
Politecnico di Torino
Master’s Degree in Mechatronic Engineering

MASTER’S THESIS

An Off-line Optimized Planner for the Generation

of Path and Orientation of Industrial Robots

Supervisor: Candidate:
Prof.ssa Marina Indri Gabriele Baldi

Tutor:
Ing. Aldo Bottero

COMAU S.p.A. - RoboLAB

December 2019

Table of contents

Introduction III

1 Parametric curves 4

1.1 Introduction . 4

1.2 Bézier curves . 5

1.2.1 De Casteljau’ s algorithm . 6

1.3 Spline curves . 7

1.3.1 Continuity of a curve . 7

1.3.2 Knot vectors . 8

1.4 B-spline curves . 9

1.4.1 B-spline basis functions . 9

1.5 NURBS . 11

1.5.1 Weights modification . 11

2 Trajectory planning 13

2.1 Introduction . 13

2.2 Path vs. Trajectory . 14

2.3 Trajectory in the Joint space . 14

2.3.1 Point-to-Point Trajectories . 16

2.3.2 Multipoint Trajectories . 22

2.4 Trajectory in the task space . 24

2.4.1 Multidimensional Trajectories 27

2.5 Orientation of the tool . 29

2.5.1 Axis-Angle . 31

2.5.2 Planar sliding . 32

2.5.3 Euler angles . 34

2.5.4 Quaternions . 37

3 Off-line trajectory planning for continuous processes 44

3.1 Introduction . 44

3.1.1 Case of study . 45

3.2 Trajectory planning based on FIR filters 45

3.2.1 Uniform B-splines . 46

3.2.2 Interpolation problem solver and computation of the control

points . 49

3.2.3 Implementation of the trajectory planner 51

3.3 Pre-elaboration of data and Optimization 55

3.3.1 Introduction . 55

3.3.2 Nurbs toolbox . 55

3.3.3 Elaboration of the geometric path with Nurbs 56

3.3.4 Redistribution and oversampling of the input points over the

path . 58

3.3.5 Elaboration of the set of orientations with Nurbs 61

3.4 Matlab simulations . 63

3.4.1 Test 1 . 64

3.4.2 Test2 . 67

4 Tests on Robot 72

4.1 Description of the NJ130 . 72

4.2 The teach pendant and the moni . 73

4.3 Experimental tests . 74

5 Conclusions 82

5.1 Future works . 82

A Matlab codes 83

A.1 angles calc.m . 83

A.2 arc length.m . 84

A.3 samp calc.m . 84

A.4 interpolation.m . 85

A.5 sequencer.m . 86

A.6 FIR.m . 86

A.7 elab data.m . 87

A.8 curve rad.m . 88

A.9 curve weights.m . 89

A.10 weights calc.m . 90

A.11 weights orientation.m . 91

A.12 test.m . 92

Bibliography 95

Introduction
From the introduction of the first robot in the industry, in the late ’60s, many things

have changed. Nowadays, industrial robotics’ market is growing rapidly. According

to the International Federation of Robotic(IFR),this kind of market showed in 2018

an annual global sales value of 16.5 billion USD in 2018. 422.000 units where shipped

globally in those year, with a 6% increment with respect to the previous year.

Industrial robots become every year lighter, tough, faster and easier to reprogram

and, due to their major efficiency and versatility are spreading in many applications

of the industrial domain.

Continuous processes

Most of the current robotics’ applications are mainly continuous processes, in which

robots are fundamental. There are applications, for example welding or spray paint-

ing, which in some kind of industry, like automotive, are made exclusively by them.

A brief description of these operations is made in the following [1]:

• Welding: involves the use of a robotic manipulator to fully automatize the

process of welding an object, handling both the weld itself and the handling

of the tool.

• Spray painting: requires covering a surface with an even coat of paint. This

is typically done by pre-specifying the trajectory along which the arm should

move for both position and orientation.

• Machining of mechanical parts is a growing field in industrial robotics. Oper-

ations like grinding, milling, polishing etc. . . are challenging techniques which

require both the ability to follow the surface to work on and to maintain the

force required to perform the operation.

All these operations have the common ground to be tasks in which it is necessary

to look for a good trade-off between the robot capacity to show a high accuracy in

following the surface and its speed, to reduce the cycle time of the processing.

Objective of the thesis

The algorithm proposed in this thesis gives to the user the possibility to plan a

trajectory in the task space in which it can handle the trade-off mentioned above,

1

in order to obtain a result as close as possible to its expectations. To reach this

objective I started from the work in [2], in which a combined use of B-Spline and a

cascade of FIR(Finite Impulse Response) filters is made in order to obtain a smooth

curve which interpolates the given via-points, and I tried to optimize it, through a

combined use of NURBS curves and a pre-elaboration on the points. The study and

the relative simulations and tests are related to an example of sealing of a hood. In

Figure 1 an operation of sealing made by an industrial robot is shown.

COMAU, RoboLAB and the NJ130

COMAU(Consorzio macchine utensili) is an Italian multinational company which

has his headquarter in Grugliasco, Turin. Founded in 1973, it is an integrated com-

pany that works mainly in the automotive field. The company has a well established

cooperation with the Politecnico di Torino. As a matter of fact, in November 2013,

from this synergy RoboLAB was born, a joint research laboratory between these

two realities. The work of thesis was carried out mainly in this laboratory, where

I also had the possibility to test my algorithm on a real robot. The robot used for

the tests is an NJ130 - 2.6 (Figure 1), an anthropomorphic industrial robot, with

six revolute joints and a spherical wrist, capable to do the continuous processes

previously described with a very good accuracy and speed of execution.

Figure 1. In (a) a model of the NJ130 - 2.6 [3]. In (b) an industrial robot during
the operation of sealing of a car door. [4]

2

Thesis Outline

The thesis is structured in the following chapters:

1. Chapter 1 - Parametric Curves: a state of the art on parametric curves

is given, focusing on the most important issues for this thesis.

2. Chapter 2 - Trajectory Planning: state of the art on planning of the

motion law for path and orientation.

3. Chapter 3 - Off-line trajectory planning for continuous processes:

In this chapter the main contribution of the thesis is provided. It is divided

into three parts. In the first part the planner is discussed and implemented,

then an optimization process is carried out, and finally the overall structure is

tested in Matlab and the results are analysed.

4. Chapter 4 - Tests on robot: Discussion and analysis of the results obtained

by testing the algorithm on a real robot.

5. Chapter 5 - Conclusion and future works: The results of the thesis are

examined and future developments for this kind of work are proposed.

3

Chapter 1

Parametric curves

In this chapter, an overview of different parametric curves will be given. A brief

definition of parametric curve will be given in the introduction, then different kind

of curves will be examined from a pure theoretical point of view, in order to clarify

the choices that will be made in the thesis.

1.1 Introduction

In robot trajectory planning a parametric representation of the curve is often adopted,

to represent a free curve in the space. A parametric curve P(u) is a curve that re-

turns a point P in the space for a particular value of the parameter u ∈ [umin, umax].

An example of parametric curves is given in Figure 1.1, meanwhile, in the next

section some important kinds of parametric curves are described.

Figure 1.1. Representation of a parametric curve. (a) Parametric vector, (b)
Parametric curve in 3D space, (c) Parametric curve decomposed into the three

axis over the parametric space [5]

4

1 – Parametric curves

1.2 Bézier curves

Bézier curves are a simple kind of curves, used in computer graphics to draw shapes.

A n-th degree Bézier curve is defined by [6]:

C(u) =
n∑
i=0

Bi,n(u)Pi 0 ≤ u ≤ 1 (1.1)

The basis functions, {Bi,n(u)}, are called Bernstein polynomials (Figure 1.2) of

degree n, and are expressed by:

Bi,n(u) =
n!

i!(n− i)!
ui(1− u)n−1 (1.2)

The coefficients Pi are called control points and will form the control polygon which

defines the shape fo the curve (Figure 1.3).

Figure 1.2. Bernstein polynomials [6]

5

1 – Parametric curves

Figure 1.3. Bezier curve and control Polygon [6]

1.2.1 De Casteljau’ s algorithm

Figure 1.4. Graphical representation of De Casteljau’s algorithm [7]

Besides the maths notions, a basic understand on how the control points define the

shape of the curve is given by the following algorithm. Given a parameter curve

with 3 control points and parameter u, and referring to Figure 1.4, from [7]:

1. Draw the control points (1,2, 3 in the example)

2. Connect the control points through segments (brown segments in figure)

3. The parameter u moves from 0 to 1 with a certain step. For each step:

• take a point on each segment connecting the control points, located at a

distance from the brown segments proportional to the distance of u from

0

• connect the points found on the segments, obtaining a new segment, i.e.,

the one drawn in blue

6

1 – Parametric curves

4. Now, on this segment take a further point(in red) again at a distance propor-

tional to the displacement of u from 0

5. Connecting all these points for u that goes from 0 to 1 the curve is obtained

This is a recursive algorithm, which means that can be done with some more iteration

in case of curves with more than 3 control points.

From the algorithm it is also possible to imagine that Bézier curves are really

simple to use for few control points, but their difficulty grows as the number of

control points grows. Furthermore, only the first and the last control points are

reached by the curve, as shown in Figure 1.3 the intermediate points are only ap-

proximated from it, this could be an unwanted behaviour in some cases, in which an

exact interpolation could be desired.

1.3 Spline curves

To overcome the problem of exact interpolation, spline curves are introduced. Spline

curves are connected functions, ensuring certain condition of continuity in the con-

nection. Of particular interest in the field of robotics are the cubic splines, which

guarantee a C2 continuity in the junctions. [5] This particular kind of splines is

examined more in details in Chapter 3, in the field of trajectory planning. In this

section only some details about spline curves and other tools related to them will

be given.

1.3.1 Continuity of a curve

We said that a cubic spline has C2 continuity. From [8], the continuity of a curve

is, practically, the description of how smooth is the considered curve. If a break or

a speed change appears along a curve, this is called discontinuity, that is, in maths

terms, a jump in the n-th derivative of the Cn curve. There are several kinds of

continuity, as shown in Figure 1.5. The most useful for our analysis are:

• C0 - change in position, the curve has literally a break in it

• C1 - change in tangent, the curve has a critical change in direction(e.g., 90◦

angle)

• C2 - change in acceleration of the curve

7

1 – Parametric curves

It is important to differentiate this kind of continuity (called geometric continuity)

to the parametric continuity, which refers to discontinuity of the derivative in the

parametric space.

Figure 1.5. Curve discontinuities [8]

1.3.2 Knot vectors

Being a spline curve a union of several polynomials, differently from the Bézier

curves, it cannot be defined on a single vector u ∈ [0, 1] but on a union of vectors

u ∈ [U0, U1, . . . ,Un], which define the junctions of the various polynomials over the

curve. This is called knot vectors (Figure 1.6) [5].

Figure 1.6. Knot vector [5]

The ideal way to choose the knots is to assign between each couple of them the arc

length of the corresponding curve, but it is impossible to compute the arc length of

the curve before assigning it the knots vector. So, the most simple and utilized way

to define a knots vector is to impose a uniform distance among them. Although very

simple, this method has the drawback to produce unwanted oscillations in some cases

8

1 – Parametric curves

if distance among the knots does not correspond to the distance among the points on

the curve. Then, a more practical way to assign them is to choose an intermediate

distance equal to the length of the segment connecting the correspondent arc on the

curve.

1.4 B-spline curves

Even though with spline curves the problem of the exact interpolation is solved,

there is another problem in common between Bézier curves and splines, which is the

lack of local controllability. In fact, in both kind of curves, if we move one control

point the shape of the overall curve changes. So, the question is:

Does it exists a kind of curve which has the advantages of both the previous curves,

i.e., simplicity in control, like Bézier, and exact interpolation of the given points,

like splines, and, moreover, supports local controllability?

B-splines are the answer to this question. A p-th degree B-spline curve is defined

as: [6]:

C(u) =
n∑
i=0

Ni,p(u)Pi u0 ≤ u ≤ un (1.3)

where Pi are the control points, and Ni,p(u) are the p-th degree B-spline basis

functions defined on the knot vector:

U = {u0, . . . ,u0︸ ︷︷ ︸
p+1

,up+1, . . . ,um−p, un, . . . ,un︸ ︷︷ ︸
p+1

} (1.4)

where, in general, u0 = 0 and un = 1. The number of knots m is equal to number

of the control points plus the order of the curve, so:

m = n+ p+ 1 (1.5)

1.4.1 B-spline basis functions

Considering the knot vector in (1.4), the i-th B-spline basis function of p-degree is

defined by: [6]

Ni,0(u) =

{
1 ui ≤ u ≤ ui+1

0 otherwise

Ni,p(u) =
u− ui
ui+p − ui

Ni,p−1(u) +
ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1(u)

(1.6)

9

1 – Parametric curves

As we can see from (1.6), B-splines have a basis function which only depends on a

restricted span of the knot vector. In this way the desired local controllability has

been reached. Every B-spline of order p is composed by polynomial pieces of degree

p − 1 which are connected with continuity Cp−2. So, every control point has an

influence only on p segments of the curve and, at the reverse, each segment of the

B-Spline is influenced by only p control points. Figure 1.7 shows an example of the

basis functions over a certain knot vector.

Figure 1.7. Basis functions defined over the knots vector U = {0, 0, 0, 1, 2, 3, 4,
5, 5, 5} [6]

10

1 – Parametric curves

1.5 NURBS

An important improvement to the properties of local controllability of the B-spline

is given by Non-Uniform Rational B-Splines(NURBS). A p-th degree NURBS is

defined by [6]:

C(u) =

∑n
i=0Ni,p(u)wiPi∑n
i=0Ni,p(u)wi

, u0 ≤ u ≤ un (1.7)

where Pi are the control points, Ni,p(u) are the same p-th degree basis functions of

the B-splines and wi are the weights. Setting:

Ri,p(u) =

∑n
i=0Ni,p(u)wi∑n
i=0Ni,p(u)wi

(1.8)

it permits us to rewrite (1.7) as:

C(u) =
n∑
i=0

Ri,p(u)Pi (1.9)

where Ri,p(u) are called rational basis functions and have the same properties of the

classical basis functions, but differ from them for the presence of the weights wi.

1.5.1 Weights modification

The presence of the weights in the NURBS basis functions allows another degree of

freedom for what concerns the modification of the shape of the curve. In fact, in

the B-spline there are mainly two ways to reshape the curve: [5]

• Modification of the knot vector

• Modification of the control points

but, de facto, due to the difficulty in modifying the knots vector for what we said in

Section 2.3.2, the only possibility was to modify the control points. This new object

gives instead a new parameter through which the curve can be reshaped. Increasing

a specific weight, the portion of the curve associated to it is pushed against the

relative control point, meanwhile, decreasing its value, the same portion of curve is

pulled away from it. All of this is possible while keeping the local controllability

property of the B-splines, since the two objects share the same structure. Figure

1.8 shows a curve modification for different weights while in Figure 1.9 the rational

basis functions for the different weights are reported.

11

1 – Parametric curves

Figure 1.8. Curve modification with w1 = 3
10 , 1, 4 [6]

Figure 1.9. Rational basis function of the curve in Figure (1.8). (a) w1 = 4,
(b)w1 = 3

10 , (c)w1 = 0 [6]

12

Chapter 2

Trajectory planning
This chapter deals with the problem of planning motion laws and trajectories. In

the introduction the definition of path and trajectory is given, together with a brief

general overview of the problem to plan a trajectory in the task or in the joint space.

Then, several kinds of trajectories are illustrated. Finally, an overview on some tech-

niques used to represent orientations is given, with particular attention on quater-

nions, which are utilized in the thesis.

2.1 Introduction

Objective of trajectory planning is to generate the input for the robot control system

in a way to ensure the execution of the planned trajectory by the manipulator. As

a matter of fact,the trajectory cannot be totally planned from the user due to its

complexity. For this reason the user usually gives a limited number of parameters

in the task space, like the extreme points or also some intermediate points, the

time of execution of the motion law, the maximum velocity of the robot etc. . . and,

then, the task of the engineer is to create a geometric path and a time law s(t)

which respect those specifications. Due to the fact that the control action on the

manipulator is made at the joint level(see Figure 2.1), the set of variables in the

task space (px(t), py(t), pz(t), φ(t), θ(t), ψ(t)) need to be translated in variables in

the joint space (q1(t), q2(t), q3(t), q4(t), q5(t), q6(t)) through some inverse kinematics

algorithm [9].

Figure 2.1. Cascade sequence of trajectory planner and Inverse Kinematics block
[10]

13

2 – Trajectory planning

2.2 Path vs. Trajectory

To avoid confusion it is useful, as a starting point, to clarify the difference between

two terms that are used very often in this field and at a first sight may appear as

synonyms: ’Path’ and ’Trajectory’ [10], graphically represented in Figure 2.2.

PATH: is the geometrical description of the desired set of points in the task

space.

TRAJECTORY: is a path to which is assigned the time law required to follow

that path.

Figure 2.2. Path and Trajectory [10]

The planning of the trajectory can be set either in the joint space or in the

task space, depending on what are the specifications given by the user and which

objective the manipulator has to accomplish.

2.3 Trajectory in the Joint space

Even though the trajectory is usually specified in the task space, sometimes it could

be useful and simpler to plan it directly in the joint space. The first step is to take

the user variables and translate it to the equivalent variables in the joint space.

To do this, an inverse kinematics algorithm can be employed if the programming

is made offline, otherwise the acquisition of these variables can be done on-line if

the programming of the robot is made by teaching techniques. [9] Then different

techniques are employed to generate the path and the related time law, some of

14

2 – Trajectory planning

them are discussed in the next chapter. In general, a joint space trajectory planning

is required to have the following features:

• The trajectory can’t be too demanding from the computational point of view

• The joints positions and velocities have to be continuous function of the time

• Every undesirable effect should be minimized

Figure 2.3. Joint space-to-Task space [10]

At first sight one can think to simply connect the desired points in the joint space

through linear paths, but due to direct kinematics needed to convert the joint trajec-

tory in the task trajectory this is not possible, because this algorithm is not linear.

So a linear path in the joint space would be converted in a non-linear one in the task

space, as shown in Figures 2.2 - 2.3. Other kinds of solution need to be implemented,

and some of them are explained in the following chapters.

Figure 2.4. Joint space-to-Task space [11]

15

2 – Trajectory planning

2.3.1 Point-to-Point Trajectories

Introduction

In the simplest case a motion law can be obtained assigning the initial and final

time instants, respectively t0 and t1, and some conditions on position, velocity and

acceleration at these times. Then, the problem is to find a function:

q = q(t), t ∈ [t0 ,t1] (2.1)

such that those conditions are satisfied. It can be easily seen that a solution to this

problem is to consider a polynomial function, i.e., a function like:

q(t) = a0 + a1 t + a2 t2 + · · ·+ antn (2.2)

where the degree n of the polynomial depends on how many conditions there are to

be satisfied and how much the motion should be smooth [12].

Linear trajectory

Figure 2.5. Linear Trajectory [12]

The most simple trajectory to determine a motion from a point q0 to a point q1
is a linear trajectory, in Figure (2.5) defined as [12] :

q(t) = a0 + a1 (t − t0) (2.3)

16

2 – Trajectory planning

Once initial and final time instants and positions are specified, we can determine a0

and a1 with the following system of equations:{
q0 = a0

q1 = a0 + a0(t1 − t0)
=⇒

{
a0 = q0

a1 = q1−q0
t1−t0 = h

T

(2.4)

with T = t1 − t0 the time duration and h = q1 − q0 the displacement. The velocity

is constant over this T and its value is:

q̇(t) =
h

T
(2.5)

Obviously, the acceleration present a null value all over the interval minus at the

extremities whereas present an impulsive behaviour.

Parabolic Trajectory

Figure 2.6. Parabolic Trajectory [12]

This trajectory in Figure 2.6 is characterized by an acceleration whose absolute

value is constant along all the path, meanwhile the sign changes depending if the

motion is in the acceleration or in the deceleration period. From an analytical point

17

2 – Trajectory planning

of view, this is the composition of two second degree polynomials with a flex point

in the middle, so, the motion can be expressed by the two functions [12]:

qa(t) = a0 + a1(t− t0) + a2(t− t0), t ∈ [t0,tf]

qb(t) = a3 + a4(t− tf) + a5(t− tf), t ∈ [tf ,t1]
(2.6)

where t0 and t1 are respectively the initial and final time instants and tf is the time

instants related to the flex point. Doing the maths we can find the velocity at the

flex point as:

vmax = q̇a(tf) = 2
h

T
− v0 (2.7)

It is important to notice that, in case v0 = 0, vmax results to be double with respect

to the constant velocity in the linear case. The jerk will be always null at except of

the flex point, when the acceleration changes sign.

Cubic Trajectory

Figure 2.7. Cubic trajectory [12]

A good criterion to choose the primitive function to interpolate the points is to

impose a trajectory that minimizes the energy dissipated from the joint motors [9].

18

2 – Trajectory planning

The solution of this problem is a third degree equation like this:

q(t) = a3t
3 + a2t

2 + a1t+ a0 (2.8)

The following velocity and acceleration are associated to it:

q̇(t) = 3a3t
2 + 2a2t+ a1 (2.9)

q̈(t) = 6a3t+ 2a2 (2.10)

Having four coefficients to choose, we can impose, in addition to the initial and the

final values qi and qf , also the initial and final velocities q̇i and q̇f . The trajectory,

depicted in Figure 2.7 is therefore given by the following system of equations:

a0 = qi

a1 = q̇i

a3t
3 + a2t

2 + a1t+ a0 = qf

3a3t
2 + 2a2t+ a1 = q̇f

(2.11)

Trapezoidal profile(or 2-1-2)

Figure 2.8. Trapezoidal trajectory [12]

19

2 – Trajectory planning

Another approach often used in the industry is the 2-1-2 trajectory, in which a

trapezoidal profile, shown in Figure 2.8, is assigned to the velocity. This permits to

impose a constant acceleration at the beginning of the motion, a constant cruising

speed, and finally a constant deceleration in the final phase of the motion [9]. The

name of this trajectory is given by the resultant position profile, which is a compo-

sition of two parabolic segments, at the beginning and at the end of the trajectory,

and a linear segment in the middle of them.

Once qi, qf and tf are assigned, we obtain the motion law referred in (2.12) [12],

and plotted in Figure 2.8:

q(t) =

qi + 1

2
q̈ct

2 0 ≤ t ≤ tc

qi + q̈ctc(t− tc/2) tc < t ≤ tf − tc
qf − 1

2
q̈c(tf − t)2 tf − tc < t ≤ tf

(2.12)

The advantage of this method is that it allows to verify immediately if the velocity

and acceleration imposed by these laws are consistent with the physical characteris-

tics of the manipulator. The drawback is a poorer quality with respect of the third

order polynomial examined previously.

Double-S Trajectory

The main drawback of the trapezoidal trajectory is to present a discontinuous ac-

celeration, which could generate stresses and undesired vibrational effects on the

mechanical system. Therefore, the Double-S profile, in Figure 2.9 can resolve this

problem, being a smoother motion profile in which the jerk is characterized by a step

profile, instead of an impulsive profile. This trajectory is made by the composition

of several linear segments connected each others by parabolic blends.

Online computation of Double-S trajectory

From [12] also another elegant and simple way to implement a Double-S trajectory

is shown, that is, an on-line computation of this kind of trajectory. This kind of

computation is appropriate for CNC machines, where the trajectory profiles are

computed in discrete time, Being Ts the sampling period, let us define the values of

20

2 – Trajectory planning

Figure 2.9. Double-S Trajectory [12]

position, velocity, acceleration and jerk at a certain time instant k as:
q(t = kTs) = qk

q̇(t = kTs) = q̇k

q̈(t = kTs) = q̈k

q(3)(t = kTs) = q
(3)
k

(2.13)

Then, given the initial and final values of position, velocity and acceleration and also

the constraints(vmax , vmin , amax , amin , jmax , jmin), the profile is computed by setting

the desired jerk profile and then by integrating it three times, obtaining something

like this:

q̈k = q̈k−1 +
Ts
2

(q3k−1 + q3k)

q̇k = q̇k−1 +
Ts
2

(q̈k−1 + q̈k)

qk = qk−1 +
Ts
2

(q̇k−1 + q̇k)

(2.14)

The basic idea is to perform the acceleration phase and then the constant velocity

phase segment until it is necessary to decelerate in order to reach the final position qi

21

2 – Trajectory planning

with the desired values of velocity and acceleration and keeping jerk and acceleration

within the desired constraints. Figure 2.10 reports an example of structure for this

kind of trajectory planner.

Figure 2.10. Online double-S generator [12]

2.3.2 Multipoint Trajectories

Introduction

Although point-to-point techniques are simple to implement, in most cases the path

specified by the user is more complex and requires a number of point greater than

two. At a first sight, a reasoning like the one of the third order polynomial could

be made, i.e., if n point are specified to be reached by the robot, that’s means that

each one of the joints of the manipulator has n constraints and, so, a polynomial of

degree n − 1 should be used. But, in the practice, the result is not so obvious and

this approach carries many drawbacks:

• No possibility to assign initial and final velocity

• Higher is the degree, higher is the oscillatory nature of the manipulator. This

can lead to not so natural trajectories

• The system of equation derived by the constraints becomes more complex and

tougher from a numerical point of view

• All the coefficients are related. If you want to change a part of the trajectory

you need to re-calculate all the coefficients

• If the degree of the polynomial increases, the numerical accuracy to calculate

it decreases

22

2 – Trajectory planning

A way to avoid these problems is to consider the polynomial not as a unique

complex polynomial of high degree but as a sum of simpler polynomials of lower

degree, which are connected in the n desired points of the path [9], as shown in

Figure 2.11. The overall function s(t) in this way is called spline of degree p, and it

is examined in detail in Chapter 2.3.

Cubic splines

The lowest degree polynomial that can be taken is the cubic polynomial [9]:

q(t) = a0 + a1t+ a2t
2 + a3t

3 (2.15)

since it is the lowest degree polynomial that preserves the continuity of the velocity

in the junction points of the path. Then, the overall function is:

s(t) = {qkt, t ∈ [tk,tk+1], k = 0, . . . ,n− 1},
qk(t) = ak0 + ak1(t− tk) + ak2(t− tk)2 + ak3(t− tk)3

(2.16)

Since n cubic polynomials are necessary to define a trajectory passing through

n+ 1 points, the number of coefficients to be determined is 4n. Then, to solve this

problem, there are the following conditions to be satisfied [12]:

• 2n conditions for the interpolation of the points given by the user.

• 2(n− 1) conditions for the continuity of velocity and acceleration at the tran-

sition points.

Doing the maths we can check that, once the upper conditions are satisfied there

are two degrees of freedom left. Then, two constraints must be imposed to compute

the spline. There are possibilities to impose such constraints:

• The initial and final velocity ṡ(t0) = v0, ṡ(tn) = vn.

• The initial and final acceleration s̈(t0), s̈(tn).

• The conditions ṡ(t0) = ṡ(tn), s̈(t0) = s̈(tn), useful when it is necessary to

define a periodic spline.

• The Jerk’s continuity at time instants t1,tn−1.

Generally, a spline is characterized by the following properties [12]:

23

2 – Trajectory planning

Figure 2.11. Cubic spline curve [12]

1. [n(p+1)] parameters are sufficient to define a trajectory s(t) of degree p, which

interpolates the given points (tk,qk), k = 0, . . . ,n.

2. Once given the n+ 1 points and the boundary conditions, the spline of degree

p interpolating those points is univocally determined.

3. The degree p of the polynomials composing the spline does not depend on the

number of points.

4. s(t) has continuous derivatives up to the order (p− 1).

5. If the condition s̈(t0) = s̈(t0) = 0 is assumed, the cubic spline is, among all the

functions which interpolate the given entry points with continuous first and

second derivatives, the one which minimizes the functional

J =

∫ tn

t0

(d2f(t)

dt2

)
dt

that is a sort of deformation energy, proportional to the curvature of the function.

The last condition is particularly important because it shows that the function which

minimizes the oscillatory motion of the robot is the cubic spline with zero condition

on the initial and final velocities. This kind of spline is called ’natural spline’.

2.4 Trajectory in the task space

Quite different is the situation when the manipulator has to follow a specific path

in the task space. In this case it is necessary to plan the trajectory directly in the

operational space. In this case the planning can be done either by interpolating a

sequence of prescribed path points or by creating the analytical motion primitive

24

2 – Trajectory planning

and its relative trajectory in the space in a punctual way. In both cases, it is

important to take in consideration that a part of the time used by the planner is

devolved to the computation of the values of the joint equivalent variables through

an inverse kinematics algorithm, so the computational complexity induced by the

union of the blocks Planner-Inverse kinematics in Figure 2.1 sets an upper limit

on the maximum sampling rate required to generate the sequence of variables [9].

Here, the same techniques used for the generation of the joint trajectories can be

followed but, due to the fact that the motion is made in a three-dimensional space,

it is necessary to express it analytically, i.e, it is necessary to refer to some one-

dimensional motion primitives which describe the geometric path and the time law

in the 3D space.

Parametric representation in 3D space

Referring to Chapter 2, and, from [12], let’s consider a vector p ∈ R3x1 and a

continuous function f(u), with u ∈ [ui,un], then:

p = f(u) (2.17)

The sequence of values of p with u varying in [ui,uf], with reference to its geometrical

description, is the total path Γ in the space, which means that, increasing u in the

interval, the point p moves along the path in a certain direction. So, the equation

(2.17) is the parametric representation of the path Γ . Now, let pi be a fixed point

and p a generic point on the path Γ , on which a certain direction has already been

fixed, and, according to the direction of the path, let’s pi precede p. Then, the

arc length s of p is the length of the arc on the path which goes from pi to p, and

the point pi is the origin of the arc length (s = 0). So, it is easy to understand

that, since s represents each point on the path, it can be used as a parameter in the

parametric representation of Γ . So, the equation (2.17) becomes:

p = f(s) (2.18)

Then, let’s consider a path Γ represented by the parametric representation (2.18)

and let’s take a generic point p on this path. The point p allows the definition of

of three unit vectors characterizing the path. Their orientation will depend only on

the path geometry, meanwhile their direction will depend on the direction induced

by the parametric representation on the path. The three vectors are:

• The tangent unit vector denoted by t, oriented along the direction induced by

s on the path

25

2 – Trajectory planning

• The normal unit vector denoted by n, oriented along the line containing t at

right angle with it and standing on the same plane

• The binormal unit vector denoted by b, oriented in a way such that the frame

of the three vectors is right-handed

Figure 2.12. Path representation in 3D space [12]

Figure 2.12 shows a graphical representation of the path and of the three vectors.

26

2 – Trajectory planning

2.4.1 Multidimensional Trajectories

Global Interpolation

As already discussed, one of the easiest and most efficient way to interpolate a set

of points qk, k = 0, . . . ,n, is to use p degree B-Spline curves.

A first step to interpolate the above points with the B-splines is to consider the

parametric representation of the curve and, so, to choose the parameter ūk for each

point qk. The parameter ūk is usually assumed within the range [0,1]. So, the initial

and final values are ū0 = 0 and ū0 = 1. For what concerns the other values, there

are several ways to determine them, but a simple and efficient method is to take

them equally spaced in the interval [0,1], so:

ūk =
k

n
(2.19)

Then, it is necessary to choose a suitable knot vector u = [u0, . . . ,unknot], (a more

detailed discussion about this is available in Chapter 2.3.2). The global interpolation

consists in setting up a system of m+1 linear equations in the unknown pj obtained

by imposing that the curve crosses all the points qk in the instants ūk [12]:

qk = s(ūk) =
m∑
j=0

pjB
p
j (ūk) (2.20)

or, in matrix form:

qTk =
[
Bp

0(ūk), Bp
1(ūp), . . . ,Bp

m−1(ūk) Bp
m(ūk)

]

pT0
pT1
...

pTm−1
pTm

 (2.21)

Cubic B-spline Interpolation

Such problem is often solved assuming p = 3, that produces the classic cubic splines.

In the following there are some general details of this implementation [12]. In this

case the parameters ūk are used to determine the knot vector as:

u0 = u1 = u2 = ū0 un+4 = un+5 = un+ 6 = ūn

uj+3 = ūj j = 0, . . . ,n
(2.22)

27

2 – Trajectory planning

This choice makes the interpolation occur at the knots. Since nknot = m + 4 and

there are m + 1 control points and nknot + 1 knots, with nknot = n + 6, it descends

that the control points pj are n + 3. So, it is necessary to impose two additional

constraints. Usually these two constraints are fixed on the first derivatives at the

endpoints, t0 and tn. As a consequence, the first two equations and also the last two

of the linear system are:

p0 = q0

−p0 + p1 =
u4
3
t0

−pn+1 + pn+2 =
1− un+3

3
tn

pn+2 = qn

(2.23)

The remaining control points are then computed imposing:

s(ūk) = qk, k = 1, . . . ,n− 1 (2.24)

Since in an interior knot of a cubic spline there are only three basis functions which

are not null, the n− 1 equations have the expression:

qk = B3
k(ūk)pk +B3

k+1(ūk)pk+1 +B3
k+2(ūk)pk+2 (2.25)

Therefore we can write them in form of a tridiagonal system:

BP = R (2.26)

where

B =

B3
2(ū1) B3

3(ū1) 0 . . . 0

B3
2(ū2) B3

3(ū2) B3
4(ū2)

...

0
. . . 0

... B3
n−2(ūn − 2) B3

n−1(ūn − 2) B3
n(ūn − 2)

0 . . . 0 B3
n−1(ūn − 1) B3

n(ūn − 1)

P =

pT2
pT3
pT4
...

pTn−1
pTn

R =

qT1 −B3
1(ū1)p

T
1

qT2
qT3
...

qTn−2
qTn−1 −B3

n+1(ūn−1)p
T
n+1

28

2 – Trajectory planning

Finally, the control points necessary to obtain the curve can be computed by a

simple inversion problem:

P = B−1R (2.27)

Once the control points are computed, given the knot vector u, the B-spline is

completely defined and we can compute s(u) for any value of u.

Use of NURBS for trajectory generation

NURBS(Non-Uniform Rational B-Splines) are standard curves, used in many CNC

machines. They are described by the following expression [12]:

n(u) =

∑m
j=0 pjwjB

p
j(u)

wj
∑m

j=0 Bp
j(u)

, umin ≤ u ≤ umax (2.28)

and represented in Figure 2.13. From (2.28) it can be seen that they are a general-

ization of non-rational B-Splines with the difference of the weights wj associated to

them, which change the shape of the curve(More details about NURBS are available

in Chapter 2.5).

Figure 2.13. NURBS with different weights [12]

The techniques previously explained, based on B-Spline, can be adopted with

minor modifications in the case of Nurbs. An immediate and easy approach is to use

the classic techniques with B-Spline and afterwards change the shape of the obtained

trajectory trough the modification of the weights associated to each B-Spline.

2.5 Orientation of the tool

The orientation of the end-effector at each time instant may be expressed in terms

of a rotation matrix composed by three orthogonal vectors(called normal, slide and

29

2 – Trajectory planning

approach) [12]:

R = [n, s, a]

which describe the orientation of the tool with respect of the orientation of the

base world frame. Then, to specify the orientation of the tool for each point of the

curve, we have to specify a rotation matrix Rk at each point pk and interpolate

them using one of the techniques detailed in Chapter 2.3 and 2.4. In fact, the

planning of the trajectory in this case can be made as in the case of the path

planning, with the difference that in this case we are not interpolating positions,

but matrices or some parameters, as will be explained later. It is also important

to notice that the orientation planning is coupled with the path, so the planning

has to be coherent to the trajectory planning made previously in order to avoid

discrepancies between the movement of the arm of the robot and the movement

of the tool. An important drawback of using rotation matrices to describe the

evolution of the orientation of the end effector is the impossibility to guarantee the

orthonormality of these matrices along the path. So, different criteria are taken

in consideration to describe the orientation path, with the objective of change the

parameter which will be interpolated, making easier to use the techniques previously

examined. A very important tool in orientation planning, which permits to overtake

the rotation matrices’ representation and permits to introduce other techniques of

representation is the Euler’s rotation Theorem:

Theorem 1 (Euler’s rotation theorem) Let O, O′ ∈ R3 be two orientations.

Then there exists an axis l ∈ R3 and an angle of rotation θ ∈] − π,π] such that O

yields O′ when rotated θ about l [13]

Plainly, as we can see in Figur 2.14, given two orientations O and O′ we can

always express them trough a rotation of an angle θ about an axis l.

Figure 2.14. Rotation expressed by the Euler’s theorem [13]

30

2 – Trajectory planning

This is a powerful tool which permits us to describe the change of orientation in

several way, the most used of them are detailed in the following, and are [10] [14] [15]:

• Axis-Angle : A rotation of an angle θ about an axis u.

• Planar sliding : A composition of an axis sliding along a plane and an angle

rotating about an other axis.

• Euler angles : Three angles which describe the orientation of a rigid body

with respect to a fixed coordinate system.

• Quaternions : A 4D object used to describe rotation in the 3D space.

It is important to notice that, no matter if the initial and final orientation frames

of the motion are the same, each parametrization gives a different kind of motion

between these two frames, as can be seen in Figure 2.15.

Figure 2.15. Different orientations [10]

2.5.1 Axis-Angle

From the Euler’s theorem we can conclude that, given two different frames in the

Cartesian space with same origin and different orientations, it is always possible to

find a unit vector trough which it is possible to pass from the first to the second

frame by a rotation of a certain angle about this unit vector. Given the two rotation

matrices Ri and Rf , representing respectively the initial and final orientation, to

31

2 – Trajectory planning

plan the rotation between the two it is necessary to compute the incremental rotation

Rk such that:

Rf = RiRk (2.29)

This expression leads to the following statement:

Rk = RT
i Rf =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 (2.30)

If we define the matrix Rk(t) to define a rotation from Ri to Rf , it is Rk(0) = I

and Rk(tf) = Rk. So, the rotation matrix can effectively be expressed as a rotation

of a given angle about a fixed axis in the space(see Figure 2.14). The angle and the

axis can computed as:

θ = cos−1

(
r11 + r22 + r33 − 1

2

)

u =
1

2sin(θ)
=

r32 − r23r13 − r31
r21 − r12

 (2.31)

with sin(θ) 6= 0. So, the matrix Rk(t) can be also expressed as R(θ(t),u). At this

point, keeping u it is possible to express the rotation matrix at each time instant

through the planning the variable θ [10] [9].

2.5.2 Planar sliding

The term ”planar sliding” derive from the fact that with this kind of technique the

rotation is made by the composition of two different motions. In fact, there is both

a motion of one of the reference axis(usually z) sliding on a plane and a rotation

about this sliding axis. Summarizing, these are the two motions are [10]:

• A first rotation about a fixed axis u

• A second rotation about a moving local axis k

Composing the two rotations we have:

Rk = R(u,βk)R(k,αk) (2.32)

32

2 – Trajectory planning

The plane on which k(the unit vector which defines the axis z) slides is usually

defined by the two unit vectors ki and kf , given by the last columns of the rotation

matrices Ri and Rf . From these we can compute the vector u as:

u =
ki × kf
‖ki × kf‖

, ‖u‖ = 1 (2.33)

And, since ‖ki‖ = ‖kf‖ = 1, it follows that ki × kf = sin(β). From this we can

compute the angle β which provides the first rotation, that around u in order to

move from ki to kf :

β = arcsin(‖ki × kf‖) (2.34)

This rotation, which produces the sliding depicted in Figure 2.16, is represented by

Figure 2.16. Sliding of k on the plane defined by ki and ki [10]

the matrix R(u,β) which can be computed in the following way:

R(u,β) = I + sin(β) ∗ S + (1− cos(β))S2 (2.35)

with

S =

 0 −u3 −u2
u3 0 −u1
−u2 u1 0

 (2.36)

The second rotation is an elementary one about the local axis k. So:

R(k,α) =

cos(α) − sin(α) 0

sin(α) cos(α) 0

0 0 1

 (2.37)

33

2 – Trajectory planning

Figure 2.17. Overall movement through planar sliding technique [10]

In order to compute α, we can observe that, after the rotation R(u,β), the unit

vector representing the y axis in the initial frame, ji, changes and becomes j̃i. So,

we can compute α from:

sin(α) =
∥∥∥j̃i × jf

∥∥∥ (2.38)

observing that:

ji = R(u,β)̃ji =⇒ j̃i = RT (u,β)ji (2.39)

we can compute α:

α = arcsin(
∥∥(RT (u,β)ji)× jf

∥∥) (2.40)

Finally, once computed α and β, from (2.40) and (2.34), we can plan the trajectory

through these two parameters. The total movement is represented in Figure 2.17.

2.5.3 Euler angles

Another choice to parametrize the space of rotations is given by Euler’s angles.

When this method is used, a general orientation is written as a series of elementary

rotations about three mutually orthogonal axes in the space. This gives us three

parameters to express the rotation of the object. Several choices can be made to

decide the series of axes about which these rotations should happens. Usually, the

ZY Z representation is used for this purpose, that is, given the tree elementary

rotation matrices, representing a rotation about a single axis in the 3D space, as

34

2 – Trajectory planning

[14], [12]:

R(i,φ) =

1 0 0

0 cos(φ) − sin(φ)

0 sin(φ) cos(φ)

R(j,θ) =

 cos(θ) 0 sin(θ)

0 1 0

− sin(θ) 0 cos(θ)

R(k,ψ) =

cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

(2.41)

The ZY Z rotation is made by:

Rk = R(k,φ)R(j,θ)R(k,ψ) (2.42)

that is, an elementary rotation about z in the first frame F0 followed by an elemen-

tary rotation about y in the second frame F1 and, finally, another rotation about the

z axis in the last frame obtained, F2. Figure 2.18 shows a representation of these

movements.

Figure 2.18. Set of elementary rotations expressed in Euler angles terms [12]

The rotation matrix corresponding to the three rotations in (2.42) is:

Rk(φ,θ,ψ) =

cφcθcψ − sφsψ −cφcθsψ − sφcψ cφsθ
sφcθcψ + cφsψ −sφcθsψ + cφcψ sφsθ
−sθcψ sθsψ cθ

 (2.43)

with c = cos() and s = sin().

Given Rk it is possible to find the three parameters which characterize the rotation

through the following equations:

35

2 – Trajectory planning

1. If r213 + r223 6= 0, then sin(θ) 6= 0, there are two different sets of solutions,

depending on the sign of the angle θ. If 0 < θ < π, from the matrix in (2.43):

φ = atan2(r23,r13)

θ = atan2(
√
r213 + r223,r33)

ψ = atan2(r32,− r31)
(2.44)

meanwhile, if −π < θ < 0:

φ = atan2(−r23,− r13)
θ = atan2(−

√
r213 + r223,r33)

ψ = atan2(−r32,− r31)
(2.45)

2. If r213 + r223 = 0, which implies sin(θ) = 0,π and cos(θ) = ±1, there are other

two different solutions. If θ = 0, i.e., cos(θ) = 1:

{
θ = 0

φ+ ψ = atan2(r21,r11) = atan2(−r12,r11)
(2.46)

In the other case, if θ = φ, that means cos(θ) = −1:

{
θ = π

φ− ψ = atan2(−r21,− r11) = atan2(−r12,− r11)
(2.47)

Through (2.46) and (2.47) we see the principal drawback of the parametrization

with Euler’s angles. In both systems of equations there are infinite solutions, since

φ and ψ cannot be determined separately, but only the sum(or difference) of the two

can be computed. Physically, what it is happening is that two axes of rotations are

driven on parallel planes by previous rotations. In this case, known also as gimbal

lock, a loss of one of the three degrees of freedom given by the configuration occurs,

driving the rotation in a two dimensional space. Figure 2.19 shows a graphical

representation of this phenomenon.

36

2 – Trajectory planning

Figure 2.19. Gimbal lock representation [16]

Although the presence of this problem, this method it is widely used in the

industry, due to the fact that it is really simple to use, even though it suffers also

of a poor geometrical insight.

Having a set of orientations described by Euler angles it is also really simple to

plan the trajectory along this set. In fact, it is only necessary to take these three

parameters and interpolates them using one of the techniques detailed in Chapter

2.4 for the positions.

Anyway, in those applications where it is strongly needed to avoid singularities,

a more robust technique is preferred, like the one described in the next section.

2.5.4 Quaternions

Another rotation modality derived from the Euler’s Theorem is based on the defini-

tion of a new mathematical object, the quaternion. Invented in 1843 by Sir William

Rowan Hamilton, whose aim was to generalize complex numbers in three dimen-

sions, quaternions are elements of a 4D linear space H(R) and defined on the real

number field F = R, with base {1 i j k}, which nowadays are really useful in such

fields like computer graphics, computer vision and, for sure, also robotics.

Historical background

Hamilton’s aim was to generalize complex numbers to the third dimension, i.e., to

obtain an object of the form a + ib + jc, with a, b, c ∈ R and i2 = j2 = −1,. One

of the principal motivations of Hamilton to look for this generalization was to find

a description of a rotation in 3D space analogue to the one in 2D space, which was

possible with complex numbers, where a multiplication correspond to a rotation and

also a scaling in the plane. Unfortunately he never succeeded to obtain this kind of

37

2 – Trajectory planning

generalization because, as it was proved later, the set of three-dimensional numbers

is not closed under multiplication.

Figure 2.20. Hamilton portrait and the plaque on the Broom Bridge [15] [17]

One day, in October 1843, while walking along the Broom bridge on the Royal

Canal in Dublin (Figure 2.20), he realized that four numbers instead of three where

necessary to describe a rotation followed by a scaling in the three-dimensional space.

In fact, one number describes the size of the scaling, another one the angle of

rotation and the last two the plane on which the rotation takes place. Then, he

found a closed multiplication for 4D complex numbers of the form ix + jy + kz,

where i2 = j2 = k2 = ijk = −1, and gave to this particular object the name of

quaternion.

Maths of quaternions

As said, quaternions are elements of a 4D linear space H(R) with base {1 i j k}.
i j and k hare hypercomplex numbers which satisfy the following multiplication

rules [14] [13]:

i2 = j2 = k2 = ijk = −1

ij = −ji = k

jk = −kj = i

ki = −ik = j

(2.48)

38

2 – Trajectory planning

Then, a quaternion q ∈ H can be defined in several ways. For example, remem-

bering the analogy with complex numbers, it can be defined as a linear combination

of the base {1 i j k}:
q = q0 + q1i + q2j + q3k (2.49)

where qi, i = 0, . . . ,3 are real.

It is also possible to represent it as a quadruple of real numbers:

q = (q0,q1,q2,q3) (2.50)

in analogy with complex numbers which can be defined as a couple of real numbers.

At the same way in which complex numbers are a sum of a real and an imaginary

part, quaternions are a sum of a real part and a vectorial one. The real part qr is

defined as qr = q0, meanwhile the vectorial part is defined as qv = q1i + q2j + q3k.

Then, the quaternion can be written as q = (qr,qv) or q = qr + qv. Another way to

see quaternions is to see them as mathematical objects which, in turn, include three

different objects:

• Real numbers:

r = (r, 0, 0, 0), r ∈ R (2.51)

• Complex numbers:

a+ ib = (a, b, 0, 0), a,b ∈ R (2.52)

• Real vector in R3:

v = (0, v1, v2, v3), vi ∈ R, i = 1,2,3 (2.53)

In the last case the elements {1 i j k} can easily be seen as unit vectors {1 i j k}
forming an orthonormal base in the cartesian reference frame. In fact, it can be

checked that multiplication rules among the elements i j k have the same properties

of the cross product among the unit vectors i j k:

ij = k⇔ i× j = k

ji = −k⇔ −j× i = −k
(2.54)

and so on. . .

Another interesting way to write a quaternion is in matrix form. A quaternion can

39

2 – Trajectory planning

be seen, from this point of view, as four 2× 2 complex matrices. So, starting from

the classical form:

q = q01 + q1i + q2j + q3k

⇓

1 =

[
1 0

0 1

]
i =

[
i 0

0 −i

]
j =

[
0 1

−1 0

]
k =

[
0 i

i 0

] (2.55)

with i2 = −1.

Each one of these matrix is in the form:[
c d

−d∗ c∗

]
(2.56)

which are called Cayley matrices.

Algebraic properties

Taking into account a generic quaternion q = q01 + q1i + q2j + q3k = (qr,qv) the

following properties hold [14] [13]:

• null or zero quaternion:

0 = 01 + 0i + 0j + 0k = (0,0) (2.57)

• conjugate quaternion q∗:

q∗ = q0 − (q1i + q2j + q3k) = (qr,− qv) (2.58)

which satisfies the property (q∗)∗ = q.

• quaternion norm ‖q‖ is defined as:

‖q‖ = qq∗ = q∗q =
3∑
i=0

q2i = q20 + qTv qv (2.59)

Given two generic quaternions q = q01 + q1i + q2j + q3k = (qr,qv) and p = p01 +

p1i + p2j + p3k = (pr,pv) the following operations are defined:

• sum:

q + p = (q0 + p0,q1 + p1,q2 + p2,q3 + p3) (2.60)

40

2 – Trajectory planning

• difference:

q − p = (q0 − p0,q1 − p1,q2 − p2,q3 − p3) (2.61)

• product:

qp = (qrpr − qv · pv , qrpv + prqv + qv × pv) (2.62)

where:

qv · pv =
∑
i

qvipvi = qTv pv = qvp
T
v

and

qv × pv =

q2p3 − p3q2q3p1 − p1q3
q1p2 − p2q1

The quaternion product has the following properties:

– anti-commutative:

qp 6= pq (2.63)

– associative, with q,p,l ∈ H:

(qp)l = q(pl) (2.64)

– multiplication by unit scalar:

1q = q1 = (1,0)(qr,qv) = (1qr,1qv) = (qr,qv) (2.65)

– multiplication by λ ∈ R:

λq = qλ = (λ,0)(qr,qv) = (λqr,λqv) (2.66)

– bilinear, with λ1, λ2 ∈ R:

q(λ1p1 + λ2p2) = λ1qp1 + λ2qp2

(λ1q1 + λ2q2))p = λ1q1p+ λ2q2p
(2.67)

• inverse:

q−1 =
q∗

‖q‖2
(2.68)

41

2 – Trajectory planning

Unit quaternion and rotations

After the necessary introduction on the quaternion and his maths, the main question

is:

How can this be related with rotations? How can we, through quaternions, interpo-

late a set of key-frames like in Figure 2.21?

Figure 2.21. Set of orientations interpolated with unit quaternions [18]

To answer this question is necessary to introduce the unit quaternion [14]:

Definition 1 (Unit quaternion) Let q ∈ H. If ‖q‖ = 1, then q is called a unit

quaternion. We will use H1 to denote the set of unit quaternions [13].

The set of unit quaternions H1 forms a unit-sphere in four-dimensional space and

plays a main role in rotations in 3D space. We assume a general quaternion u ∈ H1

as a sum of two trigonometric functions:

u = cos(θ) + u sin(θ)) (2.69)

where u is a vector with unit norm and θ a generic angle. It can be shown that

the unit quaternion u represents the rotation of an angle 2θ about a unit vector

u = [u1, u2, u3]
T . That’s means:

u =
(
cos

θ

2
, u1 sin

θ

2
, u2 sin

θ

2
, u3 sin

θ

2

)
=
(
cos

θ

2
,u sin

θ

2

)
= R(u,θ) (2.70)

where R is a rotation matrix.

So, we can associate to any rotation matrix a unit quaternion and vice-versa. Given

a quaternion u = (u0,u), the equivalent rotation matrix R(u) is given by:

R(u) =

u20 + u21 − u22 − u23 2(u1u2 − u3u0) 2(u1u3 + u2u0)

2(u1u2 + u3u0) u20 − u21 + u22 − u23 2(u2u3 − u1u0)
2(u1u3 − u2u0) 2(u2u3 + u1u0) u20 − u21 − u22 + u23

 (2.71)

42

2 – Trajectory planning

Conversely, given a rotation matrix R(u) the unit quaternion u = (u0,u) is given

by:

u0 = ±1

2

√
1 + r11 + r22 + r33

u1 =
1

4u0
(r32 − r23)

u2 =
1

4u0
(r13 − r31)

u3 =
1

4u0
(r21 − r12)

(2.72)

Then, also operations between rotation matrices can be defined for unit quaternions:

• Rotation product:

R(u) = R(u1)R(u2) . . .R(un) ⇔ u = u1u2 . . . un (2.73)

• Transpose matrix:

R ⇔ u

RT ⇔ u∗
(2.74)

• Vector rotation: Given a generic vector x, and the pure quaternion equivalent

to it: qx = (0,x) = (0,x1,x2,x3), and, given a rotation matrix R(u) equivalent

to the quaternion u, the rotated vector y = R(u)x is given by:

qy = (0,y) = uqxu
∗ (2.75)

where ‖qx‖ = ‖qy‖.

At this point the utility of quaternions in describing rotations is evident. With

respect to the previous techniques, especially Euler angles, its main advantage is the

robustness. In fact, in this case the problem of singularities disappears and, once

understood the not easy maths of this object, it is possible to plan the trajectory

through a set of orientation with the planning of it four components q0, q1, q2, q3.

The blending of a set of orientations described by quaternions can be made by

interpolating the set of quaternions using the techniques detailed in Chapter 2.4. In

this case, being rotation expressed by the unit quaternion, it is important to verify

that the norm of the set of quaternions is kept constantly equal to one. Although

more robust than euler angles the planning can be quite more complicated to treat

with respect to the last one, due to complex maths properties of this object.

43

Chapter 3

Off-line trajectory planning for con-

tinuous processes

This chapter illustrates the main contribution of this thesis. First, the case of study

will be introduced in details, then the trajectory planner implemented by L.Biagiotti

and C.Melchiorri in [12] will be explained and a personal implementation of it on

Matlab will be presented. Then, another chapter is dedicated to the optimization of

the data in input to the trajectory planner, in order to guarantee a fair trade-off

between accuracy and velocity on the path, both for the geometric path and for the

set of orientations. Finally, some tests on Matlab are carried out and the results are

shown.

3.1 Introduction

My work of thesis is mainly based on the approach developed by Luigi Biagiotti and

Claudio Melchiorri in [2]. An analysis of this kind of implementation has already

been carried out in [19], and a trajectory planner was obtained. My contribute to this

work is to try to optimize the trajectory planner in order to obtain a choosable trade-

off between accuracy on the path and a constant scalar velocity of the manipulator.

In addition, I have extended the implementation to the orientation planning of the

robot’s end effector, analysing the results.

Figure 3.1. Overall structure of the trajectory planner

44

3 – Off-line trajectory planning for continuous processes

3.1.1 Case of study

As a case of study an operation of sealing of a hood has been taken in consideration.

The entry points are in Figure 3.2, while in Figure 3.3 a clear distinction has been

made between technologic and re-orientation path. This distinction is fundamental

to point out the areas where a compromise on the accuracy can be assumed in order

to have a constant scalar velocity of the manipulator on the path and to ’distribute’

the variation of the tool’s orientation. For what concerns the rest of the geometric

path, with respect to the original points it is assumed acceptable an error within ±5

mm. The complete structure of the trajectory planner, shown in Figure 3.1, will be

roughly composed of two main blocks:

• A first block for the elaboration of the input points. Two kinds of elaboration

will be performed on them, a re-sampling and a re-shaping made by using

Nurbs

• A second block which, given the points in output from the first block, will

build the trajectory according to [2].

Figure 3.2. Entry points for the building of the hood

3.2 Trajectory planning based on FIR filters

In this section a necessary resume of the work in [2] will be made, before my imple-

mentation and upgrades of it. The work is divided into three parts:

45

3 – Off-line trajectory planning for continuous processes

Figure 3.3. Entry points of the hood with differentiation between technologic and
re-orientation path

1. Given the via-points from the user, an algorithm to obtain the related control

points is built

2. Building of a piecewise constant function from the control points

3. Sending this function into a cascade of moving average filters

This sequence of operations gives life to the structure in Figure 3.4. In the following

these procedures, as thought by Biagiotti and Melchiorri, will be explained and then

a personal implementation of this algorithm is presented and discussed.

Figure 3.4. Overall structure for the generation of B-splines trajectories [2]

3.2.1 Uniform B-splines

Analytical B-splines

As detailed in Chapter 2.3, a p-th degree B-spline curve is defined by:

s(t) =
n∑
j=0

pjB
p
j (t), tmin ≤ t ≤ tmax (3.1)

46

3 – Off-line trajectory planning for continuous processes

where [tmin,tmax] ∈ R is the parametric vector where the curve is defined and pj
are control points, which determine the shape of it. Taking the knot vector t =

[t0, . . . ,tm−1] (discussed in Chapter 2.3.2), with tj ≤ tj+1, the B-spline basis functions

of degree p is defined by:

Bp
j (t) =

t− tj
tj+p − tj

Bp−1
j (t) +

tj+p+1 − t
tj+p+1 − tj+1

Bp−1
j+1 (t) (3.2)

where:

B0
j (t) =

{
1, if tj ≤ t ≤ tj+1

0, otherwise
(3.3)

An interesting case of B-splines is the Uniform B-spline. In this case the B-spline

is defined over an equally spaced knot vector. So, we have that:

tj+1 − tj = t, j = 0, . . . ,m− 2 (3.4)

It is then possible to rewrite the (j + 1)-th basis function in terms of the first basis

function Bp
0 through a simple shift operation:

Bp
j (t) = Bp

0(t− jT), j = 0, . . . ,m− 1 (3.5)

and the B-spline in (3.1) can be rewritten as:

s(t) =
n∑
j=0

pjB
p
0(t− jT), 0 ≤ t ≤ (m− 1)T (3.6)

Moreover, rewriting Bp
0 as Bp for brevity, (3.2) can be now expressed as:

Bp(t) =
1

T
Bp−1 ∗B0 =

1

T
B0 ∗ 1

T
B0 ∗ · · · ∗ 1

T
B0︸ ︷︷ ︸

p times

∗B0 (3.7)

with

B0(t) =

{
1, if 0 ≤ t ≤ T

0, otherwise
(3.8)

Therefore, by applying the Laplace transform to the uniform B-spline equation in

(3.6) and replacing in (3.7), we have the following equation:

Su(s) =
n∑
j=0

L
{
pjB

0 ∗ 1

T
B0 ∗ 1

T
B0 ∗ · · · ∗ 1

T
B0

}
e−jsT (3.9)

47

3 – Off-line trajectory planning for continuous processes

From (3.9) we can notice that L
{

1
T
B0
}

performs the mean of the input function

over an interval of width T , so we can rewrite it as:

M(s) = L
{

1

T
B0

}
=

1

T

1− e−sT

s
(3.10)

This equation suggests that a uniform B-spline can be rewritten as a constant piece-

wise function, obtained from the control points pj:

p(t) =
n∑
j=0

pjB
0(t− jT) (3.11)

and sending it in a cascade of p(as the desired degree of the curve) moving average

filters M(s). In case of a curve of degree p = 3 we obtain Su(s) of the following

form:

Su(s) = p(t) ·M(s) ·M(s) ·M(s) (3.12)

It is important to notice that, if the B-spline is multidimensional the control points

are multi-dimensional as well. So, it is necessary to iterate this procedure for each

component of the B-spline. In our case it is necessary to add four channels more

to take into account the additional B-splines that represent the planning of the

orientation. So, on the whole procedure there will be seven different chains of filters.

Discrete B-splines

The first step to discretize a B-spline is to dicretize its basis functions. Setting a

sampling time Ts, the value of a B-spline basis function at the discrete time instant

t = KTs is equal to:

Bp(t) =
1

T
Bp−1(t) ∗B0(t)

=
1

T

∫ ∞
−∞

Bp−1(t− τ)B0(τ)dτ

⇓

Bp(kTs) ≈
1

T

∞∑
−∞

Bp−1(kTs − nTs)B0(nTs)Ts

=
1

N

∞∑
−∞

Bp−1
k−nB

0
n =

1

N
Bp−1
k ∗B0

k

(3.13)

48

3 – Off-line trajectory planning for continuous processes

Writing Bp
k = Bp(kTs), from (3.13) it follows that:

Bp
k =

1

N
B0
k ∗

1

N
B0
k ∗ · · · ∗

1

N
B0
k︸ ︷︷ ︸

p times

∗B0
k (3.14)

where N = T
Ts

is the number of samples present in each span of the knot vector, and

B0
k =

{
1, if 0 ≤ k ≤ N − 1

0, otherwise
(3.15)

Once found the basis function, through some manipulation the curve in (3.12) can

be expressed in the discrete time domain as follows:

S(z) =
n∑
j=0

Z
{
pjB

0
k

}
z−jN ·M(z) ·M(z) · · · · ·M(z)

= Z

{
n∑
j=0

pjB
0
k−jN

}
·M(z) ·M(z) · · · · ·M(z)

(3.16)

with piecewise constant function:

pk =
n∑
j=0

pjB
0
k−jN (3.17)

and M(z), which is a mean filter, defined as:

M(z) =
1

N

1− z−N

1− z−1

=
1

N

(
1 + z−1 + z−2 + · · ·+ z−(N−1)

) (3.18)

It is important to notice that the discrete formulation only gives an approximation

of the analytical B-splines, so there is not an exact interpolation of the entry points.

Even though, it is possible to demonstrate that the staircase function obtained from

this formulation tends to the analytical one in a sense of the root mean square if

Ts → 0.

3.2.2 Interpolation problem solver and computation of the

control points

To find the control points of the curve the cubic spline interpolation algorithm

discussed in Chapter 2.5 will be exploited, with some modification in order to adapt

49

3 – Off-line trajectory planning for continuous processes

it to the structure of the trajectory planner. As a quick recap, given a set of l + 1

entry points { q0, q1, . . . ,ql−1, ql } to impose the interpolation of the curve for those

points at certain time instants ti, it is necessary to set the system of equations:

s(ti) = qi, i = 0, . . . ,l (3.19)

To find the control points the first step is to decide the degree of the curve. In

the implementation the degree will be p = 3 since it ensures a C2 continuity of the

curve(see Chapter 2.3.1 for the definition of continuity). At this point the relation

between p and ti generates the knot vector according to the following rules:

• if p is odd ⇒ ti = iT

• if p is even ⇒ ti = 2i+1
2

In our case it will be ti = iT .

Then, it is possible to build up the system. In order to have a system of equations

well conditioned there is the need to consider symmetrical B-splines ss(t), which

are uniform B-splines with basis functions symmetric with respect to the origin.

To obtain the symmetric basis function βp(t) from the uniform basis function, a

delay can be simply introduced, obtaining βp(t) = Bp(t+ p+1
2
T), and so the relation

between the uniform and symmetrical B-splines can be naturally obtained as:

ss(t) =
n∑
j=0

pjβ
p(t− jT)

=
n∑
J=0

pjB
p(t+

p+ 1

2
T − jT) = su(t+

p+ 1

2
T)

(3.20)

Interpolating the symmetrical B-splines with the points we have:

ss(ti) =
n∑
J=0

pjB
p(t− jT +

p+ 1

2
T) = qi (3.21)

where the unknowns to be interpolated are the control points pj. Since all the filters

have unitary static gain, the output will reach in a stable way the first and the last

via-points if and only if the same value is applied pT seconds before. That means

that, in order to smoothly start and to end the curve, the first p control points must

be equal to q0, as well as the last p control points must be equal to ql. This will cause

an unavoidable delay on the curve of length p+1
2
T . Once made this, it is possible to

compute the others l− 1 control points by solving the system of equations in (3.21).

50

3 – Off-line trajectory planning for continuous processes

3.2.3 Implementation of the trajectory planner

Cubic B-splines interpolator

The first step to build the interpolator is to choose the degree of the curve. The p

degree of the curve will be p = 3 in order to obtain the continuity of velocity and

acceleration, necessary in order to avoid undesired vibration on the robot moving

on the path. From [2], substituting the values from the Tables 3.1 and 3.2 in the

equation (3.21), the following system is obtained:

ss(T) =
1

6
pi−1 +

4

6
pi +

1

6
pi+1 = qi, i = 1, . . . ,l − 1 (3.22)

Adding the conditions on the first and last points it can be rewritten in the matrix

form:

4 1 0 0

1 4 1 0 0
...

. . .
...

... 1 4 1 0

1 4 1

0 0 1 4

p1
p2
p3
...

pl−3
pl−2
pl−1

=

6q1 − q0
6q2
6q3
...

6ql−3
6ql−2

6ql−1 − ql

⇓

Ax = B −→ x = A−1B

(3.23)

Due to the tridiagonal structure of the matrix , the control points can be found by

a simple inversion of the tridiagonal matrix, as detailed in Chapter 2.4.5. A Matlab

implementation of the interpolator is available in Appendix A.4

0 T 2T 3T 4T 5T 6T

p = 1 0 1 0
p = 3 0 1

6
4
6

4
6

0
p = 5 0 1

120
26
120

66
120

26
120

1
120

0

Table 3.1. Matrix coefficients for odd p

51

3 – Off-line trajectory planning for continuous processes

1
2
T 1

2
T 3

2
T 5

2
T 7

2
T 9

2
T 11

2
T

p = 2 1
8

6
8

1
8

p = 4 1
384

76
384

230
384

76
384

1
384

0

Table 3.2. Matrix coefficients for even p

Sequencer

1 function pk = sequencer(P,N,n)

2

3 % Take the control points in input and transforms them

4 % in a piecewise constant function ’pk’

5

6 pk = zeros(1,n*N);

7 for i = 1:n

8 for k = 1:N

9 pk(1,(i-1)*N+k) = P(i);

10 end

11 end

Listing 3.1. Sequencer algorithm

In 3.1 a Matlab implementation of the second part of the structure, the sequencer.

It simply takes as input the control points and keeps them constant for N samples.

Taking into account the sampling time of the robot’s controller, Ts = 0.002 second,

the number of samples between two points is given by:

N = round
(T
Ts

)
(3.24)

where round() [20] is a Matlab function which approximates the result to the nearest

positive integer and T is the desired time’s distance between two points.

Cascade of FIR filters

As a last point, the cascade of filters like the one in Figure 3.6 has to be implemented.

To build the transfer function of the filter in (3.18) the Matlab function ’filter’ [20]

has been used, which takes as inputs the numerator and denominator of the desired

52

3 – Off-line trajectory planning for continuous processes

Figure 3.5. An example of piecewise constant function in (b). In (a) the control
points from which the function is derived

Figure 3.6. A cascade of p moving average filters [2]

filter and gives the transfer function as output. Then, the control points have been

sent p times into this filter through a ’for’ cycle. After another elaboration, made to

delete the transitory from the output of the filters, which code is shown in appendix

A.7, the result coming out from the curve in (3.5) is the one reported in Figure 3.7.

It is relevant to notice the delay introduced by the sequence of filters. As said

in chapter 4.2, the curve has been delayed with respect to the piecewise constant

function of p+1
2
T = 2T .

53

3 – Off-line trajectory planning for continuous processes

Figure 3.7. B-spline coming out from the filtered piecewise constant function

1 function spline = FIR(Numb_samples ,piecewise_func ...

2 InitStates , degree)

3

4 % In this function a cascade of moving average filters

5 % has been implemented. The number of filters is

6 % chosen by the input parameter ’degree ’

7

8 % Building of the filter

9 b = (1/(Numb_samples))*ones(1, Numb_samples);

10 a = 1;

11 initStates = initStates*ones(1,Numb_samples -1);

12

13 % Implementation of the cascade of filters

14 spline (1,:) = filter(b,a,piecewise_func ,initStates);

15 for k=2: degree

16 spline(k,:) = filter(b,a,spline(k-1,:),initStates);

17 end

18 spline = spline (3,:);

Listing 3.2. Cascade of filters’ implementation

54

3 – Off-line trajectory planning for continuous processes

3.3 Pre-elaboration of data and Optimization

3.3.1 Introduction

In order to pursue the constant velocity of the robot a first step is to manipulate

the points by using Nurbs. A brief description of Nurbs is given below, while a

more detailed characterization is given in chapter 2.1.5. A p-th degree Nurbs curve

is defined as follows:

C(u) =

∑n
i=0Ni,p(u)wiPi∑n
i=0Ni,p(u)wi

, u0 ≤ u ≤ un (3.25)

As explained in Chapter 1, tuning the weights of the Nurbs it is possible to take

a point and bring it closer or push it away the associated control point. So, an

algorithm able to automatically understand whether and where to move a certain

point in order to flatten the curve if required has been implemented. The algorithm

has been built so to have a local influence on the curve, so to avoid any modification

of the curve when no action of reshaping is required, and to give to the user the

possibility to decide how much heavy the modification should be. Two different

algorithms have been implemented, in order to cope with the differences between

trajectory planning on the geometric path and on the orientations. In the following

the two algorithms are examined in details.

3.3.2 Nurbs toolbox

The Nurbs Toolbox by D.M.Spink has been used to build the nurbs. A nurbs is

intended as a Matlab structure composed as depicted in Figure 3.8.

Figure 3.8. Nurbs object by Nurbs Toolbox [20]

The functions mainly used from the toolbox were:

55

3 – Off-line trajectory planning for continuous processes

• nrbmak - It builds the nurbs structure starting from a knot vector and the

control points

• nrbeval - Given a parametric vector u ∈ [0,1], it evaluates the nurbs at each

parametric point

The knot vector is defined by the piece of code in 3.3 as a uniform vector. The knot

vector is not so useful for the final trajectory but in this phase, to use the toolbox,

has to be implemented, so the choice has been a uniform configuration for sake of

simplicity.

1 function u = DefineKnots(degree ,n)

2

3 % Building of a uniform knot vector

4

5 nknots = n+2* degree;

6 C = nknots -2*(degree +1);

7 u = [zeros(1,degree +1) (1:C)/(C+1) ones(1,degree +1)]

Listing 3.3. Knot vector definition

Once the nurbs are built the field crv.coefs is of main interest for our purposes.

That field is a four row-vectors field in which the first three rows contain the control

points of the curve, while the last one indicates the weight associated to the related

control point. To change the shape of the curve it is necessary to multiply the weight

for the column indicating the desired point of the curve to be changed, as shown by

the line of code in (3.4) .

1 crv.coefs = weights .*crv.coefs;

Listing 3.4. Weights modification

3.3.3 Elaboration of the geometric path with Nurbs

The process to compute the weights of the nurbs for the geometric path is made of

several points:

1. The nurbs obtained with nrbmak were evaluated with nrbeval on a parametric

vector made by n∗multi points, where n is the length of the buffer containing

the input points(n = 70 in the case of the hood) and multi is a multiplicator

designed to improve the precision during the result of the successive analysis.

The value of multi was set to 100 in the case of the hood, after having made

several trials with different values.

56

3 – Off-line trajectory planning for continuous processes

2. The curvatures along the curve must be examined, in order to understand how

much effort has to be put in the reshaping of each section. To do this, the

function curvature by Are Mjaavatten [21] was used. This function takes as

input the two or three coordinates (depending if the study is made in 2D or

in 3D) and computes the radius of curvature for each point along the curve.

Figure 3.9. Radius of curvature of the re-orientation area of the hood along the
axis Z, with multi = 10

To do this, the algorithm computes the circumscribed circle of the triangle

formed by the three corners represented by the input point pi and its neigh-

bours pi−1 and pi+1. Once obtained the radius Ri of this circle, the radius of

curvature for each point will be obtained as:

ci =
1

Ri

(3.26)

An example of the radius of curvature is in Figure 3.9, where a part of the hood

is examined and an arrow is associated to each point indicating the bending

in that point.

3. Once computed the radii of curvatures, these are re-associated to the original

points, selecting the maximum radius from each buffer of ’multi’ elements and

associating it to the corresponding point from the original buffer, i.e., if in the

original buffer there are n = 70 elements and multi = 100, a new buffer of

m = n · multi = 7000 elements is created. From this new buffer each array

∈ [i ·multi, (i+ 1) ·multi] with i = 0, . . . ,n corresponds to the i-th element in

the old vector of points.

57

3 – Off-line trajectory planning for continuous processes

4. Then, a vector of n radii of curvature is obtained:

c = [c1, c2, . . . ,cn−1, cn] (3.27)

and the vector of weights is finally computed through the simple algorithm

listed in 3.5:

1 % Computation of the vector of weights ’w’

2

3 c = c / accuracy;

4 k = 1 / c;

5 for i = 1 : n

6 if (c(i,1) < 1)

7 w(i,1) = 1;

8 else

9 w(i,1) = k(i);

10 end

11 end

Listing 3.5. Creation of the vector of weights

There a simple inversely proportional relation of the kind x = 1
y

has been

implemented between the vector of the curvatures and the weights’ vector. A

threshold of 1 has been set up on the values of the curvature radius in order

to modify the weights. This has been decided in order to avoid to modify

too much the curve globally and to restrain the weight in a range of values

between 0 and 1, that is necessary to have an action of smoothing on the curve.

A value greater than 1 on some control point would attract the point of the

curve increasing the curvature. Finally, a variable named accuracy can be set.

This is the parameter which can be modified by the user (in a range of values

between 0.1 and 1) to set a manual threshold on the heaviness of the shaping

on the curve.

3.3.4 Redistribution and oversampling of the input points

over the path

It is important to remember that the use of nurbs is only made in order to take a new

distribution of points more suitable to the purpose of the trade-off in the processing.

Another elaboration is needed in order to make the cascade of filters works properly.

In fact, the filter works with uniform B-splines and so, if the objective is a constant

58

3 – Off-line trajectory planning for continuous processes

Figure 3.10. In (a) modification of the curve for accuracy = 0.1. In (b) accuracy
is set to 0.3

scalar velocity of the manipulator, it is of crucial importance the distribution of the

points along the path. The time duration between two consecutive points cannot

change and must be equal to a certain time period T , so, being impossible to change

the time, the only possible action is to redistribute the points so to have the same

distance in terms of arc length between each couple of them. To fulfil this task, the

function interparc by John D’Errico [22] was used.

1 new_points = interparc(parametric_vector , x, y, z, ’method ’);

Listing 3.6. Interparc function example

In the example in 3.6 it can be seen that interparc is a function which, given as input

a parametric vector ∈ [0, 1], the three buffers of points of the 3D curve and a method

of interpolation, interpolates the given points at equal distances on the arc length,

following the method of interpolation indicated as last argument. So, a redistribution

of the initial n = 70 points along the path has been made, as shown in Figures

3.11 and 3.12. But this redistribution is not enough to obtain a constant velocity.

So, a second redistribution is made, in which the original points are oversampled.

The point of the oversampling is that interparc doesn’t give an exact equal space

interpolation over the arc length, so, oversampling the points reduces the distance

between them and consequently the error on the distance, guaranteeing a more

constant velocity, especially along the re-orientation area, moreover, this operation

introduces the second parameter which the user can manipulate in order to decide

the trade-off between accuracy and velocity.

1 new_points = interparc(linspace (0,1,round(n_samp/velocity))...

2 x, y, z, ’spline ’);

Listing 3.7. Resampling of the points

59

3 – Off-line trajectory planning for continuous processes

In 3.7 the parameter velocity is the user input which, reducing the number of new

samples, whose ceil is indicated by n samp, which is computed through the Matlab

function in appendix A.3 , increases the velocity of the manipulator. Increasing the

parameter velocity, the number of samples is decreased and, consequently, the total

time of the processing is reduced. The new motion laws are then:

d =
ArcLength
n samp
velocity

×N

Vtot =
d

Ts

Ttot =
ArcLength

Vtot

(3.28)

where N is the number of samples already computed in (3.24), Ts is the sampling

time of the robot’s controller and Vtot is the total velocity over the arc length.

Figure 3.11. In (a) the original points, in (b) the points redistributed with
interparc

Figure 3.12. In (a) the original scalar abscissa over the parametric vector. In (b)
the new scalar abscissa obtained redistributing the points

60

3 – Off-line trajectory planning for continuous processes

3.3.5 Elaboration of the set of orientations with Nurbs

In order to plan the trajectory for the set of orientations a quaternion approach was

implemented.

So, four additional buffers are added to the three already mentioned in the previous

chapter. The quaternions path on the hood, and in many of these kinds of processes,

shows a pretty constant behaviour interrupted by an abrupt change of value in

the area where the manipulator changes its orientation (Figure 3.2 and 3.3). So,

something that smooths this change of orientation is needed. On a first sight, this

problem would seem to be solvable through a low pass filter, but the solution is

not so immediate since each quaternion framework is connected to the geometric

path and must be coherent with it. Since a model designed to reach a constant

scalar velocity of the robot was implemented, the frameworks of the manipulator

must be consistent with this model. The procedure in Chapter 4.4.3 has shown

some limitation when applied on the blending of orientations due to the problem

described above, and then, a slightly different and more specific nurbs’ algorithm

has been made in order to deal with the complexity introduced by these kinds of

trajectories.

Figure 3.13. One of the four buffer for the orientation in the hood example

Looking at Figure 3.13, an appropriate and simple approach in order to obtain

a smooth and less oscillatory behaviour is to compute the lines passing through two

consecutive pairs of points and to assign the weight of the point on the base of the

angle which the two lines form. So, the following steps are done:

1. A buffer of three consecutive control points [Pi−1, Pi, Pi+1] is collected for each

i = 0, . . . ,n.

2. The vector p1 passing trough Pi−1 and Pi as well as the vector p2 passing

61

3 – Off-line trajectory planning for continuous processes

through Pi and Pi+1 and the angle between them are calculated through:

θ = arctan
(p1 × p2
p1 · p2

)
(3.29)

3. The angle is useful to set a threshold on the region of the modifications. Im-

posing a high θ, the region of modification is restrained to the zone where

the change of orientation happens, being this zone characterized by high os-

cillations and, so, high curvatures. Also in this case a parameter of accuracy,

which can be modified by the user, is inserted in order to make possible to

decide how appreciable should be the reshaping.

Moreover, these orientation curves must be connected to the new curvilinear abscissa

generated during the manipulation of the geometric path, in Figure 3.12. To do this,

the function interp1() [20] is used.

1 new_quaternions = interp1(original_abscissa ,old_quaternions ...

2 new_abscissa);

Listing 3.8. Interpolation of the quaternions on the new abscissa

Given as arguments to the Matlab function in 3.8 the original and the new scalar

abscissa, it interpolates the quaternions on the new one. The scalar abscissa and the

arc length were computed through polygonal in the function arc length(), shown in

appendix A.2. In Figure 3.14 the result of the above procedure is shown. It can be

seen that a discrete smoothing is achieved in the critical zone thanks to the action

of the nurbs. .

Figure 3.14. Interpolation and smoothing of the first set of quaternions with
accuracy parameter equals to 0.4

62

3 – Off-line trajectory planning for continuous processes

3.4 Matlab simulations

In order to show the results of the implemented structure, some Matlab simula-

tions have been carried out. In particular, two different tests have been performed,

showing the changes in the trajectories through different values of the three user’s

parameters. The tests have been performed in the following way:

• Test 1 - In this simulation the values of the accuracy both on the position and

orientation is set to the default value of ’1’ in order to show the performance

of the robot without the nurbs algorithm

• Test 2 - A fair trade-off between velocity and accuracy is set and the result

are showed

Table 3.3 reports the values of the parameters used over the three simulations,

where F and T are the frequency and the period of the FIR cascade, which can be

computed by (3.24).

N F T Ts nsamp

5 100Hz 0.01s 0.002s 3460

Table 3.3. Simulations’ parameters

In the following tests the parameters of accuracy for position and orientation

will be labelled respectively as ’Accpos’ and ’Accor’, while the parameter for velocity

will be ’V elocity’.

Accpos ∈ [0.1, 1]

Accor ∈ [0.1, 1]

V elocity ∈ [1, 5]

(3.30)

63

3 – Off-line trajectory planning for continuous processes

3.4.1 Test 1

V elocity Accpos Accor

1.2 1 1

Table 3.4.

Test 1 - User’s parameters

In Table 3.4 the parameters used in this test are reported, while Table 3.5 and

from Figures 3.15 - 3.19 report the results of the simulation.

Total time 28.86 s
Max error on the path 2.8305mm
Cruise velocity 0.1366m/s
Max scalar velocity 0.141m/s
Max scalar acceleration 13.66m/s2

Max jerk 1367m/s3

Table 3.5.

Test 1 - Results

It can be noticed from Figure 3.17 the coherency of the robot in following the path

in this case, in which no modifications on path and orientation have been made, with

a maximum error with respect to the desired path of 2.8305 mm. Being ’velocity =

1.2’, the number of samples of the curve is still high and, consequently, the velocity is

enough low to have an almost constant scalar velocity value. Nevertheless, a change

in velocity happens in the re-orientation phase, as it can be noticed in Figure 3.16.

Furthermore, Figure 3.15 shows a sudden change of the tool’s orientation, which

can be seen also in Figure 3.18, where the velocity of the tool is not well distributed

but it is concentrated in the re-orientation area. It is immediate to think that,

smoothing the change in orientation and the path geometry in the critical area, a

64

3 – Off-line trajectory planning for continuous processes

smoother movement of the robot would be obtained, which is the tentative made

in the second test. Finally, in Figure 3.19 it is shown the error with respect to the

unit quaternion to demonstrate that the quaternions remain unitary along all the

path, that is a fundamental constraint for the quaternions to effectively represent a

rotation, as already explained in Chapter 2.5.4.

Figure 3.15. Test 1 - Geometric path and quaternions

Figure 3.16. Test 1 - Scalar velocity

65

3 – Off-line trajectory planning for continuous processes

Figure 3.17. Test 1 - Error along the path

Figure 3.18. Test 1 - Analytical quaternion velocities

66

3 – Off-line trajectory planning for continuous processes

Figure 3.19. Test 1 - Error with respect to the unit quaternion

3.4.2 Test2

V elocity Accpos Accor

1.2 0.4 0.6

Table 3.6.

Test 2 - User’s parameters

In Table 3.6 the parameters used in this test are reported, while in Table 3.7 and

Figures 3.20 - 3.25 report the results of the simulation.

It can be noticed that, with this second choice of the parameters, an improvement

has been reached for what concerns the scalar velocity, that, as shown in Figure

3.21, reaches a cruise value of 0.136 m/s with no remarkable changes along the

path. This result is reached at the cost of a greater inaccuracy along the path, as

shown in Figure 3.22, where it can be seen that the robot shows a greater error with

respect to the previous test, with a peak of 10.34 mm. Regarding the orientation,

Figure 3.24 shows the effect of the smoothing on the orientations interpolation.

Unfortunately, the smoothing action is not so consistent as can be seen also in

67

3 – Off-line trajectory planning for continuous processes

Total time 28.86 s
Max error on the path 10.3337mm
Cruise velocity 0.136m/s
Max scalar velocity 0.136m/s
Max scalar acceleration 13.6m/s2

Max jerk 1360m/s3

Table 3.7.

Test 2 - Results

Figure 3.23, where the analytical quaternion velocities are still pretty concentrated

around the re-orientation are. This is due to the fact that the orientation is strongly

connected to the trajectory and, since a trajectory that pursues a constant scalar

velocity has been built, the cost to pay is a less smooth re-orientation of the tool.

A solution could be to decrease the’Accpos’ parameter, but we need to be careful to

not decrease it too much, because it could compromise the unity of the quaternions.

For what concerns the consistency of the rotation, in Figure 3.25 is shown that also

in this case the error with respect to the unit quaternion is negligible.

Figure 3.20. Test 2 - Geometric path and quaternions

68

3 – Off-line trajectory planning for continuous processes

Figure 3.21. Test 2 - Scalar velocity

Figure 3.22. Test 2 - Error on the path

69

3 – Off-line trajectory planning for continuous processes

Figure 3.23. Test 2 - Analytical quaternion velocities

Figure 3.24. Test 2 - A detail of the quaternion Q0 in the re-orientation area

70

3 – Off-line trajectory planning for continuous processes

Figure 3.25. Test 2 - Error with respect to the unit quaternion

71

Chapter 4

Tests on Robot
In this chapter the results of the experimental tests carried out in Comau are shown.

First, a brief description of the utilized robot is given, then the procedure to move

the robot, both manually and automatically, is explained, and, finally, the results of

the tests are shown and compared with the simulations in Chapter 3.

4.1 Description of the NJ130

For the purpose of the tests a NJ130-2.6, shown in Figure 4.1, has been used. This

manipulator is a six axes anthropomorphic robot which is capable to carry up to

130 Kg of payload on the tool with the possibility of 50 Kg extra payload on the

forearm. During the test no payload was applied on it. The controller, shown in

Figure 4.2, is a C5G control unit by Comau, a modular controller which uses inside

the industrial PC’s APC820 with Core2 Duo technology CPU which is capable of

obtaining high performances with low energetic consumption.

Figure 4.1. Model of NJ130-2.6 by Comau [3]

72

4 – Tests on Robot

4.2 The teach pendant and the moni

In Figure 4.2 it is also shown the used teach pendant, which is the interface between

the user and the controller of the robot. Through this it is possible to move the

robot both manually and automatically. To move automatically the robot a binary

file, called ’moni’, must be created. In this file is contained the curve which the

manipulator will follow, sampled at a rate of 2 ms between two consecutive points.

To read the binary file it is also necessary to create a program which is capable to

read the set of positions and velocities contained in the moni. This kind of file is

the PDL2 program, written in a Comau proprietary language of which an example

is shown in 4.1.

Figure 4.2. TP5 and control unit C5G [3]

1 PROGRAM Test_2

2 VAR p1 : POSITION

3 BEGIN

4 $RPL_DIR_PATH := ’UD:\\usr\\ Prova_1 ’

5 $RPL_SPD_OVR := 100

6 $BASE := POS(0)

7 $TOOL := POS(0)

8 $UFRAME := POS (0)

9 p1 := POS(0,500,0,0,-90,0, ’’)

10

11 MOVE TO {0, 0, -90, 0, 90, 0}

12 delay 1000

13 CYCLE

14 MOVE TO p1

15 delay 1000

16 MOVE FROM p1 REPLAY ’moni_2.log’

17 delay 1000

18 END Test_2

Listing 4.1. Example of PDL script

73

4 – Tests on Robot

4.3 Experimental tests

Several tests have been made on the robot. For all the tests the parameters in

Table 3.6 are chosen, in order to compare the real performance to the simulation

in Chapter 3, and all the manipulation on velocity have been made changing the

frequency of the filters and, consequently the parameter N in (3.24). A first test

has been made reducing the band frequency of the cascade of filters, in order to

have a minor velocity of the robot and to analyse and foresee eventual criticisms at

nominal frequency. Choosing a frequency of F = 40 Hz, and consequently, through

(3.24) a number of samples between the points equals to N = 13, the result in terms

of scalar velocity is the one shown in Figure 4.3. It can be noticed that the result

is really different to what is obtained in simulation. This is due to the connection

between path and orientation, that makes unavoidable an acceleration of the arm in

the re-orientation phase, although this is reduced through the nurbs optimization.

So, increasing the velocity by setting the frequency at F = 100 Hz → N =

5, the result in term of scalar velocity is the one in Figure 4.4, where it can be

noticed that an increased velocity produces also an increased acceleration in the

critical area of re-orientation. It can also be noticed a high angular acceleration in

Figure 4.5, where the original acceleration is partially attenuated but the measured

one remains quite high. For what concerns the precision on the path, Figures 4.6

- 4.9 show a good accuracy in following the target path, both for the geometric

path, where the maximum error is 14.5 mm coherently with the simulation (where

the maximum error was about 10 mm), and for the orientation, which apart for

a negligible delay with respect to the target, shows a really good accuracy. In

Figure 4.6 the curve apparently unrelated to the hood represents the approaching

phase of the manipulator to the path, which has been performed upside down in the

experimental test.

From the previous tests it is clear that a constant scalar velocity is impossible to

reach in this case, due to the strong variations of the tool orientation. So, another

kind of approach has been tested. Taking inspiration from [23] and tuning the

frequency of the filters’ cascade, two different velocities are obtained, a faster one

along the technological path and a decelerated one during the re-orientation, in

order to avoid sudden changes in the velocities and to have a smoother movement

of the robot. Setting F = 100 Hz in the technological path and F = 10 Hz in the

re-orientation area, a scalar velocity profile like the one in Figure 4.12 is obtained.

74

4 – Tests on Robot

Figure 4.3. Scalar velocity of the robot during the first test, at F = 40Hz

75

4 – Tests on Robot

Figure 4.4. Scalar velocity of the robot during the second test, at F = 100Hz

76

4 – Tests on Robot

Figure 4.5. Test 2 - Angular acceleration of E2

Figure 4.6. Geometric path of the hood on test 2

77

4 – Tests on Robot

Figure 4.7. Test 2 - Euler angle E1

Figure 4.8. Test 2 - Euler angle E2

78

4 – Tests on Robot

Figure 4.9. Test 2 - Euler angle E3

Moreover, also the motion law was filtered with a non-causal filter to obtain a

smoother transition among the different velocities. The motion law, shown in Figure

4.10, is obtained applying the low pass filter, whose bode diagram is shown in Figure

4.11, on the scalar abscissa in Figure 3.12. The experimental results obtained with

this approach are shown in Figures 4.13 and 4.14.

Figure 4.10. Test 3 - Motion law of the robot

79

4 – Tests on Robot

Apart from the change in velocity during the transition, due to a non-optimal

transition’s algorithm, it is evident the difference with the previous approach, since

the scalar velocity remains constant into the two areas. The price to pay is a huge

local deceleration and a dilatation of the total time of processing, which is generally

an acceptable cost in this kind of work. In Figure 4.14 it can also be appreciated

the attenuation of the angular acceleration for the Euler angle E2, which remains

almost null during all the movement. In appendix A.12 the code used to implement

this last test is shown.

Figure 4.11. Test 3 - Non-causal filter with cut frequency at 5 Hz

Figure 4.12. Test 3 - Scalar velocity in simulation

80

4 – Tests on Robot

Figure 4.13. Test 3 - Scalar velocity during the test

Figure 4.14. Test 3 - Angular acceleration of E2

81

Chapter 5

Conclusions
In this thesis the problem of finding a solution for the coupled planning of path

and orientation for an industrial robot has been dealt with. This is a problem

which doesn’t have a simple solution, since it requires the search for a trade-off

between the movement of the arm and the variable orientation of the tool, which

’drags’ the rest of the arm during his movements, changing the scalar velocity. From

the experimental tests it is evident that the robot is unable to follow the constant

velocity along all the path. This is due to the strong and sudden variation of the

orientation of the tool in the re-orientation phase, which causes an increment of the

scalar velocity of the arm, being arm and tool coupled. So, another arrangement has

been made reducing the scalar velocity in the re-orientation area through a tuning

of the frequency of the filters’ cascade of the planner.

5.1 Future works

The algorithm developed shows a good behaviour in case of planning of the path

only, while it suffers the coupling of path and orientation and it needs some further

arrangement in case of strong variation of the tool’s attitude. Taking into account

that in this specific work the critical area is the re-orientation phase of the path, in

which the robot has no particular constraints, a solution could be to simply reshape

that area in order to smooth the movement of the manipulator. On the other hand,

a good idea could be the one explained in Chapter 4, in which the properties of

the filters’ cascade are used to selectively decrease the scalar velocity in the areas

in which the robot suddenly changes the tool’s attitude. So, an optimization of the

algorithm which handles the motion law in that case, especially for the handling of

the transition between different velocities, should be done. In addition to this, an

optimization of the nurbs’ algorithm, making it more robust and making its effect

more local on the curve, is suggested, since the two techniques could work together

to obtain a smoother and nicer movement of the robot.

82

Appendix A

Matlab codes

A.1 angles calc.m

1 function [theta] = angles_calc(curve)

2

3 % ’angles_calc ’ - It computes the angles between each couple of

4 % consecutive points on the curve

5

6 % INPUT

7 % curve - Input curve

8

9 % OUTPUT

10 % theta - buffer of output angles

11

12 x = linspace (0,1,length(curve));

13 y = curve;

14 n = size(curve ,1);

15

16 for i = 2:n-1

17 x1(i-1,1) = x(i)-x(i-1);

18 y1(i-1,1) = y(i)-y(i-1);

19 end

20 for i = 2:n-1

21 x2(i-1,1) = x(i+1)-x(i);

22 y2(i-1,1) = y(i+1)-y(i);

23 end

24 p1 = [x1 y1 zeros(n-2,1)];

25 p2 = [x2 y2 zeros(n-2,1)];

26 theta (1,1) = 0;

27 for i = 2:n-1

28 theta(i,1) = atan2d(norm(cross(p1(i-1,:),p2(i-1,:))),dot(p1(i-1,:),

p2(i-1,:)));

29 end

30 theta(end+1,1) = 0;

83

A – Matlab codes

A.2 arc length.m

1 function [arc , sc_abs] = arc_length(curve)

2

3 % ’arc_length ’ - Given the curve , it compute its arc length

4 % through the polygonal

5

6 % INPUT

7 % curve - Input curve

8

9 % OUTPUT

10 % arc - arc length

11 % sc_abs - scalar abscissa

12

13

14 % spline = spline;

15 s = 0;

16 arc = zeros(length(curve) ,1);

17 for i = 2: length(curve)

18 temp = sqrt((curve(i,1)-curve(i-1,1))^2+(curve(i,2)-curve(i

-1,2))^2+...

19 (curve(i,3)-curve(i-1,3))^2); % Poligonale

20 s = s + temp;

21 arc(i) = s;

22 end

23 sc_abs = arc/max(arc);

A.3 samp calc.m

1 function [n_samp] = samp_calc(curve)

2

3 % ’samp_calc ’ - It computes the maximum possible number of samples

4 % to which the given curve could be oversampled by the ’interparc ’

5 % function by computing minimum distance over the arc length

6

7 % INPUT

8 % curve - Curve to be oversampled

9

10 % OUTPUT

11 % n_samp - Number of samples

12

13 Arc = arc_length(curve);

84

A – Matlab codes

14 for i = 2: length(curve)

15 dist(i-1) = (Arc(i)-Arc(i-1))/Arc(end);

16 end

17 minimum = min(dist);

18 n_samp = round (1/ minimum);

A.4 interpolation.m

1 function P = interpolation(q)

2

3 % ’interpolation ’ - Given the input points representing the

4 % desired curve it computes the control points computing the

5 % tridiagonal system : Ax = b

6

7 % INPUT

8 % q - Input points

9

10 % OUTPUT

11 % P - Control points

12

13 degree = 3;

14 n = length(q);

15

16 %% Tridiagonal matrix

17 A = zeros(n-2,n-2);

18 row = [1 4 1 zeros(1,n-5)];

19 for i = 1:n-3

20 A(i+1,:) = row;

21 row = circshift(row ,1);

22 end

23 A(1,:) = [4 1 zeros(1,n-4)];

24 A(end ,:) = [zeros(1,n-4) 1 4];

25

26

27 %% Computation of the control points

28 B = zeros(n-2,1);

29 B(1) = 6*q(2)-q(1);

30 for k = 2: length(B)-1

31 B(k) = 6*q(k+1);

32 end

33 B(end) = 6*q(end -1)-q(end);

34

85

A – Matlab codes

35 P(1:degree -1) = q(1);

36 P(degree:n) = A\B;

37 P(n+1:n+2) = q(end);

A.5 sequencer.m

1 function pk = sequencer(P,N,n)

2

3 % ’sequencer ’ - Given the control points ’P’ computes the

4 % piecewise constant function associated to them , keeping

5 % constant each control point for N samples

6

7 % INPUT

8 % P - Control points

9 % N - Number of samples

10 % n - length of input point buffer

11

12 % OUTPUT

13 % pk - piecewise constant function

14

15 pk = zeros(1,n*N);

16 for i = 1:n

17 for k = 1:N

18 pk(1,(i-1)*N+k) = P(i);

19 end

20 end

A.6 FIR.m

1 function curve = FIR(N ,pk, initStates , degree)

2

3 % ’FIR ’ - Build the moving average filters and filter three times

4 % the piecewise constant function through them

5

6 % INPUT

7 % N - Number of samples

8 % pk - Piecewise constant function

9 % initStates -

10 % degree - Desired degree of the spline

11

86

A – Matlab codes

12 % OUTPUT

13 % curve - Output curve

14

15 % Building of the filter

16 b = (1/(N))*ones(1,N);

17 a = 1;

18 initStates = initStates*ones(1,N-1);

19

20 % Implementation of the cascade of filters

21 curve (1,:) = filter(b,a,pk,initStates);

22 for k=2: degree

23 curve(k,:) = filter(b,a,curve(k-1,:),initStates);

24 end

25

26 curve = curve (3,:);

A.7 elab data.m

1 function [pk_new ,curve_new] = elab_data(pk,curve ,N)

2

3 % ’elab_data ’ - Impose a delay of 3N to the curve obtained by the

4 % FIR filters to remove the transitory

5

6 % INPUT

7 % pk - Piecewise constant function

8 % curve - Curve obtained by the FIR filters

9 % N - Number of samples

10

11 % OUTPUT

12 % pk_new - Elaborated piecewise constant function

13 % curve_new - Elaborated curve

14

15 curve (1:3*N) = curve (3*N);

16 post_curve = curve (2*N+1:end);

17 clear curve;

18 curve_new = zeros(1,length(post_spline));

19 curve_new = post_curve;

20 temp = curve_new(end);

21 curve_new(end+1:end+N) = temp;

22

23 clear temp;

24 pk = pk(2*N+1: end);

87

A – Matlab codes

25 temp = pk(end);

26 pk(end +1: end+N) = temp;

A.8 curve rad.m

1 function [rad_norm] = curve_rad(n_original , points , multiplicator)

2

3 % ’curve_rad ’ - Compute the radius of curvature along the points of

4 % the curve , temporally oversampled through the parameter ’

multiplicator ’

5 % to get a better resolution on the curvatures

6

7 % INPUT

8 % n_original - Original number of points

9 % points - Input points

10 % multiplicator - Multiplicator of the points

11

12 % OUTPUT

13 % rad_norm - Norm of the curvature ’s radius associated to the

original

14 % buffer of points

15

16 %% Curvature calculation and plot

17

18 [~,~,curv] = curvature(points ’);

19 figure , hold on , plot(points (1,:),points (2,:),’k’,’Marker ’,’.’)

20 quiver(points (1,:) ’, points (2,:) ’, curv (:,1), curv (:,2))

21 title(’Curvature radius ’), xlabel(’Arc Length - [mm]’), ylabel(’Z -

[mm]’), grid on

22

23 %% Norm

24

25 n = length(points);

26 points = points ’;

27 for i = 1:n

28 rr_norm(1,i) = sqrt(curv(i,1) ^2+ curv(i,2) ^2+ curv(i,3) ^2);

29 end

30

31 %% Assignment of norm and coordinates to the original points

32

33 temp = zeros(n_original ,2);

34 for i = 1: n_original

88

A – Matlab codes

35 for j = 1: multiplicator

36 temp(j,1) = rr_norm(:,j+(i-1)*multiplicator);

37 end

38 rad_norm(i,:) = max(temp (:,1));

39 index = find(temp (:,1) == max(temp (:,1)));

40 index = index (1);

41 end

A.9 curve weights.m

1 function w = curve_weights(P, points , rad_norm , accuracy)

2

3 % ’curve_weigths ’ - Given the norm of the curvature ’s radius

computes

4 % the buffer of weights to be associated to the Nurbs

5

6 % INPUT

7 % P - Control points

8 % points - Input points of the curve

9 % rad_norm - Buffer of radius of curvature

10 % accuracy - Regulable parameter which tell how strong should

11 % the shaping action on the nurbs

12

13 % OUTPUT

14 % w - Buffer of weights

15

16 %% Pre -elaboration of the datas

17

18 P = P(:,2:end -1) ’;

19 rad_norm = rad_norm *1/ accuracy;

20 k = 1./ rad_norm;

21

22 %% Weight ’s calculation

23

24 for i = 1 : length(points)

25 if (rad_norm(i,1) < 1)

26 w(i,1) = 1;

27 else

28 w(i,1) = k(i);

29 end

30 end

31

89

A – Matlab codes

32 w = ceil(w*1e1)/1e1;

33 w(1,1) = 1;

34 w(end ,1) = 1;

A.10 weights calc.m

1 function [crv ,w] = weights_calc(crv , accuracy , P, p)

2

3 % ’weights_calc ’ - Oversample the curve in input and assign to

4 % that the weights in output from ’curve_weights ’

5

6 % INPUT

7 % crv - Input nurbs

8 % accuracy - Regulable parameter which tell how strong should

9 % the shaping action on the nurbs

10 % P - Control points of the nurbs

11 % p - Points of the nurbs

12

13 % OUTPUT

14 % crv - Modified nurbs

15 % w - Buffer of weights

16

17 %% Oversampling of the curve

18

19 multi = 10;

20 n = length(p);

21 neval = n*multi;

22 ut = linspace (0,1,neval);

23 nrb = nrbeval(crv ,ut);

24

25 %% Computation of the angles between points

26

27 for i = 1:3

28 theta(:,i) = angle_calc(nrb(i,:) ’);

29 end

30

31 %% Computation and assignment of the weights

32

33 for i = 1:3

34 [Norm , Coord] = curve_rad(n,[linspace(0,nrb(i,end),length(nrb));

nrb(i,:); zeros(1,length(nrb))],multi);

35 w(:,i) = curve_weights(P(i,:),p(:,i),Norm ,Coord ,accuracy);

90

A – Matlab codes

36 end

37 for i = 1:3

38 if (max(theta(:,i)) > 160)

39 crv.coefs (:,2:end -1) = w(:,i) ’.*crv.coefs (:,2:end -1);

40 end

41 end

A.11 weights orientation.m

1 function[q] = weights_orientation(points , accuracy_or)

2

3 % ’weights_orientation ’ - It compute the angle between the two

segments

4 % connecting three consecutive points and , depending on this ,

assign

5 % the weights to the nurbs

6

7 % INPUT

8 % points - Points of the nurbs

9 % accuracy_or -

10

11 % OUTPUT

12 % q - Points of the modified nurbs

13

14 %% Computation of the angle between the segment connecting the

points

15

16 for j = 1:4

17 P = interpolation(points(:,j));

18 for i = 1: length(P)

19 p(i,:) = [ut(1,i), P(1,i)];

20 end

21 distance (1) = 0;

22 theta (1) = 1;

23 for i = 2 : length(P)-1

24 tg1 = (p(i,:)-p(i-1,:))/norm(p(i,:)-p(i-1,:));

25 tg2 = (p(i+1,:)-p(i,:))/norm(p(i+1,:)-p(i,:));

26 tg1 = [tg1 0];

27 tg2 = [tg2 0];

28 theta(i) = atan2d(norm(cross(tg1 ,tg2)),dot(tg1 ,tg2))

29 distance(i,1) = norm(crv.coefs(1,i)-points(i-1));

30 end

91

A – Matlab codes

31 theta(end+1) = 1;

32 distance(end+1) = 0;

33

34 %% Assignment of the weights

35

36 if (accuracy_or == 1)

37 v=1;

38 w=1;

39 else

40 v = 2 - accuracy_or;

41 w = accuracy_or;

42 end

43 for i = 2: length(P)-1

44 if (theta(i) > 0 && theta(i) <120 && distance(i) <0.003)

45 crv.coefs(:,i) = v.*crv.coefs(:,i);

46 end

47 if (theta(i) > 120 && distance(i) > 0.003)

48 crv.coefs(:,i) = w.*crv.coefs(:,i);

49 end

50 end

51 nrb1 = nrbeval(crv ,linspace (0,1,length(points))) ;

52 q(:,j) = nrb1 (1,:);

53 end

A.12 test.m

1 %% BM FILTER

2

3 % In this Matlab code the use of the cascade of filters to

selectively

4 % reduce the velocity in the re-orientation area and the filtering

of

5 % the overall trajectory to smoothen the transitions among

different

6 % velocities

7

8 clc , clear all , close all

9

10 load points.mat

11 load Cntrl_Point.mat

12

13 %% Implementation of the filter

92

A – Matlab codes

14

15 [num , den] = get_IIR2(5, 0.99 , 5, 1, 0.002);

16 LP = tf(num , den , 0.002, ’variable ’, ’z^-1’);

17 my_bode(LP , 0.1, 1/0.002)

18

19 %% Use of the moving average filters

20

21 [arc , par] = ArcLength(points);

22 %BM FILTER

23 for i = 1:7

24 F = 100;

25 [T1,N1,pk1(:,i),spline1(:,i)] = B_M_Filter(P(:,i),F);

26 end

27 for i = 1:7

28 F = 10;

29 [T2,N2,pk2(:,i),spline2(:,i)] = B_M_Filter(P(786:856 ,i),F);

30 end

31 temp = spline1 (1:3929 ,1:7);

32 temp1 = spline1 (4269:end ,1:7);

33 curve = [temp; spline2; temp1];

34 [arc , par] = ArcLength(curve);

35 clear spline;

36

37 %% Filtering of the scalar abscissa

38

39 n = 100;

40 par1 = filtfilt(num , den , [zeros(n,1); par; ones(n,1)]);

41 figure , plot(linspace (0,1,length(par1)),par1)

42 xlabel(’Parametric vector ’), ylabel(’Scalar abscissa ’), grid on

43 spline = interparc(par1 ,curve (:,1),curve (:,2),curve (:,3),’linear ’);

44 quat_in = curve (1 ,4:7);

45 quat_fin = curve(end ,4:7);

46 spline (: ,4:7) = [quat_in .*ones(n,1); curve (: ,4:7); quat_fin .*ones(n

,1)];

47

48

49 %% PLOT

50

51 figure ,

52 plot3(spline (:,1),spline (:,2),spline (:,3),’r’), grid on, axis equal

53 figure ,

54 plot(par1 ,[spline (:,4) spline (:,5) spline (:,6) spline (:,7)]), grid

on

55

93

A – Matlab codes

56 Ts = 0.002;

57 t = [0:Ts:Ts*(length(spline) -1)];

58

59

60 % VELOCITY

61 dx = zeros(1,length(spline));

62 dy = zeros(1,length(spline));

63 dz = zeros(1,length(spline));

64 dx(1) = 0;

65 dy(1) = 0;

66 dz(1) = 0;

67 dx(2: end) = diff(spline (:,1))/Ts;

68 dy(2: end) = diff(spline (:,2))/Ts;

69 dz(2: end) = diff(spline (:,3))/Ts;

70 Vel = sqrt(dx.^2+dy.^2+dz.^2) ’;

71 figure , plot(t,Vel ./1000) , grid on , xlabel(’Time - [s]’), ylabel(’

Velocity - [m/s]’)

94

Bibliography
[1] A. Grau, M. Indri, L. Lo Bello, T. Sauter, “Industrial Robotics in Factory

Automation: from the Early Stage to the Internet of Things” in IECON 2017

- 43rd Annual Conference of the IEEE Industrial Electronics Society, 2017.

[2] L. Biagiotti, C.Melchiorri, “B-Spline Based Filters for Multi-Point Trajectories

Planning” in IEEE International Conference on Robotics and Automation, May

3-8, 2010.

[3] [Online]: https://www.comau.com/en

[4] [Online]: https://www.lord.com

[5] G. D. Gironimo, Modellazione di curve e superfici a forma libera, Universitá

degli studi di Napoli Federico II.

[6] L. Piegl, W. Tiller, The NURBS book Springer, July 1996.

[7] [Online]: https://javascript.info/bezier-curve

[8] J. Peterson, How to use Knot Vectors Apple, June 1990.

[9] B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, Robotics: Modelling, planning

and control Springer, 2009.

[10] B. Bona, Slides from lessons of ’Robotics’, Politecnico di Torino, A.Y.

2018/2019.

[11] L. Anderlucci, Smooth trajectory planning for anthropomorphic industrial robots

employed in continuous processes, Politecnico di Torino, April 2019.

[12] L. Biagiotti, C. Melchiorri, Trajectory Planning forAutomatic Machines and

Robots Springer, 2008.

[13] E. B. Dam, M. Koch, M. Lillholm, “Quaternions, Interpolation and Animation”

in Technical report DIKU-TR-98/5, July 17, 1998.

[14] B. Bona, Slides from lessons of ’Modelling and Simulation of Mechatronic Sys-

tems’, Politecnico di Torino, A.Y. 2018/2019.

[15] [Online]: https://en.wikipedia.org/wiki/Quaternion

[16] L. Niesink, “Human-Media Interaction”

[17] [Online]: https://en.wikipedia.org/wiki/William Rowan Hamilton

[18] R. Ramamoorthi, A. H. Barr, “Fast Construction of Accurate Quaternion

Splines” California Institute of Technology, 1997.

[19] G. Bianchi, R. Rastegarian, Trajectory planning for continuous processes using

anthropomorphic industrial robots, Politecnico di Torino, July 2017.

[20] [Online]: https://it.mathworks.com

95

Bibliography

[21] [Online]: https://it.mathworks.com/matlabcentral/fileexchange/69452-

curvature-of-a-2d-or-3d-curve

[22] [Online]: https://it.mathworks.com/matlabcentral/fileexchange/34874-

interparc

[23] L. Biagiotti, C.Melchiorri, “Input Shaping via B-spline Filters for 3-D Trajec-

tory Planning” in IEEE International Conference on Robotics and Automation,

September 25-30, 2011.

96

