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Abstract
Starting from the last decades of the 20th century, Machine Learning has been widely
applied in many engineering fields, such as communications, speech and image
processing, computer vision and robotics, resulting particularly effective and useful
in contexts where a rigorous mathematical model of the problem is too hard to be
elaborated. Focusing on wireless communication systems, in recent years Machine
Learning applications to the upper layers have been minutely explored for various
purposes, like the deployment of cognitive radio and Self Organized Networks or the
resource management, while its application to the physical layer has been somehow
overlooked.

The purpose of this thesis is to investigate the potential use of neural networks for
the optimization of specific physical layer blocks in a communication system, taking
into account the peculiar characteristics of the emerging radio technologies based on
5G standard (e.g. massive Multiple-Input Multiple-Output, beamforming, millimeter
Waves) and all their related challenges. In particular, the analysis focuses on channel
estimation and Channel State Information feedback reporting blocks, providing data
and statistics that are representative of how Machine Learning algorithms introduction
affects radio link performance, in terms of BLock Error Rate and throughput.
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Chapter 1

Machine Learning: an overview

This chapter gives an overview of Machine Learning, distinguishing among different
approaches and providing definitions and examples. First of all, it is important to
highlight that Machine Learning is a subfield of Artificial Intelligence: reference [14]
explains that, while the term Artificial Intelligence (AI) gathers all the forms of
technologies that hold some intelligence, Machine Learning identifies a specific group
among these technologies.
There are plenty of definitions for Machine Learning in literature: the authors of book
[16] describe it as a set of techniques designed to automatically recognize patterns
in data and then use those patterns to predict other data or to make some kinds of
decision. The key idea behind Machine Learning is that the algorithm has to figure
out the model autonomously, starting from some data (e.g. images, audio, documents)
[16]. In fact the name "Machine learning" suggests that there is no human component
involved: the technique itself analyzes the set of available data, called training data,
and "learns" how to elaborate the correct model when laws and logical reasoning are
not promising.

1



1.1. TYPES OF MACHINE LEARNING

1.1 Types of machine learning

Machine Learning (ML) techniques can be classified as supervised, unsupervised or
reinforcement learning. These three learning types present different characteristics and
each of them has its usual domain of application, even if they are not completely formal
and distinct concepts.

1.1.1 Supervised or predictive learning

In supervised approach, each training dataset consists of an input and the
corresponding correct output, which is what the learned model is supposed to produce

{input, correct output}.

This is the most widely used form of machine learning, because it is the most similar
to the process by which humans learn things. To clarify this idea, reference [14] provides
an effective analogy: when humans want to find the solution to an exercise, they apply
their current knowledge to solve the problem and compare the results with the correct
solutions: if the answer is wrong, they take note of this, modifying their knowledge
about the problem and then repeating previous steps.
The fundamental property of this learning approach is the knowledge of desired
outputs: in fact the name itself suggests a form of tutoring, like when the teacher
provides students with solutions that they need to memorize [14]. In principle, the
output of the model can be anything, but in most cases it is:

• a categorical or nominal variable from a finite set; in this case the problem is
referred to as classification or pattern recognition;

• a real scalar value; in this case the problem is referred to as regression.

Classification

The goal of classification is to learn how to map the input x into the output y, where
y ∈ {1, ..., C} and C is the number of possible classes which the input can be assigned
to. When C = 2, the problem is referred to as binary classification; if instead C > 2 it is
called multiclass classification [16].
These class labels are discrete and unordered values [19] and the model aims at
assigning them to new input instances, based on past observations.
Reference [14] provides some example of classification problems:

• spam mail filtering: the model classifies the mails as regular or spam;

2



1.1. TYPES OF MACHINE LEARNING

• digit recognitions: the model classifies the digit image into one number ranging
between 0 and 9;

• face recognition: the model classifies the face image selecting the right registered
user.

Regression

The main difference with respect to classification is that the regression outcome is
continuous. As book [19] explains, regression analysis is characterized by predictor
or explanatory variables and a continuous response variable (target or outcome): the
model aims to find a relation between those two sets of variables and to predict an
output.
In reference [16], several examples of real-world regression problems are provided:

• to predict the age of a viewer watching a given video on YouTube;

• to predict the temperature at some location within a certain area exploiting
weather data, time, sensors etc.

• to predict tomorrow’s stock price given current market conditions and other
variegated information.

1.1.2 Reinforcement learning

The goal of this machine learning approach is to develop a system, called agent,
able to improve its performance based on interactions with the environment. Actually,
reinforcement learning is sometimes labeled as a subfield of supervised learning,
since it includes a reward signal [19]. However, book [16] clarifies that there exists a
fundamental difference between this kind of technique and the canonical supervised
approach described in previous sections: reward signal is not the correct value or label,
it is simply a measure that tells how good or bad an action is considered according to a
reward function.
So training data contains only input, some output and the corresponding grade:

{input, some output, grade f or this output}

Interacting with the environment, the agent gets back a state value and exploits
reinforcement learning to select a series of actions that maximizes the reward [19]. This
mechanism is effectively illustrated in the scheme in Figure 1.1.

3



1.1. TYPES OF MACHINE LEARNING

Figure 1.1: Reinforcement learning process
(taken from [W20])

Book [19] proposes a popular example of reinforcement learning application, that
is chess engine: here, the agent decides a sequence of moves based on the state of the
board and the reward can be identify in the win or defeat at the end of the game.

1.1.3 Unsupervised learning

This third approach has the goal of discovering interesting structures or patterns
characterizing the input data and of preprocessing them [19]. The substantial novelty
with respect to supervised learning approach is that it deals with unlabeled data or
data with unknown structure in the form

{input}

Reference [19] explains that unsupervised learning must be able to explore the
structure of our data to extract meaningful information without the guidance of a
known outcome or reward function. In general, this makes the unsupervised problem
significantly more complex with respect to the supervised learning case; however,
unsupervised learning is the most widely applicable approach since it does not require
data labeling process, that is often expensive and inefficient.

Clustering

The problem of clustering data into groups is a typical example of unsupervised
learning. Information is organized into meaningful subgroups, called clusters, without
any prior knowledge about their group memberships; each cluster encloses elements
that share a certain degree of similarity that is higher then the one shared with members
of other groups [19]. Figure 1.2 shows how data can be clustered into two different
groups based on the similarity of their two features x and y.

4



1.1. TYPES OF MACHINE LEARNING

Figure 1.2: Example of clustering
(taken from [W26])

Some real-world applications of clustering are illustrated in reference [16]:

• in e-commerce, a worldwide used approach reckon on clustering the users into
groups, based on their web-surfing trend and their purchasing habits, aiming at
wisely targeting different advertisements;

• in biology, it can be useful to group flow-citometry data, to discover different
sub-populations of cells.

Data compression through dimensionality reduction

This kind of unsupervised learning is based on the concept of dimensionality
reduction: projecting data to a lower dimensional subspace, sufficient to capture their
essential features, can result in a significant advantage from a complexity point of view,
like authors of [16] explains; however, complexity reduction is not the only advantage
obtained. In fact, according to reference [19], this kind of technique is commonly used
in feature preprocessing, to remove the noise which degrades predictive performance
of certain ML algorithms.
Book [16] justifies this by clarifying the concept of latent factor: even if a set of data
can appear high-dimensional, the degrees of variability (called latent factors) could
result being very few. Low dimensional representations often lead to better accuracy
in predicting tasks, since they focus on the "essence" of the object and ignore misleading
information which acts as noise. Clearly a good trade off between simplicity and
meaningfulness must be found, in order to obtain an effective model.
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Principal Component Analysis (PCA) is one of the possible approaches to
dimensionality reduction. Book [16] provides some examples of PCA applications:

• in signal processing, a variant of PCA is used to separate signal into their different
sources;

• in computer graphics, motion capture data can be reduced to low dimensional
representation, with the purpose of creating animations.

1.2 Basic concepts about ML

Previous sections have simply provided a general description of how ML works and
a list of the possible learning approaches with their relative use cases. Anyway, it is
important to understand which are the fundamental challenges of ML algorithms that
sometimes may lead to prefer a classical mathematical approach.

1.2.1 Generalization

Generalization is a key concept, defined in reference [14] as the process used to make
the model performance independent from the training data and from the input.
This independence is important if one thinks to the machine learning process, illustrated
in Figure 1.3: it is clear from the scheme that data used to train the model and data
that feed the field application are distinct.

Figure 1.3: Applying a ML model
(taken from [14])

The distinctness between training data and input data is a fundamental challenge
that every ML algorithm has to deal with: it is very unlikely that a model trained
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by handwritten digits from a single person will be able to recognize digits written
by other people, since the algorithm will probably learn some writing stokes that are
peculiar of the single person calligraphy but completely useless and even misleading
for the recognition process [14]. This considered, training the model with proper
data, sufficiently varied and representative of most input characteristics, is an essential
starting point that impacts heavily on performance.

1.2.2 Overfitting

Overfitting is the main cause of contamination of generalization process. To clarify
this concept, it is useful to consider a classification problem: a ML algorithm has to
divide the position data into two group (cross or circle), so the purpose is to identify a
curve which marks out the borders of the two groups, working on the training data.

Figure 1.4: Example of overfitting
(taken from [W21])

Looking at Figure 1.4, it can be noticed that the first plot on the left, where the
curve is a simple linear function, presents a significant number of outliers; this number
decreases in the second plot, where a more complex curve is adopted as group delimiter.
The last plot on the right instead shows a very complex curve that perfectly groups the
points and thus yields optimal performance for the training data. The problem arises
when the model is applied to input data different from the ones used for training: in that
case, a new position can be classified in the wrong group due to some outliers in training
data, which have penetrated the area of the other group corrupting the boundary.
Summarizing, when training data are not perfect and contain much noise, the ML
algorithm elaborates a model with low generalizability, since it considers all data in the
same way, not distinguishing relevant information from noise. This dynamic is called
overfitting.

According to [14], overfitting can have a considerable impact on ML performance; as
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so, several techniques have been developed to face this issue:

• regularization: a numerical method that simplifies the model in order to prevent
overfitting;

• validation: a process that splits the dataset in training and validation set: the
first one is used to elaborate the model while the second one has the function of
monitoring the performance.

The following section focuses on validation solution.

Validation

The idea behind validation is to devote a portion of training dataset to detect
overfitting effects: a trained model can be considered overfitted if it turns out poor
performance when applied to validation data. Reference [14] illustrates the steps of
validation process:

• step 1: split data into training and validation set;

• step 2: train the model using training data;

• step 3: evaluate performance of the model on validation data: if the model works
well, continue the training, otherwise modify the model and repeat from step 2.

In Figure 1.5 a simple scheme shows the split-process of a dataset when validation is
performed.

Figure 1.5: Splitting the dataset for validation
(taken from [14])

Figure 1.6 depicts a splitting process that is slightly different: instead of fixing a
split into training and validation data, the process continuously changes the dataset
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division randomly. This procedure takes the name of cross-validation and results in
a better ability to spot overfitting, especially when data at disposal are not so many
and generalization process would be more challenging. In fact, when a portion of
the dataset is affected by noise, even if the model trained over these corrupted data
learns information that are meaningless and not generalizable, other portions of data
are considered in the training process, so that the noise effect is attenuated.

Figure 1.6: Splitting the dataset for cross-validation
(taken from [14])

1.3 Deep learning

Deep Learning (DL) is a kind of machine learning based on deep neural networks.
Neural Network (NN) are nothing else than a possible implementation of ML models,
where the process of determining the model takes the name of learning rule. The name
suggests a reference to the mechanism of human brain: while the neurons transmit
signals one to the other and their association gives form to information, in neural
networks the nodes play the role of neurons, mimicing neuron’s association by means of
connection weight values [14]. The information of a neural network is collected inside
weights and biases values, that are what ML algorithm needs to learn.

1.3.1 Neural network nodes

Figure 1.7 shows a node that receives three input signals x1, x2 and x3; w1, w2 and
w3 are the weights associated to those inputs, while b is the bias.
The output y is computed starting from the weighted sum of the inputs and the bias

v = (w1 · x1) + (w2 · x2) + (w3 · x3) + b (1.1)
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Figure 1.7: Node of a neural network
(taken from [14])

From (1.1) it is clear that each weight value determines how much impact the
corresponding input has on the output: when a weight is null, the relative input is
totally disconnected from the node. The weighted sum v is then passed to the activation
function φ(.), in order to determine the output value

y = φ(v) (1.2)

1.3.2 Layered neural networks

Layered neural networks are the most widely used. As the name suggests, in this
kind of networks the nodes are grouped in layers. Figure 1.8 shows an example of
layered structure.

The group of yellow circles is called input layer, whose task is to transfer the input
signals to the next nodes. Blue and green circles instead form the so called hidden
layers, that precede the output layer in red. The signal enters the input layer, is
transferred through the hidden layers and then reaches the output layer, that generates
the outcome of the model.
Based on the number of hidden layers, it is possible to classify a neural network as:

• single-layer neural network, when input and output layers are directly connected;

• shallow neural network, if a single hidden layer is present;

• Deep Neural Network (DNN), when the network contains two or more hidden
layers.

Deep neural networks in turn can be distinguished in:
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Figure 1.8: Layered neural network
(taken from [W15])

• deep feedforward neural networks: the term "feedforward" suggests the fact
that there are no backwards connections by which outputs of the model are
fed back to compute themselves: the information flows from the input to the
output through the hidden layers, without inverting the propagation direction;
the adjective "deep" instead stands for the considerable number of hidden layers
that generally compose this kind of networks;

• deep recurrent neural networks: these networks are feedforward neural networks
extended to include also feedback connections, so that loops are allowed;

• deep convolutional neural networks: these models are inspired by human
brain mechanism for object recognition and are specialized for processing data
characterized by a known grid-like topology, like images.

Convolutional neural network

In reference [12], a Convolutional Neural Network (CNN) is defined as a neural
network that uses convolution in place of general matrix multiplication in at least one
of its layers.
Deep convolutional networks build a feature hierarchy by combining in a layer-wise
fashion the low-level features (i.e. extracted by early layers) to form high-level features
[19]. Book [19] clarifies these concepts with some examples: low-level features can be
identified in edges and blobs; their combination gives form to high-level features, like
characterizing object shapes (building, car, tree, cat ...).

CNN effectiveness in image classification field is related to three key properties,
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described in reference [W8]:

• sparse connectivity: instead of connecting every input to every hidden neuron,
connections are limited to small regions (typically 3 × 3 or 5 × 5), called local
receptive fields; this choice makes sense reasoning on the fact that in images
content is usually "local", that means little correlation among pixels that are very
distant. This local receptive field slides on the whole image and every position
corresponds to a hidden neuron;

• parameter-sharing: all the connections from the local receptive field to each
hidden neuron share the same weights and biases, which define a filter;
as a consequence, all neurons in the same layer extract exactly the same
feature at different locations in the image, so that a convolutional layer must
consist of different filters, capturing distinct features. Feature extraction is
performed through convolution operations between filters and local receptive
fields, producing images that accentuates specific characteristics;

• pooling: pooling layers aim to simplify the output of a convolutional layer by
performing a sort of downsampling; they are applied independently to each
feature map. Figure 1.9 reports an example of max-pooling layer, where each
pooling unit outputs the maximum activation value in a 2 × 2 input region.

Figure 1.9: Example of max-pooling layer
(taken from [W12])

As reference [19] explains, these three fundamental features have an important
consequence: the number of parameters learned by the network decreases significantly,
that implies an improved ability in capturing essential features and a greater robustness
against overfitting. In Figure 1.10, it is possible to observe the typical scheme of a
convolutional neural network for image classification.
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Figure 1.10: Example of CNN for image classification
(taken from [W16])

In this structure, two different functional blocks can be distinguished:

• a feature extractor, composed of all the convolutional and pooling layers;

• a classifier, consisting in one or more fully connected layers.
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Chapter 2

Introduction to 5G New Radio

In order to understand why 5G can be considered a turning point at the end of forty
years marked by an inexorable technological evolution , it can be useful to outline the
mobile communication context in which this new technology makes its debut.

The first generation made is entrance in the scenario of mobile communications
around 1980. Working on analog transmission, the communication systems based on
1G technology were limited to voice services and the service quality was quite low but,
for the first time, mobile telephony was made accessible to ordinary people.
2G, appearing in the early 1990s, marked the introduction of digital transmission on
the radio link. Voice traffic was still the target service, but the drop-out of analog
transmission also enabled limited data services and significant improvements in terms
of efficiency and security.The 3G of mobile communication was introduced in the early
2000s. With 3G, wireless internet access became fast, high data rates were reached and
multimedia services were made available. Starting from the years around 2010, 4G
became widespread, providing very high end-user data rates and Quality of Service
(QoS) guarantees, entirely on IP traffic. Discussions on the 5G of mobile communication
systems began around 2012 and they are now finally turning into concrete realizations.

The second chapter has the purpose of providing an overview on 5G technology.
The first section outlines the key novelties introduced by this new standard, listing
the most evident points of divergence from 4G and the main use cases; in the second
section instead the focus is on 5G physical layer: the idea is to give out a clear theoretical
basis that is essential to understand the application of Machine Learning to New Radio
physical layer, discussed in the third chapter.
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2.1 From LTE to New Radio

The first release of Long Term Evolution (LTE) (Release 8) was in 2009 and from
then on 4G standard has gone through several steps of evolution, bringing enhanced
performance and extended capabilities. This includes, among all, features for enhanced
mobile broadband (e.g. higher data rates, spectrum efficiency, coverage improvements)
and important extensions of the set of use cases for which LTE was initially imagined [5].
With this in mind, the authors of reference [5] clarify that ongoing and future evolution
steps of LTE should be considered an important part of the overall 5G radio-access
solution, since 5G can be thought as a series of use cases to be supported rather than
a specific access technology.

2.1.1 LTE advanced

After the starting releases 8 and 9 new requirements and expectations raised, thus
following releases, known as LTE advanced or evolution, were prepared with the
purpose of providing additional enhancements and features in different fields. Figure
2.1 shows some of the main areas in which LTE has evolved over several years.

Figure 2.1: LTE evolution
(taken from [5])

LTE evolution starts with release 10, completed in late 2010, with the main
target of ensuring the fully compliance of the LTE radio-access technology with the
IMT-Advanced requirements. This LTE release introduced enhanced LTE spectrum
flexibility through Carrier Aggregation (CA): as it can be observed in Figure 2.2,
up to five Component Carrier (CC), possibly of different bandwidth, are aggregated
and jointly used for transmission to/from a single terminal, allowing for a maximum
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transmission bandwidth of 100 MHz.

Figure 2.2: Carrier Aggregation
(taken from [5])

Several benefits derive from CA employment:

• higher data rates, since the aggregation of carriers increases spectrum resources;

• capacity gain, thanks to trunking gains from dynamically scheduling traffic across
the entire spectrum;

• optimum utilization of an operator’s spectrum resources: most of operators
are proprietary of fragmented spectrum covering different bands and Carrier
Aggregation helps to combine these into a more convenient spectrum resource.

Figure 2.3: COordinated Multi-Point configurations
(taken from [W18])

Release 11 of LTE, completed in late 2012, focused on the so called Coordinated Multi-
Point (CoMP) transmission and reception: it is a tool to improve the coverage with
high data rates and the cell-edge throughput. CoMP approaches, schematized in
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Figure 2.3, are particularly beneficial for users at the edge of a cell, since they are
typically affected by the interference of the neighboring cells. Release 12, completed
in 2014, was mainly focused on features related to small cell deployment, such as dual
connectivity, dynamic Time Division Duplexing (TDD) and small-cell on/off, with the
aim of improving the adaptability to the network dynamics. Release 13, finalized at
the end of 2015, introduced two Machine-type communication options: Narrowband
Internet of Things (NB-IoT) and LTE-M; according to reference [5], it can be seen as
an intermediate technology step between 4G and 5G New Radio (NR) air interface. The
main characteristics of both these technologies are:

• small bandwidth (200 kHz for NB-IoT and 1.4 MHz for LTE-M);

• extended coverage;

• very low power consumption, battery life above 10 years;

• support of massive connections;

• optimization for cheapest terminal cost.

Even if there are many similarities, LTE-M supports higher data-rates, has a coverage
enhancement with respect to standard LTE but not so good as NB-IoT and reduces prices
in the modules. Release 14 was completed during 2017 and it introduced a support for
Vehicle-Two-Vehicle (V2V) and Vehicle-to-everything (V2X) communication. Release
15 appeared in the middle of 2018, with the purpose of significantly reducing latency
through the so-called shortened Transmission Time Interval (sTTI) feature.

In conclusion, all past and future advanced LTE releases aim at going beyond the
traditional LTE use cases; however, the need to maintain backward compatibility is a
very restrictive limit in a context where requirements constantly evolve [5].

2.1.2 5G history and use cases

With the aim of satisfying new demands, 3GPP started the development of a new
radio-access technology, known as NR, in order to fully and freely exploit the potential
of new technologies. 5G deployment has been phased, since NR is a quite complex
technology and it was impossible to standardize all its features in time for the first
releases. As it is shown in Figure 2.4, the first references to 5G in the standard can
be dated back to the middle of 2016 (phase 1) and the first standard solution for NR
appeared at the end of 2017 and it is known as Early Drop (release 15): this first release
addressed non-standalone hotspots and small cells where the core network is still totally
LTE-based and an enhanced-NodeB (e-NodeB) still acts as a master. In June 2018 the
first NR Stand Alone was completed, where a Next Generation (NG) Core definitely
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replaced the LTE Core. This solution marked the end of the first phase, leaving space to
the second phase with release 16.

Figure 2.4: 5G time evolution
(taken from [5])

Book [5] provides a clear list of the main benefits introduced by 5G NR with respect
to LTE technology:

• supporting very wide transmission bandwidths and the associated high data rates
by exploiting higher frequency bands;

• enhanced network energy performance and reduced interference thanks to the
adoption of an ultra-lean design;

• low latency to improve performance and enable new use cases;

• extensive usage of beamforming and a massive number of antenna elements not
only for data transmission already enabled by LTE, but also for control-plane
procedures such as initial access.

In addition to these technology enhancements, a wide range of new use cases
characterizes 5G systems, schematized in Figure 2.5:

• Enhanced Mobile BroadBand (EMBB), with applications such as
virtual/augmented reality, UHD videos, clustering and others scenarios where
very high data rates are required;

• Massive Machine-Type Communication (MMTC), with applications such as IoT,
Industry 4.0, smart sensors and many other scenarios that foresee a considerable
number of connected devices, with few messages per hour to exchange but
requiring very low power consumption;

• Ultra-Reliable Low-Latency Communication (URLLC), with applications in the
military field, for Connected Cars and for remote surgery.

Release 15 focuses on EMBB with working frequencies below 6 GHz; only from
release 16 MMTC and URLLC are considered.
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Figure 2.5: 5G use cases
(taken from [W13])

2.2 5G Physical Layer

After discussing about the useful applications of NR, that certainly acted as drivers
for the new technology development, it is important to understand which are the key
technological enablers behind the 5G revolution:

• New Radio (NR), which includes waveform, numerology, frame structure and
physical channels;

• New bands: millimeter Wave (mmWave);

• Massive Multiple-Input Multiple-Output (Massive MIMO);

• Network slicing;

• New Core Network.

The following subsections explore the first three points of the list, while network
slicing and 5G core network are not considered: the idea behind this choice is to keep
the focus on the technological changes that have substantially renewed the physical
layer of mobile communications.
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2.2.1 New Radio

5G NR is a new air interface, that is the radio frequency portion of the circuit between
the mobile device and the active base station [W6]. It can be described in terms of
waveform, numerology, frame structure and physical channels.

NR Waveform

5G technology adopts the same modulation as LTE, Cyclic Prefix Orthogonal
Frequency-Division Multiplexing (CP-OFDM), but with three important changes:

• a scalable numerology is introduced;

• both Uplink (UL) and Downlink (DL) work with the same waveform, thus
simplifying the overall system design;

• an improvement in terms of spectrum confinement is obtained by performing
filtering operations at the transmitter side (i.e. Filtered Orthogonal Frequency-
Division Multiplexing (OFDM)).

Thanks to the filtering process, it is possible to reduce the guard band, with a consequent
improvement in spectrum utilization (up to 98% against the 90% of LTE).

NR numerology

In the context of 3GPP 5G standardization, the concept of numerology refers
to the configuration of waveform parameters, such as the Subcarrier Spacing (SS)
(∆ f = 2µ · 15 kHz) and the cyclic prefix length (normal or extended), depending on
the parameter µ given by the higher layers. Table 2.1 reports some of the possible
configurations of NR numerology.

Table 2.1: Standard numerologies for 5G

Frequency range [MHz] µ ∆ f [kHz] Max bandwidth [MHz] Cyclic prefix [µs]

450 - 6000
0 15 50 5
1 30 100 2.5
2 60 200 1.25/4.17

6000 - 52600 2 60 200 1.25/4.17
3 120 400 0.62
4 240 N.A. 0.31
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This numerology flexibility can be exploited according to the specific requirements:
for example the use of a tight subcarrier spacing is recommended when it is necessary
to achieve a good spectral efficiency and a considerable robustness against InterSymbol
Interference (ISI); on the contrary, in contexts where low latency and large bandwidth
support are required, a larger subcarrier spacing is preferable.

As regards the cyclic prefix, for frequencies below 6 GHz larger values are selected,
since cells are quite big and the delay spread can reach a handful of milliseconds.
When frequencies are above the 6 GHz threshold, cells have a small size that implies
the possibility to handle the delay spread issue with a relatively short cyclic prefix;
anyway, the higher frequencies exacerbate the problem of phase noise, forcing to use
higher subcarrier spaces (∆ f ).

Frame structure

The NR time-domain structure consists of a radio frame lasting 10 ms, divided into
10 subframes of 1 ms each (Figure 2.6a).
A subframe is composed by slots containing 14 OFDM symbols each. The slot duration
depends on the numerology: in fact, an OFDM symbol lasts 1

∆ f and consequently a
higher subcarrier spacing implies a shorter time slot, as Figure 2.6b shows.

(a) NR frame structure (b) NR subframe structure

Figure 2.6: 5G NR frame structure
(taken from [W23] and [W24])

Nevertheless, the increase of the subcarrier spacing causes the shortening of the
cyclic prefix, making this approach not always feasible in scenarios where a low
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latency is desired. For this reason, the standard provides an efficient alternative
solution for cases with critical latency: each NR slot can be partitioned into mini-slots,
with flexible starting position and a duration that can correspond to 7,4 or 2 OFDM
symbols. Apart from low-latency applications, this flexibility also brings benefits when
working in mmWave band: the amount of bandwidth available is abundant, due to
the employment of large ∆ f values, and many packets can be stored into few OFDM
symbols [5].

NR can operate both in Frequency Division Duplexing (FDD) and Time Division
Duplexing (TDD): at lower frequencies allocations are usually paired, that means FDD,
while at higher frequencies TDD is preferable. One key 5G technology component is
the so called dynamic TDD, defined in reference [5] as the possibility for the dynamic
assignment of time-domain resources between the uplink and downlink transmission
directions.

Figure 2.7: NR slot structure
(taken from [W22])

Figure 2.7 shows the possible configuration of NR time slots: they can
accommodate only DL symbols, only UL symbols or both of them. In order
to distinguish between Downlink, Uplink and Flexible OFDM symbols, the User
Equipment (UE) can check the Slot Format Indicator (SFI), that carries an index to a
pre-configured table storing the possible link directions for each single slot format.

As regards the frequency domain, the basic scheduling units are the so called
resource blocks. A Resource Block (RB) is defined as 12 consecutive OFDM subcarriers
in the frequency domain, as Figure 2.8 shows.
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Figure 2.8: NR frequency-time grid
(taken from [W1])

2.2.2 mmWave

Current NR specifications distinguish two frequency ranges in which 5G systems
can operate, as Table 2.2 shows.

Table 2.2: Frequency ranges from 5G specifications

Range denomination Frequency range

FR1 450 MHz - 6 GHz

FR2 24.25 GHz - 52.6 GHz

Carrier frequencies in the second range belong to the mmWave domain: in fact, the
correspondent wavelengths range from 5.7 mm to 12.4 mm, explaining the reason for
the name millimeter (mm). At these frequencies some challenges arise:

• path loss: according to Friis equation, the received power decrease with the square
of the frequency that implies 20 dB of additional power loss increasing the carrier
frequency by an order of magnitude. Indeed, this is true only if the dimension of
the antenna decreases together with the wavelength; maintaining instead the same
physical size of the antenna, for example by creating arrays of antenna elements
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(i.e. Multiple-Input Multiple-Output (MIMO)), the path loss remains constant with
the increase of the frequency;

• blockage: small wavelengths have higher penetration losses and poor diffraction
capabilities around obstacles like buildings, humans etc. For this reason, at
mmWave frequencies dual connectivity is an important feature to counteract this
blockage issue: the idea is to ensure control signaling through lower frequency
bands and fast fall-back to connectivity options that ensure a good coverage when
mmWave connections do not.

2.2.3 Massive MIMO

Massive MIMO is one of the key physical-layer technologies for 5G-based wireless
access. The main concept is to increase the number of antennas with respect to the
current MIMO systems: standard MIMO systems involve 2 or 4 antennas while massive
MIMO technology scales the number of antennas to several tens or even hundreds. In
this way very high beamforming gains are achieved and more users can be served in
parallel on the same time-frequency resources.

The concept of beamforming refers to a signal processing technique that employs
antenna arrays to provide signal transmissions or receptions with directionality. The
introduction of the Active Antenna System (AAS) allows the control of phase and
gain through active components characterizing each antenna element. As shown in
Figure 2.9, a 2D antenna array enables 3-dimensional (3D) beamforming (i.e. Full
Dimensional MIMO (FD-MIMO)), since the transmitted radio waves can be controlled
on both elevation and azimuth planes, with the additional advantage of keeping the
deployment space relatively small.
Massive MIMO offers two most important benefits:

• enhanced coverage and capacity: many terminals can be spatially multiplexed
in the same time-frequency resource, increasing the system capacity (Multi-User
Multiple-Input Multiple-Output (MU-MIMO)); in alternative, beamforming
capabilities can be exploited to provide better coverage (Single-User Multiple-
Input Multiple-Output (SU-MIMO)), better directing the signal towards the
target receiver;

• great energy efficiency: the higher gain provided by the introduction of the 2D
AAS permits a reduction of radiated power.

However, the real deployment of Massive MIMO brings several challenges:

• dimension and weight of 2-dimensional (2D) planar arrays are considerable,
limiting the deployment to high-frequency scenarios;
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• the presence of active components for each antenna element gives rise to critical
cooling issues.

Figure 2.9: 5G FD-MIMO through Massive MIMO
(taken from [W10])
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Chapter 3

Machine Learning for 5G
physical layer

This third chapter deals with the application of machine learning to wireless
communication systems. In particular, the focus is on 5G-based technologies: New
Radio wireless networks will be expected to support very high data rates and new
applications that will open the way for a radically new radio technology paradigm [13].

The authors of paper [13] identify this innovative paradigm in a machine
learning-based approach, aiming at satisfying all the diverse requirements of
Next-Generation wireless networks by means of an intelligent adaptive learning
process. In fact, as remarked in the same paper, the purpose of these new technologies
is to learn the colorful characteristics of the system under service and autonomously
determine the optimal configurations. With this in mind, future smart mobile terminals
are supposed to autonomously access the most fitting spectral bands and to select the
appropriate transmission protocol, with the support of efficient machine learning-based
algorithms which simultaneously monitor different parameters such as the spectral
efficiency, the energy consumption and the quality of service level provided [13].

Even though many studies have been started to explore all the possible ML
applications for the upper layers of wireless communication systems, reference [22]
asserts that the potential use of Deep Learning to the physical layer has been
increasingly recognized; this sounds reasonable thinking about the new features of
Next-Generation communications, such as complex scenarios, with a consequent lack
of information about the channel model, high data rates and accurate processing
requirements.

The following sections summarize a series of attempted applications of Deep
Learning algorithms to the physical layer of communication systems; particular
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attention is devoted to 5G-based communications, with an emphasis on their peculiar
characteristics that make Deep Learning a promising approach.
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3.1 Deep Learning for Wireless Physical Layer: an
introduction

In recent years, several advanced wireless applications appeared, like virtual reality,
augmented reality and Internet of things, to cite the best known examples. As the
authors of paper [22] claim, this new scenario propels the advent of 5G technology as a
solution for some specific challenges:

• very high data rates;

• low latency;

• massive connectivity.

Chapter 2 describes some enabling technologies that have been introduced in NR
systems, such as massive multi-input-multi-output, mmWave and ultra-densification
network; however, as reference [22] reports, these technologies present several
limitations, especially in complex scenarios:

• difficult channel modeling in complex scenarios: the real channel condition
and how it is captured by the mathematical model significantly impact the
communication system performance; in complex scenarios, where the channel is
full of imperfections and nonlinearities, conventional mathematical models show
quite poor performances. This raises the need for systems that are able to complete
the communication process without a defined channel model;

• block-wise optimization: conventional communication systems are developed
as a series of signal processing blocks (e.g. modulation/demodulation,
coding/decoding, detection); by optimizing each block independently, the optimal
performance for the whole communication system is not guaranteed. A different
approach, aiming at directly optimizing the entire end-to-end performance, needs
to be developed.

In this scenario, ML has regained attention for its achievements especially in
the upper layers, such as in cognitive radio, positioning and resource management;
however, some attempts at ML applications to the physical layer have been carried
out, like for example in modulation recognition, encoding and decoding, channel
estimation and equalization, and researchers believe that DL-based systems could
replace manual feature extractors, learning features automatically and flexibly adapting
the structure and the parameters of the model, with a considerable improvement of the
end-to-end performance [22].
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References [17] and [22] list some of the main reasons to support the adoption of DL
techniques:

• deep networks are very good and adaptable function approximators: they learn
the weights of the model optimizing the overall performance through a training
process, instead of requiring a rigorous mathematical description that could be
hard to extract in complex scenarios;

• DL-based algorithms work very well with large amounts of data, due to their
intrinsic nature of parallel and distributed computing, leading to a speeding up
of computation;

• DL models can overcome the block structure to have a complete view of the system
and optimize it end-to-end.

Before elaborating on some specific DL applications, it is important to highlight this
last general concept, clearly expressed in reference [17]: as long as it is possible to
design analytic algorithms able to capture real effects, DL will hardly bring significant
advantages and indeed it will just add complexity. Nevertheless, DL will be a promising
approach to rethink completely the communication system design in complex scenarios
where conventional mathematical algorithms struggle.

3.2 Some examples of Deep Learning applications to
Wireless Physical Layer

In recent years, much research has been devoted to introduce innovative Deep
Learning-based architectures into several processing blocks: the idea is to outperform
conventional communication algorithms in the emerging complex scenarios. Some
papers mentioned in the references ([17], [22], [9]) illustrate several studies that have
produced good results.

3.2.1 Deep Learning for channel estimation

In order to achieve a high-resolution channel estimation, authors of reference [24]
have developed a deep neural network for OFDM systems. The network is trained
offline under different channel conditions and it outputs the recovered input signals
without explicitly estimating the Channel State Information (CSI). In this procedure,
the transmitted symbols and the received OFDM signals are fed into the DNN, which is
trained to minimize the difference between the input and the output of the network. As
paper [24] reports, the obtained results demonstrate the ability of DNNs in learning and
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analyzing the characteristics of the wireless channel, especially when non linearities,
interference and frequency selectivity are involved. In particular, Deep Learning models
turn out to achieve performances that are comparable to traditional algorithms when
the number of pilots is large enough, but they often work better when pilots are few or
when they are affected by non-linear noise or interference.

3.2.2 Deep Learning for CSI feedback reduction

In paper [23] a deep-learning approach is adopted to achieve CSI reduction and
reconstruct the CSI for channel estimation. The DNN system is composed by an encoder
and a decoder: the encoder performs a Discrete Fourier Transform (DFT) operation
and a linearization of the transformed matrix in a vector with reduced dimension;
then the CSI is recovered by the decoder, which consists of a CNN followed by a
RefineNet. As the authors of the paper claim, the experiments demonstrate that this
DL solution can recover CSI with significantly improved reconstruction quality and
effective beamforming gain compared with existing Compressive Sensing (CS)-based
methods.

3.2.3 Deep Learning for encoding and decoding

Paper [17] shows how to represent an end-to-end communication system as a
DNN autoencoder. An autoencoder is a system that is able to represent the input
in a low-dimensional space and to reconstruct it at the output with a little error
margin. In the DNN autoencoder, the transmitter is implemented as a feedforward
NN with multiple dense layers, followed by a normalization layer. The receiver
consists of a feedforward NN but the last dense layer implements a softmax activation,
which outputs a probability vector over the set of possible messages. Finally, the
channel between transmitter and receiver is modeled by an additive noise layer.
This autoencoder is trained by a Stochastic Gradient Descent (SGD) algorithm with
cross-entropy as loss function. The authors of the paper state that simulation results
show a significant performance improvement with respect to the traditional Hamming
code, without requiring any encoder and decoder functions.

3.2.4 Deep Learning for signal classification

Paper [18] presents a data-driven model for Automatic Modulation Classification
(AMC), an appealing technique for environment and transmitter identification. The
model is based on Long Short-Term Memory (LSTM) and it learns amplitude and phase
information to classify 11 typical modulation schemes appearing in the training set.
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Performance is analyzed in scenarios with an SNR ranging between 0 and 20 dB: in this
context, the model achieves a classification accuracy of 90% on average. In the context
of low SNR a Convolutional Neural Network, with its learnable powerful filters, would
be a better solution instead.

3.2.5 Deep Learning for MIMO detection

In reference [9], the authors present a Detection Network (DetNet) model, an
emerging deep learning-based framework for MIMO detection. The strength of this
approach consists in its applicability to various models by performing a single training,
with the knowledge, however, that the choice of both the loss function and the structure
of the NN deeply influences the system performance. Typical searching algorithms can
be employed to perform MIMO detection, but the computational complexity makes
them unsuitable in several scenarios; this criticism makes the proposed DetNet an
appealing innovative technique. According to reference [9], simulation results prove
that it performs better in terms of Bit Error Rate (BER) with respect to several existing
works, including the zero forcing, approximate message passing and semidefinite
relaxation approaches.

3.3 A focus on Deep Learning for 5G Physical layer

In reference [9], the authors suggest some efficient schemes for Deep Learning-based
5G scenarios. In recent years, several appealing techniques have been developed for 5G
communication systems: non-orthogonal multiple access, Massive MIMO, mmWave
technologies and many others, as it has been thoroughly discussed in Chapter 2.
However, as the authors of [9] claim, these techniques alone are not sufficient to meet
all 5G requirements and new communication theories should be established.

Deep learning-based NOMA

Non-Orthogonal Multiple Access (NOMA) is an innovative technique introduced
to boost spectral efficiency and system capacity; its performance strongly depends on
the CSI, since interference cancellation needs an accurate knowledge of the channel
conditions. However, since the channel characteristics in multiple-user systems are very
complicated, conventional methods are incapable of capturing changes of the channel
conditions in real time. For this reason, Deep Learning-based approaches have been
attempted [8].

In the same paper, a framework that integrates LSTM and NOMA is presented;
the LSTM is a special type of Recurrent Neural Network (RNN) architecture, which
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is able to keep in memory values over intervals of arbitrary length. It is extended with
additional hidden layers, in order to improve learning and representation capabilities,
at the same time keeping the training set quite small. The proposed LSTM network
is composed of 6 hidden layers followed by Rectified Linear Unit (ReLU) layers, one
input layer processed by a Restricted Boltzmann Machine (RBM) and one output layer
processed by a sigmoid function instead.

The authors of the paper conclude that further research on NOMA should consider
the integration with DL, to take advantage from its powerful learning ability. Other
researchers indeed have followed this suggestion: in reference [9] the whole developed
NOMA system is regarded as a blackbox and a DNN is employed for approximating
the whole NOMA system, consisting in the Base Station (BS), the wireless channels, all
the users, etc..

Deep Learning-based massive MIMO

Massive MIMO could potentially achieve very high gains, but requires a perfect
CSI knowledge; this requirement has propelled the investigation on Deep Learning
performance for both high-resolution channel and direction of arrivals (DOA)
estimation and CSI reconstruction.

The approach proposed in reference [11] achieves end-to-end learning by modeling
the whole system as a DNN, which empowers the performance of the Direction of
Arrival (DOA) estimation. The channel matrix is determined by the DOA information
and the complex gain:

• the DNN framework for high-resolution DOA estimation consists of an input layer,
an encoder, a decoder and an output layer. The encoder is composed of two hidden
layers to which a ReLU activation function is applied: their role is to learn and
encode the features of the signal coming from the input layer; then a dropout
layer is adopted to counteract the overfitting issue. The decoder instead includes
a hidden layer with a ReLU activation step right after;

• for complex gain estimation the DNN learning framework for DOA estimation
is exploited; then, the noise contribution estimate is subtracted to the estimated
output signal, which can be decomposed to obtain the gain matrix.

Therefore, exploiting the results obtained in the DOA estimation process, the channel
estimation step is formulated after completing the proposed complex gain estimation
method. According to the authors, simulation results have demonstrated that the
proposed scheme can achieve better performance in terms of both DOA estimation and
tracking and high-resolution channel estimation, compared with traditional methods.
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Deep Learning-based mmWave techniques

mmWave communication scenarios are affected by ultra-high power consumption
and limited gains. To overcome these limitations, several papers, such as references
[10] and [9], propose a deep-learning mmWave Massive MIMO framework for effective
hybrid precoding, in which the selection of the precoders to achieve the optimal
decoder is regarded as a mapping relation in the deep neural network. Experiments
on these approaches have shown excellent performance in terms of Bit Error Rate and
spectrum efficiency.
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Chapter 4

A Deep Learning approach for
channel estimation in 5G systems

Channel estimation is a challenging problem in wireless systems: the transmitted
information is subject to highly random distorting effects, such as reflection, scattering,
diffraction, that considerably limit the performance of the system; moreover, the
mobility of transmitters and receivers causes rapid changes in the channel response
over time. All these factors makes the channel estimator a very sensitive block of every
wireless communication system.

The first section of this fourth chapter is dedicated to DeModulation-Reference
Signals, introduced in NR to estimate the radio channel at the receiver side for the
associated physical channel demodulation: the purpose is to clearly outline the new
5G-framework in which dedicated reference signals are used specifically for coherent
demodulation, highlighting their properties and their standardized configurations.

Given these reference signals, there exist several conventional pilot-based estimation
techniques that exploit the known-values in the time-frequency grid, corresponding to
the pilots, to derive all the unknown values of the channel response. These algorithms
transform the estimation task into an optimization problem, aiming at minimizing a
certain objective function:

• Least Squares (LS) estimator minimizes the sum of the squared differences
between the observed values and the fitted values provided by the model;

• Minimum Mean Square Error (MMSE) estimator minimizes the mean square error
of the fitted values. In general, its performance are better with respect to LS, since
it exploits the statistics of the channel and noise variance;

• Approximated Linear Minimum Mean Square Error (ALMMSE) estimator is an
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approximated linear version of the MMSE that reduces the size of the correlation
and filtering matrices.

An overview on the first two techniques is provided in the second section, with a
particular attention devoted to the low-rank 2D-MMSE Wiener filter adopted in the
New Radio simulation platform developed in Telecom Italia laboratories. To enhance
these traditional approaches many studies have supported the introduction of Deep
Learning-based solutions in the channel estimation process.

The rest of the chapter instead focuses on the application of Deep learning for
channel estimation in mobile communication systems: the third section analyses the
solution proposed in paper [21] for LTE-based systems, where the time-frequency grid
is treated as a 2D-image which is known only at the pilot positions; finally, in the fourth
section this Deep Learning-based solution is revisited and adapted to 5G scenarios,
with the final purpose of evaluating its performances compared to a more traditional
approach, illustrated in Subsection 4.2.2.
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4.1 Demodulation Reference Signals

DeModulation-Reference Signal (DM-RS) are transmitted in downlink and uplink to
enable coherent demodulation at the receiver side. In reference [5], the authors highlight
their most relevant characteristics:

• front-loaded design, enabling low latency transmissions: locating the reference
signals in the first symbols of the transmission, the receiver can compute the
channel estimate earlier, thus demodulating the received symbols on the fly,
without waiting for the end of the slot;

• support for up to 12 orthogonal ports for MIMO scenarios, by combining
Code Division Multiplexing (CDM) and Frequency Division Multiplexing (FDM)
techniques;

• support for flexible transmission duration, from 2 to 14 symbols;

• configurations with up to four resource elements per slot dedicated to DM-RS,
enabling the support of very high-speed scenarios.

4.1.1 DM-RS properties

As the authors of [5] highlight, one of the most important properties of DM-RS
is a well-focused time-domain autocorrelation: with this aim in mind, 231 − 1-length
Gold sequences are used for OFDM-based modulation. Gold codes are a family of
binary sequences with good correlation properties: in particular, their normalized
autocorrelation function can assume one of the following four values:

{1,
1
p

,
−β(N)

p
,

β(N)− 2
p

} (4.1)

where β(N) = 2
bN+2c

2 and p = 2N − 1 is the length of the Gold sequence. Similarly, the
cross-correlation function can assume the values

{ 1
p

,
−β(N)

p
,
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p

} (4.2)

So, for any pair of Gold sequences in the same family, i.e. generated from the same
pair of m-sequences, the cross-correlation function presents low values, allowing to deal
with more users in the system: in fact, these codes are used on top of pseudo-random
sequences to assure orthogonality in Code Division Multiple Access (CDMA) scenarios.
The underlying pseudo-random sequences are generated across all the Common
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Resource Blocks (CRBs) in the frequency-domain but transmitted only in the resource
blocks allocated for data transmission, where channel estimation is needed [5]. As the
authors remark, the reason for generating the Reference Signals (RS) sequences across
all the resource blocks is to guarantee a perfect alignment between the underlying
sequences that are used for devices scheduled on overlapping time-frequency resources
in MU-MIMO scenarios: if this condition is not fulfilled, reference signals for different
co-scheduled users do not satisfy the orthogonality property.

4.1.2 Time-domain configurations of DM-RS

The standard includes two different time-domain structures, characterized by a
different location of the first DM-RS symbol [5]:

• mapping Type A: the first DM-RS is located in the OFDM symbol l0 = 2 or l0 = 3
within the time slot. This type of mapping targets the cases where transmitted data
occupy most of the slot;

• mapping Type B: the first DM-RS is located in the first OFDM symbol allocated
to data. It is important to observe that, differently from the previous mapping
scenario, in this case the DM-RS starting position is not given relatively to the slot
boundaries, but relatively to data location. This kind of mapping is intended for
short transmissions, occupying a small portion of the time slot and enabling very
low latency transmissions.

Although the use of front-loaded reference signals successfully meets the low-latency
requirements of NR realities, another problem needs to be solved: when the channel
varies rapidly, such as in high-speed scenarios, the front-loaded configuration alone
is not able to capture the variations characterizing the channel. To support these
challenging scenarios, the NR standard includes the possibility of configuring up
to three additional DM-RS resources in a single time slot: the receiver can exploit
the additional DM-RS occasions for the coherent channel estimation, performing an
interpolation operation between the distinct DM-RS points and improving, in this
way, the estimation quality. It is worth noting that, differently from what happens in
LTE, NR standard does not allow interslot interpolation, since different slots could
be allocated to different transmissions, with different destinations and different beam
directions [5].
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Figure 4.1: Time-domain allocations for DM-RS mapping Type A
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Figure 4.2: Time-domain allocations for DM-RS mapping Type B
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The standard includes different allocation schemes for DM-RS, with the possibility
of introducing additional DM-RS symbols (double-symbol configuration) basically to
increase the number of scheduled antenna ports. In order to separate reference signals
related to different antenna ports, a combination of different multiplexing techniques
is exploited: Code Division Multiplexing (CDM), Frquency Division Multiplexing
(FDM) and, in case of double-symbol configuration, Time Division Multiplexing (TDM).
Basing on DM-RS allocation in the frequency-domain and on the maximum number of
configurable orthogonal reference signals, two types of DM-RS can be distinguished,
DM-RS Type 1 and DM-RS Type 2.

DM-RS Type 1

As Figure 4.3 shows, this type of DM-RS can provide up to four orthogonal signals
in single-symbol configuration and up to eight orthogonal signals in double-symbol
configuration. In single-symbol configuration, antenna ports 0 and 2 are allocated
on even-numbered subcarriers in the frequency domain and they are multiplexed in
code-division (CDM), by multiplying the underlying pseudo random sequence with
different orthogonal sequences of length 2 in the frequency domain: in this way,
reference signals corresponding to antenna port 0 turns to be orthogonal to the ones
corresponding to antenna port 2. With the same logic, antenna port 1 and 3 use the same
subcarriers (odd-numbered) but different length-2 orthogonal sequences, resulting in
a code-domain separation. In general, antenna ports that are allocated on the same
subcarriers and are separated in code-domain form a Code Division Multiplexing
group (CDM group); this means that antenna ports are separated in the code-domain
within the CDM group and in the frequency-domain between CDM groups.

Double-symbol configuration is adopted when more than four orthogonal antenna
ports are needed: as it is clarified in reference [5], two consecutive OFDM symbols are
allocated, so that a length-2 orthogonal sequence can be used to extend the code-domain
separation to also include the time domain, doubling the total number of available
orthogonal sequences with respect to single-symbol configuration.

DM-RS Type 2

These type of reference signals present some differences with respect to the DM-RS
Type 1, as Figure 4.4 shows: first of all, each CDM group consists of two pairs of two
consecutive subcarriers, instead of one as in Type 1; then, over the pair of subcarriers an
orthogonal sequence of length 2 is used to multiplex in the code-domain all the antenna
ports belonging to the same CDM group. As a consequence of this, DM-RS Type 2
can provide up to six orthogonal signals in single-symbol configuration and up to
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twelve orthogonal signals in double-symbol configuration; in fact, since each resource
block contains 12 subcarriers, a maximum of three CDM groups can be obtained using
one single OFDM symbol, resulting in a maximum of six orthogonal antenna ports.
If instead a second symbol is allocated and a 2-length sequence is introduced in the
time-domain, the maximum number of orthogonal antenna ports is doubled.

The authors of book [5] provide a remarkable observation: while Type 1 is denser
in the frequency domain, Type 2 trades the frequency-domain density for a larger
multiplexing capacity, that means a larger number of orthogonal reference signals. This
makes DM-RS Type 2 more suitable to support MU-MIMO scenarios with simultaneous
transmission to a large number of devices.
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Figure 4.3: DM-RS Type 1
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Figure 4.4: DM-RS Type 2
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4.1.3 Multiplexing between DM-RS and data

The reference signal structure is configured based on a combination of dynamic
scheduling decisions, communicated to the intended device through the Downlink
Channel Information (DCI), and higher-layer configuration [5]. The DCI carries
information about:

• the DM-RS ports assigned to the device;

• the number of consecutive symbol configured for DM-RS (single-symbol or
double-single configuration);

• the presence of co-scheduled DM-RS CDM groups for other devices in MU-MIMO
scenarios: this information allows the device to map the data around both its
own reference signals and the reference signals allocated for other devices. As
a consequence, both a good degree of dynamism in changing the number of
co-scheduled users and the exploitation of the resource elements of unused CDM
groups for Physical Downlink Shared CHannel (PDSCH) data transmission are
enabled;

• the existence of multiple spatially-multiplexed layers for the same device in
SU-MIMO scenarios: to avoid interlayer interference for the DM-RS, each layer
is prevented from occupying resource elements intended to another CDM group
of the same device;

• the number of DM-RS CDM groups not used for PDSCH data transmission, used
to determine the number of resource elements reserved for DM-RS.

DCI format 1_1 is used for the scheduling of PDSCH in one cell: it contains a field of
4 bits for DM-RS port assignment. The table in Figure 4.5 reports the relation between
the number of CDM groups and DM-RS ports reserved for reference signals and the
value assumed by the field in the DCI, for DM-RS Type 1: the number of CDM groups
without data can assume values 1, 2, and 3, which refers to CDM groups {0}, {0,1},
and {0, 1, 2} respectively, while the column of DM-RS ports reports the indexes of the
antenna ports assigned to the device.
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Figure 4.5: DM-RS port assignment through DCI format1_1 field for Type 1
(taken from [2])

4.2 Pilot-based channel estimation algorithms for
wireless OFDM systems

In coherent OFDM systems, channel estimation is a fundamental block of the receiver
design. Before reaching the receiver side, information passes through the radio channel,
which distorts the transmitted data: in order to correctly demodulate the useful signal,
the effect of the wireless channel must be estimated and compensated.

Pilot-based channel estimation techniques are based on the multiplexing of pilots
symbols (i.e. known symbols) into the transmitted data: these symbols are scattered
on the time-frequency grid and the channel attenuation in neighboring positions can be
recovered through a two-dimensional interpolation.
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4.2.1 Channel estimators: notation and general features

Paper [20] identifies two main classes of estimators:

• two-dimensional estimators: the complexity of these estimators is usually quite
large;

• separable estimators: to reduce the complexity in multidimensional signal
processing, separable filters are often adopted.

Since these types of estimators are linear, it sounds reasonable to compare their
complexity on the basis of the average number of multiplications per estimated
attenuation [20].

Before exploring these different solutions, it is necessary to introduce the simple
notation adopted by the author of the paper. The channel attenuation values estimated
at pilot positions can be denoted as

pk,l =
yk,l

xk,l
(4.3)

where yk,l is the received signal at subcarrier k in the l-th OFDM symbol, while xk,l

is the corresponding transmitted pilot. hk,l indicate the final estimates of the channel
attenuation values, each one computed as the linear combination of a set of pk,l ; the set
of pilots which contribute to the estimation is determined by the particular estimator
used.

The minimum mean-squared error estimator of h is

ĥ = RhpR−1
pp p (4.4)

where the vector h contains the attenuation values that must be estimated, the vector
p contains the channel estimates at pilot positions, Rhp is the cross-covariance matrix
between p and h and Rpp is the auto-covariance matrix of p.

Separable filters: Least Squares technique

Since 2D filters are generally characterized by large computational complexity, a
good trade-off between performance and complexity could be represented by the outer
product of two separate 1-dimensional (1D) filters in the time and frequency directions,
with a significantly reduction in the number of multiplication per used pilot [20]:
basically, after a 1D filter is applied in the frequency direction, a 1D filter is applied
in the time direction to complete the interpolation over the whole time-frequency grid.
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Time Domain Least Squares algorithm, implemented in the LTE link level
simulation platform developed in Telecom Italia laboratories, is an example of channel
estimation technique based on separable filters. In fact, with LS, the interpolation
is done independently in frequency and time: a first interpolation between pilot
subcarriers in frequency domain is followed by a linear interpolation over subsequent
OFDM symbols. If we consider an OFDM baseband system, where X(k) and Y(k) are
the transmitted and received symbols in frequency-domain respectively, g(τ) is the
Channel Impulse Response (CIR) and w(t) is sum of thermal noise and interference,
the received signal in frequency-domain can be expressed as

Y = XFg + W (4.5)

where X is a matrix with the transmitted symbols X(0), X(1), ..., X(N − 1) on the main
diagonal, F is the DFT matrix of size N × N and H = Fg is the frequency response
Channel Frequency Response (CFR) of the wireless channel.

The LS procedure includes several steps, performed separately for each OFDM
symbol containing pilots:

• received pilot symbols are compensated in frequency-domain and converted to the
time-domain by means of an Inverse Fast Fourier Transform (IFFT) operation;

• the resulting CIR is then filtered by a matrix QLS;

• the interpolated CFR (Ĥ(n, k)) is finally obtained applying an Fast Fourier
Transform (FFT) operation to the filtered CIR.

At this point, the output consists of an estimate of the channel frequency response
computed on each frequency subchannel but only over the OFDM symbols that carry
some pilots: this means that a further linear interpolation is performed in order to
estimate the CFR also in the OFDM symbols without pilots. Figure 4.6 summarizes
the estimation process.

The filtering function is expressed by

Ĥ = FQLSFH X H
p Y (4.6)

The filtering matrix QLS is computed as

QLS = (T H X H
p XpT)−1 (4.7)

where T consists of the first L columns of the DFT matrix F: this means that CIR filtering
considers only the first L taps with larger energy and excludes low energy taps of g(τ),
with a consequent improvement of Mean Square Error (MSE) performance.
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Figure 4.6: Time Domain LS estimation
(taken from internal)

2D filters estimators: 2D-MMSE Wiener filter

In OFDM systems, the optimal linear channel estimator is the one that minimizes
the MSE between the estimated CFR and the original one. It is possible to demonstrate
that the optimal linear estimator is a 2D-MMSE Wiener filter, which combines the set
of K surrounding pilots to estimate the channel attenuation in a specific position on
the time-frequency grid, where K is the maximum number of multiplications imposed
by complexity requirements; indeed, this estimation algorithm basically consists of a
two-dimensional convolution operation. Figure 4.7 shows an example of how the
K = 4 nearest pilots (in red) are selected for the estimation of an attenuation value (X).

Figure 4.7: 2D FIR Wiener filter applied to an LTE signal
(taken from internal paper)
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At the receiver side, the CFR is known only in correspondence of the pilots:
since for coherent demodulation the whole channel attenuation must be computed,
the remaining Ĥ(n, k) have to be estimated by interpolating the known Ĥ(np, kp)

coefficients:
Ĥ(n, k) = ∑

(np ,kp)∈P
wn,k

np ,kp
Ĥ(np, kp) (4.8)

where P is the set of the positions that accommodate the nearest pilots with respect
to the position (n, k). The filter coefficients wn,k

np ,kp
are computed taking into account

the autocorrelation function RHH(∆n, ∆k) = E{H(n, k)H∗(n − ∆n, k − ∆k)}: the idea is
that the more a pilot is far from the position to estimate, the less it contributes to the
estimation, since the correlation between the pilot symbol and the estimated symbol is
low.

To derive the solution to the equation that determines the weights of the 2D-MMSE
filter, it is necessary to define some variables:

• p is a vector of size L × 1 containing the L pilot symbols which are taken into
account; L is generally smaller than the total number of transmitted pilots, to
reduce the complexity of the estimation;

• ĥ is a vector of size M × 1 where M represents the number of attenuation values
that have to be estimated;

• Rhp = E{hpH} is the cross-covariance matrix between the CFR estimated in
positions (n, k), without pilot, and the CFR estimated in pilot positions (np, kp);

• Rpp = E{ppH} is the auto-covariance matrix of p.

The solution of the equation can be expressed as

ĥ = RhpR−1
pp p (4.9)

Matrix Rhp can be calculated as

Rhp(i, j) = E{Hn,kH∗
np ,kp

} = Rt(n − np)R f (k − kp) (4.10)

where = Rt(n − np) and R f (k − kp) are the autocorrelation of the CFR in time and
frequency domain respectively. In the same way, matrix Rhp can be calculated as

Rpp(i, j) = E{Hnpa ,kpa H∗
npb ,kpb

} = Rt(npa − npb)R f (kpa − kpb) + σ2
nδ(npa − npb, kpa − kpb)

(4.11)
where the i-th element of p is in position (npa, kpa) and the j-th element is in position
(npb, kpb). The term σ2

nδ(npa − npb, kpa − kpb) represents the noise plus interference
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contribution, added on the diagonal of the matrix Rpp.
It is important to observe that matrices Rpp and Rhp can be computed just once for

different delay spreads and different doppler frequencies and so the complexity of the
algorithm results decreased.

4.2.2 2D-MMSE Wiener filter with reduced complexity

The general version of the 2D-MMSE estimator is typically too complex to be
actually implemented: for this reason, the NR link level simulation platform developed
in Telecom Italia laboratories adopts a simplified 2D Wiener filter. To reduce the
complexity of the original algorithm, it is possible to implement a low-rank 2D-MMSE
filter, that reduces the rank of the 2D filter by reducing the set P: in other words,
only the nearest pilots are used to estimate a certain value of the channel attenuation.
In practice, this can be realized by means of a sliding window that includes only
the surrounding pilot symbols in the grid. Clearly, the window size determines the
accuracy of the estimation: a smaller window implies a significant reduction of the
algorithm complexity, at the cost of a coarser accuracy. The appropriate window size
depends on the channel characteristics, in particular on the channel delay spread: in
case of a high delay spread, channel a small window has to be chosen, since the
channel varies fast and thus the correlation between a certain attenuation value and
the surrounding pilots decreases faster with the distance; on the contrary, when the
channel varies slowly, the contribution of further pilots may be still important for the
estimation. For implementation reasons, some limitations are imposed to the choice of
the window size:

• the window size in the frequency-domain must be an odd number of Physical
Resource Blocks (PRBs);

• the window size in the time-domain is fixed to 1 Transmission Time Interval (TTI).

Figure 4.8 shows an example of low-rank 2D-MMSE filter with sliding window size
equal to 3.

The most complex operation of the algorithm is the inversion of the autocorrelation
matrix Rpp. To solve this complexity issue, the exact inverse matrix computation can be
substituted by an iterative procedure which exploits the Conjugate Gradient method:
with this alternative, complexity is significantly reduced but a loss of accuracy occurs,
making this approach suitable only for high Signal to Noise plus Interference Ratio
(SINR) scenarios. This low-rank 2D-MMSE algorithm is used as a reference point for
the performance evaluation of the Deep Learning-based channel estimator that we have
developed and that will be described in the following sections.
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Figure 4.8: Low-rank 2D-MMSE Wiener filter
(taken from internal paper)

4.3 Deep Learning-based channel estimation

To enhance the traditional estimators described in the previous section, many
researches have proposed the introduction of Deep Learning-based algorithms in the
channel estimation process. Among all the studies on this topic, one of the most
interesting and complete is certainly presented in paper [21] and will be analyzed in
this section.

The idea of the authors is to treat the time-frequency grid of the channel response as
a Low Resolution (LR) 2D-image, whose pixels are known only at the pilot positions. A
Deep Learning-based approach is then adopted, consisting of two different phases:

• an image Super-Resolution (SR) algorithm, that enhances the resolution of the
LR input image and transforms it into an High Resolution (HR), by estimating the
channel response values at all positions without pilots;

• an Image Restoration (IR) algorithm, that removes the noise effect.

For SR and IR implementation, two recently developed Convolutional Neural
Networks are used:

• Super-Resolution Convolutional Neural Network (SRCNN): this network is
proposed in paper [7] with the purpose of mapping a LR into an HR image;

• Denoising Convolutional Neural Network (DnCNN): this network is proposed
in paper [25] to remove or reduce the noise affecting an image.
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4.3.1 Image Super-Resolution Convolutional Neural Network

Paper [7] proposes a deep CNN that takes a low-resolution image as the input and
outputs the high-resolution version. Furthermore, the authors establish a relationship
between the Deep Learning-based technique and the traditional Sparse-Coding
(SC)-based method. A typical SC algorithm involves overlapping patches cropped
from the input image that are pre-processed and encoded through a low-resolution
dictionary, obtaining sparse coefficients. Then, a high-resolution dictionary maps
these coefficients into high-resolution patches that produce the final output by
means of a weighted averaging operation. This series of steps are equivalent to a
deep convolutional neural network, named Super-Resolution Convolutional Neural
Network in which:

• patch extraction and aggregation are formulated as convolutional layers;

• dictionaries are not explicitly learned, since they are implicitly achieved through
hidden layers.

The only pre-processing operation foreseen is an interpolation of the input
low-resolution image, in order to upscale it to the desired size. In reference [7],
the authors denote the interpolated low-resolution image with Y , the ground truth
high-resolution image with X and the mapping operation with F. The mapping
procedure conceptually consists of three steps, described in [7]:

1. patch extraction and representation: several patches are extracted form the
low-resolution image and mapped onto high-dimensional vectors, whose number
of dimensions corresponds to the number of feature maps collected;

2. non-linear mapping: the high-dimensional vectors output by the previous step are
mapped onto other high-dimensional vectors through a non-linear operation. The
resulting vectors are representations of high-resolution patches and store another
set of feature maps;

3. reconstruction: in this last phase, the final high-resolution image is generated
aggregating the high-resolution patch-wise representations.

Patch extraction and representation

This first step consists in extracting patches and representing them through a set of
bases such as PCA or Discrete Cosine Transform (DCT), which means convolving the
image by a set of filters. The authors of the paper formulate this first layer (F1) as

F1(Y) = max(0, W1 ∗ Y + B1) (4.12)
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where W1 corresponds to n1 filters of support c × f1 × f1, being c the number of
channels of the input image and f1 the spatial size of the filter, and B1 consists of an
n1-dimensional vector whose elements are associated with the filters. Summarizing, W1

applies n1 convolution operations (indicated by "∗") on the input image, each of kernel
size equal to the support of the filters. At this point, the output for each extracted patch
consists of n1 feature maps, to which a ReLU operation is performed.

Non-linear mapping

In the second step, each of the n1-dimensional feature vectors is mapped into an
n2-dimensional one, equivalent to applying n2 filters with support 1 × 1. In paper [7],
this second layer is formalized as follow:

F2(Y) = max(0, W2 ∗ F1(Y) + B2) (4.13)

where W2 consists of n2 filters of size n1 × f2 × f2, while B2 is a n2-dimensional
vector. Each of the n2-dimensional output vectors is nothing but a high-resolution
representation of a patch.

Reconstruction

The predicted overlapping high-resolution patches are typically averaged to obtain
the final output image [7]; this averaging operation is equivalent to a convolution by a
predefined filter on a set of feature maps. For this reason, the third and last layer can be
expressed as

F3(Y) = W3 ∗ F2(Y) + B3 (4.14)

where W3 represents c filters of size n2 × f3 × f3 and B3 is a c-dimensional vector.

Table 4.1: SRCNN hyperparameters typical setting

f1 f2 f3 n1 n2

9 1 5 64 32

These three operative layers are put together to build a convolutional neural
network. As regards the hyperparameters setting, the authors propose a typical and
basic setting collected in Table 4.1. Some remarks made by the authors of [7] can
be useful to understand this configuration: choosing the filter size of the last layer
( f3) smaller than that of the first layer ( f1), the model relies more on the central
part of the high-resolution patch; choosing n2 < n1 sounds reasonable since the
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n2-dimensional high-resolution patch representations are expected to be sparser than
the n1-dimensional outputs of the first layer.

Training process

Learning the end-to-end mapping function F consists in learning the network
parameters ΘS = {W1, W2, W3, B1, B2, B3}: this is essentially an optimization problem,
whose aim is to minimize the loss between the reconstructed images F(Yi; Θ) and the
corresponding true high-resolution images Xi. The loss function used for the model
proposed in paper [21] is the MSE, computed as

L(ΘS) =
1
n

n

∑
i=1

||F(Yi; Θ)− Xi||2 (4.15)

where n is the number of training samples. In training process, this loss function is
minimized through the SGD algorithm with standard backpropagation.

4.3.2 Image Denoising Convolutional Neural Network

The model proposed in paper [25], referred to as Denoising Convolutional Neural
Network, is able to handle Gaussian denoising with unknown noise level; it isolates the
noise in the noisy input image by means of a feed-forward convolutional network. As
explained by the authors, this network is designed to predict not the denoised image x̂
but the residual image v̂, defined as the difference between the noisy observation and
the latent clean image: in other words, in the hidden layers of the network the latent
clean image is implicitly removed. Also batch normalization is introduced to enhance
the training performance, since residual learning and batch normalization can benefit
from each other, with a consequent speeding up in training and an improvement of
denoising performances [25].

Residual Learning

Residual learning is a technique that faces the problem of accuracy degradation with
the increasing of the network depth: in fact, since the residual mapping is much easier
to be learned with respect to the original mapping, extremely deep CNNs can be easily
trained [25]. As the authors of the paper point out, without residual learning, the input
intensity and the convolutional features are correlated with their neighbored ones and
the distribution of the layer inputs also depends on the content of the images in each
training batch. With the use of residual learning instead, which implies the removal
of the latent clean image, the inputs at each layer are characterized by a Gaussian
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distribution, a lower correlation and a negligible relationship with the image content
[25].

Batch Normalization

Batch normalization is an efficient solution to the internal covariate shift, i.e. changes
in the distributions of internal non-linearity inputs during training [25]. The covariate
shift is a consequence of the mini-batch gradient descent: mini-batch SGD is a trade-off
between Stochastic Gradient Descent (SGD) and Batch Gradient Descent (BGD) [W17],
since the cost function, and therefore the gradient, are averaged over a small number of
samples (around 10-500), while the SGD batch size is equal to 1 sample and the BGD
size corresponds to all the training samples [W7] . As the authors of reference [25] state,
batch normalization allows for fast training, better performances and lower sensitivity
to initialization.

A DnCNN with depth D is characterized by three different types of layers:

• the first layer, consisting of a convolutional layer followed by a ReLU: this layer
generates 64 feature maps from 64 filters of size 3× 3× c, where c is the number of
image channels; the ReLU is then employed for nonlinearity;

• layers from 2 to D − 1, consisting each of a convolutional layer followed by a batch
normalization layer and a ReLU: these layers adopt 64 filters of size 3 × 3 × 64 ;

• the last layer, consisting simply of a convolutional layer with c filters of size 3 ×
3 × 64.

Training process

The input of the DnCNN is a noisy image y = x + v and the network aims at
learning the mapping function R(Y) = v that predict the residual image with the
minimum error. Since x = y − R(y), the loss function selected for the training process
is the MSE between the desired residual images and the estimated ones, formulated in
[25] as

L(Θ) =
1

2N

N

∑
i=1

||R(y; Θ)− (yi − xi)||2F (4.16)

where {(yi, xi)}N
i=1 are the N noisy-clean training image patch pairs and Θ represents

the set of learnable parameters.
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4.3.3 ChannelNet for LTE

The authors of paper [21] propose a pipeline for DL-based channel estimation, called
ChannelNet, with the purpose of estimating the time-frequency response matrix H
characterizing the link between a single transmitter and a single receiver antenna (i.e.
Single-Input Single-Output (SISO) channel). Since the matrix H has complex values,
it is represented as two 2D-images, one for the real values and one for the imaginary
values. The values estimated at the pilot locations ĥp are considered as the LR and
noisy version of the channel image which must be mapped to the HR version:

• first, an SRCNN network takes as input the low-resolution interpolated images
(real and imaginary part) and estimates the unknown values of the channel
response matrix H;

• then, a DnCNN implementation, cascaded with the SRCNN, removes the noise
from the estimated images.

Training process

The authors of the paper denote the set of trainable parameters as Θ = {ΘS, ΘD},
where ΘS and ΘD represent the sets of parameters relative to the SRCNN and the
DnCNN respectively. The input to the ChannelNet is represented by the pilot values
vector ĥp, that is interpolated and then passed to the SRCNN input layer. The final
output instead is denoted as Ĥ and it can be expressed as

Ĥ = f (Θ; ĥp) = fD( fS(ΘS; ĥp); ΘD) (4.17)

where fS and fD represent the image Super-Resolution and Image Reconstruction
functions, respectively.

The total loss function is the MSE between the estimated and actual channel
response, computed as follows:

C =
1

||T|| ∑
ĥp∈T

|| f (Θ; ĥp)− H||2 (4.18)

where ||T|| corresponds to the size of the training set. Actually, the authors simplify the
training process dividing it in two stages:

• in the first stage, the loss of the SRCNN network is minimized:

C1 =
1

||T|| ∑
ĥp∈T

||Z − H||2 (4.19)
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being Z = fS(ΘS; ĥp) the output of the SRCNN network.

• in the second stage, the weights learned by the SRCNN are considered fixed while
the parameters of the DnCNN network are trained by minimizing the loss function
C2 expressed as:

C2 =
1

||T|| ∑
ĥp∈T

||Ĥ − H||2 (4.20)

where Ĥ = fD(Z; ΘD) is the output of the DnCNN network, while Z is the output
of the SRCNN and the input of the DnCNN.

In paper [21], some observations are reported about the channel conditions in which
the training process is performed: through their experiments, the authors determine
that the set of learned parameters Θ is dependent on the Signal-to-Noise Ratio (SNR)
value. In other words, the ChannelNet should be re-trained each time the SNR
value changes but, being the SNR a continuous value, this approach would be clearly
impracticable. Anyway, experiments show that good performances are achieved as long
as the SNR varies in a small range of values.

Simulation results

For model simulations, the authors of reference [21] consider a SISO channel
configuration, evaluating the MSE over a range of SNR values. For channel modeling
and pilot transmission, the LTE simulator developed by the university of Vienna,
named Vienna LTE-Advanced (LTE-A) simulator, is used. The DL-based scheme is
implemented using Tensorflow and Keras.

Table 4.2: ChannelNet hyperparameters setting

Hyperparameter Configured value

learning rate 0.001

batch size 128

iterations for SRCNN 300

iterations for DnCNN 200

training samples 32000

validation samples 4000

testing samples 4000

For both SRCNN and DnCNN networks the configured hyperparameters are
reported in Table 4.2. Based on LTE standard, simulation frames consist of 14 time
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slots and 72 subcarriers. As regards the wireless channel model, Vehicular-A (VehA) and
SUI5, which is a model with long delay spread, are considered, with carrier frequency
2.1 GHz, bandwidth equal to 1.6 MHz and user speed of 50 km/h.

For the VehA channel model, the authors compare the accuracy of channel estimation
obtained with the proposed DL-based method and the accuracy obtained with three
traditional estimators:

• ideal MMSE: clearly this algorithm shows the best performance and represents a
lower bound in terms of MSE; however it requires a full knowledge of the channel
statistics and this is not a realistic assumption in practical applications;

• estimated MMSE: this algorithm instead estimates the channel statistics (in
particular the correlation matrix) based on the received signals;

• ideal ALMMSE: still assuming a full knowledge of channel statistics, this
algorithm tries to approximate the ideal MMSE technique.

For their experiments, the authors train one ChannelNet model at SNR equal to 12 dB
(denoted by deep low-SNR) and one model at SNR equal to 22 dB (denoted by deep
high-SNR). Then, they divide the SNR range into two regions:

• low-SNR region: in this case the channel is estimated adopting the deep low-SNR
network;

• high-SNR region: in this case the channel is estimated adopting the deep high-SNR
network.

When SNR goes beyond 22 dB, the deep high-SNR performances start degrading and
a third trained model would be necessary. Although, at SNR values below 20 dB,
simulation results show that ChannelNet models achieve performances comparable
with the ideal MMSE but performs better than the ideal ALMMSE and estimated
MMSE.

As regards the SUI5 channel model, which is definitely more complex than the
VehA model, the situation is different: for SNR values above 5 dB, ideal ALMMSE and
estimated MMSE perform really poorly, while the proposed ChannelNet model still
achieves acceptable results.

In short, simulation results presented in paper [21] demonstrate that DL-based
techniques are highly competitive instruments for channel estimation purposes. For
this reason, in Section 4.5 we will investigate a DL-based solution, inspired by the
ChannelNet model just illustrated, but moving to 5G scenarios. However, before
describing our experiments and commenting the results obtained, it is fundamental to
specify the framework in which simulations have been performed.
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4.4 NR Link Simulator: a focus on the channel model

For all the experiments conducted and described in this thesis, a software NR Link
Simulator is used. This simulator has been developed in Telecom Italia laboratories
with an engine implemented in MATLAB® and some blocks, that are particularly critical
in terms of execution speed, implemented in C language and linked to the MATLAB
engine via MEX. The purpose is to model a radio interface which is compliant with 3GPP
specification and to evaluate the link level performances of 5G-based point-to-point
communications; as it is a link layer simulator, it is limited to scenarios with a single
NR base station (gNodeB) and a single UE, even if multiple antennas can be involved
(i.e. SU-MIMO).

The key element of this simulation framework is clearly the channel model: for a
NR-compliant link simulator, the 3GPP RAN WG4 group proposes two options [1]:

• Tapped Delay Line (TDL): for this channel model, the correlation between
different antennas is defined statically by a correlation matrix. The TDL model
is based on the description of the impulse response of the channel;

• Cluster Delay Line (CDL): with respect to TDL, this channel model allows a better
representation of beamforming, since the direction of the signal in the space is
modeled; in fact, the model is based on the description of the main departure and
arrival directions of the signal in the space and the number of clusters corresponds
to the number of channel reflections. However, the antenna correlation is not
explicitly defined, indeed it depends on the array geometry and on the channel
spread.

The CDL channel model is adopted for all the trials presented in this thesis and for this
reason it can be useful to dedicate the following subsection to a detailed description of
the model.

4.4.1 CDL channel model

The CDL model is a combination of M Non-Line Of Sight (NLOS) rays and one
Line Of Sight (LOS) ray if present; all these rays are defined through a 3D geometric
description based on angles (θ, φ) of arrival and departure.

One important feature of the model is that the channel has to maintain the same
unitary power of the input signal: this is done by applying a normalization factor β,
which guarantees the same output power as measured in input. The normalization
scheme is illustrated in Figure 4.9.
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Figure 4.9: Power normalization for CDL channel model in link simulator

Geometric description

The geometric description of the model requires the definition of both the position in
space and the geometry of the gNodeB and UE antenna arrays. In Telecom Italia NR link
simulator, the gNodeB is equipped with a 2D antenna, while the UE is provided with
a linear antenna array. All this information is derived from two .txt files: bsElements.txt
and ueElements.txt for gNodeB and UE antenna systems respectively. Figure 4.10
provides an example of the .txt files structure and shows the corresponding spatial
configuration of the antenna systems.

Figure 4.10: Example of bsElements.txt and ueElements.txt structure

As it is possible to observe in the figure, the UE linear array is placed along the
y-axis, while the gNodeB is located in the xz-plane. Moreover, it is important to specify
that each antenna element is dual-polarized so that in a 8 × 4 MIMO configuration only
4 antenna elements in transmission and 2 antenna elements in reception are required.
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Model parameters

The parameters fixed by the model are:

• the element distance on both the horizontal and the vertical plane. By default, it
is set to half of the wavelength (0.5λ); when increasing or reducing it, the system
correlation is proportionally increased or reduced;

• the UE height with respect to the xy-plane;

• the gNodeB height with respect to the xy-plane;

• the main angle of arrival in azimuth and elevation;

• the specific channel profile, since five different CDL channel types are defined;

• the delay profile, which determines the scaling factor for the time of arrival of each
cluster signal, this way creating a shorter or longer delay spread;

• the correlation type, that reduces or increases the angle spread at the gNodeB or at
the UE;

• the UE travel direction, which determines the direction in which the terminal is
moving with respect to the direction of arrival of the signal and thus impacts on
the Doppler effect;

• the UE travel speed, that sets the speed at which the terminal is moving and
impacts on the channel correlation in time-domain;

Among the five different types of CDL supported, three are specific for NLOS
transmissions:

• CDL-A;

• CDL-B: this profile can be used for sub 6 GHz frequency, where LOS is not
mandatory. A characterizing property is that the first path in time is also the
strongest one;

• CDL-C.

The other two are instead adopted for LOS transmissions:

• CDL-D: this profile can be used for frequencies above 6 GHz, where LOS is
mandatory. As for CDL-B, the first path in time is also the strongest one;
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• CDL-E.

For all the experiments that will be presented later, the CDL-B profile is selected, with
the working frequency set to 3.64 GHz.

Also regarding the delay spread profile, five different types are supported by the
CDL channel model:

• very short;

• short;

• nominal;

• long;

• very long.

The simulation results presented in the following pages are obtained by configuring a
nominal delay spread.

Three types of correlation for angle departure spread are supported both at the
gNodeB and at the UE side:

• low;

• medium;

• high.

For each CDL model, the model defines the Angle Spread (AS) values in azimuth and
elevation, measured in [1] and reported in Table 4.3.

Table 4.3: Angle Spread values for CDL profiles

CDL model ASmodel [deg]

ASD ASA ZSD ZSA

CDL-A 73.7 85.3 28.6 21.1

CDL-B 41.6 59.3 6.0 10.4

CDL-C 39.1 71.1 4.1 10.4

CDL-D 19.0 21.1 3.0 1.9

CDL-E 13.2 37.6 1.5 2.5

ASD and ASA represent the azimuth angle spread of departure and arrival
respectively, while ZSD and ZSA concern the elevation plane. These angle direction

62



4.5. A CHANNELNET MODEL FOR NEW RADIO

values can be modified during the simulations according to the equation below:

Φn,scaled =
ASdesired
ASmodel

(Φn,model , µΦ,model) + µΦ,desired (4.21)

where ASdesired represents the desired values of angle direction, according to the
configured correlation profile.

At this point, there are some important observations to make:

• the correlation of the channel strongly depends on the CDL profile chosen: CDL-B
profile shows better un-correlation performance with respect to CDL-D;

• the distance between the antenna elements strongly impacts on the channel
correlation: the more distance increases, the more uncorrelated the antenna
elements become;

• as the correlation between the antennas increases, a consequent improvement
of beamforming performance is progressively achieved. On the other hand,
increasing the correlation between antennas, the spatial multiplexing gain is
reduced; one approach to improve spatial multiplexing performance can consist
in transmitting the signal only on a subset of the antenna elements.

4.5 A ChannelNet model for New Radio

The NR link simulator presented in the previous section is the instrument we used to
explore new DL applications in 5G scenarios. Specifically, in this section we introduce
a channel estimation solution inspired by the ChannelNet model presented in Section
4.3. Our approach, named NR-ChannelNet, maintains substantially the same structure
of the CNN illustrated in paper [21], but it introduces some variations in the training
procedure and it attempts at generalizing the model to multiple use cases:

• first of all, we try to make the model applicable also to MIMO scenarios, differently
from the work proposed in reference [21] which focuses only on the channel matrix
along a single transmitter/receiver antenna pair;

• in addition, we try to enrich our training datasets by performing link simulations
at different levels of SINR: instead of fixing two values of SINR for the training
process, we change it with a finer granularity, with the purpose of obtaining
models with better performances also in scenarios where the quality of the channel
significantly oscillates;
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• then, we further keep distance from the training approach described in reference
[21], analyzing an alternative method that differs in the way real and imaginary
parts are processed: the idea comes from another paper, [23], in which the authors
suggest a double-channel scheme. Finally, the results obtained with this alternative
approach, illustrated in the following pages, are compared with the ones obtained
by applying the original ChannelNet.

We build and train the neural network models in Python using Keras, a TensorFlow’s
open-source high-level API. Once completed the training phase, we developed a
deep learning-based channel estimation block inside a Telecom Italia proprietary
software link simulator, implemented in MATLAB®. This block basically substitutes the
pre-existing low-rank 2D-MMSE estimator: it imports a pre-trained neural network
model in MATLAB environment and predicts the channel estimate exploiting the
functionalities of the MATLAB Deep Learning tool.

4.5.1 Training process

Table 4.4 reports the configuration of the simulator parameters that are of
particular interest in our experiments.

It is worth noting that the system bandwidth selected for our experiments, 1.4 MHz,
is not provided by the 5G standard, but only by LTE: behind this choice there are reasons
of computational complexity, since a larger band would lead to a significant increment
in simulation time.

As regards the transmitter and receiver antenna systems, we consider two different
configurations, shown in Table 4.5. NTX and NRX represent the number of transmitter
and receiver antenna respectively, while N1 and N2 stand for the number of antenna
elements on the azimuth and elevation plane; Npol instead indicates the number of
polarizations for each antenna element.

The training dataset collected for our NR-ChannelNet model consists of
{input, output} pairs:

• each input entry is a matrix containing the channel response values that are
estimated in correspondence of DM-RS symbols (pDMRS);

• the correspondent desired output is the beamformed-version of the perfect channel
matrix that is generated by the CDL-B model (HWid).

It is worth observing that our DL-based approach can be classified as supervised, since
the desired output of the model is known for each input value.
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Table 4.4: Simulation parameters for NR-ChannelNet training

Simulation parameters

Transmission direction Downlink

Carrier frequency 3.64 GHz

System bandwidth 1.4 MHz

Subcarrier Spacing 15 kHz

TTI duration 1 ms

iMCS 21

(Modulation, Coding rate) (64-QAM, 0.694)

TBS 4736 bit

Number of FFT samples (NFFT) 128

Number of SUBcarriers used (NSUB) 72

Number of PRB (NPRB) 6

Cyclic Prefix (CP) Type Normal

Number of OFDM symbols per TTI (NOFDM) 14

Number of transmission layers 1

Number of codewords 1

DM-RS Type Type 1

DM-RS Mapping Type Type A

Number of DM-RS front-load symbols 1

Number of additional DM-RS 0

Channel Model CDL-B

Delay Spread model Nominal

Table 4.5: Antenna systems configurations considered for NR-ChannelNet training

Antenna system configuration

Configuration NTX NRX N1 N2 Npol

8 × 1 8 1 2 2 2

32 × 2 32 2 4 4 2

Selecting the DM-RS configuration type 1 and considering one single transmission
layer per codeword, the size of the matrix pDMRS is NRX × NOFDMDMRSNSUB/2,
where NSUB corresponds to the number of subcarriers used for data transmission
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and NOFDMDMRS is the number of OFDM symbols used for DM-RS allocation.
Remembering the allocation scheme illustrated in Figure 4.3, if no additional
OFDM symbol is used, only the Resource Elements (REs) on the odd subcarriers in
correspondence of the third OFDM symbol contains DM-RS pilots.

Figure 4.11: HWid matrix computation

The matrix HWid should not be confused with the channel time-frequency response
image H, introduced in Section 4.3: the matrix H, in fact, contains the channel
attenuation values for a SISO link and therefore it has size NSUB × NOFDM;
our matrix HWid, instead, represents the beamformed channel matrix, of size
NRX × Nlayers × NSUB × NOFDM, but considering a single transmission layer, the
size reduces to NRX × NSUB × NOFDM. For each subcarrier i and OFDM symbol
j, HW i,j

id is computed as the multiplication of the CDL-B channel matrix Hi,j
MIMO, of size

NRX × NTX, by the beamforming vector W , of size NTX × Nlayer, as Figure 4.11 shows.
As a consequence, in our model also a third dimension must be taken into account:
in fact, while in paper [21] only single receiver antenna scenarios are considered, our
model is aimed to work also with configurations where NRX > 1. To deals with this
challenge, we adopt two different approaches:

1. single-channel approach: considering channel images associated to different
receiver antennas as distinct data point on the same input channel: with this
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approach only 2D gray-scale images are considered as input of the CNN;

2. multi-channel approach: making our NR-ChannelNet model able to deal with
colored input images: in few words, each different receiver antenna constitutes
a different color channel.

Figure 4.12: Colored and gray-scale channel images

Figure 4.12 helps to clarify this concept. This two approaches will be compared in
terms of performance in the following section, but an important difference between the
two can be highlighted right away: with the multi-channel approach, M simulation
cycles provide M data points for the training set, while adopting the single-channel
method the training instances obtained are MNRX. This means that, fixed the size of the
training dataset, the simulation time required with the first approach would be reduced
by a factor NRX.

In conclusion, there exist fundamental differences with respect to the work presented
in paper [21] that make the NR-ChannelNet proposed in our thesis project applicable to
a wider range of cases, including MIMO communications.

Input pre-processing: interpolation and scaling

Before passing through the first layer of the NR-ChannelNet model, all the matrices
pDMRS contained in the dataset are subject to a two-step preprocessing that consists of:

1. interpolation;

2. min-max normalization.

First, we place the values of pDMRS on a time-frequency grid and we apply an
interpolation algorithm on the real and imaginary part separately, to pre-compute the
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channel attenuation in positions where DM-RS pilots are not present; in particular,
we adopt the Radial Basis Function (RBF) interpolation implemented in Python scipy
library. The figures below illustrate the interpolation process: Figure 4.13 shows the
channel attenuation values estimated in correspondence of the DM-RS pilots, while
Figure 4.14 displays the complete interpolated channel matrix. We can denote the
matrix resulting from this interpolation step as HWDMRS. The presence of the matrix W
in the name reminds that, when the DM-RS pilots are compensated at the receiver side,
the effect of the beamforming matrix W applied at the transmitter side is not eliminated:
this means that, when we interpolate the DM-RS values, what we get is an estimate of
the beamformed channel matrix.

Figure 4.13: Compensated DM-RS pilots on time-frequency grid at SINR = 20 dB

Once we obtain the matrix HWDMRS, we rescale the values of both its real and
its imaginary parts in the range [0,1] (Figure 4.15). This is a crucial step in the
preprocessing pipeline, since without data normalization, the objective function of the
DL algorithm does not work properly in most cases. Data normalization or feature
scaling is a technique that normalizes the range of values characterizing independent
variables or features [W5]. As book [19] explains, when features are measured on
different scales the optimization algorithm will be governed by the feature with the
broadest range, since the weights will be mostly optimized basing on its errors. To
counteract this issue, we perform a min-max normalization, according to the following
expression:

xnorm =
x − min(x)

max(x)− min(x)
. (4.22)

The resulting matrix is denoted as HDMRS,scal .
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Figure 4.14: Interpolated time-frequency grid at SINR = 20 dB

Figure 4.15: Rescaled time-frequency grid at SINR = 20 dB

In parallel, also the desired output matrices HWid must be subject to the same
scaling operation (Figure 4.16); obviously, no prior interpolation is performed since
the output matrices are entirely derived from the channel model.
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Figure 4.16: Rescaled perfect channel matrix

Real and imaginary parts

Figure 4.17: Real and imaginary parts as single or double input channel
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The authors of paper [21] consider the real and the imaginary parts of the input
matrix HDMRS and of the desired output matrix HWid as distinct entries of the training
dataset: this means that, by simulating N TTI, 2N pairs (HDMRS, HWid) are obtained.
Differently from this approach, in paper [23] the real and the imaginary parts are
considered as distinct colors of the same image, conveyed through the network on
separate channels: to realize this, the authors double both the third dimension of the
input layer and the number of feature maps at the output of the last convolutional layer.
Figure 4.17 summarizes the method proposed in paper [21] (A) and the one suggested
in paper [23] (B). Even if the approach proposed in reference [23] does not concern
the channel estimation framework, we exploit it to develop a second NR-ChannelNet
version, named 2-channel, with the purpose of providing a valid meter of comparison
to evaluate the performance of the original ChannelNet algorithm.

Variability of channel quality

The HDMRS matrices are collected by simulating different conditions of the channel:
in particular, we modify the SINR value in order to test the behavior of our DL-based
model at different levels of channel quality.

The authors of paper [21] limit themselves to train the ChannelNet for two different
SINR values:

• for low SNR values, the network is trained at 12 dB of SINR. This trained model
takes the name of deep-low SNR;

• for higher SNR values, the network is trained at 22 dB of SINR. This trained model
takes the name of deep-high SNR .

Substantially, they divide the SINR range into two regions, fixing an intermediate
threshold: below this threshold, the low-deep SINR model is employed; above it, the
high-deep SINR model is chosen. According to the results reported in the paper, the
authors obtain acceptable performance even with this simplified approach. Anyway,
several unsolved issues persist: first of all, if simulations were extended also to SINR
values above 20 dB, other models would have to be trained; furthermore, adopting a
different wireless channel model, maybe more complex than VehA and SUI5 models
considered in reference [21], a finer SINR granularity might be required in the training
process. In the light of this, we prefer to try two different approaches:

• on one hand, we select a set of different SINR values, {0, 10, 20, 50 dB}, and we
train a different NR-ChannelNet model for each of these values;
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• in parallel, we define two SINR regions, [0;20] and [20;50] dB. For each region,
we collect our training data varying the SINR inside the corresponding range of
values: for the first SINR region, the SINR values considered for the simulations
are 0 dB, 10 dB and 20 dB; for the second one instead, training data are collected
at SINR 20 dB and 50 dB. With this second approach, we attempt at improving
the performance of our NR-ChannelNet in scenarios where the SINR oscillates
significantly: by increasing the variability of the training data, we try to obtain
a more generalizable model, more insensitive to eventual channel variations.

The simulation results obtained by employing these two alternative approaches will be
analyzed in the following section.

4.6 Simulation results

The performance of the NR-ChannelNet model, in all the variants illustrated, are
evaluated after simulation campaigns conducted with the NR link level simulator
presented in Section 4.4. Table 4.4 reports the main parameters of interest concerning
the simulator settings, while Table 4.6 and Table 4.7 show the hyperparameters
adopted for the training and testing process of our model.

It is important to avoid misunderstanding about the notation used in the following
pages, therefore some clarifications are required. When 8 × 1 antenna configuration is
assumed, two different NR-ChannelNet models are considered:

• 1-channel: the label refers to the fact that, in this model, real and imaginary parts
of the channel images are fed to the network through a single input channel;

• 2-channel: real and imaginary parts of the channel images are conveyed through
the network on two distinct channels.

Adopting, instead, a 32 × 2 antenna configuration, the model variants considered are:

• 2-channel: real and imaginary parts of all the channel images, independently on
the receiver antenna they are relative to, are conveyed on the same two input
channels;

• multi-channel: real and imaginary parts of the channel images relative to different
receiver antenna are conveyed to the network on 2NRX distinct channels.
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Table 4.6: Simulation parameters for 8x1 configuration

Parameter 1-channel model 2-channel model

Training set 500 sim of 100 TTI 1000 sim of 100 TTI
Validation set 50 sim of 100 TTI 100 sim of 100 TTI

Testing set 100 sim of 100 TTI 100 sim of 100 TTI
Learning rate 0.001 0.001
Loss function MSE MSE

Optimizer Adam Adam
SRCNN epochs 300 400
DnCNN epochs 200 200

DnCNN depth (D) 4 4

Table 4.7: Simulation parameters for 32x2 configuration

Parameter 2-channel model multi-channel model

Training set 1000 sim of 100 TTI 2000 sim of 100 TTI
Validation set 100 sim of 100 TTI 200 sim of 100 TTI

Testing set 100 sim of 100 TTI 100 sim of 100 TTI
Learning rate 0.001 0.001
Loss function MSE MSE

Optimizer Adam Adam
SRCNN epochs 300 400
DnCNN epochs 200 200

DnCNN depth (D) 4 4

Some of the plots shown in the following pages report the Normalized MSE (NMSE)
between the perfect beamformed channel matrices and the matrices estimated by means
of our pre-trained NR-ChannelNet models; the NMSE is computed as

NMSE =
||HWid − HWDMRS||22

||HWid||22
(4.23)

where HWDMRS and HWid are the estimated and the perfect channel images
respectively, as explained in Subsection 4.5.1. The values reported represent the
values mediated first on the different TTIs and then on the different testing simulations.

The tables attached in Appendix A report some statistics again mediated both in time
and on the different simulations performed:

• σNMSE: this value represents the standard deviation of the mean NMSE values
obtained in the various simulations. The standard deviation can be considered a
useful indicator, since it measures how variable the algorithm performances are:
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large values of standard deviation would suggest a certain degree of unreliability
in the results shown;

• Thr: throughput expressed in [Mbit/s];

• Dec BER: Bit Error Rate at the end of the decoding process;

• BLERi: BLock Error Rate (BLER) at the i-th transmission attempt. For our
simulation, the NR link simulator is configured with a maximum number
Hybrid-Automatic Repeat reQuest (H-ARQ) transmissions equal to 4 and this is
the reason why only BLER1, BLER2, BLER3 and BLER4 are considered.

4.6.1 MISO scenario: 8 X 1 antenna configuration

The plots below refer to the simulation results obtained in case of 8 × 1 antenna
configuration: in particular, Figure 4.18 and Figure 4.19 show the trend of NMSE
values for the 1-channel and the 2-channel NR-ChannelNet variant respectively. The
graphs in Figure 4.18a and Figure 4.19a report the results of the models trained with
data collected at constant SINR levels; the NMSE curves shown in Figure 4.18b and
Figure 4.19b, instead, are relative to NR-CsiNet variants trained at mixed SINR levels,
according to the second training approach described in Subsection 4.5.1.

(a) NR-ChannelNet 1-channel single SINR values
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(b) NR-ChannelNet 1-channel mixed SINR values

Figure 4.18: NR-ChannelNet 1-channel model NMSE - 8x1 configuration

(a) NR-ChannelNet 2-channel single SINR values
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(b) NR-ChannelNet 2-channel mixed SINR values

Figure 4.19: NR-ChannelNet 2-channel model NMSE - 8x1 configuration

It is possible to note that there are no significant performance disparities between the
various models presented: maybe, the 2-channel approach would seem to be slightly
more performing and, at low SINR levels, the mixed-SINR approach would appear to
be less convenient.

An interesting observation concerns the NMSE standard deviation. Looking at the
data reported in Section A.1, σNMSE values increase with the decrease of the channel
SINR level, as expected: when the noise component is predominant with respect to
the useful signal, performance trend acquires a random behavior, which translates into
higher standard deviation values.

The plots displayed in the following pages are useful to summarize and compare
the results obtained, showing the curves of throughput and BLER1 for all the different
trained models. It is worth noting that the graphs relative to the throughput report also
an horizontal straight line, representing the maximum throughput level that can be
achieved given the selected Transport Block Size (TBS); the distance of the throughput
curve from the threshold given by the TBS value can be a useful performance indicator.
As a matter of fact, a comment must be made: as it can be observed in the plots, the
throughput curves never reach the maximum possible value, even at very high SINR
levels. The reason lies in the TBS computation: the NR link simulator adopted for our
experiments calculates the TBS value only once, at the beginning of the simulation.
The formula used for the computation does not take into account that, at each CSI
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reporting period, some resource elements in the time-frequency grids must be reserved
for Channel State Information-Reference Signal (CSI-RS) pilots and cannot be allocated
for data. As a result, on TTIs where CSI-RS are transmitted, the available resource
elements are not sufficient to allocate both the computed TBS and CSI-RS pilots:
anyway, to fit the encoded transport block of data in the available resource elements,
some redundant bits are sacrificed, with a consequent increase of the code rate. A lower
degree of protection could justify a positive decoded BER even in high channel quality
conditions.

Analyzing the plots below, it is evident that the SINR level at which the considered
model as been trained has negligible impact on performances; the only exception
would seem to be the NR-ChannelNet trained at 0 dB of SINR, which turns out to
be the worst performing. As a consequence, the idea of mixing data collected at
different SINR levels, with the purpose of training models more insensitive to the
channel quality oscillation, does not prove particularly useful. Moreover, 1-channel
and 2-channel approaches turn out to achieve very similar results, comparable also
with those obtained by the standard 2D-MMSE algorithm.

(a) Throughput
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(b) BLER1

Figure 4.20: NR-ChannelNet 1-channel model - 8x1 configuration

(a) Throughput
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(b) BLER1

Figure 4.21: NR-ChannelNet 2-channel model - 8x1 configuration

(a) Throughput
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(b) BLER1

Figure 4.22: NR-ChannelNet 1-channel model, mixed SINR values - 8x1 configuration

(a) Throughput

80



4.6. SIMULATION RESULTS

(b) BLER1

Figure 4.23: NR-ChannelNet 2-channel model, mixed SINR values - 8x1 configuration

To conclude, the figures above demonstrate that our deep learning-based approach is
absolutely competitive with the low-rank 2D-MMSE algorithm; indeed, some variants
of NR-ChannelNet achieve slightly better results.

4.6.2 MIMO scenario: 32 X 2 antenna configuration

This subsection refers to simulation experiments performed with a 32 × 2 antenna
configuration. With this second configuration, characterized by an increased number
of antennas both at the transmitter and at the receiver side, we certainly expect better
results: a larger number of transmitter and/or receiver antennas can provide additional
diversity against fading on the radio channel [W25]; not only this, but a greater
availability of antennas results in a grater beamforming gain, due to an improved ability
to orient the beam in the direction of the receiver. In particular, by multiplying the
parameter NTX by a factor of 4, the beamforming gain achieved for the transmitted
signal increases proportionally, by 6 dB.

That said, it is possible to find an effective match in the graphs shown on the
following pages.
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Figure 4.24: NR-ChannelNet multi-channel model NMSE - 32x2 configuration

Figure 4.25: NR-ChannelNet 2-channel model NMSE - 32x2 configuration

What’s immediately striking about these plots is the fact that the standard 2D-MMSE
algorithm achieves better performances in terms of NMSE. However, this apparent
improvement is not reflected in the data reported in Section A.2: in fact, apart from
some exceptions, the decoded BER and the BLER values demonstrate equivalent and,
in some cases, even slightly better performances by the NR-ChannelNet models. From
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this fact an important observation can be drawn: the NMSE is not a totally reliable
performance indicator. Instead, the set of parameters reported in the tables attached
in the Appendix A.2 can give us real and trustable indications to compare the different
models.

As for the 8 × 1 configuration, the following pages report some useful graphs to
summarize and compare the results obtained: throughput and BLER1 extracted form
the tables in Section A.2 can help to evaluate the different NR-ChannelNet variants
considered. Both the graphs in Figure 4.26 and the results stored in Table A.15
clearly show that the NR-ChannelNet multi-channel model trained at SINR = 0 dB
performs very poorly with respect to the correspondent 2-channel variant; this is also
confirmed by the NMSE plot in Figure 4.24, where the line corresponding to the model
assumes rather high values. This fact is probably due to overfitting occurrence we
encountered in the training phase. Our guess is that, when the input channel images
are particularly noisy, the training set collected and fed to the convolutional network
essentially contains only noise; as a consequence, larger datasets are needed to finalize
the learning process. Moreover, keeping in mind that with the multi-channel approach
the number of input channels grows linearly with the number of receiver antennas, it
is clear that also the number of learnable parameters increases proportionally. As a
consequence, our dataset may not be larger enough to avoid overfitting phenomena.
The reason why this problem does not occur for the other multi-channel models could
lie in the fact that also the quality of the dataset plays an important role: channel
matrices collected at higher SINR levels contain more useful information, making a
smaller amount of training data sufficient to accomplish the learning process.

(a) Throughput
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(b) BLER1

Figure 4.26: NR-ChannelNet multi-channel model - 32x2 configuration

(a) Throughput
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(b) BLER1

Figure 4.27: NR-ChannelNet 2-channel model - 8x1 configuration

Anyway, we can state that, in general, 2-channel models achieve better
performances. But this is not the only reason why this kind of approach should
be preferred. For our experiments, we have considered a maximum of two receiver
antennas for complexity reasons; however, in Massive MIMO scenarios, NRX can
significantly increase and, considering the multi-channel approach, this would lead to
a proportional increase in the number of both input/output channels and learnable
parameters of our convolutional neural networks. The 2-channel approach is certainly
more scalable with the number of receiver antennas and this is a desirable characteristic
in a 5G context.

Comparing the results obtained with the two different antenna configurations
considered, it is quite evident that NR-ChannelNet models bring more significant
improvements for the 8 × 1 scenario: this sounds reasonable since, when a single
receiver antenna is available, system performances are more sensitive to the channel
estimation accuracy and thus there is more room for improvement.
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Chapter 5

CSI feedback reporting for
MIMO scenarios: a Deep
Learning approach

As reference [5] explains, the availability of information about the colorful
characteristics of the communication channel has a fundamental impact on many
transmission features in most of the modern radio-access technologies. This framework
of information can consist in a rough estimate of the radio link path loss, that is useful
for example to adjust the transmitted power, to a very precise knowledge of the channel
amplitude and phase [5]. Measurements and estimates can be performed either by the
transmitter or by the receiver side: focusing on the downlink case, the knowledge of
the channel characteristics can be acquired by means of device measurements or by the
network itself, depending on the particular scenario:

• when working in FDD mode, downlink and uplink contexts could potentially be
significantly different. As a consequence, to obtain trustable information about
the downlink channel, the measurements must be necessarily acquired by the user
device and then reported to the network; the network will exploit this feedback to
properly set some transmission parameters for future downlink transmissions;

• in case of TDD communications, when downlink and uplink transmissions
experience the same channel characteristics, a feedback from the device is not
necessary, since the network itself can obtain useful information about the
downlink features of interest by measuring them in the uplink direction.

In general, the evaluation of the radio environment takes the name of channel
sounding and it requires the adoption of specific reference signals (RS) on which the
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receiver can perform measurements.
Many sources claim that, with the introduction of Massive MIMO technologies in

5G systems, the potential gain from an accurate estimation of channel characteristics has
considerably increased and channel sounding has become a critical aspect. Moreover, as
the authors of paper [23] make notice, the most used approaches to reduce the feedback
overhead, based on codebooks or vector quantization, elaborate feedback quantities
whose dimensions scale with the number of antennas, making these techniques
unsuitable in Massive MIMO scenarios. These criticisms have propelled new studies
aiming at overcoming the traditional approaches with Deep Learning-based solutions.

The first sections of this fifth chapter provide a close examination of 5G Channel
State Information reference signals (CSI-RS), which are used by terminals to estimate
the Channel State Information relative to the downlink channel. In the following
sections, an overview on information reporting techniques is presented, to illustrate the
limits of some traditional approaches. Finally, a new Deep Learning-based technique
is proposed for Channel State Information feedback reporting: starting from the
model proposed by the authors of paper [23], a 5G-compliant CsiNet is presented,
accompanied by some simulation results to evaluate its performance in some specific
scenarios.
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5.1 Channel State Information reference signals

One of the key design principles of NR is to avoid, as far as possible, "always-on"
signals [5]. In release 8 of the LTE standard, channel sounding for the downlink
direction was performed by means of device measurements on cell-specific reference
signals (CRS), which are transmitted over the whole transmission bandwidth in each
subframe. From release 10 on, these reference signals were complemented by another
type of reference signals called CSI-RS which, contrary to the first ones, are not expected
to be continuously transmitted. The main reason for this upgrade lays in the necessity
to support spatial multiplexing with more than four layers; anyway, as book [5] points
out, CSI-RS introduction opened the way to further technological extensions, such has
COrdinated Multi-Point operations and interference estimation.

5.1.1 CSI-RS structure

A CSI-RS may be associated to up to 32 different antenna ports, each port
corresponding to a channel to be sounded [5]. To report the words used in the same
book, an antenna port is such defined that the channel over which a symbol on the
antenna port is conveyed can be inferred from the channel over which another symbol
on the same antenna port is conveyed.

Reference [5] identifies two different classes of CSI-RS:

• a single-port CSI-RS occupies a single Resource Element (Resource Element (RE))
within a grid corresponding to one Resource Block (RB) in frequency domain and
one slot in time domain; in principle, the RE can be selected anywhere in the
resource block but, in practice, some restrictions exist to avoid collisions with other
downlink physical channels and signals;

• a multi-port CSI-RS is defined as a group of orthogonally transmitted ports sharing
a set of resource elements. The orthogonality property is achieved through a
combination of multiplexing techniques:

– Code Division Multiplexing (CDM): different per-antenna-port CSI-RS are
transmitted on the same resource elements and they are separated by applying
orthogonal modulation patterns;

– Frequency Division Multiplexing (FDM): different per-antenna-port CSI-RS
are transmitted on different subcarriers within the same OFDM symbols in
the slot;

– Time Division Multiplexing (TDM): different per-antenna-port CSI-RS are
transmitted in different OFDM symbols within a slot.
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5.1.2 CSI-RS mapping

The resource element pattern for an X-port CSI-RS spans N OFDM symbols in the
same slot and it can consist of one ore more CSI-RS REs. A resource element pattern is
defined within a single Physical Resource Block (PRB) as Y adjacent resource elements
in the frequency domain and Z adjacent resource elements in the time domain. Some
examples are shown in Figure 5.1.

Figure 5.1: Examples of CSI-RS RE patterns

Reference [5] illustrates different CDM structures for multiplexing per-antenna-port
CSI-RS which can be adopted:

• 2×CDM, which means CDM over two adjacent subcarriers, allowing for
code-domain sharing between two per-antenna-port CSI-RS;

• 4×CDM, which means CDM over two adjacent subcarriers and two adjacent
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OFDM symbols, allowing for code-domain sharing between up to four
per-antenna-port CSI-RS;

• 8×CDM, which means CDM over two adjacent subcarriers and four adjacent
OFDM symbols, allowing for code-domain sharing between up to eight
per-antenna-port CSI-RS.

Figure 5.2: Table of CSI-RS location within a slot
(taken from [3])

These CDM alternatives, implemented together with FDM and/or TDM, give rise
to different configurations of multi-port CSI-RS structures where, in general, an N-port
CSI-RS occupies a total of N ≥ 1 resource elements within a RB/slot [5]. The table in
Figure 5.2 reports the CSI-RS RE patterns for CSI acquisition that are presented in [3]:
ρ is the density value measured in [RE/RB/port], k0 and l0 represent the time-frequency
position of the pattern components while k0 and l0 are the indexes of the resource
elements within a CSI-RS component. As it is possible to observe from this table, in
the case of CSI-RS associated to more than two antenna ports, there are multiple CSI-RS
configurations based on different combinations of CDM, TDM and FDM.

5.1.3 Frequency and time domain properties of CSI-RS

A CSI-RS is associated to a certain downlink Bandwidth Part (BP): a bandwidth
part is characterized by a numerology and by a contiguous set of physical resource
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blocks (PRBs) on a given carrier [5]; these RBs are selected from a contiguous
subset of the common resource blocks in that numerology. Each CSI-RS is confined
within the correspondent bandwidth part and it is expected to adopt the numerology
characterizing that specific bandwidth part. The CSI-RS can be configured in two
different ways:

• covering the full bandwidth of the bandwidth part;

• covering just a fraction of the bandwidth part; in this case, the CSI-RS
configuration has to provide the portion of bandwidth used and the starting
position in the frequency domain.

Another flexible parameter to be configured is the CSI-RS density (ρ):

• density ρ = 1 implies that the CSI-RS transmission occurs in every resource block;

• density ρ = 1
2 means that the CSI-RS transmission takes place every second

resource block: in this case an additional information about the set of resource
blocks used for CSI-RS transmission has to be provided;

• density ρ = 3 is a possible configuration for a single-port CSI-RS, which spans
three subcarriers within each resource block.

Regarding the CSI-RS structure in the time domain, three different transmission modes
are allowed:

• periodic transmission: CSI-RS are transmitted once every N slots;

• semi-persistent transmission: the device configuration determines a period and
an offset, while the activation and the de-activation are controlled by means of
MAC Control Element (MAC CE);

• aperiodic transmission: in this case, no periodicity exists and the transmission
instant is signaled via Downlink Control Information (DCI).

5.1.4 CSI-RS mapping to physical antennas

As the authors of [5] explain, a multi-port CSI-RS corresponds to a set of antenna
ports and the CSI-RS can be used for sounding the related channels. However, a CSI-RS
port is often not directly mapped to a physical antenna: the CSI-RS may be subjected
to many different types of transformation or spatial filtering, implying that the channel
being sounded is not necessarily the actual physical radio channel. Anyway, book [5]
clarifies that, when a device performs channel sounding based on the CSI-RS, both the
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spatial filter and the physical antennas are completely transparent: what the device will
see are just the N virtual channels corresponding to the N CSI-RS ports.

Basically there exist two types of CSI-RS to Transceiver Unit (TXRU) mapping:

• TXRU specific mapping: each CSI-RS is mapped to one TXRU, which in turn feeds
several physical antenna elements;

• beamformed CSI-RS: each CSI-RS port is digitally virtualized to multiple TXRUs
by means of a vector of beamforming weights; each TXRU in turn feeds several
antenna elements.

Spatial Filtering

Although we have said that the spatial filter is totally transparent to the device, it
remains an important feature, strongly connected to the concept of antenna port: as the
authors of reference [5] make notice, the device can assume that two transmitted signals
have experienced the same radio channel if and only if they are transmitted from the
same antenna port. In essence, this can lead to the assumption that two signals are
transmitted from the same antenna port if they are mapped to the same set of physical
antennas by means of the same spatial filtering operation. Book [5] highlights the
case of a downlink multi-antenna transmission: after performing CSI-RS-based channel
measurements, a device may report a recommended precoding matrix to the network.
The network in turn may decide to use the recommended precoding matrix to map the
transmitted data streams, called transmission layers, to the antenna ports. However,
whatever the matrix W chosen by the network, the device will assume that:

• the output of the precoding process will be mapped to the antenna ports of the
CSI-RS on which the corresponding device measurements were taken;

• the precoded signal will be mapped to the physical antennas by means of the same
spatial filter as the one applied to the CSI-RS.

5.2 Downlink feedback reporting

In 3GPP specifications [4], Channel Quality Indicator (CQI), Rank Indicator (RI),
Precoding Matrix Indicator (PMI), CSI-RS Resource Indicator (CRI), Synchronization
Signal/PBCH Block Resource Indicator (SSBRI) and Layer Indicator (LI) are jointly
referred to as Channel State Information (CSI). The configuration of all these
parameters for a UE is laid down by upper layers through N ≥ 1 CSI-ReportingConfig
Reporting Settings and M ≥ 1 CSI-ResourceConfig Resource Settings.
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5.2.1 CSI reporting types

The time domain behavior of the CSI-RS resources within a CSI Resource Setting is
determined by a higher layer parameter and it can be classified as aperiodic, periodic,
or semi-persistent:

• periodic reporting is performed with a certain periodicity, always on the Physical
Uplink Control CHannel (PUCCH); in this case the resource configuration also
includes information about the Physical Uplink Control CHannel (PUCCH)
employed for periodic reporting;

• in semi-persistent reporting, periodic reporting instances are configured in the
same way as for periodic reporting; however, the real reporting procedure can
be enabled or disabled by means of Medium Access Control (MAC) signaling
and the resource allocated for reporting can be a periodic PUCCH resource or a
semi-persistently allocated Physical Uplink Shared CHannel (PUSCH);

• aperiodic reporting is triggered by means of Downlink Control Information (DCI)
within a CSI-request field inside the uplink scheduling grant; the DCI field may
consist of up to 6 bits and each specific bit combination corresponds to a particular
aperiodic report.

5.3 CSI measurements and reporting for downlink multi-
antenna precoding

In book [5], the authors define layer-mapping as the step to distribute the
modulation symbols across the different transmission layers. Similarly to LTE, the n-th
symbol is mapped to the n-th layer. One coded transport block can be mapped on up to
four layers so, when downlink transmissions support from five to eight layers, a second
transport block is mapped to the layers from five to eight [5].
The authors point out that multi-layer transmission is only allowed in downlink: since
in uplink a DFT-precoding is performed, only a single transmission layer is supported,
due to prohibitive complexity requirements at the receiver.

The purpose of multi-antenna precoding is to map the different transmission layers
to a set of antenna ports using a precoding or beamforming matrix (W) [5]. Any
downlink multi-antenna precoding operation is transparent to the device, since the
Demodulation Reference Signals (DM-RS) used for coherent channel estimation at the
user side are multiplied by the same precoding matrix applied at the transmitter. This
transparency implies that the network can in principle apply any beamforming, without
any impact on device procedures.
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As it is remarked in [5], the 3GPP specification of downlink multi-antenna precoding
is mainly related to the measurements and reporting performed by the device to
support the selection by the network of a precoder for downlink PDSCH transmission.
These measurements and reporting steps are within the scope of the more general CSI
reporting framework, as clarified in the previous section. For this purpose, precoder
codebooks have been defined in the standard.

5.3.1 CSI-based precoder codebook

As already mentioned, the Precoding Matrix Indicator reported by the UE is an
indication on what the user considers a suitable precoding matrix to be applied on
downlink transmissions. In particular, the PMI is nothing more than a set of indexes
or a single index pointing to a specific entry in the precoder codebook, which contains
a list of all the possible precoder matrices W that the device can select and report to
the network. There exists at least one codebook for each permitted combination of NT

(number of antenna ports) and NL (number of layers), associated with the configured
CSI-RS.
An important consideration must be made: precoder codebooks play a role only in
the context of PMI reporting and they do not impose any restriction in the choice of
the precoding matrix to be applied by the network [5]. In some cases it is convenient
for the network to select the beamforming matrix suggested by the device but, when
for example the network is in possession of additional information, the precoding
computation may lead to a different choice.

As book [5] reports, typical use case of multi-antenna precoding is Multi-User
MIMO (MU-MIMO): in this case the main purposes are to direct the energy towards the
device and simultaneously limiting the interference towards the other users scheduled
on the same time-frequency resource. In this kind of scenario, it is clear that the network
needs a more detailed information about the channel experienced by different UEs, so
that it can take into account the PMI reported by all simultaneously scheduled devices
when selecting the precoding matrix [5].

NR standard defines two types of CSI reporting, each characterized by a different
size and structure of the codebook:

• Type I CSI codebooks: they are designed for Single User-MIMO (SU-MIMO)
scenarios, where a single user is scheduled within a certain time-frequency
resource, transmitting on a potentially large number of layers in parallel;

• Type II CSI codebooks: they are designed for MU-MIMO scenarios, where many
users are scheduled within the same time-frequency resource, each transmitting
on a limited number of layers in parallel (one or two).
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5.3.2 Type I CSI codebooks

As it is explained in [5], the main aim of these codebooks is to focus the energy
towards the target device; the interference caused by the adoption of a potential high
number of layers in parallel is not managed since it is assumed to be handled at the
receiver side through multi-antenna processing. Type I codebooks are further divided
into two sub-types, corresponding to different antenna configurations on the network
side:

• single panel antennas CSI;

• multi-panel antennas CSI.

Type I - Single panel codebook

The expression single panel refers to those antenna configurations in which the
N1 × N2 cross-polarized antenna elements are located on a single panel. In this
scenarios, the precoding matrix W is generated as the product of matrices W1 and W2:

W = W1 · W2 (5.1)

where:

W1 =

"
B 0
0 B

#
(5.2)

and
B =

h
b0 b1 ... bL−1

i
(5.3)

Each vector B contains L neighbor beams, where each beam is used for both the
polarizations. Thus, the selection of a matrix W1 coincides with the selection of a specific
beam direction from all the possible beam directions [5].

In order to deepen the generation process of the matrix W1, it is necessary to
introduce the concept of DFT oversampling: as a result of the oversampling, Figure
5.3 shows intermediate beams added to the four original orthogonal beams defined
by the matrix W1. The oversampling operation affects both vertical and horizontal
direction, in a way that is determined by two oversampling factors, one for the
horizontal direction (O1) and the other for the vertical one (O2). In this specific example,
both O1 = 4 and O2 = 4, implying N1 ·O1 beams in the horizontal direction and N2 ·O2

beams in the vertical direction, where N1 and N2 correspond to the number of antenna
elements for each dimension of the panel. Figure 5.4 reports all the configurations of
(N1, N2) and (O1, O2) supported in Release 15.
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Figure 5.3: Example of oversampled beams
(taken from [W2])

Figure 5.4: Supported configurations of (N1, N2) and (O1, O2)

(taken from [4])

Figure 5.5 illustrates the construction process of W1, leaving room for some
observations:

• the matrix B, defined in (5.3), can be seen as the kronecker product between X1

and X2;

• X1 is a matrix of N1 columns, each containing the horizontal beamforming weights
for the antenna elements on the correspondent row;

• X2 is a matrix of N2 columns, each containing the vertical beamforming weights
for the antenna elements on the correspondent column;

• each column of W1 represents the weight vector for each specific beam formed by
the antenna array.
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Figure 5.5: Generation process of W1 matrix
(taken from [W3])

In the case of transmissions with rank 1 or 2, the matrix W1 can define a single
beam or a group of four neighbor beams: if four beams are identified by the matrix
W1, with the matrix W2 a further selection among the four beams (corresponding to W1

columns) is performed, together with the identification of the QPSK co-phasing of the
two polarizations; if instead a single beam is defined by the matrix W1, the matrix W2

simply provides co-phasing between the two polarization [5]. The table in Figure 5.6
shows the codebooks for 1-layer and 2-layer CSI reporting using two antenna ports. In
the case of transmissions with rank R > 2, the matrix W1 collects N = R

2 orthogonal
beams, while the matrix W2 only provides co-phasing between the two polarizations.

According to the standard, up to eight layers can be transmitted towards the same
device, exploiting the four beams selectable by the matrix W1 and the two polarizations.
To summarize:

• matrix W1 gathers long-term frequency-independent channel characteristics and
thus is reported on wideband basis;

• matrix W2 instead captures short-term frequency-dependent channel
characteristics and thus it is specific for each subband.
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Figure 5.6: Codebooks for 1-layer and 2-layer CSI reporting
(taken from [4])

Type I - Multi-panel codebook

These kind of codebooks are designed for scenarios where multiple antenna panels
are jointly used at the network side. In particular, the configuration includes Ng

2D-panels (Ng ∈ {2,4}), each with N1 × N2 cross-polarized antenna elements.
As explained in book [5], the basic principle of Type I multi-panel CSI is the same as
that of single-panel, with some notable differences:

• the matrix W1 defines one beam per polarization and panel;

• the matrix W2 provides per-subband co-phasing between polarizations and panels;

• the maximum number of layers supported for spatial multiplexing goes down to
four.

Figure 5.7: Supported multi-panel configurations of (Ng, N1, N2) and (O1, O2)

(taken from [4])
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The table in Figure 5.7 shows the configurations of 1D/2D antenna port layout
(Ng, N1, N2) and oversampling factors (O1, O2) supported.

5.3.3 Type II CSI codebooks

Similarly to Type I CSI, Type II CSI is based on wideband selection and reporting of
beams, but there exists some significant differences, highlighted in [5]:

• while Type I CSI selects and report one single beam, Type II CSI can select and
report up to four orthogonal beams with their corresponding amplitude and phase
values;

• the reported precoding matrix from Type II CSI has non-constant modulus, which
means that different elements in the matrix W can present different amplitudes;

• since the typical usage scenarios are MU-MIMO, in which the network identifies a
group of transmissions to schedule on the same time-frequency resources and the
corresponding precoding matrices, the number of layers per device is limited to
two.

To conclude, it is clear that this second type of reporting provides much more
detailed information about the channel, with significantly higher spatial granularity
[5].

5.4 Deep Learning-based CSI feedback for Massive
MIMO scenarios

When working in FDD mode, the UE estimates the downlink Channel State
Information and reports it to the base station through feedback links: this information
is exploited at the network side to obtain gains for Massive MIMO transmissions. As
remarked in paper [23], when the number of antennas in transmission and reception
considerably increases, the feedback overhead may become excessive. To solve this
issue, the authors propose a Deep Learning-based CSI sensing and recovery mechanism,
named CsiNet. This is a very innovative proposal since other relevant works treated
DL-based approaches for CSI encoding, but none of them considered the recovery stage.

5.4.1 CsiNet model

The CSI Network (CsiNet) model developed by the authors of paper [23] consists of:
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• an encoder, that learns a mapping from the channel matrices to the compressed
codewords;

• a decoder, that learns the inverse mapping, from the compressed codewords to the
original CSI.

Summarizing, the UE applies the encoder function to transform the channel matrices
into codewords, while at the BS the decoder is used to recover the original CSI
information.

System model

In paper [23], a MIMO system with Nt >> 1 transmit antennas at the BS and a single
receiver antenna at the UE is considered. The received signal on the n-th subcarrier is
expressed as

yn = ĥH
n vnxn + zn (5.4)

where

• ĥn is the complex channel vector of size Nt × 1;

• vn is the complex precoding vector of size Nt × 1;

• xn is the complex data symbol received on the n-th subcarrier;

• zn denotes the additive noise.

The precoding vector v = {vn : n = 1, ..., Nc} is selected by the BS once it receives
the CSI feedback information H̃ = [h̃1, ..., h̃Ñc

]H ∈ CÑc×Nt . Thus, the total number of
feedback values amounts to ÑcNt, which in some cases could be an excessive quantity.

DFT-based preprocessing of CSI information

For their experiments, the authors of paper [23] assume that perfect channel matrices
are available through pilot-based estimation techniques, completely neglecting the
downlink channel estimation stage and focusing on the feedback procedure. Their
approach includes a 2D-DFT operation to sparsify the matrix H̃ in the angular-delay
domain as follows:

H = FdH̃FH
a (5.5)

where Fd and Fa are Ñc × Ñc and Nt × Nt DFT matrices respectively. The reason behind
this processing is that only a small portion of the matrix H contains large values, while
a consistent portion of it consists of elements close to zero: thinking to the fact that the
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interarrival time between multipaths lies within a limited interval, it is clear that only
the first Nc < Ñc rows of H are relevant and the remaining ones can be removed. So,
after performing a truncation operation, H becomes a matrix of size Nc × Nt, implying
a reduction of the feedback size. The truncated matrix is first scaled to range [0,1]
and then it is encoded into an M-dimensional codeword, with M < NcNt, providing
a compression ratio equal to γ = M

Nc Nt
. In a specular way, at the output of the decoder

implemented at the BS an inverse DFT operation has to be performed.

CsiNet encoder

The CsiNet encoder is essentially a deep CNN, whose input consists of the real and
imaginary parts of the truncated matrix H. The first layer is a convolutional layer
with filter size equal to 3 × 3 × 2, that generates two feature maps. Then, a reshaping
operation is performed to vectorize the two feature maps. Finally, a fully connected
layer generates a vector (codeword) s of size M.

CsiNet decoder

Also the CsiNet decoder is a CNN, whose input consists of the codeword s generated
by the encoder and sent to the BS. The first layer is a fully connected layer that outputs
two Nc × Nt matrices, representing an initial estimation of the real and imaginary parts
of the matrix H. Then, the initial estimates are fed into some RefineNet units, whose
purpose is to progressively refine the reconstruction. Each RefineNet unit is composed
by an input layer and three convolutional layers using a kernel of size 3 × 3: the
second layer generates 8 feature maps, the third 16 while the fourth outputs the final
reconstruction of H. The feature maps produced by the three layers of a RefineNet unit
are forced by a zero-padding technique to have the same size as the input channel matrix
(Nc × Nt). Moreover, each layer is followed by a ReLU and a Batch Normalization
layer. Experiments lead the authors to conclude that two RefineNet units are sufficient
to obtain good performance; adding further RefineNet units would not significantly
impact the reconstruction quality, at the cost of a larger complexity. After the RefineNet
units, a final convolutional layer is placed and its output is then fed into a softmax layer
that scales the values to the [0,1] range.

Training process

In paper [23], the set of trainable parameters is denoted as Θ = {Θen, Θde}, while
the input and the output of the CsiNet model for the i-th patch are denoted as Hi and
Ĥ = f (Hi; Θ) = fde( fen(Hi; Θen); Θde) respectively.
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The loss function is defined as

L(Θ) =
1
T

T

∑
i=1

|| f (si; Θ)− Hi||22 (5.6)

where T denotes the number of training samples.

Simulation results

To test the model performance, the authors of paper [23] generate training and
testing datasets from the COST 2100 channel model for the indoor picocellular scenario
at 5.3 GHz and for the outdoor rural scenario at 300 MHz.

Table 5.1: CsiNet hyperparameters setting

Hyperparameter Configured value

learning rate 0.001

batch size 200

iterations 1000

training samples 100000

validation samples 30000

testing samples 20000

The number of antennas at the BS is set to Nt = 32, while the number of
subcarriers used is set to Ñc = 1024; these 1024 subcarriers are reduced to 32 once the
angular-domain transformation has been performed, so that H results to be a 32 × 32
matrix. As regards CsiNet hyperparameters configuration, the selected values are
reported in Table 5.1.

The authors dedicates a section of the paper to the comparison of CsiNet
performance with three traditional CS-based methods, namely LASSO l1 solver, TVAL3
and BM3D_AMP, that are not deepened in this section. Performances are evaluated in
terms of:

• NMSE, computed as

NMSE = E{
||H − Ĥ||22

||H||22
} (5.7)

that measures the difference between the recovered channel matrix Ĥ and the
original channel matrix H;
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• cosine similarity, computed as

ρ = E{ 1
Ñc

Ñc

∑
n=1

| ˆ̃h
H
n h̃n|

|| ˆ̃hn||2||h̃n||2
} (5.8)

that measures the quality of the beamforming vector defined as vn = ˆ̃hn/|| ˆ̃hn||2 at
the user side.

Simulation results show that, compared to the other CS-based algorithm, the CsiNet
solution provides significant gain and outperforms them at all compression ratios.
Moreover, CsiNet recovery process can work faster with respect to the CS-based
approaches, since it consists of simple matrix-vector multiplication steps.

Finally, the authors conclude with two important observations:

• experiments show that CsiNet can achieve good performance even if the
DFT-matrix Fa, which transforms the matrix H̃ from the spatial to the angular
domain, is not applied; this means that the DL-based model can learn proper basis
without preprocessing the channel matrix, making this solution very flexible;

• from the results obtained it is clear that, increasing the number of antenna at the
BS Nt, the reconstruction performances of all the algorithms improve: according
to paper [23], this happens since an increase of Nt implies an increase of the spatial
resolution and so the matrix H becomes sparser.

To conclude, the work presented in paper [23] opens the way to further improved
DL-based mechanisms for CSI sensing and recovery: in fact, in the light of the promising
results obtained, the authors themselves encourage future research in this direction.
Given that, the following section investigates the application of CsiNet solution to New
Radio systems: besides adapting the model to the new communication environment, we
experiment some variations of the original algorithm proposed in the paper, with the
purpose of enhancing its performance and its applicability in more practical contexts.

5.5 A CsiNet model for NewRadio

In this section, we introduce a DL-based solution for CSI information reduction and
recovery in a 5G context. In particular, we implement a deep CNN, named NR-CsiNet,
which substantially inherits the same structure of the model presented in Section 5.4,
but with some variations and additions that aim at generalizing the approach to a wider
and more practical range of use cases:

103



5.5. A CSINET MODEL FOR NEWRADIO

• first of all, we try to make the model applicable also to multi-receiver antenna
scenarios, overcoming the restriction imposed by paper [23], in which the
study is limited to single receiver antenna communications. Substantially,
instead of considering only 2D-CSI images, our model has to deal with a third
dimension, representing the different receiver antennas. To manage this additional
information we propose two alternative approaches, which will be described in the
following subsections;

• another important novelty introduced by this thesis project is the implementation
of a Variational AutoEncoder (VAE), which is presented in one of the following
subsections. As it is confirmed in reference [6], VAEs have recently emerged as one
of the most popular approaches to unsupervised learning of complex distributions,
since they have demonstrated a better ability to compress complicated datasets
into simpler mainfolds;

• finally, whereas downlink channel estimation is beyond the scope of reference [23],
we consider also this challenging topic. In fact, the authors of the paper focus
uniquely on the feedback procedure, assuming to acquire perfect CSI information,
while we also deal with the CSI estimation. This means that, instead of feeding
our NR-CsiNet with perfect CSI images, we give in input noisy images estimated
through the CSI-RS, introduced in Section 5.3.

Also in this case, we used the Tensorflow’s Keras API to build and train our
autoencoder. Inside the link level simulator that we have already presented in
Subsection 4.4, we substituted the traditional feedback reporting block with our deep
learning-based alternative: this new block imports the pre-trained Keras encoder and
uses it to elaborate an encoded version of the CSI matrix, previously estimated from
the CSI-RS. Then, at the transmitter side, we inserted a specular decoding block which
imports the pre-trained decoder model and uses the reconstructed CSI matrix at its
output to determine the optimal beamforming vector.

5.5.1 NR simulator parameters

As for NR-ChannelNet, also for NR-CsiNet experiments we use the NR link
simulator presented in Section 4.4 to collect training data and to evaluate the
performance of the model. Table 5.2 reports the configuration of the simulator
parameters that are of particular interest in our experiments.

As regards the transmitter and receiver antenna systems, we consider a single
configuration, showed in Table 5.3.
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Table 5.2: Simulation parameters for NR-CsiNet training

Simulation parameters

Transmission direction Downlink

System bandwidth 5 MHz

Subcarrier Spacing 15 kHz

TTI duration 1 ms

Carrier frequency 3.64 GHz

iMCS 21

(Modulation, Coding rate) (64-QAM, 0.694)

TBS 19968 bit

NFFT 512

NSUB 300

NPRB 25

CP Type Normal

NOFDM 14

Number of transmission layers 1

Number of codewords 1

DM-RS Type Type 1

CSI-RS period 4 TTIs

CSI-RS beamforming OFF

Channel model CDL-B

Delay Spread model Nominal

Table 5.3: Antenna systems configurations considered for NR-CsiNet training

Antenna system configuration

Configuration NTX NRX N1 N2 Npol

8 × 2 8 2 2 2 2

NTX and NRX stand for the number of transmitter and receiver antennas respectively,
while N1 and N2 represent the number of antenna elements on the azimuth and
elevation plane; Npol instead indicates the number of polarizations for each antenna
element.
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5.5.2 NR-CsiNet for CSI feedback reporting

Our NR-CsiNet model basically implements an autoencoder, whose purpose is to
learn a different representation of the input data and the corresponding inverse function
to reconstruct the original data starting from the transformed ones. Distancing from the
standard, which includes two different types of CSI feedback reporting (Section 5.3),
our CSI autoencoder works as follow:

• at the UE side, the CSI-encoder transforms the downlink channel matrix into
compressed vectors that are reported to the BS;

• at the network side, starting from the compressed feedback received, the
CSI-decoder reconstructs the original downlink CSI feedback, so that the BS can
exploit this information to select the proper beamforming vector.

To summarize, if we focus uniquely on the compression task, ignoring the downlink
channel estimation step, what our model is expected to do is to take in input a clean
image of the channel and learn efficient encoding and decoding algorithms to compress
and decompress it with the minimum error.

Training dataset

The channel matrix that we consider for our NR-CsiNet, named HCSI,id, is different
from the channel image considered for the NR-ChannelNet model (HWid):

• first of all, HCSI,id is not a time-frequency grid, since it is relative to one single
OFDM symbol and it is generated by the CDL channel model once every CSI-RS
period;

• secondly, the matrix HCSI,id does not represent the beamformed channel: setting
the simulator parameter CSI-RS beamforming to OFF (Table 5.2), the CSI-RS
symbols are not subject to any beamforming operation. For this reason, even
when considering a single receiver antenna, the channel information about distinct
transmitter antennas cannot be collapsed in one single vector.

While the authors of paper [23] limit their DL-based solution to single receiver antenna
scenarios, our purpose is to make our model applicable also in MIMO scenarios. With
this in mind, the downlink channel information relative to each distinct receiver antenna
must be in some way organized within our CSI matrix HCSI,id. In particular the matrix
HCSI,id must have a dedicated dimension for each receiver antenna and turns out to be
a NSUB × NTX × NRX complex matrix, as summarized in Figure 5.8.
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Figure 5.8: CSI matrix for CsiNet model input

To deal with the addition of a third dimension in the input CSI information, we
decide to adopt the same two approaches followed for the NR-ChannelNet model and
described in Subection 4.5.1:

1. single-channel approach: CSI images relative to distinct receiver antennas are fed
to the networks on the same input channel;

2. multi-channel approach: each receiver antenna dimension is translated into a
distinct input channel for the CsiNet model.

It is important to observe that, differently from the NR-ChannelNet model presented in
Section 4.5, this Deep Learning approach does not require {input, output} pairs: the
desired output is indeed the input itself, since our NR-CsiNet autoencoder is expected
to reconstruct the CSI original information as faithfully as possible. Considering this,
the DL-based algorithm at the basis of our NR-CsiNet model can be classified as
unsupervised.

Data preprocessing: an overview on compressive sensing

The NR-CsiNet model presented in this section requires a more sophisticated data
preprocessing procedure than the one illustrated in Subsection 4.5.1. In this case
interpolation is not necessary, since the complete and clean CSI image Hid,CSI is
available. In Figure 5.9 it is possible to observe an example of perfect CSI matrix,
with NFFT = 1024, NSUB = 600 and NTX = 8.

Instead, to reduce feedback overhead, the authors of paper [23] propose a
2D-Discrete Fourier transform (DFT) transformation, with the purpose of sparsitying
the information in the angular-delay domain. Since in our NR-CsiNet model, we
consider the case of multiple receiver antennas, the 2D-DFT operation must be
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Figure 5.9: Absolute value of perfect CSI image Hid,CSI

performed for each NSUB× NTX matrix Hi
id,CSI , where the apex i ∈ [1, NRX] represents

the index of the receiver antenna that we are considering.

Figure 5.10: Absolute value of DFT-transformed HDFT,i
id,CSI matrix

With this transformation, we get the sparsified matrix HDFT,i
id,CSI (Figure 5.10), which can

be expressed as follows:
HDFT,i

id,CSI = FdHi
id,CSI Fa (5.9)

where Fd is the DFT NSUB× NSUB matrix which performs the 1D-DFT transformation
of all the rows, while Fs represents the DFT NTX × NTX matrix which performs the
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1D-DFT transformation of all the columns.
To understand the utility of this approach, it is necessary to make a digression

about compressive sensing (CS) techniques and the related concept of sparsity. As
it is explained in paper [15], CS encoding is a technique capable of capturing the K
non-zero components of a K-sparse N × 1 signal vector, where K << N, by compressing
the signal into M << N measurements via random projections. A signal or image
x ∈ RN is defined as K-sparse if only K coefficient < x, ψi > are non-zero, where
{ψi ∈ RN}i = 1n and Ψ = [ψ1, ..., ψN ] ∈ RN×N. The set of ψi represents an orthogonal
basis for RN . However, in many practical cases, the starting vector x does not exhibit
any sparsity by itself and so a sparsifying preprocessing step has to be performed; in
matrix notation, this becomes

s = Ψx (5.10)

where s denotes the sparse representation of x, and Ψ is an N × N sparsifying-basis.
The matrix Ψ must be selected so that, expressing the signal or the image in the form
x = ∑N

i=1 ψi < x, ψi >, large coefficients are relatively few while small coefficients are a
lot. A typical choice for Ψ is precisely the Discrete Fourier transform (DFT) matrix. At
this point, in CS scenarios, the sparse signal representation s can be compressed into an
M × 1 vector denoted as y, according to the following expression:

y = Φs (5.11)

where Φ is a M × N measurement matrix with independent and identically distributed
random entries, which can be generated in accordance to a Gaussian or a Bernoulli
distribution.

The DFT-based method proposed in paper [23] is not exactly a CS technique, because
it simply sparsifies the matrices Hi

id,CSI in the angular-delay domain, exploiting the
correlation between transmitter antennas: in fact, as time delays between multipath
arrivals range within a limited period, only a small number of rows in the matrix HDFT,i

id,CSI
ends up having non-zero values, as Figure 5.10 shows. Looking at the picture, it is
clear that a DFT-shift is necessary to concentrate the peaks in the same area of the graph:
the result of this procedure is shown in Figure 5.11.

At this point, a simple truncation of the matrix, consisting in taking only the
NSUB/KDFT < NSUB central rows, corresponding to the smaller delays values, and
eliminating all the side points with almost zero values. The parameter denoted as KDFT

represents the compression factor with respect to the original number of subcarriers
NSUB. Figure 5.12 displays the result that we get by considering only the i-th receiver
antenna, that is the matrix H̃DFT,i

id,CSI of size NSUB/KDFT × NTX. By means of an inverse
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Figure 5.11: Absolute value of shifted HDFT,i
id,CSI matrix

Figure 5.12: Absolute value of truncated H̃DFT,i
id,CSI matrix, with KDFT = 4

DFT-shift and an inverse DFT operation (IDFT), each matrix H̃DFT,i
id,CSI is then brought

back in the spatial-frequency domain and the resulting matrices are denoted as H̃ IDFT,i
id,CSI .

The reason behind this step, that falls outside the preprocessing phase described in [23],
lies in the fact that in the spatial-frequency domain the CSI images present a smoother
profile, as it can be observed in Figure 5.13; images that present lines rather crisp and
sharp, as the one showed in Figure 5.12, are generally more difficult to compress and
reconstruct for a CNN.
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Figure 5.13: Absolute value of truncated H̃ IDFT,i
id,CSI matrix, with KDFT = 4

Figure 5.14: Unfolding scheme of CSI real and imaginary parts

Putting together the matrices obtained for each antenna at the receiver, we get the
final complex matrix, denoted as H̃ IDFT

id,CSI . But this is not the matrix we feed to the CNN:
a further preprocessing step has to be accomplished, to manage the complex nature of
the data we have obtained so far. Also in this case, we follow the approach proposed
in reference [23], where the real and the imaginary part of the complex CSI image
are treated as different colors and are fed to the network through two independent
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input channels. Therefore, each of these NRX input matrices H̃ IDFT,i
id,CSI must be unfolded

into two distinct channels, one for its real part and one for its imaginary part. The
unfolding process is schematized in Figure 5.14. Then, the matrices obtained have to
be normalized, so that all the values at the input of the network range between 0 and 1.

Figure 5.15: Rescaled H̃id,CSI matrix, with KDFT = 4

At the end, our dataset consists of NSUB/KDFT × NTX × 2NRX matrices, denoted as
H̃ IDFT,real

id,CSI . Figure 5.15 reports the result of the normalization process, considering
a single receiver antenna. Remembering the two different multi-receiver approaches
(single-channel and multi-channel), illustrated in Subsection 5.5.2, Figure 5.16
summarizes the way data are fed to the network according to the solution adopted:

• when the multi-channel approach is chosen, the matrices H̃ IDFT,real
id,CSI are fed to

the CNN without any further processing, so that the model presents 2NRX input
channels (multi-channel model);

• when the single-channel mode is adopted, instead, the real parts of the CSI images,
even if related to different receiver antennas, are conveyed to the network on a
single input channel, and the same goes for the imaginary parts. In the end, the
model presents two input channels, one for the real and one for the imaginary
parts of the images (2-channel model).
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Figure 5.16: Single-channel and multi-channel NR-CsiNet: input data organization

After having presented the data preprocessing steps, Figure 5.17 and Figure 5.18
show the complete encoder and decoder structures respectively: as anticipated, the
network architecture is substantially inherited from the model presented in paper [23].
The model in the figure assumes the adoption of the multi-channel approach, as is can
be deduced from the input layer dimensions of the encoder; in case of single-channel
mode, every occurrence of the value 2NRX would be replaced by a factor 2.
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Figure 5.17: NR-CsiNet encoder scheme
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Figure 5.18: NR-CsiNet decoder scheme
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5.5.3 NR-CsiNet for CSI feedback estimation and reporting

Instead of focusing only on the compression step, we implement a second version of
NR-CsiNet that is able to deal with the challenging downlink channel estimation task:
in fact, the input of this second model is no longer the clean CSI image generated by the
CDL channel model, as it is assumed in Subsection 5.5.2, but a noisy estimation of
it, coming from CSI-RS compensation and interpolation processes. With this in mind,
what this model is expected to do is to learn efficient encoding and decoding algorithms
that, besides compressing and decompressing the input CSI matrices, must be able to
remove the noisy contributions and reconstruct the clean CSI images with the minimum
error.

Certainly, this second approach has much more practical validity with respect to the
one presented in the previous subsection: in fact, since the assumption of having the
perfect CSI information at our disposal is absolutely not realistic, a valuable feedback
compression algorithm should not stand apart from the CSI estimation task. However,
our model is not entirely realistic: in fact, we consider the noise affecting the CSI-RS
transmission in downlink but not the impairments related to the uplink wireless
channel, which come into play in the reporting step. In other words, the compressed CSI
information, elaborated by the UE starting from a noisy estimate of the CSI-RS pilots,
reaches the network side as it is, without any distortion due to the uplink channel. It
is therefore unequivocal that the results reported in the following section may not be
fully reliable if we consider real scenarios, nevertheless we have made a significant step
towards more realistic assumptions.

Data preprocessing

Considering also the CSI estimation step, we have to generate the NR-CsiNet input
data exploiting the CSI-RS information: CSI-RS are sent in downlink to the UE so that
the downlink channel attenuation can be estimated in correspondence of the known
pilot symbols, through a compensation process. We denote as pCSI−RS those NRX ×
NTX × NSUB complex matrices that contain the compensated values in correspondence
of the CSI-RS pilots and zeros in all the remaining positions.

Figure 5.19 shows the example of a vector pi,j
CSI−RS, where i and j represent the

transmitter and receiver antenna indexes respectively. The plot reports the absolute
values of the complex matrix computed over NFFT = 1024 subcarriers: the left and
right guard bands occupy 212 subcarriers each, so that only the central NSUB = 600
subcarriers are allocated for data transmission and, thus, taken into account. In
each of the 50 RBs, composed by 12 subcarriers, only the first two subcarriers host
CSI-RS symbols, for a total of 100 CSI-RS REs for each transmitter/receiver antenna
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Figure 5.19: |pi,j
CSI−RS| vector computed at SINR = 20 dB

pair. To obtain a complete estimation of the downlink CSI matrices pi,j
CSI−RS for each

transmitter/ receiver antenna pair (i, j), it is necessary to perform an interpolation:
in particular, for each pi,j

CSI−RS matrix, we perform a cubic RBF interpolation on the
real and the imaginary parts separately, using a MATLAB predefined library. The result
obtained is shown inFigure 5.20. We denote the interpolated versions of the estimated
CSI images as HCSI−RS.

Figure 5.20: |Hi,j
CSI−RS| vector computed at SINR = 20 dB

At this point, we repeat all the steps described in the Subsection 5.5.2 for each
matrix Hi

CSI−RS, where i represents the receiver antenna index:
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• a DFT-based processing, to sparsify the matrix in the angular-delay domain,
obtaining the matrix HDFT,i

CSI−RS;

• a truncation procedure, to keep only the non-zero rows of matrix HDFT,i
CSI−RS; the

result is an NSUB/KDFT × NTX matrix H̃DFT,i
CSI−RS , where KDFT represents the

compression factor;

• an Inverse Discrete Fourier Transform (IDFT)-based processing, to bring the
H̃DFT,i

CSI−RS matrix back to the spatial-frequency domain, obtaining a smoother CSI

image H̃ IDFT,i
CSI−RS;

• a min-max normalization process, to scale all the matrix entries to the range [0,1],
according to 4.22;

• an unfolding procedure, to split each normalized complex matrix H̃ IDFT,i
CSI−RS into

two real matrices, one for the real and one for the imaginary part.

At the end of these preprocessing steps, we obtain NSUB/KDFT × NTX × 2NRX

matrices, denoted as H̃ IDFT,real
CSI−RS . Then, before being delivered to the autoencoder, the

training data are organized on 2 or 2NRX input channels, according to the multi-receiver
approach adopted (Subsection 5.5.2). In conclusion, the training dataset of our
NR-CsiNet is composed by (H̃ IDFT,real

CSI,id , H̃ IDFT,real
CSI−RS ) pairs, where matrices H̃ IDFT,real

CSI−RS
represent the clean CSI images of the model, whose generation process is described in
Subsection 5.5.2.

Variability of channel quality

The pCSI−RS matrices are collected simulating different conditions of the channel:
practically, we select a couple of different SINR values, 10 dB and 20 dB, and we train a
different NR-CsiNet model for each of these values. Then, we test the behavior of those
models at different levels of channel quality: to be precise, simulations are performed
with SINR values varying between -5 dB and 35 dB, with a 5 dB granularity.

5.5.4 Variational autoencoders

The NR-CsiNet models described so far are based on the standard autoencoder
proposed by the authors of paper [23]. We decide to implement alternative NR-CsiNet
versions based on Variational AutoEncoders (VAEs). VAEs have emerged as one of the
most popular techniques for unsupervised learning tasks [6]; their versatility derives
from the fact that they can be built on top of efficient function approximators, like
neural networks, and the training process can be performed through stochastic gradient
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descent algorithm. Moreover, compared to the traditional autoencoders, VAEs allow for
significant dimensionality reduction at the cost of a typically negligible loss of accuracy.
With these great premises, we try to apply the VAE technique to our CSI feedback
compression and estimation tasks. Before moving on to implementation details, it is
useful to review the mathematical principle behind VAEs.

Latent Variable Models

Reference [W11] defines VAEs as probabilistic generative models which learn the
probability distribution P(x) characterizing the input space X. The idea is to obtain a
good approximation of P(x) from which it is possible to generate entries very similar
to the input data by means of a simple sampling procedure. In the same reference,
VAEs are classified as Latent Variable Model (LVM), referring to the fact that the random
vector x ∈ X of the observed variables can be modeled as a function of a random vector
z ∈ Z of lower dimensionality; the elements of z are defined as unobserved or latent
variables, since given a datapoint of the input space X generated by the model, the
latent varaibles corresponding to it are not necessarily known. Even if it is not a rule,
for vector z a Gaussian prior distribution is generally assumed. In reference [6], the
model is formalized as follow: given a vector of latent variables z ∈ Z, that can be easily
sampled according to the probability density function P(z) defined over Z, there exists
a family of deterministic functions f (z; θ) parametrized by the vector θ ∈ Θ, where
f : Z×Θ → X. It can be noticed that f is a deterministic function, θ is fixed but z is
random vector, implying that f (z; θ) is a random vector in the space X. The VAE model
aims at optimizing the parameter θ so that, sampling a vector z from P(z), the function
f (z; θ) returns a datapoint as similar as possible to the entries of the input dataset. This
means maximizing the probability that each x generated by the model belongs to the
training dataset, which can be expresses as

P(x) =
Z

P(x|z; θ)P(z) dz (5.12)

It is important to observe that the generic term f (z; θ) is replaced with the probability
distribution P(x|z; θ), which makes the dependence of X on z explicit. In VAEs, a typical
choice for the conditional probability density function P(x|z; θ) is

P(x|z; θ) = N(X| f (z; θ), σ2I) (5.13)

where σ is an hyperparameter and I is the identity matrix. The choice of having a
Gaussian distribution allows to use the gradient descent optimization algorithm to
increase P(X) by gradually making f (z; θ) more similar to x for some z [6]. Effectively
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summarizing the concept of LVMs, reference [W11] defines them as models that use the
rules of conditional probability to specify complicated probability distributions over
high dimensional spaces, by composing simpler probability density functions.

An overview on VAEs

In paper [6], the authors identify several key issues that VAEs have to deal with:
first of all, how to define the latent variables z and which information they represent;
secondly, how to define the latent structure behind them, i.e. to define the dependencies
between different latent dimensions. Indeed, VAEs adopt a very simple approach to
solve these problems: basing on the principle that any d-dimensional distribution can be
potentially generated by sampling d variables normally distributed and than mapping
these variables through a complicated function, VAEs simply draw independent
samples of z from a Gaussian distribution N(0, I), avoiding any interpretation of the
latent dimensions. This means that, given a powerful function approximator, like a
multi-layer neural network, what the VAE model has to do is simply to learn a function
which maps the Gaussian independent z variables into latent variables and then map
the latent variables to x datapoints. To conclude, reference [6] highlights how, at the end,
no prior latent structure is required: the only issue is to determine a suitable expression
for P(x), so that stochastic gradient descent algorithm can be applied to optimize the
model. In practice, since most of z realizations present conditional probability P(x|z)
close to zero, a new function Q(z|x) is defined on the set of z samples which are
likely to produce x datapoints, to exclude all the other samples from the computation
of P(x). Paper [6] motivates this intermediate step by observing that the Z space on
which Q is defined is in principle much smaller than the original one, allowing for
a relatively easy computation of the conditional expectation Ez∼QP(x|z). In the same
paper, the fundamental relationship between Ez∼QP(x|z) and P(x) is analyzed in detail,
introducing the fundamental concept of Kullback-Leibler divergence, that is often
referred to with the symbol D.

The Kullback-Leibler divergence between P(z|x) and Q(z) is expressed as

D[Q(z)||P(z|x)] = Ez∼Q[log(Q(z))− log(P(z|x))] (5.14)

By applying the Bayes rule and rearranging the equation, the resulting expression is

log(P(x))− D[Q(z|x)||P(z|x)] = Ez∼Q[log(P(x|z))]− D[Q(z|x)||P(z)] (5.15)

This formula is the core part of VAE models: the left term is the quantity to
be maximized, while the right term can be optimized thorugh SGD choosing the
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appropriate Q function. In practice, what the models has to do is maximizing the first
term log(P(x)) and simultaneously minimizing the second quantity D[Q(z|x)||P(z|x)],
which represent an error term. Assuming to use a high-capacity model for Q(z|x),
Q(z|x) actually matches P(z|x) so that the error term is nullified and what the model
maximizes is indeed the quantity of interest log(P(x)).

At this point, the SGD must be applied to the right side of the equation and paper
[6] formalizes the procedure. Assuming Q(z|x) = N(z|µ(x; θ), Σ(x; θ)), where µ(x; θ)

(mean vector) and Σ(x; θ) (covariance matrix) are deterministic functions parametrized
by θ and learned from data by means of neural networks, and choosing z ∼ N(0, I), the
Kullback-Leibler divergence term D[Q(z|x)||P(z)] (omitting θ dependency) becomes

D[N(µ(x), Σ(x))||N(0, I)] =
1
2
[tr(Σ(x)) + µ(x)µ(x)T − k + log(det(Σ(x)))] (5.16)

where k represents the dimensionality of the distributions. Some useful observations
can be made about this formula:

• since Σ(x) is constrained to be a diagonal matrix, its determinant consists of the
product of all the diagonal entries;

• the term µ(x)µ(x)T is simplified into a sum over the squared entries of the vector
µ(x).

Regarding the term Ez∼Q[log(P(x|z))], the standard SGD procedure is followed: only a
single realization of z is considered and P(x|z) for that z is taken as approximation of
Ez∼Q[log(P(x|z))], avoiding to operate on a huge set of z samples.

Without insisting on mathematical aspects, what is important to underline for
implementation purposes is that the Kullback-Leibler divergence term, expressed by
(5.16), must be added to the reconstruction loss when implementing a VAE model.

A VAE model for CSI feedback reporting: NR-CsiVAE

In parallel to the NR-CsiNet models described in the previous sections, we develop
alternative solutions based on the employment of variational autoencoders, referred
to as NR-CsiVAE models. The structure of the CNN remains substantially the same,
if not for the inclusion of an inference network which approximates the variational
parameters µφ(x) and σφ(x), given the observed variables x. Thus, instead of learning
variational parameters for each observed variable x, the idea is to learn a set of K
global latent parameters φ, which constitute the parameters of the inference network
[W14]. In other words, the outputs of the inference network consist of a mean µφ(z)
and a log-variance log(σ2

φ(z)) K-dimensional vectors. Figure 5.21 reports the scheme
of the varational encoder implemented for our NR-CsiVAE model; the dash pane
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highlights the portion of the model that differs from the network structure illustrated in
Subsection 5.5.2.

Figure 5.21: Variational encoder scheme for NR-CsiVAE model

Figure 5.22 instead shows the variational decoder structure: it is possible to
observe that, compared to the model described in Subsection 5.5.2, a single dense
layer is added. We set the number of RefineNet to 2 since, as suggested in paper [23],
increasing this number would lead to a significant increase in complexity without a
substantial improvement of the performances.
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Figure 5.22: Variational decoder scheme for NR-CsiVAE model
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As regards the loss computation, we sum to the reconstruction loss the
Kullback-Leibler divergence term, derived in 5.16; the relative Python code is reported
in Listing 5.1.

Listing 5.1: Python code for VAE loss computation

1 # computing VAE loss
2
3 def vae_loss ( weight ):
4 def loss(y_true , y_pred ):
5 reconstruction_loss = mse(y_true , y_pred )
6 reconstruction_loss *= img_total
7 KL_loss = K.sum( z_sigma ) + K.sum(K. square ( z_mean )) \
8 - K.sum( z_log_var ) - latent_dim
9 KL_loss *= 0.5

10 vae_loss = K.mean( reconstruction_loss + weight * KL_loss )
11 return vae_loss
12 return loss

The parameter weight is a multiplication factor whose purpose is to balance
the reconstruction loss and the Kullback-Leibler divergence, so that they result to
have the same order of magnitude. In this way, the two terms will have more or
less the same impact on the optimization process. Instead of fixing the weighting
factor to a static value, we decide to adopt one of the most popular approach for
KL divergence balancing, called Kullback-Laibler (KL) annealing, which consists in
gradually introducing the KL loss term, increasing its weighting factor from 0 to 1 in
KL_annealtime epochs, starting from the epoch KL_start. In this way, for the first
KL_start epochs, the network can learn how to reconstruct the input data without
taking into account the KL cost: in fact, this term generally assumes very large values
at the beginning of the training process, so that the network is forced to ignore the
reconstruction task, with the risk of running into a local minimum. With this approach,
instead, only after a configurable number of epochs the network can start to focus on
the KL loss and optimize the latent space distribution. Reference [W9] suggests a KL
annealing implementation by means of a callback that checks and eventually updates
the weight term at each training epoch; Listing 5.2 reports the relative Python code.

Listing 5.2: Python code for KL annealing

1 class AnnealingCallback ( Callback ):
2 def __init__ (self , weight ):
3 self. weight = weight
4 def on_epoch_end (self , epoch , logs ={}):
5 if epoch > KL_start :
6 new_weight = min(K. get_value (self. weight ) \
7 + (1./ KL_annealtime ), 1)
8 K. set_value (self.weight , new_weight )
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5.6 Simulation results

This section summarizes the results obtained by the NR-CsiNet and the NR-CsiVAE
models described in the previous sections. Performances are evaluated after simulation
campaigns conducted with the NR link level simulator presented in Section 4.4,
replacing the blocks for CSI feedback definition and reporting with our deep
learning-based models. The beamforming block at the transmitter side takes in
input the CSI matrix compressed and sent back by the UE and performs a Singular
Value Decomposition (SVD) operation: the eigenvector correspondent to the higher
eigenvalue of the matrix is selected as beamforming vector for the next downlink
transmission.

Table 5.2 reports the main parameters of interest concerning the simulator settings,
while Table 5.4 shows the hyperparameters adopted for the training and testing
process of our model.

Table 5.4: Simulation parameters for 8 × 2 configuration

Parameter 2-channel model multi-channel model

Training set 1000 sim of 100 TTI 1500 sim of 100 TTI
Validation set 100 sim of 100 TTI 150 sim of 100 TTI

Testing set 100 sim of 100 TTI 100 sim of 100 TTI
Learning rate 0.001 0.001
Loss function MSE MSE

Optimizer Adam Adam
Epochs 300 300

# RefineNet units 2 2
KDFT 3 3

The DFT-compression factor should not be confused with the final compression
factor K, which is computed as

K =
NSUB · NTX · NRX

encoded_dim
(5.17)

where encoded_dim represents the effective dimension of the encoded feedback vector.
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5.6.1 NR-CsiNet for feedback compression

In this subsection, we analyze the performance of our NR-CsiNet model assuming
to work with the perfect channel matrices at the receiver side. The convolutional
autoencder is trained by means of a set of clean CSI images and its only task is to
compress and reconstruct the input matrices, without having to deal with any sort of
noise. Clearly, this is not a realistic scenario, but anyway it is a good test bed to check
the coding and decoding capabilities of our model.

Model performances are evaluated on the basis of the same indicator parameters
analyzed in Section 4.6: NMSE, throughput, raw BER, decoded BER and BLER. It
is important to note that the NMSE value, with its relative standard deviation, is not
reported for each SINR level, differently from all the other parameters evaluated: this
sounds reasonable since, for this subset of experiments, the channel noise is completely
neglected and thus, independently from the SINR level considered, the ideal CSI matrix
remains the same.

MIMO scenario: 8x2 antenna configuration

This subsection presents the simulation results achieved considering an 8 × 2
antenna system: the following pages show some plots which graphically summarize
the data collected in Section B.1. Two different NR-CsiNet variants are considered:

• 2-channel: real and imaginary parts of all the CSI images, independently of the
receiver antenna they are relative to, are conveyed on the same two input channels;

• multi-channel: real and imaginary parts of the CSI images relative to different
receiver antenna are conveyed to the network on 2NRX distinct channels.

For this configuration, a single value of DFT-compression factor is considered, i.e.
KDFT = 3. In principle, avoiding the DFT/IDFT preprocessing step both in downstream
and in upstream, which means setting KDFT to 1, would certainly lead to a gain in
simplicity and speed of execution. Moreover, it should be taken into account that the
truncation performed after the DFT step is certainly a "lossy" operation: in fact, the side
values which are eliminated are very close to zero, but not exactly zero. This means
that a portion of CSI information, however small, is already definitely lost during the
preprocessing step. Feeding the NR-CsiNet model with the whole CSI information may
turn out to be a better solution also in terms of reconstruction accuracy. The choice
of fixing the DFT-compression factor to 3 has been dictated by complexity reasons:
since a second receiver antenna comes into play, the number of feature maps for the
multi-channel model rises; as a natural consequence, the total number of learnable
parameters increases proportionally, giving rise to computational complexity and
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memory issues. For this reason, we decide to adopt a higher DFT-compression factor
to reduce the autoencoder input dimension. Experiments with lower DFT-compression
factors are left for future works.

Table 5.5: 8 × 2 NR-CsiNet 2-channel model, KDFT = 3 -NMSE

encoded dim 80 40 20 10

NMSE 0.0017 0.0052 0.0493 0.1682
σN MSE 0.0005 0.0014 0.0246 0.0634

Table 5.6: 8 × 2 NR-CsiNet multi-channel model, KDFT = 3 - NMSE

encoded dim 80 40 20 10

NMSE 0.0058 0.0440 0.1134 0.2535
σN MSE 0.0014 0.0135 0.0381 0.0717

Table 5.5 and Table 5.6 collect NMSE statistics relative 2-channel model and
multi-channel model respectively: the first row contains the mean NMSE values for
different compression factor, while the second row reports the corresponding standard
deviation.

(a) Throughput
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(b) BLER1

Figure 5.23: 8x2 NR-CsiNet IDEAL channel - 2-channel, KDFT = 3

(a) Throughput
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(b) BLER1

Figure 5.24: 8x2 NR-CsiNet IDEAL channel - multi-channel, KDFT = 3

As it can be observed in Figure 5.23 and in Figure 5.24, NR-CsiNet solutions
demonstrate excellent performance, even better than the one achieved by Follow
PMI. Looking at the plots relative to the different models considered (2-channel and
multi-channel), it would seem reasonable to conclude that the two variants achieve
comparable results. In fact, although the 2-channel model presents lower NMSE values,
as it can be deduced comparing Table 5.5 and Table 5.6, this NMSE disparity does
not translate into a substantial performance gap.

Anyway, even if the variants analyzed would appear to be equivalent, there exists
a fundamental difference which makes the 2-channel NR-CsiNet model preferable in
general. As already explained in Subsection 4.6.2, the 2-channel approach is more
scalable with the number of antennas at the receiver side, since the number of learnable
parameters does not increase proportionally to NRX.

5.6.2 NR-CsiNet for feedback estimation and reporting

The NR-CsiNet models analyzed in this subsection are designed to deal with both
the estimation and the reporting tasks: differently from the models evaluated in the
previous subsection, these convolutional autoencoders are not fed with clean CSI
images but with their noisy estimates, as it is clearly explained in Subsection 5.5.3.
In view of the observations made in the previous section, these experiments evaluate
only the NR-CsiNet 2-channel models; in particular, two different NR-CsiNet solutions
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have been trained and tested:

• a NR-CsiNet model trained with data collected at SINR = 10 dB;

• a NR-CsiNet model trained with data collected at SINR = 20 dB.

MIMO scenario: 8x2 antenna configuration

The figures below show the simulation results obtained in case of 8 × 2 antenna
configuration. Also for these simulations a single value of DFT-compression factor is
considered (KDFT = 3), again for reasons of memory and computational complexity. As
already mentioned, the SINR values selected for the training process are only two, i.e.
10 dB and 20 dB. It is worth noting that performances in terms of NMSE, apart from the
case in which K is increased to 480, are almost independent of the SINR level at which
training data are collected. The low sensitivity to the SINR value configured for the
training process supports our choice to reduce the number of SINR levels considered:
instead of collecting training data at five different SINR values, as for NR-ChannelNet
model, we limit our experiments to only two SINR alternatives.

Figure 5.25: 8x2 NR-CsiNet 2-channel @ SINR 10 dB, KDFT = 3 - NMSE
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Figure 5.26: 8x2 NR-CsiNet 2-channel @ SINR 20 dB, KDFT = 3 - NMSE

Observing the graphs in Figure 5.27 and Figure 5.28, relative to throughput and
BLER, it seems reasonable to conclude that, in 8 × 2 scenarios, our convolutional
autoencoder outperforms the Follow PMI, even when dealing with noisy CSI estimates
instead of perfect CSI matrices. In particular, the plots show that above 20 dB of SINR,
both NR-CsiNet and Follow PMI throughput curves reach the maximum limit imposed
by the TBS; at lower SINR, instead, all the variants of our deep learning solution prove
better performances.

(a) Throughput
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(b) BLER1

Figure 5.27: 8x2 NR-CsiNet @ SINR 10 dB - 2-channel, KDFT = 3

(a) Throughput
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(b) BLER1

Figure 5.28: 8x2 NR-CsiNet @ SINR 20 dB - 2-channel, KDFT = 3

In the end, it is worth noting that for all our experiments we adopted a single variant
of channel model, i.e. the Clustered Delay Line (CDL) (Section 4.4): simulation results
have shown that this type of channel model, although designed for multipath contexts,
usually presents a dominant cluster, which implicitly defines a preferential direction for
signal transmission. It is clear that, considering such a channel model, the Follow PMI is
expected to achieve good performance: in fact, among a set of possible beams, the PMI
index simply identifies the one pointing to the receiver with more precision. Our guess
is that, considering "richer" channel realizations, where multipath is not dominated by a
single cluster of paths, our deep learning-based approach has all the potential to further
gain ground on the Follow PMI algorithm.

5.6.3 NR-CsiVAE for feedback estimation and reporting

This last subsection summarizes the results obtained by replacing the standard
convolutional autoencoder with the variational autoencoder model (NR-CsiVAE),
described in Subsection 5.5.4. Also in this case, we limit our experiments to the
8 × 2 scenario, considering only the 2-channel variant and a single SINR value for
the training, i.e. 10 dB. Table 5.7 shows some specific hyperparameters adopted for
VAE training. Kenc represents the compression factor computed at the output of the
first dense layer of the variational encoder (Figure 5.21); it must not be confused with
the final compression factor K, evaluated after the data projection into the latent space.
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Fixed Kenc, two different values of K are examined: 240 and 480.

Table 5.7: Training hyperparamters for NR-CsiVAE

Hyperparameter Value

Epochs 300
KL_start 150

KL_annealtime 106

Kenc 4

As already mentioned, compared to the traditional autoencoders, VAEs should allow
for significant dimensionality reduction at the cost of a typically negligible loss of
accuracy. However, these considerations are especially based on results achieved in
image processing applications: moving this technology to a different context of use
makes the previous observations less reliable. Right from the training phase, in fact,
VAE has proved difficult to adapt to our use case: the gap between reconstruction
loss and KL divergence term turned out to be unfeasibly large, making it difficult
to simultaneously minimize both quantities. The plots shown below confirm our
suspicion: for our case study, the introduction of a VAE does not bring any substantial
improvement with respect to the use of a traditional autoencoder; on the contrary, VAE
results to be worse-performing, also compared to the Follow PMI algorithm.

Figure 5.29: 8x2 NR-CsiVAE 2-channel model @ SINR 10 dB, KDFT = 3 - NMSE
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5.6. SIMULATION RESULTS

(a) Throughput

(b) BLER1

Figure 5.30: 8x2 NR-CsiVAE 2-channel model @ SINR 10 dB, KDFT = 3
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Conclusions

This thesis was born as a descriptive document relative to the research project carried
out in collaboration with Telecom Italia. The purpose of this activity was to investigate
the potential use of neural networks as an alternative to traditional physical layer
blocks, taking into account the peculiar characteristics of 5G-based communication
systems.

The first phase was essentially dedicated to activities of research and collection of
bibliographical material, with the aim of identifying the most promising applications
and finding some previous work to be used as a starting point. On the basis of this
preliminary research, two different case studies were selected: the channel estimation
and the feedback reporting modules. For both these physical blocks, a deep learning
solution was implemented: specific deep neural networks were built and integrated in
the New Radio link simulator developed in Telecom Italia laboratories, as replacement
of standard algorithms.

Once the implementation task was completed, a final phase of simulation and
performance evaluation was started. According to the results obtained, it is not possible
to state that the introduction of deep learning mechanisms in the physical transmission
chain of 5G systems would lead to substantial improvements. However, going beyond
simulation contexts, where reality is simplified and approximated by mathematical
models, deep learning solutions have a good chance of gaining ground on standard
algorithms, which typically exploit some knowledge of the underlying model.

Nevertheless, this thesis studies the argument with a more exploratory intent: its
purpose is to test the waters, providing some useful guide lines for future investments
into innovative machine learning-based technologies. The experiments performed and
described in these pages clearly demonstrate that deep learning integration into the
New Radio transmission chain is not utopian at all, but a concrete possibility.

136



Appendix A

NR-ChannelNet Simulation Results

A.1 MISO scenario: 8 X 1 antenna configuration

Table A.1: ChannelNet 1-channel model @ SINR 0 dB - 8x1 configuration

SINR [dB] Thr [Mbit/s] Dec BER BLER1 BLER2 BLER3 BLER4 σN MSE

-5 0.051 0.454 1 1 0.978 0.975 1.316
0 0.698 0.419 1 0.883 0.665 0.760 0.103
5 1.581 0.356 0.982 0.454 0.464 0.170 0.048

10 2.707 0.241 0.615 0.213 0.107 0 0.073
15 3.580 0.134 0.323 0.120 0.006 0 0.093
20 4.178 0.061 0.133 0.023 0.01 0 0.098
25 4.451 0.033 0.069 0 0 0 0.070
30 4.484 0.028 0.059 0 0 0 0.056
35 4.484 0.028 0.059 0 0 0 0.055

Table A.2: ChannelNet 2-channel model @ SINR 0 dB - 8x1 configuration

SINR [dB] Thr [Mbit/s] Dec BER BLER1 BLER2 BLER3 BLER4 σN MSE

-5 0.051 0.455 1 1 0.978 0.975 1.008
0 0.680 0.419 1 0.901 0.649 0.774 0.404
5 1.568 0.358 0.979 0.453 0.480 0.208 0.089

10 2.625 0.250 0.648 0.222 0.121 0.005 0.068
15 3.542 0.136 0.345 0.097 0 0 0.053
20 4.079 0.071 0.162 0.036 0 0 0.062
25 4.326 0.047 0.099 0 0 0 0.058
30 4.367 0.042 0.088 0 0 0 0.061
35 4.341 0.044 0.095 0 0 0 0.061
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A.1. MISO SCENARIO: 8 X 1 ANTENNA CONFIGURATION

Table A.3: ChannelNet 1-channel model @ SINR 10 dB - 8x1 configuration

SINR [dB] Thr [Mbit/s] Dec BER BLER1 BLER2 BLER3 BLER4 σN MSE

-5 0.056 0.456 1 1 0.978 0.970 0.102
0 0.713 0.419 1 0.913 0.630 0.675 0.102
5 1.571 0.360 0.993 0.450 0.462 0.174 0.203

10 2.768 0.238 0.602 0.216 0.107 0 0.106
15 3.659 0.122 0.293 0.107 0 0 0.094
20 4.382 0.039 0.086 0 0 0 0.096
25 4.555 0.023 0.042 0 0 0 0.095
30 4.604 0.017 0.031 0 0 0 0.095
35 4.614 0.016 0.029 0 0 0 0.096

Table A.4: ChannelNet 2-channel model @ SINR 10 dB - 8x1 configuration

SINR [dB] Thr [Mbit/s] Dec BER BLER1 BLER2 BLER3 BLER4 σN MSE

-5 0.066 0.455 1 1 0.978 0.960 0.383
0 0.665 0.422 1 0.922 0.660 0.712 0.246
5 1.515 0.361 0.991 0.471 0.498 0.197 0.064

10 2.633 0.247 0.636 0.239 0.130 0.007 0.067
15 3.575 0.133 0.324 0.118 0.025 0 0.059
20 4.275 0.049 0.110 0.020 0 0 0.045
25 4.522 0.026 0.050 0 0 0 0.053
30 4.548 0.024 0.044 0 0 0 0.059
35 4.583 0.020 0.036 0 0 0 0.058

Table A.5: ChannelNet 1-channel model @ SINR 20 dB - 8x1 configuration

SINR [dB] Thr [Mbit/s] Dec BER BLER1 BLER2 BLER3 BLER4 σN MSE

-5 0.061 0.457 1 1 0.978 0.965 0.110
0 0.700 0.419 1 0.909 0.634 0.713 0.102
5 1.591 0.360 0.993 0.455 0.444 0.138 0.197

10 2.724 0.241 0.620 0.217 0.102 0 0.098
15 3.672 0.120 0.288 0.103 0 0 0.102
20 4.385 0.039 0.086 0 0 0 0.094
25 4.588 0.019 0.035 0 0 0 0.096
30 4.619 0.015 0.027 0 0 0 0.095
35 4.629 0.014 0.025 0 0 0 0.095
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A.1. MISO SCENARIO: 8 X 1 ANTENNA CONFIGURATION

Table A.6: ChannelNet 2-channel model @ SINR 20 dB - 8x1 configuration

SINR [dB] Thr [Mbit/s] Dec BER BLER1 BLER2 BLER3 BLER4 σN MSE

-5 0.053 0.456 1 1 0.978 0.973 0.140
0 0.667 0.420 1 0.910 0.660 0.737 0.075
5 1.505 0.362 0.993 0.468 0.527 0.215 0.145

10 2.686 0.242 0.625 0.233 0.0931 0 0.087
15 3.641 0.126 0.295 0.125 0.0250 0 0.084
20 4.352 0.041 0.091 0.011 0 0 0.096
25 4.558 0.023 0.042 0 0 0 0.095
30 4.601 0.018 0.032 0 0 0 0.094
35 4.624 0.015 0.026 0 0 0 0.095

Table A.7: ChannelNet 1-channel model @ SINR 50 dB - 8x1 configuration

SINR [dB] Thr [Mbit/s] Dec BER BLER1 BLER2 BLER3 BLER4 σN MSE

-5 0.061 0.457 1 1 0.978 0.965 0.141
0 0.642 0.422 1 0.936 0.645 0.731 0.054
5 1.479 0.365 0.996 0.485 0.519 0.273 0.141

10 2.559 0.255 0.671 0.240 0.131 0 0.091
15 3.560 0.138 0.330 0.116 0.025 0 0.083
20 4.329 0.043 0.098 0.008 0 0 0.095
25 4.588 0.019 0.034 0 0 0 0.095
30 4.621 0.015 0.027 0 0 0 0.095
35 4.637 0.013 0.023 0 0 0 0.095

Table A.8: ChannelNet 2-channel model @ SINR 50 dB - 8x1 configuration

SINR [dB] Thr [Mbit/s] Dec BER BLER1 BLER2 BLER3 BLER4 σN MSE

-5 0.038 0.455 1 1 0.978 0.988 0.153
0 0.644 0.422 1 0.917 0.665 0.731 0.082
5 1.479 0.366 0.996 0.500 0.510 0.228 0.145

10 2.554 0.254 0.670 0.238 0.137 0 0.087
15 3.585 0.135 0.321 0.108 0.025 0 0.084
20 4.349 0.042 0.091 0.014 0 0 0.096
25 4.558 0.023 0.042 0 0 0 0.094
30 4.611 0.016 0.029 0 0 0 0.095
35 4.621 0.015 0.027 0 0 0 0.095
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A.1. MISO SCENARIO: 8 X 1 ANTENNA CONFIGURATION

Table A.9: ChannelNet 1-channel model @ SINR [0,20] dB - 8x1 configuration

SINR [dB] Thr [Mbit/s] Dec BER BLER1 BLER2 BLER3 BLER4 σN MSE

-5 0.069 0.453 1 1 0.978 0.958 1.445
0 0.693 0.420 1 0.902 0.632 0.735 0.221
5 1.520 0.360 0.991 0.459 0.521 0.200 0.074

10 2.686 0.241 0.615 0.242 0.116 0.014 0.061
15 3.682 0.121 0.285 0.098 0.025 0 0.092
20 4.377 0.040 0.087 0.003 0 0 0.085
25 4.596 0.018 0.033 0 0 0 0.067
30 4.616 0.016 0.028 0 0 0 0.057
35 4.619 0.015 0.027 0 0 0 0.054

Table A.10: ChannelNet 2-channel model @ SINR [0,20] dB - 8x1 configuration

SINR [dB] Thr [Mbit/s] Dec BER BLER1 BLER2 BLER3 BLER4 σN MSE

-5 0.031 0.459 1 1 0.978 0.995 2.813
0 0.680 0.418 1 0.898 0.636 0.772 0.944
5 1.591 0.360 0.991 0.468 0.427 0.139 0.086

10 2.674 0.244 0.631 0.217 0.116 0 0.079
15 3.633 0.126 0.307 0.108 0 0 0.069
20 4.346 0.044 0.094 0.008 0 0 0.046
25 4.558 0.023 0.042 0 0 0 0.054
30 4.609 0.017 0.030 0 0 0 0.070
35 4.621 0.015 0.027 0 0 0 0.056

Table A.11: ChannelNet 1-channel model @ SINR [20,50] dB - 8x1 configuration

SINR [dB] Thr [Mbit/s] Dec BER BLER1 BLER2 BLER3 BLER4 σN MSE

-5 0.051 0.454 1 1 0.978 0.975 2.047
0 0.662 0.422 1 0.911 0.653 0.776 0.285
5 1.538 0.360 0.992 0.455 0.481 0.227 0.087

10 2.671 0.244 0.623 0.227 0.143 0.029 0.063
15 3.669 0.124 0.292 0.102 0.025 0 0.087
20 4.390 0.040 0.084 0.003 0 0 0.088
25 4.601 0.018 0.031 0 0 0 0.068
30 4.627 0.014 0.025 0 0 0 0.055
35 4.634 0.013 0.024 0 0 0 0.054
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A.1. MISO SCENARIO: 8 X 1 ANTENNA CONFIGURATION

Table A.12: ChannelNet 2-channel model @ SINR [20,50] dB - 8x1 configuration

SINR [dB] Thr [Mbit/s] Dec BER BLER1 BLER2 BLER3 BLER4 σN MSE

-5 0.056 0.454 1 1 0.978 0.970 2.033
0 0.654 0.421 1 0.907 0.656 0.784 0.264
5 1.543 0.359 0.992 0.457 0.465 0.205 0.084

10 2.699 0.242 0.609 0.228 0.143 0.017 0.064
15 3.633 0.128 0.308 0.098 0.025 0 0.086
20 4.359 0.043 0.091 0.003 0 0 0.088
25 4.563 0.022 0.040 0 0 0 0.068
30 4.621 0.015 0.027 0 0 0 0.056
35 4.637 0.013 0.023 0 0 0 0.054

Table A.13: 2D-MMSE standard algorithm - 8x1 configuration

SINR [dB] Thr [Mbit/s] Dec BER BLER1 BLER2 BLER3 BLER4 σN MSE

-5 0.055 0.456 1 1 0.950 0.950 2.874
0 0.655 0.419 1 0.927 0.680 0.465 1.943
5 1.327 0.367 0.964 0.634 0.500 0.220 0.182

10 2.313 0.270 0.770 0.331 0.116 0.010 0.126
15 3.458 0.143 0.388 0.108 0.014 0 0.132
20 4.158 0.069 0.162 0.009 0 0 0.142
25 4.406 0.041 0.088 0 0 0 0.150
30 4.483 0.031 0.064 0 0 0 0.116
35 4.505 0.028 0.058 0 0 0 0.118
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A.2. MIMO SCENARIO: 32 X 2 ANTENNA CONFIGURATION

A.2 MIMO scenario: 32 X 2 antenna configuration

Table A.14: ChannelNet 2-channel model @ SINR 0 dB - 32x2 configuration

SINR [dB] Thr [Mbit/s] Dec BER BLER1 BLER2 BLER3 BLER4 σN MSE

-5 1.250 0.393 1 0.740 0.513 0.185 0.138
0 2.098 0.315 0.957 0.188 0.056 0 0.130
5 3.277 0.164 0.458 0.006 0 0 0.099

10 4.234 0.055 0.125 0 0 0 0.085
15 4.624 0.013 0.025 0 0 0 0.087
20 4.698 0.004 0.008 0 0 0 0.084
25 4.672 0.007 0.016 0 0 0 0.105
30 4.677 0.007 0.014 0 0 0 0.083
35 4.675 0.007 0.015 0 0 0 0.083

Table A.15: ChannelNet multi-channel model @ SINR 0 dB - 32x2 configuration

SINR [dB] Thr [Mbit/s] Dec BER BLER1 BLER2 BLER3 BLER4 σN MSE

-5 0.433 0.414 1 0.960 0.797 0.782 0.614
0 1.240 0.370 0.995 0.656 0.495 0.410 0.227
5 1.833 0.312 0.890 0.367 0.316 0.225 0.250

10 2.146 0.270 0.744 0.319 0.253 0.191 0.201
15 2.302 0.253 0.663 0.350 0.225 0.200 0.110
20 2.330 0.250 0.629 0.378 0.266 0.196 0.165
25 2.327 0.250 0.641 0.355 0.281 0.223 0.170
30 2.302 0.253 0.646 0.369 0.271 0.234 0.164
35 2.307 0.254 0.650 0.362 0.275 0.221 0.164

Table A.16: ChannelNet 2-channel model @ SINR 10 dB - configuration 32x2

SINR [dB] Thr [Mbit/s] Dec BER BLER1 BLER2 BLER3 BLER4 σN MSE

-5 1.265 0.393 1 0.743 0.487 0.170 0.118
0 2.106 0.313 0.955 0.176 0.066 0 0.087
5 3.353 0.157 0.428 0.005 0 0 0.085

10 4.283 0.050 0.113 0 0 0 0.101
15 4.657 0.009 0.018 0 0 0 0.081
20 4.718 0.002 0.004 0 0 0 0.082
25 4.726 0.001 0.002 0 0 0 0.081
30 4.731 0.001 0.001 0 0 0 0.081
35 4.731 0.001 0.001 0 0 0 0.081
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A.2. MIMO SCENARIO: 32 X 2 ANTENNA CONFIGURATION

Table A.17: ChannelNet multi-channel model @ SINR 10 dB - 32x2 configuration

SINR [dB] Thr [Mbit/s] Dec BER BLER1 BLER2 BLER3 BLER4 σN MSE

-5 1.215 0.396 1 0.770 0.528 0.185 0.142
0 2.083 0.321 0.956 0.219 0.049 0 0.118
5 2.778 0.221 0.661 0.032 0.040 0 0.124

10 3.392 0.151 0.387 0.043 0.020 0 0.098
15 3.628 0.124 0.305 0.040 0.017 0 0.094
20 3.672 0.119 0.290 0.041 0.022 0 0.099
25 3.664 0.120 0.292 0.046 0.025 0 0.098
30 3.588 0.130 0.320 0.046 0.035 0 0.099
35 3.557 0.134 0.334 0.036 0.030 0 0.099

Table A.18: ChannelNet 2-channel model @ SINR 20 dB - 32x2 configuration

SINR [dB] Thr [Mbit/s] Dec BER BLER1 BLER2 BLER3 BLER4 σN MSE

-5 1.250 0.393 1 0.742 0.505 0.186 0.112
0 2.129 0.311 0.950 0.175 0.032 0 0.122
5 3.305 0.162 0.443 0.013 0 0 0.108

10 4.316 0.047 0.104 0 0 0 0.084
15 4.660 0.009 0.017 0 0 0 0.081
20 4.718 0.002 0.004 0 0 0 0.080
25 4.731 0.001 0.001 0 0 0 0.080
30 4.733 0.000 0.001 0 0 0 0.080
35 4.731 0.001 0.001 0 0 0 0.080

Table A.19: ChannelNet multi-channel model @ SINR 20 dB - 32x2 configuration

SINR [dB] Thr [Mbit/s] Dec BER BLER1 BLER2 BLER3 BLER4 σN MSE

-5 1.092 0.403 1 0.817 0.545 0.315 0.279
0 1.978 0.335 0.976 0.303 0.061 0.020 0.120
5 2.607 0.245 0.739 0.051 0.040 0 0.114

10 3.262 0.168 0.448 0.052 0.022 0 0.114
15 3.514 0.139 0.350 0.040 0.019 0 0.113
20 3.565 0.132 0.329 0.047 0.029 0 0.090
25 3.524 0.138 0.345 0.056 0.031 0 0.091
30 3.430 0.149 0.383 0.060 0.033 0 0.092
35 3.371 0.156 0.406 0.062 0.033 0 0.092
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A.2. MIMO SCENARIO: 32 X 2 ANTENNA CONFIGURATION

Table A.20: ChannelNet 2-channel model @ SINR 50 dB - 32x2 configuration

SINR [dB] Thr [Mbit/s] Dec BER BLER1 BLER2 BLER3 BLER4 σN MSE

-5 1.235 0.394 1 0.760 0.468 0.216 0.140
0 2.080 0.317 0.961 0.201 0.036 0 0.105
5 3.269 0.167 0.457 0.014 0 0 0.113

10 4.252 0.055 0.120 0 0 0 0.102
15 4.644 0.010 0.021 0 0 0 0.081
20 4.733 0.000 0.001 0 0 0 0.081
25 4.733 0.000 0.001 0 0 0 0.079
30 4.736 0 0 0 0 0 0.079
35 4.733 0 0.001 0 0 0 0.079

Table A.21: ChannelNet multi-channel model @ SINR 50 dB - 32x2 configuration

SINR [dB] Thr [Mbit/s] Dec BER BLER1 BLER2 BLER3 BLER4 σN MSE

-5 0.960 0.406 1 0.869 0.593 0.369 0.276
0 1.854 0.343 0.979 0.381 0.108 0.105 0.144
5 2.406 0.266 0.803 0.107 0.055 0.070 0.136

10 2.959 0.203 0.561 0.082 0.100 0 0.098
15 3.109 0.183 0.481 0.104 0.056 0 0.111
20 3.142 0.178 0.454 0.163 0.055 0 0.118
25 3.114 0.181 0.470 0.159 0.042 0 0.127
30 3.071 0.185 0.487 0.175 0.043 0 0.132
35 3.025 0.192 0.509 0.182 0.047 0.005 0.135

Table A.22: 2D-MMSE standard algorithm - 32x2 configuration

SINR [dB] Thr [Mbit/s] Dec BER BLER1 BLER2 BLER3 BLER4 σN MSE

-5 1.151 0.399 1 0.820 0.544 0.176 0.118
0 2.096 0.313 0.959 0.185 0.032 0 0.121
5 3.295 0.162 0.446 0.014 0 0 0.108

10 4.308 0.048 0.105 0 0 0 0.084
15 4.672 0.007 0.014 0 0 0 0.081
20 4.728 0.001 0.002 0 0 0 0.081
25 4.733 0 0.001 0 0 0 0.080
30 4.736 0 0 0 0 0 0.080
35 4.733 0 0.001 0 0 0 0.080
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Appendix B

NR-CsiNet Simulation Results

B.1 CSI Feedback compression in 8x2 MIMO scenario

Table B.1: 8 × 2 NR-CsiNet 2-channel model - encoded dim 80, KDFT = 3

SINR [dB] Thr [Mbit/s] Dec BER BLER1 BLER2 BLER3 BLER4

-5 1.281 0.500 1 1 0.957 0.766
0 6.364 0.500 1 0.733 0.297 0.060
5 9.571 0.490 0.972 0.080 0 0

10 14.905 0.238 0.376 0 0 0
15 19.665 0.013 0.016 0 0 0
20 19.958 0.000 0.001 0 0 0
25 19.968 0 0 0 0 0
30 19.968 0 0 0 0 0
35 19.968 0 0 0 0 0

Table B.2: 8 × 2 NR-CsiNet 2-channel model - encoded dim 40, KDFT = 3

SINR [dB] Thr [Mbit/s] Dec BER BLER1 BLER2 BLER3 BLER4

-5 1.311 0.500 1 1 0.957 0.759
0 6.394 0.500 1 0.728 0.298 0.054
5 9.581 0.490 0.972 0.078 0 0

10 14.885 0.240 0.377 0 0 0
15 19.665 0.013 0.016 0 0 0
20 19.958 0 0.001 0 0 0
25 19.968 0 0 0 0 0
30 19.968 0 0 0 0 0
35 19.968 0 0 0 0 0
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B.1. CSI FEEDBACK COMPRESSION IN 8X2 MIMO SCENARIO

Table B.3: 8 × 2 NR-CsiNet 2-channel model - encoded dim 20, KDFT = 3

SINR [dB] Thr [Mbit/s] Dec BER BLER1 BLER2 BLER3 BLER4

-5 1.321 0.500 1 1 0.957 0.757
0 6.333 0.500 1 0.741 0.298 0.071
5 9.581 0.490 0.973 0.079 0 0

10 14.926 0.237 0.373 0 0 0
15 19.625 0.014 0.018 0 0 0
20 19.958 0 0.001 0 0 0
25 19.968 0 0 0 0 0
30 19.968 0 0 0 0 0
35 19.968 0 0 0 0 0

Table B.4: 8 × 2 NR-CsiNet 2-channel model - encoded dim 10, KDFT = 3

SINR [dB] Thr [Mbit/s] Dec BER BLER1 BLER2 BLER3 BLER4

-5 1.230 0.500 1 1 0.959 0.779
0 6.273 0.500 1 0.753 0.302 0.080
5 9.490 0.490 0.972 0.098 0 0

10 14.714 0.248 0.390 0 0 0
15 19.595 0.015 0.020 0 0 0
20 19.948 0.001 0.001 0 0 0
25 19.968 0 0 0 0 0
30 19.968 0 0 0 0 0
35 19.968 0 0 0 0 0

Table B.5: 8 × 2 NR-CsiNet multi-channel model - encoded dim 80, KDFT = 3

SINR [dB] Thr [Mbit/s] Dec BER BLER1 BLER2 BLER3 BLER4

-5 1.301 0.500 1 1 0.957 0.761
0 6.374 0.500 1 0.732 0.296 0.054
5 9.591 0.490 0.972 0.076 0 0

10 14.885 0.240 0.377 0 0 0
15 19.625 0.015 0.019 0 0 0
20 19.958 0 0.001 0 0 0
25 19.968 0 0 0 0 0
30 19.968 0 0 0 0 0
35 19.968 0 0 0 0 0
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B.1. CSI FEEDBACK COMPRESSION IN 8X2 MIMO SCENARIO

Table B.6: 8 × 2 NR-CsiNet multi-channel model - encoded dim 40, KDFT = 3

SINR [dB] Thr [Mbit/s] Dec BER BLER1 BLER2 BLER3 BLER4

-5 1.291 0.500 1 1 0.959 0.763
0 6.374 0.500 1 0.734 0.295 0.056
5 9.571 0.490 0.972 0.079 0 0

10 14.885 0.239 0.376 0 0 0
15 19.615 0.015 0.019 0 0 0
20 19.958 0.000 0.001 0 0 0
25 19.968 0 0 0 0 0
30 19.968 0 0 0 0 0
35 19.968 0 0 0 0 0

Table B.7: 8 × 2 NR-CsiNet multi-channel model - encoded dim 20, KDFT = 3

SINR [dB] Thr [Mbit/s] Dec BER BLER1 BLER2 BLER3 BLER4

-5 1.240 0.500 1 1 0.959 0.773
0 6.283 0.500 1 0.754 0.305 0.071
5 9.510 0.491 0.975 0.088 0 0

10 14.734 0.247 0.389 0 0 0
15 19.635 0.015 0.018 0 0 0
20 19.958 0.000 0.001 0 0 0
25 19.968 0 0 0 0 0
30 19.968 0 0 0 0 0
35 19.968 0 0 0 0 0

Table B.8: 8 × 2 NR-CsiNet multi-channel model - encoded dim 10, KDFT = 3

SINR [dB] Thr [Mbit/s] Dec BER BLER1 BLER2 BLER3 BLER4

-5 1.059 0.500 1 1 0.963 0.811
0 5.859 0.500 1 0.790 0.385 0.145
5 9.359 0.491 0.976 0.129 0.003 0

10 14.048 0.281 0.457 0 0 0
15 19.292 0.029 0.037 0 0 0
20 19.948 0 0.001 0 0 0
25 19.968 0 0 0 0 0
30 19.968 0 0 0 0 0
35 19.968 0 0 0 0 0
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B.2. CSI FEEDBACK ESTIMATION AND COMPRESSION IN 8X2 MIMO SCENARIO

B.2 CSI Feedback estimation and compression in 8x2
MIMO scenario

Table B.9: 8 × 2 NR-CsiNet 2-channel model @ SINR 10 dB - encoded dim 10, KDFT = 3

SINR [dB] Thr [Mbit/s] Dec BER BLER1 BLER2 BLER3 BLER4 σN MSE

-5 1.170 0.500 1 1 0.972 0.775 0.191
0 6.454 0.500 1 0.769 0.278 0.038 0.076
5 9.520 0.496 0.989 0.058 0 0 0.027

10 14.442 0.265 0.445 0 0 0 0.015
15 19.706 0.010 0.014 0 0 0 0.013
20 19.968 0 0 0 0 0 0.011
25 19.968 0 0 0 0 0 0.011
30 19.968 0 0 0 0 0 0.011
35 19.968 0 0 0 0 0 0.011

Table B.10: 8 × 2 NR-CsiNet 2-channel model @ SINR 10 dB - encoded dim 40, KDFT = 3

SINR [dB] Thr [Mbit/s] Dec BER BLER1 BLER2 BLER3 BLER4 σN MSE

-5 0.958 0.500 1 1 0.986 0.810 0.179
0 6.172 0.500 1 0.822 0.304 0.098 0.071
5 9.480 0.498 0.993 0.065 0.025 0 0.029

10 14.431 0.265 0.425 0 0 0 0.018
15 19.615 0.015 0.018 0 0 0 0.016
20 19.928 0.002 0.002 0 0 0 0.015
25 19.968 0 0 0 0 0 0.016
30 19.968 0 0 0 0 0 0.016
35 19.968 0 0 0 0 0 0.016

Table B.11: 8 × 2 NR-CsiNet 2-channel model @ SINR 10 dB - encoded dim 20, KDFT = 3

SINR [dB] Thr [Mbit/s] Dec BER BLER1 BLER2 BLER3 BLER4 σN MSE

-5 0.928 0.500 1 1 0.986 0.817 0.138
0 6.081 0.500 1 0.830 0.318 0.116 0.057
5 9.460 0.498 0.995 0.067 0.025 0 0.035

10 14.371 0.267 0.432 0 0 0 0.030
15 19.524 0,019 0.024 0 0 0 0.028
20 19.928 0.002 0.002 0 0 0 0.027
25 19.968 0 0 0 0 0 0.027
30 19.968 0 0 0 0 0 0.027
35 19.968 0 0 0 0 0 0.027

148



B.2. CSI FEEDBACK ESTIMATION AND COMPRESSION IN 8X2 MIMO SCENARIO

Table B.12: 8 × 2 NR-CsiNet 2-channel model @ SINR 10 dB - encoded dim 10, KDFT = 3

SINR [dB] Thr [Mbit/s] Dec BER BLER1 BLER2 BLER3 BLER4 σN MSE

-5 0.918 0.500 1 1 0.986 0.819 0.379
0 6.051 0.500 1 0.837 0.329 0.116 0.148
5 9.409 0.498 0.993 0.079 0.025 0 0.073

10 14.240 0.273 0.442 0.002 0 0 0.061
15 19.474 0.021 0.027 0 0 0 0.060
20 19.928 0.002 0.002 0 0 0 0.062
25 19.968 0 0 0 0 0 0.062
30 19.968 0 0 0 0 0 0.062
35 19.968 0 0 0 0 0 0.062

Table B.13: 8 × 2 NR-CsiNet 2-channel model @ SINR 20 dB - encoded dim 80, KDFT = 3

SINR [dB] Thr [Mbit/s] Dec BER BLER1 BLER2 BLER3 BLER4 σN MSE

-5 1.160 0.500 1 1 0.990 0.765 0.126
0 6.545 0.500 1 0.772 0.186 0.069 0.039
5 9.581 0.500 1 0.033 0.010 0 0.017

10 15.470 0.213 0.334 0 0 0 0.012
15 19.746 0.009 0.012 0 0 0 0.012
20 19.968 0 0 0 0 0 0.011
25 19.968 0 0 0 0 0 0.011
30 19.968 0 0 0 0 0 0.011
35 19.968 0 0 0 0 0 0.011

Table B.14: 8 × 2 NR-CsiNet 2-channel model @ SINR 20 dB - encoded dim 40, KDFT = 3

SINR [dB] Thr [Mbit/s] Dec BER BLER1 BLER2 BLER3 BLER4 σN MSE

-5 0.988 0.500 1 1 0.986 0.804 0.097
0 6.162 0.500 1 0.820 0.307 0.100 0.035
5 9.480 0.498 0.993 0.064 0.025 0 0.016

10 14.462 0.263 0.422 0 0 0 0.012
15 19.635 0.014 0.017 0 0 0 0.011
20 19.928 0.002 0.002 0 0 0 0.011
25 19.968 0 0 0 0 0 0.011
30 19.968 0 0 0 0 0 0.011
35 19.968 0 0 0 0 0 0.011
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Table B.15: 8 × 2 NR-CsiNet 2-channel model @ SINR 20 dB - encoded dim 20, KDFT = 3

SINR [dB] Thr [Mbit/s] Dec BER BLER1 BLER2 BLER3 BLER4 σN MSE

-5 0.958 0.500 1 1 0.986 0.810 0.091
0 6.132 0.500 1 0.827 0.314 0.109 0.039
5 9.480 0.498 0.993 0.064 0.025 0 0.028

10 14.442 0.264 0.423 0 0 0 0.027
15 19.544 0.018 0.022 0 0 0 0.027
20 19.928 0.002 0.002 0 0 0 0.027
25 19.968 0 0 0 0 0 0.027
30 19.968 0 0 0 0 0 0.027
35 19.968 0 0 0 0 0 0.027

Table B.16: 8 × 2 NR-CsiNet 2-channel model @ SINR 20 dB - encoded dim 10, KDFT = 3

SINR [dB] Thr [Mbit/s] Dec BER BLER1 BLER2 BLER3 BLER4 σN MSE

-5 0.918 0.500 1 1 0.986 0.819 1.055
0 6.061 0.500 1 0.837 0.321 0.127 0.334
5 9.429 0.498 0.993 0.076 0.025 0 0.125

10 14.250 0.272 0.445 0 0 0 0.078
15 19.423 0.023 0.029 0 0 0 0.068
20 19.928 0.002 0.002 0 0 0 0.063
25 19.968 0 0 0 0 0 0.063
30 19.968 0 0 0 0 0 0.063
35 19.968 0 0 0 0 0 0.063

Table B.17: 8 × 2 - Follow PMI algorithm

Follow PMI

SINR [dB] Thr [Mbit/s] Dec BER BLER1 BLER2 BLER3 BLER4

-5 0.504 0.500 1 1 0.990 0.901
0 4.962 0.500 1 0.900 0.491 0.266
5 8.905 0.500 1 0.198 0.057 0

10 12.929 0.336 0.577 0.002 0 0
15 18.939 0.046 0.057 0 0 0
20 19.918 0.002 0.003 0 0 0
25 19.968 0 0 0 0 0
30 19.968 0 0 0 0 0
35 19.968 0 0 0 0 0
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B.3 CSI Feedback estimation and compression with
NR-CsiVAE: 8x2 MIMO scenario

Table B.18: 8 × 2 NR-CsiVAE 2-channel model @ SINR 10 dB - encoded dim 20, KDFT = 3

SINR [dB] Thr [Mbit/s] Dec BER BLER1 BLER2 BLER3 BLER4 σN MSE

-5 0.121 0.500 1 1 1 0.975 0.262
0 3.167 0.500 1 0.981 0.652 0.624 0.061
5 7.664 0.500 1 0.439 0.237 0.027 0.033

10 11.013 0.417 0.753 0.089 0 0 0.025
15 16.095 0.181 0.262 0 0 0 0.023
20 19.444 0.022 0.029 0 0 0 0.022
25 19.887 0.003 0.004 0 0 0 0.022
30 19.968 0 0 0 0 0 0.022
35 19.968 0 0 0 0 0 0.022

Table B.19: 8 × 2 NR-CsiVAE 2-channel model @ SINR 10 dB - encoded dim 10, KDFT = 3

SINR [dB] Thr [Mbit/s] Dec BER BLER1 BLER2 BLER3 BLER4 σN MSE

-5 0.343 0.500 1 1 1 0.929 0.288
0 3.893 0.500 1 0.928 0.603 0.527 0.124
5 7.866 0.500 1 0.350 0.242 0.12 0.092

10 11.779 0.388 0.684 0.054 0.025 0 0.060
15 17.043 0.136 0.177 0.007 0 0 0.053
20 19.302 0.027 0.036 0 0 0 0.053
25 19.786 0.006 0.009 0 0 0 0.052
30 19.847 0.004 0.006 0 0 0 0.052
35 19.887 0.003 0.004 0 0 0 0.051
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Abbreviations and Acronyms

sTTI shortened Transmission Time Interval
1D 1-dimensional
2D 2-dimensional
3D 3-dimensional

AAS Active Antenna System
AI Artificial Intelligence
ALMMSE Approximated Linear Minimum Mean Square Error
AMC Automatic Modulation Classification
AS Angle Spread

BER Bit Error Rate
BGD Batch Gradient Descent
BLER BLock Error Rate
BP Bandwidth Part
BS Base Station

CA Carrier Aggregation
CC Component Carrier
CDL Cluster Delay Line
CDM Code Division Multiplexing
CDM group Code Division Multiplexing group
CDMA Code Division Multiple Access
CFR Channel Frequency Response
CIR Channel Impulse Response
CNN Convolutional Neural Network
CoMP Coordinated Multi-Point
CP Cyclic Prefix
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Abbreviations and Acronyms

CP-OFDM Cyclic Prefix Orthogonal Frequency-Division
Multiplexing

CQI Channel Quality Indicator
CRBs Common Resource Blocks
CRI CSI-RS Resource Indicator
CS Compressive Sensing
CSI Channel State Information
CSI-RS Channel State Information-Reference Signal
CsiNet CSI Network

DCI Downlink Channel Information
DCT Discrete Cosine Transform
DetNet Detection Network
DFT Discrete Fourier Transform
DL Downlink
DL Deep Learning
DM-RS DeModulation-Reference Signal
DnCNN Denoising Convolutional Neural Network
DNN Deep Neural Network
DOA Direction of Arrival

e-NodeB enhanced-NodeB
EMBB Enhanced Mobile BroadBand

FD-MIMO Full Dimensional MIMO
FDD Frequency Division Duplexing
FDM Frquency Division Multiplexing
FFT Fast Fourier Transform

gNodeB NR base station

H-ARQ Hybrid-Automatic Repeat reQuest
HR High Resolution

IDFT Inverse Discrete Fourier Transform
IFFT Inverse Fast Fourier Transform
IR Image Restoration
ISI InterSymbol Interference
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Abbreviations and Acronyms

KL Kullback-Laibler

LI Layer Indicator
LOS Line Of Sight
LR Low Resolution
LS Least Squares
LSTM Long Short-Term Memory
LTE Long Term Evolution
LTE-A LTE-Advanced
LVM Latent Variable Model

MAC Medium Access Control
MAC CE MAC Control Element
Massive MIMO Massive Multiple-Input Multiple-Output
MIMO Multiple-Input Multiple-Output
ML Machine Learning
MMSE Minimum Mean Square Error
MMTC Massive Machine-Type Communication
mmWave millimeter Wave
MSE Mean Square Error
MU-MIMO Multi-User Multiple-Input Multiple-Output

NB-IoT Narrowband Internet of Things
NFFT Number of FFT samples
NG Next Generation
NLOS Non-Line Of Sight
NMSE Normalized MSE
NN Neural Network
NOFDM Number of OFDM symbols per TTI
NOMA Non-Orthogonal Multiple Access
NPRB Number of PRB
NR New Radio
NSUB Number of SUBcarriers used

OFDM Orthogonal Frequency-Division Multiplexing

PCA Principal Component Analysis
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Abbreviations and Acronyms

PDSCH Physical Downlink Shared CHannel
PMI Precoding Matrix Indicator
PRB Physical Resource Block
PUCCH Physical Uplink Control CHannel

QoS Quality of Service

RB Resource Block
RBF Radial Basis Function
RBM Restricted Boltzmann Machine
RE Resource Element
ReLU Rectified Linear Unit
RI Rank Indicator
RNN Recurrent Neural Network
RS Reference Signals

SC Sparse-Coding
SFI Slot Format Indicator
SGD Stochastic Gradient Descent
SINR Signal to Noise plus Interference Ratio
SISO Single-Input Single-Output
SNR Signal-to-Noise Ratio
SR Super-Resolution
SRCNN Super-Resolution Convolutional Neural Network
SS Subcarrier Spacing
SSBRI Synchronization Signal/PBCH Block Resource

Indicator
SU-MIMO Single-User Multiple-Input Multiple-Output
SVD Singular Value Decomposition

TBS Transport Block Size
TDD Time Division Duplexing
TDL Tapped Delay Line
TDM Time Division Multiplexing
TTI Transmission Time Interval
TXRU Transceiver Unit

UE User Equipment
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Abbreviations and Acronyms

UL Uplink
URLLC Ultra-Reliable Low-Latency Communication

V2V Vehicle-Two-Vehicle
V2X Vehicle-to-everything
VAE Variational AutoEncoder
VehA Vehicular-A
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