
POLITECNICO DI TORINO
Master Degree in Communications and Computer Netowrks

Engineering

Master Degree Thesis

From Honeypots to Distributed
Deception Platforms

Theory and testing of emerging technologies for IT security.

Supervisors
prof. Antonio Lioy

Candidates
Vincenzo Viola

Internship Tutor
Intesa Sanpaolo S.p.A.

Ing. Davide Grangia

Academic Year 2018-2019

This work is subject to the Creative Commons Licence

Contents

1 Introduction 7
1.1 What is Deception? . 7
1.2 Why Deception? . 8
1.3 Objectives and Contributions . 10

2 State of the art 11
2.1 Cyber Deception Background . 11

2.1.1 Honeypots . 11
2.1.2 Honeynets . 12
2.1.3 Tripwire . 12
2.1.4 Introduction to Distributed Deception Platforms 13

2.2 From Honeypots to Distributed Deception 14
2.2.1 Honeypots review . 14

Classification . 14
Use-Cases . 14
Honeypots and insider threats 17
Strengths and weaknesses 18
Legal Issues . 19

2.2.2 Distributed Deception . 20
Beyond Honeypots . 20
The Deception paradigm . 21
Taxonomy . 23
Use-cases . 23
Distributed Deception Platforms 27

3 Methodology 31
3.1 Advanced Persistent Threats . 31
3.2 Observables . 33

3.2.1 Attack origination points . 33
3.2.2 Victim involved in the attack 34
3.2.3 Risk tolerance . 34
3.2.4 Timeliness . 35
3.2.5 Skills and methods . 35
3.2.6 Actions . 36
3.2.7 Objectives . 36
3.2.8 Resources . 37

III

3.2.9 Knowledge source . 37
3.3 Attack Simulation . 37

3.3.1 Exploiting user credentials 38
3.3.2 Backdoor instalment . 39
3.3.3 Install utilities . 40
3.3.4 Data Exfiltration . 40

4 Test and Results. 41
4.1 Cowrie Honeypot. 41

4.1.1 Description. 41
4.1.2 Results and comments. 42

4.2 Modern Honey Network. 45
4.2.1 Description. 45
4.2.2 Configuration. 47
4.2.3 Results and comments. 47

4.3 Dejavu Deception Framework . 54
4.3.1 Description . 54
4.3.2 Configuration. 55
4.3.3 Results and comments. 55

4.4 Commercial solutions. 62
4.4.1 Commercial Deception Platform #1 62

Characteristics . 62
Evaluation . 62

4.4.2 Commercial Deception Platform #2 66
Characteristics . 66
Evaluation . 66

5 Conclusions 71

6 Appendix A 73
6.1 Backdoor . 73

6.1.1 Client Architecture . 73
6.1.2 Server Architecture . 74

Bibliography 75

IV

Abstract

The following thesis presents a research on the evolution of the deceptive tech-
nologies adopted in cyber-defense. In the first section honeypots are analysed in
deep, evaluating their strengths and weaknesses, providing also some intriguing use-
cases. The second part of the thesis focuses on the Distributed Deception Platforms
(DDP), a brand-new paradigm which has the purpose to overcome honeypot limits
and to allow an easier deployment of deceptive tools over the defender’s network.
Some of the most important distributed deception platforms present on the market
are tested along with open-source solutions: the test involves the simulation of an
Advanced Persistent Threat (APT) to be used against the platforms under analysis
in order to evaluate their efficacy, the depth of information that it is possible to
retrieve from an attacking pattern and the ease of deployment and management of
the rising solutions.

V

Acknowledgements

I wish to thank my family that supported me to follow my ambitions and all my
friends and colleagues that took part on this enjoyable journey.
The dedication of this thesis goes to my grandfather Vincenzo, gentle soul and
silent teacher of the most precious of lessons.

6

Chapter 1

Introduction

1.1 What is Deception?
Despite the fact that new cybersecurity technologies are constantly introduced or
improved, data breaches are events that appear far from cessation. Verizon 2019
Data Breach Investigation Report [1] states that from a sample of 41686 secu-
rity incidents evaluated, 2013 were confirmed as data breaches: 69% of all the
data breaches were conducted by outsiders, however the role of insiders cannot be
understimated since 34% of the data breaches involved internal actors (including
unintentional events). Cost of a Data Breach Report [2] analyzes how data breaches
affect the economy of a company even years after the breach occurred, with an av-
erage loss of 1.42 Million $; the cost derived from data breaches depends also on the
event that caused it: breaches caused by intentional attacks cost 27% more than
breaches due to human error and 37 % more than system glitches, mainly because
attacks can require more time to be identified.
In such scenario, it seems reasonable to look for a different paradigm in which it is
assumed that the breach already occurred in the system, and the goal of the security
team is now to delay the attack operation, to understand the tools and techniques
that are being used, to deceive the attacker and to push the threat into safe ar-
eas: this approach is generally known as Cyber Denial & Deception (D&D).
By such definition, deception’s goals are two-fold: to provide to the attacker false
or misleading information, capable to give him the belief and the confidence that
the attack is ready to be performed and the situation is under attacker’s control
(Deception); to create uncertainty about the reality of the environment that the
attacker is facing, in order to slow down the attacking operations or to lead the
attacker to waste time or resources (Denial) [3]. In order to better understand the
practical differences between denial and deception, it can be useful to introduce the
distinction made by Cyber Denial, Deception and Counter-Deception [4] about the
information (facts and fictions) to show and to hide to the attacker, dividing it in
four categories:

• Non-Essential Friendly Information (NEFI), the real facts that don’t require
to be hidden from the attacker;

• Essential Elements of Friendly Information (EEFI), the facts that need to be

7

1 – Introduction

hidden from the attacker;

• Essential Elements of Deception Information (EEDI), fake information that
needs to be presented to the attacker;

• Non-Disclosable Deception Information (NDDI), information that reveals the
deception plan and therefore must remain hidden from the attacker.

Denial’s scope is to hide the EEFI, while deception must be applied in order to
highlight the EEDI.
D&D as a strategy did not originate in the cyber domain, but has its roots in
the military field; one of the five foundations of US Information Operations known
as MILDEC (Military Deception) enunciates six principles in order to plan and
execute deception operations [5]:

• Focus: The deception must target the adversary decision maker capable of
causing the desired action(s) or inaction(s);

• Objective: To cause an adversary to take (or not to take) specific actions,
not just to believe certain things;

• Centralized planning and control: Military deception operations should be
centrally planned and directed;

• Security: Deny knowledge of a force’s intent to deceive and the execution of
that intent to adversaries;

• Timeliness: A deception operations requires careful timing;

• Integration: Fully integrate each military deception with the operation that
it is supporting.

Those principles are revised in the cyber ground by the definition of the so-called
Deception Chain, which is composed by three main phases: planning, preparation
and execution [4]. The planning phase includes the purpose of the deception (i.e the
objective), the intelligence gathering (i.e. the focus, how the opponent should react
to deception) and the design of the deception cover story; the preparation phase
consists in the exploration of the available resources to make deception possible
and in the cooperation with other operators as network managers (i.e. integration
principle); finally, in the execution phase the deception operation is monitored and
eventually reinforced if the results are not as good as expected.

1.2 Why Deception?
As explained in the previous paragraph, Cyber Denial & Deception’s aim is to
provide another level of security after that the attacker has already been able to
breach inside the system (or in the case of insiders); it could be observed that
there are already components such Intrusion Detection Systems (IDS) that have

8

1.2 – Why Deception?

the purpose to detect suspicious activities inside the network, but those systems
can hardly recognize previously unknown attacks, or malicious behavior hidden in
actions which IDS can consider legitimate. The class of attacks for which D&D
is called to take remediation is also known as Advanced Persistent Threats
(APT). Colin Tankard in its paper Advanced Persistent threats and how to monitor
and deter them [6] defines APTs as "a new breed of insidious threats that use multiple
attack techniques and vectors and that are conducted by stealth to avoid detection
so that hackers can retain control over target systems unnoticed for long periods of
time". The term Advanced may refer to the exploit of zero-day vulnerabilities or,
more in general, to the use of sophisticated tools, tactics, techniques and procedures
(TTTPs); the term Persistent refers to the (usually long) period of time under which
the attacker conducts its malicious behavior inside the defender’s system.
Another concept clarifies better the distinction between classic attack patterns and
APTs: the report M-Trends: advanced persistent threat from 2010 by Mandiant
[7] observes a recognisable, repetitive cycle which characterizes advanced persistent
threats (it can be observed that the following phases are similar to the Cyber
Kill Chain steps [8] defined by Lockheed-Martin corporation in 2011) :

1. Reconnaissance: the attacker identifies individuals of interest and develop
methods of potential access to the target;

2. Initial intrusion: it may be achieved through social engineering techniques
such as Spear Phishing against the target identified in the previous step;

3. Backdoor instalment: the attacker attempts privilege escalation, then installs
multiple backdoors through lateral movements;

4. Obtain User credentials: the attacker targets domain controllers to obtain a
large set of valid user credentials;

5. Install utilities: the user credentials previously obtained are now used to install
utilities needed by the attacker (dump password, network monitoring);

6. Data exfiltration: the attacker steals data from the compromised network,
encrypting and compressing it, then sending it to "staging servers" within the
APT’s command and control infrastructure in which stolen data is aggregated;

7. Persistence: as the victim detects intrusion, the attacker repeats the previous
steps in order to maintain its presence in the compromised network.

Along with the aforementioned Cyber Kill Chain, it is worth to mention the MITRE
ATT&CK Matrix [9] which provides a detailed taxonomy about APTs actions that
can be conducted in all the cyber kill chain phases, and such matrix will be the
ground floor in this thesis to simulate an APT to be tested against the deception
solutions.

9

1 – Introduction

1.3 Objectives and Contributions
In the previous paragraphs were introduced the main actors involved in this re-
search: indeed, this thesis will analyse the evolution of the main deception tech-
nologies adopted in the cyber scenario over the years and to test their efficacy, which
will be evaluated basing on the depth of information that they are able to retrieve
in an attacking scenario; in particular, the focus is on the emerging distributed
deception platforms to be compared against traditional honeypots. The purpose of
this thesis is to understand the value of distributed deception platforms to recog-
nise Advanced Persistent Threats in comparison with the results obtained with
traditional honeypot technologies, to evaluate their complexity in the deployment
and management stages. Opensource platforms will be tested alongside proprietary
solutions, which will be analysed in partnership with Intesa Sanpaolo which will
perform a Proof of Concept of the adopted solutions.

10

Chapter 2

State of the art

Summary

This chapter will be dedicated to the chronological evolution of the main decep-
tion technologies; then the two principal approaches, honeypots and distributed
deception, will be studied and evaluated.

2.1 Cyber Deception Background

2.1.1 Honeypots

One of the first relevant documents regarding a scientific deception approach applied
to information systems is the paper from 1992 named "An Evening with Berferd" by
Bill Cheswick [10]. The AT&T researcher added a set of fake services in its work-
station, such as FTP, Telnet, SMTP DEBUG, and few others, properly configured
in order to pretend that the services were actually running and the flaws they were
attempting to exploit were present; at first, Cheswick monitored the cracker’s at-
tempts and decided in real-time which action to perform, but observing that the
attacker was persistent in time, decided to develop a system called The Jail. It
consisted in a chroot environment (the processes and their children are executed
in a sub-directory different from the root directory, leading those processes to have
restricted permissions) in which the processes with an higher risk of exploitation
were taken out. Even if the attacker fell into the trap and did not appear to rec-
ognize it, Cheswick concluded that the Jail was a system too complicated to build
and too dangerous to be worth it.
In November 1997, Fred Cohen developed one of the first honeypots available for
free, the Deception ToolKit [11]. Just as the rudimentary Jail built by Cheswick,
it emulates a system with several well known vulnerabilities, collects logs for ev-
ery interaction and produces output response to attackers’ inputs with the goal to
waste their time and resources.
After DTK, new honeypot solutions arose in the market, but a true evolution of
the technology was brought by the development of the honeynets.

11

2 – State of the art

2.1.2 Honeynets
This new architecture (figure 2.1) was introduced in 2005 by the paper Know Your
Enemy: Honeynets from the HoneyNet Project [12]. The main concept about hon-
eynets is to create a new network composed exclusively by honeypots: since there
are no production servers inside the honeynet, every inbound or outbound con-
nection which involves components within the network has to be considered as an
action performed by an intruder. Furthermore, the honeynet is an example of High
Interaction decoy, since it is composed by real systems providing real services and
applications, while Cheswick’s Jail and DTK are considered Medium Interac-
tion decoys since they provide emulation of a real environment; the last category
is composed by the Low Interaction decoys, which are the safest honeypots since
they offer only emulated services with very little space for the attacker to exploit
them, but on the other hand they provide little detail about the experienced attack.
As mentioned before, honeynets define not a single device or product, but an ar-
chitecture: it is crucial to separate the honeynet from the real environment, which
is performed through a honeywall, a layer-2 bridging device (which allows it not to
have a MAC address and packets to route so it is very difficult for the attacker to
detect it) that has to collect traffic data but most of all has to perform data control
(e.g. limit the bandwidth, the number of outbound connections) in order to limit
attacker’s actions. It has to be pointed out that the use of real machines makes the
honeynet more believable but, on the other hand, it requires plenty of attention in
the configuration of the honeywall since the attackers have now more potential to
do harm if they manage to take control of the honeypots.

2.1.3 Tripwire
A further step towards recent distributed deception approach was made by a smart
use of integrity check programs as Tripwire, which gives the possibility to monitor
file systems and to check if they are modified, deleted, moved or added. The in-
tegrity check works by the use of two inputs: a configuration file in which the files
and directories that need to be monitored are indicated, and a database file which
is generated by Tripwire and contains the filenames, signature information and the
configuration file that generated it; to check if modifications to files listed in the
configuration file have been made, the program generates another database file and
compares it with the already present database.
Obviously, it cannot be considered a stand-alone deception product, but specific
use-cases of Tripwire anticipated the use of lures and baits in Distributed Decep-
tion Platforms (which will be analysed in deep afterwards). In the paper "Expe-
riences with Tripwire: using integrity checkers for intrusion detection" [13], Kim
and Spafford suggested a possible use of Tripwire by monitoring false sensitive data
specifically created in order to catch stealth intrusions; this kind of data is gen-
erally known as honeytokens. [14] The two researchers also point-out that the
first advantage given by the use of Tripwire is that it "cannot be turned against
a system to identify or exploit weaknesses or flaws". This observation needs some
clarification, since it is true that the monitoring operation conducted by Tripwire
cannot be exploited, but on the other hand the use of monitored bait files need to

12

2.1 – Cyber Deception Background

Figure 2.1: Honeynet architecture. (source:[12])

be carefully designed considering that an eventual leak of fake files could create as
damage as the disclosure of the real ones.

2.1.4 Introduction to Distributed Deception Platforms

In recent years a new kind of products arose in the market which inherited a lot
of the features from the previously discussed tools: indeed, distributed deception
platforms (DDP) are systems which allow the distribution, configuration and mon-
itoring of the deception elements, which fundamentally are decoys, breadcrumbs
and honeytokens. The term decoy refers to honeypots, which can be high, medium
or low interaction with the already discussed differentiation in section 2.1.2; hon-
eytokens have already been introduced in section 2.1.3; breadcrumbs are data such
user credentials which point to a particular decoy, and their scope is to tempt the
attacker to interact with such decoy.

13

2 – State of the art

2.2 From Honeypots to Distributed Deception
In the previous section the chronological steps that led to the development of the
distributed deception platforms starting from the very first honeypot prototypes
have been briefly analyzed. Now the two paradigms, honeypots and distributed
deception, will be deepened in order to better understand their strength and weak-
nesses, similarities and differences.

2.2.1 Honeypots review
Classification

The decoys introduced in the previous paragraph are well-known examples of hon-
eypots, but it is quite intuitive that there are several variants of such technology
depending on the environment in which it has to be deployed: considering that
this thesis focuses on gaining more knowledge as possible about the simulation of
an APT, it is necessary to introduce the following distinction taken from the book
Honeypots: Tracking Hackers [15], which subdivides honeypots in two categories:
production honeypots and research honeypots.
Production honeypots are honeypots which have the goal to enhance the defen-
sive capacity of the system, mainly by detecting the threat and being able to take
the proper counter-measures. Research honeypots instead have the goal to gain
knowledge about the tools, techniques used by attackers and which are the motives
that drive them. In other words, the goal of production honeypots is to defend the
system, and they need to be easy to implement and maintain; the goal of research
honeypots is to gain knowledge about threats, but they are not particularly adapt
to defend the system (honeynets represent high interaction research-honeypots).
As mentioned before, honeypots can also be classified in high, medium and low
interaction honeypots depending on the depth of information that they are capable
to retrieve and on the degree of freedom that they leave to the attacker.
From the early projects of the 90’s seen in the previous paragraph, honeypot evo-
lution took many directions depending on the systems it needed to protect and
the attacks it had to face; are now reported some of the most interesting honeypot
deployments in the recent years.

Use-Cases

Up until now, honeypots have been presented as virtual or real machines to put
inside the network waiting to be probed; the research Detecting targeted attacks
using shadow honeypots from 2005 [16] proposed the use of a particular architecture,
called shadow honeypot, to detect malicious traffic both at client (in the scenario
in which the client has been convinced to download malicious data) and at server
sides: the architecture is composed by a filter, anomaly detection sensors and the
honeypot. The filter blocks the well-known attacks which don’t need any further
investigation; anomaly detectors can include different components which have to
decide if the traffic can be considered acceptable and so it can be forwarded to
the real server, or if it needs to be redirected to the honeypot if it is considered

14

2.2 – From Honeypots to Distributed Deception

suspicious; the honeypot has to be tuned in order to detect failures or sensitive
worsening in the system after that the traffic was accepted. The architecture has
the nice property to be adaptive, since if the traffic is considered non-malicious by
the honeypot, the sensors can be re-tuned in order to allow the previously analyzed
traffic to be immediately accepted.

Figure 2.2: Shadow-honeypot workflow. (source:[16])

In the report Honeypot Router for routing protocols protection [17] it is proposed
another approach in which the honeypot, called Honeypot Router, emulates a
router in order to analyze attacks directed to the routing protocols. It works using
the open-source routing software Quagga (that implements intra-domain routing
protocols such as Routing Information Protocol which uses hop-count as routing
metric, Open Shortest Path First (OSPF) which executes the SPF algorithm inside
an Autonomous System domain and exterior-gateway algorithms such as Border
Gateway Protocol) and other monitoring tools to capture packets, gain informa-
tion about the flow and eventually stop it to prevent exploitation of the honeypot.
One of the attacks that were studied against the honeypot was the MaxAge attack
in the Open Shortest Path First algorithm: OSPF routers use Link-State Advertise-
ment (LSA) packets to share information about their neighbors and the associated

15

2 – State of the art

routing metrics; MaxAge attack exploits the fact that routers running OSPF ig-
nore LSA packets with age higher than 3600 s (1 hour) [18]; a common attacking
pattern is to intercept the LSA packet, to modify its age to the maximum and
re-injecting it towards the destination router with the purpose to cause a Denial
of Service, excluding the victim router from the computation of the routing table
of the destination router. In the test conducted by Ghourabi, this kind of attack
was recognized by the honeypot by controlling the Wireshark capture, in which the
malicious packets were identified by unexpected Time To Live value (which in this
case has to be equal to 1 since LSA is sent towards neighbors) and checking the
LSA age value, that revealed the nature of the attack.
All the previous cases analyzed so far involved static honeypots, in which its ef-
ficacy could be proven only if the attacker tried to engage an interaction with it;
will be now discussed the case of a mobile honeypot, in which is the honeypot
itself to seek for the attacker. This particular scenario is taken from the docu-
ment Intelligent Honeypot Agent for Blackhole Attack Detection in Wireless Mesh
Networks [19] in which it is discussed the application of a mobile honeypot in a
hierarchical Wireless Mesh Network (WMN), which is composed by three levels:
the top-level is composed by Internet Gateways wired to the Internet, below there
is the mesh of static wireless routers which form the backbone of the WMN and
allow the connection of the clients (that can be static or dynamic) to Internet (fig-
ure 2.3). The attack for which the honeypot is called to take remediation is named

Figure 2.3: Hierarchical WMN architecture. (source:[19])

Black-hole attack, in which in the set of the mesh routers in the backbone there is

16

2.2 – From Honeypots to Distributed Deception

a malicious router which advertises itself as the best possible route and then drops
all the received traffic in order to create Denial of Service. The test conducted
by Prathapani involved routers using the On-Demand Routing Protocol in which
the mesh router which wants to send traffic broadcasts a Route Request and if
the neighbors have a fresh route toward the destination will reply with a Route
Reply, else they will send a NULL packet to the source router and re-broadcast the
received query; the black-hole router exploits the forge of Route Replies packets
setting low hop count in order to be selected as the best node to traverse. As
anticipated, in this environment the honeypot is supposed to move through the
mesh, generating a Route Request to a known destination for which the best path
to traverse is already known; after that the honeypot receives the Route Reply, it
checks its validity forwarding a masked data packet to the mesh router which is
unable to understand that it was sent by the honeypot; then, the honeypot sends a
Query packet (which contains information to be compared with the masked packet
that will eventually arrive) to the destination through the already known route;
then the destination sends a Query Reply to the honeypot containing information
regarding the last packet received by the mesh router under analysis; eventually,
the honeypot decides if the mesh router has regular behavior or it is a black-hole
router basing on the match between the information received in the Query Reply
and the masked packet sent at the beginning of the process. Honeypot mobility is
in this case required in order to check all the regions on the mesh of routers.

Honeypots and insider threats

The implementations seen so far made clear the fact that honeypots hold their value
only when the attacker interacts with them. In the case of external threats it is more
difficult for the attackers to distinguish between a real production machine and a
honeypot, since they are moving inside a (presumably) unknown environment; the
scenario changes dramatically in case of insider threats, in which the attacker is
assumed to know very well the internal setting. Also, insiders are more difficult to
detect since their goal usually is not to compromise or to take control of a machine,
but to gain sensitive information. Honeypots: Catching the Insider Threat [20]
observes that since insider’s scope is to obtain useful information with low risks
of being caught, it should be considered the possibility that the attacker is using
packet sniffers which are hardly detectable and could expose sensitive information
if the communication within the network is not ciphered. Spitzner’s suggestion in
order to discover such behavior is to send into network traffic some honeytokens
(e.g. user credentials): once the honeytoken content is used, it will intuitively reveal
the presence of the insider inside the environment. Another strategy analyzed by
Spitzner is to exploit research engines in order to mislead the insider: the main
idea is to create an honeytoken web-link for which the insider has no authorization
to use. This idea is particularly valuable when the web search concerns topics that
only an insider could know, such the development of a new prototype within the
enterprise.
It needs to be remarked how the deployment of honeypots is a strategy that needs

17

2 – State of the art

to be handled very carefully especially in the case of the presence of insiders, since
such deployment must remain undisclosed (known by as less people as possible)
within the enterprise in order to be effective.

Strengths and weaknesses

By definition, honeypots hold their value when attackers attempt an illegal or unau-
thorized interaction with them, which implies that every data that the honeypot
collects indicates a possible malicious behavior. It leads to the first advantage of
honeypots with respect to traditional detection systems such IDS or firewalls: hon-
eypots collect little but very meaningful data, which allows a much simpler anal-
ysis of the attack. Also, little data to process implies little waste of resources,
while IDS and firewalls are very likely to saturate since they have to process much
more data, and if saturation happens it can lead to harmful consequences. The
third advantage of honeypot technologies is given by their simplicity, since they
are basically devices which only need to run and monitor their status.[15]
The little amount of data to process is certainly a good feature, but what if honey-
pot collects no data? Is it possible to be sure that there are no threats inside the
system? Unfortunately it is not so immediate to jump to such conclusion since one
of the disadvantages of this technology is the limited sight: indeed, honeypots
are able to detect only attacks that are directed to them, without knowing what
else is happening in the other machines of the network. Moreover, honeypots are
identifiable: errors on the emulation of a certain system or detection instruments
such OS fingerprint could reveal to the attackers that they are facing an honeypot
(e.g. the honeypot shows itself as a Windows server but it is emulated from a
Linux machine); furthermore, some tools specifically designed to detect honeypots
have been introduced in the market, such Honeypot Hunter by Send-Safe [21]. This
product has been developed to discover if a proxy server is safe, is not working or it
is an honeypot. The tool opens a false mail server on the system, then attempts a
connection to its own false mail server through the proxy server: if the proxy server
claims that the connection was successfully established but the mail server doesn’t
observe such connection, then the proxy server is an honeypot.
The paper NoSEBrEaK - Attacking Honeynets [22] illustrates several techniques to
detect and avoid Sebek, a kernel rootkit which is used in honeynets to record all the
actions performed by the intruder. Sebek is based on a customized read() system
call which replaces the standard read() system call in the kernel, that allows it to
have access to all the data passing through it, making it capable even to have access
to encrypted messages; the recorded data is then sent to the Sebek server, always
exploiting a modification at kernel level in order to hide the communication to the
attacker. Since Sebek operates at kernel level, it is sufficient to observe anomalies
in the kernel memory in order to have clues about the presence of that rootkit:
when Sebek replaces the read() system call, replace the function pointer with its
own pointer of the new inserted function in the NR_read entry of the system call
table; in a normal environment, the read() and write() pointers are supposed to
be located nearby, whereas in the presence of Sebek it is very probable that they
are at distant slots.

18

2.2 – From Honeypots to Distributed Deception

Additionally, the same document [22] provides two simple ways to detect a hon-
eywall. The first is based on the strict traffic limiter that honeywalls implement:
sending a reasonable amount of outgoing connections requests makes possible to
see if, at a certain point, the requests are blocked by the honeywall. The second
method exploits the fact that some honeywalls modify outgoing packets that are
considered potentially malicious in order to make them harmless; in this case it is
sufficient for the attackers to initiate a connection in which they are in control of
the packets at the source and at the destination and to check if the communication
has been altered.
Detection of Virtual Environments and Low Interaction Honeypots [23] illustrates
how timing analysis can be a valid technique to discover if a low-interaction honey-
pot is being employed. Empirically, it resulted that connections with low-interaction
honeypots running on virtual environments on the same physical machine led to
higher delays than connections with a normal machine; in particular, using a thresh-
old delay of 0.44 ms it is clearly possible to distinguish a regular host from a virtual
honeypot. This behavior can be explained by the fact that packets (the tests were
conducted with ping) have to pass through the physical machine link layer before
being moved to the virtual environment; furthermore, if in the same physical envi-
ronment lay different virtual machines, the operating system has to route packets
through different processes which introduces further delays.
In the scenario in which the honeypot is detected, the attacker could decide to sim-
ply bypass the honeypot, or could compromise the honeypot in order to perform
internal attacks or directed to the internet, or otherwise could poison the honeypot
flooding it with false information which would make real attacks harder to detect
under the generated noise [21]. Such disadvantages are the reason why honeypots
cannot be employed as stand-alone security measure but need to be integrated with
the traditional security mechanisms as IDS and firewalls.

Legal Issues

The employment of honeypot technologies could arise not only technical problems
as seen in the previous paragraph, but also legal ones. Lance Spitzner [15] observes
that the legal issues with honeypots (given for granted that the security adminis-
trator is respecting its enterprise’s policies) may be due to the type of information
that they retrieve from intruder’s action, or by the actions that the intruder con-
ducts from the honeypot itself: in particular, the three aspects to be focused on
are privacy, entrapment, civil liability. Privacy aspect refers to the boundaries that
need to be respected to protect user’s privacy, even of intruders; high-interaction
honeypots are able to capture intruder’s communications, even if those communi-
cations do not involve malicious intentions. Entrapment is the "inducement of a
person to commit a crime, by means of fraud or undue persuasion, in an attempt to
later bring a criminal prosecution against that person" [24]; Spitzner observes that
entrapment is mostly used for legal defense but does not really concerns honeypots
since the attacker exploits the opportunity to commit a crime without knowing
that the victim machine is a real host or an honeypot. Civil liability concerns the

19

2 – State of the art

responsibility of the enterprise in case the intruder performs illegal actions exploit-
ing the honeypot: in particular, the company deploying the honeypot which is then
exploited to conduct attacks to third party should have a duty to warn the third
party about its system security; Spitzner suggests to keep the honeypot as secure
as possible in order to avoid its exploitation, to monitor and eventually block out-
going traffic, and to pay attention to the data that is stored inside the system in
order to prevent those circumstances. Scottberg [25] observes that in such scenario
the system administrator could be persecuted for negligence as a "hazard that was
deliberately set up and not properly supervised".
In Computer Security Education and Research: Handle with Care [26] are con-
sidered relevant also the reasons behind the deployment of the honeypot: if the
honeypot is used for research purposes and contains no valuable information in-
side, its employment can hardly be persecuted; instead, seeking for the attacker’s
computer is not advised, since it would legitimate eventual legal actions or the at-
tacker could have used machines belonging to innocent third parties.
Those previous considerations where built upon the Federal laws of United States of
America. According to Italian laws [27], the employment of honeypots can hardly
be considered as entrapment; regarding privacy, Italian laws regulates personal data
collection and treatment, not privacy as a more general term: as long as honeypots
are employed to collect data for prevention and research, it is not considered law
infringement.

2.2.2 Distributed Deception

Beyond Honeypots

One of the main features regarding honeypot technologies is that they are indepen-
dent from the other security mechanisms present on the system; it can be considered
an advantage since if an attack occurs they can be disconnected in order to study
the collected data, but on the other hand studies suggest that it is better to have
security devices which cooperate in order to have an orchestration view of the
situation. Ensuring security in depth based on heterogeneous network security tech-
nologies [28] proposes an architecture to fully integrate honeypots with the other
security technologies:

20

2.2 – From Honeypots to Distributed Deception

Figure 2.4: Source:[28].

• The first control of the traffic is made by the firewall which, in addition to
regular traffic inspection, communicates with the honeypot and adapts its
policies depending on honeypot’s feedback;

• The intrusion prevention architecture is composed by a load balancer that
divides the traffic toward several IPS and it receives information from the
vulnerability scanner which analyzes the vulnerabilities that are present in the
system. If the IPS architecture is not able to take a decision about some traffic
pattern, it will be forwarded to the honeypot in order to gain some knowledge;

• The information collected by the vulnerability scanner are stored inside the
Vulnerability Knowledge Base and updated at each new scan;

• The Network Agent collects all the information regarding the hosts present
in the network (OS, applications, permissions) and stores it on the Network
Knowledge Base.

Despite such architecture deploys the most popular security instruments designed
to co-operate in order to achieve a coordinated security mechanism, yet it does not
guarantee that the system is protected from stealthy or undetected intrusions.
Furthermore, the use-cases discussed in 2.2.1 involved mainly research honeypots,
which purpose is to discover new information regarding the currently employed
attacking patterns; on the other hand, enterprises are interested in keeping secure
their assets, and honeypots often resulted too expensive and too difficult to manage
[29].

The Deception paradigm

Honeypots can be a valid support for deception operations, but their isolated de-
ployment cannot be sufficient in order to realize a full cyber denial and deception
campaign. In the introductory paragraph 1.2 it has been introduced the Cyber
Kill-Chain, namely the typical steps which characterize an advanced persistent

21

2 – State of the art

threat; cyber deception can be applied at every step of the cyber kill-chain, as it is
summarized in the table below and analyzed in depth in the 2.2.2 section.

Cyber Kill-Chain phase Deception action
Reconnaissance Artificial ports, fake sites
Weaponization and delivery Artificial bouncing back
Exploitation and installation Artificial exploitation response
Command and Control (C2) Honeypots
Lateral Movements HoneyTokens, HoneyFiles
Exfiltration HoneyTokens, endless files, fake keys

Table 2.1: Mapping deception to the kill-chain model. (source: [30])

In the reconnaissance phase the attacker tries to gain knowledge about target’s
vulnerabilities, hence the deception strategy should be focused on providing mis-
leading information about the defending system or monitor the knowledge of the
attacker using web footprints; the weaponization phase can be efficaciously neu-
tralized if the attacker wrongly believes that the defender’s system has certain
vulnerabilities; if an exploitation attempt is recognized, the attacker could be fed
with false information in order to make him/her believe that the operation has
been successful (also honeypots could be valuable) ; if the attackers have reached
the Command And Control stage, they should be redirected to an honeypot in or-
der to understand their goals and to keep the intruders in an isolated environment;
in the exfiltration phase, the goal of the deception strategy is to delay attackers’
operations and to exhaust their resources [31].
A cyber denial & deception strategy is not meant to be applied to defend the system
from a single incident, but it is a cyclic process that aims at protecting the system
against a full attacking campaign, not an isolated attacking effort. The Deception
Chain [4] is a ten-step process which gives guide-lines in order to properly design
and implement a deception campaign:

• Purpose: The goal of the deception operation. In this phase must be indi-
cated the criteria that define the deception’s success;

• Intelligence gathering: this phase is focused on the study of the adversaries,
which could be their possible objectives, which information will be shown or
will be hidden, how the intruders may react, how to monitor their actions;

• Design of the Cover Story: it is defined as "the deception version of what
the target of the deception should perceive and believe"[4]. Since the D&D
strategy is based on the provisioning of false information, it must be considered
that the intruders may notice incongruities which could lead the full deception
operation to failure. In this phase must be decided what needs to be hidden
(EEFI and NDDI) and what needs to be created and revealed (EEDI and
NEFI) to make the environment safer and the cover story believable;

• Plan: in this phase are developed the denial methods to hide the undisclosable
elements and are analyzed the environment characteristics in order to create

22

2.2 – From Honeypots to Distributed Deception

deceptive components able to properly mimic them. Since not everything can
be hidden, it is suggested to rest on the non-essential friendly information in
order to make the deception story more believable;

• Prepare: it analyzes the feasibility of the deception operation, considering the
available resources and the coordination with other operators in the system in
which deception strategy has to be applied in order to avoid conflicts between
the real and the false environments;

• Execute: if the preparation phase did not signal conflicts between the real
and the deceptive operations, the deception strategy can be now executed.
This phase represents the ending of the planning phases and the beginning of
the monitoring phases;

• Monitor: the full environment and intruder’s actions are monitored and, if
needed, operational mistakes are fixed;

• Reinforce: After the monitoring phase it is possible to see if the deception
story is effective or it needs improvements. If the deception strategy does not
lead to the expected results programmed in the Purpose phase, it could be
needed to re-plan another deception operation.

Taxonomy

The steps presented above represent a general guide-line for the implementation
of a deception plan, but the strategies, the goals and the technologies can be very
different from case to case. Design Considerations for Building Cyber Deception
Systems defines explicit deception the scenario in which the deception story has
voluntarily low credibility: this strategy can be useful to raise doubts about the
validity of the data that the intruder has already obtained.
If the deception strategy is scheduled to generate same responses to certain inter-
actions, then it is named static deception; if instead the response changes over
time as to mimic a real-time changing environment, then it is called dynamic de-
ception.
The deception campaign can be put in place before that an attack is detected (pro-
active approach) or after that an intrusion is detected in the system (reactive ap-
proach); these two approaches may be complementary, since D&D plan is usually
thought to cover attacks at different steps in the cyber kill chain.

Use-cases

Cyber Denial, Deception and Counter-Deception [31] provides two valuable cases
in which the D&D techniques and methodologies prove their efficacy both at the
attacking and at the defending sides.
The first scenario which is analyzed is the infamous Stuxnet campaign, a cyber
attack conducted against the Iranian’s government centrifuge facilities for uranium

23

2 – State of the art

Figure 2.5: Source:[32]

enrichment. The attackers developed the Stuxnet worm in order to physically de-
stroy the centrifuges (figure 2.5 shows the steps of the Stuxnet strategy). Stuxnet
employed some deceptive techniques which allowed the worm to secretly propagate
and replicate itself, to bypass and avoid intrusion-protection systems, to block alerts
before reaching the operators and to spoof monitoring systems to indicate that the
system was not manipulated. Furthermore, the attack was conducted with opera-
tions which had the purpose to attribute the causes of the attack to engineering and
design mistakes (the centrifuges were disassembled many times by Iranian opera-
tors in order to understand the failures). The starting point of the attack was the

24

2.2 – From Honeypots to Distributed Deception

malware Duqu, which was used in the intelligence gathering phase of the deception
chain to collect useful data and assets, exploited later-on to conduct the offensive
operation; the detailed intelligence gathering about control systems and procedures
allowed Stuxnet to work in a well-known environment and to be highly adaptive
and diverse in the attacking procedure against the centrifuges; furthermore, it was
programmed to be self-erasing in order to not be identified even after that the
malfunctioning in the system was detected (in some system the self-deletion failed,
allowing the reverse-engineering of the malware).
The Stuxnet case is helpful in order to comprehend the potential of a cyber D&D
campaign properly orchestrated, but since the scope of this thesis is to evaluate
defensive deception strategies, it is worth to examine the defensive use-case against
a fictional APT espionage attempt proposed by [4], where it shows that the de-
ception chain can be applied in all the steps of the cyber kill-chain: it is assumed
that the defender is developing a prototype which information has to be protected
through deception, and that the attacker will follow the cyber kill-chain steps (not
necessarily in a linear fashion) introduced in 1.2, and has the ability to breach inside
the defender’s private network, steal credentials and operate as legitimate user.
During the reconnaissance phase, the attacker uses search engines and social
networks in order to gather information about employers and enterprise’s organi-
zational information; in order to anticipate the attacker, the defender builds the
deception strategy as follows:

• purpose: defender’s scope is to make the intrusion attempts ineffective and to
create a model able to catch attacker’s methods;

• intelligence gathering: knowing a priori that the attacker will go through the
kill chain and will eventually breach inside the private network, the defender
installs a honeynet in order to get information about attacker’s TTTPs and
creates fictitious, exploitable user profiles and accounts;

• cover story design: fictional, misleading elements about the prototype have to
be designed;

• plan: the data that supports the cover story is made accessible to attacker
through the honeynet or search engines;

• prepare: additional material is designed in order to cover and compensate
the potential leak of EEFI and to make more believable the cover story as
to add confusion and misconception to the offender about the real disclosed
information;

• execute: honeynet is put in place together with the fictitious documents sup-
porting the cover story;

• monitor: activity on the fictitious created accounts is monitored, along with
the honeynet.

Once the attacker obtained information about target’s vulnerabilities through the
recon phase, the proper exploits will be prepared through the weaponization

25

2 – State of the art

phase; the defender’s strategy is now different from the previous one since the
attacker is on a further step of the kill chain:

• purpose: the defender wants to redirect the attacker to the wrong targets and
detect attacker’s weaponization choices;

• intelligence gathering: basing on the current technology used for exploitation
and on the misinformation voluntarily leaked about its own system, the de-
fender can get some hints about the possible attacker’s actions;

• prepare and execute: defender deploys other decoy systems with well-known
vulnerabilities inside the internal network;

• monitor: it allows the defender to understand if the false vulnerabilities are
believed by the offender.

The next step in the cyber kill chain is the delivery phase, which strongly de-
pends on the victim’s environment and security architecture. Also in this phase
the defender has the opportunity to develop a deceptive strategy:

• purpose: the primary goal at this stage is to detect the deliver attempt; once
the attempt is detected, the defender may decide to deny the access, or to give
a feedback as to make believe that the delivery was successfully performed;

• intelligence gathering: the fake user profiles are monitored in order to see
social engineering attempts;

• execute: the defender interacts with the attacker’s efforts;

• Reinforce: in case the intruder has obtained access into the network, new
deception elements may be deployed as to conceal EEFI or to lure him/her
towards misleading information.

In the exploit phase, the intruder may leave some traces about the exploitation
attempt. This phase is very sensitive from defender’s point of view since the attacker
is now inside the network and the damages could be significant:

• purpose: the defender must keep the system safe, which means that the at-
tacker must be redirect toward a controlled environment;

• plan: the deployment of low-interaction and high-interaction honeypots could
give believable feedback to the attacker and could improve the knowledge
about attacker’s weapons;

• execute: defender interacts with the attacker in order to make him/her be-
lieve that the exploitation succeeded and that the defender is relying on weak
defending systems;

• reinforce: the feedback provided should tempt the attacker to use weaker tools.

In the control/execute phase, the attacker installs additional malware, obtains
valid credentials and performs lateral movements. The deception strategy in the
depicted scenario is based on the following steps:

26

2.2 – From Honeypots to Distributed Deception

• purpose: as for the previous phases, the attacker should be redirected to mon-
itored environments;

• execute: new user credentials may be revealed to the attackers along with
EEDI in order to give them access to the safe environment and to strengthen
their confidence about the efficacy of the used exploits;

The last step in the kill chain is the maintain phase, where the attacker’s goal is
to preserve presence inside the victim’s network; in this phase the intruder’s actions
may be very rare, and the deception should allow the defender to keep the intruder
under control:

• purpose: the defender’s goal is to control attacker’s interactions and disrupt
the control that has gained inside the network;

• monitor/reinforce: the EEDI content is continuously fed to the attacker in
order to keep the cover story believable;

• design cover story: the attacker has been inside the system for a while, there-
fore the previously deception story could be not so believable; in this phase,
another deception level could be added in order to give a more solid foundation
to the weaker sides of the previous story and to lead the attacker further from
the true valuable data.

Distributed Deception Platforms

In the very recent years, the improvement of the technology in terms of virtualiza-
tion capabilities led to the rise of Distributed Deception Platforms (DDP) as a new
model for cyber-deception, potentially capable to overcome honeypots’ limitations.
The research studies regarding those platforms are very scarce, presumably for two
reasons: distributed deception platforms have been introduced very recently in the
market, mainly by startups; the DDP architecture does not really implements new
technologies from the ones that have been debated so far, but aspires to allow
an easier deployment, monitoring and management of the deception components,
now distributed all over the network [33]. Deception platforms have a central-
ized management system to create and distribute the deception elements, which
fundamentally can be:

• decoys: low-interaction or high-interaction honeypots;

• breadcrumbs and lures: fake information used to address the attacker to-
wards the decoys or to provide him/her misleading information. Example of
lures are user-credentials, application shortcuts, browser history, log files, user
certificates, database files etc.;

• honeytokens: data similar to lures, but while lures lead the attacker towards
the decoys but do not generate an alarm if there is an interaction, honeytokens
are monitored in order to trigger an alert in case of interaction;

27

2 – State of the art

Analyzing the deployment of those three categories, decoys operate within the net-
work, therefore their deployment is not complex to manage; lures or breadcrumbs
have to be positioned within the endpoints, which leads to a more challenging
deployment; honeytokens have to be positioned within endpoints too, but their
degree of complexity is even higher since they play a central role in the credibility
of the deception story, therefore they require more attention in the design phase
(DDPs may include some features which analyze the internal environment in order
to create concealing deception components). In order to make the deception story
believable, it is also fundamental to keep the centralized management system hid-
den from the attacker, since its disclosure would reveal the deceptive strategy (it is
a NDDI, introduced in 1.1).
The architecture introduced in Automating the Injection of Believable Decoys to
Detect Snooping [34] can be considered a prototype of distributed deception archi-
tecture which allows to create automatic decoy traffic in order to tempt potential
network sniffers to reveal their actions. The false traffic injected into the the net-
work has to respect five principles, enunciated in Baiting inside attackers using
decoy documents [35]: believability, non-interference, detectability, variability and
enticement. Believability means that decoy data must be unrecognizable with re-
spect to regular traffic; non-interference refers to the likelihood that regular users
can access to normal documents without impediment; detectability means that
decoy traffic should generate an alert if some action involves their use; variabil-
ity indicates "the quality of being subject to variation", which means that decoys
should not have some identifiable pattern which differentiate them from the regular
traffic; enticement indicates the decoys’ appeal and strongly depends on attacker’s
purposes or preferences.
The architecture proposed in [34] is composed by a decoy traffic generator, a dis-
tribution platform and several broadcasters to inject different traffic patterns. The
model claims to generate believable decoy traffic, called honeyflow, starting from
recorded network traffic (template or real captures) as input data. The automated
traffic generator separates each session/protocol into individual trace files; each
trace is passed through a traffic identifier to find the best match with the traffic
known by the system (if no match is found, it is marked as unknown traffic); for
the identified flows it is inserted decoy information on headers (e.g. making the IP
addresses conform to the subnet in which the decoy traffic is going to be injected
) or on payloads (e.g. web page content, email body); then, the different traces
are combined into a single trace, sent to the decoy distributor which delivers
the trace to the different decoy broadcasters, which are general-purpose wireless
routers that must be placed near an Access Point and have to be able to inject the
traffic (therefore monitor mode must be enabled, since in other modes the injection
fails or is limited). The same authors developed a monitoring system which can
be integrated to collect the data generated by the misuse of the decoys [35]: the
monitoring platform is able to control the activity related to the fake accounts that
are created and which credentials are injected into the network, to store suspicious
IP addresses and send an alert for each of their operation in the network; an alert
is also generated whenever it is not possible to log into a bait account, since it
indicates that its password has been changed.

28

2.2 – From Honeypots to Distributed Deception

Figure 2.6: Injection Platform. (source:[34])

The distributed platforms developed few years later are more general purpose than
the previous case which only scope was to catch eavesdroppers; DDPs aim at pro-
viding security through deception against the Advanced Persistent Threats phases
discussed in 1.2. The next chapter treats the methodology used to test the plat-
forms, with an in-depth analysis on the category of attacks that will be simulated.

29

30

Chapter 3

Methodology

Summary

Here it is reported the methodology regarding the testing phase of some of the
deception technologies available on the market: the test will involve the simulation
of an advanced persistent threat through the use of a Breach and Attack Platform,
then the deception platforms will be evaluated by the use of APT observables.

3.1 Advanced Persistent Threats

In the introductory section 1.2 have been illustrated the six typical steps character-
izing advanced persistent threats: reconnaissance, intrusion, backdoor instalment,
lateral movements, install utilities, data exfiltration. The implementation of those
stages is now analyzed using A study on advanced persistent threats [36] as main
reference. The reconnaissance phase refers to the collecting of information usually
exploiting social engineering techniques in order to gain access inside the target’s
network and to know in advance the environment in which the intruder will be in.
Social engineering techniques are usually employed to gain access inside the network
exploiting psychological manipulation, but the attackers are also eager to obtain
information about the environment, configurations and assets that they are willing
to breach. For this purpose they rely on Open-Source Intelligence (OSINT), data
and resources freely available on the internet.

31

3 – Methodology

Figure 3.1: OSINT Framework. (source:[37])

The intrusion phase is executed mainly in two ways: with a legitimate access
using user credentials obtained through the social engineering procedure, or by
exploitation of vulnerabilities discovered in the reconnaissance phase. Once the
intrusion has been performed, the attacker installs a backdoor in the machine in
order to have access to the target’s network.
In order to expand their presence inside the network, attackers perform lateral
movements: lateral movements consist in the progressive unauthorized access (pos-
sibly achieved also through legitimate credentials) of devices inside the victim’s
network. The attacker exploits vulnerabilities relating the authentication mecha-
nism, which could be the use of single sign-on, brute-force password stealing, soft-
ware vulnerabilities or even simple packet sniffing.[38] Usually the goal of lateral
movements is to reach the Domain Controller hashed password in order to obtain
the ntds.dit file which contains all the hashed passwords of all the users of that
domain. The activities regarding lateral movements are usually slow and can last

32

3.2 – Observables

long periods of time since the attacker has to gain knowledge about the the next
systems to exploit and has to avoid raising suspects. In order to avoid detection, it
is common that the attacker installs different tools and utilities typically used by
IT administrators in order to make their actions more believable. The final step
of advanced persistent threats involves data exfilitration: when the attackers have
been able to establish their presence inside the network and have reached sensitive
information, they may want to to destroy it or to exfiltrate it by sending (with
secure protocols as SSL or relying on Tor Network) the undisclosed data on an ex-
ternal server which is no longer under the victim’s control. In the next paragraph
will be enunciated the configuration choices in order to simulate the actions of an
advanced persistent threat.

3.2 Observables

In this section are discussed the metrics used to evaluate the deception tools em-
ployed in the Intesa Sanpaolo network. The products will be evaluated basing on
the APT’s 9 observables, defined in the text Reverse Deception: Organized Cyber
Threat Counter-Exploitation. [39] The information that the deception technology
under evaluation is able to retrieve will be used to fill the observables table; seven
observables can be evaluated on a scale from 1 to 10 danger level, being 1 very low
danger and 10 very threatening.

Attack origination points 1-10
Victim involved in the attack 1-10
Risk tolerance 1-10
Timeliness 1-10
Skills and methods 1-10
Actions 1-10
Objectives 1-10
Resources N/A
Knowledge source N/A

Table 3.1: APT’s observables table. (source:[39])

3.2.1 Attack origination points

The "attack origination points" observable allows to define if the network is subject
to a random attack or it is specifically tailored for the victim’s system. Below it is
provided a table which categorizes the seriousness of the attack:

33

3 – Methodology

1 Accidental opening of an infected file
2 Digital device infection
3 Random client-side exploit against a browser
4 Exploit via a social networking site
5 Custom server-side exploit kit (professional)
6 Custom tailored client-side exploit against a browser
7 Insider implemented infection
8 Custom-tailored attachments with embedded infectors
9 tailored spear phishing (horizontal and vertical)
10 direct-tailored whaling e-mail

Table 3.2: Evaluation table for attacking origination points. (source:[39])

The attacks caused by casual or "general-purpose" infection are considered low-
level threats since no peculiarities regarding the enterprise are exploited to conduct
the attack; are considered medium-level threats the ones involving professionals
attackers which have the purpose to infect as many networks as possible in order to
gain some sensitive information which could lead to economic advantage; the high-
level threats are the threats involving specifically tailored attacks such whaling, in
which are targeted the top-executives of the organization.

3.2.2 Victim involved in the attack
This observable aims at gaining knowledge about the goal of the intruder by ana-
lyzing which component within the enterprise was the victim of the attack:

1 The system of a low-level employee
2 The system of a low-level manager
3 The system of a network administrator
4 The forward-facing systems (DMZ, web-application servers)
5 The system of an administrator’s assistant (exposed to sensitive information)
6 The DNS servers of the organization
7 The mail servers of the organization
8 The primary file or database servers of the organization
9 Security team’s systems
10 The systems of core stakeholders or organizational leadership

Table 3.3: Evaluation table for Victims involved in the attack. (source:[39])

3.2.3 Risk tolerance
Risk tolerance observable refers to the effort that the attacker has put into not
getting caught. This observable allows to understand if the attacker has the will
to remain inside the victim’s network ans therefore if the organization is facing an
Advanced Persistent Threat or not:

34

3.2 – Observables

1 No logs were altered
2 Login/access logs were altered
3 Connection logs and times were altered
4 Entire systems logs were wiped
5 Entire system logs were corrupted
6 Operating system security services were disabled
7 Specific security services were disabled
8 Specific applications were corrupted
9 Operating system was corrupted
10 Entire system was corrupted or disabled

Table 3.4: Risk tolerance evaluation table. (source:[39])

3.2.4 Timeliness

Timing analysis allows to comprehend the depth of information retrieved by in-
truders regarding the information: if the attack was conducted in a brief amount of
time, hitting specific sensitive components of the enterprise may indicate an high
knowledge by attackers of the internal structure of the organization; another ele-
ment that is worth considering is at which time of the day the attack is conducted
in order to presume the possible geographic location or habits of attackers.

1 Multiple systems accessed for long periods of time
2 Multiple systems accessed for long periods of time in specific locations
3 Multiple systems accessed for long periods of time involving specific applications
4 Few systems accessed for long periods of time involving specific information
5 Few systems accessed on regular basis targeting specific file types
6 Few systems accessed on regular basis within a specific internal team
7 Few systems accessed a few times within a specific internal team
8 A single system of a specific member of a team accessed on a regular basis briefly
9 A single system of a specific member of a team accessed a few times and briefly targeted
10 A single system was accessed directly and briefly

Table 3.5: Timeliness evaluation table. (source:[39])

3.2.5 Skills and methods

The Skills and methods observables is needed to evaluate the attacker’s compe-
tences. The aspects that have to be considered involve the tools used, the vul-
nerabilities of the organization, the exploitation technique, the attacking patterns,
the data transfer techniques and the logging alteration/deletion techniques; other
elements such keystroke analysis and behavioral profiling can be helpful in order to
get additional information (age, gender, culture) about the adversary.

35

3 – Methodology

1 Open source publicly available tools accessible using basic techniques
2 Open source publicly available tools accessible using some custom techniques
3 Open source publicly available tools accessible using completely custom techniques
4 Customized open source tools accessible using completely custom techniques
5 A combination of customized open source and commercial tools using custom techniques

6 A combination of customized open source and commercial tools
using professional techniques

7 customized and commercial tools using professional techniques and
observable patterns of previous intrusions

8 Completely customized tool suite with medium knowledge of operating system commands
tailored for the victim environment

9 Completely customized tool suite with deep knowledge of operating system commands
tailored for the victim environment

10 Customized tools never seen in previous attacks tailored for the victim environment

Table 3.6: Skills and methods evaluation table. (source:[39])

3.2.6 Actions

Actions observable aims at identify the systems that were compromised and how,
looking for a possible pattern to be identified along with the Skills and methods
observable and adding another layer of knowledge about the motives that led the
intruders to perform their actions.

1 Threat uses the system as training point without causing harm
2 Threat uses the system to store peer-to-peer files for torrent seeds on the system
3 Threat is a worm spreading itself on the system
4 Threat is a standard malware from a random infector site
5 Threat uses the system as part of a botnet
6 Threat uses the system as a part of a criminal network to steal information
7 Threat uses the system to coordinate attacks against external systems

8 Threat uses the system to coordinate attacks against internal and external systems
to gain advantageous position across the enterprise, partners, customers or third parties

9 Threat uses the system to coordinate attacks against internal and external systems
to gain specifical information within the enterprise

10 Threat uses the system to coordinate attacks against internal and external systems
to gain specifical information within the enterprise and to sell it to criminal groups

Table 3.7: Actions evaluation table. (source:[39])

3.2.7 Objectives

The Objectives observable is based on the analysis of the stolen/deleted data on
the defending enterprise.

36

3.3 – Attack Simulation

1 Seemingly curiosity
2 Targeting login information
3 Targeting organizational information (e-mails, logins)
4 Targeting organizational, partner and customer information
5 Targeting organizational user’s personally identifiable information (PII)
6 Targeting organizational user’s financial information
7 Targeting organizational financial information
8 Targeting organizational operational, financial and research information
9 Targeting specific high-profile organizational members’ information
10 Targeting specific high-priority classified information AND all of the above

Table 3.8: Objectives evaluation table. (source:[39])

3.2.8 Resources
This is one of the two observables which do not allow a quantitative measure.
Understanding the resources of the threat requires an orchestration view of the
previous observables in order to determinate if the attacker is at a low level on
the criminal food chain or it is a state state-sponsored cyber threat. The most
important features that need to be evaluated are: the skills and methods which
give an hint about the threat’s budget and may also allow to understand if the
attacker has been trained or is self-educated; the timeliness of the attack, which
can discriminate if the attack is performed during a spare-time or it follows typical
work-time schedule.

3.2.9 Knowledge source
As discussed in 3.1, the sources of information cover a very wide range, which makes
it difficult to understand from which source the information has been retrieved. The
most common sources of information are security sites, forums, hackers’ private
sites, social networks, search engines and many more.

3.3 Attack Simulation
In order to re-create a believable scenario in which the deception technologies have
to prove their worth, it will be used the Guardicore open-source Breach & Attack
platform, Infection Monkey.[40] The platform comprises two components: the mon-
key which executes the attacks, and the Infection Monkey Island,a Command and
Control Platform that allows to configure and monitor the attacks. This tool has
been chosen in order to create a post-breach attack which simulates typical Ad-
vanced Persistent Threats behavior as lateral movements; also, the choice of such
platform allows to create an attacking pattern exactly reproducible for all the de-
ception tools that will be tested. The machine from which the monkey is executed
scans for the IPs that were indicated in the configuration file, then attempts OS fin-
gerprinting and tries different exploits in order to take possess of the machines. The

37

3 – Methodology

Mitre ATT&CK Matrix [9] provides an overview of all the tactics and techniques
used by the attackers in order to achieve the goals after the exploitation stage. The
infection Monkey integrates some of the attacks enhunciated in the Mitre matrix
in order to re-create a believable APT behavior.

Figure 3.2: Mitre Att&ck Matrix implemented in Infection Monkey. (source:[3])

The implementation of such matrix allows to collect sensitive data from local
systems, to establish a Command and Control communication through proxies over
non-standard ports to bypass firewalls, to delete footprints of the ongoing attack,
to discover the systems within the network, to exploit the C2 communication to
execute services and to exfiltrate data, and to perform lateral movements using
valid user credentials or by the Pass the Hash method, which exploits the hashed
password stored locally to gain access without possessing the clear-text password.

3.3.1 Exploiting user credentials

The reconnaissance and intrusion stages will be simulated from within the victim’s
network, supposing that the attacker is already inside the system (it could be the
case of insider threats) and has obtained a set of possible user credentials that
can be used to perform lateral movements. Infection Monkey allows to make use of
stolen user credentials through SSH, or SMB and WMI if the victim is using a Microsoft
system with specific unpatched vulnerabilities.

38

3.3 – Attack Simulation

Figure 3.3: Infection Monkey’s configuration page for the exploitation through basic
credentials.

3.3.2 Backdoor instalment

The next step in the kill chain that will be executed if the attack has been able to
have access to the machine is the backdoor instalment: if in the network are present
Windows machines which are vulnerable to the MS08_067 Conficker exploit (Win-
dows 2000 or Windows XP SP2) present in the Infection Monkey database, it will
allow to install a backdoor setting the backdoor credentials in the monkey config-
uration page and to dump a monkey inside the machine to continue the intrusion
through lateral movements exploiting the protocols described in 3.3.1.

39

3 – Methodology

Figure 3.4: Infection Monkey’s settings for the MS08_067 Exploit.

In the case of a Linux machine, the monkey will run an executable which will
establish a connection with a remote server and will be now able to send commands
to be executed from the victim machine and to receive the corresponding output.
The code of the custom backdoor has been written in Python and is reported in
6.1.

3.3.3 Install utilities
The infection monkey allows the simulation of the download and execution processes
of a generic file by exploiting the RDP protocol, after attempting a brute-force login
with the provided credentials in the configuration stage of the simulation.

3.3.4 Data Exfiltration
The data exfiltration stage is implemented through the backdoor communication
between the infected machine and the Command and Control machine.

40

Chapter 4

Test and Results.

4.1 Cowrie Honeypot.
4.1.1 Description.
The first test is performed on an opensource medium-high interaction honeypot
named Cowrie, which will allow to better comprehend the differences and the pos-
sible enhancements brought by the distributed deception platforms with respect
to classic honeypots. Cowrie [41] is a SSH/Telnet honeypot, capable to collect
logs about brute-force login attempts and the entire shell actions performed by the
attackers. It provides a false filesystem that allows to create bait files to which
the attacker could be interested in, and has inspection capabilities about the files
downloaded through the wget utility. Cowrie is very simple to implement since
it needs only a script to be executed, and it has been confirmed compatible both
with Linux and Windows distributions; for the purposes of this thesis, it has been
executed over a Ubuntu 16.04 distribution.
Cowrie is configured by default to accept any login credentials that are provided
by the attackers, presenting them a false shell to which they can interact with.

Figure 4.1: Interaction with Cowrie honeypot. The execution of ifconfig command
leads to a false output.

41

4 – Test and Results.

Since this configuration could lead to an easy recognition of the honeypot, the
configuration file is changed in order to allow access only to the root:Admin123
credentials.

4.1.2 Results and comments.

The test is executed in a local network environment, composed by 15 production
devices and the Cowrie honeypot. The attack is performed by Infection monkey as
described in section 3.3. The actions of the Infection Monkey platform are resumed
in the following graph:

Figure 4.2: Infection monkey interactions within the network.

The Breach & Attack platform was configured as to search for sensitive data
after that a system was exploited, and then to display its content:

42

4.1 – Cowrie Honeypot.

Figure 4.3: Post breach actions setup in Infection Monkey.

The attacker behavior has been properly captured by the Cowrie honeypot which
shows that, as the Infection Monkey attempts the execution of the find command,
it is denied by the honeypot since the attacker has not access to the real server’s
shell.

Figure 4.4: Keylog of the commands executed by the attacker, displayed through
the Playlog functionality.

Cowrie implements Playlog as log visualizer, which can be a very effective tool
to perform forensics analysis about the attackers, since the collected keystroke logs
are displayed in the same exact way as they were prompted, which allows to observe
interesting features as deletions, typing speed etc.
With the information collected by the Cowrie honeypot is now filled the observ-
ables’ table in order to evaluate the knowledge gained by the defender through the
deployed tool, compared with the real observables of the APT, known in advance:

43

4 – Test and Results.

Observables Real Score Perceived Score
Attack origination points 7 4 - 7

Victims involved in the attack 8 4
Risk tolerance 4 1
Timeliness 7 7

Skills and methods 4 1
Actions 6 6

Objectives 3 3
Resources medium low

Knowledge source Undefined Unknown

The honeypot allows to understand that the attacker is acting within the inter-
nal network, which indicates an exploitation of the machine or that the malicious
actions are perfomed by an insider; since the attack is programmed to replicate
itself once a machine is exploited, Cowrie’s logs about exploitation attempts sug-
gest that the attack was not targeted against a single machine, and the keylog of
the attacker’s commands indicate that the attacker targeted sensitive information,
but the Cowrie honeypot is not able to determine that the full network is under
attack; since the log deletion is not performed through the SSH channel by the
Infection Monkey, the honeypot is not able to individuate this attacking feature;
the Timeliness observable is marked as correct since the logs collect the timestamp
of the malicious activities; about the skills and methods, the honeypot is only able
to see the SSH connection request, which does not indicate advanced skills in the
attacking attempt; the keylogging function allows to correctly individuate the at-
tacker’s intentions, as well as the Objectives observable.

44

4.2 – Modern Honey Network.

4.2 Modern Honey Network.
4.2.1 Description.
The next test involves an hybrid architecture in-between honeypots and distributed
deception platforms: indeed, Modern Honey Network (MHN) [42] is an opensource
project which allows to create a centralized server that handles honeypots and col-
lects the generated alerts, but the deployment of the honeypots has to be performed
manually in already existing machines, since the MHN console does not have virtu-
alization capabilities to automatically deploy virtual decoys; moreover, the complete
logs are not collected by the server, but must be checked inside the involved honey-
pot. The installation of the MHN console is compatible with Ubuntu and CentOS
servers only, same goes for the supported honeypots, with the additional support
on Raspberry-Pi for few honeypots.

Figure 4.5: MHN supported honeypots.

• Conpot [43] is a low-interaction honeypot to be employed in industrial systems
to simulate ICS/SCADA systems;

• Drupot honeypot [44] emulates a Drupal platform, used for the creation and
distribution of dynamic web-sites;

• MagenPot [45] stands for Magento Honeypot, a fake web Content Management
System for e-commerce;

• Wordpot [46] allows detection of fingerprinting attempts over the server run-
ning Wordpress;

• Shockpot [47] allows the detection of Shellshock exploitation attempts;

• p0f [48] performs passive fingerprinting on the probing machine;

• Suricata [49] includes an Intrusion Detection System, Intrusion Prevention
System, Network Security Monitoring and pcap files processing;

45

4 – Test and Results.

• Glastopf [50] is a web application honeypot which implements vulnerability
type emulation, allowing the analysis of unknown attacks;

• ElasticHoney [51] has the purpose to discover Remote Code Execution ex-
ploitation attempts over the Elastic Search service;

• Amun [52] is a low-interaction honeypot with enhanced log collection capabil-
ities;

• Snort [53] is an Network Intrusion Detection System;

• Cowrie is a SSH/telnet medium-interaction honeypot;

• Dionaea [54] is a honeypot for malwares, which purpose is to block and analyse
the captured malware;

• Shockpot Sinkhole [55] implements the sinkhole feature to Shockpot.

Once the selection is made, Modern Honey Network allows the customization of
the honeypot’s script and provides the command to be executed in the machine
that has to be turned into a honeypot.

Figure 4.6: MHN honeypot’s customization interface.

46

4.2 – Modern Honey Network.

4.2.2 Configuration.

In order to test the functionalities of Modern Honey Network, 4 different honeypots
types have been deployed: the first one is theCowrie SSH/Telnet honeypot already
discussed in the previous section; a second server runs P0f, a passive fingerprinting
tool which monitors the incoming traffic of the selected network interface of the
server; the third server runs Amun, a low-interaction python honeypot hosting
several services and providing wide log collection; into the last server is implemented
Snort, to implement control at network level. Once the deployment scripts are
executed on the selected servers, the honeypots are bound to the MHN monitoring
console:

Figure 4.7: Deployed honeypots through the MHN console.

4.2.3 Results and comments.

The attack is performed through Infection Monkey in order to emulate Advanced
persistent Threat’s stages, as explained in section 3.3. The map of the attacker’s
interaction within the victim’s network is reported below:

47

4 – Test and Results.

Figure 4.8: Infection Monkey interaction map.

The map shows that the network has been scanned multiple times, since the
Infection Monkey was configured to replicate the actions within the exploited ma-
chines (the windows servers, exploited through the SMB service). The breach and
attack platform discovered the following services within the network:

48

4.2 – Modern Honey Network.

Figure 4.9: Services discovered by Infection Monkey.

Additionally, since the SSH exploit of the Infection Monkey did not worked prop-
erly, the bruteforce login attempts and the post-breach actions have been simulated
manually from the infected machine toward the deployed honeypots through the
Hydra [56] opensource tool.
The Modern Honey Network console displays the overall statistics collected by the
deployed honeypots through the main dashboard:

49

4 – Test and Results.

Figure 4.10: Modern Honey Network main dashboard.

The dashboard displays the IP addresses of the malicious attempts, which belong
to the Infection Monkey machine and to the exploited Windows servers which
replicate the attack; the attacked ports displayed are the open ports of the deployed
honeypots, the port 22 hosts the SSH service, the ports 80, 8080 and 443 host a
web-application and the port 3306 hosts mySQL; then the dashboard displays that
all the honeypots have been triggered, and reports some signatures which suggest
which kind of actions have been performed by the intruders. The logs collected by
the MHN interface display which honeypot collected the data, the timestamp, the
IP interacting with the honeypot, the protocol and the triggered port:

50

4.2 – Modern Honey Network.

Figure 4.11: Log display from the MHN monitoring interface.

The Charts section displays the most used combinations of username and pass-
word to login into the Cowrie honeypot and the IP addresses which attempted the
attack:

Figure 4.12: IP addresses chart. Figure 4.13: Username-password chart.

P0f allows to perform passive fingerprinting of the attacking machines, discover-
ing that the machine from which the attack began is a Linux machine, which then
propagated the attacks to the Windows 2008 servers of the network:

Figure 4.14: P0f’s OS fingerprinting.

Snort logs traced the ICMP, UDP and TCP traffic generated by the attacking
machines: in particular, the TCP connection is established in the SSH exploitation
event, while ICMP has been used to discover hosts in the network and UDP to
perform port scan:

51

4 – Test and Results.

Figure 4.15: 3-Way Handshake of the SSH connection, capture from Snort.

Logs collected from Amun honeypot are able to recognise the port scanning and
detect the attempt to exploit the Web-Server through port 8080, without being
able to categorize this kind of attack:

Figure 4.16: Amun log events.

Cowrie’s detection capabilities have already been discussed in section 4.1, there-
fore with the aforementioned logs the observables’ table can now be filled, compar-
ing the results with the real characteristics of the APT:

Observables Real Score Perceived Score
Attack origination points 7 4 - 7

Victims involved in the attack 8 8
Risk tolerance 4 1
Timeliness 7 7

Skills and methods 4 4
Actions 6 6

Objectives 3 3
Resources medium medium

Knowledge source Undefined Unknown

The Modern Honey Network observable table inherits the correct scores obtained

52

4.2 – Modern Honey Network.

in the Cowrie analysis of section 4.1, and enhances the score of the Victims involved
in the attack, since Snort and Amun detect ICMP and UDP traffic which aims at
gaining information on the full network, while Cowrie had limited sight about these
events; the trace captured by Amun honeypot determines also an uncategorized
attacking pattern, which could possibly indicate more advanced techniques adopted
by the attacker, while the Cowrie honeypot only detected SSH attempts.

53

4 – Test and Results.

4.3 Dejavu Deception Framework

4.3.1 Description

The first distributed deception platform to be tested is the Dejavu Deception Frame-
work, an open-source project developed by Bhadresh Patel and Harish Ramadoss
[57]. The architecture is built upon the Management interface and the Decoy in-
terface: the management interface is a centralized console which allows to handle
the distribution of the decoys, honeytokens and controls the alerts triggered in case
of suspicious activities against the distributed components; the decoy interface is
a virtual sensor which communicates directly with the deployed decoys, forwards
the notifications to the management interface allowing it to be detached from the
monitored network.

Figure 4.17: Dejavu Architecture. (source [57]

The Management console allows to create new client and server decoys, but does
not allow to specify the distribution of such decoys; it is possible to indicate the
services that the server decoys must provide and it is possible to create fake user
credentials associated to existing domains thorugh a shell script to be run inside
the domain controller; finally, the Log Management interface provides a graphical
view and raw logs of the incidents that were detected by the sensor.

54

4.3 – Dejavu Deception Framework

Figure 4.18: Server configuration. Figure 4.19: Honeytoken configuration.

4.3.2 Configuration.
In order to test the performances of the Dejavu framework, the decoys are deployed
respecting the 1:2 ratio with respect to the number of clients and servers present in-
side the network (i.e. there is one decoy for every 2 real systems). The server decoys
are configured to have the MySQL, FTP, SSH and Apache Web Server services.

Figure 4.20: Setup choice for server decoys.

4.3.3 Results and comments.
Are now reported and commented the results of the attack performed by the In-
fection Monkey platform and the information collected by the Dejavu deception
platform.
The attack starts from the Infection Monkey sensor located inside the network,
and after attempting the procedures described in section 3.3, the overview of the
network from the attacker point of view is the following:

55

4 – Test and Results.

Figure 4.21: Infection Monkey interaction map.

The report of the attack shows that the machines present on the network and
their services were all discovered; the backdoor instalment was successfuly per-
formed and communication with the Command and Control server has been estab-
lished; two machines have been exploited through SMB service by brute-force of
the credentials, logs related to Infection Monkey’s actions have been deleted and
that Mimikatz was successfully installed and used inside the exploited systems.

56

4.3 – Dejavu Deception Framework

Figure 4.22: Services discovered by Infection Monkey.

57

4 – Test and Results.

Figure 4.23: Backdoor instalment in the exploited machines.

Figure 4.24: Deletion of the logs involving attacker’s actions.

Figure 4.25: Utilities instalment inside the victim’s machines.

Dejavu has been able to collect 17 logs of events related to the interaction of
the Infection Monkey with the decoys deployed inside the network, and the overall
malicious activities are resumed in the following graph.

58

4.3 – Dejavu Deception Framework

Figure 4.26: Attacker’s actions from the Dejavu platform’s point of view.

The collected logs are now used to fill the Observables table in order to under-
stand the depth of information obtained by the deception platform.

Observables Real Score Perceived Score
Attack origination points 7 4 - 7

Victims involved in the attack 8 4
(Generic servers)

Risk tolerance 4 1
Timeliness 7 7

Skills and methods 4 1
Actions 6 3

Objectives 3 2
Resources medium low

Knowledge source Undefined Unknown

Since the attack starts within the network and the actions involved cannot be
mislead with accidental causes, the "attack origination points" observable has to be
considered of medium risk. The collected logs indicate that the attacker exploited
general-purpose Windows servers to continue the attack within the network, which
indicate a medium risk in the "victims involved in the attack" observable, but
since there is little possibility of customization of the Dejavu servers, it is not
possible to determine exactly the real target of attackers. The "risk tolerance"
observable indicates the effort made by the attacker to remain undetected inside
the network depending on the corruption of the logs in the exploited machines; since
the attack was programmed to delete the logs involved in the attack, the seriousness
of this observable is categorized as medium, but from Dejavu’s perspective, no log
corruption has been detected. About the "timeliness" observable, the logs show that
the attack is conducted in a brief amount of time and it involves multiple Windows
systems, which could suggest that the attacker was interested in some specific

59

4 – Test and Results.

information regarding the exploited machines. The logs show that the skills and
methods engaged in the attack are not tailored for the victim’s environment, which
leads to a low score on this observable: the Dejavu logs reported below show that
the attacker only performed a TCP and an HTTP scan, tried to exploit the SMB
service and attempted brute force login through SSH protocol.

Figure 4.27: TCP open ports discovery.

Figure 4.28: HTTP ports discovery.

Figure 4.29: SSH login attempts.

The repetitive pattern of the attack against the decoys (once exploited, the
internal machines will attempt to perform the same actions of the source of the
attack) could suggest that the attack is a worm that spreads itself throughout
the network, but the seriousness of the attack strongly depends on the actions
performed on the compromised systems, which are out of the sight of the deception

60

4.3 – Dejavu Deception Framework

platform (e.g. there is no possibility for Dejavu to detect the backdoor instalment
since the deployed servers are low-interaction decoys which allow no access inside the
machines). As for the previous observables, also the "objectives" show a gap between
the actions performed inside the exploited systems and the logs collected by the
Dejavu platform: the logs show that the attack targeted and exploited the servers
inside the network, but in order to obtain real knowledge about the seriousness of
the attack, the real exploited servers need to be investigated. The "resources" and
"knowledge source" fields are filled taking into account all the considerations made
for the previous observables.
In conclusion, it can be stated that the Dejavu Framework can be a useful tool to
distribute low and medium-interaction decoys across the network, but on the other
hand it presents some limits: it is not possible to customize the decoy images which
could lead to evident incongruities between the production environment and the
fake decoys; the absence of high interaction decoys leads to a superficial knowledge
about the attacker’s actions that could lead to misleading conclusions.

61

4 – Test and Results.

4.4 Commercial solutions.
This thesis has followed the Proof of Concept conducted by Intesa Sanpaolo of two
commercial Distrbuted Deception Platforms: here are reported the main features
of the platforms and the overall evaluation of the two solutions.

4.4.1 Commercial Deception Platform #1
Characteristics

The first platform that has been tested presents a similar architecture with respect
to Dejavu Deception Framework described in section 4.3, since it is composed by a
centralized console connected to one or many sensors deployed in the subnets which
need to be covered by the deception strategy. The platform claims to provide the
following protections: Ransomware detection through the use of bait files which,
if encrypted, generate an alarm to the console; data breach discovery through the
deployment of honeytoken credentials placed in the DMZ of the enterprise which,
if used, determine the presence of intruders; internal network intrusion, by the
deployment of client and server honeypots alongside with honeytokens; data ex-
filtration, through the use of fake sensitive data which if manipulated triggers an
alert to the central console. The server decoys can be deployed as low-interaction,
medium-interaction or high-interaction honeypots: low-interaction honeypots are
triggered only by ICMP traffic, medium-interaction honeypots emulate several ser-
vices but without allowing access to the attackers, high-interaction honeypots allow
remote authentication and access in order to monitor and to gain knowledge about
attacker’s actions. The decoys that can be deployed comprise not only client and
server machines, but also IoT devices, routers, printers and several other network
components; the platforms provides also a recognition feature of the real devices
in the network and suggests the choice of deceptive elements that may fit better
to the analysed environment, and allows to upload custom images to be deployed
within the network in order to create a believable and fitting deception scenario.
This deception solution provides an uploading section which can be useful not only
to customize the decoys and the honeytokens, but also to upload network configu-
rations such as IP whitelists, IP ranges of the deployed decoys, hostname mapping
etc.
The monitoring interface classifies the seriousness of the incident and individuates
to which stage of the attacking chain does it belong: recon, authentication, lat-
eral movement, data access, exfiltration, high interaction; moreover, incidents are
grouped depending on the type of activity and event correlation.

Evaluation

Unlike the previously tested platforms, for both the commercial solutions it was
not possible to perform the simulation of the Advanced Persistent Threat by the
use of Infection Monkey breach and attack platform, but the actions that have been
performed are the same as the ones described in section 3.3.
A first scan of the decoys is executed with Nmap: the platform categorizes the

62

4.4 – Commercial solutions.

scan as Recon attempt, and indicates the severity of the attack as Medium since
this action was performed in other decoys in the same time interval. The platform
generates two kind of logs from this event, separating the ICMP frames used to
check if the host is up from the TCP packets generated by Nmap to scan the ports
of the decoys; here is reported the capture of the event performed with Wireshark.

Figure 4.30: Capture of the scan performed with Nmap.

Through the Nmap scan the attacker has discovered that one server hosts the
SSH service (port 22), a second server hosts Samba (through port 445) and a third
server hosts a web-configuration page of an IoT camera (port 80). The servers
hosting SSH and the web-page are low-interaction decoys which do not allow ac-
cess, while the server providing the Samba service is an high-interaction honeypot
which monitors the commands and actions performed by the intruders once they
managed to gain access. The low-interaction honeypot’s detection capabilities have
been tested by attempting to login into the SSH decoy and with simple HTTP re-
quests to IoT camera decoy: in both cases, the severity of the alert is reported as
Medium, and the monitoring interface displays which credentials have been used.
The SSH and the web-application honeypots differ in the categorization of the in-
truder’s attempts: the web-application categorizes the opening of the IoT camera
web page as Recon activity, the SSH server indicates the login efforts as Compro-
mised credential and Lateral movement risk.

Figure 4.31: Capture of the HTTP interaction with IoT Camera webpage.

The SSH communication has been captured with Wireshark but the attempted
credentials are displayed only in the monitoring interface of the platform since the

63

4 – Test and Results.

established communication between the attacker and the decoy is ciphered and the
login credentials are then sent by the decoy to the main platform.

Figure 4.32: Capture of the SSH communication between the attacker and the
decoy.

Then the Samba file sharing decoy server is tested: through the correct creden-
tials the attacker is able to navigate inside the server through GUI, all the visited
folders and files are registered by the decoy and displayed by the monitoring inter-
face, alongside with the exploited credentials to obtain access inside the server.
The figure below shows the TCP three-way handshake between the attacker and
the decoy, then the attacker sends the request to access to the Samba service, but
fails in the authentication phase:

Figure 4.33: Capture of the unsuccessful login attempt into SMB service.

When the correct credentials are provided (sede\it-usr in the capture below),
the attacker is able to access successfuly to SMB:

Figure 4.34: Capture of the successful SMB access.

With the provided captures it is possible to fill the observables’ table of the

64

4.4 – Commercial solutions.

attack described in section 3.3.

Observables Real Score Perceived Score
Attack origination points 7 4 - 7

Victims involved in the attack 8 8
Risk tolerance 4 4
Timeliness 7 7

Skills and methods 4 4
Actions 6 6

Objectives 3 3 - 4
Resources medium medium

Knowledge source Undefined Unknown

As for the previous analysed cases, also this deception platform cannot clearly
indicate the attacking origination point; since the platform allows the deployment
of high interaction honeypots, it is possible to see that the attacker is seeking
for sensitive data within the internal network, which leads to a correct evaluation
of the second observable, but it needs to be stated that, in order to correctly
individuate this attack characteristic, the decoys and the breadcrumbs need to be
deployed in the internal network, since if they are deployed within the DMZ this
attacking feature will not be recognized; differently from the previous cases, this
platform is able to recognize that the attacker has performed log wiping, since
the platform allows to deploy high-interaction decoys, capable of recording all the
data manipulation performed by the attackers; the timeliness is correctly evaluated
by the log-collection capabilities of the platform; the platform is able to recognize
all the methods used in the attack since the actions have been monitored by the
exploited decoys; considering the objectives observable, the correct analysis of the
attack strongly depends on the bait files that are deployed in the design stage of the
deception strategy: indeed this functionality needs to be carefully managed, since
if the attackers have the goal to collect only some specific information they may be
attracted by the luring files and therefore to seek for more sensitive information.

65

4 – Test and Results.

4.4.2 Commercial Deception Platform #2
Characteristics

The second commercial distributed deception platform tested in Intesa Sanpaolo
environment presents a simpler infrastructure, since the platform is composed only
by a physical or a virtual appliance, which corresponds to the central management
interface; from the central console, it is possible to distribute the decoys over dif-
ferent subnets, and it is possible to distribute the honeytokens by running a script
in the device of interest. The central console provides also an Artificial Intelligence
functionality which allows to automate incident responses of the deception plat-
form. The main use-cases for which the platform holds his value are: to provide
static deception by deploying decoys and breadcrumbs all over the network; to
provide a useful tool to the Security Operation Centers in order to analyse in
deep ongoing suspicious activities; to allow an automate incident response tech-
nology, simple to manage in complex environments.
As for the first commercial platform tested above, also this one supports the deploy-
ment of Linux and Windows machines, including the possibility to upload custom
images. The honeytokens are the mean to lead the attackers toward the decoys, and
are divided in endpoint honeytokens and network honeytokens: example of endpoint
honeytokens are credentials, browser cookies, SSH connection details, OpenVPN
configuration files; network honeytokens are credentials which are periodically sent
across the network channels, or NTLM traffic to tempt the attacker to perform
the Pass-The-Hash attack. The main services supported by the decoys are: Git,
MySQL, OpenVPN, SSH, Web-applications, FTP, RDP for Windows decoys, Intel
AMT interface. The central interface allows to decide if the creation of decoys
should be customized or if the security analyst wants to deploy the most common
decoy architectures, such as Linux endpoints or servers running SSH and SMB, or
VPN servers running VPN and SSH services, or internal website servers running
web-application, SSH and MySQL.
Differently from the previously tested platforms, this one does not generate an
alarm for every interaction between the attacker and the decoy: minor events such
as port scans are documented but do not generate an alert. The events that cause
an alert are: port access, indicating that a decoy has been probed; interaction
events such as login attempts; code execution, which indicates that the attacker
has executed a program already present in the decoy machine; unsigned code
execution, indicating that the attacker is running a program that was not present
into the probed decoy; unrecognized machine, when the decoys perform network
scans and individuate machines which do not belong to the legitimate environment.

Evaluation

The first server under test is the one hosting the SSH and SMB services, to which
two honeytoken credentials are bound, one for each service. Once the SSH request is
performed and the correct honeytoken credentials are used, the decoy shows to the
attackers that they have been able to access to the system; some simple commands
like ipconfig are executed, and differently from the Cowrie honeypot anaylsed in

66

4.4 – Commercial solutions.

section 4.1, this platform displays the real output of the command:

Figure 4.35: Execution of ipconfig command through SSH: the decoy displays the
actual network configuration.

The central console is able to display every interaction between the attacker and
the decoy server, showing the commands executed by the attacker, including the
log wiping attempt, and categorizing them as "code execution", while the opening
and closing of the SSH communication are categorized as "Port access" and "SSH
interaction". Then the SMB service is accessed through the honeytoken credentials,
generating the "Share access" alert on the management console.

Figure 4.36: SMB decoy share folder access.

As for the SSH service, all the actions performed in the shared folder have been
tracked by the main console. The last decoy that has been tested is the web-server
application, a low-interaction honeypot (no possibility to bind login credentials to
obtain access to the database) and it has been deployed without the Secure Socket
Layer option; during the test, the page has been attempted to be reached with the
ssl option, but destination resulted unreachable; reaching it through port 80, the
site is accessible:

67

4 – Test and Results.

Figure 4.37: Capture of the https and http attempts to establish a TCP connection
with the web-site.

After that the connection was correctly established, to the attacker is prompted
the PhpMyAdmin login page, without the possibility to gain access:

Figure 4.38: PhpMyAdmin login interface.

From the platform management monitoring interface, the attempt to reach the
web-site through port 443 is categorized as "Port access" alert, when the attacker
interacts with the web interface through port 80 the alert is of "HTTP request"
type. The last action that is performed is the instalment of the backdoor described
in section 6.1: this action was categorized by the deception platform as "code
execution".
With the data collected above is now possible to fill and comment the Observables
table, following the parameters described in section 3.2:

68

4.4 – Commercial solutions.

Observables Real Score Perceived Score
Attack origination points 7 7

Victims involved in the attack 8 8
Risk tolerance 4 4
Timeliness 7 7

Skills and methods 4 4
Actions 6 6

Objectives 3 3
Resources medium medium

Knowledge source Undefined Unknown

The platform is the first one that implements custom forensic tools to be exe-
cuted in the attacking machine in order to understand the origin of the attack; the
final target of the attackers is evident by the actions performed inside the decoys,
since they were searching for sensitive data within the network; as stated above, the
SSH decoy was able to intercept the log wiping attempt, allowing the correct score
about the third observable; the Timeliness observable is evaluated correctly since
the attack is meant to be executed in a narrow time window, but in general the
accuracy of this observable strongly depends on the frequency of interaction by the
attacker with the decoys; the Skills and methods observable is properly filled by the
high-interaction capabilities of the decoys, as well as the Actions observable; about
the objectives observable, since no stand-alone bait data was deployed, the attack-
ers were not mislead by additional (even if false) data, which lead to the pursuit of
the original goal without looking for other information about the system, allowing
the high interaction decoys to properly capture all the performed actions, including
the backdoor instalment; the resources exploited by the attackers are evaluated by
taking into account all the observables above.

69

70

Chapter 5

Conclusions

The scope of the testing section of this thesis was to evaluate if the emerging
Distributed Deception Platforms improve the detection of APT’s tools, tactics,
techniques and purposes with respect to the deployment of traditional deception
technologies. The results obtained in section 4 allow to make a comparison be-
tween the deployment of a single medium-interaction honeypot, a central console
which handles the deployment of already existing open-source honeypots, an open
source and two commercial distributed deception platforms. The filled observables’
tables suggest that the implementation of a medium-interaction honeypot leads to
better results than the open-source distributed deception platform Dejavu, due to
the low customization of the honeypots implemented by the distributed platform;
the Modern Honey Network implements no virtualization capabilities but achieves
better results than the Dejavu platform since it offers a reasonable possibility of
choosing the proper honeypots to implement in the network, but on the other hand
it cannot be ignored the higher difficulty in the analysis of the logs collected by
the deployed decoys; the commercial solutions led to the best results in terms of
depth of information collected, ease of management and deployment of the decoys
and customization. In particular, the first solution allowed an easier deployment
of a large number of decoys (useful in large networks), but the deployment of the
breadcrumbs, bait files and honeytokens has to be performed manually on every
machine, which could lead to scarce or bad usage of these features; on the other
hand, the commercial platform #2 provided an easy way to link the breadcrumbs
and the honeytokens to the desired decoys, but the creation of new decoys requires
more time than the commercial platform #1, which could become significantly
challenging in the deployment over large networks.
In the evaluation of distributed deception platforms must be considered that, in
order to obtain comparable results, this research has been conducted with a re-
peatable attacking pattern that tried to mimic the characteristics of an Advanced
Persistent Threat, but in the real scenario DDPs could represent an even more effec-
tive solution against attackers; on the other hand, they still require high carefulness
in the designing phases of the deception strategy, since a wrong implementation
could bring vulnerable elements inside the network easily exploitable by attackers.
Focusing on the management side, it is understandable why the open-source decep-
tion solutions are rarely adopted in enterprise environments, since companies look

71

5 – Conclusions

for "plug-and-play" products, easy to handle and with technical support in case
of faults; instead open-source solutions were complicated to deploy, often due to
projects not updated, and even the log analysis was much easier in the distributed
deception platform implementing a monitoring interface.
As explained above, this thesis’ focus is limited on understanding the "research"
value of the distributed deception paradigm, which is meant to be used in produc-
tion environments; in order to take a step further on the comprehension of the real
value of distributed deception platforms, it is suggested a deeper analysis performed
by the employment of red teams unaware about the presence of the deception solu-
tions, in contrast with blue teams which should take the proper counter-measures
by deception platforms to face ongoing attacks.

72

Chapter 6

Appendix A

6.1 Backdoor
The following code provides a simple TCP client-server communication in which
the server is handled by the attacker and the client is the victim’s machine. The
server is supposed to send commands to be executed in the client machine, and the
client machine has to send back the resulting outputs.

6.1.1 Client Architecture

#!/usr/bin/sh
""":"
exec python3 $0 ${1+"$@"}
"""

import socket
import subprocess
target_host="server address"
target_port=25332
client=socket.socket(socket.AF_INET,socket.SOCK_STREAM) #definition of

the TCP communication
client.setsockopt(socket.SOL_SOCKET,socket.SO_REUSEADDR,1) #allows to

immediately reuse the socket
client.connect((target_host,target_port))
while True:

command=client.recv(1024)
if command==’exit’:

client.close()
break

else:
proc=subprocess.Popen(command,shell=True,stdout=subprocess.PIPE,stderr=subprocess.PIPE,stdin=subprocess.PIPE)

#info of command
output=proc.stdout.read()+proc.stderr.read()
client.send(output)

73

6 – Appendix A

6.1.2 Server Architecture

#!/usr/bin/env python
import socket
server=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
bind_ip="server address"
bind_port=23442 #random
server.bind((bind_ip,bind_port))
server.listen(1) #server listens only one connection
while True:

conn, addr=server.accept()
print(’Connection with the client’,addr)
while True:

command=input("Shell>>")
if command==’exit’:

conn.send(’exit’)
conn.close()
break

else:
conn.send(command.encode())
output=conn.recv(1024)
print(output)

74

Bibliography

[1] Verizon. Verizon 2019 data breach report. https://enterprise.verizon.
com/resources/reports/2019-data-breach-investigations-report.
pdf, 2019.

[2] IBM Ponemon Institute. Cost of a data breach report. https://
databreachcalculator.mybluemix.net/, 2019.

[3] Frank J Stech, Kristin E Heckman, and Blake E Strom. Integrating cyber-d&d
into adversary modeling for active cyber defense. In Cyber deception, pages
1–22. Springer, 2016.

[4] Kristin E Heckman, Frank J Stech, Roshan K Thomas, Ben Schmoker, and
Alexander W Tsow. Cyber denial, deception and counter deception. Springer,
2015.

[5] US Information Operations. Military deception. https://jfsc.ndu.edu/
Portals/72/Documents/JC2IOS/Additional_Reading/1C3-JP_3-13-4_
MILDEC.pdf, 2012.

[6] Colin Tankard. Advanced persistent threats and how to monitor and deter
them. Network security, 2011(8):16–19, 2011.

[7] MANDIANT. M-trends: the advanced persistent threat. https://content.
fireeye.com/m-trends/rpt-m-trends-2010, 2010.

[8] Eric M Hutchins, Michael J Cloppert, and Rohan M Amin. Intelligence-driven
computer network defense informed by analysis of adversary campaigns and
intrusion kill chains. Leading Issues in Information Warfare & Security Re-
search, 1(1):80, 2011.

[9] Mitre att&ck enterprise matrix. https://attack.mitre.org/matrices/
enterprise/.

[10] Bill Cheswick. An evening with berferd in which a cracker is lured, endured,
and studied. In Proc. Winter USENIX Conference, San Francisco, pages 20–
24, 1992.

[11] Deception toolkit homepage. http://all.net/dtk/index.html.
[12] Know your enemy: Honeynets. http://old.honeynet.org/papers/

honeynet/index.html, 2005.
[13] Gene H Kim and Eugene H Spafford. Experiences with tripwire: Using in-

tegrity checkers for intrusion detection. 1994.
[14] Fabien Pouget, Marc Dacier, and Hervé Debar. White paper: honeypot,

honeynet, honeytoken: terminological issues. Rapport technique EURECOM,
1275, 2003.

75

https://enterprise.verizon.com/resources/reports/2019-data-breach-investigations-report.pdf
https://enterprise.verizon.com/resources/reports/2019-data-breach-investigations-report.pdf
https://enterprise.verizon.com/resources/reports/2019-data-breach-investigations-report.pdf
https://databreachcalculator.mybluemix.net/
https://databreachcalculator.mybluemix.net/
https://jfsc.ndu.edu/Portals/72/Documents/JC2IOS/Additional_Reading/1C3-JP_3-13-4_MILDEC.pdf
https://jfsc.ndu.edu/Portals/72/Documents/JC2IOS/Additional_Reading/1C3-JP_3-13-4_MILDEC.pdf
https://jfsc.ndu.edu/Portals/72/Documents/JC2IOS/Additional_Reading/1C3-JP_3-13-4_MILDEC.pdf
https://content.fireeye.com/m-trends/rpt-m-trends-2010
https://content.fireeye.com/m-trends/rpt-m-trends-2010
https://attack.mitre.org/matrices/enterprise/
https://attack.mitre.org/matrices/enterprise/
http://all.net/dtk/index.html
http://old.honeynet.org/papers/honeynet/index.html
http://old.honeynet.org/papers/honeynet/index.html

Bibliography

[15] Lance Spitzner. Honeypots: tracking hackers, volume 1. Addison-Wesley Read-
ing, 2003.

[16] Kostas G Anagnostakis, Stelios Sidiroglou, Periklis Akritidis, Konstantinos
Xinidis, Evangelos Markatos, and Angelos D Keromytis. Detecting targeted
attacks using shadow honeypots. 2005.

[17] Abdallah Ghourabi, Tarek Abbes, and Adel Bouhoula. Honeypot router for
routing protocols protection. In 2009 Fourth International Conference on Risks
and Security of Internet and Systems (CRiSIS 2009), pages 127–130. IEEE,
2009.

[18] John T Moy. OSPF: anatomy of an Internet routing protocol. Addison-Wesley
Professional, 1998.

[19] Anoosha Prathapani, Lakshmi Santhanam, and Dharma P Agrawal. Intelli-
gent honeypot agent for blackhole attack detection in wireless mesh networks.
In 2009 IEEE 6th International Conference on Mobile Adhoc and Sensor Sys-
tems, pages 753–758. IEEE, 2009.

[20] Lance Spitzner. Honeypots: Catching the insider threat. In 19th Annual
Computer Security Applications Conference, 2003. Proceedings., pages 170–
179. IEEE, 2003.

[21] Neal Krawetz. Anti-honeypot technology. IEEE Security & Privacy, 2(1):76–
79, 2004.

[22] Maximillian Dornseif, Thorsten Holz, and Christian N Klein. Nosebreak-
attacking honeynets. In Proceedings from the Fifth Annual IEEE SMC In-
formation Assurance Workshop, 2004., pages 123–129. IEEE, 2004.

[23] S Mukkamala, K Yendrapalli, R Basnet, MK Shankarapani, and AH Sung.
Detection of virtual environments and low interaction honeypots. In 2007
IEEE SMC Information Assurance and Security Workshop, pages 92–98. IEEE,
2007.

[24] Henry Campbell Black, Bryan A Garner, Becky R McDaniel, David W Schultz,
and West Publishing Company. Black’s law dictionary, volume 196. West
Group St. Paul, MN, 1999.

[25] Brian Scottberg, William Yurcik, and David Doss. Internet honeypots: Pro-
tection or entrapment? In IEEE 2002 International Symposium on Technology
and Society (ISTAS’02). Social Implications of Information and Communica-
tion Technology. Proceedings (Cat. No. 02CH37293), pages 387–391. IEEE,
2002.

[26] Bradley S Rubin and Donald Cheung. Computer security education and re-
search: handle with care. IEEE security & privacy, 4(6):56–59, 2006.

[27] Honeypot: tra agente provocatore e privacy. https://www.ilnuovodiritto.
it/2017/02/23/honeypot-tra-agente-provocatore-e-privacy/, 2017.

[28] Meharouech Sourour, Bouhoula Adel, and Abbes Tarek. Ensuring security
in depth based on heterogeneous network security technologies. International
Journal of Information Security, 8(4):233–246, 2009.

[29] Honeypot architecture vs. deception technology. https://go.
illusivenetworks.com/wp-honeypot-v.-deception-tech-lp?
hsCtaTracking=a01a63e9-c2a9-4a7a-a70c-13ef840a0358%
7C86bc81ae-decf-4352-bdf3-064696847616.

76

https://www.ilnuovodiritto.it/2017/02/23/honeypot-tra-agente-provocatore-e-privacy/
https://www.ilnuovodiritto.it/2017/02/23/honeypot-tra-agente-provocatore-e-privacy/
https://go.illusivenetworks.com/wp-honeypot-v.-deception-tech-lp?hsCtaTracking=a01a63e9-c2a9-4a7a-a70c-13ef840a0358%7C86bc81ae-decf-4352-bdf3-064696847616
https://go.illusivenetworks.com/wp-honeypot-v.-deception-tech-lp?hsCtaTracking=a01a63e9-c2a9-4a7a-a70c-13ef840a0358%7C86bc81ae-decf-4352-bdf3-064696847616
https://go.illusivenetworks.com/wp-honeypot-v.-deception-tech-lp?hsCtaTracking=a01a63e9-c2a9-4a7a-a70c-13ef840a0358%7C86bc81ae-decf-4352-bdf3-064696847616
https://go.illusivenetworks.com/wp-honeypot-v.-deception-tech-lp?hsCtaTracking=a01a63e9-c2a9-4a7a-a70c-13ef840a0358%7C86bc81ae-decf-4352-bdf3-064696847616

Bibliography

[30] Mohammed H Almeshekah and Eugene H Spafford. Cyber security deception.
In Cyber deception, pages 23–50. Springer, 2016.

[31] Kristin E Heckman, Frank J Stech, Ben S Schmoker, and Roshan K Thomas.
Denial and deception in cyber defense. Computer, 48(4):36–44, 2015.

[32] How a secret cyberwar program worked. https://archive.nytimes.
com/www.nytimes.com/interactive/2012/06/01/world/middleeast/
how-a-secret-cyberwar-program-worked.html.

[33] Introduction to cyber deception. https://www.ciosummits.com/Online_
Assets_Cymmetria_Whitepaper_-_Introduction_to_Cyber_Deception.
pdf.

[34] Brian M Bowen, Vasileios P Kemerlis, Pratap Prabhu, Angelos D Keromytis,
and Salvatore J Stolfo. Automating the injection of believable decoys to detect
snooping. In Proceedings of the third ACM conference on Wireless network
security, pages 81–86. ACM, 2010.

[35] Brian M Bowen, Shlomo Hershkop, Angelos D Keromytis, and Salvatore J
Stolfo. Baiting inside attackers using decoy documents. In International
Conference on Security and Privacy in Communication Systems, pages 51–70.
Springer, 2009.

[36] Ping Chen, Lieven Desmet, and Christophe Huygens. A study on advanced
persistent threats. In IFIP International Conference on Communications and
Multimedia Security, pages 63–72. Springer, 2014.

[37] Osint framework. https://osintframework.com/.
[38] Emilie Purvine, John R Johnson, and Chaomei Lo. A graph-based impact

metric for mitigating lateral movement cyber attacks. In Proceedings of the
2016 ACM Workshop on Automated Decision Making for Active Cyber Defense,
pages 45–52. ACM, 2016.

[39] Sean Bodmer, Max Kilger, Gregory Carpenter, and Jade Jones. Reverse de-
ception: organized cyber threat counter-exploitation. McGraw Hill Professional,
2012.

[40] Guardicore infection monkey breach & attack platform. https://github.
com/guardicore/monkey.

[41] Cowrie - ssh/telnet honeypot. https://github.com/cowrie/cowrie.
[42] Modern honey network. https://github.com/pwnlandia/mhn.
[43] Conpot - ics/scada honeypot. http://conpot.org/.
[44] Drupot - drupal honeypot. https://github.com/d1str0/drupot.
[45] Magenpot - magento honeypot. https://github.com/Creare/

magento-honeypot.
[46] Wordpot - a wordpress honeypot. https://github.com/gbrindisi/wordpot.
[47] Shockpot. https://github.com/pwnlandia/shockpot.
[48] P0f. http://lcamtuf.coredump.cx/p0f3/.
[49] Suricata - open source ids/ips/nsm engine. https://suricata-ids.org/.
[50] Glastopf - web application honeypot. https://github.com/mushorg/

glastopf.
[51] Elastichoney - a simple elasticsearch honeypot. https://github.com/

jordan-wright/elastichoney.
[52] Amun honeypot. https://github.com/zeroq/amun.

77

https://archive.nytimes.com/www.nytimes.com/interactive/2012/06/01/world/middleeast/how-a-secret-cyberwar-program-worked.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/06/01/world/middleeast/how-a-secret-cyberwar-program-worked.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/06/01/world/middleeast/how-a-secret-cyberwar-program-worked.html
https://www.ciosummits.com/Online_Assets_Cymmetria_Whitepaper_-_Introduction_to_Cyber_Deception.pdf
https://www.ciosummits.com/Online_Assets_Cymmetria_Whitepaper_-_Introduction_to_Cyber_Deception.pdf
https://www.ciosummits.com/Online_Assets_Cymmetria_Whitepaper_-_Introduction_to_Cyber_Deception.pdf
https://osintframework.com/
https://github.com/guardicore/monkey
https://github.com/guardicore/monkey
https://github.com/cowrie/cowrie
https://github.com/pwnlandia/mhn
http://conpot.org/
https://github.com/d1str0/drupot
https://github.com/Creare/magento-honeypot
https://github.com/Creare/magento-honeypot
https://github.com/gbrindisi/wordpot
https://github.com/pwnlandia/shockpot
http://lcamtuf.coredump.cx/p0f3/
https://suricata-ids.org/
https://github.com/mushorg/glastopf
https://github.com/mushorg/glastopf
https://github.com/jordan-wright/elastichoney
https://github.com/jordan-wright/elastichoney
https://github.com/zeroq/amun

Bibliography

[53] Snort nids. https://www.snort.org/.
[54] Dionaea - a malware honeypot. https://github.com/DinoTools/dionaea.
[55] Shockpot sinkhole. https://github.com/pwnlandia/shockpot/commit/

59f037e58785ab5973e1797f09efbbbdefcda602.
[56] thc-hydra. https://github.com/vanhauser-thc/thc-hydra.
[57] Dejavu : an opensource deception framework. https://github.com/

bhdresh/Dejavu.

78

https://www.snort.org/
https://github.com/DinoTools/dionaea
https://github.com/pwnlandia/shockpot/commit/59f037e58785ab5973e1797f09efbbbdefcda602
https://github.com/pwnlandia/shockpot/commit/59f037e58785ab5973e1797f09efbbbdefcda602
https://github.com/vanhauser-thc/thc-hydra
https://github.com/bhdresh/Dejavu
https://github.com/bhdresh/Dejavu

	Introduction
	What is Deception?
	Why Deception?
	Objectives and Contributions

	State of the art
	Cyber Deception Background
	Honeypots
	Honeynets
	Tripwire
	Introduction to Distributed Deception Platforms

	From Honeypots to Distributed Deception
	Honeypots review
	Classification
	Use-Cases
	Honeypots and insider threats
	Strengths and weaknesses
	Legal Issues

	Distributed Deception
	Beyond Honeypots
	The Deception paradigm
	Taxonomy
	Use-cases
	Distributed Deception Platforms

	Methodology
	Advanced Persistent Threats
	Observables
	Attack origination points
	Victim involved in the attack
	Risk tolerance
	Timeliness
	Skills and methods
	Actions
	Objectives
	Resources
	Knowledge source

	Attack Simulation
	Exploiting user credentials
	Backdoor instalment
	Install utilities
	Data Exfiltration

	Test and Results.
	Cowrie Honeypot.
	Description.
	Results and comments.

	Modern Honey Network.
	Description.
	Configuration.
	Results and comments.

	Dejavu Deception Framework
	Description
	Configuration.
	Results and comments.

	Commercial solutions.
	Commercial Deception Platform #1
	Characteristics
	Evaluation

	Commercial Deception Platform #2
	Characteristics
	Evaluation

	Conclusions
	Appendix A
	Backdoor
	Client Architecture
	Server Architecture

	Bibliography

