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Abstract. 
 
During my master thesis I investigated the use of innovative silicon detectors optimized for time 
resolution (Ultra Fast Silicon Detectors, UFSDs) to assess the beam energy of clinical proton beams. 
The research activity I performed is involved in the MoVeIt project of the INFN (Istituto Nazionale 
di Fisica Nucleare), aiming at developing new beam monitors for future treatments in charged particle 
therapy. 
The capability to detect single protons and the outstanding time resolution provided by the UFSD 
technology are exploited to measure protons time of flight (TOF), obtaining the energy and, 
consequently, the depth of penetration (i.e. the range) of the beams in the tissues. 
In the first part of the thesis, the work is focused on the analysis of the signals acquired by two 
different UFSD detector prototypes during the beam tests in two Italian facilities: CNAO (Centro 
Nazionale di Adroterapia Oncologica) and Trento Protontherapy Center (TPT).  
The TOF has been calculated as the difference of protons time-of-arrival in two UFSD sensors in a 
telescope configuration, using the constant fraction algorithm. I contributed to develop and implement 
two different methods to analyze the coincident signals in the two detectors, as reported in chapter 2 
together with the detector description and the experimental setup. 
The third chapter describes the detector calibration, needed to estimate the time offset (due to the 
cables and the dead time of the acquisition system) and the distance between the sensors in the 
telescope with an uncertainty of few hundreds of μm. I contributed to develop two calibration 
approaches. The first one (named absolute approach) is relying on the nominal energies provided by 
the clinical facilities, while the second one (relative approach) is independent from the nominal 
energies. The beam energies are then obtained from the TOF values, the distances and the time offset 
through an analytical approximation validated with Geant4 simulations, taking into account the 
energy lost in the air between sensors. The preliminary results, obtained with two UFSDs at relative 
distances ranging between 7 and 97 cm on clinical proton beams with energies between 62 and 228 
MeV, showed an error smaller than 1 MeV (at 228 MeV, 97 cm) in the energy estimation.  
In the fourth chapter of my thesis, I describe the two MATLAB applications developed for the 
analysis and the computational simulation of a UFSD sensor specifically designed for the project. 
The latter, segmented in 8 strips, allows the simultaneous acquisition of 16 signals (8 from each sensor 
of the telescope). The two methods implemented to analyze the signal of one channel, as described 
in the second chapter, are extended and applied to measure the TOF with the two 8 strips sensors, 
identifying the coincident signals.  The relative approach of the calibration process, described in the 
third chapter, is validated against the simulation results. The preliminary experimental results and the 
simulations of the sensor segmented in 8 strips verified the feasibility of a UFSD prototype for the 
beam energy measurement.  
The perspectives and the open-points, like the experimental validation of a final prototype reading 
out all the 8 strips of the UFSD sensors and the improvement of the data acquisition and processing 
(to allow the energy estimation in few milliseconds) are described in the final chapter. 
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1. Introduction. 
 

 
1.1 Interaction of heavy charged particles with matter 
 
The interactions of heavy charged particles, like protons, with atoms and nuclei of the matter can be 
divided into three categories: interactions with the individual electrons of the atoms, with the nucleus 
and with the atoms as whole [1]. 
 

 
Figure 1.1: Proton interaction mechanisms: (a) inelastic Coulomb interaction with atomic electron, (b) elastic 

Coulomb interaction with nucleus, (c) non-elastic nuclear interaction. Picture taken from [2]. 
 
These processes are called: stopping, scattering and nuclear interactions. The first two proceed via 
electromagnetic interactions between the charge of the incident particle and the charge of the atomic 
electrons or nuclei, with nuclear interactions that are relatively infrequent. 
Protons lose their energy primarily through electromagnetic interactions with atomic electrons 
(stopping, Fig. 1a). They exert electromagnetic forces on atomic electrons and impart energy 
sufficient to ionize the atoms or to excite them. Because of a mass which is large compared to the 
mass of the electrons (1832 times bigger) protons lose only a small fraction of their energy in a single 
interaction, and they are deflected by only small angles [2]. 



7 
 

As charge particles slow down, they also scatter (Fig. 1b), mainly by interaction with atomic nuclei. 
Most single deflections, even by nuclei, are very small, in particular for particle heavier than protons. 
Because the interaction is electromagnetic, through the Coulomb force, the phenomenon is called 
multiple Coulomb scattering.  
The less frequent phenomenon of the three is nuclear interactions (Fig. 1c), even though they lead to 
a much more profound effect. In these cases, the proton (primary particle) enters the nucleus, with 
the following generation of secondaries, such as protons, neutrons, heavy fragments like alphas, 
gamma rays and the recoiling residual nucleus, emitted with a large angle of deflection. 
Counting for all these effects, this kind of particles travels an almost straight path through matter, 
losing energy continuously in small amounts through collisions, mostly, with atomic electrons. 
The processes by which protons slow down and deposit energy along their tracks determine the 
distribution of the absorbed dose, energy per unit mass of the target, in the patient. The linear rate 
of energy loss in a medium for ionization, − 𝑑𝐸

𝑑𝑥
, expressed in MeV/cm, is the basic physical quantity 

that determines the dose that the particle delivers in the medium. It is called Stopping Power of the 
medium for the particle and it is described by the following Bethe-Bloch equation [3]: 
 
  

𝑆 = −
𝑑𝐸

𝑑𝑥
=
4𝜋𝑁𝐴
𝑚𝑒𝑐2

𝑧2

𝛽2
𝑍

𝐴
𝜌 𝑙𝑛

2𝑚𝑒𝑐
2𝛽2𝛾2

𝐼
+ 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑖𝑠𝑡𝑖𝑐 𝑡𝑒𝑟𝑚𝑠 

 

(1.1) 

where: 
• 𝛽 =

𝑣

𝑐
, v is the velocity of the particle and c the speed of light; 

• 𝑁𝐴, is the Avogadro number; 
• 𝑧𝑒, is the particle charge; 
• 𝑚𝑒, is the rest mass of the electron; 
• 𝑍, 𝐴, 𝜌 and 𝐼 are the atomic number, the mass number, the density and the mean excitation 

energy of the medium. 
The quantity 𝑑𝐸

𝑑𝑥
 is negative: as x increases, the energy decreases. However, S is almost always defined 

in terms of mass stopping power, counting for the density of the medium:  
 
 𝑆

𝜌
= −

1

𝜌

𝑑𝐸

𝑑𝑥
 [
𝑀𝑒𝑉

𝑔 𝑐𝑚2
] 

(1.2) 

 
and it expresses the rate of energy loss per g/cm2 of the medium traversed. Another quantity, closely 
related to the stopping power, is the Linear Energy Transfer (LET), or restricted stopping power, 
defined as the average energy locally imparted to the medium per unit track length (keV/μm) [4]. The 
LET is connected with the absorbed dose as: 
 
 

𝐷𝑜𝑠𝑒 = 1.6·10−19𝐿𝐸𝑇
𝐹

𝜌
 (1.3) 

 
where 𝐹 is the fluence (particle/cm2) and 𝜌 is the density of the medium (g/cm3).  
The dominant terms of the Bethe-Bloch equation are the 1

𝑣2
 and 𝑍 dependences. The 1

𝑣2
≈
1

𝐸
 

dependence leads to an increase in the energy loss with decreasing particle energy. At low energies, 
the velocity of the particle is similar to the one of the orbital electrons in the material with a 
consequent increase in the probability that the projectile picks up the electrons. Therefore, there is a 
change of the charge 𝑍, that must be replaced with 𝑍𝑒𝑓𝑓, the effective projectile charge [3]: 
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 𝑍𝑒𝑓𝑓 = 𝑍 (1 − 𝑒

−125𝛽𝑍2/3) (1.4) 

 
Because of these dependences, at non relativistic energies, there is an increase in the energy loss as 
the kinetic energy of the particle reduces along the track, in particular in the last few millimeters. At 
the end of the path, the stopping power drops because of a rapid decrease of 𝑍𝑒𝑓𝑓, with most of the 
energy that is deposited near the end of the trajectory. This effect can be expressed in terms of 
absorbed dose, through Equation 1.3, as function of the penetration depth.   
As shown by Figure 1.2, for a charged particle like proton or carbon ions, the maximum is located at 
the end of the path shaping the Bragg peak, which depends on the three interaction methods described 
before. 

 
 

Figure 1.2: Bragg curve for a proton. It describes the absorbed dose function of the penetration depth. Picture taken 
from [5]. 

 
1.2 Advantages of hadron therapy 
 
Subatomic particles and electromagnetic waves with energies above few electron volts (eV) are 
ionizing radiations. This means that particles or photons going through human tissues slow down 
losing energy and ionizing them. These forms of radiation have enough energy to damage molecules 
as DNA and can cure cancer by concentrating high dose of radiation directly at the cancerous cells.  
The development of the radiotherapy techniques based on photon or electron beams has been 
continuous in the last sixty years with contributions from a large community, and  represents a critical 
and inseparable component of comprehensive cancer treatment and care [6]. 
The tumors that do not respond positively to conventional radiation therapy are classified as being 
radio-resistant. Moreover, some tumors are located very close to sensitive organs, which are called 
organ at risks (OAR), such as the optic nerve or the spinal cord. For these tumors the excellent 
targeting properties of hadrons can be used to deliver higher doses to the tumor, while reducing the 
doses absorbed by the surrounding healthy tissues [7]. Such particles have a number of potential 
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advantages for use in radiotherapy, arising both from the physical aspects of their energy deposition 
and from biological phenomena resulting from the high density of energy depositions. Indeed, protons 
and especially carbon ions have a particularly destructive effect on biological tissues at the end of 
their path, with respect to conventional ionizing radiation [8].  
The physical advantage in the use of charged particles, like protons, relies in the distribution of the 
absorbed dose, which increases with depth and vanishes after a steep maximum, the Bragg peak. 
 

 
Figure 1.3: Protons and carbon ions deliver most of the dose at specific depth that depends on their energy. X-rays 

dose distribution reaches the maximum rapidly and then decreases exponentially. Picture taken from [9].  
 
The deposition of X-rays decreases exponentially as they penetrate tissues, while charged particles 
release almost all the dose in a sharp peak at the end of their path (Fig. 1.3), which depth can be tuned 
by adjusting the incident particle beam energy. Thus, with accurate dose delivery, particle therapy 
has the potential to treat tumors more effectively and more precisely, with reduced treatment toxicities 
and radiation-induced secondary tumor incidence, improving long-term quality of life. 
An additional advantage of using heavy charged particles is that the beam can be actively driven by 
magnetic deflection, reducing the passive components, therefore the lateral scattering that it is already 
smaller for proton beams (and heavier ion beams) than the penumbra of conventional X-ray or 
electron beams. 
A well-known disadvantage of charged particle therapy is related to the higher complexity and cost 
of this kind of therapy with respect to the well-established conventional radiotherapy with photons 
and electrons.  
To conclude this rapid introduction to charged particle therapy, it is worth mentioning how the Bragg 
peak curves shown in the previous figures are used every day to treat patients, as they are evidently  
not wide enough to cover the volume of the tumor. To achieve it, the energy of the beam has to be 
varied in a controlled way to obtain many narrow Bragg peaks, that summed up, originates a Spread 
Out Bragg Peak (SOBP). To deliver the desired dose to the whole treatment volume, this technique 
is used, consisting of the superimposition of beams with decreasing energies (Fig. 1.4). In Figure 1.5 
there is a comparison between the dose deposition coming from a SOBP (protons beam) and a photons 
beam. 
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Figure 1.4: Superposition of Bragg peak to form a Spread Out Bragg Peak. Picture taken from [10]. 

 
Figure 1.5: Comparison between photon dose distribution and SOBP, with protons. In red are represented the target 

volume and the ideal dose distribution. Protons deliver less dose to the region close to the target volume and stop right 
after. The protons dose distribution is closer to the ideal one more than the photon dose distribution does. Picture taken 

from [11].  
 
A SOBP can be performed using two different techniques: passive and active scattering. For the 
passive scattering, the beam energy required is reached by inserting devices and shifter to degrade 
the beam, covering the planned target volume. Different approach for the active scanning technique 
that instead of a broad beam, it uses a narrow pencil beam [12]. To cover the tumor volume, 
discretized into several layers of equal particle range, the pencil beam is diverted by applying 
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magnetic fields, to modify the trajectory of the beam, and by energy variations, to reach the required 
depth of each slice. 
 
1.3 Main features of Trento and Pavia therapy centers 
 
Worldwide, there are 63 charged particle therapy facilities, the majority proton centers. There are 11 
carbon ions facilities in operation, some of which have also proton capabilities [13]. 
A hadron therapy facility consists of three main equipment components: (1) a particles accelerator 
with energy selection system, (2) a beam transport system and (3) a beam delivery system. The beam 
energy produced by the accelerator must be sufficient to reach the deepest tumors. The most common 
and diffused accelerators are circular and cyclic like cyclotron, isochronous cyclotron, 
synchrocyclotrons, and synchrotrons. The physical process involved in accelerator and beam 
transport design is described by the Lorentz force law: 
 
 𝐹 = 𝑞 (𝐸 + 𝑣 𝑥 𝐵) (1.5) 

 
The application of the electric field 𝐸 increases the energy of the particle of charge 𝑞, and the 
magnetic field 𝐵 modifies the trajectory. 
Circular machines like cyclotron and synchrotron allows the acceleration of charged particles in a 
compact machine, reusing the same electric field. In general, they must be able to produce beams 
which penetrate up to 26-38 cm into the patient tissues and with sufficient intensity (number of 
particles) to deliver the desired dose within few minutes. However, the energy range and intensity 
requirements mostly depend on the beam delivery technique adopted.  
In Italy, there are 3 charged particle therapy facilities: CATANA (Centro di AdroTerapia ed 
Applicazioni Nucleari Avanzate, Catania), CNAO (Centro di Adroterapia Oncologica, Pavia) and 
TPT (Trento Proton Therapy facility, Trento). CATANA is a research center of the INFN (Istituto 
Nazionale di Fisica Nucleare), equipped with a superconductive cyclotron, where one week per year, 
ocular melanomas are treated with clinical proton beams. The beam energy, in CATANA, is 62 MeV, 
with a consequent penetration range of few cm.  
The data analyzed during my thesis have been acquired at CNAO and TPT, equipped, respectively, 
with a synchrotron and a cyclotron.  
 
1.3.1 Cyclotron 
 

 
Figure 1.6: Illustration of the beam trajectory on the left side, and of the electric and magnetic field on the right side. 

Picture taken from [11]. 
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Figure 1.6 shows the scheme of a cyclotron, in which a high-frequency alternating voltage applied 
across the gap between the two halves (“dees”) alternately attracts and repels charged particles. A 

magnetic field dipole covers both the “dees”. The particles are accelerated going from one dee to the 
other (switching the polarity once the particle reaches the gap, to avoid deceleration) and they do not 
experience any electric field once inside each halve. The perpendicular magnetic field lend the 
circular path, that because of the increase of the velocity becomes a spiral. The radiofrequency of the 
electric field, to synchronize the path of the particles and the phase of the electric field, derives from 
the equation 𝜔 = 𝑞𝐵

𝑚
. The radius of the trajectory increases until there is no room left. Having an 

almost constant 𝐵 field, the beam energy essentially depends on cyclotron dimension. To reach the 
required beam energy, according to the depth of the tumor, it must be passively manipulated. 
The cyclotron installed in TPT accelerates the beam up to a maximum energy of 228 MeV, that can 
be reduced to 70 MeV by applying, shortly after the accelerator exit, several rotating degraders of 
different thickness and material. This is a part of the Energy Selection System (ESS) that allows the 
selection of the required energy. The beam intensity (number of particles) ranges between 1 and 320 
nA, with this current that is the charge collected by an ionization chamber at the exit of the cyclotron, 
before the ESS.  
The proton beam current is modulated over a 50% duty-cycle square wave, with a 100ms period. 
Calibrated monitor ionization chambers (IC) are installed in the gantries to keep track of the beam 
flux and position [14]. 
 
1.3.2 Synchrotron 
 
A cyclotron, instead, uses constant magnetic field and electric field with a constant frequency, both 
of them are varied in a synchrotron. The path of the particles is kept constant, as they are accelerated, 
by increasing these parameters appropriately. 

 
Figure 1.7: Scheme of a synchrotron. The main components, represented, are: injection line, accelerating cavity, 

deflecting magnets and the extraction line. Picture taken from [11]. 
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Figure 1.7 shows a scheme of a synchrotron. The particles are injected from outside the accelerator 
by, typically, a LINAC (linear accelerator) with an energy of 3 to 7 MeV. To achieve the required 
acceleration, the magnetic field and the frequency of the electric field must be increased in synchrony. 
Having a finite time to cycle the magnets, there is a pulsed output production. The beam acceleration 
cycle takes (circa) 200ms to 1 s, and the beam extraction occurs over a similar period. The pulse 
repetition rate is therefore 0.5-2 Hz. Once the beam reaches the required energy it is extracted and 
delivered to the treatment room (or experimental room) through the beam transport system.  

 
Figure 1.8: Scheme of the CNAO synchrotron. Picture taken from [15]. 

 
The CNAO synchrotron (Fig. 1.8) has a diameter of approximatively 25m and accelerates protons 
and carbon ions respectively from 60 to 250 MeV and 120 to 400 MeV/u, corresponding to a range 
in water of approximatively 1mm, up to 27 cm. Sources and LINAC are placed inside the main ring 
making the accelerator more compact.  
As described in this section, both the cyclotron and the synchrotron accelerate the particles in 
bunches. The main difference is about the frequency of extraction, that in CNAO is 4 MHz and in 
TPT is 100 MHz. Because of this, the beam of the tests conducted at CNAO seems to be continuous 
instead of the clear bunched nature of the beam in TPT. 
 
1.4 Current detectors in charged particle therapy 

 
Beam monitoring is one of the fundamental steps in particle therapy, because it verifies and drives 
the beam delivery from the accelerator, with a real-time check of the beam characteristics, like the 
beam position and number of delivered ions, and the requirements dictated by the treatment plan. As 
mentioned before, to cover the entire volume of the tumor, in charge particle therapy, the application 
of different shots at different energies (SOBP) is required, with a prescribed number of particles in 
each shot. The dose delivery system must drive and hold the beam to the correct positions, until the 
prescribed dose has been delivered. Today, the main components of the dose delivery system are the 
gas-filled ionization chambers, able to measure in real-time some beam parameters like the average 
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flux and the transversal position, by integrating the ionization charge produced by several thousands 
of crossing particles. This is an indirect measurement of the beam. 
The basic functioning of the ionization chamber is related to the electron-ion pair generated by the 
ionization of a gas, that fills the chamber, crossed by a charged particle. A certain voltage difference 
is applied between two points of the gas volume boundary. Because of this polarity, there is a 
collection of these free charges at the correspondent electrode. The information about the beam 
intensity derives from the resulting charge, current pulse or voltage difference at the detector 
electrodes.  
To generate a detectable electric signal, a large number of charge pairs should be generated and 
sharply collected, to reduce the impact of recombination effects, that leads to an attenuation of the 
signal. Indeed, the attraction between two particles of opposite polarity (Coulomb force) ends with 
the generation of a neutral molecule (recombination effect). The voltage applied to the gas chamber 
is crucial because, as represented in Fig. 1.9, the electron-ion pair recombination rate is inversely 
proportional to the bias voltage. 

 
Figure 1.9: Different regions of operation of gas-filled detectors. The pulse height is related to the bias voltage, that 

defines the detector mode of operation. E1 and E2 represents radiation with different energies. Picture taken from [16].  
 

Therefore, increasing the bias voltage there is a reduction of the signal losses, enhancing the capability 
to collect charges up to a limit, that leads to the detector discharge.  
The beam monitors currently used in charged particle facilities are stacks of ionization chambers, 
including integral chambers with a non-segmented anode to measure the beam flux, and position 
chambers with segmented anodes. The segmentation of the anodes (in strips or in pixels) allows the 
measurement of the particles position passing through the chambers. The typical sensitive area of 
ionization chambers ranges between 20x20 and 30x30 cm2.  
The CNAO monitor chambers are enclosed in two independent steel boxes: BOX1 and BOX2 (Fig. 
1.10). BOX1 contains an integral chamber (INT1) with a large anode, sensitive area of 24x24 cm2, 
for the beam flux measurement, followed by two chambers with the anode segmented in 128 strips, 
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respectively, with vertical (StripX) and horizontal (StripY) orientations, for the beam position and 
width measurements. BOX2 is used as backup monitor, carrying the same evaluations of the first one. 
It contains a backup integral chamber (INT2), followed by a chamber with the anode segmented in 
32x32 pixels, 6.6mm wide [17]. 
There are, in total, 5 parallel plate ionization chambers, filled with nitrogen, corresponding to a total 
water equivalent thickness of 0.9mm (the energy loss expressed in terms of penetration range in liquid 
water). They are located close to the patient to reduce the effect of the beam lateral dispersion, due to 
the interaction of the beam particles with the chamber. 
 

 
Figure 1.10: Representation of BOX1 and BOX2 of the CNAO dose delivery system. Picture taken from [17]. 
 
Ionization chambers have been used successfully for more than 60 years. However, their sensitivity 
limits the minimum beam intensity that can be safely delivered to the order of thousands of particles, 
while their slow collection time (hundreds of microseconds) precludes the use of ionization chambers 
on fast beam delivery strategies, which have been recently proposed. Therefore, ionization chambers 
represent the current limiting factor in developing completely different treatment strategies that use 
less radiation, that are faster, more accurate in the spatial delivery of the radiation dose, and that are 
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less damaging for healthy tissues and more accurate on the tumor target. Any of the new treatment 
modalities cannot be implemented without developing a monitoring system meeting the clinically 
driven precision of less than 1% in the number of particles delivered and uncertainty of less than 1 
mm in the depth of penetration 
 
1.5 Ultra Fast Silicon Detectors as new detectors for charged particle 
therapy 
 
Current monitors (ICs) have small sensitivity (around 104 protons minimum to be detectable), slow 
charge collection time (around 100 μs) and poor time resolution. These characteristics do not fulfil 

the requirements of some new kind of treatments, proposed to compensate for organ movement, such 
as rescanning [18] and tracking [19]. The latter is the most precise but also the most technically 
challenging, requiring the energy modulation shot-by-shot, following the motion of the target during 
irradiations. The rescanning technique works like the active scanning described before. Intrafraction 
motion can lead to an under- and overdose pattern, that can be averaged by repainting (rescanning) 
the planned treatment volume (PTV) multiple times, with smaller dose [20]. 
Within the MoVeIT project, the University of Torino and the Torino division of the INFN are 
exploring the direct measurement of the number of particles, beam energy and position of each 
particle, as a new monitoring approach in particle therapy [21]. 
The feasibility of the single particle tracking paradigm for beam monitoring in radiobiological 
experiments (up to 100 MHz/cm2 fluence rate or 108 particles per second) represents the final goal 
of MoVeIT and an important milestone towards its possible translation into clinics. 
Two new devices for on-line measurement of proton flux and energy are being developed, based on 
the Ultra Fast Silicon Detector (UFSD) technology, recently introduced in high energy physics and 
described in the following. 
The basic functioning of silicon detectors, like Ultra-Fast Silicon Detectors (UFSD), originates from 
the p-n junction physics. In this kind of sensors, the sensitive area is the depleted region at the 
interface between two differently doped zones by means of external biasing. A charged particle 
travelling through the sensitive volumes ionizes the material with the consequent generation of 
electron-hole pairs (e-h), collected at the n++ contact (electrons) and p++ contact (holes). The motion 
of these e-h pairs induces a current that ends when the last charge carrier reaches its electrode. One 
electron-hole pair is generated every 3.6 eV released by a particle crossing the silicon detector, while 
to ionize a gas molecule in an ionization chamber around 30eV are needed. Therefore, with the same 
amount of energy silicon yields about 10 times the number of charge carriers.  
The UFSDs are based on the Low Gain Avalanche Diodes (LGAD) technology, n-on-p silicon 
detectors with an internal moderate gain due to a thin p+ layer, placed close to the bottom side of the 
n++ electrode of a heavily doped junction. The charges generated by the ionization of the material 
are multiplied once they cross the gain layer. To reduce noise perturbations and electric field 
confinement complexity in segmented detector configurations (as the one involved in the 
experimental tests conducted) the gain is restricted to a value 10-20. The doping profile is not constant 
but there is a large increase in doping concentration in proximity to the junction, creating a large 
electric field (Fig. 1.11). 
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Figure 1.11: Illustration of an Ultra Fast Silicon Detector. The gain layer p+ posed under the n++ cathode generates a 

strong electric field ( 300kV/cm).  
 
The main advantages of UFSD are the charge collection time of the order of ns and the time 
resolutions of tens of ps. The ambitious idea of use the UFSD technology to replace the ionization 
chambers would potentially boost the implementation of faster and more accurate treatment 
modalities, nowadays prevented by the limits of state-of-the-art beam monitors. 
The first MoVeIT detector prototype is aimed at counting the number of beam particles, while the 
second one will measure the beam energy with time of flight techniques, exploiting the innovative 
Ultra Fast Silicon Detector (UFSD) technology, recently introduced in high-energy physics 
experiments. 
 

1.6 Aim of the thesis 
 

Currently, the beam energy is not measured during the treatment delivery, but it is certified through 
checks of the accelerator (for synchrotrons) or proper verification of the range measurement before 
the treatment (for cyclotrons). A device for a direct and fast online measurement of the beam energy, 
now missing, would be of great benefit for regular quality assessment controls, for energy checks 
before the irradiation of new spills or for beam monitoring in future delivery schemes employing fast 
energy modulation [19]. 
The final goal of my thesis is the measurement of the proton beam energy from the signals acquired 
by two UFSD detectors in a telescope configuration (Fig. 1.12). This is a well-known approach 
consisting in measuring the Time Of Flight (TOF) the particles need to travel a known distance, thus 
obtaining the particles velocity and their energy. The challenges of the application of such an 
approach in the hadron therapy environment reside in the clinically acceptable measurement 
uncertainties and in the required time resolution. Indeed, the TOF detector should perform a prompt 
measurement of the proton beam energy with less than 1 MeV uncertainty in the clinical range (60-
250 MeV). Moreover, in order to monitor the energy during the treatment, the detector has to be non-
destructive, i.e. as thin as possible to reduce the multiple scattering, and radiation resistant, at least 
for about 1015 protons/cm2, roughly corresponding to one year of clinical proton irradiation in a 
single treatment line. 
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Figure 1.12: Scheme of the telescope configuration adopted for the experimental acquisition of the data. 

To achieve the final goal, I contributed to develop and implement a MATLAB [22] application for 
the TOF determination. This code processes the output signals of the two sensors of the telescope to 
determine the time of arrival of the particles impinging on each detector (𝑡1and 𝑡2), identifies the 
possible coincidences (the signals in the two sensors generated by the crossing of the same particle) 
and measures the TOF as 𝑡2 − 𝑡1 for the coincident signals. Two different methods have been 
developed and implemented to treat the coincidences. To validate this application, the experimental 
signals, acquired at CNAO and TPT using one channel out of the 8 available per each detector, have 
been used. 
The future tests will be conducted reading 8 channels per detector, therefore, the TOF measurement 
application has been extended, to treat 16 signals. To validate this MATLAB application the future 
readout of all the sensor channels, I contributed to develop and implement a second MATLAB 
application for the simulation of 16 signals. This simulation app relies on the data generated by 
Geant4 and Weightfield2 simulations. 
To determine the beam energy, from the measured TOFs (either for the signals acquired during the 
tests or the simulated ones), I contributed to develop and implement a calibration method of the 
system, in terms of distance and time offset. Indeed, the system is affected by uncertainties over the 
positions of the detectors and the time offset, due to the cables and the system used to digitize and 
store the data (digitizer), that is unknown.  
Two approaches have been developed and implemented: absolute and relative approach. The first 
one, to calibrate the system in terms of distances and time offset, relies on the nominal energies, 
because of their small uncertainty being provided by the facility. This has been the first method 
developed, after the very first tests conducted, and it has been used to verify the feasibility of the 
project. The relative approach, instead, does not uses the nominal energies, or any other nominal 
parameter. The employment of these two methods, with the TOFs measured either from the 
experimentally conducted tests or from the simulations, leads to very precise values of the beam 
energy. Thus, the difference between the nominal and measured beam range, at clinics relevant 
distances, stays within the limit of 1mm, imposed by the regulation, proving the feasibility of the 
developed methods (to measure the TOF and to calibrate the system). 
Many others analysis have been conducted during the development of the main objectives of the 
thesis. Some of them have been reported, like: the study over the best combination of energies to 
perform the calibration or the analysis about which is the most performant approach to study the 
coincident signals, for the 16 channels TOF determination. Others have been overlooked, like the 
evaluation of the time offset that occurs between different channels of the digitizer. 
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2. Time of flight determination 
 
2.1 Introduction 
 
The beam energy determines the depth (i.e. the range) of the dose deposition into the patient tissue, 
therefore it is one of the most important parameters in order to target properly the tumor. In clinics, 
the beam energies should allow the treatment of tumors at different depths (3-30 cm) into the tissue, 
and the required accuracy in the range determination is within 1 mm. A not very precise estimation 
of the beam energy, with a consequent not accurate penetration range, may lead to an alteration of 
the dose delivered to the patient.  
Currently, the beam energy is not measured during the treatment delivery, but it is certified through 
checks of the accelerator (for synchrotrons) or proper verification of the range measurement before 
the treatment (for cyclotrons). 
The online measurement of the energy of the particles could play a crucial role in the development of 
new treatment strategies, such as the ones recently envisaged to treat moving targets and therefore to 
compensate for organ movement, with shot-by-shot energy modulations. Event though, at this 
moment, standard accelerators do not have the ability to change the beam range as fast as required by 
the respiration motion. Efforts towards 4D radiotherapy treatments have been done, using passive 
energy modulation systems. Indeed, two opposite wedge absorbers able to move orthogonally to the 
beam direction, increasing or decreasing the thickness of the absorber to reach the required beam 
energy are available in some facilities [23].  
An innovative detector prototype based on a frontier silicon technology (UFSD, already introduced 
in the previous chapter) is being developed within the MoVeIT INFN project to measure the beam 
energy during irradiations using Time Of Flight (TOF) techniques.  
My thesis aimed at analyzing the data acquired by the aforementioned detector during the tests 
performed at two clinical facilities for proton beam radiotherapy (CNAO, Pavia, and TPT, Trento), 
and at simulating multiple signals in order to study the experimental setup in the future step of the 
project. 
To measure the energy of charged particles traveling along a path, with known distance, the TOF 
technique is a standard method. It detects the times, 𝑡1 and 𝑡2 at which one proton crosses S1 and S2.  
Having ∆𝑡 as, 𝑡2 − 𝑡1 and the distance between S1 and S2, the velocity can be calculated as: 
       
 

𝑣 =
𝐿

∆𝑡
= 𝑐 ∙ √1 −

𝐸0
2

(𝐸0+𝐾)2
    

(2.1) 

 
where c is the light speed and Eo is the rest mass of the proton.  
     
 

𝐾 = 𝐸0 ∙ (
𝑐∆𝑡

√𝑐2∆𝑡2 − 𝐿2
− 1) (2.2) 

 
The particle kinetic energy can be calculated with Equation 2.2. 
In this chapter, there is a description of the detectors setup used during the experimental acquisition 
of the signals (section 2.2) . Then, the method developed for the analysis of the signals is described, 
aiming at defining the arrival time of the particles in the two detectors (𝑡1 and 𝑡2). In the last section, 
two approaches are defined to measure the TOF, from the arrival times stored during the signals 
processing. 
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2.2 Detector prototype and data acquisition  
 

 
Figure 2.1: Side view of the two detectors (S1 and S2) arrangement. 

 
Two UFSDs sensors S1 and S2 (with a defined thickness d) at a distance L, has been used to build a 
telescope (Fig. 2.2b) and measure the TOF of protons, defined as the time the particles take to cover 
that distance L. In a clinical beam line, the isocenter is the reference distance for the patient 
positioning during treatments, where every beam parameter must be known. In particular, the nominal 
beam energy provided by the clinics is defined at the isocenter, where the first sensor S1 is located 
during the experimental acquisition of the data. For the two tests performed, both at CNAO and TPT, 
the clinical beam energy range (from 60 to 250 MeV) was considered.  
The energy measurement is composed by two main steps: the data acquisition and the data analysis, 
which will be described in the following sections. For the first beam tests performed at CNAO, the 
two sensors, in Figure 2.2a, produced at Hamamatsu Photonics, HPK (Japan), have been used. Each 
sensor is made up of 4 pads, each of them with 80 μm of active thickness and a sensitive area of 3x3 

mm2, but only one out of the four pads has been readout for each detector. For the beam test at the 
Trento Protontherapy center (Trento), strip sensors specifically designed for the MoVeIT project and 
produced by Fondazione Bruno Kessler, FBK, (Trento) were used (Fig. 2.3).  
 

 
Figure 2.2: a) HPK UFSD detector segmented in 4 pads; b) the telescope made by two UFSDs readout by dedicated 

boards; c) mechanical support for the detector S2, equipped with two orthogonal moving stages. 
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Figure 2.3: FBK UFSD detector segmented in 11 strips. 

  
Each sensor is made up of 11 strips of 2.2 mm2 each, with 50 μm of active thickness (Fig. 2.3). For 
the experimental tests performed, only one strip per detector has been readout. 
Both HPK and FBK sensors (used at CNAO and TPT tests, respectively) were mounted on HV 
distribution boards aligned to the beam, and the considered channel of the sensor was readout by a 
CIVIDEC amplifier and acquired with a digitizer. The digitizer samples the signal at 5 GS/s, with one 
ADC count corresponding to 0,24 mV, and for each trigger stores 1024 samples corresponding to a 
waveform of 204,8 ns duration. 200 samples (40 ns) waveform obtained from the digitizer is shown 
in Figure 2.4, from the signals acquired in one of tests conducted at CNAO. 
 

 
Figure 2.4: 200 samples (40 ns) acquired from a test conducted at CNAO at 103.5 MeV. 7 cm of distance between the 

two detectors. The ones indicated by the arrows are two peaks, generated by the same proton crossing the two detectors 
(coincidence peak). 
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The sensors S1 and S2 are attached to the board, anchored at the mechanical device, with rigid 
supports, that keeps the first sensor fixed at the isocenter (Fig. 2.2c), and allows the motion of the 
second detector at ten different distances (between S1 and S2), from 7 to 97 cm with a step of 10 cm. 
To align the two detectors with the beam direction, two orthogonal and movable stages has been used 
to support and move S2, with a LabVIEW program (National Instruments), into a 4x4 grid spaced by 
0.5 mm around the starting position.  
The alignment is performed measuring the number of coincident peaks, i.e. the signals generated in 
S1 and S2 by the same particle (Fig. 2.4). The best alignment is defined as the position with the 
maximum number of coincidences (Fig. 2.5), considering the 16 occupied positions. After the 
alignment analysis, the acquisition can start. 
 

 
Figure 2.5: Results of the scan in position of the sensor S2 to find the best detector alignment, achieved for the grid 

position (1,1). 
 
The data acquisition rate was not optimized. Because of the dead time for conversion (110 μs) and 

store the data (around 200 μs) of the digitizer, only a few percent of the particles delivered has been 

used. Thanks to the high rate of particles of this kind of treatments this is not a problem in the 
conducted tests, in which a significant number of coincidences has been collected. For the future 
translation into clinics, where the system should be able to measure the beam energy within a beam 
shot (few millisecond) bigger sensitive area will be used to increase the statistics (8 strips, from strip 
2÷9, of Fig. 2.3 will be used). 
Because of the presence of the cables and the dead time of the digitizer, the time of flight measured 
in this chapter is affected by a certain time offset, unknown up to this point. Therefore, the real time 
the particles take to cover the distance between the detectors will be expressed as 𝛥𝑡 = 𝑇𝑂𝐹 ±
𝑜𝑓𝑓𝑠𝑒𝑡. 
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2.3 Time of flight measurement app 
 

 

Figure 2.6: TOF measurement app interface. 
 
Figure 2.6 shows the user interface of the TOF measurement app, explained more in detail in 
Appendix A.  
 
2.4 Signals analysis 
 

The raw signals acquired by the digitizer must be “cleaned”, removing the baseline due to the setup 

of the digitizer, that results as an offset value. The mode function of MATLAB recognizes the most 
recurring value (baseline) that is subtracted from the signal. On top of that, a threshold is decided on 
the app interface, and once the signal overcome this value, it is possible to detect the peak. For 
example, in Fig. 2.7 the threshold has been set at 200 ADC counts. 



24 
 

   

 
The procedure to determine the TOF starts with the determination of 𝑡1 and 𝑡2, the exact time at which 
the particle crosses the sensor S1 and S2. The technique used for this purpose is the Constant Fraction 
Discrimination (CFD).  
The shape of the peak is strictly related to the energy of the beam, with bigger peaks coming from 
smaller energies, having, in these cases, more energy released in the detector (from Bethe-Bloch 
equation reported in chapter 1). The variability of the energy deposition (Landau distribution) leads 
to amplitude fluctuations and shape irregularities. 
With the CFD, the arrival time is measured as the time at which the amplitude reaches a percentage 
of the maximum value of the peak, therefore it depends only on the rising part of the pulse. The CFD 
is one of the possible methods to reduce the effect of the time walk, defined as the effect that allows 
bigger signals to overcome a given threshold earlier than smaller ones (Fig. 2.8).  

 
Figure 2.8: Two peaks of different amplitude crossing the threshold at different times. 

 
The arrival time can be estimated through the leading-edge discriminator. Basically, the peak is 
identified when the amplitude of the signal overcomes the threshold voltage. However, because of 
the mentioned problem (time-walk effect), this would not be the best choice. The CFD method treats 
the arrival time independently from the pulse amplitude. 

Figure 2.7: One event of the data acquired at TPT, with beam energy 182.8 MeV and 
970 mm distance between S2 and S1. 
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Taking a percentage of the maximum value reached is a way to normalize the peaks beyond their 
amplitude, and reduces the time walk effect, trying to define, in the most precise way, the arrival time 
of the particle. 
 

 
Figure 2.9: Same signals of Fig. 2.7. The yellow star marks the point of the 80% of the maximum amplitude of each 

peak. 
 
Seeking the peaks in S1 is the first step of the TOF determination. For each peak generated in S1 by a 
proton, the signal generated by the same proton crossing the second sensor S2 should be identified 
(coincident peak). To do so, once the arrival time of a proton in S1 (𝑡1) is located, the program focuses 
on search of the signals of the second sensor, opening a window of a certain number of samples 
(decided on the user interface). Any peak, individuated within this sample window, is considered as 
a coincident peak, and the program stores the difference between the two arrival times (𝑡2 − 𝑡1) for 
each of them.  
For instance, a sample window of 50 samples (corresponding to 10 ns) could be assumed. From 
Figure 2.9, the first peak (blue one) is too distant from the first peak of the second sensor (red one). 
The distance between the two of them is bigger than 50 samples.  
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Figure 2.10: Window (yellow lines) of 50 samples used to find out the time of flight of a particle crossing the two 

detectors. This is a zoom over Fig. 2.7. 
 

Instead, opening a 50 samples window (yellow lines in Fig. 2.10) from the second peak, the system 
takes a coincidence, with a time of flight of 29.0162 samples, or 5.80 ns. 
Another typical problem that must be faced reading these signals is related to the pileup.  
 

 
Figure 2.11: One event of the data acquired in CNAO, having 103.5 MeV beam energy and 7 cm of distance between 

the detectors.  
 

The pileup happens when different protons crosses the detector in a time interval smaller than the 
pulse time duration (system dead time) in this case 2 ns. A pileup signal is shown in Figure 2.12. 
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Figure 2.12: Pileup condition in the signal of the second detector. This figure is a zoom over 45 samples of Fig. 2.11. 

 

An algorithm to take care of the pileup has been elaborated. In the situations like the one described 
in Figure 2.12, there is a peak that occurs during the fall of the previous one. According to the distance 
between these two pulses, it may be a pileup or another issue, noise generated, called jitter. The code 
counts the number of pulses between the “right” peak and the possible pileup. If this number is bigger 
respect the one setup from the user interface (minimum pileup size), the following peak is labeled as 
pileup, thus neglected. Otherwise, in the jitter situation, that fall is considered as a local minimum of 
the peak that has not already reached the maximum amplitude. 

 
Figure 2.13: Effect of the noise on the signal. In this specific case analyzed over the moment of crossing the threshold 

value. 
 

In Figure 2.13, the problem of the jitter is focused on the overcoming of the threshold, but this is 
something that affect in general the signal. Having discretized the peak in a finite, and small, number 
of points, that “local” fall may be due to this electronic noise-related effect. This is proved by one 
peak of the very same event of the Figure 2.11. 
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Figure 2.14: No pileup condition in the signal of the first detector. This figure is a zoom over 35 samples of Fig. 2.11, 

not the same ones of Fig. 2.12. 
 

In this case, the fall lasts exactly 2 steps and then it increases again, but it is not a pileup occurrence, 
but a noise generated problem. Nevertheless, the choice of the number of steps “allowed” is up to the 

user. In the evaluated cases, the value 2 proved to be the best choice, but it depends on the noise level 
and on the amount of point used to discretize the peak. 
 
2.5 Time of flight measurement 
 

At this point, for each peak over threshold in S1, a list of peaks in S2 (within the chosen time 
window) has been saved. In other words, for each incoming proton in S1, a list of possible signals 
generated by the same proton in S2 has been saved. The CFD algorithm provides a value of time of 
arrival for each peak. Therefore, for each peak in S1, a list of 𝑇𝑂𝐹𝑖 = 𝑡1 − 𝑡2𝑖  where 𝑡1 is the time-
of-arrival of the signal in 𝑡1 and 𝑡2𝑖 is the time of arrival of the i-th possible coincident peak in S2, is 
saved. The histogram of all 𝛥𝑡 for all the possible coincident peaks in the two detectors is shown in 
Figure 2.15.  



29 
 

 

 
Figure 2.15: Histogram with all the coincidences collected analyzing the signals coming from two different tests. On the 

left-hand side, test conducted at TPT, at 182.8 MeV, with 970mm between S2 and S1. On the right-hand side, test 
conducted at CNAO, at 77.6, with 37 cm between the two detectors.  

 
Figure 2.15 shows some differences between the two histograms. The one for TPT has a widening at 
the base of the peak, while the one for CNAO has a constant background of coincidences. Indeed, 
because of the different accelerator (synchrotron in CNAO, cyclotron in TPT), the two beams have 
specific characteristics. In CNAO, the flux is continuous (Fig. 2.16), and this can be appreciated from 
the histogram (Fig. 2.15), in which there are coincidences all over the spectrum. In TPT, the beam is 
bunched (Fig. 2.17), having a 50% duty-cycle square wave with 100 ms period. The radiofrequency 
at which the particles are emitted is about 100MHz. The period, with this frequency is of 10 ns. As a 
consequence, every 5 ns (25 samples), there are particles coming from the accelerator. This can be 
appreciated in Figure 2.15, where the coincidences are spread over an interval of about 20 samples 
(around 4 ns). 
It is worth noticing that Figure 2.17 does not show the above mentioned 10 ns period because of the 
dead time of the digitizer. In fact, the 200 ns acquired, and stored events are interspersed with the 
conversion time of the digitizer (110 μs) and the time needed to transmit and store the data (200 μs). 
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Figure 2.16: 1000 events acquired in CNAO (first detector). The signal is continuous. 

 
 

 
Figure 2.17: 1000 events acquired in TPT (first detector). The signal is clearly bunched. 

 
Having this characterization of the accelerator in mind, a strategy to deal with the false coincidences 
should be developed. In CNAO there is an almost constant background of coincidences that must be 
removed. For the acquired data at TPT, instead, the coincidences of the widening at the base of the 
peak must be removed. 
Enlarging the considered time window for the TPT case, further peaks are visible, due to the 10 ns 
period radiofrequency (Fig. 2.18). Those secondary peaks entirely rely on false coincidences. 
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Figure 2.18: Radio frequency peaks in signals acquired in TPT, with the relative number of coincidences collected. 

 
An additional peak can be appreciated every 10 ns, each one characterized by same dispersion and 
mostly the same number of coincidences. So, looking at Figure 2.19, it is clear that even at the base 
of the main peak (the one with the true coincidences) an additional peak can be recognized, made up 
of incorrect coincidences, with the same shape of those peaks on the right side of the Figure 2.18. 
 

 
Figure 2.19: Restricted view of Figure 2.18, window of 100 samples. Around 30 samples, there is the main peak of the 

histogram with the red line that represents the bottom gaussian of a double gaussian fit. On the right-hand side, there is 
the radiofrequency peak, fitted as single gaussian (green line). The two have similar maximum amplitude and 

dispersions. 
 
Two methods have been developed to remove these false coincidences, with the ultimate goal of 
measuring the TOF in the most precise way. Indeed, a wrong TOF, or a big error over the TOF, will 
affect in a bad way the energy measurement (chapter 3). 
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The first step of both methods is a double gaussian fit of the histogram (Fig. 2.20). 
 

 
Figure 2.20: Double gaussian fit of the histogram of Fig. 2.15. 

In Figure 2.21 are presented the equations coming from the two double gaussian fits (for TPT and 
CNAO, respectively). 
 

 
Figure 2.21: Equations of the double gaussian fit of the histogram of Fig. 2.15. MATLAB provides the value for each 

parameter of the equation plus an upper and lower limit of a 95% confidence bound (the values in the brackets).  

 
For the test conducted at CNAO, the second gaussian is a constant (Fig. 2.21), which represents the 
background of false coincidences, that are on both sides of the peak, and even at its base. 
For the one conducted at TPT, instead, the second gaussian represents the radiofrequency peak. 
After this first step, the two methods are different. 
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2.5.1 Method 1 (3-sigma method) 
 
This first method identifies a narrow region around the mean of the peak to remove the false 
coincidences. It considers as “right” coincidences the ones that are within an interval around the main 

peak. From the mean value and the dispersion of the first gaussian of the first step (double gaussian 
fit), this method takes an interval of 3-sigma ([-1.5sigma; 1.5sigma]). The width of the interval can 
be decided from the user interface by modifying the value of the half width. In this case, it has been 
set at 1.5. 
 

 
Figure 2.22: Application of the first method (3-sigma method) to treat the coincidences. The time window is narrowed 

around the main peak. The green dashed lines represent the upper and lower limit of the interval. The coincidences 
within the interval are considered for the final fit. 

 
From a single gaussian fit of the coincidences in the interval within 3-sigma, the mean TOF, and the 
related error, are calculated. The TOF is the mean value of this final single gaussian fit, while the 
error comes from the confidence bound, provided by MATLAB (like the ones of Fig. 2.21): 
 

𝑒𝑟𝑟𝑇𝑂𝐹 =
𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑏𝑜𝑢𝑛𝑑 − 𝑇𝑂𝐹𝑚𝑒𝑎𝑛

2
 

 
The major limit of this method is that, even at the base of the peak there are several false coincidences, 
in particular for the results of the tests conducted at TPT. To overcome this problem, a second method 
has been developed. 
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2.5.2 Method 2 (second gaussian method) 
 
The second method tries to solve the limitation of the first one, leading to a more precise evaluation 
of the time of flight. As represented before, the false coincidences profile is different according to the 
characteristics of the beam. This affects the shape of the second gaussian of the double gaussian fit 
(first step of the coincidences treatment), as shown in Figure 2.23. This method removes the 
coincidences that are below the second gaussian from the histogram.  
 

 
Figure 2.23: Second gaussian of the double gaussian fit. For the tests at TPT, it has the shape of the radiofrequency 
peak at the base of the main peak. For the tests at CNAO, it is a constant over the background of false coincidences. 

 
In this way, the code removes the false coincidences following the characteristics of the beam, 
proving a certain adaptability. Indeed, for TPT and CNAO tests, respectively, the radiofrequency 
peak and the constant background are removed. The final step is a single gaussian fit of the left 
coincidences (Fig. 2.24), form which the mean TOF is define, as for the 3-sigma method, while the 
error is measured as: 
 𝑒𝑟𝑟𝑚𝑒𝑎𝑛 =

𝜎

√𝑁
 

 

(2.3) 

 
with N that stays as the number of coincidences considered for the final fit, and σ = 𝑐1

√2
, with c1 from 

the equation of the single gaussian fit (Fig. 2.25). 
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Figure 2.24: Final single gaussian fit of the left coincidences after the subtraction between the ones of the second 

gaussian from the histogram. 

 
 

 
Figure 2.25: Equations of the final single gaussian fit of the left coincidences after the subtraction. 
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2.6 Results 
 

Table 2.1 and Figure 2.26 show the results of the tests conducted at TPT, while Table 2.2 and 
Figure 2.27 represent the results of the ones conducted at CNAO. 

 
Table 2.1 : Results from the application of the first and second method to the signals acquired at TPT. 

TPT First method Second method 
distance 
(mm) 

Isocenter 
energy 

TOF [ns] TOF 
error 
[ps] 

σ [ns] TOF [ns] TOF 
error 
[ps] 

σ [ns] 

270 68.3 2.395 2.797 0.040 2.394 0.798 0.030 
270 98.5 2.023 1.480 0.053 2.024 0.765 0.058 
270 147 1.693 3.172 0.066 1.694 0.539 0.066 
270 182.7 1.556 5.142 0.063 1.556 0.487 0.060 
270 227.3 1.422 1.422 0.084 1.422 0.445 0.093 
670 68.3 6.092 2.688 0.062 6.094 1.665 0.062 
670 97 5.208 0.984 0.064 5.208 1.107 0.059 
670 163 4.175 3.965 0.098 4.173 0.820 0.085 
670 182.7 3.993 2.968 0.070 3.992 0.573 0.066 
670 222.8 3.696 2.074 0.095 3.695 0.557 0.082 
670 227.3 3.664 2.462 0.102 3.664 0.488 0.080 
970 68.3 8.880 8.075 0.068 8.882 2.712 0.104 
970 98.5 7.589 3.161 0.071 7.589 1.435 0.063 
970 147 6.354 7.759 0.083 6.352 0.890 0.072 
970 163 6.084 4.968 0.098 6.083 0.914 0.079 
970 182.7 5.823 2.360 0.095 5.824 0.869 0.082 
970 222.8 5.400 2.542 0.111 5.402 0.756 0.092 
970 227.3 5.362 4.497 0.138 5.363 0.692 0.105 
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Table 2.2: Results from the application of the first and second method to the signals acquired at CNAO. 

 

 
 

CNAO First method Second method 
distance 
(mm) 

Isocenter 
energy 

TOF [ns] TOF 
error 
[ps] 

σ [ns] TOF [ns] TOF 
error 
[ps] 

σ [ns] 

70 58.95 0.765 3.426 0.103 0.764 1.332 0.111 
70 77.6 0.692 4.799 0.110 0.691 1.239 0.120 
70 103.5 0.624 3.257 0.125 0.624 1.179 0.131 
70 148.5 0.551 5.293 0.152 0.554 1.575 0.161 
70 226.1 0.488 5.255 0.161 0.492 1.666 0.163 
370 58.95 3.724 3.900 0.117 3.725 1.897 0.122 
370 77.6 3.302 2.421 0.105 3.301 1.628 0.117 
370 103.5 2.921 4.763 0.113 2.921 1.588 0.120 
370 148.5 2.522 4.198 0.147 2.523 1.339 0.151 
370 226.1 2.161 4.558 0.159 2.161 1.621 0.162 
670 58.95 6.699 6.465 0.115 6.699 2.652 0.115 
670 77.6 5.922 4.642 0.124 5.922 2.202 0.119 
670 103.5 5.231 5.636 0.112 5.231 1.967 0.116 
670 148.5 4.518 6.169 0.158 4.520 1.941 0.159 
670 226.1 3.864 4.038 0.153 3.863 1.665 0.153 
970 58.95 9.667 7.015 0.120 9.666 2.953 0.113 
970 77.6 8.552 12.453 0.130 8.549 2.799 0.114 
970 103.5 7.551 4.819 0.122 7.548 2.796 0.120 
970 148.5 6.510 5.009 0.158 6.508 2.110 0.150 
970 226.1 5.557 5.741 0.154 5.557 2.036 0.155 
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Figure 2.26: TOFs measured from the tests conducted at TPT. 

 

 

 
Figure 2.27: TOFs measured from the tests conducted at CNAO. 

As predictable, increasing the energy the mean TOF reduces, maintaining the distance fixed. While, 
keeping fixed the energy and increasing the distance, the TOF increases (Fig. 2.26 and 2.27). 
The tables reporting the results, in terms of mean TOF and error (Table 2.1 and Table 2.2), show that 
the mean TOFs coming from the two methods is basically the same. But there is a difference of the 
error, of the order of few ps. 
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Figure 2.28: Comparison between the results of the two methods applied to treat the coincidences stored. On the left-
hand side, there is the profile of the TOF measured at the different energies at which the tests have been conducted in 

TPT. On the right-hand side, there is the error, coming from the two methods, at each energy. Both the figures consider 
the case of S2 at 670 mm from S1. 

 

Figure 2.29: Comparison between the results of the two methods applied to treat the coincidences stored. On the left-
hand side, there is the profile of the TOF measured at the different energies at which the tests have been conducted in 

TPT. On the right-hand side, there is the error, coming from the two methods, at each energy. Both the figures consider 
the case of S2 at 970 mm from S1. 
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Figure 2.30: Comparison between the results of the two methods applied to treat the coincidences stored. On the left-
hand side, there is the profile of the TOF measured at the different energies at which the tests have been conducted in 

CNAO. On the right-hand side, there is the error, coming from the two methods, at each energy. Both the figures 
consider the case of S2 at 670 mm from S1. 

 
Figure 2.31: Comparison between the results of the two methods applied to treat the coincidences stored. On the left-
hand side, there is the profile of the TOF measured at the different energies at which the tests have been conducted in 

CNAO. On the right-hand side, there is the error, coming from the two methods, at each energy. Both the figures 
consider the case of S2 at 970 mm from S1. 

 
In figures from 2.28 to 2.31 is reported the profile of the mean TOF and mean TOF error: TPT and 
CNAO at 67 and 97 cm, comparing the two methods. On the left-hand side there is the mean TOF, 
represented by just one line, instead of two (for the two methods). This is because the measured TOFs, 
from the 3-sigma method and the second gaussian method, are pretty much the same. Indeed, the 
difference between these results would not be appreciable on a nanoseconds scale. On the right-hand 
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side there is the error on the TOF measured with the two methods, and it is possible to appreciate that 
the ones of the second method are always smaller than the ones of the first method. They are, mostly, 
of the order of few ps or even smaller, but they have a serious impact over the energy measurement, 
as will be clear in the next chapter. There is, in fact, a limit to the acceptable value of the TOF error 
to maintain the energy measured within the limit of 1 mm of water range allowable. This aspect is 
explained in the following chapter. 
The profile of the error coming from the second method shows another important aspect. Indeed, 
increasing the energy, at fixed distance, the error gets smaller. This is due to the increase of the 
number of particles that reach the second detectors, increasing the statistics for the TOF measurement.  
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3. Calibration 
 

3.1 Introduction 
 
The beam energy is often characterized in terms of beam penetration range, with liquid water used to 
mimic the patient tissue (Fig. 3.1). This range is the relevant parameter in clinics. Knowing the beam 
energy, the range can be retrieved from the PSTAR table (National Institute of Standards and 
Technology) or with the Bragg-Kleeman rule [24], as: 
 
 𝑅 = 𝑁 · 𝐸𝛽   [𝑐𝑚] 

 
(3.1) 

with 𝑁, proportionality factor [g/cm2 MeV] that is approximatively proportional to the square root of 
the effective atomic mass of the medium, and 𝛽, an exponent factor of the kinetic energy (𝐸), 
dimensionless. In my thesis, this equation has been used, with values of 𝑁 and 𝛽 defined by the 
International Commission on Radiation Units and Measurements (ICRU), respectively equal to: 
0.0023 g/cm2 MeV and 1.75.   
 

 
Figure 3.1: Penetration range of the proton beam through liquid water, function of the beam energy. 

 

The clinically acceptable uncertainty on the measured range is 1 mm. 
The measured range, obtained from the measured energy, is affected by the uncertainty over the 
measured TOF, which in turn derives from the uncertainties over the distances. To maintain the range 
within the limit imposed by the regulation, there is a maximum acceptable 𝜎𝑇𝑂𝐹.  
Figure 3.2 shows the profile of 𝜎𝑇𝑂𝐹 (normalized by the distance between the sensors), measured 
supposing 100 microns of uncertainty over the position of the detector, 0.5 MeV of uncertainty over 
the energy measured and a distance of 1 m between the two sensors. The maximum error over the 
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time of flight ranges from 4 to 50 ps per meter, and in the case of 228 MeV (i.e. the maximum clinical 
proton energy), it is equal to 4.5 ps.  
The value of the acceptable 𝜎𝑇𝑂𝐹 decreases with an increase of the beam energy. Indeed, at high 
energies, the error over the TOF implies a bigger uncertainty over the penetration range, rather than 
small energies. Therefore, the required precision on the time of flight is smaller at bigger energies. 
However, by increasing the beam energy, it is worth noticing that the number of coincident peaks 
increases, improving the statistics, and reducing the statistical error. 
 

 
Figure 3.2: Maximum 𝜎𝑇𝑂𝐹 acceptable to keep the measured value of energy within the 1mm range in water limit imposed. 
 
From the TOFs measured, the velocity, the kinetic energy and the range could be obtained as 
described in the following section 3.2. 
Considering the setup used during the data acquisition (sec 2.2), the main sources of error are the 
systematic errors related to the distance between the sensors and to the time offset, due to the cables 
and digitizer. The structure that holds the detectors guarantees a precision of the order of tens of μm, 

but there is the possibility of a tilt of the detector. Therefore, the system must be calibrated in terms 
of distance and offset.  
Two possible ways to calibrate the system have been investigated and will be described in the 
following sections. The first one relies on the knowledge of the values of the nominal energies, 
provided by the facilities (absolute method), while the second one, named relative method, is 
independent from the nominal energies values. 
 
3.2 Energy measurement 
 
Before going into the details of the calibration, some comments about the energy measurement must 
be provided. 
Figure 3.3 shows the scheme of the device, where S1 is the first sensor, S2 is the second sensor, 𝐿 is 
the distance between the two of them, and 𝑑 is the thickness of the sensor. 
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Figure 3.3: Naming the energy between S2 and S1. K0 is the energy at the isocenter. The beam loses energy going 

through the first detector (K1) and through air, covering the distance L. K2 is the energy before the second detector, and 
Kavg is the average energy over that distance. 

 
Knowing the distance (𝐿) and the time of flight (𝛥𝑡), the velocity goes as: 
 
 

𝑣𝑎𝑣𝑔 =
𝐿

∆𝑡
 

 

(2.1) 

In this specific case, because of the wires and the digitizer, there is a certain 𝑜𝑓𝑓𝑠𝑒𝑡 to be defined: 
 
 

𝑣𝑎𝑣𝑔 =
𝐿

(𝑇𝑂𝐹 − 𝑜𝑓𝑓𝑠𝑒𝑡)
 

 

(2.1) 

The goal is to find out 𝐾1 and 𝐾0 (the energy at the isocenter), knowing that there is a certain energy 
loss in the air and in the silicon. Because of the energy loss in silicon, 𝐾1 is lower than 𝐾0 and because 
of the energy loss in air, 𝐾2 is lower than  𝐾1.   
The dependency between velocity and kinetic energy is not linear. But, as demonstrated in Appendix 
B, in the small interval of energy loss (from 𝐾0 to 𝐾2), it can be approximated as linear. Therefore, it 
is possible to measure the average energy from the average velocity: 
 

𝐾𝑎𝑣𝑔 ≅ 𝐸0

(

 
1

√1 − (
𝑣𝑎𝑣𝑔
𝑐 )

2
− 1

)

  

 

(3.2) 

A Monte Carlo simulation shows that, having a really small loss of energy in the air, 𝐾2 is equal to: 
 

𝐾2(𝐿) ≅ 𝐾1 − (
𝑆𝑎𝑖𝑟
𝜌
 )
𝑎𝑣𝑔

∙ 𝜌𝑎𝑖𝑟 ∙ 𝐿 

 

  
(3.3) 

where the mass stopping power of the air is approximated as (𝑆𝑎𝑖𝑟
𝜌
 )
𝑎𝑣𝑔

∙ 𝜌. To estimate the average 

(
𝑆𝑎𝑖𝑟

𝜌
 )
𝑎𝑣𝑔

, the total mass stopping power, in the interval 50-230 MeV, has been measured from the 
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PSTAR database of the National Institute of Standards and Technology (NIST), for air and silicon, 
and fitted to the equation proposed by [25]:  
 
 

(
𝑆𝑎𝑖𝑟
𝜌
 )
𝑎𝑣𝑔

= 𝑦𝑎𝑖𝑟 + 𝐴𝑎𝑖𝑟𝐾
(−𝑝𝑎𝑖𝑟)  

 
with  𝑦, 𝐴 and 𝑝 (for silicon and air) that are obtained from the exponential fitting of the data. 
The equations to obtain the energy at the isocenter (𝐾0) from the TOF evaluated between S1 and S2, 
the distance between the sensors, and the 𝑜𝑓𝑓𝑠𝑒𝑡, are summarized in the following: 
 
 
      

𝑣𝑎𝑣𝑔 =
𝐿

𝑇𝑂𝐹 − 𝑜𝑓𝑓𝑠𝑒𝑡
 (2.1) 

  

𝐾𝑎𝑣𝑔 ≅ 𝐸0

(

 
1

√1 − (
𝑣𝑎𝑣𝑔
𝑐 )

2
− 1

)

  

(3.2) 

 
      

𝐾1 = 𝐾𝑎𝑣𝑔 + (𝑦𝑎𝑖𝑟 + 𝐴𝑎𝑖𝑟𝐾𝑎𝑣𝑔
(−𝑝𝑎𝑖𝑟))

𝑎𝑖𝑟
∙ 𝜌𝑎𝑖𝑟 ∙

𝐿

2
 (3.4) 

 
      𝐾0 = 𝐾1 + (𝑦𝑠𝑖 + 𝐴𝑠𝑖𝐾1

(−𝑝𝑠𝑖))
𝑆𝑖
∙ 𝜌𝑆𝑖 ∙ 𝑑 

 

(3.5) 

 
with Equation 3.4 that calculates the energy after the first sensor, considering the energy loss in air, 
and Equation 3.5, for the energy at the isocenter, considering the energy loss going through the first 
sensor. 
 
3.3 Absolute method 
 
For the absolute approach, assuming the nominal energies known, the system is calibrated through a 
χ2 minimization (minuit function of ROOT [26]) using the measured TOFs. This method was adopted 
for the analysis of the first data acquired at CNAO, where the error on the energies values provided 
by the facilities (0.1 MeV) were by far smaller than the expected systematic error on the positions of 
the sensors. Therefore, this approach calibrates the system using the nominal energies as input, and 
the distances and time offset as results:  
 
 

𝜒2(𝑜𝑓𝑓𝑠𝑒𝑡, 𝑑𝑗) =∑ {
(𝑇𝑂𝐹𝑖𝑗 − 𝑜𝑓𝑓𝑠𝑒𝑡) − 𝑇𝑂𝐹(𝐾𝑖, 𝑑𝑗)

𝜎𝑇𝑂𝐹𝑖𝑗
}

2

𝑖,𝑗
 

(3.6) 

 
where 𝐾𝑖 are the nominal energies corrected for the energy loss in the first detector and in air 
(explained in the previous section), while 𝑜𝑓𝑓𝑠𝑒𝑡 and distances (𝑑𝑗) are the free parameters of the 
minimization. 
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𝑇𝑂𝐹(𝐾𝑖, 𝑑𝑗) =

(𝐾𝑖 + 𝐸0)𝑑𝑗

𝑐√(𝐾𝑖 + 𝐸0)2 −𝑚2𝑐4
 

(3.7) 

 
In Equation 3.7, 𝐸0 is the rest proton energy, 𝑐 is the light speed and 𝑚 is the proton mass. The process 
involves different values of 𝑑𝑗 and 𝑜𝑓𝑓𝑠𝑒𝑡, and the final results (four distances and time offset) are 
the ones that minimize 𝜒2. 
The distances and the time offset could be then used in Equation 2.1 to obtain the value of the 
unknown energies from the measured TOF values.  
 
3.3.1 Results 
 

Table 3.1 Results of the calibration of the system adopting the absolute approach, using the TOFs measured from the 
tests conducted at CNAO. 

Parameter Value Error 
d1 [mm] 65.8 0.032 
d2 [mm] 364.13 0.039 
d3 [mm] 665.05 0.042 
d4 [mm] 965.24 0.046 
offset [ps] 0.117 0.003 

 

 
Figure 3.4: Difference between the measured and the nominal energy. The beam energy has been measured with the 
distances and the time offset resulting from the calibration of the system, adopting the absolute approach. 𝛥𝐸 gets 

smaller increasing the distance. 

 
Figure 3.4 shows the behavior of the difference between the measured and nominal energy at the 
isocenter (CNAO tests). As expected, the energy residual decreases with a grow of the distance 
between the detectors. In particular, for the last two positions involved in the acquisition (67 and 97 
cm), the measured energy is very close to the nominal one. 
From the energy, the penetration range in water can be measured and compared with the one coming 
from the nominal energies (Fig. 3.5). 
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Figure 3.5: Δwater range, from the measured (calibration with the absolute approach) and nominal energy, at the two 
bigger distances (67 and 97cm, nominal distances). All the points of the figure are within the limit of 1mm, imposed by 

the regulation, from the nominal range. 

The difference is always in the interval [-1;1], therefore the limit imposed by the regulation is 
satisfied. 
 
3.4 Relative method 
 

 
Figure 3.6: Schematic view of the mechanical device with the second sensor S2, free to move from x1 to x4. For any 
position has been measured the TOF, between S2 and S1. Vavg1_2, is the average velocity of the particles between two 
positions of S2. TOF is the measured time of flight that is affected by a time offset, which can be positive or negative.  

 



48 
 

Figure 3.6 considers the setup of the tests conducted in CNAO (7,37,67 and 97 cm), with a constant 
𝛥𝑥 of 30 cm, but the same scheme could be adapted to the TPT tests. 
 

Figure 3.7:  Picture of the prototype system used for the data acquisition. On the left-hand side there is the first detector 
(S1) and on the right-hand side the second detector (S2). The two are attached to a passive board, mounted on spacers 
(red arrows) and sustained by a rigid support. This structure leads to uncertainties over the positioning of the two sensors, 
in particular for x1, first distance allowed by the mechanical system. 

As already mentioned in chapter 2, it is worth reminding that the mechanical system of the TOF 
telescope used for the tests consists in a rigid support with 10 grooves for precise positioning of S2 at 
ten different distances from S1, which is kept fixed (Fig. 3.7). As pointed out by the arrows in Figure 
3.7, the boards with the sensors are mounted on spacers. This makes the first distance (𝑥1) affected 
by a great uncertainty, while the 𝛥𝑥, i.e. the displacement among the first positions and the second, 
the third, etc…, are very well known, as they rely on the grooves of the rigid support.  
The relative approach takes advantage of the different positions of S2, that are all expressed as 
function of 𝑥1 plus the correspondent 𝛥𝑥, which is well known, to remove the dependence on the 
time offset from the equation of the average velocity (Eq. 2.1).    
Every position of sensor 2 can be expressed as function of 𝑥1 (i.e. 𝑥2 = 𝑥1 + 𝛥𝑥), assuming as known 
the 𝛥𝑥 between the positions. These distances (𝑥2, 𝑥3, etc…) have been called measured distances, 

because they rely on the measured 𝛥𝑥. The velocity of the particles has been measured as: 
 
 

𝑣𝑎𝑣𝑔_12 =
𝑥2 − 𝑥1

𝑇𝑂𝐹2 − 𝑇𝑂𝐹1
=

(𝑥1 + 30𝑐𝑚) − 𝑥1
(∆𝑡2 + 𝑜𝑓𝑓𝑠𝑒𝑡) − ∆𝑡1 + 𝑜𝑓𝑓𝑠𝑒𝑡

=
30𝑐𝑚

∆𝑡2 − ∆𝑡1
=

30𝑐𝑚

(𝑡2𝑥2 − 𝑡1) − (𝑡2𝑥1 − 𝑡1)

=
30𝑐𝑚

𝑡2𝑥2 − 𝑡2𝑥1
 

 

(3.8) 

where 𝑣𝑎𝑣𝑔_12 is the average velocity of the particles at half distance between the two positions of S2,  
𝑥1 and 𝑥2 (Fig. 3.6).  
In general, this method tries to reduce as possible the number of nominal parameters provided as 
input to generalize the process. Because of this approach, the calibration method has only two free 
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parameters, 𝑥1 and the 𝑜𝑓𝑓𝑠𝑒𝑡. This is the natural following step from the first method (absolute one), 
being independent from the nominal energies. Thinking about the new prototype system for the data 
acquisition and at the possibility to test it in different facilities, this method allows the energy 
estimation of the beam without introducing any nominal parameter in the analysis but relying only 
on the 𝛥𝑥 between the positions of S2.    
The tests have been conducted at several positions and energies (4 positions and 5 energies in CNAO, 
3 positions and different energies for each distance in TPT), and for each of them the TOF is measured 
using the method described in the previous chapter and implemented in the MATLAB application 
described in Appendix A. This calibration method has been developed using the TOF values 
measured at all the available positions (4 for CNAO and 3 for TPT) for 2 energies. The remaining 
energies were used to test the method. The ones in Table 3.2 are the TOFs measured from the tests 
conducted at CNAO. 
 

Table 3.2: CNAO tests. For any distance of S2 there are 5 tests at different energies. In the third column, there is the 
measured TOF and the related error (fourth column). 

Isocenter 
 energy [MeV] 

Distance S2-S1 
[cm] 

TOF [ns] TOF error [ps] 

58.95 7 0.764 1.332 
58.95 37 3.725 1.897 
58.95 67 6.699 2.652 
58.95 97 9.666 2.953 
77.6 7 0.691 1.239 
77.6 37 3.301 1.628 
77.6 67 5.922 2.202 
77.6 97 8.549 2.799 
103.5 7 0.624 1.179 
103.5 37 2.921 1.588 
103.5 67 5.231 1.967 
103.5 97 7.548 2.796 
148.5 7 0.554 1.575 
148.5 37 2.523 1.339 
148.5 67 4.520 1.941 
148.5 97 6.508 2.110 
226.1 7 0.492 1.666 
226.1 37 2.161 1.621 
226.1 67 3.863 1.665 
226.1 97 5.557 2.036 

 
For each beam energy, any possible combination of the positions is considered (6 combinations per 
1 energy, without repetitions). Considering two beam energies, this leads to 12 combinations.  
 
𝐸𝑛𝑒𝑟𝑔𝑦1:                 𝑣𝑎𝑣𝑔_12, 𝑣𝑎𝑣𝑔_13, 𝑣𝑎𝑣𝑔_14, 𝑣𝑎𝑣𝑔_23, 𝑣𝑎𝑣𝑔_24, 𝑣𝑎𝑣𝑔_34 
𝐸𝑛𝑒𝑟𝑔𝑦2:                 𝑣𝑎𝑣𝑔_12, 𝑣𝑎𝑣𝑔_13, 𝑣𝑎𝑣𝑔_14, 𝑣𝑎𝑣𝑔_23, 𝑣𝑎𝑣𝑔_24, 𝑣𝑎𝑣𝑔_34 
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For each combination of positions (like 𝑥1 and 𝑥2), taking the TOFs measured from two tests 
conducted at the same energy (like Energy1), 𝑣𝑎𝑣𝑔_12  is the velocity measured at half distance 
between the two positions of S2. The energy in this point and the energy loss going from the first 
detector to this distance can be measured using Equation 3.2 and Equation 3.4, arriving to the energy 
right after the first detector, 𝐾1.  
For example, taking the tests conducted at 58.95 MeV, 𝑇𝑂𝐹1 and 𝑇𝑂𝐹2 are the time of flights 
measured at the first two positions, with 𝑥2 expressed as 𝑥1 +𝛥𝑥. 

 
𝐸𝑘 is the energy between the two positions of S2. It is measured with the same equation of 𝐾𝑎𝑣𝑔 
(energy between S1 and S2, Eq. 3.2). With 𝑙 that stays as the distance between the first detector and 
the middle point between the two positions of S2. 
The energy after the first sensor (𝐾1) is equal to 58.93 MeV, and it should be equal for all the tests 
conducted at that energy (58.95 MeV), and it is used to measure the four distances of S2: 
 
 𝑑 = 𝑣 (𝑇𝑂𝐹 − 𝑜𝑓𝑓𝑠𝑒𝑡) 

 
(3.9) 

For each distance in Equation 3.9, the value of the average velocity between S1 and that position of 
S2 is calculated as: 
 
 

𝑣(𝐾𝑎𝑣𝑔) = 𝑐√1 −
𝐸0
2

(𝐸0 + 𝐾𝑎𝑣𝑔)
2
 

 

(3.10) 

with 𝐾𝑎𝑣𝑔:  
 
 

𝐾𝑎𝑣𝑔(𝐿) ≅ 𝐾1 − (
𝑆

𝜌
 (𝐾1))

𝑎𝑖𝑟

∙ 𝜌𝑎𝑖𝑟 ∙
𝐿

2
 

 

(3.4) 

considering the proper L, expressed as 𝑥1 plus 𝛥𝑥.  
In this way, the four distances, 𝑑1, 𝑑2, 𝑑3 and 𝑑4 can be measured. They are called calculated 
distances: 
 

𝑑1(𝑜𝑓𝑓𝑠𝑒𝑡) = 𝑣1 ∆𝑡1 =𝐾
12 𝑣1 (𝑇𝑂𝐹1 − 𝑜𝑓𝑓𝑠𝑒𝑡)𝐾

12  
 

𝑑2(𝑜𝑓𝑓𝑠𝑒𝑡) = 𝑣1 (𝑇𝑂𝐹2 − 𝑜𝑓𝑓𝑠𝑒𝑡)𝐾
12  

 
𝑑3(𝑜𝑓𝑓𝑠𝑒𝑡) = 𝑣1 (𝑇𝑂𝐹3 − 𝑜𝑓𝑓𝑠𝑒𝑡)𝐾

12  
 

𝑑4(𝑜𝑓𝑓𝑠𝑒𝑡) = 𝑣1 (𝑇𝑂𝐹4 − 𝑜𝑓𝑓𝑠𝑒𝑡)𝐾
12  

 
with 𝑣1𝐾

12 that represents the velocity measured from 𝐾𝑎𝑣𝑔 (Eq. 3.10), coming from the combination 
of  TOFs at 𝑥1 and 𝑥2, and 𝛥𝑡 is the real time of flight, removing the time offset. These calculated 
distances are then compared with the measured values, obtaining the residuals. 
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Summarizing, from one combination (of 𝑥1 and 𝑥2), four distances have been measured. Considering 
two energies (Energy1 and Energy1) and 12 combinations of positions, there will be 48 distances 
computed, and 48 residuals could be summed.  
Two different minimizations have been employed: Ordinary least squares (OLS) minimization, and 
weighted least squares (WLS), with the residuals that count for their error. 
 
Weighted least squares  

 𝑟𝑒𝑠(𝑥1, 𝑜𝑓𝑓𝑠𝑒𝑡) =∑(
𝑑𝑖 − 𝑥𝑖
𝜎𝑖

)2
4

𝑖=1

𝐾
1,2  

 

(3.11) 

 
Ordinary least squares 

 𝑟𝑒𝑠(𝑥1, 𝑜𝑓𝑓𝑠𝑒𝑡) =∑(𝑑𝑖 − 𝑥𝑖)
2

4

𝑖=1

𝐾
1,2  

(3.12) 

 
 

𝑅𝑒𝑠(𝑥1, 𝑜𝑓𝑓𝑠𝑒𝑡) = ∑ ∑ ∑  𝑟𝑒𝑠(𝑥1, 𝑜𝑓𝑓𝑠𝑒𝑡)𝐾
𝑚,𝑛

4

𝑛>𝑚

4

𝑚=1

𝐾𝑚𝑎𝑥

𝐾𝑚𝑖𝑛

 

 

(3.13) 

This process will be repeated by varying 𝑥1 and 𝑜𝑓𝑓𝑠𝑒𝑡 within a defined range. At the end, there is a 
point in the multidimensional plane defined by the ranges of variability of the first distance and time 
offset, which identifies the combination of 𝑥1 and 𝑜𝑓𝑓𝑠𝑒𝑡 that minimizes the residual (weighted or 
not).  
This approach calculates the residuals between the distances calculated from the measured TOF (as 
it will be detailed in the following) and the ones measured (as 𝑥1, 𝑥2 = 𝑥1 + 𝛥𝑥, 𝑥3 = 𝑥2 + 2𝛥𝑥, 
etc…) for each combination of 𝑥1 and 𝑜𝑓𝑓𝑠𝑒𝑡 of the chosen interval. The outcomes are 𝑥1 and 
𝑜𝑓𝑓𝑠𝑒𝑡, corresponding to the minimum value of the residual, with the other positions that are 
expressed as function of 𝑥1 plus a certain 𝛥𝑥 (30 cm for CNAO, in TPT it is not constant).  
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 3.4.1 Results 
 
Applying the OLS and WLS minimization, using the beam energies defined in the Appendix C, the 
calibration can be performed (Fig. 3.8 and Fig. 3.9). 
 

 
Figure 3.8: Results of the calibration, with the relative approach (OLS and WLS minimization), of the tests conducted at 

CNAO. From the x1 and time offset interval, there is a point that minimize the residual. 

 
Figure 3.9: Results of the calibration, with the relative approach (OLS and WLS minimization), of the tests conducted at 

TPT. From the x1 and time offset interval, there is a point that minimize the residual. 
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Table 3.3: Results of the calibration for CNAO and TPT. The outcomes are the x1 [mm] and offset [ps]. 

 CNAO TPT 
OLS WLS OLS WLS 

x1 [mm] 66.43 65.93 270.4 269.86 
offset [ps] 111 115 -105 -98 

 
All the results, in terms of first distance of S2 (𝑥1) and 𝑜𝑓𝑓𝑠𝑒𝑡, free parameters of the calibration, are 
shown in Table 3.3. It is worth explaining that the time offset in TPT is negative because of an 
inversion of the cables during the testing.   
As previously mentioned, with these results is now possible to measure the beam energy, with 𝛥𝑡 (of 
Eq. 2.1), that takes into account the time offset, and the distance of the sensor S2 expressed 𝑥1 as plus 
a certain 𝛥𝑥 that depends on its position. Because of the very small difference between what obtained 
with OLS and WLS minimization, also the energies are expected to be very close among them.  
 
3.4.1.1 Pavia therapy center tests results 
 
In CNAO, 𝛥𝑥 is constant and equal to 30 cm.  
For both approaches (OLS and WLS), the two free parameters can range between: 

• 5 cm <𝑥1 < 8 cm; 
• 70 ps <𝑜𝑓𝑓𝑠𝑒𝑡< 180 ps. 

The distances, function of 𝑥1, are expressed as: 
• 𝑥2 = 𝑥1 + 𝛥𝑥; 
• 𝑥3 = 𝑥1 + 2𝛥𝑥; 
• 𝑥4 = 𝑥1 + 3𝛥𝑥. 

 
Table 3.4 and Table 3.5 collects, respectively, the energies measured with the outcomes of the 
calibration of the system (CNAO tests), and the difference with respect to the nominal values. 
 

Table 3.4: CNAO K0 energies. These represent the energy at the isocenter (right before S1), measured using x1 and 
offset from the OLS minimization. 

OLS WLS 
Distances [cm] Distances [cm] 
6.64 36.64 66.64 96.64 6.59 36.59 66.59 96.59 
Measured energies [MeV] Measured energies [MeV] 
59.48 59.28 59.14 59.30 59.30 59.25 59.12 59.29 
77.22 77.94 77.80 77.72 77.11 77.93 77.79 77.71 
102.37 104.05 103.76 103.46 102.44 104.06 103.77 103.47 
145.22 150.29 148.51 148.48 145.76 150.40 148.57 148.52 
214.56 230.75 226.62 226.18 216.32 231.13 226.82 226.31 
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Table 3.5: Differences between nominal and measured energies at the isocenter (K0), with the OLS and WLS 

minimization. 

 OLS WLS 
Isocenter 
Energy 
[MeV] 

Distances [cm] Distances [cm] 
6.64 36.64 66.64 96.64 6.59 36.59 66.59 96.59 
Energy difference [MeV] Energy difference [MeV] 

58.95 0.53 0.33 0.19 0.35 0.35 0.30 0.17 0.34 
77.6 -0.38 0.34 0.20 0.12 -0.49 0.33 0.19 0.11 
103.5 -1.13 0.55 0.26 -0.04 -1.06 0.56 0.27 -0.04 
148.5 -3.28 1.79 0.01 -0.02 -2.74 1.90 0.07 0.02 
226.1 -11.54 4.65 0.52 0.08 -9.78 5.03 0.72 0.21 

 
 

 
Figure 3.10: Difference between the measured energies (OLS and WLS minimization) and the nominal ones, at the 
isocenter. The four lines represent the behavior of 𝛥𝐸, according to the nominal energy, varying the distance of S2. 

Continuous lines are the outcome of the WLS minimization, while the dashed lines are outcome of the OLS 
minimization. Increasing the distance there is an improvement of the results. 

 
As expected, the behaviour of the 𝛥𝐸 is pretty much the same for the two methods, and it decreases 
with bigger distances (Fig. 3.10). The results, for the OLS and WLS results, are pretty much the same. 
In the very first part of this chapter (Fig. 3.2), it was represented the maximum uncertainty over the 
TOF to keep the penetration range of the measured energy within 1mm from the range of the nominal 
energy. That figure (Fig. 3.2) shows the behaviour of 𝜎𝑇𝑂𝐹 , function of the energy, with a reduction 
of the acceptable error increasing the energy (a small difference in the energy, at high levels, leads to 
big changes in the penetration range). Figure 3.11 compares the obtained results, translated in terms 
of range, with the requirement on 𝜎𝑇𝑂𝐹.  
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Figure 3.11: Difference of the water range (mm) measured from the nominal and measured energy, at 67 and 97cm 

(distance between S2 and S1), in CNAO. The two subplots report the results obtained through OLS and WLS 
minimization, respectively, blue and orange line. 

The water range is always within the limit except for 228 MeV at 67 cm, while at 97 cm there are no 
issues at all. This makes sense, considering that, Figure 3.2 is normalized respect to the distance. The 
maximum acceptable error on the TOF (calculated in that case with multiple assumptions about the 
uncertainty of position and kinetic energy) decreases, decreasing the distance (Fig. 3.12). Even 
though, by decreasing the distance between the sensors the number of coincident peaks increases, 
improving the statistics and reducing the statistical error. 
 

 
Figure 3.12: Evolution of the maximum error, over the TOF, acceptable to keep the water range within 1mm from the 
nominal one. The four lines describe the behavior of the maximum 𝜎𝑇𝑂𝐹 acceptable varying the distance (between S2 
and S1). The TOF measured at small distances (more affected by uncertainties) must satisfy more tight requirements, 

while at bigger distances, having a mitigated effected of the uncertainties over the distance, the allowable error 
increases. 
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3.4.1.2 Trento therapy center tests results 
 
The same structure of the CNAO results is proposed for TPT. The only difference between the tests 
performed at CNAO is related to the nominal distances: 27cm, 67cm and 97cm, and to the energies. 
 

Table 3.6: Nominal energy at the three distances, TPT. 
27 cm 67 cm 97 cm 
68.3 68.3 68.3 
98.5 97 97 
147 - 147 
- 163 163 
182.7 182.7 182.7 
- 222.8 222.8 
227.3 227.3 227.3 

 
 
For these two cases, the two free parameters can range between: 

• 26 cm <𝑥1< 28 cm; 
• -50 ps < 𝑜𝑓𝑓𝑠𝑒𝑡 < -150 ps.   

The distances, function of x1, are expressed as: 
• 𝑥2 = 𝑥1 + 40𝑐𝑚; 
• 𝑥3 = 𝑥1 + 70𝑐𝑚. 

This time 𝛥𝑥 is not constant.  
Even though the method is exactly the same of the one applied to the tests of CNAO, it is worth 
mentioning that the nominal energies provided by TPT are affected by a greater error (around 0.5 
MeV), as they are measured with the Giraffe detector [14]. 
Table 3.7 and Table 3.8 collects, respectively, the energies measured with the outcomes of the 
calibration of the system (TPT tests), and the difference with respect to the nominal values. 
 
Table 3.7: TPT K0 energies. These represent the energy at the isocenter (right before S1), measured using x1 and offset 

from the OLS minimization. 
OLS WLS 
Distances [cm] Distances [cm] 
27.04 67.04 97.04 26.98 66.98 96.98 
Measured energies [MeV] Measured energies [MeV] 
68.184 68.397 68.314 68.305 68.445 68.347 
97.983 96.576 96.569 98.277 96.69 96.647 
146.545 - 146.406 147.229 - 146.598 
- 162.476 162.962 - 162.819 163.2 
179.189 181.676 182.059 180.230 182.105 182.356 
- 222.336 222.071 - 222.974 222.51 
224.497 227.633 226.394 226.118 228.301 226.849 
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Table 3.8: Difference between measured energy and the nominal one, in TPT. At the smallest distance (27 cm), the 
second nominal level of energy is 98.5 MeV, instead of 97 MeV. 

 OLS WLS 
Isocenter 
Energy 
[MeV] 

Distances [cm] Distances [cm] 
27.04 67.04 97.04 26.98 66.98 96.98 
Energy difference [MeV] Energy difference [MeV] 

68.3 -0.116 0.970 0.014 0.005 0.145 0.047 
97 -0.517 -0.424 -0.431 -0.223 -0.310 -0.353 
147 -0.465 - -0.594 0.229 - -0.402 
163 - -0.524 -0.038 - -0.181 0.200 
182.7 -3.511 -1.024 -0.641 -2.470 -0.595 -0.344 
222.8 - -0.464 -0.729 - 0.174 -0.290 
227.3 -2.803 0.333 -0.906 -1.182 1.010 -0.451 

 
 

 
Figure 3.13: Comparison between OLS and WLS about the difference between measured and nominal energy. 

 As for CNAO, the trend is a decrease in the difference between the measured and the nominal energy, 
increasing the distance (Fig. 3.13). This time, though, the absolute value of these results is bigger. 
Therefore, the expected water range is supposed to be over 1mm for many points. 
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Figure 3.14: Difference of the water range (mm) calculated from the measured and nominal energies, at 67 and 97cm 

(distance between S2 and S1), in TPT. The two subplots report the results obtained through OLS and WLS minimization, 
respectively, blue and orange line. 

There are several points outside the limit, at the two distances (Fig. 3.14). Even though, the results 
look better at 97 cm than 67 cm. There is no one clear winner method, between OLS and WLS 
minimization, but still, the important aspect is that, through each of them, it is possible to go back to 
the original energy of the beam with good results.  
Despite the results, theoretically speaking, the weighted minimization should be more accurate than 
the other method because the residual is also weighted over its own error. This reduces the possibility 
of having a minimum inside the residual matrix (coming from the distance 𝑥1 and 𝑜𝑓𝑓𝑠𝑒𝑡 range 
imposed) that does not reflect the exact condition of the system and reduces the possibility of having 
different minimums to choose from. 
The main future application of this device is the online measurement of the beam energy, so it is 
crucial to speed up every aspect of the whole analysis, for example reducing the data sets for 𝑜𝑓𝑓𝑠𝑒𝑡 
and 𝑥1, but at the same time keeping the precision of the analysis, reducing the probability of having 
wrong, or just not that accurate results. In this situation, the WLS minimization can make the 
difference with respect to the OLS one. 
Main limit of this approach is that the code is not considering any error over 𝑥1 and 𝑜𝑓𝑓𝑠𝑒𝑡 coming 
from the minimization. 
It is worth a comparison (Fig. 3.15) between the results of the absolute and relative (WLS) approach, 
at the maximum distance (97cm) of the CNAO tests. 
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Figure 3.15: Comparison between the 𝛥𝑤𝑎𝑡𝑒𝑟 𝑟𝑎𝑛𝑔𝑒 from the measured energies, adopting the two calibration 

methods: absolute approach (yellow line) and relative approach, WLS minimization, (blue line). All the points of the 
graph are in the limit of 1mm, but the ones coming from the absolute approach are, in general, closer to 0. 

The absolute approach leads to better results rather than the relative one. Even though, as treated in 
the introduction, using the nominal energies is not the optimal way and it is far from the ultimate goal 
of the device that is, without inserting nominal parameters, the evaluation the beam energy.  
On the other side, the relative approach, whether if OLS or WLS minimization, with the uncertainties 
that are present over the TOF and the distance, is not always able to measure the energy with the 
required precision.  
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4. 16 strips simulation and analysis 
 
4.1 Introduction 
 
In the previous chapters, only 1 channel per sensor was considered. 
Two different sensors have been used in CNAO (a sensor made of 4 pads of 3x3 mm2 each) and in 
TPT (a sensor made of 11 strips of 2 mm2 each). The idea of going from the pad geometry to the strip 
one is related to the pileup issue. Discretizing the area, it is possible to reduce the probability of 
having the crossing of multiple particles within the sensor dead time. The strip sensor used in TPT is 
a sort of evolution of the one used in CNAO and has been specifically designed for this project. 
Because of the available readout boards, only 1 channel from the available channels (4 in the sensor 
used at CNAO and 11 in the sensors used at TPT) was readout in the tests performed. 
A dedicated readout board is being designed to allow the reading of 8 strips in the final sensor (3 out 
of the 11 strips are test strip and will not be used on the beam). This will allow reducing the time 
needed to align the sensors and the acquisition time to collect the needed statistics, speeding up the 
process of the evaluation of the beam energy, but also to characterize the spread out of the flux. 
The future acquisition of data at TPT or CNAO will involve 16 signals, 8 per detector, therefore the 
preparation of a tool able to extract the results from that amount of data is required, as well as for the 
first tests conducted it was necessary the preparation of the code described in the second chapter, once 
again developed using MATLAB 2018b. 
 

 
Figure 4.1: Interface of the TOF measurement app. 
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A MATLAB application (the user interface is shown in Fig. 4.1, explained more in detail in Appendix 
D) is being developed to allow measuring the time of flight of simulated or experimentally acquired 
data from 8 channels per sensor. This application allows considering not just the strips that are one in 
front of the other, but all of them. Therefore, any possible coincidence is captured. For example, 
checking all the boxes on the main diagonal is a way to limit the analysis to the facing strips only, or 
by checking all of them, any possible combination is taken into consideration, like one proton that 
crossing the second strip of the first sensor arrives to the ninth strip of the second sensor. 
The application has been conceived to allow the off-line analysis of the data coming from the test 
facilities, and, hopefully, for the online measurements during future tests. 
Another MATLAB app has been developed to produce the simulated data needed (Fig. 4.2, Appendix 
E) to develop and validate the app for the analysis of the 16 channels.  
In this chapter there is a description of the methods developed and implemented in both apps, even 
though, the code for the analysis of the signals is pretty much the same of the one of the second 
chapter. Different analysis will be conducted trying to define the best setup for the measurement app 
(taking all the combinations together, facing strips and strip-by-strip analysis), and applying the two 
methods for the coincidences treatment, 3-sigma method and second gaussian method. 
Then, there is a short analysis about the use of the measurement app to evaluate a possible 
misalignment of the detectors and a validation of the calibration method explained in the third chapter.  
 

 
Figure 4.2: Interface of the TOF simulation app. 
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4.2 Signal simulation 
 
To build the 16 strips simulation app there are some files required: the simulation coming from Geant4 
[27] and the shape of the peaks from Weightfield2 [28]. In the following sections there is a description 
of the inputs (Geant4 and Weightfield2 simulations) required by the simulation app. 
 
4.2.1 Geant4 simulation 
 
The first input required for the signal simulation app is the simulation coming from Geant4, 
performed at different beam energies (62, 150, 227 MeV) and 15 positions: from 0.1 mm up to 1000 
mm, with a specific distribution of the flux (a gaussian centered in 0,0) and a fixed number of protons: 
2 million. These positions are required to simulate the distance between S1 and S2. In 0 is positioned 
the first detector (total thickness of 100μm), to simulate the energy loss through silicon. Then, the 
information about the protons, at each position, is acquired by the so-called, sensitive detectors, of 
the same dimension of the detector. This has been made to not compromise the energy, and the path, 
of the particles of the simulation. By imposing the presence of a real detector in each position the 
beam would be deflected.  
At the end of the simulation there should be a .txt file containing all the information for each proton 
(or any other particle generated by the interaction between protons and detector). 
In the .txt file, there is the particle ID (a number that identifies each specific particle), the coordinates 
(x, y and z) at which it is crossing the detector, energy and time of flight required to cover that distance 
from the position 0.  
The three coordinates are:  

• z, the distance from the origin; 
• y, the position over the height of the detector; 
• x, the position over the width of the detector. 

The coordinates x and y represent the position of the proton at that specific z, so knowing the 
dimension of the detectors described in the simulation, in a symmetric position with respect to the 
origin, it is possible to establish in which strip the particle is going through. There is, of course, the 
possibility of having values of x and y that do not fall within the dimension of the detector, 
representing particles that are not crossing the sensor. The event number of the proton, together with 
the strip and time of flight per each position are collected within a matrix, that is the actual input of 
the simulation app. 
Figure 4.3 represents the path of just few protons, coming from the Geant simulation. 



63 
 

 
Figure 4.3: 105 MeV simulated protons (red lines) going through detectors at 15 positions (blue vertical lines). The z-

axis represents the distance of the detector from the isocenter, at 0. While the y-axis goes over the height of the 
detectors. This is an example of one of the simulation conducted in Geant4. 

 
4.2.2 Weightfield2 simulation 
 
The other input information is related to the shape of the peaks, as generated by the sensor. A set of 
1000 peaks have been generated, for this analysis, with a duration of 2 ns, as the ones of the 
experimental tests conducted (chapter 2). 
 

 
Figure 4.4: 1 thousand simulated peaks with Weightfield2 , normalized respect to the maximum amplitude. 
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Figure 4.4 shows 1 thousand peaks, normalized over the maximum amplitude, extracted from a wider 
range of 20 ns interval of observation. There is a certain range of amplitudes, with the chance of 
having some peaks way bigger than the average. This may lead to some problems in the signals 
simulation, therefore they must go through a proper process.  
From the maximum amplitude of each peak a histogram can be generated (Fig. 4.5).  
 

 

Figure 4.5: Histogram collecting the amplitude of each simulated peak (Fig. 3.4). The red line is the Landau fit of these 
points. 

Fitting to a Landau, it is possible to obtain the most probable value (MPV, 26 ADC counts). All the 
peaks are normalized with respect to the MPV. Therefore, from the app interface, the mean amplitude 
of the peak can be set up, and it is multiplied times these normalized peaks, preserving the shape of 
the peak and allowing to simulate peaks of different amplitude. Without this process (normalizing all 
the generated peaks with respect to the maximum amplitude), there would be the possibility of having 
peaks too small. Not even sufficiently high to overcome the threshold. 
 
4.2.3 Simulation method 
 
At this point is possible to proceed with the signals simulation, that takes all the parameters from the 
app interface, such as noise, sample rate, number of samples etc., the required inputs from the Geant4 
and Weightfield2 simulations, and generates the signals, then evaluated with the measurement app. 
The base of the process is the generation of a vector, following the Poisson distribution, in which the 
time interval between two successive peaks is reported, expressed in samples (Fig. 4.6). This 
simulates the signal of the first detector.  
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Figure 4.6:Δsamples, for a pulse rate of 100 MHz, 5000 MHz of sampling frequency and 200000 samples. 

 
This vector has a length that depends on the parameter set up from the app interface, and it is equal 
to the number of pulses, decided by the pulse frequency, number of samples and on the sampling 
frequency:  
 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑢𝑙𝑠𝑒𝑠 =
𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑝𝑢𝑙𝑠𝑒𝑠 · 𝑁𝑢𝑚𝑏𝑒𝑟𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔
 

with: 
• Pulse frequency, in MHz, consider the number of pulses per unit of time; 
• Number of samples is related to the number of events acquired (1 event is equal to 1024 

samples). So, in general, this parameter describes how much it lasts the simulated acquisition; 
• Sampling frequency is the number of samples per second. In this case, trying to simulate the 

acquisition of the digitizer (any 0.2 ns), the sampling frequency must be 5000 MHz. In 
general, this parameter is involved in the discretization of a continuous signal. 

Knowing the time intervals between two successive peaks, it is possible to determine the arrival time 
of each peak of the first sensor, generating the vector that is the base of the simulation with a length 
defined as the cumulative sum of all these arrival times (cumsum function of MATLAB). All this 
information, in terms of arrival time, duration of the peak, and time interval between two successive 
peaks, are translated into a vector (waveform). This vector is initialized to 0. Every time there is a 
peak, in a certain number of positions of the vector, related to the duration of the peak (10 samples, 
as default), is added 1. The first index of this series of 1 is individuated from the arrival time of each 
peak. In case of two or more peaks overlapped (pileup), in those positions 1 is added per each peak 
considered.  
To simulate the conditions of the signals experimentally acquired in CNAO and TPT (mostly related 
to the type of accelerator, as discussed in chapter 2), this waveform vector, containing the information 
about the time disposition of the peaks can be generated in a continuous way (CNAO) or in a bunched 
structure (TPT), with the bunch frequency, in MHz, that can be modified on the app interface. 
Therefore, the entire simulation process is contained inside a loop that scroll over this waveform 
vector. Any time there is a 1 (or 2, or more), the code goes inside the matrix coming from the Geant4 
simulation and takes the strips at which the proton (or protons, according to the number inside the 
vector) is crossing the detector in those positions (set up at the beginning of the process), and the 
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times of flight. The peaks are generated in the signals of the crossing strips. For the next incoming 
proton (from the waveform vector),the code takes the next row of the matrix. The shape of this peak 
comes from the 1000 peaks, generated with Weigthfield2.  
To simulate the digitizer acquisition, the total number of samples, decided on the user interface, is 
divided times 1024 (1 event, for the digitizer) and rounded. This time, instead of having 2 signals per 
1 event (1strip per detector, chapter 2), there are 16 signals per 1 event (8 strips per detector), like in 
Fig. 4.7. 

 
Figure 4.7: One event (1024 samples) of the simulation at 227 MeV. The two detectors are in positions: 0.1 mm and 

600 mm. 
At the end of the simulation, according to the parameters reported above (pulse rate and number of 
samples), a certain quantity of the protons coming from the simulation has been used. If, because of 
the parameters set up, the simulation requires a number of particles bigger than the one simulated, it 
stops once the whole Geant4 matrix has been used. The coincidences and the TOF between the strips 
of the two detectors of the simulation are assumed to be the reference value to compare the results of 
the measurement app. 
The TOF measured from the simulation consider any possible combination between the strips of the 
first and second sensor. Any time the code recognizes a coincident signal, stores the correspondent 
time of flight in a matrix, 8x8. The rows of this matrix represent the strips of the first detector, the 
columns represent the strips of the second one. The final time of flight can be measured putting 
together all these values together (and divided over the total number of coincidences), or it can be 
measured box-by-box (strip-by-strip analysis). The latter takes the sum of all the TOFs stored over 
the coincidences for that combination. For example, from the simulation at 227 MeV, with S1 and S2, 
respectively, at 0.1 and 600mm, the coincidences profile is represented by Fig. 4.8. 
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Figure 4.8: Simulated coincidences at 227 MeV, with S1 and S2 respectively at 0.1 mm and 600 mm. On the y-axis there 

are the strips of the first sensor, and x-axis the strips of the second sensor. On the main diagonal there are the facing 
strips combinations. 

 
In Figure 4.8, as expected, the regions over the main diagonal experiences a bigger number of 
coincidences (on the main diagonal there are the facing strips), that decreases going to the peripheral 
area. Meaning that, the probability of going through a specific strip of the first sensor and reaching 
the same strip on the second sensor is much bigger than having a certain deflection and goes 
somewhere else. As an evidence of this kind of behavior, considering the upper right and lower left 
edge of the picture, there are less than 10 combinations each (they represent, respectively, strip2-
strip9 and vice versa), while going closer to the main diagonal there is a quite rapid increase of the 
number of coincidences. Another pattern that can be noticed is directly on the main diagonal. 
The flux generated by the simulation has the shape of a narrow gaussian centered over a detector of 
11 strips (Fig. 4.9). Therefore, the maximum number of coincidences is expected on the combination 
over the strip 6 of the two sensors. In this case, because of the experimental nature of the strip 1, 10 
and 11, it has been examined the behavior of the strips going from 2 up to 9, leading to a non-
symmetric profile of the number of coincidences that are obtained.  
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Figure 4.9: Gaussian distribution of the protons at 0.1 mm from the nozzle. The histogram collects how many protons 

are going through that specific region of the detector, without considering the strips arrangement. 
 

For each combination of strips, the TOF is reported (Fig. 4.10). It is measured as the sum of all the 
TOFs stored over the number of coincidences detected (per each combination). 
 

 
Figure 4.10: Simulated TOF, at 227 MeV, with S1 at 0.1 mm and S2 at 600 mm. 

 

The oscillation in the value of the time of flight is very small (Fig. 4.10). The minimum value is 
3.3752 ns and the maximum value is 3.3761, with a range of 0.9 ps. The mean TOF comes as the sum 
of all the TOFs stored, for any combination, over the total number of coincidences detected. This 
TOF, now, must be compared with the one coming from the analysis. 
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4.3 Time of flight measurement recap 
 
The simulation stores the 16 signals (8 per detector) inside binary files reproducing the functioning 
of the digitizer (each strips of the two sensor generates a .dat file). As result, the analysis application 
treats these files, in input, as if they were directly produced by the experimental acquisition in one of 
the two mentioned facilities. 
Like in the second chapter, the functioning of the code, about how to treat the signals, is basically the 
same. It goes through the signals of the first detector, and once a peak is detected, open a window of 
a certain number of samples (decided by the user on the app interface), and check if there are peaks 
in any other strip of the second detector, and eventually it stores them.  
 

 
Figure 4.11: Measured number of coincidences per each combination of strips of first and second sensor. The analyzed 

data come from the simulation at 227 MeV, between 0.1 mm and 600 mm. 
 

The main limit is that it does not know exactly where to look for. Consequently, a lot of false 
coincidences have been collected. That is why, looking at the previous picture (Fig. 4.11), with the 
number of coincidences per combination, from the measurement and the ones of the simulation (Fig. 
4.8), there is a consistent difference. Even in the combinations very far from the main diagonal (facing 
strips) there are over 1000 coincidences.  
Once again, there are two methods to get rid of the wrong time of flights, define the mean TOF and 
reduce the related error. To make a comparison, both methods (the same ones of the second chapter) 
have been employed, namely:  

• the 3-sigma method; 
• the second gaussian method. 

One element in common, between the analysis made up with both of them is related to some main 
features of the acquisition that have been assumed. First, there is no noise or offset; secondly, the 
acquisition is assumed to be constant, in terms of incoming particles, simulating the acquisition 
experienced in CNAO.  
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In the following section a short recap of the two methods to treat the coincidences and measure the 
TOF is given. 

 
4.3.1  Method 1 (3-sigma method) 

 
The first step of the method 1 is a double gaussian of the histogram that collects all the coincidences 
stored, from any combinations of strip (Fig. 4.12). 

 
Figure 4.12: Histogram that collects all the TOF stored during the analysis of the signals. The first step of the 3-sigma 

method is the double gaussian fit of these bins. The equation of the fit is reported. 
The code takes σ of the upper gaussian (fit1.c1/√2, Fig. 4.12) and generates an interval of [-1.5 σ; 
+1.5 σ] around the mean value (fit1.b1 of Fig. 4.12). With the coincidences that lay inside that interval 
another gaussian fit (single), is applied (Fig. 4.13), from which the mean TOF and related error are 
defined (Fig. 4.14).  

 
Figure 4.13: Next step of this method, a single gaussian fit (blue line) of the coincidences within the 3-sigma interval. 
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Figure 4.14: Single gaussian fit of the coincidences lay within the interval around the main peak of the histogram (blue 

line of Fig. 4.13). 

The mean TOF is the fit2.b1 of Fig. 4.14, mean value of the final gaussian fit. The error is defined 
as: 

𝑒𝑟𝑟𝑇𝑂𝐹 =
𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑏𝑜𝑢𝑛𝑑 − 𝑇𝑂𝐹𝑚𝑒𝑎𝑛

2
 

 
4.3.2 Method 2 (second gaussian method) 
 
Like for the previous approach, this method involves a first double gaussian fit of the coincidences 
of the histogram (Fig. 4.15), using all the possible combinations between the strips of the two sensors,  
 

 

The double gaussian fit is the same of the previous method (Fig. 4.12).  
The method makes the subtraction between the entire amount of coincidences and the second gaussian 
of the double gaussian fit, 𝑎2· exp (−((𝑥 − 𝑏2)/𝑐2)2) of Figure 4.15. Applied to this specific case, 
having a continuous beam, the second gaussian is a straight line (constant background, green line of 
Fig. 4.15). After the removal of these coincidences, a second, single gaussian, fit is applied to the 
remaining ones (Fig. 4.16).  
 
 
 

Figure 4.15: Histogram collecting each TOF measured at 150 MeV, with S1 at 0.1 mm and S2 at 1000 mm. The red 
curve represents the double gaussian fit. The horizontal green line is the background level (the bottom gaussian). 
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The mean TOF is the mean value of the single gaussian fit, and the error is defined as:  
 
 𝑒𝑟𝑟𝑚𝑒𝑎𝑛 =

𝜎

√𝑁
 

 

(2.3) 

with N equal to the number of coincidences used for the gaussian fit (final one) and σ from the 

equation of the fit that MATLAB supplies (as 𝑐1
√2

). 
 

 
Figure 4.16: Histogram after the second gaussian removal . Finally, a single gaussian fit is applied to determine mean 

value and mean error. 
           

 
4.3.3 Results 
 
4.3.3.1 Measured results vs simulated results 
 
After the measurements with the analysis app, it is possible to compare the results in terms of 
difference of TOFs. The ones coming from the simulation are assumed to be exact, and by looking at 
the 𝛥𝑇𝑂𝐹, the precision of the study of the signals can be established. 
Figure 4.17 shows the relation between the exact TOFs and the ones coming from the examinations 
with the second gaussian method, collecting all the coincidences coming from any combination.  
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Figure 4.17:Difference between the TOFs measured with the second gaussian method and the ones coming from the 

simulation.  
 

The 𝛥𝑇𝑂𝐹 is always in the range [-1;1] (Fig. 4.17), even though, there is no clear trend, related to the 
distance or the energy.  For the other method (3-sigma method), the 𝛥𝑇𝑂𝐹 is bigger, reaching also 2 
ps, however also these results are really close the exact ones (Fig. 4.18).  
 

 
Figure 4.18: Difference between the TOFs measured with the 3-sigma method and the ones coming from the simulation.  
 

Even in this case there is no clear trend for the 𝛥𝑇𝑂𝐹. These results were obtained measuring the 
TOF by collecting all the coincidences together (from any combination).  
Two different approaches may be adopted: 

• Facing strips analysis; 
• Strip-by-strip analysis; 
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4.3.4 Facing strip analysis  
 
The advantage of using 16 strips to measure the time of flight is linked to the ability of collecting 
many more coincidences rather than using just two strips. But, of course, using all of them, taking 64 
possible combinations, as shown before, there is the risk of giving to much credit to coincidences and 
relative times that are not useful at all. Therefore, one important analysis can be the TOF study using 
only the facing strips. Meaning that, once is found a peak in one of the strips of the first sensor, instead 
of opening the sample window in all the strips of the second sensor, the code just looks inside the 
signal of the facing strip, leading to a faster study. 
The facing strip analysis has been conducted using the TOF with second gaussian method (proved to 
be more precise). 
 

 
Figure 4.19: Section of the TOF measurement app. By checking all the boxes on the main diagonal, the analysis focuses 

on the facing strips. 
 

In the app, only the boxes on the main diagonal are checked (Fig. 4.19). 
 

 
Figure 4.20: Difference between the TOFs measured with the second gaussian method (coincidences from the facing 

strips only) and the ones coming from the simulation. 
 



75 
 

The outcomes (Fig. 4.20) are similar, even equal, to the ones coming from the second gaussian  
method for the 64 combinations (Fig. 4.17), that, indeed, removes all the “wrong” coincidences, that 

comes mostly from the combinations of strips not one in front of the other.  
In general, this examination proved that not always is necessary to study all the combinations, but 
just the facing strips, because, in particular at small distances and high energy, the probability of 
having a deflection of the normal trajectory of the particles is very small. Furthermore, this analysis 
is faster than the previous ones. 
 
4.3.5 Strip-by-strip analysis 
 
The strip-by-strip analysis is interesting when the measurement involves bigger distances and smaller 
energies, because in these situations, there is a certain spread out of the flux, with an increase of the 
probability that the proton crossing a certain strip of the first detector of being deflected.  
In these situations, the number of coincidences starts to homogenize over the dimensions of the 
detector (and even beyond, going over target and not being certified). And when it comes, it is 
important to maintain a certain level of precision over the evaluation of the TOF, paying attention 
also at the most improbable combinations of strips.  

 
Figure 4.21: Comparison between the distribution of coincidences, simulated, with S2 at 60 mm and 1000 mm. S1 is 

fixed at 0.1 mm. 
 

Figure 4.21 shows the coincidences coming from the simulation at 62 MeV with S2 positioned at 60 
and 1000mm. The following legend has been followed (strip detector 2, strip detector 1), like (x,y) 
coordinates. In the combination (6,6) at 60 mm there are 26000 coincidences, and at 1000 mm, in the 
same box there are 671 coincidences.  
The number of coincidences, in the peripheral regions increases. In the combination (9,2), at 60 mm 
there is only 1 coincidence, while at 1000 mm they are more than 200. These are the result of the 
simulation, so every time of flight stored is “correct”. Doing the same kind of analysis with the results 
of the TOF measurement app, it should be possible to appreciate the same behavior, but in this case, 
most of the TOFs stored in that locations will be very different than the expected ones. At least, the 
hope would be that, increasing the distance, the number of right coincidences inside the most 
improbable combinations is bigger. 
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Figure 4.22: Comparison between the distribution of coincidences, measured, with S2 at 60 mm and 1000 mm. S1 is 

fixed at 0.1 mm. 
 
The measured coincidences are represented by Figure 4.22. Looking at the same points as before, 
there are, for the combination (6,6), at 60 mm 27750 coincidences, and 1322 at 1000 mm. For the 
combination (9,2),  at 60 mm there are 1151 coincidences and at 1000 mm they are 560. 
Knowing the results of the simulation (that would not be available in case of experimental data 
acquired on the field), it is easy to say that of those 1151 coincidences (from (9,2) at 60 mm) just one 
is correct. As well as the almost 2 thousand coincidences wrong in (6,6).  
Doing the ratio: 
 

• 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒𝑠 60 𝑚𝑚,(6,6)

𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒𝑠 60 𝑚𝑚 (6,6)
=
26000

27750
= 93.7 % 

 
• 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒𝑠 60 𝑚𝑚,(9,2)

𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒𝑠 60 𝑚𝑚 (9,2)
=

1

1151
= 0.087 %  

 
• 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒𝑠 1000 𝑚𝑚,(6,6)

𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒𝑠 1000 𝑚𝑚 (6,6)
=

671

1322
= 50.76 % 

 
• 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒𝑠 1000 𝑚𝑚,(9,2)

𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒𝑠 1000 𝑚𝑚 (9,2)
=
209

560
= 37.32 % 

 
These number shows that at small distances, the percentage of “correct” coincidences over the main 

diagonal, stored by the measurement app, is almost 100%, and there is no point in looking at the 
peripheral boxes. Therefore, the measurement can be done using the facing strips only. The only risk 
related to this approach is that, at bigger distances, the number of values stored inside the main 
diagonal falls and it may lead to a not precise evaluation of the time of flight. Indeed, the calculated 
percentages for the combinations (6,6) show a decrease of 40% of the “correct” coincidences stored 

over the facing strips. Therefore, it could be useful to consider all the possible combinations. This 
homogenization of the “correct” coincidences over the dimensions of the detector is represented in 

figures 4.23 and 4.24. 
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Figure 4.23: Histograms collecting the measured TOF at two different positions of S2, same combination of strips, 

(6,6). On the left-hand side, S2 is at 60 mm. On the right-hand side, S2 is at 1000 mm. The strips 6, for both the sensors, 
is the one with the higher rate of protons. 

 

 
Figure 4.24: Histograms collecting the measured TOF at two different positions of S2, same combination of strips, 

(9,2). On the left-hand side, S2 is at 60 mm. On the right-hand side, S2 is at 1000 mm. The combination is, ninth strip of 
first detector and second strip of second sensor. Is one the poorest combination, in terms of stored coincidences. 

 
There is, though, a limit to this kind of approach. Using the second gaussian method for any 
combinations leads, mostly treating the peripheral boxes, to strange results and MATLAB errors, due 
to the lack of a sufficiently high number of coincidences. In this case, due to the short distance 
between the two detectors, the majority of the coincidences is concentrated over the main diagonal, 
and over some other combinations adjacent. Because of this, for the strip-by-strip analysis, the code 
has been modified. Basically, the “usual” second gaussian method has been employed to treat the 
data of the main diagonal, and on the two diagonals adjacent (in which the expected number of 
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coincidences is sufficiently high). But, for all the other combinations, there is a certain threshold that 
must be fulfilled. Indeed, for the first double gaussian fit, only the bins with more than 10 
coincidences are considered. After the removal of the constant background, only the bins with at least 
5 coincidences are involved in the final single gaussian fit. At the end of this process, if the resulting 
TOF is smaller than 0 or bigger than 10 ns (impossible, having set a sample window of 10 ns), it is 
forced to 0. 
 

 
 
 
 
 
All the deep blue boxes are zeros. On the main diagonal and on the adjacent diagonals there is a value 
that oscillates between 0.3425 and 0.3347 ns. Then, there are other combinations (the green and 
yellow boxes in Fig. 4.25) with values that are out of the way. This proves that, even if has been 
modified, this version of the code, for the strip-by-strip analysis is not valid. There are still some 
combinations, in which, the number of coincidences stored are sufficiently high to be considered, and 
the resulting TOF is in interval [0;10] ns. But, the majority of the coincidences are “wrong”, leading 
to very absurd resulting time of flights (Fig. 4.25). 
One possible solution is to merge the two methods, second gaussian method and 3-sigma method, 
explained before, to treat the coincidences. 
 
4.3.6 Combination of 3-sigma and second gaussian method 
 
A possible solution to overcome the limits of this analysis (Fig. 4.25), is a combination of the second 
gaussian method and 3-sigma method. Basically, the approach adopted for the coincidences treatment 
is the same (second gaussian method), but there is a check of the results of the combinations of the 
non-facing strips, using the criteria of the 3-sigma method. 
Taking Figure 4.25 as model, the rows are the strips of the first sensor, while the columns are the 
strips of the second detector. The boxes are the combinations of them. For any row and column 
investigated, this new approach saves the TOFs coming from the analysis of the facing strips 
considered, and they are used as reference values . All the other results, of the same row (same strip 
of the first sensor, but non-facing strips of the second one), are then compared with the correspondent 

Figure 4.25: Measured TOF at 62 MeV, with S1 at 0.1 mm and S2 at 60 mm. On the left-hand side there is a 2D plot of 
the measured TOF, with the yellow boxes that shows a value very different with respect to the one on the main diagonal, 

that is around 0.3ns. On the right-hand side, are represented the same numbers but in a 3D bar plot, to show clearly 
with combinations are out of the proper values and of how much. 
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values used as model. For example, the TOF measured from the combination (2,6) is compared with 
the one of the combination (2,2). 
There are two conditions that must be respected to consider the TOF of (2,6) a valid one: 
 

1. 𝑇𝑂𝐹(2,2) − 1.5 ∗ 𝜎(2,2) < 𝑇𝑂𝐹(2,6) < 𝑇𝑂𝐹(2,2) + 1.5 ∗ 𝜎(2,2) 
 
 

2. 𝜎(2,6) < 3 ∗ 𝜎(2,2) 
 

Condition 1 guarantees that the mean value of (2,6) is not that far from the “correct” one (but within 
the 3-sigma interval), and the condition 2 guarantees that, even though the mean value may be 
good, the dispersion must not be too large. 

 
Condition 2 avoids situation like the one in Figure 4.26,  occurring at 62 MeV, at 300 mm of distance 
between the detectors. The one represented is the combination (7,2), with mean TOF and dispersion 
that must be compared with the reference values from (2,2). The TOF calculated, around 2.8 ns, is 
close to the reference one, 2.3 ns, but because of the big dispersion from the second fit, this value is 
non accepted in the analysis. This process (checking the results) is then repeated for any combination 
that does not lays over the main diagonal.  
It is not easy to appreciate it, but a clear image of this problem comes from the figure that collects the 
histograms of all the 64 combinations (Fig. 4.27), coming from the analysis of the simulation 
conducted at 62 MeV, and 60mm distance between the detectors. 
 

Figure 4.26: Histogram of the combination (7,2), with all the TOF measured at 62 MeV, with S2 at 300 
mm. The red curve is the double gaussian fit, and the blue curve is the single gaussian fit after the 

application of the second gaussian method. 
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Figure 4.27: Histograms of the 64 possible combinations at 62 MeV, with S2 at 60 mm. On the main diagonals, the 

histograms show very narrow peaks, while on the other combinations there is no clear peak. 
 
 
In conclusion, this procedure allows to get a good estimation of the TOF, but it is too complex and 
slow compared to the analysis of all the combinations combined together or to the facing strips 
analysis. Still, it could be useful for some particular application, like the one described in the 
following section. 
 

4.4 Alignment analysis 
 
The previous sections show that the easiest method to treat the simulated signals is by collecting all 
the 64 combinations together and fitting the data, rather than the strip-by-strip analysis. The latter, 
though, through a better characterization of the beam, allows a rough analysis about the alignment of 
the two sensors. 
There is the possibility of having wrong positioning of the sensors along the three axes: x, y and z. 
As described in the section 4.2.1, the z-axis represents the distance of the detector with respect to the 
origin of the proton beam. While y-axis and x-axis stays as, respectively, the height and the width of 
the detector (Fig. 4.28).  
Considering the alignment analysis performed prior the experimental acquisition, for the tests 
conducted (section 2.2), the most probable misalignment is the one over the z-axis, because of a tilt 
of the structure that holds the detector. This is the topic of this section of my thesis. However, it would 
be interesting, and useful, the development of a tool, within the measurement app, able to detector 
any possible problem about the positioning of the detector, like the one in Figure 4.30 (X-Y plane 
misalignment). 
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Figure 4.28 : Schematic view of the disposition of the two detectors in the Geant4 simulation. 

The green dot is the origin of the system where it supposed to start the proton flux. 

 
Figure 4.29 : Y-Z plane of Fig. 4.28. This figure represents a misalignment over the Y-axis. 
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Figure 4.30: X-Y plane of Fig. 4.28. In this case, the misalignment is simulated over the X and Y-axis. 

 

4.4.1 Y-Z plane misalignment. 
 
The study related to the alignment has been focused on the Y-Z plane (Fig. 4.29), with Z that 
represents the distance of the detector from the origin of the system (distance from the start position 
of the protons), and Y is the height of the detector. 
In this kind of evaluation, the strip-by-strip distribution of the coincidences is crucial. 
For a perfectly aligned system, there should be the maximum value of coincidences over the main 
diagonal, meaning over the facing strips. 
The sensor, specifically designed for the MoVeIT project (already employed for the tests conducted 
at TPT), has 11 strips. As mentioned, the first, tenth and eleventh strips would not be involved in the 
proper acquisition of the signals (future tests). Despite it, within the Geant4 simulation, the designed 
detector has the same dimensions of the real one, including these 3 strips. Therefore, the matrix, 
generated at the end of the beam simulation, is 11x11. However, the simulation app has been 
developed to keep trace of the signals of just 8 strips, from the second to the ninth. Still, over the user 
interface, there is the possibility of choosing a different beginning strip for both the detectors (Fig. 
4.31). 
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Figure 4.31: Zoom over the step 1 of the simulation app (Appendix E). This section gives the possibility of choosing the 

position of the two detectors (Z-axis, distance from the origin of the beam), and the initial strip of the two detectors. 

A possible way to simulate a condition of not aligned sensors over the Y-Z plane relies on this aspect 
of the simulation that can be changed from the app interface. The idea is: keep the initial strip of the 
first sensor fixed at 2 and see what happen changing the first strip of the second sensor to 1 and 3. 
Basically it is like moving the second sensor up and down of one strip. After the simulation, the 
signals can go through the analysis app. 
The simulation has been completed at 150 MeV.  
 

 
Figure 4.32: Simulation of the misalignment over the Y-Z axis. These three plots represent the distribution of the 

coincidences over 64 strips combinations, coming from the analysis of the simulation at 150 MeV and 60mm distance 
between the two detectors. In all the three plots, the strips of the first detectors are 2-9, while the ones of the second 

detector change. Going from the left-hand side plot to the one on the right-hand side, the strips of the second detector 
are: 1-8, 2-9, 3-10. The main diagonal, with the biggest number of coincidences collected (facing strips), moves 

according to the strips of the second sensor considered. 
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As expected, changing the first strip of the second sensor there is a right and left shift of the diagonal, 
that collects the biggest number of coincidences (Fig. 4.32). Setting the strip 1 as the first of the 
second detector, the diagonal goes right. And, at the same way, starting from the strip 3, the maximum 
value in the first row is not even there. Even though, considering the small distance (60mm), this 
analysis cannot be taken for granted. Even more so if the same process is adopted at bigger distances, 
like the following picture, in which it is not possible to recognize the same trend. 
 

 
Figure 4.33: Same analysis of the Fig. 4.32. In this case, though, the simulation has been conducted at 1000mm of 

distance between the two detectors. This time there is no clear main diagonal (facing strips) with the biggest number of 
coincidences. Because of the big distance, there is a certain spread out of the flux that starts homogenizing over the 

entire dimension of the sensor. 

This first test about the misalignment analysis must be taken carefully. Figure 4.32, even if at small 
distance, shows a clear pattern, that because of the homogenization of the coincidences over the 
detector at big distances (Fig. 4.33), disappears. Still, some further steps can be done in this direction 
to exploit the full capability of the app, mostly by improving the parameters setup in the simulation. 
Increasing the dimension of the sensitive detectors within the Geant4 simulation, it should be possible 
to investigate a misalignment (over the three axis) of just few microns. Indeed, one the major limit of 
this analysis relies in the possibility of investing a possible misalignment by one strip. Increasing the 
dimensions of the detector, over the three axes, the tool of the simulation app can be implemented in 
order to allow very small “movements” of the second detector. 
Another step, still related to the Geant4 simulations, is the change of the distribution of the beam. In 
this way, the misalignment tool can be tested, and check whether if it is or not able to recognize some 
other patterns in the distribution of the coincidences, that may be evidence of a wrong positioning of 
the detectors. 
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4.5 Calibration validation 
 
In addition to the results seen up to this point, two further simulations, at 105 and 180 MeV, have 
been conducted. With the TOF measured at these 5 distances, and 4 positions, the “simulated system” 

can be calibrated. Applying the calibration method, Ordinary Least Squares (OLS) and Weighted 
Least Squares (WLS) minimization, in terms of distance and offset, the process should give back the 
exact first simulated distance and a time offset equal to 0 (or so), because of the absence of cables 
and digitizer. In this way, a validation of the relative approach can be performed and check whether 
if the results satisfy the expectations or not. The main purpose of this further analysis is to establish 
if the relative method, explained in the third chapter, is correct.  
The ones in Table 4.1 are the TOFs measured, adopting the second gaussian method and using all the 
64 combinations, from the simulated signals. 
 
Table 4.1 : Table collecting the TOF measured, adopting the second gaussian method, from the simulation conducted at 

5 energies and 4 positions. 

Distance [mm] Energy at the 
isocenter 

[MeV] 

Mean TOF 
[ns] 

Mean TOF error 
[ps] 

60 62 0.578 0.359 
60 105 0.457 0.360 
60 150 0.395 0.339 
60 180 0.368 0.341 
60 227 0.337 0.347 
300 62 2.894 0.446 
300 105 2.290 0.406 
300 150 1.976 0.367 
300 180 1.839 0.369 
300 227 1.687 0.371 
600 62 5.796 0.573 
600 105 4.584 0.451 
600 150 3.953 0.423 
600 180 3.680 0.412 
600 227 3.376 0.377 
1000 62 9.676 0.967 
1000 105 7.643 0.629 
1000 150 6.591 0.498 
1000 180 6.135 0.484 
1000 227 5.627 0.431 
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Figure 4.34: Outcomes of the calibration of the simulated system adopting the OLS and WLS minimization. 

 
The expected 𝑥1 is 60 mm and 𝑜𝑓𝑓𝑠𝑒𝑡 equal to 0.  
 

Table 4.2: Results of the calibration of the simulated system adopting the OLS and WLS minimization. 

OLS WLS 
𝒙𝟏 [mm] 𝒐𝒇𝒇𝒔𝒆𝒕 [ps] 𝑥1 [mm] 𝒐𝒇𝒇𝒔𝒆𝒕 [ps] 
61.28 -7 60.37 -2 

 
The results are pretty close to the nominal values (simulated ones). In particular, the outcomes of the 
weighted least squares minimization have just 370 μm of difference, for the distance, and 2 ps with 
respect to the time offset (Table 4.2 and Fig. 4.34). 
As explained before, with the outcomes of the calibration process it is possible to measure the energy 
of the beam at the isocenter (considering 𝐿 as 𝑥1 + Δx): 
 
      

𝑣𝑎𝑣𝑔 =
𝐿

𝑇𝑂𝐹 − 𝑜𝑓𝑓𝑠𝑒𝑡
 (2.1) 

 
      

𝐾𝑎𝑣𝑔 ≅ 𝐸0

(

 
1

√1 − (
𝑣𝑎𝑣𝑔
𝑐
)
2
− 1

)

  

(3.2) 

 
      

𝐾1 = 𝐾𝑎𝑣𝑔 + (
𝑆

𝜌
 (𝐾𝑎𝑣𝑔))

𝑎𝑖𝑟

∙ 𝜌𝑎𝑖𝑟 ∙
𝐿

2
 (3.4) 
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Figure 4.35: Difference between the measured and the nominal energy at the isocenter. These energy levels have been 
measured using the first distance (x1) and the time offset coming from calibration of the system, adopting the relative 

approach. 

Figure 4.35 shows the difference between the measured and the nominal energy at the isocenter 
(position 0 of the simulation). The trend is pretty much the same already saw in the results of the tests 
conducted at TPT and CNAO. Increasing the distance, the energy measured seems more precise. It is 
clear the improvement going from, talking about nominal distances, 60 mm to 300 mm, and from 300 
mm to 600 mm. Even though, there is no appreciable variation between 600 and 1000 mm. They are 
kind of overlapped. Another interesting outcome of this graph is related to the differences between 
the energy difference between OLS and WLS minimization process. Also in this case, as in the 
previous chapter, the energy measured with the 𝑥1 and the 𝑜𝑓𝑓𝑠𝑒𝑡 coming from the WLS 
minimization seems more precise, in particular at small distances.  
From the beam energy, the water range can be measured, as explained in the introduction of the third 
chapter (Eq. 3.1) and compared with the one of the nominal energy (𝛥𝑟𝑎𝑛𝑔𝑒). 
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Figure 4.36: Difference between the measured and the nominal water range at 60 and 100cm. These water ranges have 

been measured using the energy levels of Fig. 4.35. 

The water range is always within the limit of 1mm from the nominal one, even though there is no 
much difference between the OLS and WLS minimization results (Fig. 4.36). 
It would be interesting a comparison between the results obtained with the full detectors (16 strips) 
involved in the acquisition, and the tests performed at TPT, with just one strip of the detector used. 
Unfortunately, because of the simulated nature of the signals involved in this chapter, this kind of 
analysis cannot be performed. Still, one possible way to evaluate the evolution of the results, 
according to the change in the statistics (a change in the number of strips) is to modify the number of 
strips involved in the TOF measurement, directly from the user interface of the app. The parameter 
that, at the end, will be compared, is the sum of the square of the water range residuals, from the 
energy measured at the biggest distances (600 and 1000mm). 
To perform this analysis, some guidelines must be followed. First, all the simulations involved must 
have the same number of events, to simulate the same acquisition time. Second, because of the non-
uniform distribution of the flux over the detector (Fig. 4.9), it has been decided to start from the strip 
with the highest number of coincidences (strip 6 of detector 1) and keep increasing the number adding 
one strip per side. The other aspect that must be faced, is which strip of the second sensor must be 
evaluated. The following results are collected considering the facing strip, and the two adjacent.  
To summarize: 
 

• First step. Detector 1: strip 6. Detector 2: strip 5 to 7;  
• Second step. Detector 1: strip 5 to 7. Detector 2: strip 4 to 8; 
• Third step. Detector 1: strip 4 to 8. Detector 2: strip 3 to 9; 
• Fourth step. Detector 1: strip 3 to 9. Detector 2: strip 2 to 9. 

 
For each test, the TOF has been measured at 4 distances (60,300,600 and 1000mm), applying the 
second gaussian  method to the coincidences of all 64 combinations combined together. These TOFs 
have been used to calibrate the “simulated system”, in terms of distance and time offset, and with the 
results, it has been possible to evaluate the beam energy and the beam range (with the process 
explained before). 
Finally, the square of the differences (residuals) between the measured and the nominal range in water 
(at 600 and 1000 mm) have been summed. The expected result is a decrease of this value increasing 
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the number of strips involved. Meaning, a more precise estimation of the beam energy (and of the 
water range), increasing the statistics. 
In Figure 4.37 is represented the difference between the measured and the nominal energy, computed 
with S2 at 1000mm, with distance and time offset coming from the OLS and WLS minimization. 

 
Figure 4.37: Difference between the measured and the nominal energy at 1000mm. These energies have been measured 
from the calibration of the system, using the TOF measured considering 1,3,5, and 7 strips of the first detector, and the 

second detector at 1000mm. 

All the points of Fig. 4.37 are very close to 0, and there is no significant improvement of the results 
by increasing the number of the strips involved in the acquisition. However, with the energy levels, 
the water range can be measured and compared with the nominal one. 
The 𝛥𝑟𝑎𝑛𝑔𝑒 profile, at 600mm and 1000mm, is represented in figures 4.38 and 4.39. 
 

 
Figure 4.38: Difference between the nominal and the measured water range at 600mm. 
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Figure 4.39: Difference between the measured and the nominal water range at 1000mm. 

All the 𝛥𝑟𝑎𝑛𝑔𝑒 remain within the 1mm limit for any energy, at 600 and 1000mm (respectively, Fig. 
4.38 and Fig. 4.39). The results (WLS and OLS minimization) are very close, but for the majority of 
the points, the distances (from 𝑥1) and the 𝑜𝑓𝑓𝑠𝑒𝑡 coming from the WLS minimization lead to better 
energy estimation, therefore of the water range.  
The results, collected as ∑𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑤𝑎𝑡𝑒𝑟 𝑟𝑎𝑛𝑔𝑒,   600−1000𝑚𝑚

2, for the OLS and WLS minimization, 
are reported in Figure 4.40.  

 
Figure 4.40: Sum of the residuals of Fig. 4.38 and Fig. 4.39, adopting the OLS and WLS minimization. There is, 

increasing the number of strips (x-axis), a reduction of the residual. 

First, it can be noticed, that the values, on the left-hand side of the picture are bigger (Fig. 4.40). So, 
at the end, this can be written as a prove of the convenience of weighting the residuals. Second, the 
increase in the number of the strips of the first sensor considered in the TOF measurements lead to 
better results, besides the point at 7 strips for the OLS minimization. In particular, looking at the 
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figure on the right side (WLS minimization), going from 1 strip to 3, has a major impact than the 
following increases. It may be sign of a plateau.  
Trying to summarize the results of this final analysis, the increase in the statistics seems to lead to a 
better evaluation of the beam penetration range. However, to be more confident about this result, this 
entire analysis must be repeated with experimental signals.  
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5. Conclusions 
 
The work described in this thesis aims at developing a new technology for the real-time analysis of 
clinical proton beams, leading to a practical application of new treatments like rescanning and 
tracking, proposed to compensate for organ movements. These two proposed techniques allow a more 
precise and effective treatment of the tumor reducing the dose delivered to healthy tissues, using 
different approaches. These two methods cannot be applied with the actual beam monitoring system 
(Ionization Chambers), which does not measure the energy of the beam and has a certain threshold 
below which is not able to detect the crossing charged particles.  
The measurements presented in this work are divided into two three main groups: 

• The analysis of the signals experimentally acquired in CNAO and in TPT, with only one 
channel readout per detector, through the implementation of a MATLAB application; 

• The calibration of the prototype system, needed to estimate the time offset and the distance 
between the sensors in the telescope; 

• The simulation and the analysis of signals of a specifically designed detector (segmented in 
8 strips), through the implementation of two MATLAB applications. 

In the first part, there is a description of all the issues related to the analysis of the signals, in terms 
of noise generated and pileup effects, but also of the beam characteristics of the two facilities in which 
the tests have been conducted. These aspects have been considered writing the code of the MATLAB 
application. The program, analyzing the signals, detects the peaks in the first detector (of the 
telescope), and stores all the coincident signals of the second sensor, within a certain sample window 
(the duration is setup from the user interface). For each coincidence, the code stores the measured 
time of flight. At the end of this process, a histogram of the measured F (the time between the 
possible coincident signals between the two sensors) shows a peak and some false coincidences. The 
latter are differently distributed, depending on the type of accelerator producing the beam. 
Two methods have been implemented to treat the coincident signals, named 3-sigma method and 
second gaussian method.  
The main results can be summarized as follow: 

• The application is able to read the signals in a relatively short amount of time (3-4 seconds 
per 1000 events, with each event that lasts 204.8 ns), but still not enough for the future on-
line applications, which require the TOF measurement within few milliseconds. 
The TOFs measured with the 3-sigma method have an error of the order of few ps. This has 
been the first method implemented, with the idea of treating the coincidences of the main peak 
of the histogram only. This objective is achieved reducing the spectrum of the coincidences 
evaluated, to a window with a certain range (half-width set up from the user interface). From 
the gaussian fit of the coincidences the mean TOF is measured within this window. The 
limitation of this method relies in the false coincidences that are still present at the base of the 
main peak of the histogram, that are not removed.  
The second gaussian method (second method developed) tries to solve this issue. A double 
gaussian fit of all the coincidences stored inside the histogram is performed. Then, there is a 
subtraction of the coincidences of the histogram and the ones below the bottom gaussian (of 
the double gaussian fit). The mean TOF is defined from the single gaussian fit of the left 
coincidences. The error over the TOF is almost always smaller than 1 ps. This method proves 
a certain adaptability. Indeed, the distribution of the coincidences in the histogram is affected 
by the beam characteristics. The coincidences coming from the tests in CNAO have a constant 
background, while the ones coming from the tests in TPT have a radiofrequency peak at the 
base main peak of the histogram. The bottom gaussian, of the double gaussian fit, assumes, 
automatically, the shape of these false coincidences profile that are effectively removed.  
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Considering the setup used during the data acquisition, the main sources of error are related to the 
distance between the two sensors and to the time offset. Therefore, with the TOFs measured in the 
first part, the system must be calibrated in terms of distance and time offset. In the second part of the 
thesis two methods have been developed to calibrate the system, named absolute approach and 
relative approach. The first method uses the nominal energies and the TOFs measured as input and 
calibrates the system through a χ2 minimization, keeping the distances and the time offset as free 
parameters. The second method is independent from the nominal energies and calibrates the system 
through an OLS and WLS minimization. The TOFs are still used as inputs, but there are only two 
free parameters: the first distance between the two detectors, involved in the data acquisition, and the 
time offset. All the other distances are expressed as function of the first one plus a certain, constant 
or not, 𝛥𝑥. The two free parameters are free to range over an interval of values.  
Once calibrated, it is possible to measure the energy of the beam from the TOFs values, the distances 
and the time offset through an analytical approximation validated with Geant4 simulations, taking 
into account the energy loss in the air between the sensors (Appendix B). From the energy, the range 
in liquid water is measured. This is the relevant parameter in clinics, and it must be very precise. 
Indeed, the limit imposed by the regulation is of 1mm between the range measured and the nominal 
one. The following is a recap of the second part of the thesis: 

• The beam energies measured with distances and time offset resulting from the absolute 
approach are very close to the nominal values. The 𝛥𝑒𝑛𝑒𝑟𝑔𝑖𝑒𝑠 profile gets better increasing 
the distance, as expected (the error over the distance has a small impact at big distances 
between the detectors). The difference in the water range measured from these energies and 
the nominal one, at 67 and 97 cm, are always smaller than 1mm. These good results are, 
though, reached using the nominal energies. 

• Moreover, the beam energies coming from the results of the relative approach are very close 
to the nominal values, even though the ones coming from the absolute approach are better. 
The 𝛥𝑒𝑛𝑒𝑟𝑔𝑖𝑒𝑠 profile is the same, improving at big distances. There is a discrepancy 
between the results of the type of minimization adopted during the calibration procedure (OLS 
and WLS minimization) in terms of range in water measured. At 67 and 97 cm, the 𝛥𝑟𝑎𝑛𝑔𝑒𝑠 
from the OLS minimization are quite always over the 1mm limit. Better results are obtained 
from the WLS minimization, but still worse than the ones of the absolute approach. Besides 
these results, the relative approach has been developed mostly thinking about the new 
prototype system involved in the data acquisition. Indeed, In the actual prototype system, the 
position of S2 could be changed by removing it from its first position in specific grooves of 
the support platform and moving it to a second position corresponding to other grooves of the 
same platform. While the future prototype system will move S2 mechanically, with a bigger 
precision over the position and maintaining an eventual inclination. This will remove the 
uncertainties over the possible tilt of the detector, leading to a more precise estimation of 
distance and time offset. 

• Another analysis performed and reported in Appendix C, is about the combination of energies 
that should be used to perform the calibration with the relative approach (that uses the TOFs 
measured at just two energies). Because of the dependence between distance and time offset, 
it has been developed a method to find out which is the combination that minimize this 
dependency (the one with the smallest correlation index). For both facilities, the best 
combination is always the one between the smallest and biggest energy, from the ones 
involved in the tests conducted. 

• Although not been reported in the thesis, the analysis of the time offset of the first 4 input 
channels of the digitizer (0 to 3) has been performed. This work helped me to become familiar 
with the digitizer and to verify if a time delay between the channels is contributing to the 
measured time offset. Two identical signals have been generated and acquired by the digitizer 
with two cables of different length. The difference in length corresponds to a certain time 
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delay. The signals have been acquired by switching the cables and measuring the TOF with 
the MATLAB application described before (already knowing the correct TOF, the time delay 
due to the cables). For example, the channels 0 and 3 (of the digitizer) are the ones involved 
in the experimental tests conducted in CNAO and TPT. From this analysis, the time offset of 
this combination of channels results of 87 ps, measured as 𝑜𝑓𝑓𝑠𝑒𝑡 = 𝑇𝑂𝐹0−3−𝑇𝑂𝐹3−0

2
. Repeating 

this procedure for all the other combinations of the first four channels the offset results 
different for each of them.  

 
The sensors used at CNAO were made up of 4 pads, each of them with 80μm of active thickness and 
3x3mm2 of sensitive area. To reduce the effect of the pileup, the detector has been segmented in 
strips, as the one used for the tests in TPT (each strip with active thickness of 50 μm and 2.2mm2). In 
both cases, only one channel per detector has been readout, because of the available HV readout 
boards. The energy measurement in a shot-by-shot time frame, as required by possible future 
applications, needs a duration of few milliseconds of the whole process of collecting the data, 
analyzing the signals and measuring the energy. Increasing the number of the strips readout per 
detector (increasing the statistics), it is possible to shorten the time the system takes. 
The final part of the thesis (fourth chapter) is focused on the extension of the application (second 
chapter) for the analysis of 2 signals (1 channel per detector) to 16 signals (8 channels per detector). 
The method involved in the analysis of the events is basically the same, but it is extended to multiple 
signals. Before proceeding with the experimental tests, the application must be validated with 
simulated signals, specifically designed by another MATLAB application. The beam has been 
simulated with Geant4, at different energies and distances between S1 and S2: 

• 60, 300, 600 and 1000 mm of distances. 
• 62, 150, 228 MeV (plus another two energy levels, 105 and 180 MeV for the validation of the 

relative approach of the calibration). 
 
The measurement app offers the possibility of choosing which combination of strips of the two 
detectors to evaluate by checking the boxes over the user interface. The analysis performed in this 
part involved three approaches: facing strips, all 64 combinations combined, or all 64 combinations 
singularly evaluated (strip-by-strip analysis). The idea of diversifying the strategy is to find out which 
is the best approach, in terms of precision of the results but also about the amount of time the analysis 
takes. A further use of these evaluations is about the spread out of the flux at different energies and 
distances. 
To detect the coincident signals, the two methods implemented for the first version of the applications 
(3-sigma and second gaussian) have been employed in the measurement app. The analysis of the final 
results has been made considering the parameters setup in the simulations as the nominal values. 
A summary of the results: 

• Combining the coincidences coming from all the 64 combinations, the second gaussian  
method proved to be more precise of the 3-sigma one, in terms of 𝛥𝑇𝑂𝐹 with respect to the 
nominal values (the nominal TOF is the one that comes from the simulation), that ranges 
between [-1;1] ps for the first method, and [-1;2] ps for the second one; 

• Adopting the second gaussian method for the facing strips analysis, the outcomes are pretty 
much the same of the previous analysis, with the 𝛥𝑇𝑂𝐹 that ranges between [-1;1] ps with 
respect to the nominal TOFs. Therefore, it is not always necessary to study all the 
combinations; 

• The strip-by-strip analysis (64 combinations evaluated singularly) measures the TOF for each 
combination of strips of the first and second detector (adopting the second gaussian method). 
The results are not better, in terms of 𝛥𝑇𝑂𝐹, with respect to the ones coming from the facing-
strips or the 64 combinations combined analysis. There are though, some conditions, 
underlined in the fourth chapter in which it may be interesting the evaluation of what happens 
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in every single combination. Indeed, at small energies and high distances, the spread out of 
the flux is important. This turns in a decrease of the coincidences collected over the 
combinations of the facing-strips, with a general homogenization over the whole volume of 
the detector. But, in other situations, high energy and small distances, the lack of coincidences 
in some combinations leads to absurd results that must be properly faced; 

• To face this problem, the final form of the strip-by-strip analysis combines the two method to 
treat the coincidences, removing the possibility of having meaningless results. There are still 
no improvements in terms of precision of the results with respect to the facing strips or 64 
combinations combined analysis; 

• In the end, the best way to treat these 16 signals is to collect all the coincidences together and 
treat them with the second gaussian method (64 combinations combined analysis); 

• One application of the strip-by-strip analysis is to characterize the spread out of the beam to 
perform an alignment evaluation of the two detectors. Because of the setup of the system, 
detectors attached at the passive board, held by rigid supports, there is the possibility of a 
wrong positioning of the two sensors. Having the exact dispersion of the particles at the origin 
(therefore an exact idea of how the coincidences should be arranged over the first detector) is 
it possible to evaluate a possible misalignment. The results coming from this first preliminary 
simulation proved to be good, but there are still some limitations to the method. Indeed, even 
though it shows clearly the misalignment at short distances, because of the uncertainties over 
the distance the result cannot be taken for granted. At high distances, the analysis cannot be 
performed because of the homogenization of the coincidences over the strips of the detector. 

 
In the final part of the fourth chapter, using the results of the 16 signals analysis, two more analysis 
have been performed: the validation of the calibration method with the relative approach and how 
the results change, in precision, increasing the number of strips involved in the measurements. 
For these additional evaluations, two more simulations have been conducted: at 105 and 180 MeV. 
The code for the calibration with the relative approach (OLS and WLS minimization) takes the TOFs 
measured and a certain range for the first distance (𝑥1) and the time offset. To consider the system 
“validated”, the results of the calibration must be the first distance, imposed in the simulation (60mm), 
and a time offset equal to 0, because of the physical lack of wires and digitizer. 
The second analysis must go through the calibration, to define the distances and the time offset, 
required, with the TOFs, to measure the beam energy. With the energy, the range in liquid water has 
been measured and compared with the one of the nominal energies (the ones imposed in the 
simulations).  

• The results of the calibration validate the method developed. The results of the WLS 
minimization are better than the ones of the OLS minimization, like in the third chapter. 
Respectively, the WLS provides : 𝑥1 of 60.37 mm and 𝑜𝑓𝑓𝑠𝑒𝑡 of -2 ps, while for the OLS: 𝑥1 
of 61.28 mm and 𝑜𝑓𝑓𝑠𝑒𝑡 of -7 ps. The first distance and the time offset are very close to the 
nominal values, and measuring the beam energy, the behavior is the expected one, with 
𝛥𝑒𝑛𝑒𝑟𝑔𝑦 that gets better increasing the distance.   

• For the second analysis, it has been measured the sum of the squares of the residuals, in terms 
of 𝛥𝑟𝑎𝑛𝑔𝑒, coming from the nominal and measured energies, at 60 and 100cm. For all the 
simulations (5 energies, 4 distances), it has been considered an increasing number of strips of 
the second detector: 1,3,5 and 7. The beam flux distribution over the detector is not uniform, 
but it is a gaussian centered in the middle point of the sensor. Therefore, the first strip 
considered is the one at the center (strip 6) of the sensor. The analysis, keep increasing the 
number of the strips, peeks the strip below and above the previous considered (strip 6, strip 5 
to strip 7, etc.). Applying OLS and WLS minimization for the calibration (relative approach) 
of the system (distance and time offset are necessary to evaluate the beam energy, in this 
approach), there is, almost, always a decrease of the residual, proving the statement. In 
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particular, going from 1 strip to 3 strip presents the major improvement in terms of reduction 
of the residual. WLS minimization proved to be more precise than the OLS one. 

 
There are still some open-points and analysis that must be conducted prior to applying this new 
detector for experimental tests in the two facilities. 
First, after the validation with simulated signals, the MATLAB application must be tested with real 
signals, specifically generated with a pulse generator. This device must satisfy some conditions to be 
applied, like it should provide the possibility of generating random peaks at a certain, minimum 
frequency (to stress the code), and it should have 16 output channels. These 16 signals are delivered 
to the digitizer with 16 wires, 8 per detector. The ones of the second detector are longer than the ones 
of the first sensor, to simulate a certain time delay (known), that must be compared with the result of 
the application. After this validation, more experimental data must be collected in the two facilities, 
and the whole process must be repeated: 

1. Collection of the data, with the signals digitized and stored; 
2. TOF measurement with the MATLAB application; 
3. Calibration of the system in terms of distance and time offset; 
4. With the outcomes of the calibration and the TOF, the beam energy is measured; 
5. From the beam energy, the range in liquid water is evaluated; 
6. Check if 𝛥𝑟𝑎𝑛𝑔𝑒 satisfy the 1mm limit imposed by the regulation. 

This process takes a while. The step 2, on its own, takes around 40 seconds for the analysis of 1000 
events. The number of events of the simulated signals (fourth chapter) is about 20 thousand; therefore, 
the application takes several minutes to determine the TOF. Aiming for a complete assessment of the 
energy in few milliseconds, there is still a lot to improve. The plan is to parallelize the code, assigning 
over different processors: the analysis of an equal number of events and then putting all the results 
together, or the analysis of the different strips.  
Some preliminary tests showed a consistent improvement of performance of the code, but still a lot 
of work must be done to achieve the final goal. 
Other tests, for a validation of the code with computational simulated signals, can be made setting up 
different parameters of the beam, like the distribution or increasing the number of particles.  
The last addition, planned so far, is the improvement of the preliminary tool, presented in the end of 
the fourth chapter, for the study of a misalignment of the detectors over the three axes. 
 
In conclusion, I had the chance to be involved in the development of the energy measurement device 
of the MoVeIT project, when the project was in a particularly challenging status. Indeed, I started 
analyzing the data of the first experimental tests and I then continued developing the methods and the 
instrumentations to move to the second step of the project, i.e. the improvements of the analysis code 
and the simulations of a more complex set of input data. Therefore, I had the opportunity to either 
deeply contribute to specific tasks of the project and have a global overview of the whole project at 
the same time, helping the medical physics group of UniTo, enlarging my interests and improving 
my knowledge at the same time. 
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Appendix A.  
 

 

 

Figure a.1: TOF measurement app interface. 
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Figure a.2: Zoom of the Fig. a.1. These are the parameter that can be modified before the analysis of the signals. 

Meaning of all the boxes of the measurement app (Fig. a.2): 

1. Folder in which the data of the acquisition are stored; 
2. Decide the format of the data. Binary for the TPT acquisition and the other for CNAO; 
3. Pressing the button load data info, the code loads the signals acquired, showing the total 

number of event (final event). The analysis can be performed on a selected number of events 
(by modifying initial and final event) one by one or modifying the step (events to jump). 
Pushing preview, the code shows the first ten events stored of the two signals; 

4. Signal threshold, expressed in ADC counts; 
5. Percentage supplied to the constant fraction discriminator method; 
6. Length of the sample window, expressed in samples; 
7. Size of the bin for the final histogram that collects the coincidences; 
8. Double or single gaussian fit for the final histogram; 
9. Checking the box, the code rejects the pileup. Min. pileup peak size, is the number of samples 

used to identify a pileup ; 
10. Shows in the preview, for each peak, the point in which the signal reaches the percentage 

indicated in (5); 
11. Start the analysis; 
12. Half width used in the first method developed to treat the coincidences to narrow the 

coincidences’ window around the main peak of the histogram; 
13. Close all figures opened. 
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Appendix B. 
 
The dependency between velocity and kinetic energy is not linear (Fig. b1). There is a mismatch 
between the energy measured from the average velocity, between the two detectors of the telescope, 
and the average energy, measured from 𝐾2 and 𝐾1, defined, respectively, as the energy before S2 and 
the energy right after S1. 
 
 

𝐾(𝑣𝑎𝑣𝑔) = 𝐸0

(

 
1

√1 − (
𝑣𝑎𝑣𝑔
𝑐 )

2
− 1

)

  

(b.1) 

 
Equation b.1 calculates the energy from the average velocity, with 𝑐, speed of light, and 𝐸0, the rest 
mass of the proton, and considering 𝑣𝑎𝑣𝑔 as:  
 
 
 𝑣𝑎𝑣𝑔 =

𝑣(𝐾1) + 𝑣(𝐾2)

2
 

(b.2) 

The energy, as average between 𝐾1 and 𝐾2, is measured as: 
 
 

𝐾𝑎𝑣𝑔 =
𝐾1 + 𝐾2
2

 (b.3) 

 
𝑣(𝐾𝑎𝑣𝑔) = 𝑐√1 −

𝐸0
2

(𝐸0+𝐾𝑎𝑣𝑔)2
  

(b.4) 

with Equation b.4, that calculates the average velocity from the average energy (Eq. b3). 
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Figure b.1: : The blue curve is the speed of the proton from the relativity theory. This figure shows that a linear 

approximation between speed and energy does not work.  
Figure b.1 shows that: 
  
 𝑣𝑎𝑣𝑔 ≠ 𝑣(𝐾𝑎𝑣𝑔)  𝐾𝑎𝑣𝑔 ≠ 𝐾(𝑣𝑎𝑣𝑔)  

 
The range of energies of interest for hadron therapy applications goes from 60 MeV to 250 MeV. In 
this interval, Figure b.1 proves that there is no linearity between velocity and energy. However, the 
energy lost by the proton is very small compared to the beam energy. 
From Monte Carlo simulations, the energy lost in 97 cm of air is reported in Table b.1. 
 
Table b.1: Energy profile going from K0, before S1 (at the isocenter). K1 after S1, K2 before S2. ∆K is the total energy 

lost in this path, between S1 and S2. 
K0 [MeV] K1 [MeV] K2 [MeV] ∆K [KeV] 
59 58.7 57.6 1100 
150 149.8 149.3 500 
230 229.9 229.5 400 

 
The linearity, in these small energy ranges, can be proved with an analytical demonstration and with 
a Monte Carlo simulation.  
For the analytical approach, 𝐾2 is written as function of 𝐾1 and 𝛥𝐾: 
 

𝑣(𝐾2) = 𝑣(𝐾1 − ∆𝐾) = 𝑐√1 −
𝐸0
2

(𝐸0 + 𝐾1 − ∆𝐾)2
 

 

(b.5) 
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Taking the Taylor series of 𝑣(𝐾) (Eq. b.5) around 𝛥𝐾, it can be demonstrated the linearity in that 
small interval (Fig. b2). 
 
 𝑣(𝐾) = 𝑣1 +

𝑐2𝐸0
2

𝑣1(𝐸0+𝐾1)3
(∆𝐾)  (b.6) 

 
with, 
 

𝑣1 = 𝑐√1 −
𝐸0
2

(𝐸0 + 𝐾1)2
 

 

 

 
 

Figure b.2: Demonstration of the linearity between energy and velocity. (a) represents the behavior of the velocity as 
function of the energy over the interval 0-250 MeV, applying Eq. b.1 (relativity theory) and Eq. b.6 (Taylor expansions). 
(b), (c) and (d) prove the linearity representing the profile of the velocity as function of the energy over small intervals 

of energy (the ones of Table b.1). 
 
The linearity of the energy lost through the air, and through the detector, has been proved also through 
a Monte Carlo simulation (Fig. b.3). 
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Figure b.3: Energy lost by a proton traveling through the air between 0 and 1000mm. The red line is K2 measured as K1 

minus the stopping power in air times the covered distance. The blue line is the energy profile coming from a Monte 
Carlo simulation. The two profiles overlap. 

 
Therefore, the average energy 𝐾𝑎𝑣𝑔 can be estimated as the mean energy between 𝐾2 and 𝐾1. 
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Appendix C. 
 
It has been decided to perform the relative approach of the calibration of the system using two beam 
energies. Which would be the best combination of energies? The answer comes from the analysis of 
the correlation of distance and offset. The combination that guarantees the smallest correlation index 
between those two parameters has been decided to be the right one. 
Considering the tests performed at CNAO (Table 3.2), assuming the S1 position being 0, two S2 
positions (either 7-97, or 37-97, or 67-97) are considered in this study. With 97 cm that is kept fixed 
because less affected by the error over the distance. For each combination of S2 positions, the velocity 
is defined as: 

𝑣1−2 =
𝑥2 − 𝑥1

𝑇𝑂𝐹2 − 𝑇𝑂𝐹1
 

 

(c.1) 

For instance, in the case 7-97 cm, the velocity from the TOFs measured from the tests conducted at 
the same 𝐾1(energy at the isocenter) of 58.95 MeV is: 
 

 𝑣
7−9758.95=

97−7
𝑡9758.85−𝑡758.95

 

 

(c.1) 

To avoid confusion with 𝐾𝑎𝑣𝑔 (i.e. the mean energy between S1 and S2), a new term of energy is 
introduced (𝐸𝑘) for the average energy between two S2 positions, defined from the average velocity 
as:  

𝐸𝑘 ≅ 𝐸0

(

 
1

√1 − (
𝑣𝑎𝑣𝑔
𝑐 )

2
− 1

)

  

 

(c.2) 

From 𝐸𝑘 it is possible to go back to 𝐾1, considering the energy loss in air:  

 
𝐾1 = 𝐸𝑘 + (

𝑆

𝜌
 (𝐸𝑘))

𝑎𝑖𝑟

∙ 𝜌𝑎𝑖𝑟 ∙ (
𝑥1 + 𝑥2
4

) (c.3) 

 
with 𝑥1 and 𝑥2 that are the two positions of S2. The sum of these two values, divided by 4, is the mean 
distance between the points at which 𝐸𝑘 is measured (half distance between 𝑥1 and 𝑥2) and S1. 
Table c.1 collects all the values of 𝐾1 calculated considering all the TOFs measured at 7 and 97 cm, 
at the same energy, in CNAO.  
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Table c.1: First steps of the best energy combination process. From the TOF1 and TOF2, measured with S2 in position 
x1 and x4 come those velocity measurements (third column). Using Eq c.2, the energy between the positions is measured 

(Ek), and calculating the energy loss in the air, the energy right after S1 can be measured. 
K1 nominal 

[MeV] 
TOF 7 cm 

[ns] 
TOF 97 cm 

[ns] 
speed 
[m/s] 

Ek 
[MeV] 

K1 
[MeV] 

58.95 0.764 9.666 1.01E+08 58.38 58.69 
77.6 0.691 8.549 1.15E+08 77.02 77.27 
103.5 0.624 7.548 1.30E+08 102.95 103.15 
148.5 0.554 6.508 1.51E+08 148.27 148.42 
226.1 0.492 5.557 1.78E+08 226.73 226.84 

 

Using these five values of 𝐾1 (Table c.1), knowing the four nominal distances, it is possible to 
measure 20 values of  𝐾𝑎𝑣𝑔 (5 values per distance) as: 

𝐾𝑎𝑣𝑔(𝐿) ≅ 𝐾1 − (
𝑆

𝜌
 (𝐾1))

𝑎𝑖𝑟

∙ 𝜌𝑎𝑖𝑟 ∙
𝐿

2
 

 

  
(c.4) 

Table c.2: From K1, having the four nominal distances, Kavg is measured. 
K avg 7 

cm 
K avg 37 

cm 
K avg 67 

cm 
K avg 97 

cm 
58.68 58.68 58.68 58.68 
77.27 77.27 77.26 77.26 
103.15 103.14 103.14 103.14 
148.42 148.42 148.42 148.42 
226.84 226.84 226.84 226.84 

 
Table c.2 reports all the values of  𝐾𝑎𝑣𝑔 measured with Eq. c.4, starting from the energies ( 𝐾1) 
collected in the last column of Table c.1, and using the four nominal distances (7,37,67 and 97cm). 
These energy values can be translated into average velocities between the two detectors (S1 and S2) 
as:  
 
 

𝑣(𝐾𝑎𝑣𝑔) = 𝑐√1 −
𝐸0
2

(𝐸0 + 𝐾𝑎𝑣𝑔)2
 

 

(c.5) 

and used to give an estimation of the distance: 
 
 𝑑 = 𝑣 (𝑇𝑂𝐹 − 𝑜𝑓𝑓𝑠𝑒𝑡) 

 
(c.6) 

where 𝑇𝑂𝐹 is known, as well as the velocity (Eq. c.5), but there are two unknowns, 𝑑 and 𝑜𝑓𝑓𝑠𝑒𝑡. 
Considering two 𝑇𝑂𝐹, measured with S2 at the same position, and two energies (therefore velocities), 
the Equation c.6 becomes a system of two equations with two unknowns: 

 
{
𝑑 = 𝑣1 (𝑇𝑂𝐹1 − 𝑜𝑓𝑓𝑠𝑒𝑡)
𝑑 = 𝑣2 (𝑇𝑂𝐹2 − 𝑜𝑓𝑓𝑠𝑒𝑡)

 

 

(c.6a) 

Having 5 energies per distance, without repetition, the system c.6a can be solved 10 times. 
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For any distance, there are 10 energy combinations (for example, at 7 cm, the combinations of 𝐾𝑎𝑣𝑔 
are, from Table c.2, first column, [row1, row2], [row1, row3], …) that must be evaluated. 
The correlation index, to be measured properly, requires a certain statistic but there is a limited 
number of values of velocities to evaluate the variance, covariance and finally get to it.  
To increase the statistics, a gaussian distribution of 1000 points has been built for each velocity 
measured in the Eq. c.6a, centered at the mean velocity, with upper and lower limit as mean value± 
mean velocity error. Considering the 10 combinations of energies, with the increased statistics about 
the velocity, there are, for each distance, 20 thousand values of distances and offset to measure 
variance and covariance. 

 

Figure c.1: Profile velocity from gaussian distributed random number generation around the mean value coming from 
eq c.5, and with the dispersion put as the error related to that measure. 

 

Figure c.1 is an example gaussian coming from the velocity measured from 58.68 MeV (𝐾𝑎𝑣𝑔), at 7 
cm, from the combination of TOFs between 7 and 97 cm. The system of equations c.6a is written in 
order to let offset and distance as function of velocities and times, as: 

 
𝑜𝑓𝑓𝑠𝑒𝑡𝑖 =

(𝑣1𝑖𝑡1 − 𝑣2𝑖𝑡2)

𝑣1𝑖 − 𝑣2𝑖
 

 

(c.7) 

 

 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖 =
𝑣1𝑖𝑣2𝑖

𝑣1𝑖−𝑣2𝑖
(𝑡2 − 𝑡1)  (c.8) 
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The mean values are 𝑜𝑓𝑓𝑠𝑒𝑡𝑎𝑣𝑔 and 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑎𝑣𝑔, measured, through eq c.7 and eq c.8 with those 
2000 points(𝑣1𝑖 and 𝑣2𝑖), are used to measure variance and covariance: 

                                                     

𝜎𝑜𝑓𝑓𝑠𝑒𝑡
2 =

1

𝑛
∑(𝑜𝑓𝑓𝑠𝑒𝑡𝑖 − 𝑜𝑓𝑓𝑠𝑒𝑡𝑎𝑣𝑔)

2
𝑛

𝑖=1

 

 

(c.9) 

 

                                               

𝜎𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
2 =

1

𝑛
∑(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑎𝑣𝑔)

2
𝑛

𝑖=1

 

 

(c.10) 

 

                    

𝑐𝑜𝑣𝑜𝑓𝑓𝑠𝑒𝑡,𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
1

𝑛
∑(𝑜𝑓𝑓𝑠𝑒𝑡𝑖 − 𝑜𝑓𝑓𝑠𝑒𝑡𝑎𝑣𝑔)(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑎𝑣𝑔)

𝑛

𝑖=1

 

 

(c.11) 

Finally, the correlation index is measured as: 

    𝜌𝑜𝑓𝑓𝑠𝑒𝑡,𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝑐𝑜𝑣𝑜𝑓𝑓𝑠𝑒𝑡,𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝜎𝑜𝑓𝑓𝑠𝑒𝑡  ∙  𝜎𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
 

  

(c.12) 

 

All the results, for the analysis in CNAO, are collected in Table c.3, c.4 and c.5.  

Table c.3: Correlation index, from CNAO TOF measurements. Distances combination: 7-97 cm. 
7-97 cm Correlation index 

Energy 
1 

Energy 
2 

7 cm 37 cm 67 cm 97 cm 

58.95 77.6 -0.9981 -0.9981 -0.9980 -0.9980 
58.95 103.5 -0.9921 -0.9920 -0.9921 -0.9929 
58.95 148.5 -0.9801 -0.9813 -0.9814 -0.9816 
58.95 226.1 -0.9566 -0.9620 -0.9572 -0.9617 
77.6 103.5 -0.9980 -0.9982 -0.9981 -0.9980 
77.6 148.5 -0.9910 -0.9907 -0.9898 -0.9914 
77.6 226.1 -0.9968 -0.9761 -0.9724 -0.9771 
103.5 148.5 -0.9972 -0.9975 -0.9971 -0.9971 
103.5 226.1 -0.9885 -0.9879 -0.9877 -0.9874 
148.5 226.1 -0.9969 -0.9969 -0.9970 -0.9969 
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Table c.4: Correlation index, from CNAO TOF measurements. Distances combination: 37-97 cm. 
37-97 cm Correlation index 

Energy 
1 

Energy 
2 

7 cm 37 cm 67 cm 97 cm 

58.95 77.6 -0.9982 -0.9982 -0.9980 -0.9981 
58.95 103.5 -0.9923 -0.9920 -0.9922 -0.9930 
58.95 148.5 -0.9808 -0.9820 -0.9820 -0.9823 
58.95 226.1 -0.9575 -0.9629 -0.9576 -0.9620 
77.6 103.5 -0.9980 -0.9982 -0.9982 -0.9981 
77.6 148.5 -0.9912 -0.9908 -0.9902 -0.9917 
77.6 226.1 -0.9775 -0.9765 -0.9728 -0.9774 
103.5 148.5 -0.9974 -0.9976 -0.9973 -0.9973 
103.5 226.1 -0.9887 -0.9882 -0.9881 -0.9877 
148.5 226.1 -0.9970 -0.9970 -0.9971 -0.9970 

 

 

Table c.5: Correlation index, from CNAO TOF measurements. Distances combination: 67-97 cm. 
67-97 cm Correlation index 

Energy 
1 

Energy 
2 

7 cm 37 cm 67 cm 97 cm 

58.95 77.6 -0.9981 -0.9981 -0.9984 -0.9982 
58.95 103.5 -0.9923 -0.9923 -0.9925 -0.9926 
58.95 148.5 -0.9801 -0.9798 -0.9815 -0.9815 
58.95 226.1 -0.9616 -0.9616 -0.9626 -0.9658 
77.6 103.5 -0.9980 -0.9981 -0.9979 -0.9980 
77.6 148.5 -0.9896 -0.9899 -0.9911 -0.9901 
77.6 226.1 -0.9783 -0.9762 -0.9740 -0.9774 
103.5 148.5 -0.9969 -0.9970 -0.9970 -0.9970 
103.5 226.1 -0.9863 -0.9886 -0.9880 -0.9862 
148.5 226.1 -0.9964 -0.9968 -0.9969 -0.9968 

 

The same procedure has been followed for TPT (Table c.6 and c.7), in which there are less distances 
and energy levels. One difference with respect to the test performed in CNAO is that the tests at 
different positions involve different beam energies. In this case: at 270 mm, there are 5 energies, at 
670 mm, 6 energies, and at 970 mm there are 7 energies. Only the beam energies in common can be 
used for this process. Another problem related to the nominal energies in TPT is about one shot 
performed with S2 at 270 mm. Instead of 97 MeV, the test has been performed at 98.5 MeV. 
Therefore, it was not possible to use that beam energy for this kind of analysis. There are only three 
beam energies in common. 
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Table c.6: Correlation index, from TPT TOF measurements. Distances combination: 27-97 cm. 
27-97 cm Correlation index 

Energy 
1 

Energy 
2 

7 cm 37 cm 67 cm 

68.3 182.7 -0.9842 -0.9855 -0.9852 
68.3 227.3 -0.9812 -0.9820 -0.9820 
182.7 227.3 -0.9992 -0.9993 -0.9993 

 

Table c.7: Correlation index, from TPT TOF measurements. Distances combination: 67-97 cm. 
67-97 cm Correlation index 

Energy 
1 

Energy 
2 

7 cm 37 cm 67 cm 

68.3 182.7 -0.9870 -0.9872 -0.9869 
68.3 227.3 -0.9844 -0.9845 -0.9871 
182.7 227.3 -0.9993 -0.9993 -0.9993 

 

For all the combinations examined and at any distance the smallest correlation index is always the 
one between the maximum and the minimum energy tested. 
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Appendix D. 
 

 

Figure d.1 : Interface of the TOF measurement app. 
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Figure d.2 : Zoom of the Fig. d.1. These are the parameter that can be modified before the analysis of the signals. 

Meaning of all the boxes of the measurement app (Fig. d.2): 

1. Folder in which the data of the acquisition are stored; 
2. These boxes represent all the 64 possible combinations of the 8 strips for each detector. By 

checking one box, the program considers that combination to collect coincidences.  
3. Pressing the button load data info, the code loads the signals acquired, showing the total 

number of event (final event). The analysis can be performed on a selected number of events 
(by modifying initial and final event) one by one or modifying the step (events to jump). 
Pushing preview, the code shows the first ten events stored of the two signals; 

4. Signal threshold, expressed in ADC counts; 
5. Percentage supplied to the constant fraction discriminator method; 
6. Length of the sample window, expressed in samples; 
7. Size of the bin for the final histogram that collects the coincidences; 
8. Double or single gaussian fit for the final histogram; 
9. Checking the box, the code rejects the pileup. Min. pileup peak size, is the number of samples 

used to identify a pileup ; 
10. Shows, in the preview, for each peak, the point in which the signal reaches the percentage 

indicated in (5); 
11. Start the analysis; 
12. Half width used in the first method developed to treat the coincidences to narrow the 

coincidences’ window around the main peak of the histogram; 
13. Close all figures opened. 
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Appendix E. 
 
 

 
Figure e.1: Signal simulation app interface. 

The signals’ simulation app is made of 6 steps (Fig. e1). 
In the step 0, the code loads the data simulated with Geant4 and Weightfield2, and generates two 
matrices, in a specific format, required for the signals’ simulation. 

 
Figure e.2: Step 0 of the signals simulation process. 



112 
 

Meaning of these boxes of step0 (Fig. e.2): 
1. Folder in which the Geant4 file is saved. The program analyzes this file and generates a 

matrix called as the name inserted (proton_info.mat);  
2. Folder and name of the Weightfield file is saved. The program analyzes the file and 

generates a matrix called as the name inserted (waves_info.mat). 
 
The Step 1 (Fig. e.3), after having acquired the two matrices (from Geant and Weightfield), allows 
the user to choose the positions and the initial strip for each detector, and the maximum amplitude 
of the peaks, expressed in ADC counts. However, the total number of strips per detector (8) is fixed. 
  

 
Figure e.3: Step 1 of the signals simulation process. 

Meaning of these boxes of step1 (Fig. e.3): 
1. Load the matrix of the Geant simulation; 
2. Choose the position and the initial strip of the two detectors; 
3. Loading the information of the simulated protons, according to the positions and strips 

indicated in (2); 
4. Load the matrix of the Weightfield simulation. The maximum amplitude of the peaks of the 

signals’ simulation can be decided here (ADC counts).  
 
In the step2, the user has to specify some important parameters, that characterize the simulated 
beam.  
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Figure e.4: Step 2 of the signals simulation process. 

Meaning of these boxes of step2 (Fig. e.4): 
1. Distribution of time intervals between successive peaks; 
2. Sampling frequency is the number of samples per second; 
3. Simulated pulse rate is the number of pulses per unit of time; 
4. The duty cycle is the fraction of one period in which the signal is active. By setting a value 

different from 1, a non-continuous beam can be simulated; 
5. The bunch frequency is the number of pulses of particles emitted per unit of time; 
6. The total number of samples is a measure of the time acquisition (1 sample is equal to 0.2 

ns). 
By modifying these parameters, the beam can be simulated as the one in CNAO (synchrotron), or 
the one in TPT (cyclotron).  
To simulate the acquisition of the DIGITIZER, the sampling frequency must be maintained at 
5000MHz (0.2ns). 
The total number of pulses comes from the sampling frequency, simulated pulse rate and the 
number of samples. In this case, for the number present in the Fig. 3.4, it is equal to 400 peaks. 
In the step3 (Fig. e.5) the offset (baseline of the signals) and level of noise of the two detectors can 
be setup. 

 
Figure e.5: Step 3 of the signals simulation process. 
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Figure e.6 : Step 4 and 5 of the signals simulation process. 

Meaning of these boxes of step4 and step5 (Fig. e.6): 
1. This box inverts the signal if they are generated negative; 
2. This box cut the signals over the limit (min, max) indicated.  
3. Starts the generation of the signals, after having set all the previous parameters. 
4. Save the results, in terms of signals per each strip, as wave_stripdetector1_stripdetector2, 

according to the extension indicated. 
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