
POLITECNICO DI TORINO
Collegio di Ingegneria Elettronica, delle Telecomunicazioni e Fisica (ETF)

Master degree course
COMMUNICATIONS AND COMPUTER NETWORKS ENGINEERING

Master Thesis

Neural Networks for image classification
An approach to adversarial perturbations robustness

Thesis Supervisor:
Prof. Enrico Magli

Candidate:

Luca Volpato
251586

December 2019



Abstract

The following document contains the analysis of a method for image classification

problems for neural networks, developed with the goal of improving robustness to

adversarial perturbations.

Through the use of an encoder, the system maps the input data to distributions

with target mean and variance, inside of a latent space with dimensionality equal to the

number of classes. The idea is that, by having well separated distributions, adversarial

attacks will prove less effective. The system was already developed for one-vs-all class

classification [1], consequently this thesis explores the results and methods for a multi-

class extension.

We performed analyses on the MNIST and CIFAR-10 datasets, and the outcomes

obtained are solid enough for an extension to other databases. Indeed, the results prove

that a system as the one presented is consistently more resistant to adversarial per-

turbations compared to standard cross-entropy schemes, while providing comparable

levels of accuracy when perturbations are absent.



Contents

1 Context 3

1.1 About neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 The MNIST database . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 Neural Networks implementation . . . . . . . . . . . . . . . . . 6

1.1.3 About encoders . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 About adversarial perturbations . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Defenses against adversarial perturbations . . . . . . . . . . . . 9

1.3 Residual Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 About RegNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 About this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Study of three-dimensional latent space 13

2.0.1 RegNet loss functions . . . . . . . . . . . . . . . . . . . . . . . . 13

2.0.2 Architecture details . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Simplified loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Experiment execution . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.2 Analysis of the latent space . . . . . . . . . . . . . . . . . . . . 15

2.1.3 Analysis of Gaussianity . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.4 Results with single label classes . . . . . . . . . . . . . . . . . . 17

2.1.5 Interpretation of abnormal distribution shapes . . . . . . . . . . 18

2.2 Covariance loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Distributions in the latent space . . . . . . . . . . . . . . . . . . 20

2.2.2 Gaussianity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Kurtosis improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Effects of kurtosis magnitude on latent spaces . . . . . . . . . . 23

2.3.2 Kurtosis and skewness of dimensions . . . . . . . . . . . . . . . 25

2.4 Cross-Entropy loss function . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.1 Dependency of accuracy on target mean . . . . . . . . . . . . . 28

2.5.2 Dependency of accuracy on scaling factor . . . . . . . . . . . . . 29

2.6 Chapter conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1



3 Adversarial perturbations 32

3.1 Fast Gradient Sign Method . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Effects of adversarial attacks on the latent space . . . . . . . . . . . . . 34

3.2.1 In depth examination of perturbed latent space . . . . . . . . . 36

3.3 RegNet’s robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 RegNet robustness on MNIST . . . . . . . . . . . . . . . . . . . 38

3.3.2 CIFAR-10 structure . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.3 CIFAR-10 performance . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.4 Effects of residual layer depth on robustness . . . . . . . . . . . 42

3.3.5 Shake-Shake encoder . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Analysis of robustness variance . . . . . . . . . . . . . . . . . . . . . . 46

3.4.1 Dependency of accuracy on µT . . . . . . . . . . . . . . . . . . . 46

3.4.2 Variance introduced by training . . . . . . . . . . . . . . . . . . 47

3.4.3 Robustness for data augmented MNIST . . . . . . . . . . . . . 48

3.5 CIFAR-100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2



Chapter 1

Context

This Introduction is meant for all those who’ve never heard about neural networks

or don’t know them well enough to understand a scientific paper, as well as those

who just need some reminders about the specific topics faced in this thesis. It contains

notions structured on various degrees of difficulty, ranging from history and application

of neural networks to their technical implementation, and is therefore meant to be a

meeting point for all possible public of the document.

Readers should feel free to skip, at their own discretion, sections they consider too

technical or too obvious, even the whole Introduction, if they feel confident enough.

Overview

Neural networks are a type of artificial intelligence that in recent years has found

many applications in the field of automatic image recognition, mostly due to their

performances equal, if not superior, to those of humans.

However, together with impressive successes and achievements, they also attracted

a fair amount of challenges; this thesis will focus in particular on obstacles posed by

what is usually referred to as adversarial perturbations, endeavors that attempt to

disrupt the intended mechanisms of neural networks, leading them to recognize images

incorrectly, often with malicious intents.

Motivations

Colleagues at Politecnico di Torino in Learning mappings onto regularized latent spaces

for biometric authentication [1] had developed a system meant to resist adversarial

perturbation in the biometric image recognition field, where the input images were

labeled as Authorized and Non-Authorized. When confronted with adversarial attacks

aimed at the misclassification of inputs, the system proved significantly more robust

to errors than many of its state-of-the-art equivalents.

This thesis focuses on implementing and studying a generalization of such a system,

3



expanding the number of classes above the binary dimensionality, up to an arbitrarily

selected amount.

1.1 About neural networks

Neural networks belong to a type of computer algorithms commonly referred to as

artificial intelligence, whose peculiarity is that they start functioning with absolutely

no knowledge of their assigned task, and gradually learn the rules through many trials

and errors. The programmer isn’t required to specify all possible cases, solutions, and

exceptions, that the machine could encounter, but instead he just needs to lay the

correct foundations for the algorithm to improve and solve the presented task.

Neural networks, in particular, are modeled loosely after the human brain, and its

ability to recognize patterns. The broad idea behind it is that by being confronted

with a sufficient amount of specific cases, the system will eventually learn the general

underlying rules: for example, in the field of image recognition, which is the topic of this

thesis, neural networks might learn to identify cats by analyzing many examples that

have been manually marked as cat or no cat, and use the results to identify such animal

in other images. They do this without any prior knowledge of the features cats possess,

for example, that they have fur, tails, four legs, etc. Instead, they automatically

generate identifying characteristics from the examples that they process.

Despite the concept having been around since 1943, neural networks have encoun-

tered a major popularity surge only in the latest decade, when the technological im-

provements finally allowed the implementation of competitive models. These systems

have proved to achieve human or even super-human performances in many fields: image

recognition, face authentication, self-driving cars, generation of human-like features for

cinematic special effects, speech recognition, automatic translation, medical diagnosis,

game playing, and many others activities that have for a long time been considered

exclusive to humans.

1.1.1 The MNIST database

Neural networks sometimes learn and memorize by hearth all the solutions of the

assigned task, a phenomenon called overfitting, which causes poor performances in

realistic scenarios; for this reason input data is usually divided into two sets, one for

training, the phase when the network improves and learns, and one for testing the

phase apt to verify the system’s performance, and to avoid overfitting, the samples

used for testing should never be the same used for training.

The amount of data necessary for the training phase is usually quite large, and it

would be unpractical to generate it or collect it each time it’s needed. Historically

it was deemed convenient to have previously arranged data ready to be fed to the

4



algorithms, and thus several datasets were created, each with its own characterizing.

For the image processing field, the most known of such collections is the MNIST

(Modified National Institute of Standards and Technology) dataset, composed of 70,000

handwritten digits between 0 and 9, separated in 60,000 for training and 10,000 for

testing. Each image is composed of 28 x 28 pixels, with pixel values ranging from 0 to

1.

Commonly neural networks are employed to solve classification problems, where the

input data has to be correctly separated into categories, called classes, each with its

peculiar features; for the MNIST dataset each digit corresponds to a class, and the

system’s objective is to correctly identify them. Accordingly, each image is manually

labeled with the digit it represents. This way the neural network algorithms can verify

the correctness of their classification, and use it to improve. In Figure 1.1 some MNIST

samples are displayed, separated by class.

Figure 1.1: Ten MNIST images for each class, organized by columns

5



1.1.2 Neural Networks implementation

Neural networks are composed of many interconnected units, called artificial neurons

or nodes, whose mechanisms are inspired by true neurons in human brains. In fact,

the connections can transport a signal to other neurons, similarly to the synapses in

a biological brain. Artificial neurons are able to receive such signal, process it, and

re-transmit it to adjacent units.

The connections between neurons are commonly called edges, and they are charac-

terized by a parameter weight, a measure of the importance that connection has in the

decision process. Neurons too are associated with a parameter, named bias, a thresh-

old value that is usually added to the input signal. The process of learning consists in

tweaking the weights and biases until the neuron produces the intended output.

The output of each neuron is generated according to some mathematical function,

of which the most basic example is the equation:

y = b+
∑
i

wixi (1.1)

Where:

• y is the neuron’s output

• b is the neuron’s bias

• xi is the input signal received from the i -th edge

• wi is the weight of the i -th edge

Figure 1.2: An example of neural network

Typically, neurons are aggregated into layers, which are positioned in sequence, and

6



the signal crosses this whole structure from one end to the other. There are many types

of layers, and each of them performs on the inputs a different function, analogously to

equation (1.1).

When organized this way, neurons form architectures similar to Figure 1.2, and as

can be imagined, they are extremely hard to monitor in detail, but are also able to

simulate very complex systems if set up correctly.

The loss function

We explained that weights and biases are the parameters that need to be changed for

the network to learn, but we never mentioned if they should be increased or decreased,

and by which amount. These issues are indirectly answered by the implementation of a

loss function, a mathematical equation that connects all possible network variables into

a single value representing the distance from the perfect performance, or how much the

system is “losing” from its optimal state. When the network has poor accuracy, the

loss function assumes a relatively high value, which gradually decreases as the system

learns, ideally reaching zero at the end of training.

This decreasing process is entrusted to some algorithms characteristic of neural

networks and the operational research field; there are several of them, but they are

unnecessarily complex for this discussion, and therefore the reader is invited to appraise

them of its own accord. Let it just be said that they are powerful tools that, given

a function and the input data, are able to find the minimum point for the loss and

enforce the corresponding values on bias and weights.

The choice of a loss function is one of the most critical decisions that fall on the

programmer’s shoulders, because an inappropriate one can have on the network effects

extremely different from the ones intended. In fact, the loss function could be sum-

marized as the assortment of aspects that the system will consider important during

its learning process. This whole thesis is the study of the loss functions presented in

Chapter 2, and their effects on the system.

1.1.3 About encoders

Encoders are a specific type of neural networks, the very one that we will employ for

this thesis. Their aim is to learn a mapping (encoding) for a set of data, typically for

dimensionality reduction, by training the network to ignore signal “noise”. Usually,

along with the reduction side there is a reconstructing side, which attempts to generate

from the reduced encoding a representation as close as possible to the original input;

this form is called autoencoder, but in this thesis, we’ll only use the reduction side of

encoders.

As an example, consider the MNIST images, whose dimensionality is 28 x 28 pixels,

for a total of 784: this amount can be reduced with encoders, which map all possible

7



combinations of inputs with just ten outputs, one for each of the MNIST classes; each

image could be represented with an ordered array of values, where the position of

the highest value identifies the corresponding label. Given this encoding, each slot of

the array could be imagined as a physical dimension, and thus the images could be

represented into a latent space, as explained by Testa et al.[1].

The latent space representation is a crucial notion for this thesis, mostly because

when the dimensionality is ≤ 3 the mappings can be depicted in a three-dimensional

plot, whose interpretation is significantly simpler compared to the analysis of the nu-

meric values for each dimension.

Figure 1.3: An example of three-dimensional mapping plot. The number of classes
corresponds to the latent space dimensionality.

1.2 About adversarial perturbations

Adversarial perturbations were first presented in 2014 in Intriguing properties of neural

networks [6], where it was explained that neural networks can easily be tricked into

incorrect classification by being fed altered inputs, with modifications invisible to the

human eye, but critical for a digital system. These alterations, called noise because

of their seemingly pseudo-random nature, are created with the same sign of the loss

function’s gradients with respect to the inputs. A very explanatory example, taken

from Explaining and harnessing adversarial examples [2], can be found in Figure 1.4.

In 2017, the paper Adversarial Examples in the Physical World [3] demonstrated

that adversarially generated images are misclassified even when printed out on paper,

proving that the phenomenon is relevant in both the digital and the physical domains.

Accessorize to a Crime Real and Stealthy Attacks on State-of-the-Art Face Recog-

nition [4] showed that facial recognition software can be fooled by wearing adversarial

glasses, with the result of being mistaken for someone else or avoiding being recognized

at all.

Yet another paper, Adversarial Patch [5], demonstrated how to generate a patch

that can be placed anywhere within the field of view of the neural network and cause

8



Figure 1.4: A demonstration of fast adversarial example generation. By adding an
imperceptibly small vector whose elements are equal to the sign of the elements of the
gradient of the cost function with respect to the input, the system’s classification of
the image can be changed. Here noise power of .007 is invisible to the human eye.

it to output a targeted class. Quoting the authors, “this attack was significant because

the attacker does not need to know what image they are attacking when constructing

the attack. After generating an adversarial patch, this could be widely distributed

across the Internet for other attackers to print out and use.”

One peculiarity of all these adversarial attacks is the high confidence level that

often characterizes the erroneous classification. Furthermore, in many cases the attacks

don’t depend much on the specific deep neural network used for the task, meaning that

multiple classifiers assign the same (incorrect) class to the same adversarial sample.

Adversarial perturbations can be classified according to the characteristics of their

execution:

• in white-box attacks the attacker has access to the system parameters, while

in black-box attacks it uses a different model, or no model at all, to generate

adversarial images with the hope that these will affect the target model.

• non-targeted attacks only focus is to enforce the adversarial image’s misclas-

sification, while in targeted attacks the attacker attempts to get the image

classified as a specific target class, different from the true class.

• in one-shot attacks the images are modified only once in the direction of the

gradient, while in iterative attacks it happens recursively.

1.2.1 Defenses against adversarial perturbations

Adversarial perturbations have proven a formidable rival for neural networks, and no

solid defense mechanism has yet been developed. Some partial successes only lead to a

9



further improvement of technologies and algorithms on the attacker’s side. Of course,

these are some of the reasons that encouraged the development of our system. At any

rate, this section will report the most common defense methods and the reason why

they are not considered effective.

The most brute-force approach to defend against adversarial perturbations is ad-

versarial training [2]: it consists in simulating the attacks with a number of generated

adversarial examples against the network, and then explicitly train the model to re-

sist them. This improves the model’s generalization but hasn’t been able to provide a

meaningful level of robustness, and in fact, it proved to be just a game where attackers

and defenders constantly try to double guess each other.

Another approach is represented by defensive distillation [7], consisting in train-

ing a secondary model whose surface is smoothed in the directions an attacker will typ-

ically try to exploit, making it difficult for them to discover adversarial input tweaks

that lead to incorrect categorization. The second model is trained on the primary

model’s soft probability outputs, rather than the hard true labels from the real train-

ing data. This technique was shown to have some success defending against initial

variants of adversarial attacks but has been beaten by more recent ones.

1.3 Residual Networks

In the future chapters of this thesis we will often refer to the employed neural network

as ResNet [8]; this stands for Residual layer Network, a specific type of neural networks.

Their peculiarity is to use skip connections to jump over some layers. Typical ResNet

models are implemented with double or triple layer skips that contain nonlinearities

(ReLU) and batch normalization in between.

One motivation for skipping over layers is to avoid the problem of vanishing gra-

dients, by reusing activations from a previous layer (the residual) until the adjacent

layer learns its weights. During training, the weights adapt to mute the adjacent layer

and amplify the previously-skipped layer.

Skipping effectively simplifies the network, using fewer layers in the initial training

stages. This speeds learning by reducing the impact of vanishing gradients, as there are

fewer layers to propagate through. The network then gradually restores the skipped

layers as it learns the feature space. A neural network without residual parts explores

more of the feature space. This makes it more vulnerable to perturbations that cause it

to stray from the intended features, and it necessitates extra training data to recover.

10



1.4 About RegNet

As already mentioned, the choice of a loss function is a critical step in the implemen-

tation of neural networks, because it determines the system’s behavior. This thesis

expands on the RegNet system, a particular loss function that Testa et al., PhDs and

professors at Politecnico di Torino, developed in Learning mappings onto regularized

latent spaces for biometries authentication [1].

RegNet is a method that learns to map of the input biometries onto a distribution

with target mean and variance; it creates a well-behaved space in which users can be

separated by means of simple and tunable boundaries. More specifically, authorized

and unauthorized users are mapped onto two different and well-behaved Gaussian

distributions. While typical classification methods learn complex boundaries, RegNet

learns mappings that can be easily shaped and modified, and are much simpler to

analyze.

The center of mass of the two classes of users should be far enough from each other

to allow identification based on a simple thresholding decision rule, therefore the target

mean of the distributions is a critical parameter that heavily affects performances. To

ensure that the distribution shape doesn’t interfere with the classification of users

mapped far from each other, the latent space in forced to be shaped in a simple and

well-behaved manner (specifically, to follow Gaussian distributions).

The loss functions that make all of this possible will be addressed in Chapter 2,

where we assume a more technical approach to this whole discussion. An example of

RegNet’s mapping can be observed in Figure 1.5.

Figure 1.5: An example of RegNet mappings taken from [1]. The authorized users
(blue) and the unauthorized ones (red) are mapped approximating Gaussian distribu-
tions and can be easily distinguished.

11



1.5 About this thesis

The purpose of this study is to further our understanding of RegNet and expand it

to other uses. Testa et al. [1] implemented their system with a particular focus on the

biometrics field, aiming to the correct identification of just the two classes authorized

and unauthorized ; our goal is instead to make RegNet usable on datasets containing

all sort of subjects and any number of classes.

For the very nature of neural networks, capable of learning on their own the im-

portant features of the inputs, the use of a dataset different than the ones used by

Testa e al. [1] is not an issue, and it will only impact the complexity or depth of the

encoder. Instead, the study of results with increased class dimensionality is more mean-

ingful; it could reveal inconsistencies in the theoretical part of RegNet’s formulation

and deviations from the two dimensional scenario.

With this in mind, at first we analyzed a simple increase of dimensionality, from

two to three classes, modifying the latent space from a plane like in Figure 1.5 to a

3D environment as the one of Figure 1.3. We already mentioned that in this type of

representation it’s simple to compare the distributions with the ones obtained by Testa

et al. [1], and to make sure that the spaces are well regularized as the theory suggests.

Indeed, we found the theoretic system to be excessively optimistic in some sections,

neglectful in others, probably because, at the moment of formulation, an N-dimensional

environment wasn’t being taken into consideration.

Secondly, we studied the effects of such inconsistencies in order to understand their

impact on the performances, and we searched for solutions that could prove effective

without completely altering the system’s concept.

Finally, several papers addressing the adversarial field, such as [9], suggest employ-

ing a mapping like the one performed by RegNet to increase adversarial perturbation

robustness. This was the original intention of this thesis, but we deemed appropriate to

beforehand verify the intended functioning of the system in generalized predicaments,

hence the formulation of Chapter 2. In Chapter 3 we return to the original purpose and

take on the challenge posed by adversarial perturbations with considerable success.

12



Chapter 2

Study of three-dimensional latent

space

RegNet had originally been developed for authentication purposes in the biometrics

field with the classes authorized and unauthorized.

With this premise, in the process of a multi-class implementation, we deemed wise

to advance gradually, and decided that the foremost thing to do was verifying the

correct behavior of the system with three classes. In three dimensions the latent space

can still be easily analyzed and represented, while for higher dimensions it becomes

increasingly difficult to observe the distributions.

For this Chapter our objective is to obtain well behaved Gaussian distributions,

correct mappings to the target mean, regularized latent spaces with simple boundaries,

as well as an accuracy rating comparable to the standard cross-entropy method.

2.0.1 RegNet loss functions

The RegNet system maps the input images to a d -dimensional latent space. Each class

is theoretically mapped to a portion of the space identified by a target mean value

µT on the dimension corresponding to that class, and zero on all others; each class

also has a target variance σT . The corresponding µO and σO are calculated from the

output samples and are theoretically enforced to be equal to the target µT and σT by

the RegNet loss function. The original RegNet paper [1] proposes for each class x the

loss:

Lcov, x =
1

x

[
log
|ΣTx|
|ΣOx|

− d+ tr(Σ−1
TxΣOx) + (µTx − µOx)TΣ−1

Tx(µTx − µOx)

]
(2.1)

Overall, the loss function for a d -dimensional space comes to be:

LTOT =
d∑

i=0

Lcov, i (2.2)

13



The covariance matrices increase complexity and computation time; when the loss is

minimized, they should be reduced to diagonal matrices, and with this assumption the

equation can be approximated. Therefore the RegNet paper proposes an alternative,

simplified loss:

Lsimpl, x =
1

x

[
log

σ2d
Tx

ΠiΣ
(ii)
Ox

− d+

∑d
i Σii

Ox

σ2
Tx

+
||µTx − µOx||2

σ2
Tx

]
(2.3)

LTOT =
d∑

i=0

Lsimpl, i (2.4)

Equation (2.3) is an approximated version of (2.1), conceived to assume value equal to

it only when the network is in an ideal state and both losses are close to their minimum.

In the two-dimensional case, differences between their performances were hardly no-

ticeable, therefore we executed our first set of experiments choosing the approximation

formula (2.3) as the loss of our network, hoping it would keep proving as accurate as

in the 2D case.

2.0.2 Architecture details

Having to process image data of various nature, we used a convolutional neural network

as the encoder architecture. More specifically, we use a ResNet-ν architecture, similarly

to the approach adopted by Testa et al.[1] [8]. ResNet is made of four blocks, each

of them consisting of an increasing number of 3 x 3 filters. The last layer is a fully

connected layer which maps the output of the last filter to z, the d -dimensional latent

representation. Refer to Figure 2.1.

Figure 2.1: ResNet-18 architecture. The encoder, taking as input a batch of images,
for each of them produces a d -dimensional output which can be considered as d separate
dimensions. In this figure d=3 leads to each image being plottable in a 3D latent space.

The parameter ν represents the depth of each residual layer; we used ResNet-18, in the

figure above, for most of our experiments; the only exception is Section 3.3.4, where

we’ll analyze the impact of residual layer depth on the system’s robustness.

The parameter d, the dimensionality of the latent space, was set to 3 for all simula-

14



tions on three classes, to 10 when using the full MNIST/CIFAR-10 datasets. We also

performed experiments with 3 < d < 10, but they didn’t produce notable results and

aren’t reported in this document.

2.1 Simplified loss

A first study was carried on the ten classes of the MNIST dataset by separating it in

groups of three classes each (leaving the remaining digit out), similarly to what was

done in the 2D case, where the classes were aggregated under the labels of authorized

and unauthorized.

2.1.1 Experiment execution

For all results in Section 2.1 we executed the experiments with the following configu-

ration:

• Dataset: MNIST, three classes, either [0,1,2] [3,4,5] [6,7,8] or [0] [1] [2].

• Encoder structure: ResNet-18.

• Optimizer: Adam optimizer and stochastic gradient descent.

• Iterations: 30000 batches.

• Batch size: 200.

• Learning rate: starts as λ = 10−1, becomes λ = 10−2 at i = 1000, λ = 10−3 for

i = 5000, λ = 10−4 for i = 10000, λ = 10−5 for i = 20000.

• Loss function: the one identified by (2.4).

• Latent space dimensionality: d = 3.

• Target mean: either µT = 10 or µT = 70.

• Target variance: σT = 1.

• For each class the encoder is supposed to produce an array of zeros containing a

single µT value in the position identifying the class (e.g. for the second class the

output should be [0,µT ,0] ).

2.1.2 Analysis of the latent space

Figure 2.2 shows the first results for this experiment: the distributions are mapped

reasonably well to the target mean, but their spread is not Gaussian. The presence

of gaussianity is particularly important because it would prove that the loss is able to

regularize the latent space, as theorized, and also that there is a lack of interdepen-

dence among the classes; only if these assumptions are true, the simplified loss can be

considered a good approximation of the true loss, and the result of Figure 2.2 show

that these conditions are lacking.

15



Figure 2.2: Latent space for MNIST classes [0,1,2] [3,4,5] [6,7,8] and µT=10

For good measure, the test was repeated with an increased target mean, µT=70, as

shown in Figure 2.3. In this case the distributions appear more Gaussian. It seems that

Figure 2.3: Latent space for MNIST classes [0,1,2] [3,4,5] [6,7,8] and µT=70

a greater mapping distance improves the overall situation, but further examination will

be performed in the next sections.

16



2.1.3 Analysis of Gaussianity

As can be observed from Figures 2.4a and 2.4b, for a low µT such as the one standardly

used in the 2D case, the distributions of Figures 2.2 and 2.3 are far from Gaussian, and

furthermore seem to form two separate spikes on the sides; for higher means instead

the histograms appear closer to an actual Gaussian curve; not having employed data

augmentation techniques for these first sets of experiments, we considered such shapes

almost acceptable, justifying the deviation from an actual normal curve (and therefore

from a real random process) with the limitedness of the input data. However, as will

become clear in the next sections, we took several steps to improve the distributions’

Gaussianity.

(a) Spread of dimensions for µT=10 (b) Spread of dimensions for µT=70

Figure 2.4: Histograms of dimensions for classes [0,1,2] [3,4,5] [6,7,8]

2.1.4 Results with single label classes

Our objective is to correctly identify each class of the dataset independently, and so we

repeated the former experiments to study the latent space and the gaussianity of the

distributions with classes corresponding to single MNIST digits. All other variables

and parameters remain equal to the ones addressed at the beginning of 2.1. It should

be mentioned that simulations with different combinations of classes do not yield sig-

nificant differences among each other, and therefore, unless specified, the presented

results can be assumed as a median sample of the whole category.

Regardless, from Figures 2.5 and 2.6 it can be evinced that training with single

label classes doesn’t hold much difference with what has been presented so far: the

histograms of dimensions, in particular, for µT = 10 are far from the Gaussian distri-

butions we expected, and seem to improve slightly for higher µT .

17



(a) Latent space (b) Histograms of dimensions

Figure 2.5: Latent mapping for µT=10 and classes [0],[1],[2]

(a) Latent space (b) Histograms of dimensions

Figure 2.6: Latent mapping for µT=70 and single label classes [0],[1],[2]

2.1.5 Interpretation of abnormal distribution shapes

We deemed necessary to find an interpretation for the unusual distribution shapes,

especially for such heavy tails in curves that are supposed to be Gaussian; the elongated

shapes that are visible when µT=10 reflect in the histograms having heavy tails or flat

peaks.

Figures 2.7 and 2.8 show some randomly selected MNIST images labeled as 1, and

how they are mapped in the distribution of the respective class. A quick analysis reveals

that the digits traced in a specific way, on the diagonal from top-left to bottom-right,

are mapped at one extreme of the distribution, and the ones traced from top-right

to bottom-left to the opposite one; therefore the network tends to separate the digits

depending on the way they are traced, possibly also due to the excessive simplicity

of the problem assigned. This anomaly can be easily identified for the digit 1, whose

morphologies are limited; such conclusions can be more articulated in case of more

complex digits, or when the classes are groups of labels, but still we believe this quick

insight holds some validity even in those occurrences.

18



Figure 2.7: Some MNIST digits labeled as 1

Figure 2.8: Latent distribution of a class containing all 1 MNIST digits

19



2.2 Covariance loss

Due to the partially unexpected results of experiments with the simplified loss function,

we decided to also test the original formula (2.1) containing the full covariance matrices

for each class; the minimization of the loss should force said matrices to be diagonal,

pushing all cross-correlation terms to zero and thus ensuring independence among the

classes.

It should be mentioned that for all experiments from this point onward, only single

label classes were used, since the grouped classes were just a preliminary approach to

smoothly transition from two-dimensional environments to the three-dimensional ones.

Experiment execution

For all results in Section 2.2 we executed the experiments with the following configu-

ration:

• Dataset: MNIST, classes [0] [1] [2].

• Encoder structure: ResNet-18.

• Optimizer: Adam optimizer and stochastic gradient descent.

• Iterations: 30000 batches.

• Batch size: 200.

• Learning rate: starts as λ = 10−1, becomes λ = 10−2 at i = 1000, λ = 10−3 for

i = 5000, λ = 10−4 for i = 10000, λ = 10−5 for i = 20000.

• Loss function: the one identified by (2.2).

• Latent space dimensionality: d = 3.

• Target mean: either µT = 10 or µT = 70.

• Target variance: σT = 1.

• For each class the encoder is supposed to produce an array of zeros containing a

single µT value in the position identifying the class (e.g. for the second class the

output should be [0,µT ,0] ).

2.2.1 Distributions in the latent space

The distributions in Figure 2.9 are shaped as spheroids and are equally distributed in

all dimensions. However, the close-up of Figure 2.10 shows that, while considerably

improved, the distributions are still not Gaussian.

We repeated the experiment several times to evaluate the frequency of such in-

consistency and concluded that it is quite a common occurrence. Therefore even the

covariance loss doesn’t ensure perfectly Gaussian distributions.

20



(a) Latent space for µT=10 (b) Latent space for µT=70

Figure 2.9: Latent spaces after training with loss function containing covariance
matrices - single label classes [0],[1],[2]

Figure 2.10: Close-up of class 1 from Figure 2.9a

2.2.2 Gaussianity

Histograms of the latent space scores obtained with the covariance loss for three classes

can be seen in Figures 2.11a and 2.11b. For a high target mean value the results are

more Gaussian compared to those obtained with simplified loss function for the same

µT . Instead, for µT = 10 it’s possible to observe just a slight improvement from the

previous case; some of the histograms appear more Gaussian, while others are still far

from it, displaying two spikes in place of the Gaussian tails.

21



(a) Histograms of dimensions for µT=10 (b) Histograms of dimensions for µT=70

Figure 2.11: Histograms of dimensions corresponding to Figure 2.9

2.3 Kurtosis improvement

The results presented up to this Section demonstrate a certain degree of divergence

from the ones obtained by Testa et al. [1] in the 2D case. It seems that not only the

loss referenced in (2.3), which was an approximation, but also the one in (2.1) do not

guarantee normal distributions along the dimensions.

In this regard we modified the loss functions with the addition of a term containing

the kurtosis of the class mappings at the encoder’s output, as follows.

With the definition of (2.5), the nominal loss function (2.1) becomes as in (2.6):

Lcov, x =
1

x

[
log
|ΣTx|
|ΣOx|

− d+ tr(Σ−1
TxΣOx) + (µTx − µOx)TΣ−1

Tx(µTx − µOx)

]
(2.1)

Kx =
1

d

∑(
x− µOx

σOx

)4

(2.5)

LTOT =
d∑

i=0

Lcov, i + Fk(Ki − 3) (2.6)

Equation (2.5) is the standard formula for the kurtosis of a distribution; moreover, the

kurtosis of any univariate normal distribution is 3, which explains why in (2.6) the

absolute minimum of Lx can only be reached when Ki = 3 ∀i. The parameter Fk is

a scaling factor used to tune the kurtosis term to the same order of magnitude of Lx,

and will be discussed further in following sections.

Similarly, the same procedure can be applied to the simplified loss:

Lsimpl, x =
1

x

[
log

σ2d
Tx

ΠiΣ
(ii)
Ox

− d+

∑d
i Σii

Ox

σ2
Tx

+
||µTx − µOx||2

σ2
Tx

]
(2.3)

22



LTOT =
d∑

i=0

Lsimpl, i + Fk(Ki − 3) (2.7)

In synthesis we hoped that adding a kurtosis term to the existing losses could lead

the network to map more regular distributions during the training phase. Experiments

executed with these functions yield significantly better behaved latent spaces, as can

be observed in the following discussion.

Experiment execution

For all results in Section 2.3 we executed the experiments with the following configu-

ration:

• Dataset: MNIST, classes [0] [1] [2].

• Encoder structure: ResNet-18.

• Optimizer: Adam optimizer and stochastic gradient descent.

• Iterations: 30000 batches.

• Batch size: 200.

• Learning rate: starts as λ = 10−1, becomes λ = 10−2 at i = 1000, λ = 10−3 for

i = 5000, λ = 10−4 for i = 10000, λ = 10−5 for i = 20000.

• Loss function: either (2.6) or (2.7), for the covariance loss and the simplified loss

respectively.

• Latent space dimensionality: d = 3.

• Target mean: µT = 10 ∨ µT = 70 or µT ∈ [5, 100]. Specified for each result.

• Target variance: σT = 1.

• Kurtosis scaling factor: varies, specified for each result.

• For each class the encoder is supposed to produce an array of zeros containing a

single µT value in the position identifying the class (e.g. for the second class the

output should be [0,µT ,0] ).

2.3.1 Effects of kurtosis magnitude on latent spaces

The correct tuning of the scaling factor Fk is crucial for the correct outcome of training.

The two terms Lx and Fk(Kx−3) must be around the same order of magnitude in order

to minimize them simultaneously; it was observed that if one is consistently smaller

than the other, it ends up being considered as just a random noise on top of the greater

one, and the optimizer is unable to distinguish it from the small natural fluctuations

of the loss function.

Figure 2.12 compares the results of loss function with and without kurtosis term

with a small scaling factor; it can be evinced that the behaviors are similar to the ones

23



where the loss functions contained no kurtosis correction (refer to 2.1.4 and 2.2.1),

since the effect of this term becomes too small to influence the distributions.

(a) Latent space simplified loss (b) Latent space for covariance loss

Figure 2.12: Latent spaces trained with small scaling factor (Fk = 0.05, µT=10)

On the other hand, when the scaling factor is too large in comparison to the rest of

the loss, there is a collapse of all classes into a single cluster, as shown in Figure 2.13,

which leads to low classification accuracy.

(a) Latent space simplified loss (b) Latent space covariance loss

Figure 2.13: Latent spaces trained with large scaling factor (Fk = 3000, µT=10)

Unsurprisingly, a full spectrum of intermediate states between the presented excesses

exists and is not interesting enough to be reported.

Figures 2.14 and 2.15 show the results of training with a properly tuned scaling

factor Fk: these histograms have undergone a significant shape improvement, and

appear more Gaussian than their unmodified counterparts (refer to Figures 2.5b, 2.6b,

and 2.9). The most decisive upgrades are noticeable in the cases of low mean, which

were critical with no kurtosis correction applied, as well as in the case of simplified loss

function with high µT value.

24



(a) µT=10 (b) µT=70

Figure 2.14: Dimensions for simplified loss and tuned scaling factor (Fk = 0.2)

(a) µT=10 (b) µT=70

Figure 2.15: Dimensions for covariance loss and tuned scaling factor (Fk = 0.2)

2.3.2 Kurtosis and skewness of dimensions

In an attempt to find a valid measure of Gaussianity, we evaluated the kurtosis and

skewness of the histograms, and came across an interesting phenomenon, depicted in

Figures 2.16 and 2.17. Apparently, the values of kurtosis and skewness (averaged across

all classes and dimensions) suffer from a sizeable increase proportional to the target

mean value µT , even when the histograms appear to be reasonably Gaussian; this is

troublesome, because having used the kurtosis to enforce the Gaussianity, we would

expect a kurtosis value close to 3 when the distributions approach Gaussianity. Even-

tually, we discovered that a single point mapped far from the target location increases

enormously kurtosis values across some dimensions; this phenomenon is accentuated

for greater target means because they allow for greater absolute error in the mapping,

which causes greater kurtosis distortion.

We concluded that, even if the Gaussianity is enforced through the introduction of

a kurtosis term, kurtosis itself is not an appropriate measure of Gaussianity (for our

25



Figure 2.16: Kurtosis value for varying µT

Figure 2.17: Skewness value for varying µT

case), and neither is the skewness; instead, we suggest to use a calculation of root mean

square error between the histograms of the output scores and a standard normal curve

with mean µT and variance σT .

2.4 Cross-Entropy loss function

This section exhibits briefly the results of training the encoder with a cross-entropy loss

function, since one of the main focuses of this whole thesis is to compare the RegNet

loss with standard methods.

Experiment execution

• Dataset: MNIST, classes [0] [1] [2].

• Encoder structure: ResNet-18.

• Optimizer: Adam optimizer and stochastic gradient descent.

• Iterations: 30000 batches.

• Batch size: 200.

• Learning rate: starts as λ = 10−1, becomes λ = 10−2 at i = 1000, λ = 10−3 for

i = 5000, λ = 10−4 for i = 10000, λ = 10−5 for i = 20000.

26



• Loss function: the standard one provided by Tensorflow,

(tf.nn.softmax cross entropy with logits( )).

• Latent space dimensionality: d = 3.

• Target mean: not relevant for this loss function.

• Target variance: not relevant for this loss function.

Figures 2.18 shows the latent distributions obtained with the cross-entropy method:

it’s notable the fact that they are not Gaussian, but rather placed on a plane in a

triangular formation.

(a) Front view (b) Side view

Figure 2.18: Latent space for cross-entropy loss

2.5 Accuracy

All the speculations and details about alternative classification methods, Gaussianity,

and latent space distributions, would be meaningless if the overall results couldn’t

match the state of the art accuracy, which is usually the main goal for any classification

problem.

Therefore, in this section we’ll examine the achieved accuracy levels for the four

previously introduced loss functions:

1. Covariance loss

2. Simplified loss

3. Covariance loss with kurtosis

4. Simplified loss with kurtosis

In particular, we’ll compare our results with the accuracy obtained for standard cross-

entropy loss training sessions with the same parameters.

27



Although until now we only discussed three-dimensional cases, the accuracy results

of this section are pertinent to the whole MNIST dataset, employing all ten classes;

this choice is due to the fact the MNIST is inherently a classification problem on ten

classes, and accuracy levels calculated on an arbitrarily chosen set of them are not

relevant; also, no significant differences are present between the 3D and 10D cases, for

what concerns accuracy.

Experiment execution

• Dataset: MNIST, all 10 classes.

• Encoder structure: ResNet-18.

• Optimizer: Adam optimizer and stochastic gradient descent.

• Iterations: 30000 batches.

• Batch size: 200.

• Learning rate: starts as λ = 10−1, becomes λ = 10−2 at i = 1000, λ = 10−3 for

i = 5000, λ = 10−4 for i = 10000, λ = 10−5 for i = 20000.

• Loss function: (2.2), (2.4), (2.6), (2.7) are used and compared.

• Latent space dimensionality: d = 10.

• Target mean: µT ∈ [5, 300].

• Target variance: σT = 1.

• Kurtosis scaling factor: Fk = 0.2, unless otherwise specified.

• For each class the encoder is supposed to produce an array of zeros containing a

single µT value in the position identifying the class.

2.5.1 Dependency of accuracy on target mean

The distance among distributions can affect the classification accuracy, as could be

predicted from some of the previous discussions. In particular, when µT is excessively

small the classes are too close to each other to allow a correct evaluation, while for

high values of µT it’s easier for points of the distribution to be loosely spread across

the latent space.

At any rate, Figures 2.19 and 2.20 shows the accuracy for a range of target means

for all four loss functions. For low µT values, usually for µT < 10, all of them display

a relatively low accuracy, while for greater means the performances settle around a

steady-state value. The simplified loss function displays a low accuracy in its steady-

state, both with and without the kurtosis term. This shows that perhaps for ten

dimensions it stops being an accurate approximation of the covariance loss, which

instead maintains levels comparable to the cross-entropy function.

28



Figure 2.19: Accuracy levels for loss functions with no kurtosis correction - 10 classes

Figure 2.20: Accuracy levels for loss functions with kurtosis correction - 10 classes

2.5.2 Dependency of accuracy on scaling factor

Similarly to what’s been analyzed in 2.5.1, also the parameter Fk can affect the clas-

sification accuracy, as was also mentioned in 2.3.1. Notably, a large kurtosis scaling

factor causes all classes to collapse in the center of the latent space. An undersized

scaling factor, instead, doesn’t affect the accuracy levels, but rather the distributions’

Gaussianity. The effects of scaling factor variation can be observed in Figure 2.21.

29



Figure 2.21: Accuracy for varying Fk

2.6 Chapter conclusions

Section 2.5.1 made clear that, given an appropriate target mean, the ResNet system

can achieve competitive results. In the next chapter these performances will be tested

against the CIFAR dataset, which is considerably more complex than the MNIST, and

against adversarial perturbations.

The simplified loss functions described in (2.3) and its kurtosis variation are to be

discarded for the multi-dimensional implementation of ResNet. They were meant to be

approximations of the real function, but the unpredictability of the latent distributions’

shapes and the poor accuracy on ten classes training showed that this hypothesis was

only valid in the 2D setting, and is now to be abandoned.

Moreover, the original covariance loss function containing no kurtosis correction

described in (2.1), when compared to its two-dimensional analogous displayed a sur-

prising behavior concerning the Gaussianity, and its usage could produce unforeseen

results too. Therefore, the only loss function that will be employed in the next chapter

for adversarial perturbations and the CIFAR dataset is the one containing both the

covariance matrices and the kurtosis correction, as defined by (2.6).

At any rate, all of the originally proposed functions displayed unexpected behaviors

in their results, but also during the training phase. They were designed to reach zero

as an ideal minimum so that in realistic scenarios they would assume values at least

close to it; this manifested correctly in the two-dimensional case, but it’s no longer the

case for the experiments we performed. The expansion to many dimensions revealed a

lack of consideration for the numerical conditioning of the losses, which settled in their

steady-state to values considerably greater than zero; in the 10D case their minimum

values were several orders of magnitude greater than zero, when the loss was minimized

and the training complete. Although this didn’t impact the training process, it’s an

immediate indicator of the possible presence of other defects, such as the one that

caused the unforeseen distribution shapes.

An example of this phenomenon, but there are surely others that we didn’t examine

30



in the same detail, is the calculation of the covariance matrix’s determinant |ΣOx| in

(2.1): ideally the covariance matrix should be reduced to a diagonal matrix, and the

determinant should assume value 1, being product of the elements on the diagonal.

Yet, in realistic cases said matrix would assume values not exactly equal to 1 on the

diagonal, and not exactly equal to 0 elsewhere, causing the determinant to be a linear

combination of all these terms. In a two-dimensional scenario, these effects are barely

noticeable, being the covariance a 2 by 2 matrix, but with ten classes the determinant

is calculated from a 10 by 10 matrix, and all non-idealities cause it to assume a value

many times smaller than the intended one. Considering that the |ΣOx| is a denominator

and that the total loss is calculated as the sum of ten individual class losses, the overall

steady-state loss function explodes to levels far above 1, often assuming values of several

thousands even at the completion of training.

While some of the presented loss functions, especially (2.6), will prove effective

against adversarial perturbation, they displayed several unpredicted behaviors, and

so the authors advise that they should be re-formulated; in a corrected version there

should be more focus on their numerical conditioning, and more attention to the effects

of approximations, which are negligible for 2D scenarios but become gradually more

impactful as the dimensionality increases.

31



Chapter 3

Adversarial perturbations

Chapter 2 examined the issues and similarities of ResNet expansion from one-vs-all

classification to multi-class classification, with some resulting hindrances that lead us

to modify the choice of loss function.

This chapter will focus on adversarial perturbations and the adversarial robustness

of RegNet. The MNIST dataset is quite simple, and so we further analyze RegNet’s

robustness on a more challenging dataset like CIFAR-10. Furthermore, we’ll also study

the application of the RegNet loss function to a shake-shake encoder.

3.1 Fast Gradient Sign Method

For our experiments we perform the adversarial attacks with FGSM, or Fast Gradient

Sign Method. It is an attack with the following characteristics:

• One-shot: each image is altered exactly once

• Non-targeted: the attack doesn’t try to obtain the incorrect classification in

favor of one specific class, instead focuses on having the lowest overall confidence

on the correct class

• White box: adversary has access to the system parameters, and used them to

generate the worst possible adversarial sample for each input

FGSM perturbations are generated according to the following equation:

xadv = x+ ε sign(∇xL(x, ytrue)) (3.1)

Where:

• x and xadv are the clean and the perturbed inputs respectively.

32



• ε is the noise power.

• L(x, ytrue) is the loss function with respect to the true labels.

• sign() and ∇x are the standard mathematical symbols for sign function and gra-

dient, respectively.

When addressing the noise power, we will refer to it as a number between 0 and 1:

clearly, this is to be interpreted as the ratio between the power itself and the maximum

possible power of the input.

Example of perturbed MNIST images

(a) ε = 0.1 (b) ε = 0.4

(c) ε = 0.8 (d) ε = 1.0

Figure 3.1: MNIST images with different noise power

Figure 3.1 demonstrates the effects of adversarial perturbations on a sample of MNIST

images. In FGSM attack model the pixels that get changed the most are the ones

representing the most peculiar features of the digit according to the neural network.

For ε = 0.8 the silhouettes can still be faintly distinguished, but with ε = 1 the noise

power is equal to the maximum input power, and the images appear like random noise;

in this state, any attempt of classification is completely random, even for humans.

Further on in our discussion we’ll measure the robustness of a system by the slope that

characterizes the performance’s decline.

33



3.2 Effects of adversarial attacks on the latent space

In Chapter 2 the three-dimensional latent space was analyzed in great detail from

several standpoints. In this section we analyze the effects of adversarial attacks on the

latent space. We expect the attack to cause a lower detection accuracy, but the way

this could be mirrored in the latent dimensions may not be intuitive and is worth to

be examined.

Experiment execution

For all results in Section 3.2 we executed the experiments with the following configu-

ration:

• Dataset: MNIST, various triplets of classes, specified for each result.

• Encoder structure: ResNet-18.

• Optimizer: Adam optimizer and stochastic gradient descent.

• Iterations: 30000 batches.

• Batch size: 200.

• Learning rate: starts as λ = 10−1, becomes λ = 10−2 at i = 1000, λ = 10−3 for

i = 5000, λ = 10−4 for i = 10000, λ = 10−5 for i = 20000.

• Loss function: the one identified by (2.6).

• Latent space dimensionality: d = 3.

• Target mean: µT = 70.

• Target variance: σT = 1.

• Kurtosis scaling factor: Fk = 0.2.

Figure 3.2: Latent space for ε = 0.0

34



Figure 3.3: Latent space for ε = 0.1

Figures 3.2 and 3.3 show 10% of the maximum noise power already forcing some inputs

to be mapped far from their target means. Figure 3.4 contains the latent mappings for

greater noise powers, and it’s interesting to observe that all the classes are gradually

mapped on the same target mean. In other words, in this case the adversarial attack

causes the encoder to identify all inputs as the same MNIST digit.

(a) ε = 0.4 (b) ε = 0.8

Figure 3.4: Latent spaces with higher noise power

35



3.2.1 In depth examination of perturbed latent space

Figures 3.2, 3.3, and 3.4 show the effect of an adversarial attack on three MNIST classes

[0,1,2], and as a result they are all mapped as the 2 digit. An interesting aspect of this

phenomenon is whether they are always mapped to the same class, if it is random, or

if there is some kind of bias.

Sets of repeated experiments revealed that, every time the system is trained with

the same triplet of labels and then perturbed, the mappings collapse always on the same

digit; for example, when training with the classes [0,1,2], the attacks always cause the

inputs to be mapped as 2. Such results suggest that the position where the mappings

collapse is determined by the features and complexity of the input digits.

However, when trained with different triplets, the classes collapse different digits (Fig-

ure 3.5); for example, adversarial attacks on the classes [0,1,2] causes them to always

collapse on 2, while attacks on [2,3,4] cause them to collapse on 4, no longer on 2.

This result is significant because it shows that there is no bias towards any class in the

implementation of the system.

(a) Classes [2,3,4], converges to 4 (b) Classes [4,5,6], converges to 5

(c) Classes [5,6,7], converges to 6 (d) Classes [6,7,8], converges to 8

Figure 3.5: Latent spaces with ε = 0.8 for different class sets

36



Conversely, some triplets of classes do not converge on a particular one, but instead

respond to the adversarial attack as in Figure 3.6a: in some cases the classes become

mapped in a uniform distribution across the whole latent space (Figure 3.6a), in others

they converge in unconventionally shaped clusters, as in Figures 3.6b and 3.6c.

(a) Classes [1,2,3], doesn’t converge (b) Classes [3,4,5], atypical shape

(c) Classes [7,8,9], atypical shape

Figure 3.6: Latent spaces with peculiar features, ε = 0.8

Such a variety in the effects of adversarial perturbations may be due to the non-

targeting nature of FGSM, and it would be interesting to examine if a targeting attack

always obtains the same type of latent space. If so, knowing the latent space, it could

be possible to devise adversarial defenses specific for that attack type. At any rate,

none of such possibilities has been explored in thesis.

3.3 RegNet’s robustness

As the final and most important section of this thesis, we’ll compare the robustness

of our RegNet loss function and a classic cross-entropy one. As explained before, a

discussion concerning accuracy requires the experiments to be performed on the whole

array of labels, not just a portion as was the case when examining the behavior of

37



latent spaces. At any rate, the tests we performed proved the results to be equivalent

when considering three or ten dimensions.

We performed analyses on two datasets, the MNIST and the CIFAR-10, whose

traits we’ll briefly introduce in Section 3.3.2. This double examination is necessary to

ensure that the obtained results are not limited by the morphology or simpleness of a

specific database.

We performed yet another test by replacing the ResNet encoder with a shake-shake

one, to verify that the merits of the results are traceable to the loss function and not

to the specific encoder employed.

3.3.1 RegNet robustness on MNIST

Experiment execution

• Dataset: MNIST, all 10 classes.

• Encoder structure: ResNet-18.

• Optimizer: Adam optimizer and stochastic gradient descent.

• Iterations: 60000 batches.

• Batch size: 200.

• Learning rate: starts as λ = 10−1, becomes λ = 10−2 at i = 1000, λ = 10−3 for

i = 5000, λ = 10−4 for i = 10000, λ = 10−5 for i = 30000.

• Loss function: the one identified by (2.6).

• Latent space dimensionality: d = 10.

• Target mean: varies.

• Target variance: σT = 1.

• Kurtosis scaling factor: Fk = 0.2.

• For each class the encoder is supposed to produce an array of zeros containing a

single µT value in the position identifying the class.

Figure 3.7 displays the accuracy performance for all ε ∈ [0, 1], for different target

means µT . It can be observed that when noise is not present, the cross-entropy and

the RegNet model have comparable accuracy. However, as noise power increases, our

system proves consistently better than its cross-entropy counterpart, independently on

the chosen µT . The only exception happens for exceedingly low target mean values,

accordingly with the accuracy results produced in the previous chapter.

The means reported in the plot are chosen arbitrarily, an array that we deemed

well representative of the range that different means could achieve (more on this in

3.4.1 and 3.4.2). At any rate, this type of performance is exactly what we expected

and what we wanted to verify when we began this whole study.

38



Figure 3.7: Accuracy for all ε ∈ [0, 1] and some selected µT

3.3.2 CIFAR-10 structure

The CIFAR-10 dataset consists of 60000 32x32 color images in 10 classes, with 6000

images per class. It is divided into training and test images, with a count of 50000 and

10000 respectively.

The ten labels in the dataset, with their respective name are:

0. airplane
1. automobile
2. bird
3. cat
4. deer
5. dog
6. frog
7. horse
8. ship
9. truck

The classes are completely mutually exclusive. There is no overlap between am-

biguous classes like automobiles and trucks: for example, ”automobile” includes sedans,

SUVs, and similar, while ”truck” includes only big trucks.

A sample of ten images per class is provided in Figure 3.8, in real size.

39



Figure 3.8: An example of CIFAR-10 images

3.3.3 CIFAR-10 performance

Experiment execution

• Dataset: MNIST, all 10 classes.

• Encoder structure: ResNet-18.

• Optimizer: Adam optimizer and stochastic gradient descent.

• Iterations: 60000 batches.

• Batch size: 200.

• Learning rate: starts as λ = 10−1, becomes λ = 10−2 at i = 1000, λ = 10−3 for

i = 5000, λ = 10−4 for i = 10000, λ = 10−5 for i = 30000.

• Loss function: the one identified by (2.6).

• Latent space dimensionality: d = 10.

• Target mean: varies.

• Target variance: σT = 1.

• Kurtosis scaling factor: Fk = 0.2.

• For each class the encoder is supposed to produce an array of zeros containing a

single µT value in the position identifying the class.

In terms of accuracy and robustness observed on the CIFAR-10 dataset, the results are

40



similar to the MNIST: the RegNet loss is more robust than its cross-entropy counterpart

for any possible noise power.

The results of Figure 3.9, however, call for some necessary comments. First, it’s

easy to detect that even the curves with the best performances have a shamefully low

accuracy; with ε = 0 the best accuracy reached in the chart is around 86%. This is

explained with the fact that the residual layer encoder employed for these experiments,

and originally implemented for the two-dimensional version of ResNet, was never meant

for a complex problem like a ten-dimensional classification of the CIFAR-10 dataset.

In the next sections (3.3.4 and 3.3.5) we’ll address this issue, but at any rate, the focus

of this discussion is the superior robustness of RegNet’s loss, independently on the

employed encoder.

Moreover, as a continuation of a trend already observed, exceedingly low target

mean values produce unforeseen results. The network trained with µT = 10, manifests

particularly poor accuracy in unperturbed conditions (ε = 0), just like previous experi-

ments of Chapter 2 showed that a relatively high µ was necessary to obtain competitive

accuracy (Section 2.5.1 and Figure 2.20); however it’s interesting to notice that for all

the range ε ∈ [0.1, 1] the curve for µT = 10 proves to actually be the more robust.

Figure 3.9: Accuracy for all ε ∈ [0, 1] for some selected µT

41



3.3.4 Effects of residual layer depth on robustness

The previous experiment on the CIFAR-10 dataset resulted in a low overall accuracy;

for ε = 0, the maximum was around 86%. We believed that a deeper residual network

like ResNet-34 or ResNet-50 could help raise the accuracy to levels comparable with

the MNIST experiments.

Experiment execution

• Dataset: MNIST, all 10 classes.

• Encoder structure: varies. The details of each residual layer for versions of ResNet

other than ResNet-18 are reported in Figure 3.10, as described in [8].

• Optimizer: Adam optimizer and stochastic gradient descent.

• Iterations: 60000 batches.

• Batch size: 200.

• Learning rate: starts as λ = 10−1, becomes λ = 10−2 at i = 1000, λ = 10−3 for

i = 5000, λ = 10−4 for i = 10000, λ = 10−5 for i = 30000.

• Loss function: the one identified by (2.6).

• Latent space dimensionality: d = 10.

• Target mean: µT = 70.

• Target variance: σT = 1.

• Kurtosis scaling factor: Fk = 0.2.

• For each class the encoder is supposed to produce an array of zeros containing a

single µT value in the position identifying the class.

Figure 3.10: ResNet residual layer details.

Figure 3.11 reports the results of tests with several depths of ResNet; each curve is

averaged over six simulations, in order to have a definite estimate of performances.

42



It can be observed that the curves overlap almost entirely, implying that the residual

layer depth doesn’t affect the robustness at all.

Figure 3.11: Accuracy for all ε ∈ [0, 1] for different depths of ResNet. They all
display the same performances, and the curves overlap.

3.3.5 Shake-Shake encoder

Shake-shake regularization, first introduced in Shake-Shake regularization [10] is a tech-

nique to improve the performances of deep residual neural networks.

When confronted with a dataset too small or too complex, residual nets will either

not converge to a univocal solution or, if trained for a sufficient number of epochs,

overfit. This is, in fact, what happens to ResNet: the CIFAR-10 dataset causes the

encoder to classify the inputs with high error rate, but if training would protract for a

great amount of time the network would eventually reach high accuracy on all training

samples, maintaining a low accuracy on the test samples.

The idea of shake-shake regularization is to introduce a sort of data augmentation

inside the network, between its layers. With this modification the network is hopefully

able to train for a greater number of epochs without overfitting, therefore reducing the

classification error.

As described by Gastaldi [10], shake-shake regularization is a way of ”blending”

two parallel tensors according to the following equation:

xi+1 = xi + αiFk(xi,W (1)
i ) + (αi − 1)Fk(xi,W (2)

i ) (3.2)

43



Where:

• xi represents the tensor of inputs in residual block i

• αi is a random variable with with uniform distribution between 0 and 1

• Fk denotes the residual function

• xi+1 is the tensor of outputs from residual block i

• W(2)
i and W(2)

i are the sets of weights associated with residual blocks 1 and 2

respectively

The above formula (3.2) is similar to the basic equation of Residual Layer networks,

the only exceptions being the presence of αi and (1 − αi). It is in fact the random

variable αi that introduces a degree of randomness in the otherwise deterministic gen-

eration of the residual layers, de facto adding the equivalent of random noise to the

network’s internal representation of the inputs, applying data augmentation on them,

and reducing the probabilities of overfitting.

Experiment execution

• Dataset: MNIST, all 10 classes.

• Encoder structure: shake-shake-96, with depth 26 and widen factor 2.

• Optimizer: Momentum optimizer and stochastic gradient descent.

• Iterations: 1800 epochs.

• Batch size: 200.

• Loss function: the one identified by (2.6).

• Latent space dimensionality: d = 10.

• Target mean: µT = 70.

• Target variance: σT = 1.

• Kurtosis scaling factor: Fk = 0.2.

• For each class the encoder is supposed to produce an array of zeros containing a

single µT value in the position identifying the class.

Shake-Shake encoder’s performances

Figure 3.12 shows the robustness results of training with the shake-shake encoder. It

can be observed that, when compared with Figures 3.7 and 3.9, the curves representing

RegNet’s loss exhibit performances similar to the cross-entropy loss. This would suggest

that, in the previous experiments, the increased robustness was due to the ResNet

encoder and not to the RegNet loss function, or at least that the effectiveness of

RegNet is limited to cases where an appropriate encoder can be employed.

44



Figure 3.12: Accuracy for all ε between 0 and 1 for some selected µT

Figure 3.13: Close-up of Figure 3.12. The section where 0 ≤ ε ≤ 0.2 is the most
relevant because the adversarial attack can impact the system’s accuracy while being
undetectable by human observers.

However, the most significant section of the plot is the one where ε is small. A low

noise power can disrupt the correct functioning of image processing systems without

being noticed by the human eye. In the plot, when ε = 0.5, and the accuracy is around

15% for all systems, the fact that RegNet underperforms the cross-entropy loss by 1%

is insignificant, because both their accuracies are too low. Regarding this, the zoom

reported in Figure 3.13 shows that, for the most relevant section of the graph, for

ε ∈ [0, 0.1], RegNet performs moderately better than its cross-entropy counterpart.

45



3.4 Analysis of robustness variance

In most of the experiments of Section 3.4.1, the curves displayed ranging levels of

robustness for RegNet, leaving a certain degree of variance in any possible conclusion.

RegNet performs better than its cross-entropy counterpart, but it’s not clear by which

amount. In this section we’ll analyze some possibilities to narrow down the results.

3.4.1 Dependency of accuracy on µT

In previous sections, especially 3.3.1, experiments with different µT produced different

robustness performances, suggesting that a correlation between the two might exist.

However, as it can be evinced from the following experiment (Figure 3.14), the variance

in the plots is not due to a connection between robustness and target mean value.

Experiment execution

• Dataset: MNIST, all 10 classes.

• Encoder structure: ResNet-18.

• Optimizer: Adam optimizer and stochastic gradient descent.

• Iterations: 60000 batches.

• Batch size: 200.

• Learning rate: starts as λ = 10−1, becomes λ = 10−2 at i = 1000, λ = 10−3 for

i = 5000, λ = 10−4 for i = 10000, λ = 10−5 for i = 30000.

• Loss function: the one identified by (2.6).

• Latent space dimensionality: d = 10.

• Target mean: varies.

• Target variance: σT = 1.

• Kurtosis scaling factor: Fk = 0.2.

• For each class the encoder is supposed to produce an array of zeros containing a

single µT value in the position identifying the class.

46



Figure 3.14: Accuracy for ε ∈ [0, 1] and µT ∈ [200, 300]. There is no trend connecting
robustness and µT .

3.4.2 Variance introduced by training

Section 3.4.1 disproved the possibility that the variance of results be caused by µT .

Therefore, in this section we explore the possibility that the training process introduces

some randomness in the robustness of the system.

Experiment execution

• Dataset: MNIST, all 10 classes.

• Encoder structure: ResNet-18.

• Optimizer: Adam optimizer and stochastic gradient descent.

• Iterations: 60000 batches.

• Batch size: 200.

• Learning rate: starts as λ = 10−1, becomes λ = 10−2 at i = 1000, λ = 10−3 for

i = 5000, λ = 10−4 for i = 10000, λ = 10−5 for i = 30000.

• Loss function: the one identified by (2.6).

• Latent space dimensionality: d = 10.

• Target mean: µT = 70.

• Target variance: σT = 1.

• Kurtosis scaling factor: Fk = 0.2.

• For each class the encoder is supposed to produce an array of zeros containing a

single µT value in the position identifying the class.

47



Figure 3.15: Accuracy for ε ∈ [0, 1]. Six curves for RegNet with µT = 70, and six
for cross-entropy loss.

Figure 3.15 shows the robustness of several training sessions with the same parameters.

It’s clear that the randomness of both, RegNet and the system with cross-entropy loss,

is affected by the random variables of any training session, such as batch selection and

optimizer. At any rate, this plot displays the ranges of robustness achievable by each

system, and it’s evident that, although the best cross-entropy performer and the worst

RegNet performers overlap, RegNet has overall superior robustness.

3.4.3 Robustness for data augmented MNIST

In order to reduce the randomness in robustness performances introduced by the train-

ing process, we tried to perform the adversarial perturbations after training RegNet

with a MNIST dataset modified with data augmentation.

It may be possible for the randomness to be caused by a lack of training, in which

case the system would produce curves far apart from each other, as it happens, instead

of having them converge towards univocal accuracy values. Data augmentation allows

us to train the system for a greater number of epochs without the risk of overfitting,

and would theoretically reduce the variance of the curves.

Experiment execution

• Dataset: MNIST, all 10 classes.

• Encoder structure: ResNet-18.

48



• Optimizer: Adam optimizer and stochastic gradient descent.

• Iterations: 60000 batches.

• Batch size: 200.

• Learning rate: starts as λ = 10−1, becomes λ = 10−2 at i = 1000, λ = 10−3 for

i = 5000, λ = 10−4 for i = 10000, λ = 10−5 for i = 30000.

• Loss function: the one identified by (2.6).

• Latent space dimensionality: d = 10.

• Target mean: µT = 70.

• Target variance: σT = 1.

• Kurtosis scaling factor: Fk = 0.2.

• Data augmentation: any combination of random rotations (maximum 20◦), ran-

dom shears (maximum 20% of original size), random shifts (maximum 20% of

original size), random zooms (maximum zoom to 90% of original size).

• For each class the encoder is supposed to produce an array of zeros containing a

single µT value in the position identifying the class.

Figure 3.16: Accuracy for ε ∈ [0, 1] for training sessions with and without data
augmentation on MNIST dataset.

The results of Figure 3.16 show that even with a data augmented dataset (yellow),

the curves maintain a variance similar to the previous experiments. For reference, we

also plotted several curves (blue) which are generated with the same parameters as

the black curves of Figure ??, and it can be evinced that the difference in accuracy

between the best and worst performer of each group of curves is about equal. This

49



would suggest that the randomness cannot be reduced and that some training sessions

are intrinsically more robust than others.

Furthermore, the curves corresponding to data augmented trainings demonstrate a

consistently lower accuracy than their counterparts. The data augmentation process

has moderately increased the complexity of the classification problem, and it could be

that ResNet-18 is not powerful enough for such dataset, as it already proved in the

experiments with CIFAR-10.

3.5 CIFAR-100

CIFAR-100 is a dataset very similar in structure to CIFAR-10: 50000 images for train-

ing, 10000 for testing, the only difference being the number of classes, which is obviously

100.

In order to test RegNet against classification problems with more than ten classes,

we attempted to repeat our set of experiments on the CIFAR-100 dataset. However,

we obtained no definitive result, and in this section we’ll discuss the main obstacles

that ultimately impeded a 100 classes implementation of RegNet.

Description of the issue

The Python3 scripts we used to perform most of our experiments are able to operate on

a variable number of classes according to an input argument that can be specified for

each run. When expanding the system from 10 to 100 classes, the experiment is able

to run for the intended number of epochs, but at some point the loss function assumes

value NaN, causing the subsequent gradient calculation and weight update to assume

NaN values too; when the weights are all NaN, the output of each layer becomes NaN

under any circumstance, causing a never-ending loop of malfunctions.

The interesting aspect is that up to a certain amount of classes the system works

correctly, but a greater number causes the system to malfunction; more specifically,

we found this threshold to be dependent on the encoder used, and for ResNet it is 62

classes, while for the shake-shake encoder it is around 20; this means that theoretically

we could produce results for a ResNet classification problem on 62 classes, but not on

63.

Indeed, we attempted a RegNet implementation on 50 classes by halving the CIFAR-

100 dataset, with no success. In fact, the loss assuming NaN value is not a deterministic

process, but rather, it happens with a probability proportional to the number of classes.

When we trained ResNet with 50 classes, the system started malfunctioning only after

several thousand epochs; 63 classes instead, is the threshold where the probability of

the loss assuming NaN value is so high that it happens almost always after the first

batch. However, even in this case, repeating the experiment with 63 classes many

50



times could reveal a lucky case where the system runs correctly for several batches.

In all honesty, at times the system malfunctioned even when training with 10 classes

(MNIST), but it happened so rarely that we decided to just repeat the simulation

without further investigations.

Debug

In the end, we haven’t been able to solve the problem, but we were at least able to

identify it. When the number of classes is high enough, the loss optimizer may cause

the loss function of one of the classes to become NaN. When Tensorflow sums numeric

values to a NaN value, the result is always a NaN; therefore, being the loss function as

in (2.6), a malfunction in the loss of a single class i causes the total loss to break.

Lcov, x =
1

x

[
log
|ΣTx|
|ΣOx|

− d+ tr(Σ−1
TxΣOx) + (µTx − µOx)TΣ−1

Tx(µTx − µOx)

]
(2.1)

LTOT =
d∑

i=0

Lcov, i + Fk(Ki − 3) (2.6)

We traced the error through all the encoder, and we found out that, after the optimizer

updates the weights, it is always the first convolutional layer to produce the NaN values

first. So the malfunction is caused either by the calculation of gradients in the loss

optimizer or by the implementation of the convolutional layer function.

The first NaN value, that later propagates through the network, is probably caused

by some calculation producing underflow. This is not unlikely, as we already encoun-

tered something similar with equation (2.1): when we were working on expanding the

system from three to ten classes, the calculation of the covariance matrix’s determinant

often produced underflow and caused NaN values to appear in the loss function; in the

end we solved it by increasing the precision of the calculation from float32 to float64.

Therefore, it may be that the optimizer operates with float32 numbers, or that under-

flow happens even with float64 precision; in both cases, solving this underflow problem

would be beyond our powers and time because it would require accurate knowledge of

the implementation of Tensorflow optimizers. In synthesis, it’s likely that, since the

loss’s complexity increases with the number of classes, a 100 class implementation of

RegNet is too complex for common loss optimizers.

A hypothesis of this type would explain why the number of classes increases the

likelihood of malfunction; the matrix of the outputs, after all, is of size (batch size x

number of classes), and since it contains many values close to 0, a calculation requiring

the multiplication of all elements, like a determinant, could produce underflow if the

number of classes is high enough.

At any rate, as mentioned, we weren’t able to solve the issue, because we felt the

mechanisms of the optimizer were beyond our control. Aside from Adam optimizer,

51



which is the standard for RegNet, we tried employing RMS propagation and Momentum

optimizers, seemingly with no difference in results.

3.6 Conclusions

In this chapter we explored the robustness behavior of RegNet. Experiments on the

MNIST and CIFAR-10 datasets revealed that the couple ResNet + RegNet is able to

grant a significant increase in robustness compared to a cross-entropy loss. Instead, the

couple shake-shake encoder + RegNet proved less effective, and results suggest that

the robustness boost provided by RegNet is probably heavily dependant on the choice

of encoder used.

Further analyses suggest that the depth of the residual encoder doesn’t affect ro-

bustness, that there is no connection between target mean value µT and robustness,

that the training process intrinsically introduces some variance in the robustness be-

havior, and that this cannot be corrected with data augmentation.

An implementation of 100 classes RegNet on the CIFAR-100 dataset was attempted,

but never completed, likely because the loss function was incompatible with Tensor-

flow’s methods for calculation of gradients.

Future works

A continuation of this work should include an implementation of RegNet for the CIFAR-

100 dataset, as well as other datasets with different amounts of classes. However, this

will probably require a full reformulation of RegNet’s loss function, which will also help

solve the inconsistencies analyzed in Chapter 2.

Moreover, it would be interesting to analyze the robustness performance of different

encoder types coupled with RegNet, how heavily the encoder choice impacts robustness,

and what is the real contribution that the RegNet loss applies to adversarial robustness

behavior.

52



Bibliography

[1] M. Testa, A. Ali, T. Bianchi, E. Magli, Learning mappings onto regularized latent

spaces for biometric authentication, arXiv preprint arXiv:1911.08764, 2019.

[2] J. Goodfellow, J. Shlens, and C. Szegedy, Explaining and harnessing adversarial

examples, arXiv preprint arXiv:1412.6572v3, 2015.

[3] A. Kurakin, I. Goodfellow, S. Bengio, Adversarial Examples in the Physical World,

ArXiv preprint arXiv:1607.02533v4, 2017.

[4] M. Sharif, S. Bhagavatula, L. Bauer, M. Reiter, Accessorize to a Crime Real and

Stealthy Attacks on State-of-the-Art Face Recognition, Vienna, Austria, CCS’16,

2016.

[5] T. Brown, D. Mané, A. Roy, M. Abadi, J. Gilmer, Adversarial Patch, arXiv preprint

arXiv:1712.09665v2, 2018.

[6] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, R. Fergus,

Intriguing properties of neural networks, ArXiv preprint arXiv:1312.6199v4, 2014.

[7] N. Papernot, P. McDaniel, X. Wu, S. Jha, A. Swami, Distillation as a De-

fense to Adversarial Perturbations against Deep Neural Networks, Arxiv preprint

arXiv:1511.04508v2, 2016.

[8] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,

in Proceedings of the IEEE conference on computer vision and pattern recognition,

2016, pp. 770–778

[9] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, B. Frey, Adversarial autoencoders,

arXiv preprint arXiv:1511.05644, 2015.

[10] X. Gastaldi, Shake-Shake regularization, ArXiv preprint arXiv:1705.07485v2,

2017.

[11] D. Warde-Farley, I. Goodfellow, Perturbation, Optimization and Statistics, Chap-

ter 1:Adversarial Perturbations of Deep Neural Networks, Cambridge, Mas-

sachusetts, The MIT Press, 2016.

53



[12] M. Nielsen, Neural Networks and Deep Learning, Determination Press, 2015.

[13] A. Almahairi, S. Rajeswar, A. Sordoni, P. Bachman, A. Courville, Augmented

cyclegan: Learning many-to-many mappings from unpaired data, arXiv preprint

arXiv:1802.10151, 2018.

[14] A. Fawzi, S. Moosavi-Dezfooli, P. Frossard, S. Soatto, Classification regions of

deep neural networks, arXiv preprint arXiv:1705.09552, 2017.

[15] Bengio, Samy; Goodfellow, Ian J.; Kurakin, Alexey (2017). Adversarial Machine

Learning at Scale, arXiv preprint arXiv:1611.01236, 2016.

54


