposition and laser action are repeated layer by layer until the piece is completed 
according to the model. 
During the working process, the laser may need to perform a calibration. To do so the regulation 
bracket is exploited. This bracket also projects a shadow on the working plane as a secondary 
effect, possibly affecting the image analysis (fig. 4.2). 
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IDS IU-1540SE-M-GL camera: 
 

The camera exploited for image acquisition is an IDS IU-1540SE-M-GL (fig. 4.4) [26]: 

 
(fig. 4.4) on the left, the camera datasheet, on the right the camera appearance [26] 

The camera is fixed on the preexisting bracket on top of a circular window over the process 
chamber, and it is supplied with a USB cable in the electrical panel. This will be used to control 
the camera from a pc. It is possible to trigger the camera from an external input, in particular, 
python API are released from the producer, and a library is present: pyuEye. This allows to 
create a python script to perform acquisitions. 
A software is also released, although not for embedded board. This will be used to perform a 
live monitoring of the camera and thus adjust the inclination of it in order to center the image 
(fig. 4.5). Since the acquisitions will be later cropped, what is needed in this stage is taking 
the whole building site inside the frame, adjust the focus of the camera, and then keep the 
camera fixed. This way the crop that will be performed during the analysis stage won’t need 

dynamic parameters. 

 

(fig. 4.5) uEye cockpit, the interface that allows the monitoring of the process chamber. 
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5. Acquisition script 
 
As aforementioned, some python API are available to communicate with the camera, thus a 
python script is developed to handle the image acquisition. The main idea is to create an 
algorithm that activate the camera to capture images of the building site, layer after layer, 
exploiting a hardware infrastructure that will be developed in parallel to the software. 
Although the hardware setup will be covered in a different chapter, the various steps will be 
referred to as to provide a context to the code evolution. 
For prototyping, a Raspberry Pi 3B+ is used, chose mainly for versatility. Once the 
prototyping is over, however, a more robust and precise setup is installed, using a pc and an 
Arduino UNO for I/O management. 
 
Raspberry Pi Version: 
 
The first operation performed is the extraction of the camera methods from the library 
provided by the manufacturer. These methods allow a series of useful operations: 
- Initialization of the camera: some operations, such the creation of the object itself 

(ueye.is_InitCamera), the acquisition of the information of the camera 
(ueye.is_GetCameraInfo), and the determination of the camera frame as “area of interest” 

(ueye.is_AOI). If any of these doesn’t correctly perform, the camera cannot be used; 
 

- Memory allocation: the operations needed to allocate the memory for the camera to save 
the image acquired, such as the allocation of the memory (ueye.is_AllocImageMem) that 
determine the dimension of the data to be stored and the identifier of the memory used by 
the camera itself to find the assigned slot, the setting of the memory that links the 
memory information provided before to a memory slot in the pc (ueye.is_SetImageMem), 
the setting of the color mode necessary for the correct storage of the image 
(ueye.is_SetColorMode), and a method use for further inquire the memory 
(ueye.is_InquireImageMem). These methods are strictly connected and sequential one to 
the other, and as for the initialization operations, the memory allocation is key to the 
correct working of the camera, and as such a fine monitoring should be implemented; 

 
- Acquisition: once the preliminary operations are completed, the acquisition itself is 

managed by a single function (ueye.is_FreezeVideo), that freeze the frame as the name 
suggest, fixing the data in the memory slot. Once the data is fixed, another method is 
called to save the current frame in the form of a three-dimensional array (ueye.get_data); 

 
- Exit: finally, before the end of the script the memory needs to be released 

(ueye.is_FreeImageMem) and the camera object destroyed (ueye.is_ExitCamera). The 
last operation is needed because the creation of a camera object univocally recognizes a 
camera via is identification number, thus making impossible to use that same camera 
again unless rebooting. 

 
The initial code is used to test the acquisition. 
The acquisition results an array for each image. Due to memory limitation on the Raspberry 
Pi, the library used to convert the arrays into images is installed on a pc running Windows, 
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and a script is created to convert the images (fig. 5.1), plus the arrays are saved in an external 
memory connected to the Raspberry Pi in a folder created by the software with a timestamp 
for traceability. This script is presented here and with some modification will be used for all 
the versions of the software, so it will be illustrated at the end of the paragraph. 
 
At first the acquisition is performed periodically, but this result in an asynchrony between the 
captures and the building of the layer, namely the acquisition is often performed in the middle 
of the layer, causing only a fraction of the objects to be completed and the melt pool to appear 
in the shot, causing a white area due to incandescence (fig. 5.2). 
The target is to exploit an input from the machine to time the acquisitions. This is performed 
via hardware, and the software is adapted to read a GPIO input. A further improvement is 
achieved by switching to object-oriented programing (fig. 5.3).  
The hardware implementation results in a calibration of the timing of the acquisition such that 
the system is able to capture images as desired (fig. 5.2). 
 

 
(fig. 5.3) final code structure. On the right the links between files and hardware infrastructure. 

 
An advanced version of the software (fig. 5.4) runs at booting and execute a reboot when 
finished, allowing the script to be launched without any user operation; a necessity, since the 
Raspberry Pi used wasn’t equipped with peripheral devices. 
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(fig. 5.4) flow chart of the software. The script runs at startup and reboot at the end of the execution, creating a 

loop. 
 
The starting of the acquisition cycle itself, however, is triggered by a button, since in the 
preliminary operations the opening of the door would cause multiple useless acquisitions 
(more later). Since no monitor is used, to inform the user of different states and signal any 
error in the operations, two LEDs are installed, and their functioning is explained in (tab. 5.1). 
In this version the number of layers is given as an information to the software, so that the 
correct number of acquisitions are performed. To add robustness and avoid the code 
remaining idle in case the number of layers is incorrect, a timeout is added to end the software 
if no acquisition is performed in ten minutes. 

 
(tab. 5.1) two LEDs are implemented to signal the user, one for normal operations and one for errors. 

 

ON READY, WAIT FOR THE BUTTON

OFF WAIT FOR THE TRIGGER

FAST BLINK ACQUIRING

OFF ACQUIRED

ONCE
SLOW BLINK (3 

TIMES)
REBOOT

SLOW BLINK (0.2) ERROR IN MEMORY INITIALIZATION

STEADY WAIT FOR THE BUTTON TO REBOOT

SLOW BLINK (0.5) TIMEOUT EXPIRED, REBOOTING

FAST BLINK (0.1) ERROR IN ACQUISITION

SLOW BLINK (0.2) ERROR IN SAVING

ONCE STEADY ERROR IN INDEX CREATION

EVERY RECOATER'S 

PASSAGE

ONCE

COMPLETE 

CYCLE

STATUS LED

PRESS THE BUTTON WHEN THE YELLOW LIGHT IS ON TO START THE ACQUISITION ROUTINE

ALARM LED

COMPLETE 

CYCLE

ONCE

EVERY RECOATER'S 

PASSAGE

PRESS THE BUTTON WHEN THE RED LIGHT IS STEADY ON. IN THIS CASE IT MEANS THERE'S AN ERROR IN THE 

INITIALIZATION OF THE CAMERA AT THE BEGINNING OF THE CYCLE
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(fig. 5.2) above two examples of bad timed acquisitions, framing the laser in action and incomplete pieces. 

Below two consecutive acquisitions of complete layer and complete powder bed. 
 
A final version of the software (fig. 5.5) is developed fixing some bugs, optimizing 
operations, and ultimately removing the need for any manual operations from the user 
exploiting another machine signal through a targeted hardware solution to start and stop the 
acquisition routine. 
 

 
(fig. 5.5) acquisition flow chart. The colors represent the LEDs, and the action past the red blocks are the 

operation executed should an error occur. 
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In this version, the creation of a LOG file is implemented, to allow monitoring and thus 
further improvements (fig. 5.6). 
 

 
(fig.5.6) LOG example. The voice “parameters” is referred to the version in which the number of acquisitions is 

not dependent on a trigger but on a parameter given by the user. Alternatively, it is simply removed. 
 
Finally, to improve performances some threads are created to execute operation that might 
slow down the response of the code, especially in the latest layers (fig. 5.7). 
 

 
(fig. 5.7) latest layers often have reduced area, thus the interval between layers is reduced and it can outperform 

the acquisition script. 
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The conversion of the images is ultimately performed taking into account missed acquisition 
(noted in the LOG file as well as in a index created by the script), missed savings (errors in 
the storage) and all the information related to the frame, given by the camera method’s and 

transmitted by the software. 
To perform the acquisition the script must be placed in the same path as the acquisition folder 
and simply run. A destination folder with the same tag will be created by the script. 
 

 

 
 

(fig. 5.1) above an example of how the folder needs to be filled before starting the script. Below the logic of the 
conversion. 
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PC version: 
 
Once the prototyping phase is completed, the mass acquisition of images can begin. The end 
of testing allows to select a more targeted infrastructure to achieve better results with better 
performances. The introduction of a pc running Linux and an Arduino UNO for IO 
management solves first of all memory issues, allowing to convert the images as they are 
being taken and storing them into local memory, skipping the storage of the raw array and 
saving in average 10GB for each acquisition, and preventing errors related to the external 
memory management, as now it isn’t needed anymore. 
Hardware improvements will be covered in the next chapter, although with the computer it 
was decided to install also a monitor and peripherals to interact with the software. 
This addition provokes some modifications in the software: the possibility to use a monitor 
allowed the removal of any user-targeted hardware from the circuit, in particular the LEDs 
and the button, thus the scripts were modified accordingly. The implementation of Arduino 
UNO required a new code developed in Arduino IDE to communicate with the pc via serial 
port and handle the IO. Consequentially the script responsible for handling the IO in python 
was modified to interact with Arduino through serial communication (fig. 5.8). 
 

 
(fig. 5.8) files structure of the PC version. Here the IO are directly handled by Arduino and then a serial 

communication allows data transfer to the pc. 
 
Finally, to start the cycle a desktop application was developed in order to maintain a user-
friendly approach. An icon (fig. 5.9) must be pressed to start the software: this is linked to the 
python scripts stored in a folder and rendered available through the use of shebangs at the 
beginning of the code (fig. 5.10), and create a terminal window that represent the user 
interface, mainly with printed lines (fig. 5.11). 
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(fig. 5.9) Icon of the software, which is named “CaptureSLM”. 

 

(fig. 5.10) shebang added at the beginning of each code to link the script to the  
 

 
(fig. 5.11) On the right the terminal created at startup, on the left the folder automatically created with a 

timestamp where all the images are stored. In the background is visible the program icon, named “CaptureSLM”. 
 

 

 

 

 



Image analytics for in-situ defect detection in Additive Manufacturing 

33 
 

6. Hardware design 
 
As aforementioned, hardware setup and software are developed in a codependent fashion, thus 
for each version of the acquisition a correspondent version of the hardware is developed. In the 
following the design process of the hardware setup will be explained, giving pros and cons of 
the solutions evaluated. At first the Raspberry Pi solution will be explained, taking into account 
the board characteristics, while later the version meant to be handled by Arduino UNO will be 
presented. 
 
Raspberry Pi version: 
 
The desired acquisitions should frame complete layers and new ones. An observation of the 
machine working process identifies the recoater movement as a suitable trigger, thus the study 
of the electrical circuit identifies the driver of the recoater (fig. 6.1), a component that will be 
used to extract a signal. 

 
(fig. 6.1) Recoater’s driver (ACOPOSmicro from B&R Industrial Automation, model). Visible on the front the 

LEDs signaling the status. 
 
Three different solutions are considered: 
The first solution is an instrumentational amplifier (fig. 6.2) installed on the cable that transmit 
the current to the recoater’s electrical motor. This solution is widely tested for sensors, and it 

provide a current decoupling between the board and the driver, although it requires a physical 
connection to the machine and a comparatively large number of components. The design 
follows the relation below. 
 
 

𝐺𝑎𝑖𝑛 =  (1 +
2 ∗ 𝑅1

𝑅𝑔𝑎𝑖𝑛
) ∗

𝑅3

𝑅2
 

 

(fig. 6.2) Instrumentational amplifier setup, the signal is taken between V0 and V1, with a load put in between. 
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The second considered solution follows the same principle of the instrumentational amplifier, 
focusing on the simplification of the circuit. A simple MOSFET (fig. 6.3) is installed, that with 
the activation of the gate connects a voltage source (possibly the voltage output from the 
Raspberry) to the input pin. Although this solution is simpler than the instrumentational 
amplifier, it still requires a physical connection to the machine. The design follows the relations 
below. 

 
𝑅1 + 𝑅2 =

24

𝐼𝑚𝑎𝑥
    𝑅2 = 𝑅1 ∗

𝑉𝑡ℎ

(24−𝑉𝑡ℎ)

 
(fig. 6.3) MOSFET solution, R3 is chosen simply for current limitation. 

 
Finally, a circuit is designed to attain information from the driver through the LED signaling 
the status of the recoater. This circuit exploit a photoresistor (fig. 6.4) to associate the resistance 
value with the LED being on or off. First of all, the LED is observed to be steady on when the 
recoater is moving, with different color (and therefore different intensity) depending on the 
direction of the recoater, while when the building chamber’s door is open the led exhibit a 

blinking behavior. The photoresistor solution is very sensitive to different lighting conditions, 
thus it requires precise calibration and a protective structure. However, it also doesn’t require 

any modification to the machine, being installed on the outside of the driver, saving possible 
issue with the manufacturer of the machine, avoiding the risk of damaging sensitive 
components, and simplifying the testing and the modifications to the circuit. For these reasons 
the selected setup is the latter of the three proposed. 

 
(fig. 6.4) Photoresistor solution: V0 and V1 are the threshold values for Raspberry Pi pin. 
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To guarantee enough lighting insulation a case is designed and manufactured with FDM 
technology available for prototyping (fig. 6.5). This case allows to expand the surface to adhere 
to the driver, thus allowing the usage of Velcro to guarantee that the photoresistor is in direct 
contact with the LED and sufficiently insulated from external light. In any case, since 
photoresistor’s measurements are the basis for the sensor design, the key factor is that its range 
doesn’t change in time. 
 

 
(fig. 6.5) photoresistor case, designed in two pieces to be united after the photoresistor is installed inside. 

 
Already from an early stage the software development requires other components, such as a 
button and a LED (later increased to two) to interact with the user in absence of peripheral 
devices. These components require current limitation, provided by some simply chosen 
resistances. 
The first hardware setup is as follow (fig. 6.6): 

 
(fig. 6.6) In this setup the start of the acquisition routine was given by the button, thus only one photoresistor is 

present. 
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The designed circuit is then built and tested: results show an issue concerning the internal pull 
down resistor of the Raspberry Pi, that causes the voltage on the pin to be significantly lower, 
thus not being able to correctly deliver the trigger signal. 
To fix this problem, the trigger circuit is modified as follow (fig. 6.7): 
The voltage divider is mantained, and it’s used to activate a MOSFET which will deliver the 

ON voltage to the GPIO pin. The resistor of the voltage divider is therefore designed such that 
the output voltage when the LED of the recoater’s driver is on, is higher than the MOSFET’s 

gate voltage. A resistor is added to limit the current through the MOSFET (tab 6.1). 
 

 
(fig. 6.7) the addition of the MOSFET allows greater precision in the measurement. Being the datasheet available 

to the public, only the model of the MOSFET will be reported. 
 
The next improvement in the hardware setup follows the introduction of an input user-
independent softwarewise. 
An observation is conducted on the machine to identify a suitable event to translate into an 
input, and it is observed that the laser generation require the usage of certain infrastructures that 
only activate when the machine is ready to perform the manufacturing and stops when the 
building process end. 
A study is then conducted again on the electrical circuit and the circuit regulating the laser 
generation is identified. The observation of the component during the working procedure show 
how a LED is used to signal if the machine is working. A sensor circuit identical to the one 
attached on the recoater’s driver is then installed, and calibrated for the range of values that the 
photoresistor assume in the different states. 
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This addition leads to the final circuit for the Raspberry Pi version of the hardware (fig. 6.8). 

 

     
(fig. 6.8) Final hardware circuit for Raspberry version. Schematic version on top and illustration on bottom left. 
(tab. 6.1) Component list on bottom right. Resistance values and MOSFET identification code with thresholds. 

 
To conclude, an overview of the acquisition system is presented (fig. 6.9): 

 
(fig. 6.9) General overview of the setup. In yellow the scripts structure. 

Rmin (KΩ) Rmax (KΩ)

RL1 180 800

RL2 200 800

Vth at 20°C

M1 2N7000G 1

M2 BC557B 1,2

R1

R2

R3

R4

R5

R6

R7

RESISTANCE (KΩ)

MOSFET

1500

1.2

1.2

2.2

1

1

1500
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Pc version: 
 
Following the switch to the software that runs on pc using an Arduino UNO board to handle 
the IO, the hardware faces some radical modifications: the main objective of introducing the 
Arduino UNO board is to go past the prototyping phase and in doing so improving precision of 
the acquisition. The first hardware setup in this configuration is a replica of the Raspberry Pi 
version, to quickly test the serial communication between Arduino and the pc without changing 
the scripts except the IO handler (fig. 6.10); it is worth noticing that the Arduino board, contrary 
to the Raspberry Pi, has analog inputs thus no precise calibration is required on the hardware 
end, and the MOSFET stage can be removed as the threshold is monitored via software. 

 

     
(fig. 6.10) Arduino setup exploiting a bread board. Schematic circuit on top, illustration on bottom left. 

(tab. 6.2) Resistances value in pc configuration on bottom right. The photoresistor values refers to the value read 
by analog IN of Arduino board with the resistances R1 and R2. This value will be related to a chosen threshold. 

 

MIN (bits) MAX (bits)

RL1 280 750

RL2 / /

R1

R2

R3

R4

R5 1.2

RESISTANCE (KΩ)

1000

1000

2.2

1.2
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In the latest setup, instead, the LEDs and the button are removed as a monitor is implemented 
for user interface, thus it can be reduced to the sensors for start signal and acquisition trigger. 
To simplify the circuit tin soldering is used to connect the components inside the photoresistor 
case (fig. 6.5) using insulated cables that are connected directly to the board (fig. 6.11). 

 
(fig. 6.11) cable installation on the electrical panel. Orange cables are the sensors going to the components, 

Arduino board and pc are posed on top of the machine. 
 
Parallel to the previous version, an overview is presented (fig. 6.12): 
 

 
(fig. 6.12) General overview of the setup. In yellow the scripts. The IO handling is managed by both Arduino 

and pc. 
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7. Image analysis 
 

Once the image pool is created with the acquisition process, it is then analyzed to extract defect 
information. In this chapter, first the filters used are listed, describing the working principles, 
advantages and drawbacks, including the basic functions created ad hoc to be used by more 
functions. In the second paragraph the observed defects are described, focusing on the feature 
considered relevant. Next, the algorithms used for each feature extraction are described in a 
nutshell, and finally the validation process will be briefly explained. 

 

Filters: 
Several functions are exploited in different ways to perform the analysis, mainly from the 
python library “scikit-image” (in short “skimage”), that provides a number of methods to filter 

the image: 
 

- Canny edge detector: The Canny edge detection algorithm takes an image in input and 
return an image of the same dimensions with the edges of the original image. The algorithm 
works by using as edge operator the derivative of a Gaussian function, since it become 
easily computable for bidimensional images and its impulse response behave fairly 
similarly to an optimal step edge operator, and a hysteresis-based adaptive threshold to 
reduce the noise contamination [1]; 

- Sobel operator: the Sobel operator create an image in which edges are emphasized by 
multiply each pixel for a designed linear combination of its surroundings (3x3 matrix), 
resulting in an image in which each pixel represents the magnitude of the edge in the 
original image in that coordinate (fig. 7.1).  
 

 
(fig. 7.1) Sobel operator, allow a pixel to assume a value that identify the characteristics of the 

surroundings. 
 

- Watershed function: the watershed function takes in input a mask with marked points and 
an image in which edges are depicted and combine the two to fill the edges starting from 
the marked points’ coordinates. As the name suggests, in fact, the behavior is just like a 
water fountain, where the edges represent the limit of the fountain and the marked points 
the source of water [2];  
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- Label function: the label function works with binary like inputs, where the pixels with zero 
values are background and any other value is grouped together based on proximity and 
enumerated. The outputs are both a copy of the input array where non-background objects 
are substitute by the label value (fig. 7.2) and the number of distinct objects identified [3]; 

 

 
(fig. 7.2) the identified objects are numbered. Graphically, a different color is assigned to each number, the 

background being “0”. 
 

- Probabilistic Hough transform: this function, described in [4] in the chapter “State of the 

art”, allows to identify lines inside the target image, provided a reference length. The result 
will be then filtered and used in defect detection. Although computationally performing, 
the use of this function involves a probabilistic approach, meaning there is the necessity to 
guarantee robustness through other parameters; 

- Contour finding: a function called find_contours allows to extract a line in the form of an 
array from a region in the image, where the line is the contour of the region of interest, 
provided the value that the function should consider threshold (fig. 7.3); 

 

 
(fig. 7.3) on the left the segmented image, on the right the contours in red, applied to the original image. 
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- Active contour: this function implements the snake operator described in [5] in the chapter 
“State of the art” takes in input an image and a close line in form of array and remodel the 
line to find an object, returning the array correspondent to the contour of the object (fig. 
7.3). Different parameters are to be set to influence the line characteristics, such as the 
speed at which the line contracts, the smoothness, the attraction to brightness, or the 
attraction to edge of the object; 

 

 
(fig. 7.4) An initial contouring containing the target object (red) is used to generate the snake (blu). The tuning of 

the parameters allows for a stricter identification of the borders. 
 
- Polygon: the polygon function generates a polygon given an array of points that constitutes 

the correspondent perimeter. Different geometrical operations are then possible, from area 
computing to extraction of specific coordinate (for example the farther coordinate 
belonging to the object, or the center) 
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Defect identification: 
 
The list of defects hereby described comes from an empirical observation of irregularities a 
pool of images initially acquired, without a-priori knowledge of the precise effect that these 
irregularity might have on the finite piece (except for some study performed on the spattering 
generation, described in the chapter “State of the art”). 
 
Due to this condition the analysis code will be structured in a modular fashion, so that if any 
new observed irregularity arise it is possible, with minimum effort, to comprehend it in the 
image analysis algorithm. 
 
 
- Incandescence: The first observed defect is an incandescence appearing in the complete 

layer, resulting from an energy density to high that result in the inability by the melt pool 
to correctly cool down. In the observed cases this defect appears more easily in the center 
of the object or where the laser last passage was, as these are the areas that better retain 
heat. In the captured image the incandescence appears as an area with high intensity with 
respect to the neighborhood (fig. 7.5); 

 

 
(fig. 7.5) example of incandescence. 
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- Holes: This kind of defect consist in a lack of metallic powder in the next layer, resulting 
in the appearance of dark small areas (fig. 7.6), since the powder doesn't cover up the melted 
layer below (darker than the powder). The origin of this defect might be the lack of powder 
due to the regulation of the dosing factor, as well as irregularities in the previous layer in 
terms of geometry of the manufactured artifact that result in the powder distributing 
unevenly. It can be corrected by adjusting the amount of powder supplied layer by layer 
via a manual regulation; 

 

 
(fig. 7.6) example of a hole in the powder bed. 

- Spattering: as aforementioned spattering defects are well described in the chapter “State of 

the art” and consist of droplet of melted metal ejected from the melt pool and landed in the 

surroundings. It appears as a spread of dark imperfection with small area, outside the object 
contour (fig. 7.7); 

 

 
(fig. 7.7) the droplets constituting the spattering are visible as dark points in the bed. 
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- Horizontal: defect labelled as “horizontal” consist in dark lines in the powder bed, outside 

the object contours (fig. 7.8). The origin of these defects is debatable, as no significant 
literature has been found on it. One hypothesis is that geometrical imperfection in the piece 
being build result in an incorrect behavior of the recoater that doesn’t spread the powder 

correctly. It is also possible that the cause are imperfection in the powder itself, as one 
prominent feature of the SLM additive manufacturing process is the possibility to re-use 
powder, thus spread imperfection in the powder could be supplied to a new manufacturing 
job (for example droplet of melted powder); 

 

 
(fig. 7.8) the horizontal lines are visible on the left. 

 
- Waves: these defects, as the name suggests, appears as undulation in the powder in the 

direction of movement of the recoater. In the frame these appear as vertical alternation of 
light and dark stripes (fig. 7.9). The origin of this defect is geometrical imperfection in the 
manufactured objects, which cause the recoater to impact the solid artifact, resulting in an 
oscillation along the z-axis and thus the spread of the powder with the described pattern. 

 

 
(fig. 7.9) the visible waves start upon contact with manufactured pieces. 
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Feature extraction: 
The feature extraction algorithms are described in a schematic way, mentioning the used 
filters and functions, and explaining the issue to be solved that required certain solutions. 
Initially an overview of the main algorithm will be given, describing the organization of the 
files and the logic of the main file. Then the single algorithms will be explained as above 
mentioned, and for each an example of the result will be given. Finally, the validation of the 
algorithm will be explained, and the results presented. 
Relevant features are probed (fig. 7.10), mainly indications of quantity (such as number, 
length and area covered), and position, to allow future correlation of defect to one another. 

 
(fig. 7.10) other than the features listed in figure, the position is noted, namely the defects are assigned to a 
sector of the image. The division in sectors used was a 3x4 grill. The number of sectors can be changed to 

increase precision. 

The structure of the analysis algorithm consists of a main python script that handle the data 
flux, feeding the images to the different files and collecting the resulting features to build the 
output. The main tool of the scripts is the class handler that stores the parameters for defect 
identification and practically calls the methods from the other files. Alongside these two 
actors there is a different file for each operation performed on the images, namely seven: 
holes extraction, horizontal extraction, waves extraction, incandescence extraction, spattering 
extraction, normalization of the image, and contouring of the image. Finally, a file containing 
useful functions is created to be accessed by both the class handler and the single functions 
(fig. 7.11). 
 

 
(fig. 7.11) each box is a distinct file, and the arrows are calls of the function. 



Image analytics for in-situ defects detection in Additive Manufacturing 

47 
 

Main 
The main file takes the image pool and the process information as input. Initially the code 
extracts, if present, the last image of the job to be used for normalization of the images (as it 
is a capture performed once the job is concluded and thus only contain powder, allowing to 
account for illumination conditions). Its first operation on the images is to check that the 
image number isn’t registered in the “missed” list from the acquisition algorithm (see chapter 
“Acquisition script”), and if the image is present and the background image was extracted, it 

perform a normalization. Then, since the number of the image identifies if it is a capture of 
the complete layer or a capture of the newly posed powder, and different defect are 
recognizable in either one of these two cases, the current image is fed to a different branch 
depending on the number in its name. In the branch containing the complete layer images, 
some defects need to be fed the contours of the manufactured artifacts, thus the contouring is 
executed and passed as input to the functions that require it, and the defect features are stored 
in a dictionary. At the end of the cycle the dictionary is saved in an external text file, with the 
process parameters. 
 
Detective 
The object handler is a class containing a method for each major operation that might be 
needed, although the operations themselves aren’t in it. Some of the method contained are for 

example the feature extraction for the defects, that are execute each in its own file. 
The object handler, in this case, calls the function to perform the extraction, then rearrange the 
information in a suitable format to be stored in a json file. More importantly, this is where the 
parameters are assigned and passed to the single files, so that any tuning needs to be done 
inside the object handler class (for instance the tolerance for defect dimension, or the 
thresholds needed). 
Other than the feature extraction, the object handler contains also the normalization functions 
and the contouring, that return the image given in input after performing operations on it. In 
these cases, the object handler only serves as a link between the main loading the image pool 
and the functions. 
 
Normalization 
The camera used automatically adjust the luminosity according to the brightness conditions of 
the environment, resulting in different intensity level depending on the acquisition. In 
particular, if the new layer acquisition is a bit too slow and the laser start the action when the 
frame is being captured, the overall intensity experiences a spike, while the complete layer 
acquisition happens when the recoater has just passed in the frame. The presence of such a 
huge darker shape in the frame makes the camera react by lowering the overall brightness, 
resulting in a lower intensity in the acquisition. However, the tuning of the parameters starts 
from the assumption that is possible to identify values valid for the whole image pool (to 
avoid complicated dynamic assignments), thus a function is necessary to normalize the 
images, described below. 
The reference image is the extra capture after the end of the acquisition routine, since it is 
guaranteed to have only powder in the frame, thus providing a reliable reference to identify 
the illumination conditions. This image (from here on called “background”) is divided in 

levels of intensity with a resolution assigned by the user (for example, if the designed value is 
“5”, each pixel between a multiple of 5 and the next multiple belongs to the corresponding 
level), then the mean value of all the pixels belonging to a certain level is computed, and that 
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value overwrite all the pixel considered to compute it (a similar process was to round every 
pixel to the closer multiple of a certain resolution level, but for large range values this would 
have result in a significant shift from the original value). The image resulting from this 
operation is a mask containing reference values that allows to distinguish different region in 
the frame. The creation of the mask is time consuming, but it needs to be executed only once 
at the beginning of the cycle. 
The target image is segmented to identify the objects, not necessarily in a precise way but just 
to exclude them from the intensity computation, as the different consistency of the material 
means also a different intensity. The image is then divided in groups following the 
coordinates of the mask’s levels, and for each group the mean value is computed (excluding 

the objects), a the difference between this value and the correspondent mask value is 
subtracted from the pixels belonging to the group in the target image (including the objects). 
After this operation is performed the normalization in completed and the area containing only 
powder in the target image assume now the same value as their correspondent in the 
background image, while the difference between the powder and the objects in term of 
intensity is maintained untouched (fig. 7.12). 
The main advantage of this method with respect to the simple histogram equalization of the 
image and the background is the ability to exclude the objects from the computation, as they 
would significantly influence the outcome, and still maintain the difference between objects 
and background unchanged. 

 
(fig. 7.12) while the range remain fairly higher due to object presence, the histograms of the normalized images 

are shifted to match the background. 
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ActiveContouring 
The aim of this function is to create a mask in which the objects are identified using a snake-
based active contouring (as referenced in the chapter “State of the art”). The first step in the 

contouring is the creation of the first snake that will be later brought to completion by the 
function in the python library “scikit-image”. The target image is initially segmented with a 
fairly low threshold, to ensure the identification of all the objects. The segmented image is 
then labeled (the same integer value is assigned to adjacent pixels recognized as object) and 
then “expanded” assigning to the pixels surrounding the object the same value as the object of 
interest. The expansion also take care that there is no merging of distinct objects, allowing to 
contour the expanded object, creating lines that surely contains the objects and that serve as 
the first snakes (fig. 7.13). The active contour function is then implemented on a copy of the 
image filtered through a Sobel operator for noise removal, tuning the parameters to be as 
robust as possible, and the resulting lines are used to create a mask where the pixel value is 
“0” if it belongs to the background and “1” if it is inside one of the snake. 
 

 
(fig. 7.13) the segmented image is expanded and contoured (on the left in red), and from that a snake is 

implemented (on the right in blue) filtering for dimension. The snakes will be then filled to create the mask (on 
the right). 

  
Contouring 
This function aim at performing a segmentation of the image to identify the objects and then 
filter the segmented image by dimensional characteristics that exclusively belong to defects 
(such as very small area). The main advantage of this implementation with respect to the 
active contouring function is the time performances, but the withdraw for this is a significant 
loss in precision, as the object is no longer identify by a targeted function. 
 
Holes 
The target of this function is the extraction of the relevant features regarding the defects 
categorized as holes. At first the image is filtered to highlight discontinuities by means of a 
gaussian filter and a Sobel operator, then a mask is created containing the point of the image 
below a certain threshold given as a parameter, and the watershed function described above is 
used to identify object with values below the threshold. The result is labeled to easily count 
the number of distinct defects and compute the total area and filtered to remove the objects 
outside the range of feasible area values given as parameters. The latter is done to add 
robustness, accounting for a situation in which the reacoter is in the frame during the capture, 
and also during the final layers when a heavy partitioning of the powder is required and the 
lack of powder in the building site form a huge shadow (fig. 5.7). Finally, a function is used to 
identify the center of each object, allowing to recognize the position (fig. 7.14). 
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(fig. 7.14) Holes identification. 

 
Incandescence 
The target of this function is the extraction of the features regarding the defect categorized as 
incandescence, consisting of part of the object that doesn’t correctly cool down after the 

manufacturing. The appearance of this defect is symmetrical to the one of the holes defects, 
allowing the implementation of the same procedure but marking the bright spot in the image. 
In this case it’s also implemented the contouring to add robustness, as to identify only the 
point inside the object where the incandescence might actually happen (fig. 7.15). 
 

 
(fig. 7.15) Incandescence identification. 

 
Spattering 
The function probing the presence of spattering exploit both the reduced dimension of the 
spatter, and the darker appearance caused by the difference in composition with respect to the 
powder. The identification of the defect is performed at first by segmenting the image with a 
low threshold in order to identify even the smaller particles, then the segmentation is filtered 
to remove the objects (given as input as a product of contouring) and the particles with 
intensity higher than a defined threshold (since the segmentation also identify areas with 
intensity higher than the surroundings. With the resulting information the number and total 
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area are computed, as well as the mean area, and finally a K-means clustering is used to 
associate the spattering area to the objects identified, in order to probe the existence of a 
preferential direction of spattering generation (fig. 7.16). 
 

 
(fig. 7.16) Spattering identification. In the middle, the vectors connecting the center of the nearest object and the 

center of each cluster of points are highlighted in blue. 
 
Horizontal 
The horizontal defects identification algorithm exploit the progressive probabilistic Hough 
transform presented in the “Filters” paragraph, applying the transform to a segmentation of 

the target image to identify the lines present. The result is then filtered to remove the lines not 
horizontal, exploiting the signature characteristic of this class of defects, and to remove the 
lines identified inside the objects. For robustness, the lines identification is repeated with a 
range of target length, possibly causing the identification of the same line multiple times. To 
account this dynamic a function is implemented to merge together line that identify the same 
defect, based on the coordinates of the two end points (fig. 7.17). 
 

 
(fig. 7.17) Lines non horizontal or belonging to an object are excluded, leaving the defects. 
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Waves 
The waves identification process is similar to the horizontal defect identification, as a 
progressive probabilistic Hough transform is used to identify the lines present in the 
segmented image, but the filtering of the result is slightly more complex due to the fact that 
the frame is deformed in the vertical direction (since the camera cannot be placed right above 
the middle of the building site, where the laser access the chamber): depending on the 
horizontal coordinate, a range of feasible angles is computed, and if the inclination of the 
identified line falls inside the range it is considered a wave defect. 
To correctly identify the number of defects, a further step is required. Since the waves 
generated cover a wider area than the single horizontal defect (multiple parallel waves), the 
lines identified up until this point are grouped together through a Dbscan clustering, that 
contrary to the already used k-means clustering is based on distance, thus allowing to group 
together waves generated together (fig. 7.18). 
 

 
(fig. 7.18) on the far left the reference angles depending on the coordinate, accounting for deformation. In the 

middle the target image, from which the lines are extracted (far right). 
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Validation: 
The complete algorithm is validated assembling a pool of images and manually extracting the 
defects feature to create a ground truth. The same pool is then fed to the algorithm to extract 
the features and compare the results (tab. 7.2), considering that some features required visual 
confrontation of the results, like in the case of the vector identification in the spattering 
function. 
The pool of images is composed of 27 layers, where a layer consists of an image of the 
complete layer (with even number) and an image of the new layer (with odd number). Six 
images are skipped to test the capability of the algorithm to react to a missed acquisition. The 
images are taken from different manufacturing jobs, to increase the number of defects present, 
hence the significance of the image pool (tab. 7.1). 
 

 
(tab. 7.1) Number of images showing a certain defect in the pool used for validation 

 

 
(tab. 7.2) comparison of ground truth and results of the algorithm. The lines marked in grey correspond to a 

missing image, artificially inserted to test the ability of the algorithm to detect missing acquisitions. 
 

Since most of the algorithms relies on a correct contouring to correctly identify the defects, the 
function responsible for contouring is also validated. 
A pool of 51 images is created containing objects, and then manually segmented to create the 
ground truth. The same pool is then fed to the active contouring algorithm, and the Sorensen-
Dice coefficient is computed for each sample. The mean value expresses the accuracy of the 
designed algorithm. 
 
The results of the validation will be discussed in the chapter “Conclusion and further 

developments”. 

 
 
 

holes spattering incandescence horizontal waves
Number 
of images 
showing 
defects

812152213

layer num area num area num area num start width num start width num start width
1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1
2 2 102 2 107 1 0,95327 3 787 657 3 786 774 1 0,99875 0,85375
3 0 0 0 0 0 0 1 1 1
4 2 27 2 30 1 0,9 0 0 0 0 0 0 1 1 1
5 2 10 0 0 0 0 2 280 279 2 291 290 1 0,98625 0,98625
6 0 0 0 0 1 1 1 297 279 1 270 256 1 0,96625 0,97125
7 1 86 1 90 1 0,95556 0 0 0 0 0 0 1 1 1

FP FN FP FN
0,79828 0,8021 2 0 0,89583 0,98369 0,98847 0 2

Holes
Ground Truth Algorithm Accuracy

Waves

AccuracyAccuracy

Ground Truth Algorithm Accuracy
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8. Conclusions and further developments 
 

The conclusion of the thesis will be presented in three parts: at first it will be summarized what 
has been done for the acquisition of the images, then the results of the analysis will be discussed, 
separating the single algorithms for feature extraction working separately and the whole 
algorithm altogether. Finally, further development will be proposed, in a context of exploiting 
the data for a predictive maintenance process. 
 
The acquisition system, as already described in the dedicated chapter, consist of managing the 
data flow coming from preexisting hardware. A sensor has been build exploiting a photoresistor 
to read signals from the machine electrical panel, while the access to the camera to perform the 
acquisitions and the management of said signal is perform via python scripts. The optimization 
of the hardware infrastructure, achieved by implementing an Arduino Uno board and a PC, 
allowed a higher precision, mainly because of the analog inputs of the board and the fact that 
being a microcontroller no other process interfere with the execution of the routine: the issues 
regarding the images are related to imprecision in the timing of the captures, either by capturing 
the recoater in the frame, or the laser in action. Once the optimization is in place, the number 
of bad timed acquisition in a whole job is 5/4658 (0.11%) in which four are the result of a 
slightly fast acquisition on the new layer, causing the shadow of the recoater to appear in the 
frame, possibly causing a false positive, while the other one is the result of a slightly slow 
acquisition, resulting in the laser to appear in the shot. This, however, doesn’t cause any error 

until a significant portion of the piece is manufactured, issue that never occurs. The optimization 
solves via some issues that in previous versions ultimately led to error in the analysis. 
 
The analysis algorithms are initially tested as standalone, tuning the parameters and visually 
checking the results. The results are positive, as all the defects are correctly identified, provided 
the requirements are met: the object needs to be identified with sufficient precision for the 
identification of the spattering, the horizontal defects and the incandescence in the artifacts, as 
these defects can only be present entirely outside or entirely inside the object. The waves defects 
are present in the entire length of the building site, while the holes in the powder bed appears 
before the layer is manufactured. 
The evaluation of the single algorithms is done with a visual comparison of the original image 
and the resulting image on which the features are extracted, as it is the simplest way of quickly 
check the effectiveness of the algorithms (fig. 8.1). 

 
(fig. 8.1) visual identification of a defects’ features. 
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Once the single algorithms are tested and the complete algorithm is created by adding a 
normalization function to allow a precise tuning of the parameters, a validation is performed 
creating a pool of images that shows defects, listing these defects to create a ground truth and 
then executing the algorithm on the pool to compare the result and the a-priori knowledge on 
the data. Any false positive or false negative is noted, and then the accuracy is computed with 
the relative error of the measure with respect to the reference value (tab 8.1). 

 
(tab. 8.1) accuracy results of the different algorithms on a pool with abundance of defects. 

An important consideration needs to be done regarding the results of the validation. The image 
pool used is composed, to check for robustness, of some images that were the result of the 
acquisition process before the optimization of the hardware. The first effect of this choice is the 
presence of some false positive in the “holes” identification, and a measure that is much higher 

than the true value due to the presence of the recoater in the frame. The accuracy without 
considering that case rise to 96.49% for number of defects and 92.08% for area measurement. 
Another result of these inaccuracy is the difficulty in object contouring, as the images in which 
the laser is present have at least one area in which the intensity is much higher than the 
surrounding. The snake used for contouring is instead designed to be attracted by darker region, 
thus creating error in handling the laser area. 
Both these issues are solved with the optimization in the acquisition process. 
It’s worth discussing some issue with the spattering identification algorithm. The logic behind 

the process is the identification of darker regions with area inside a feasible range, that are not 
part of any object. An observed issue is the impossibility for the algorithm to distinguish the 
spattering from other defects with the same characteristics, like the horizontal defects or the 
waves (fig. 8.2). The accuracy of spattering identification in images with correct contouring 
and no other defects present is in fact 62.44%, higher than the computed accuracy. 

 
(fig. 8.2) it is shown how the spattering identification follow the vertical lines resulting from a wave presence. 

Horizontal
number area number area number area number number length width

Accuracy 0,79828 0,80211 0,5641 0,4593 0,71129 0,59939 0,79954 0,89583 0,98369 0,98847
FP 1
FN 10

5

WavesIncandescenceSpatteringHoles

0
20

2 1
0
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It is also noted how, due to the high number of distinct particles, the sensitivity to change in 
area value is much higher than features with reduced number. In this case a visual confrontation 
between an output image from the algorithm and the original capture might be more significant 
in assessing the efficiency of the algorithm itself. The contouring function is also subject to 
validation, and the medium value of the Sorensen-Dice coefficient is 0.7448, with values as 
high as 0.93 and a few as low as 0.5, in the images in which the acquisition had the laser inside 
the frame, as confirmed by visual confrontation of the ground truth and the contoured images. 
About the performances of the script, the algorithms for feature extraction taken individually 
don’t take a lot of time to be executed, compared to the execution time of a layer, while the 
functions used to improve precision such as active contouring and normalization are more time 
consuming (tab. 8.2). 

 
(tab. 8.2) Execution times using a 4 cores computer running Ubuntu 18.04.3 LTS 

The first improvement proposed is a richer communication between functions, accounting for 
issues derived by the contemporary presence of multiple defects, like the aforementioned 
interference between spattering and horizontal defects. An even more degree of precision 
could be achieved by accessing the source files for the manufacturing (CAD and slicing), 
allowing to compare the acquisitions with the theoretical shape of the layer, also creating a 
contouring directly from the design of the pieces. 
During the thesis project, one of the monitored jobs was the subject of some mechanical tests 
for the characterization of a new material. A very interesting follow-up on the project is 
linking the change in mechanical properties with the appearance of defects during the process, 
as it was done for other properties, through machine learning algorithms. A control structure 
could also be implemented for predictive maintenance, once a correlation between process 
parameters and defect appearance is found, that can result in a significant decrease of the 
latter. To achieve such a program, an online version of the algorithm is most probably 
required: the immediate improvement from the current program is therefore the optimization 
of the algorithms to extract the features in a more performing time, while the references (like 
the background image use for normalization) would need to be provided at the beginning of 
the cycle or as external references. The most critical functions are currently the active 
contouring and the normalization, although for most of the manufacturing cycle (excluding 
the fastest final layers) the normalization can still be considered feasible, thus it is 
recommended the implementation of a segmentation for object identification. 
 
The thesis project allowed the creation of a data collection system, a pivotal component of 
today’s most innovative applications, and in this case the first step towards the development 

of a sophisticated control infrastructure for the most recent breakthrough in the manufacturing 
industry, the Additive Manufacturing. 

Operation min execution time [s] max execution time [s]
Holes identification 0,79 0,87
Spattering identification 0,57 0,72
Horizontal identification 0,59 0,86
Incandescence identification 0,82 0,95
Waves identification 0,93 4,67
Mask creation (normalization) 117,43 117,59
Normalization 15,57 16,81
Active contouring 44,41 496,25
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