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ABSTRACT  

In the field of structural engineering, while calculating the deflection and curvature of 

reinforced concrete beams, normally only bending moment is taken into consideration, but the 

fact is that with the load increasing, shear effect becomes a non-neglectable factor, especially 

for r.c beams with thin webs. Hence, it becomes very important to find an appropriate 

theoretical model for analyzing the behavior of r.c beams with thin webs.  

This paper focuses on analyzing the behavior of reinforced concrete beam with double T 

section for short term loading. Several classic theoretical models are carried out to calculate 

the mean curvature and deflection, then comparing to the experimental results, verifying the 

accuracy of all models proposed. 

 In particular, the theoretical model called “simplified model” is proposed by M. Taliano, 

P.G. Debernardi et al., in which introduced the influence of shear effect. It simplifies the 

“general model” that they proposed before. In the end, the experimental data are compared to 

the theoretical results obtained with the simplified model, examining the influence of shear, 

besides the accuracy. 
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INTRODUCTION 

As we all know, the analysis of the behavior of reinforced concrete beams is always a 

problem because too many parameters are involved. And also, the complexity of the states of 

strain, stress, and deformation has increased the difficulty to find a reliable model to get a 

precise result. 

The classical beam bending theory, which also called “Euler–Bernoulli beam theory”, offers 

a fundamental idea that in the elastic field the curvature is proportional to the bending moment. 

There are two phases in the analysis of r.c beam. Hence, based on the classical beam theory, 

the curvature increases linearly in state 1 and 2, only the varying of inertia moment changes the 

slope of the line in the diagram of bending moment and curvature. The transition from phase 1 

to phase 2 is flat when the bending moment reaches cracking bending moment.   

However, the real behavior of r.c beam after cracking is far from the results of the above 

method, which leads to the concept of “tension – stiffening”. It describes the effect of stiffening 

action of the uncracked concrete between two contiguous cracks. And different theoretical 

models can be found in literature, which differs from the law with which the tension – stiffening 

varies depending on the bending moment. Some standards suggest that the effect is constant, 

which is independent of the bending moment, while according to others, it varies linearly or 

hyperbolically with the bending moment varies.  

Another important representative during the analysis of r.c beam behavior is the deflection, 

which is calculated based on the principle of virtual works. Usually, only the bending moment 

factor is considered. It works well in certain cases, but the shear effect is not neglectable in 

some cases. To solve this problem, Ritter and Morsch first proposed the solution known as 

lattice – like model, which assumes that the inclination of compressed struts in the web is 

parallel to the direction of cracks, and it is at a 45 degrees angle to the stirrup. But in the 

subsequent practical applications, people found that the model has often underestimated the real 

resistance of structural elements. Afterward, another important model called “smeared model” 

is proposed with modified compression field theory (MCFT) by Vecchio and Collins, which 

takes the variability of the angle in the web into consideration.  The smeared model dealt with 

the cracked concrete as a new material with different mechanical properties comparing to the 

uncracked concrete. Then M. Taliano and P.G. Debernardi brought forward the “mixed model” 

based on MCFT. It can be treated as modified smeared model, which considered not only the 
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web but also the tensed and compressed chords. After that, in order to simplify the calculation 

procedure, they proposed the “simplified model”, which simplifies the iterative calculation 

procedure.  

The thesis is divided into two parts. The first part aims to discuss the calculation of mean 

curvature of simply supported reinforced concrete beams with several approaches, and the 

calculation of deflection with the principle of virtual works, comparing the results to 

experimental data and verifying the accuracy of theoretical models proposed. The second part 

introduces the “simplified model” in detail, which explains the influence of shear effect. This 

part shows the effect of shear deformation to the total deflection, besides the relationship 

between shear and shear strain. In the end, the comparison with experimental data is carried out 

to examine the accuracy of the model.
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Figure 1.  General dimension and static scheme in the experimentation. 

1. EXPERIMENTATION 

1.1 Geometry of model 

In this experimentation, there are six beams that are reinforced with ordinary reinforcement 

and named from Tr1 to Tr6. All beams have the same transversal section (double T section with 

thin web).  

The general dimensions and load conditions are illustrated in the following figure.  These 

beams are divided into 3 groups according to their length and load condition. Beam 1 and 2 

have a length of 7000mm and subjected to symmetric load. And beam 3,4 are 6000mm long 

with a concentrated load at the midpoint, while the third group, subjected an asymmetrical 

concentrated load, is 7500mm including a cantilever with a length of 1050mm.  
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Figure 2. Detail of the cross section and reinforcement. 

1.2 Reinforcement 

For total of 6 beams, the top longitudinal reinforcement is the same, which means three steel 

bars of 12mm diameter. And the bottom longitudinal reinforcement is made up of five bars of 

16mm diameter for three beams (tr1, tr3, tr5) and nine bars with the same diameter for the other 

three beams (tr2, tr4, tr6). In addition, the transversal reinforcement is made up of stirrups with 

a diameter of 8mm, and spacing 200mm. 

The following figure shows the detail of reinforcement of two types of cross section. 
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figure 3. Static scheme and struments used in the test 

1.3 Testing scheme 

The tests are executed at the laboratory of the Department of Structural, Geotechnical and 

Building Engineering of Politecnico di Torino. 

The aim is evaluating global and local strain effects by measuring instruments in different 

zones as shown in the following figure, square lattices are put at measuring zone in non-

deformed state at the beginning, and vary their length while applying the load. 

The detail of the test can be found in the paper of Guiglia (2006). 
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2. CLASSIC THEORETICAL MODELS 

The mean curvature and deflection are representative deformation parameters for analyzing 

the behavior of reinforced concrete beams, a good calculation model is set up to evaluate the 

behavior of a beam, firstly, it should have an efficient result comparing to experimental data, 

then the calculation procedure should be as concise as possible.  

This chapter is dedicated to classic calculation models. For each model, calculating the mean 

curvature and deflection of referencing nodes and plotting the diagram of bending moment – 

curvature and load – deflection. Furthermore, in the uncracked state the calculation is based on 

the elastic theory all the time, hence it does not enter the analysis. And also, the state after 

yielding of steel bars is not considered as well. 

Firstly, it is introduced the analysis with linear elastic method, which is the most fundamental 

one. Through some assumptions, only some simple calculations are needed to find the 

relationship between bending moment and curvature. 

Then the non – linear elastic method can be seen as optimization of the linear method, it 

removes the assumption of material linearity, and replacing it by parabola of Sargin. The 

method executes with displacement control, and its calculation subjected iterative procedure 

that increases the complexity. 

The previous analysis takes the tension – stiffening effect as a constant, while the following 

models are set up based on the linear elastic method, but taking the varying of tension – 

stiffening effect into consideration.  

According to Eurocode 2, the bi – linear method, through introducing the distribution 

coefficient ζ, interprets the intermediate behavior between the uncracked state and fully cracked 

state. The coefficient works not only in the calculation of mean curvature, but also plays a role 

when calculating the deflection. 

Furthermore, the method of coefficient η improves the calculation of mean strain that is 

proposed by Model code 2010 and Eurocode 2. The coefficient η, based on the paper of M. 

Taliano, explains the influence of the internal secondary crack on the tension – stiffening effect 

which varies linearly in the cracked state as a result. 

 In the end, the theoretical model of Model Code1990 is performed, which shows another 

way to calculate the mean curvature in state 2 by introducing some parameters and the new 

consideration of calculation of tension – stiffening.  
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By calculating the mean curvature and deflection with different methods and standards, and 

the comparison with the experimental data obtained from laboratory tests, allowed to evaluate 

the precision and the reliability of the proposed models. 
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2.1 Material 

The beam is made up of concrete and steel bars. It is assumed the mechanical properties as 

below. 

For concrete, the characteristic compressive cube strength fck,cube is 25 N/mm2. Hence the 

characteristic compressive cylinder strength is 20.75 N/mm2, calculated as 

𝑓𝑐𝑘,𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 = 0.83 ∗ 𝑓𝑐𝑘,𝑐𝑢𝑏𝑒 (2.1) 

 

The mean compressive strength fcm is 28.75 N/mm2 

𝑓𝑐𝑚 = 𝑓𝑐𝑘,𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 + 8 𝑀𝑝𝑎 (2.2) 

 

The mean tensile strength fctm is 2.265 N/mm2
  

𝑓𝑐𝑡𝑚 = 0.3 ∗ 𝑓
𝑐𝑘,𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟

2
3⁄

(2.3) 

 

The mean elastic modulus Ecm= 31282.54 N/mm2 

𝐸𝑐𝑚 = 22000 ∗ (
𝑓𝑐𝑚

10
)

1
3⁄

(2.4) 

 

The coefficient of Poisson ν is considered as 0.15. Therefore, the shear modulus G is 13601.1 

N/mm2. 

𝐺 =
𝐸𝑐𝑚

2 ∗ (1 + 𝜈)
(2.5) 

 

 

For the reinforcement, both the longitudinal steel bars and transversal stirrups are considered 

as high bond bars, their elastic modulus Es is 200 GPa.  
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Figure 4. Relationship of bending moment and curvature with constant t.s 

Figure 5. Relationship of bending moment and curvature with linear t.s 

2.2 Tension-stiffening effect 

The effect indicates that the contribution of bonding force transmitted from concrete to steel 

bars increases the stiffness of tensile reinforcement, which means that the effect reduces the 

tensile deformation of steel by a certain amount. It takes the mean deformation of tension bars 

between two contiguous cracks into consideration.  

For different standard, several models are proposed here to describe the effect. 

1. Constant tension – stiffening  

The model shows that the gap between mean curvature and curvature in state 2 is constant 

in the diagram of bending moment – curvature as shown in the following figure:  

 
 
 
 

 

 

 

 

 

 

 

2. Linear tension – stiffening  

When the bending moment surpasses the cracking moment, the tension – stiffening effect 

varies linearly in the relationship as shown below.  
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Figure 6. Relationship of bending moment and curvature in model CEB 

3. CEB model 

The model has more parameters, which make the variation of tension – stiffening effect 

hyperbolic. 

 

 

 

 

 

 

 

 

 

 

 

 

There is also another model (ACI) utilizes the parabolic variation of tension – stiffening 

effect. The four models are proposed by Cosenza e Greco.  
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Figure 7. Dflection due to self – weight 

2.3 Self – weight 

In the calculation, the self – weight should be taken into account which means that the 

deflection is not null without loading. However, experimental data shows that the initial 

deflection is zero, because strain gauges are installed after the deformation due to self – weight. 

The solution proposed here is that consider self – weight in the calculation process, but in the 

end, it removes the effect of self – weight. 

For curvature 
1

𝑟
= (

1

𝑟
)𝑡𝑜𝑡 − (

1

𝑟
)𝑝.𝑝 (2.6) 

 

Where:  
1

𝑟
  is curvature due to load 

(
1

𝑟
)𝑡𝑜𝑡 is curvature due to combination of load and self – weight 

(
1

𝑟
)𝑝.𝑝  is curvature due to self – weight 

 

For deflection 

𝑓 = 𝑓𝑡𝑜𝑡 − 𝑓𝑝.𝑝 (2.7) 

 

Where:  

𝑓 is deflection due to load 

𝑓𝑡𝑜𝑡 is deflection due to combination of load and self – weight 

𝑓𝑝.𝑝  is deflection due to self – weight 

 

 

 

  



10 
 

figure 8. Linear relationship of stress – strain. 

2.4 Linear analysis method 

The linear method is a basic method for analyzing the curvature of beams with the theory of 

elasticity, which follows assumptions below:  

The cross section remains plane and will be perpendicular to the neutral axis after 

deformation. 

Perfect bond between steel bars and concrete. 

The properties of the material are linear elastic, homogeneous and isotropic. 

Based on the elastic theory, calculating the curvature and plotting the relationship between 

the bending moment and curvature. 

 

 

 

 

 

 

 

 

 

 

In state 1, the cross section is uncracked and subjects to a bending moment which is lower 

than the cracking bending moment, that also means the maximum tensile stress of concrete does 

not exceed the mean tensile strength fctm at tension chord. 

Calculating the cracking bending moment  

𝑀𝑐𝑟 = 𝑓𝑐𝑡𝑚

𝐼𝑜𝑚,1

𝑦
(2.8) 

  

Calculating the curvature corresponding to the cracking bending moment in state 1 
1

𝑟1𝑟
=

𝑀𝑐𝑟

𝐸𝑐𝑚𝐼𝑜𝑚,1

(2.9) 

 
State 2 corresponds to the state when partial transversal section cracked. First of all, 

calculating the distance between the upper surface and neutral axis xc with the equation Som,2 

=0, it is necessary to do three attempts here to obtain the right position of neutral axis. They are 

x c>150mm, 100mm <x c <150mm and x c<100mm respectively. 
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figure 9. Strain and stress in the cross section for linear analysis 

 

The curvature corresponding to the cracking bending moment in state 2 is   
1

𝑟2𝑟
=

𝑀𝑐𝑟

𝐸𝑐𝑚𝐼𝑜𝑚,2
 (2.10) 

  

Curvature of bending moment at yielding point of bars in tension chord 
1

𝑟𝑦
=

𝑀𝑦𝑑

𝐸𝑐𝑚𝐼𝑜𝑚,2

(2.11) 

 

Taking the tension – stiffening effect into account, whose contribution is constant based on 

Eurocode 2  

ε𝑠𝑚 = ε𝑠2 − 𝑘𝑡

𝑓𝑐𝑡m

𝜌𝑝,𝑒𝑓𝑓𝐸𝑠

(2.12) 

 
 

kt is the coefficient of loading duration 

kt=0.6 for short term loading 

kt=0.4 for long term loading 

ρp,eff is the density of longitudinal reinforcement in the effective area 

 

Therefore, the mean curvature is  

( 
1

𝑟
 )𝑚 =

𝜀𝑠𝑚 − 𝜀𝑐

𝑑
(2.13) 
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Figure 10 and 11 show the generic section of the diagram of bending moment – curvature 

with and without the effect of tension-stiffening for the two groups of beams. It is can be seen 

the constant tension – stiffening and the flat transition from state 1 to state 2. 

Notice that the cracking bending moment here, in fact, is produced by the sum of load and 

self – weight. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
. 
 
 
 
  

Figure 10 Diagram bending moment – curvature of Beam Tr1, Tr3, Tr5. 

Figure 11 Diagram bending moment – curvature of Beam Tr2, Tr4, Tr6 
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Figure 12. Diagram of bending moment – mean curvature of beam 1, node C 

Comparing the calculated results with the experimental data, the theoretical value under the 

cracked state is always small in the symmetrical load condition, and the error becomes larger 

as the load increases. However, comparing figure 12 and 13, it can be seen that the error is 

smaller with the beam of more steel bars. 

The figure 14 shows the comparison of the theoretical model and experimental data of beam 

3 in node A, the result is similar with beam 1 and 2, the theoretical model tends to underestimate 

the real behavior of the beam after cracking. 

While in the condition of asymmetric concentrated load, as shown in figure 15 and 16, the 

theoretical curves are consistent roughly with the experiment. 
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Figure 13. Diagram of bending moment  – mean curvature of beam 2, node C 

Figure 14. Diagram of bending moment  – mean curvature beam 3, node A 
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Figure 15. Diagram of bending moment  – mean curvature of beam 5, node C 

Figure 16. Diagram of bending moment – mean curvature of beam 6, node C 
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figure 18. Strain and stress in the cross section for non-linear analysis 

figure 17. Schematic representation of the stress-strain relation for structural analysis. 
From Eurocode 2 

2.5 Non-linear analysis method 

Considering the non-linear behavior of the material, equilibrium and compatibility still 

should be satisfied, the non-linear analysis method removes the assumption of linear relation of 

stress-strain and takes parabola of Sargin into account. In this condition, the elastic modulus is 

no longer a constant, but decreases as the stress increases. The stress-strain relation is shown 

below:  

 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in the following figure, it is can be seen the acting force and bending moment on 

the cross section and the distribution of compressed and tensed strain. The compressed strain is 

parabolic. 
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figure 19. Strips and referencing point in the cross section 

2.51 Calculation of mean curvature 

Dividing the cross section into 601 strips, each strip has thickness 1mm, thickness of the top 

and bottom slice is 0.5mm, the total height is 600mm. And the reference point for every strip 

on y axis is in middle, except that the starting and ending point are in the edge, therefore, the 

spacing is always 1mm for reference point on coordinate. For calculating of curvature, with a 

discrete way, calculating the compression strain and bending moment for each element, and 

making sure that every strip satisfies the equilibrium and congruence condition. 

As shows in the following figure the half cross section as it is symmetric geometrically:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1. Assuming the value of μx (1/r) and λ. Notice that the value of μx should be positive while 

λ is always negative. Calculating the compressed strain of concrete:  

𝜀𝑐 = λ + μ𝑥𝑦 (2.14) 

 

λ is the compressed strain of concrete at the top chord in the section 

 

2. Calculating the coefficient η with the relation below proposed by Eurocode2:  

η =
𝜀𝑐

𝜀𝑐1
 (2.15) 

 

where  

𝜀𝑐1(‰) = 0.7 ∗ 𝑓𝑐𝑚
0.31 (2.16) 
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3. Then obtain the compression of concrete σc by the following formula 

σ𝑐

𝑓𝑐𝑚
=

𝑘η − η2

1 + (𝑘 − 2)η
 (2.17𝑎) 

Where 

𝑘 = 1.05 ∗ 𝐸𝑐𝑚 ∗
|𝜀𝑐1|

𝑓𝑐𝑚

(2.17𝑏) 

Here, it is necessary to set its value by condition  

if εc < 0, using the expression (2.17a). 

else, considering the relationship (σc - εc) is linear, as it is in tension state. 

σ𝑐 = 𝜀𝑐 ∗ 𝐸𝑐𝑚 (2.18) 

 

And if σc< fctm, σc = σc     

else σc =0. 

 

4. Calculating the compression force Fc of concrete, the tension force Fs of bottom bars. 

F𝑐𝑖 = σ𝑐 ∗ 𝐴𝑐𝑖 (2.19𝑎) 

F𝑠 = σ𝑠 ∗ 𝐴𝑠 (2.19𝑏) 

Where 

σ𝑠 = 𝐸𝑠 ∗ 𝜀𝑠 (2.20) 

𝜀𝑠 = λ + μ𝑥𝑦𝑠 (2.21) 

And the same way to calculate the force Fs
’ of upper bars. 

 

5. With changing the λvalue, verifying the equilibrium condition.  

∑ 𝐹𝑐 + ∑ 𝐹𝑠 = 0 (2.22) 
 
 

6. Calculation of the sum of bending moment for every strip and bars 

𝑀𝑡𝑜𝑡 = ∑ 𝑀𝑐 + ∑ 𝑀𝑠 (2.23) 

 

7. At the end, plotting the relationship moment – curvature with and without taking the 

tension – stiffening effect into consideration. 
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The relationship of bending moment and curvature with constant tension – stiffening effect 

is shown below. In addition, the change due to varying elastic modulus is not distinct. Therefore, 

the non – linear analysis method is not necessary, at least in some cases, because the accuracy 

of the theoretical result does not improve much while the calculation is a lot more complicated. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 

 
 
 
 
 
  
 
 
 
 
 
 

 
 
 

 
  

Figure 21. Diagram bending moment – curvature of Beam Tr2, Tr4, Tr6 

Figure 20. Diagram bending moment – curvature of Beam Tr1, Tr3, Tr5. 
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Figure 22. Diagram of bending moment – mean curvature of Beam 1, node C 

Figure 23. Diagram of bending moment – mean curvature of Beam 2, node C 

The comparison between the theoretical values and experimental data is similar to the 

analysis of linear elastic method. As shown in the following figures, for beam 1, 2 and 3, the 

calculation becomes less precise as the load increases comparing to the real behavior. 

Analogously, the theoretical model can describe the performance in cases of beam 5 and 6 

relatively well. 
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Figure 24. Diagram of bending moment – mean curvature of Beam 3, node A 

Figure 25. Diagram of bending moment – mean curvature of Beam 5, node C 
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Figure 26. Diagram of bending moment – mean curvature of Beam 6, node C 
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figure 27. Slices and referencing points in the front view of beam 

figure 28.a Example of distributing concentrated load of beam 1 and 2 

Figure 28.b The distributed load 

2.52 Calculating the deflection 

Dividing the beam into hundreds of sections, with each slice has a thickness of 10 mm except 

the first and last sections which are 5mm thick. The reference point on each section of the z 

axis is starting from 0 with spacing 10mm.  

 

 

 

 

 

 

 

 

 

 

 

The model also needs to specify the load condition. Real concentrated load does not exist. 

Therefore, it is necessary to set up the load model in an appropriate way, which shows at 

following two figures that equally distributes the concentrated force on the neutral axis.  
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Figure 29. Bending moment in real system of beam 1 

The calculation of deflection is performed on the basis of virtual work method which affirms 

that the external virtual work corresponding to the load equals the internal virtual work which 

corresponds to the stress. Calculating the bending moment and curvature of every element, 

getting the displacement of measuring node produced by the intern stress of elements and then 

sum them up. It should be noted that the calculation proceeds discretely, hence the calculation 

should be done respectively based on if the cross section is cracked or not. The procedure is the 

same with all beams. Here, only performed once with beam 1 as an example.  

 

1. Calculating the bending moment, of which calculation is divided into three segments. 

Because of symmetric model and distribution of load, only need to consider half of the beam, 

then multiply two when calculating the deflection. 

 

Real system  

for z < 2100mm 

𝑀𝑏 =
1

2
∗ 𝑃 ∗ 𝑧𝑖 (2.24𝑎)  

for 2100 < z < 2900mm 

𝑀𝑏 =
1

2
∗ 𝑃 ∗ 𝑧𝑖 − 𝑞 ∗

𝑧2

2
(2.24𝑏) 

for 2900mm < z < 3500 mm 

𝑀𝑏 =
1

2
∗ 𝑃 ∗ 𝑧𝑖 −

1

2
∗ 𝑃 ∗ (𝑧𝑖 − 2500) (2.24𝑐) 
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Figure 30. Bending moment in virtual system of beam 1 

Virtual system 

𝑀𝑎 =
1

2
∗ 𝑧 (2.25) 

 

 

 

 

 

 

 

 

 

 

𝑀𝑏,𝑝𝑝 =
1

2
∗ 𝑞𝑝𝑝 ∗ 𝑙𝑡𝑜𝑡 ∗ 𝑧 − 𝑞𝑝𝑝 ∗

𝑧2

2
(2.26) 

 
𝑀𝑡𝑜𝑡  = 𝑀𝑏  + 𝑀𝑏,𝑝𝑝 (2.27) 

 

 

2. Calculation of curvature.  
if Mtot < Mcr 

(
1

𝑟
)𝑡𝑜𝑡 =

𝑀𝑡𝑜𝑡

𝐸𝑐𝑚𝐼𝑜𝑚,1

(2.28𝑎) 

if Mtot > Mcr 

(
1

𝑟
)𝑡𝑜𝑡 =

𝑀𝑡𝑜𝑡

𝐸𝑐𝑚𝐼𝑜𝑚,2

(2.28𝑏) 

  

 

3. Calculating the deflection.  

1 ∗ 𝑓 = ∫ 𝑀𝑎 ∗
1

𝑟
 𝑑𝑥

𝐿

0

(2.29𝑎) 

1 ∗ 𝑓 = ∑ 𝑀𝑎𝑖 ∗
1

𝑟
∗ 𝐿𝑖 (2.29𝑏) 
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Figure 31. Diagram load – deflection of beam 1 
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4. Removing the effect produced by self – weight, and plotting the diagram of relation load – 

deflection.  

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

In the end, comparing the calculation with experimental data. It can be seen that the 

theoretical curve is very close to the real behavior in uncracked state, even at the initial of state 

2. But as the load increases, the error gets bigger and bigger. when P reaches 200 kN, the error 

even closes to 50% in the case of beam 1. Analogously, figure 30 shows the comparison of 

calculated deflection and experimental one of beam 2, the error is relatively small but still, it 

cannot be ignored. 
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Figure 32.Diagram load – deflection with experimental data of beam 1 

Figure 33. Diagram load – deflection with experimental data of beam 2 
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Figure 34. Bending moment in real system of beam 3 

Figure 35. Bending moment in virtual system of beam 3 

Figure 36.Diagram load – deflection with experimental data of beam 3 
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The following figures show the bending moment in real and virtual system for beam 3, and 

comparison of deflection with experimental data of beam 3. The calculation procedure is same 

with beam 1. 
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Figure 38. Bending moment in virtual system of beam  5 

Figure 37. Bending moment in real system of beam 5 

For beam 5 and 6, the model is no longer symmetric and it changes to a beam with cantilever 

subjected an asymmetric concentrated load. By the influence of self – weight, the max 

deflection is not at the node where applies the load, but with load increasing, it will slip to the 

node. Considering that the influence is not big, it is neglected in the discussion. 

As the following two figures illustrate the calculation of bending moment in real and 

virtual system. 
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Figure 39. Diagram load – deflection with experimental data of beam 5 

Figure 40. Diagram load – deflection with experimental data of beam 6 
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Comparison of theoretical deflection and experimental data of beam 5 and 6, as shown in 

the following figures. 
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From the comparison of theoretical results of deflection and experimental data, it can be seen 

that for all beams with any load conditions, the deflection calculated is consistent roughly with 

the experiment when the load under a certain value, the value will be affected by the amount of 

longitudinal reinforcement, but then with the load increases, the gap between the theoretical 

value and experimental becomes larger and larger. 
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2.6 Bi-linear method 

According to the EC2, there is an intermediate state between uncracked and fully cracked 

condition of the cross section, it can be described that the mean curvature or deformation is a 

combination of it in state 1 and 2:  

𝛼 = (1 − 𝜁)𝛼1 + 𝜁𝛼2 (2.30) 

 
Where 

α is deformation parameter and it can be deflection or curvature. 

α1 is the value of the parameter in uncracked state 

α2 is the value of the parameter in fully cracked state  

 

As it for curvature    

(
1

𝑟
)𝑚 =

1

𝑟1
(1 − 𝜁) +

1

𝑟2
𝜁 (2.31) 

For deflection 

         

𝑓 = 𝑓1(1 − 𝜁) + 𝑓2𝜁 (2.32) 

 

𝜁 = 1 − 𝛽 (
𝜎𝑐𝑟

𝜎
)

2

(2.33) 

ζ is a distributing coefficient with the consideration of tension-stiffening effect, and 

obviously it is zero for un-cracked section. 

β is loading duration factor 

β=1 for short term loading 

β=0.5 for long term loading 

 
Pay attention that the ratio of cracking stress and stress in calculation of coefficient ζ , it 

can be replaced by terms of bending moment or tension. Therefore, it can be expressed as:  

𝜁 = 1 − 𝛽 (
𝑀𝑐𝑟

𝑀
)

2

(2.34) 
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Figure 41.Diagram bending moment – mean curvature of beam 1 node C 

2.61 Calculation of mean curvature 

1. Calculating the curvature corresponding to the cross section uncracked and fully cracked. 

(
1

𝑟1
)𝑡𝑜𝑡 =

𝑀𝑡𝑜𝑡

𝐸𝑐𝑚𝐼𝑜𝑚,1

(2.35𝑎) 

(
1

𝑟2
)𝑡𝑜𝑡 =

𝑀𝑡𝑜𝑡

𝐸𝑐𝑚𝐼𝑜𝑚,2

(2.35𝑏) 

 

2. Removing the influence of self – weight  
1

𝑟1
= (

1

𝑟1
)

𝑡𝑜𝑡

− (
1

𝑟
)

𝑝.𝑝

(2.36𝑎) 

1

𝑟2
= (

1

𝑟2
)

𝑡𝑜𝑡

− (
1

𝑟
)

𝑝.𝑝

(2.36𝑏) 

The curvature produced by self – weight is calculating in uncracked state. 

(
1

𝑟
)𝑝.𝑝 =

𝑀𝑝.𝑝

𝐸𝑐𝑚𝐼𝑜𝑚,1

(2.37) 

 

3. Calculating the coefficient ζ with the formula (3.34), and obtain the mean curvature with 

calculation (3.31a). 

4. Plotting the relationship of the bending moment and mean curvature, comparing with 

experimental data. 
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Figure 42. Diagram of bending moment – mean curvature of beam 1, node C 
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For beam 1, the following two figures illustrate the comparison between calculation and 

experimental data in node C and A, where node C is in the midpoint which represent point of 

max bending moment, and node A is a random point except max bending moment points. It can 

be seen that the error is much bigger in node C than it in node A, which indicates that for a 

same theoretical model, the accuracy varies as the changing of section. 

Comparing figure 42 and 44, increasing the number of reinforcing bars reduces the error 

between the calculation results and the experiment. 

In the condition of concentrated load at midpoint, the accuracy is poor in state 2 and the gap 

between theoretical curve and experiment is approximately changeless. 

The theoretical model performs well under the condition of an asymmetric concentrated load 

while measuring the node C subjected to the concentrated load. As they are shown in figure 46 

and 47. 
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Figure 43. Diagram of bending moment – mean curvature of beam 1, node A 
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Figure 44. Diagram of bending moment – mean curvature of beam 2, node C 
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Figure 45. Diagram of bending moment – mean curvature of beam 3, node A 

Figure 46. Diagram of bending moment – mean curvature of beam 5, node C 
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Figure 47. Diagram of bending moment – mean curvature of beam 6, node C 
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Figure 48.The bending moment in real system of beam 1 

Figure 49. The bending moment in virtual system of beam 1 

2.62 Calculation of deflection  

As described before, the calculation of deflection is based on the principle of virtual work. 

With the linear analysis method, the deflection is calculated in a discrete way that means 

dividing the beam into hundreds of elements, here it uses the integration way instead.  

As in the case of the calculation of mean curvature, calculating the deflection that 

corresponding to the curvature in state 1 and 2 as expressed in the previous calculations. Then 

obtain the deflection with the formula (2.32). 

For example, with beam 1, the real system and virtual system are shown in following figures. 
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Figure 50. Diagram of load – deflection of beam 1 

The deflection in uncracked state:  

𝑓1 = ∫ 𝑀𝑎 ∗
1

𝑟1
 𝑑𝑧

𝐿

0

(2.38𝑎) 

𝑓1 = 2 ∗ ∫ 𝑀𝑎 ∗
𝑀𝑏

𝐸𝑐𝑚𝐼𝑜𝑚,1
 𝑑𝑧

𝑎

0

+ 2 ∗ ∫ 𝑀𝑎 ∗
𝑀𝑏

𝐸𝑐𝑚𝐼𝑜𝑚,1
 𝑑𝑧

𝐿
2⁄

𝑎

(2.38𝑏) 

 

The deflection in fully cracked state:  

𝑓2 = ∫ 𝑀𝑎 ∗
1

𝑟2
 𝑑𝑧

𝐿

0

(2.39𝑎) 

𝑓2 = 2 ∗ ∫ 𝑀𝑎 ∗
𝑀𝑏

𝐸𝑐𝑚𝐼𝑜𝑚,2
 𝑑𝑧

𝑎

0

+ 2 ∗ ∫ 𝑀𝑎 ∗
𝑀𝑏

𝐸𝑐𝑚𝐼𝑜𝑚,2
 𝑑𝑧

𝐿
2⁄

𝑎

(2.39𝑏) 

 

The calculation procedure of other beams is mainly the same, only the distribution of 

bending moment needs to change with varying load conditions. The following figures illustrate 

the comparison between the theoretical deflection and experimental data. The result is similar 

to previous calculation, as the load increases, the theoretical values are smaller and smaller 

comparing to the experiment. 
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Figure 51.Diagram of load – deflection of beam 2 

Figure 52. Diagram of load – deflection of beam 3 
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Figure 53. Diagram of load – deflection of beam 5 

Figure 54.Diagram of load – deflection of beam 6 
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2.7 Method with coefficient η 

The method introduces a coefficient η to improve the calculation of relative mean strain 

proposed by Model code 2010 and Euro code 2. On the base of assumption of linear distributed 

bond stress along the transmission length, the coefficient is only a function of acting axial force 

– to – cracking force ratio, which indicates the influence of internal secondary crack on tension 

– stiffening effect. 

This method can be seen as the combination of the linear analysis method and bi – linear 

analysis method, and at the same time, it covered the characteristics of these two methods which 

are the flat transition from state 1 to state 2 and linear variation of tension – stiffening effect. 

The coefficient η is actually the ratio of length of reduced bond lsc and transmission length 

Ls. As shown in the following formula, it can be expressed as a function of the ratio of acting 

axial force-to-cracking force, or the ratio of steel stress and cracking steel stress which 

calculated in the cracking moment on the cross section. 

 

𝜂 =
𝑙𝑠𝑐

𝐿𝑠
= [ 

3

2
∗

𝐹𝑠

𝐹𝑐𝑟
−

1

2
 ] − √

9

4
∗ (

𝐹𝑠

𝐹𝑐𝑟
− 1)2 + 1 (2.40𝑎) 

𝜂 =
𝑙𝑠𝑐

𝐿𝑠
= [ 

3

2
∗

𝜎𝑠2

𝜎𝑠𝑟2
−

1

2
 ] − √

9

4
∗ (

𝜎𝑠2

𝜎𝑠𝑟2
− 1)2 + 1 (2.40𝑏) 

 

For the second expression, if it can be considered linear relation between bending moment 

and steel stress as following:  

𝜎 =
𝑀

𝐼
∗ 𝑦 (2.41) 

 

Therefore, it is equivalent to:  

𝜂 =
𝑙𝑠𝑐

𝐿𝑠
= [ 

3

2
∗

𝑀

𝑀𝑐𝑟
−

1

2
 ] − √

9

4
∗ (

𝑀

𝑀𝑐𝑟
− 1)2 + 1 (2.42) 

 

The coefficient discusses behavior of concrete reinforcement beam in the cracking state, 

which equals to zero at the moment of the crack formed. With the action increases, it will be 

infinitely close to 1.  
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2.71 Calculation of mean curvature 

The two formulae mentioned before are both used here for calculating coefficient η, to 

compare advantages and disadvantages to each other.  

The calculation of cracking force is 

𝐹𝑐𝑟 = 𝛼𝑒 ∗
𝑀𝑐𝑟

𝐼𝑜𝑚,1
∗ 𝑦𝑠 ∗ 𝐴𝑠,𝑖𝑛𝑓 (2.43) 

 

Meanwhile, the cracking bending moment has been obtained from the formula (1.1).  

The compression and tension strain calculate as:  

If Mtot < Mcr  

𝜀𝑠 = 𝛼𝑒

𝑀

𝐼𝑜𝑚,1𝐸𝑐𝑚
∗ 𝑦𝑠1 (2.44𝑎) 

𝜀𝑐 =
𝑀

𝐼𝑜𝑚,1𝐸𝑐𝑚
∗ 𝑦𝑐1 (2.44𝑏) 

If Mtot > Mcr  

ε𝑠 = 𝛼𝑒

𝑀

𝐼𝑜𝑚,2𝐸𝑐𝑚
∗ 𝑦𝑠2 (2.45𝑎) 

ε𝑐 =
𝑀

𝐼𝑜𝑚,2𝐸𝑐𝑚
∗ 𝑦𝑐2 (2.45𝑏) 

 

The method is a linear elastic analysis with considering the coefficient η. Therefore, the 

distribution of stress on the cross section is like figure 9, and the mean curvature is calculated 

in the same way:  

( 
1

𝑟
 )𝑚 =

𝜀𝑠𝑚 − 𝜀𝑐

𝑑
(2.46) 

 

However, due to the varying of tension – stiffening effect which is now a function of 

coefficient η, the mean strain of steel bars in tension chord is changed. 

ε𝑠𝑚 = ε𝑠2 − 𝑘𝑡

𝑓𝑐𝑡m

𝜌𝑝,𝑒𝑓𝑓𝐸𝑠
∗ (1 − 𝜂) (2.47) 

 

In addition, the effect of self – weight should be removed. As the require of highlighting the 

transition from state 1 to state 2, it is necessary to thicken the calculating point in the interval.  
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Figure 55. Diagram of bending moment and mean curvature of beam 1, node C 

The following figures illustrate the bending moment – mean curvature relationship of 

theoretical and experimental data.  

Firstly, by comparing the results of calculation, obviously, it can be seen that calculation 

with the coefficient η corresponding to the bending moment, the transition part is shorter and 

then rises faster than it with coefficient η corresponding to the force. And with increasing of 

the bending moment, they tend to coincident with each other in the diagram of bending moment 

– curvature. 

Comparing with the experimental data, with the bending moment rises, the gap between 

calculation and experiment for beam 1and 2 becomes larger.  

For beam1 and 2, the node calculated is in the midpoint, they have the same loading 

condition with different amount reinforcement, the result of beam with more reinforcement is 

more precise.  

While the theoretical model performs well in the condition of beam 3,5 and 6. But as figure 

58 shows, the theoretical calculation overestimates the real behavior of beam 5.  
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Figure 56. Diagram of bending moment and mean curvature of beam 2, node C 

Figure 57. Diagram of bending moment and mean curvature of beam 3, node A 
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Figure 58. Diagram of bending moment and mean curvature of beam 5, node C 

Figure 59. Diagram of bending moment and mean curvature of beam 6, node C 
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Figure 60. diagram of load – deflection of beam 1 

2.72 Calculation of deflection 

As in the case of the deflection calculation in non – linear method, except that the mean 

curvature changed due to introducing of coefficient η in state 2, in state 1 the deflection remains 

the same as always.  

Here the two curves that correspond to the two calculations of coefficient η are both plotted 

in the diagram of load – deflection. Comparing to each other, it can be seen that as same as in 

the calculation of curvature, there is a small gap at the transition, but as the increasing of load, 

it tends to disappear. 

Comparing the calculation with the experiment, the theoretical model performs good 

accuracy when the cross section is uncracked. While at the beginning of state 2, the calculation 

corresponding to the coefficient η(F/Fr) is bigger than the experimental value. But after that, 

the theoretical deflection for both becomes smaller than it in the experimentation, and the 

difference gets bigger and bigger with the load increasing. The theoretical model, compared to 

the models mentioned above, has not changed much. 
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Figure 61. Diagram of load - deflection of beam 2 

Figure 62. Diagram of load - deflection of beam 3 
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Figure 63. Diagram of load - deflection of beam 5 

Figure 64. Diagram of load - deflection of beam 6 
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Figure 65．Diagram of mean curvature – simple bending 

Figure 66. Diagram of mean curvature – bending combined with compression 

2.8 CEB – FIP Model Code 90 

The theoretical model proposed by MC1990 gives another idea of calculation of mean 

curvature. As shown in the following two figures, which the first one shows the relation 

between mean curvature and simple bending and the other figure illustrates the relationship of 

mean curvature and bending moment combined with compression. For both, there are three 

curves which corresponding to state 1, state 2 and state after yielding of steel bars. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The difference comparing to the model mentioned before is the effect of tension – stiffening. 

For taking action due to temperature, shrinkage, and etc. into account, the model gives a 

definition of hyperbolic law for calculating the tension – stiffening effect which corresponding 

to the curvature in state 1 and 2, in addition of the ratio of bending moment and a reduction 

factor βb.  
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1

𝑟𝑡𝑠
 = (

1

𝑟2𝑟
−

1

𝑟1𝑟
) 𝛽𝑏 (

𝑀𝑟

𝑀
) (2.48) 

Where 
1

𝑟1𝑟
 is the curvature corresponding to the cracking bending moment in state 1. 

1

𝑟2𝑟
 is the curvature corresponding to the cracking bending moment in state 2. 

𝛽𝑏 = 𝛽1𝛽2 (2.49) 

𝛽1 is the coefficient characterizing the bond quality of reinforcement. 

𝛽1 = 1 for high bond bars 

𝛽1 = 0.5 for smooth bars 

𝛽2 is the coefficient which represents the influence of duration of application or repitation 

of loading. 

𝛽2 = 0.8 at first loading 

𝛽2 = 0.5 for long – term loading or for a large number of load cycles 

 

Therefore, the mean curvature can be defined as: 

for state 1         
1

𝑟
=

1

𝑟1
(2.50𝑎) 

for state 2         
1

𝑟
=

1

𝑟2
−

1

𝑟𝑡𝑠
=

1

𝑟2
− (

1

𝑟2𝑟
−

1

𝑟1𝑟
) 𝛽𝑏 (

𝑀𝑐𝑟

𝑀
) (2.50𝑏) 

for 𝑀 ≥ 𝑀𝑦     

1

𝑟
=

1

𝑟𝑦
− (

1

𝑟2𝑟
−

1

𝑟1𝑟
) 𝛽𝑏 (

𝑀𝑐𝑟

𝑀𝑦
) +

(𝑀−𝑀𝑦)

2𝐾3
(2.50𝑐) 

where 

𝐾3 =
𝑀𝑢 − 𝑀𝑦

(1
𝑟𝑢

⁄ ) − (1
𝑟𝑦

⁄ )
(2.50𝑑) 

My is the yielding moment 

Mu is the ultimate moment 

1/ry is the curvature of yielding moment 

1/ru is the curvature of ultimate moment 

Here the case of bending moment greater than yielding moment is not considered, and only 

the first two steps are entered the analysis. 
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2.81  Calculation of mean curvature 

1. Calculating the curvature which corresponding to the cracking bending moment in state 

1 and 2 individually.  
1

𝑟1𝑟
=

𝑀𝑐𝑟

𝐸𝑐𝑚𝐼𝑜𝑚,1

(2.51𝑎) 

1

𝑟2𝑟
=

𝑀𝑐𝑟

𝐸𝑐𝑚𝐼𝑜𝑚,2

(2.51𝑏) 

 

2. Calculation of the curvature which corresponding to the tension – stiffening effect with 

the formula (2.48).  

3. Calculation of mean curvature with condition 

If Mtot <  Mcr         
1

𝑟
=

1

𝑟1
=

𝑀𝑡𝑜𝑡

𝐸𝑐𝑚𝐼𝑜𝑚,1

(2.52𝑎) 

If Mtot >  Mcr       
1

𝑟
=

1

𝑟2
−

1

𝑟𝑡𝑠
=

𝑀𝑡𝑜𝑡

𝐸𝑐𝑚𝐼𝑜𝑚,2
−

1

𝑟𝑡𝑠

(2.52𝑏) 

 

4. Pay attention to the self – weight as mentioned before, it should remove the effect of self 

– weight in the calculation. 

(
1

𝑟
)

𝑏
=

1

𝑟
− (

1

𝑟
)

𝑝.𝑝

(2.53) 

 

5. Plotting the diagram of bending moment and mean curvature, and comparing it with 

experimental data.  
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Figure 67. Diagram of the bending moment - mean curvature of beam 1, node C 

Figure 68. Diagram of the bending moment - mean curvature of beam 2, node C 

The following figures illustrate the comparison of the calculation of mean curvature and 

experiment. As it can be seen, the model behaves well in the conditions of beam 2, 5 and 6. 

While for beam1 and 3, the model tends to underestimate the real mean curvature in the 

experiment, especially the error ups to about 30% when the bending moment of beam 1 reaches 

182.5 kNm.  
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Figure 69. Diagram of the bending moment - mean curvature of beam 3, node A 

Figure 70. Diagram of the bending moment - mean curvature of beam 5, node C 
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Figure 71. Diagram of the bending moment - mean curvature of beam 6, node C 
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Figure 72. Diagram of load – deflection of beam 1 

2.82 Calculation of deflection  

The calculation procedure is the same as previously mentioned in chapter 3.52, the difference 

is only the mean curvature calculated with the theoretical model of CEB – FIP here.   

The result of comparison is also similar to others model, which is that the theoretical model 

behaves well in the condition of low load. As shown in the following figures, the error could 

be different with the different load condition and number of reinforced bars, but the same point 

is that the error becomes larger in all cases as the load increases. 
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Figure 73. Diagram of load – deflection of beam 2 

Figure 74. Diagram of load – deflection of beam 3 
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Figure 75. Diagram of load – deflection of beam 5 

Figure 76. Diagram of load – deflection of beam 6 
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2.9 Conclusion 

In the analysis of mean curvature, the theoretical model of coefficient η and CEB perform 

well relatively in general. But in the load condition of asymmetric concentrated load, for the 

beam 5, the two models tend to overestimate the real behavior though the error is not big. But 

for beam 6, the mean curvature calculated by all models is consistent to the experiment. 

While for the deflection, all the results are similar comparing to the experimental data. No 

matter for different load condition or number of reinforced bars, in state 2, the models are all 

precise under a certain value of the load. As the load increases, the theoretical values tend to 

underestimate the behavior of beams, and the gap between the theoretical and experimental data 

is getting bigger and bigger. One of the important reasons is none of those models above 

consider the effect of shear. Therefore, in the following chapter discussing the influence of 

shear is necessary. 
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3. THEORETICAL MODEL WITH SHEAR EFFECT IN THE 
DEFORMATION 

The shear effect is neglected for many cases while calculating the mean curvature and 

deflection, as illustrated in the previous chapter. And it is reasonable not only because it is 

difficult to find a reliable theoretical model, but the complex calculation procedure is also a big 

barrier. Therefore, many researchers have proposed various theoretical models, all of which 

have their own advantages and disadvantages. This chapter introduces the simplified model 

which corresponding to the mixed model proposed by M. Taliano and P.G. Debernardi. The 

model takes shear effect into consideration and simplifies the calculation procedure of the 

mixed model. 

 

Mixed model  

Traditionally, there are two methods to solve the problem of shear effect, one is the “lattice 

– like model” proposed by Ritter and Morsch, the other one is “smeared model” offered by 

Vecchio and Collins. 

The lattice – like model assume that the compression truss element is parallel to the crack in 

the web and the tension truss element which made up of stirrups has an inclination angle of 45 

degrees to concrete struts. This model takes some favorable effects into consideration such as 

aggregate interlock, Dowel effect. Its results are relatively conservative but less precise in the 

calculation under serviceability condition. 

The smeared model is based on the modified compression field theory (MCFT) which 

considers the average stresses and average strains on equilibrium conditions and compatibility 

conditions, besides of constitutive laws of concrete. The model treats the cracked concrete with 

reinforcement as a new material with its own stress – strain characteristics. It can describe the 

behavior of reinforced concrete beam accurately but with a very complex calculation. 

The mixed model is proposed to the basis of experimental results, it can be seen as a modified 

smeared model. By reference to MCFT, it takes the interaction between the web and chords 

into account. The model takes the equilibrium scheme based on lattice – like model but with 

the variability of the inclined angle. In the calculation of concrete contribution, the results 

obtained are highly consistent with the values provided by the Model Code 1990. 

 



61 
 

Because there are two iterative procedures corresponding to the mixed model that increased 

the difficulty of calculation, it is offered the simplified model. Mainly, it is simplified the 

determinations of inclined angle ϑ and concrete contribution Vc. 
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Figure 77. Effective area of the cross section 

Simplified model 

In state 1, the behavior of the beam is considered fully keep to the elastic theory, therefore 

the calculation of curvature is shown as before, and the shear strain calculated by following 

formula: 

𝛾 =
𝑉

G ∗ 𝐴𝑜𝑚

(3.1) 

Where  

G is the shear modulus of concrete. 

Aom is effective area of the cross section as shown in the following figure. 

 

 

 

 

 

 

 

 

 

 

 

 

When the bending moment surpasses its critical value Mcr, the cross section cracks because 

of bending. Under this condition, if the acting shear is smaller than the cracking shear force Vcr, 

it means that the web remains integer and only flange cracks, otherwise, both the web and flange 

crack.  

There is also another situation that needs to pay attention, when the acting shear is greater 

than Vcr with the value of bending moment under Mcr, which means the web cracks with an 

inclined angle but the flange stays intact.  

But whenever one of these two conditions is satisfied, it will pass into state 2.   
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Figure 78. Stress in the cross section inclined ϑ angle 

3.1 Mean curvature and shear strain 

1. Calculation of concrete contribution Vc. 

According to the mixed model, the condition of vertical equilibrium is shown in the 

following figure. 

 

 

 

 

 

 

 

 

 

 

 

There are two contributions of resistance in the vertical direction which provided by the 

concrete and transversal reinforcement respectively. 

𝑉 = 𝑉𝑐 + 𝑉𝑠𝑤 (3.2𝑎) 

𝑉 =
𝐴𝑠𝑤

𝑠𝑤
∗ 𝜎𝑠𝑤 ∗ 𝑧 ∗ 𝑐𝑜𝑡𝜃 + 𝜎𝑐1 ∗ 𝑏𝑤 ∗ 𝑧 ∗ 𝑐𝑜𝑡𝜃 (3.2𝑏) 

 

In state 1, when there is no crack formed, the concrete contribution offers all shear resistance 

which means that Vsw equals to zero. However, with the load increasing, inclined cracks begin, 

the concrete contribution remains roughly constant. 

 Therefore, in the simplified model, it is assumed that the concrete contribution is constant 

which equals the cracking shear force Vcr in state 2. As shown in the following figure, taking 

beam 6 as an example, comparing the value of Vc calculated by the formula (3.3) and obtained 

from the mixed model for different shear length. 
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Figure 79. Example of beam 6. (a) geometry. (b) diagram of shear – shear of concrete 
contribution with various shear lengths 

 

 

 

 

 

 

 

 

 

 

 

 

According to the Model Code 1990, the calculation of concrete contribution after web 

cracking (which takes into account dowel effect, aggregate interlock and the contribution of the 

compressed concrete zone) is expressed as:  

𝑉𝑐 ≅ 𝐶 ∗ (
3∗𝑑
𝑀

𝑉⁄
)

1
3⁄

∗ (1 + √
200

𝑑
) ∗ (

100∗𝐴𝑠

𝑏𝑤∗𝑑
∗ |𝑓𝑐𝑘|)

1
3⁄

∗
𝑏𝑤∗𝑑

1000
≤

𝐽𝑥,1∗𝑏𝑤

𝑆𝑥
∗ 𝑓𝑐𝑡𝑚 (3.3)  

Where  

C is a coefficient that varies with reference to the mean value of Vc between 0.13 and 

0.18 when av/d varies from 4 to 8. According to Model Code 1990, it is assumed as 0.15. 

d is the depth of the cross section. 

As is the area of the longitudinal tensile reinforcement. 

bw is the width of the web. 

Jx,1 is the second moment of area in uncracked state. 

Sx is the first moment of area above and about the centroidal axis (uncracked section). 

av is the shear length which corresponding to the distance between load point and support, 

and it equals M/V. 

 

2. Calculation of normalized shear stress τ/fctm. 
𝜏

𝑓𝑐𝑡𝑚
=

𝑉𝑡𝑜𝑡 − 𝑉𝑐

𝑏𝑤 ∗ 𝑑 ∗ 𝑓𝑐𝑡𝑚

(3.4) 

 

It is easy to know that the ratio is zero when the cross section of the web is uncracked. 
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3. The calculation of angle θ. 

The angle θ is the second calculation that needs to be simplified. It is related to a lot of 

parameters in the mixed model such as geometrical properties, loading effect, reinforcement 

ratios, material, therefore it is carried out a parametric analysis to study the relationship 

between the angle and these variables. Then finding out that the angle θ is a function of 

these four variables: εcz, τ/fctm, ρw, fck.  

1) The approximate relation between normalized shear stress and angle θ0. 

𝜃0 = 𝑎 ∗ (
𝜏

𝑓𝑐𝑡𝑚
)

𝑏

(3.5) 

 

The coefficient a and b are introduced by parameter analysis, and they are a 

function of transversal reinforcement ratio ρw. Where 

𝑎 = 30 + 𝜌𝑤 ∗ 1150 (3.6𝑎) 

𝑏 = 5 ∗ 𝜌𝑤 − 0.125 (3.6𝑏) 

 

2) Calculation of angle θ0
’, which corresponds to the correction of θ0 when the 

concrete compressive strength fck is different to 25 N/mm2. 

𝜃0
′ = 𝜃0 ∗ [1 + 0.1 ∗ (

𝑓𝑐𝑘 − 25

25
)] (3.7) 

 

4. Calculation tensile strain of steel bars in the cracked state. 

ε𝑠2 = {𝑀𝑡𝑜𝑡 +
𝑉𝑡𝑜𝑡 − 𝑉𝑐

2
∗ 𝑧 ∗ cot(𝜃0

′ )} ∗
d − χ

𝐽𝑥,2 ∗ 𝐸𝑠
∗ 𝛼𝑒 (3.8) 

 

5. Calculation of the mean strain of tensed reinforcement with considering the tension – 

stiffening effect according to EN1992 1-1.  

ε𝑠𝑚 = ε𝑠2 − 𝑘𝑡

𝑓𝑐𝑡m

𝜌𝑝,𝑒𝑓𝑓𝐸𝑠

(3.9) 

 

6. Calculating the mean strain of compressed chord with assuming the lever arm equals 0.9*d. 

ε𝑐𝑚 = − {𝑀𝑡𝑜𝑡 −
𝑉𝑡𝑜𝑡 − 𝑉𝑐

2
∗ 𝑧 ∗ cot(𝜃0

′ )} ∗
χ − 0.1d

𝐽𝑥,2 ∗ 𝐸𝑐𝑚

(3.10) 

  



66 
 

0

20

40

60

80

100

120

0.00E+00 2.00E-04 4.00E-04 6.00E-04 8.00E-04 1.00E-03 1.20E-03 1.40E-03

V
 (

kN
)

γ

Figure 80. Diagram of shear – shear strain of beam 1,node A 

7. Calculation of mean axial strain εcz. 

ε𝑐𝑧 =
ε𝑠m + ε𝑐𝑚

2
(3.11) 

 

8. The correction of angle due to possibly varying mean axial strain εcz.  

𝜃 = 𝜃0
′ ∗ 𝜓 (3.12) 

Where  

𝜓 = 0.64 + (960 ∗ 𝜀𝑐𝑧) − (6 ∗ 105 ∗ 𝜀𝑐𝑧
2 ) (3.13) 

 

9. Calculation of principal mean compressive strain in the web. 

ε𝑐2 =
𝜎𝑐2

𝐸𝑐𝑚
=

1

𝐸𝑐𝑚
∗

𝑉𝑐 ∗ 𝑠𝑖𝑛2(θ) − V

𝑧 ∗ 𝑏𝑤 ∗ cos(𝜃)
(3.14) 

 
10. Calculation of mean curvature and mean shear strain. 

1

𝑟
=

ε𝑠m − ε𝑐𝑚

0.9 ∗ 𝑑
(3.15) 

𝛾 =
2 ∗ (ε𝑐z − ε𝑐2)

tan(𝜃)
(3.16) 

 

11. Removing the self – weight effect, and plotting the diagram of bending moment – mean 

curvature and shear – shear strain. 
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Figure 81. Diagram of bending moment – curvature of beam 1, node A 
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12. Comparison of the calculation of mean curvature with experimental data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in the two figures above, figure 80 illustrates the relationship of shear and shear 

strain of beam 1 in node A, while the figure 81 shows the comparison of theoretical value and 

experimental value. It is possible to observe that the shear strain is relatively small in the 

uncracked state, but after the section cracked, the shear strain rises very fast as the shear 

increases. Moreover, the result of comparison does not verify the accuracy of the theoretical 

model, it can be seen from figure 81, the theoretical values are much smaller than the 

experiment at around cracking bending moment, but after that, the theoretical curve rises faster. 

So that when the bending moment reaches 100kNm, the theoretical mean curvature exceeds 1.2 

times the actual value. 
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Figure 82. Comparison between simplified model and bi-linear method with experimental curve 

If compares the “simplified model” with a classical model mentioned before, the shear 

contribution can be observed in the calculation of mean curvature as shown in the following 

figure. Due to the increase of the mean strain of tension chord and decrease of the mean strain 

of the compression chord by shear, the mean curvature increases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The following figures illustrate diagrams of shear and shear strain and comparison of 

theoretical mean curvature and experimental data of other beams. It can be seen from following 

figures, as the bending moment increases, the theoretical mean curvature is always smaller than 

the experimental value, the consideration of shear effect does improve the result of calculation, 

but not much comparing to the classical model. 
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Figure 83. Diagram of shear – shear strain of beam 2, node A 

Figure 84. Diagram of bending moment – mean curvature of beam 2, node A 
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Figure 85. Diagram of shear – shear strain of beam 3, node A 

Figure 86. Diagram of bending moment – mean curvature of beam 3, node A 
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Figure 87. Diagram of shear – shear strain of beam 5, node A 

Figure 88. Diagram of bending moment – mean curvature of beam 5, node A 
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Figure 89. Diagram of shear – shear strain of beam 6, node A 

Figure 90. Diagram of bending moment – mean curvature of beam 6, node A 
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Figure 91. The bending moment of beam 1 in real system 

3.2 Calculation of the deflection  

As mentioned in the chapter 3, the calculation of deflection is based on the principle of 

virtual work, here with considering shear effect, there are two contributions in the calculation. 

Hence the formula becomes: 

𝑓 = ∫ 𝑀𝑎 ∗
1

𝑟𝑏
 𝑑𝑧

𝐿

0

+ ∫ 𝑡 ∗ 𝑉𝑎 ∗ 𝛾 𝑑𝑧
𝐿

0

(3.17) 

 

Where  

t is shear factor, in the case of double T beam with thin web t=1.60. 

 

The calculation procedure is similar as before, except the involvement of shear. Therefore, 

through the previous calculation, calculating the mean curvature and shear strain for every piece 

of element. Then it can be obtained the contribution of bending moment and shear to the 

deflection by following formulas: 

𝑓𝑀 = ∑ 𝑀𝑎 ∗
1

𝑟𝑏
∗ 𝐿𝑖 (3.18𝑎) 

𝑓𝑉 = ∑ 𝑡 ∗ 𝑉𝑎 ∗ 𝛾 ∗ 𝐿𝑖 (3.18𝑏) 

𝑓𝑡𝑜𝑡 = 𝑓𝑀 + 𝑓𝑉 (3.18𝑐) 

 

For example, the following figures illustrate the bending moment and shear in real system 

and virtual system of beam 1. 
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Figure 92. The shear of beam 1 in real system 

Figure 93. Bending moment and shear of beam 1 in virtual sysytem 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the end, removing the effect of self – weight and plotting the diagram of load and 

deflection which includes the contribution of bending moment and shear, besides the total 

deflection. 

For other beams, the calculation is exactly the same as above, except for the change of load 

conditions. 
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Figure 94. Diagram of load – deflection of beam 1 

The shear contribution can be considered in two part. One part is the shear strain part, as you 

can see from the figures. The other part is in the bending deflection, due to the shear increases 

the mean curvature, which means it increases the bending deflection indirectly. The following 

two figures show the comparison of theoretical value of total deflection and experimental curve 

of beam 1 and 2. It is possible to observe that the contribution of shear and bending moment in 

the total deflection. In the condition of under a certain value of the load, the shear deflection is 

so small that can be ignored, but as load increases, the shear contribution is getting bigger. For 

beam 1, the shear contribution takes around 20% when the load reaches 150kN. 

Comparing the total deflection with the experimental value, taking the shear effect into 

consideration significantly improves the accuracy of the description of the behavior of the r.c. 

beam. When the load ups to 200kN, the addition of shear deflection reduces the error from 27% 

to 9% for beam 2. 
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Figure 95. Diagram of load – deflection of beam 2 
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Figure 96. Diagram of load – deflection of beam 3 

As shown in the figure 96, for beam 3, the contribution of shear to total deflection is around 

30% when the load ups to 130kN. 

The figure 97 and 98 illustrate the comparison of the theoretical deflection and experiment 

data of beam 5 and 6, which also prove the importance of the shear contribution to the total 

deflection. Especially, the theoretical model of beam 6 is perfectly consistent with its 

experimental curve. 
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Figure 97. Diagram of load – deflection of beam 5 

Figure 98. Diagram of load – deflection of beam 6 
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4. CONCLUSIONS 

This thesis mainly evaluates the behavior of reinforced concrete beams with thin web in two 

aspects, one of which is mean curvature, and the other one is deflection. The load conditions 

are set up with three types including two symmetric concentrated load, single concentrated load 

at the central node, and single asymmetric concentrated load. It compares several theoretical 

models with experimental data to identify the accuracy of the theoretical models and the 

influence of shear effect.  

In the analysis of mean curvature, according to the elastic modulus, two analysis methods 

are proposed, one is linear analysis method based on the assumption of constant elastic modulus, 

while the other one is non – linear analysis method, in which removed the assumption. The 

results of comparison between these two methods with experimental values do not have much 

difference, although the calculation of non – linear analysis method is more complex than the 

linear method. Then according to the various tension – stiffening effect, the bi – linear method, 

method with coefficient η and CEB model are taken into analysis. These methods do improve 

the calculational accuracy of the mean curvature, but the degree of improvement varies 

depending on the amount of reinforcement and the position of reference node.  

While in the analysis of deflection, for every theoretical model mentioned before, the 

calculation is on the basis of the virtual work’s principle. The results fluctuate slightly due to 

the variety of values of mean curvature. Compared with experimental values, it is possible to 

observe that under a certain value of load condition, the calculations are precise relatively. 

However, when the load exceeds the certain value, the theoretical values are smaller than the 

experimental values, and the gap between the theoretical curve and experimental curve becomes 

larger and larger.  

Form the previous analysis, it can be seen that the shear effect is not negligible in the 

considered cases. Therefore, the mixed model has been set up, which is based on the modified 

compression field theory. However, due to the complexity of its calculation, the simplified 

model has been proposed to avoid the iterative calculation procedure. The shear effect makes 

the strain of tension chord increase but decreases the strain of compression chord. Therefore, it 

increases the value of mean curvature, but comparing with traditional theoretical models to the 

experimental data, it doesn't have much improvement in calculation results. While for the 

deflection, through the comparison of theoretical calculation and experimental values, it is 
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observed that the contribution of shear to total deflection it is obvious that the shear effect has 

a significant improvement to the description of the real behavior of reinforced concrete beams. 

In the three mentioned load conditions, the shear contribution is greater than 20% to the total 

deflection. 
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NOTATION 

(1/r)m  Mean curvature 

1/r1   Curvature in state 1 

1/r1r   Curvature corresponding to cracking bending moment in state 1 

1/r2   Curvature in state 2 

1/r2r   Curvature corresponding to cracking bending moment in state 2 

1/rts  Curvature of tension – stiffening  

Aom   Homogenized area  

As,inf   Area of longitudinal tensile reinforcement; 

As,sup   Area of longitudinal compressive reinforcement; 

Asw   Shear reinforcement area 

av   Shear length 

bw   Width of the web 

d   Effective height of cross section 

Ecm   Mean value of elastic modulus of concrete 

Es   Elastic modulus of steel bars 

f   Deflection 

f1   Deflection in state 1 

f2   Deflection in state 2 

fck,cube  Characteristic compressive cube strength 

fck,cylinder  Characteristic compressive cylinder strength 

fcm   Mean compressive strength of concrete 

Fcr   Cracking force 

fctm   Mean value of tensile strength of concrete 

G   Shear modulus 

Iom,1   Moment of inertia homogenized in state 1 

Iom,2   Moment of inertia homogenized in state 2 

lsc   Length of reduced bond 

Ls   Transmission length 

Mb   Bending moment due to load 

Mb,pp   Bending moment due to self – weight  
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Mcr   Cracking bending moment 

Mu   The ultimate bending moment  

My   The bending moment of yielding od tensed bars 

Myd   Yielding moment 

sw   Spacing of shear reinforcement 

Vc   Shear of concrete contribution 

Vcr   Cracking shear 

Vsw   Shear of stirrups cntribution 

y   Vertical axis at reference system 

z   Horizontal axis of the reference system 

αe   Ratio of modulus 

γ   Mean shear strain 

εc   Strain in compression chord 

εc1   The strain at the peak stress  

εc2   Principal mean compressive strain 

εcm   Mean strain in compression chord 

εcz   Mean axial strain  

εs2   Steel strain in state 2 

εsm   Mean strain of tensile chord 

ϑ   Inclination of the principal compressive strain axis 

μx   Curvature 

ρp,eff   Ratio of longitudinal reinforcement in the effective area 

ρw   Transversal reinforcement ratio  

σc   Compressive stress 

σc1   Principle tensile stress 

σs2   Tensile stress in state 2 

σsr2   Tensile stress corresponding to the cracking bending moment 

σsw   Stress in the y-direction acting on the web reinforcement; 

τ   Mean shear stress 

ν   Coefficient of Poisson 
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