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Abstract 
 

 
Numerical prediction of crack growth is an important problem in 
computational mechanics. The difficulty in this problem arises from the 
basic incompatibility of cracks with the partial differential equations that 
are used in the classical theory of solid mechanics. The spatial derivatives 
needed for these partial differential equations to make sense do not exist 
on a crack tip or surface. Any numerical method derived from these 
equations inherits this difficulty in modeling cracks. In spite of the progress 
that has been made in developing meshfree methods aimed at modelling 
fracture such meshfree techniques generally require some special method 
of evaluating the spatial derivatives on each crack surface. 
They also require supplemental relations that govern the initiation of 
cracks, as well as their growth velocity and direction. These relations must 
be applied along each crack tip, leading to inherent complexity of the 
method, particularly when multiple cracks occur and interact in three 
dimensions. It is also possible to construct constitutive models that lead 
asymptotically to localization in a continuum but these techniques do not 
entirely avoid the need for special treatment of a crack after it forms. As 
an attempt at improving this situation, a theory of solid mechanics has 
been proposed that does not require spatial derivatives to be evaluated 
within a body. This theory, known as the peridynamic theory, instead uses 
integral equations. The objective is to reformulate the basic mathematical 
description of solid mechanics in such a way that the identical equations 
hold either on or off of a discontinuity such as a crack. 
In particular in this thesis I wanted to highlight the potential of PDDO 
(Peridynimac differential operator) that I used to describe the RZT (Refined 
zig zag theory). In the first chapter I briefly introduced the concept of 
peridynamics while in the second and third chapter I went into more detail 
regarding differential operators and applications of peridynamic 
respectively. In the fourth chapter I introduced the Refined Zig Zag theory 
instead in the fifth I applied PDDO to the RZT. 
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Chapter 1: What is peridynamics? 
 
 
The Peridynamic theory was originally introduced for the solution of 
deformation field equations without any structural idealizations [8]. It 
satisfies all the fundamental balance laws of classical (local) continuum 
mechanics; however, it is different in the sense that it is a nonlocal 
continuum theory and it introduces an internal length parameter into the 
field equations. 
The advantage of peridinamics with respect to traditional methods lies in 
its characteristic of making use of integral equations, which replace the 
differential equations ones present in the continuum theory which are the 
main causes of resolution difficulties in the presence of fracture 
phenomena. The use of integrals, unlike derivatives, presents no problems 
when discontinuities are present in the integration domain. 
In peridynamics the body is composed of material points and each material 
point can interact with other points within a finite distance called horizon. 
 

 
 

Fig 1.1 The point x of the body interacts directly with each point belonging to the 
region of influence of horizon δ by means of bonds (ξ). [8] 

 
 
There is a force of interaction that relates two material points, not 
necessarily adjacent that lie within the region that has the horizon as its 
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radius and a point as its center called main; this force is called peridynamic 
force or pairwise force. In the bond based theory the interaction that 
connects two peridinamic points within the horizon is called bond. 
The peridynamic theory may be thought of as a continuum version of 
molecular dynamics. The acceleration of any particle at x in the reference 
configuration at time t is found from [8]: 
 
 

𝜌�̈�(𝑥, 𝑡) = ∫ 𝑓(𝑢(𝑥,, 𝑡) − 𝑢(𝑥, 𝑡), 𝑥, − 𝑥)𝑑𝑉0, + 𝑏(𝑥, 𝑡)34
 , 

 
where 𝐻0 is a neighborhood of x, u is the displacement vector field, , q is 
mass density in the reference configuration, b is a prescribed body force 
density field and f is a pairwise force function whose value is the force 
vector (per unit volume squared) that the particle x’ exerts on the particle 
x. Now we can denote the relative position of two particles in the reference 
configuration by 𝜉: 
 
 

𝜉 = 𝑥, − 𝑥 
 
 
And their relative displacement is: 
 
 

𝜂 = 𝑢(𝑥,, 𝑡) − 𝑢(𝑥, 𝑡) 
 
 
It is important to note that 𝜂 + 𝜉 is the current relative position vector 
between two particles. 
The direct physical interaction between the particles at 𝑥,	and 𝑥 is called a 
bond and in the special case of an elastic interaction to be defined below, 
a spring. The concept of a bond that extends over a finite distance is a 
fundamental difference between the peridynamic theory and the classical 
heory, which is based on the idea of contact forces (interactions between 
particles that are in direct contact with each other). It is convenient to 
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assume that for a given material there is a positive number 𝛿, called the 
horizon, such that 
 

|	𝜉	| > 𝛿	Þ	𝑓(𝜂, 𝜉) = 0				"	𝜂. 
 
 
In other words, the particle x cannot ‘see’ beyond this horizon. For the 
remainder of this discussion,  𝐻0 will denote the spherical neighbourhood 
of x in 𝑅 with radius 𝛿 (Fig. 1). 
 
The pairwise force function f is required to have the following properties: 
 

𝑓(−𝜂,−𝜉) = −𝑓(𝜂, 𝜉)     	"	𝜂, 𝜉 
 
Which assures conservation of linear momentum, and 
 

(𝜉 + 𝜂)	𝑋	𝑓(𝜂, 𝜉) = 0    "	𝜂, 𝜉 
 

this assures conservation of angular momentum. The last equation means 
that the force vector between these particles is parallel to their current 
relative position vector. 
A material is  called microelastic if the pairwise force function is derivable 
from a scalar micropotential w: 
 

𝑓(𝜂, 𝜉) = ¶?
¶@
(𝜂, 𝜉)      "	𝜂, 𝜉 
 

The micropotential is the energy in a single bond and has dimensions of 
energy per unit volume squared. The energy per unit volume in the body 
at a given point (i.e., the local strain energy density) is therefore found from 
 
 

𝑊 =
1
2
D 𝑤(𝜂, 𝜉)𝑑𝑉F
34
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There is the factor of 1/2 because each endpoint of a bond ‘‘owns’’ only 
half the energy in the bond. If a body is composed of a microelastic 
material, work done on it by external forces is stored in recoverable form 
in much the same way as in the classical theory of elasticity. Furthermore, 
it can be shown that the micropotential depends on the relative 
displacement vector 𝜂 only through the scalar distance between the 
deformed points. Thus, there is a scalar-valued function 𝑤G  such that 
 
 

𝑤G(𝑦, 𝜉) = 𝑤(𝜂, 𝜉)						"	𝜂, 𝜉				𝑦 = |𝜂 + 𝜉|. 
 
 
Therefore, the interaction between any two points in a microelastic 
material may be thought of as an elastic (and possibly nonlinear) spring. 
The spring properties may depend on the separation vector 𝜉 in the 
reference configuration. 
Anisotropy may be included in the microelastic response through this 
dependence on the direction of 𝜉 [8]. 
 

𝑤G(𝑦, 𝜉) = 𝛽K𝑤G(𝑦, |𝜉|) + (1 − 𝛽K)𝑤G(𝑦, |𝜉|), 𝛽 = 𝑔	𝜉/|𝜉|, 
 
 
Which explicity supplies the dependence of the bond energy on the bond 
direction.  
Combining the equations  and differentiating the latter with respect to the 
components of 𝜂 leads to  
 
 

𝑓(𝜂, 𝜉) =
𝜉 + 𝜂
|𝜉 + 𝜂|

𝑓(|𝜉 + 𝜂|, 𝜉)				"	𝜂, 𝜉					 

 
 
 
Where 𝑓 is the scalar-valued function difined by 
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𝑓(𝑦, 𝜉) =
¶𝑤G
¶𝑦

(𝑦, 𝜉)						"	𝑦, 𝜂, 

And we can write 
 

𝑤G(𝑦,−𝜉) = 𝑤G(𝑦, 𝜉) 
					 

 
Which will henceforth be assumed. 
The previous equation [8], together with the equation of motion, 
essentially contain the peridynamic model for a nonlinear microelastic 
material. It is interesting to note that the issue of how to treat rigid rotation 
does non arise in this formulation because y is invariant under rotation of 
the body. Similarly, objectivity of a constitutive model is not an issue in this 
approach. 
A linearized version of the theory for a microelastic material takes the form 
 

𝑓(𝜂, 𝜉) = 𝐶(𝜉)𝜂					"	𝜂, 𝜉					 
 
 
Where C is the material’s micromodulus function, whose value is a second 
order tensor given by 
 

𝐶(𝜉) = ¶OP

¶@
(0, 𝜉)			"	𝜉. 
 

 
This function inherits the following requirement: 
 

𝐶(−𝜉) = 𝐶(𝜉)				"	𝜉. 
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Chapter 2: Peridynamic Differential Operator 
 
 
The peridynamic differential operator [2] uses the concept of Peridynamic 
interactions and it is based on the orthogonality property of the 
Peridynamic functions [2]. It renew the nonlocal interactions at a point by 
considering its association with the other points into an arbitrary domain 
of interaction. The Peridynamic differentiation recovers the local 
differentiation as this interaction domain approaches zero. It converts the 
local form of differentiation to its nonlocal PD form. It is simply a bridge 
between differentiation and integration. Therefore, the PDDO enables 
numerical differentiation through integration.  
The PDDO enables the computational solution of complex differential 
equations and evaluation of derivatives of smooth or scattered data in the 
presence of jump discontinuities or singularities. It provides the solution to 
linear and nonlinear PDEs in a unified manner regardless of their intrinsic 
behavior and presence of a singularity without any derivative reduction 
process and special treatment. It does not have any limitations on the 
order of the partial derivatives of the spatial variables and temporal 
variable. This may become significant if temporal nonlocality space-time 
nonlocality is of concern. 
For the approximation of zeroth-order derivative (function itself), the 
PDDO, RK, and G-RK are all equivalent. The PDDO and G-RK are also 
equivalent for the approximation of first-order derivatives. Pertinent to the 
zeroth- and first-order derivatives, the reproducing conditions and the 
correction functions of the RK and G-RK are the same as the orthogonality 
conditions and the PD functions of the PDDO, respectively. Otherwise, 
there exists no correspondence when approximating the higher-order 
derivatives. 
The PDDO employs the concept of PD interactions and the PD functions 
without performing any differentiation. It employs neither a kernel 
function nor reproducibility conditions for different orders of derivatives. 
It enables accurate determination of any arbitrary order of partial 
derivatives of the spatial and temporal functions. The PD functions for the 
derivatives are determined directly by making them orthogonal to each 
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term in the Taylor series expansion . Both the lower- and higher-order 
derivatives influence each other while determining the PD functions in the 
presence of a nonsymmetric family. The PDDO is free of the requirement 
of symmetric kernels. This feature removes the necessity of ghost points 
near the boundary. Therefore, it is not a special case of RK or G-RK 
operators. 
The derivation of the PDDO is explained by considering a function f(x) with 
a single variable, x. According to the PD concept, the variation of the field 
f . f(x) at point x is influenced by its interaction with the other points, x0 in 
the domain. As shown in the figure below, the spacing between these two 
points is 𝜉 = 𝑥, − 𝑥. 
 

 
 
                              Fig. 2.1  Interaction between material points 𝑥, and 𝑥. [2] 
 
Each point in the domain occupies an infinitesimally small entity (time or 
length), 𝑑𝑙. Also, each point x has its own family members, and it only 
interacts with points in its own family, 𝐻0.  
Similarly, point 𝑥′ is influenced by the variation of points in its own family, 
𝐻0, . Furthermore, the size of each family can be different.  
The degree of interaction between the points is specified by a 
nondimensional influence (weight) function, 𝑤(𝑥, − 𝑥), which can be 
different for each point. The location of a point with respect to its family 
shape may not necessarily be symmetric. If symmetric, the size of each 
family is established by a characteristic parameter (length), δ, referred to 
as the “horizon.” Also, the points within a distance, 𝛿 of 𝑥, are called the 
family of 𝑥, 𝐻0. 
The peridynamics differential operator can be constructed by considering 
the TSE of a scalar field 𝑓(𝑥,) = 𝑓(𝑥 + 𝜉) as [2] 
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𝑓(𝑥 + 𝜉) =S
1
𝑛!
𝜉V
dX𝑓(𝑥)
𝑑𝑥V

+ R(N, x)	

\

]^_

 

 
 
where 𝜉 = 𝑥, − 𝑥, with R(N,x) representing the remainder. Assuming the 
contribution of the remainder is negligibly small and multiplying each term 
in this expression by the peridynamic functions, 𝑔\

`(𝜉) with (p=0,1, …,N) 
and integrating over the family of point 𝑥 defined as 𝐻0 = {𝑥,Î	[a, b]} 
result in [2] 
 
 

D𝑓(𝑥 + 𝜉)𝑔\
`(𝜉)𝑑𝜉 = 𝑓(𝑥)

34

D𝑔\
`(𝜉)𝑑𝜉 +

¶𝑓(𝑥)
¶𝑥

34

D𝜉	𝑔\
`(𝜉)	𝑑𝜉 +

34

 

+
¶	K𝑓(𝑥)
¶𝑥K

D
1
2!
	𝜉K	𝑔\

`(𝜉)	𝑑𝜉 +⋯
34

+
¶		\𝑓(𝑥)
¶𝑥\

D
1
𝑁!
	𝜉\	𝑔\

`(𝜉)	𝑑𝜉 + 𝑅(𝑁, 𝑥)
34

 

 
 
For a point, 𝑥, symmetrically located in its family, the horizon, 𝛿, defines 
the extent of its family as 𝐻0 = {𝑥,Î[a = −δ, b = δ]}. 
The orthogonality property of PD functions, 𝑔\

`(𝜉),  can be written as 
 
 

D
1
𝑛!
	𝜉V	𝑔\

`(𝜉)	𝑑𝜉 = 𝛿V`		𝑤𝑖𝑡ℎ		(𝑛, 𝑝 = 0,1, … ,𝑁)
34

 

 
In which 𝛿V` represents the Kronecker symbol. Invoking these 
orthogonality conditions results in the explicit form of the peridynamic 
expressions for the derivatives as 
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𝑑`𝑓(𝑥)
𝑑𝑥`

D𝑓(𝑥 + 𝜉)𝑔\
`(𝜉)𝑑𝜉

34

 

 
 
in which p denotes the order of differentiation. Although not a limitation, 
the peridynamic functions can be constructed as polynomials in the form 
 
 

𝑔\
`(𝜉) = lam

nwm(ξ)	ξq	
\

m^_

 

 
 
Where wq(ξ) is the weight functions associated with each term ξq in the 
polynomial expansion.  
Depending on the nature of the nonlocality, the weight function 
representing the degree of interaction may be the same or different for 
each term in the TSE. With this representation, the orthogonality property 
of the peridynamic functions leads to [2] 
 
 

lAVm	
\

m^_

𝑎m
` = 𝑏V

` 

 
In which 

𝐴Vm = D𝑤m	(𝜉)	𝜉Vum	𝑑𝜉
34

 

 
 
And 
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𝑏V
` = 𝑛!	𝛿V`. 

 
 
The unknown coefficients,	𝑎m

`  , can be determined from the solution of the 
first equation. It is worth noting that 𝑛 is not necessarily equal to 𝑝 with 
𝑛	³	𝑝, and the nonlocal PD differentiation approaches its local value when 
𝑛	®∞.  
The PDDO recovers the local differentiation as the family size, 𝐻0, 
decreases or the number of terms in the functions,	𝑔\

`(𝜉) , increases. Thus, 
the degree of nonlocality reduces with decreasing family size and with 
increasing number of terms in the TSE. The condition number of the 
coefficient (shape) matrix, 𝐴Vm, becomes poor, and round-off error may 
become significant for higher-order derivatives such as 𝑛	³	10. Therefore, 
it may be advantageous to normalize the range of integration with respect 
to the domain of interaction 𝐻0 = {𝑥,Î	[a, b]} and employ a 
preconditioning method prior to solving for the unknown coefficients. In 
general, the round-off error can be avoided by increasing the family size 
for higher-order derivatives. 
Also, it is important to use the optimum family size to achieve convergence 
and 
sufficient accuracy within a practical amount of computational time. 
The normalization can be achieved by introducing a new viariable as 𝜉̅ =
2 x𝜉 − yuz

K
{ /(𝑏 − 𝑎)	with 𝜉 = |(𝑏 − 𝑎)𝜉̅ + (𝑏 + 𝑎)}/2. The expressions 

for the derivatives and PD functions become [2] 
 
 
 

𝑑`𝑓(𝑥)
𝑑𝑥`

=
𝑏 − 𝑎
2

D 𝑓 ~𝑥 +
1
2
(𝑏 − 𝑎)𝜉̅ + (𝑏 − 𝑎)�

�

��
𝑔\
`(𝜉)𝑑𝜉̅ 

 
And 
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𝑔\
` ~
1
2
(𝑏 − 𝑎)𝜉̅(𝑏 + 𝑎)� =Sam

nwm �
1
2
(𝑏 − 𝑎)𝜉̅ + (𝑏 + 𝑎)� 𝜉̅m		

\

m^_

 

 
 
For a point, 𝑥,	symmetrically located in its family which is normalized over 
the horizon 𝐻0 = {𝑥,Î	[−1,1]} with a uniform grid spacing and wm(𝜉) =
1, the PD functions, 𝑔V

`(𝜉), for different values of 0£		𝑝	£	2 and 2£		𝑛	£	6 
are shown in the figure below 
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In a M-dimensional space, the TSE of a scalar field 𝑓(𝑥′) = 𝑓(𝑥 + 𝜉) with 
many variables can be expressed as 
 
 
 

𝑓(𝑥 + 𝜉) = 

= l 	 l …			 l
1

𝑛�! 𝑛K!…𝑛\!
𝜉�
V�𝜉KK

\�V�…V���

V�^_

\�V�

V�^_

\

V�^_

… 𝜉�
V� 	

¶	V�uV�u⋯uV�		𝑓(𝑥)
¶	𝑥�

V�	¶	𝑥K
V� … ¶	𝑥�

V� 

 
+𝑅(𝑁, 𝑥) 

 
 
 
Where 𝜉 = 𝑥, − 𝑥 with 𝑅(𝑁, 𝑥) representing the remainder. Assuming the 
contribution of the remainder is negligibly small and invoking the property 
of the orthogonal function, 𝑔\

`�`�…`�(𝜉), result in the peridynamic  
nonlocal expression for the partial derivatives of any order as [2] 
 
 
 

¶	`�u`�u⋯u`�		𝑓(𝑥)
¶	𝑥�

`�	¶	𝑥K
`� … ¶	𝑥�

`� = D 𝑓(𝑥 + 𝜉)	𝑔\
`�`�…`�(𝜉)𝑑𝑥�𝑑𝑥K …𝑑𝑥�

34
 

 
 
 
In which 𝑝� denotes the order of differentiation with respect to variable 𝑥� 
with 𝑖 = 1,…𝑀. The PD functions 𝑔\

`�`�…`�(𝜉) has the orthogonality 
property of 
 

1
𝑛�! 𝑛K!…𝑛\!

	D 𝜉�
V�𝜉K

V� … 𝜉�
V�

34
	𝑔\
`�`�…`�(𝜉)𝑑𝑥�𝑑𝑥K …𝑑𝑥� 

= 𝛿V�`�𝛿V�`�…𝛿V���`���𝛿V�`� 



 
 
 

17 

 
In which 𝑛� = 0,…𝑁. They can be constructed as 
 

𝑔\
`�`�…`�(𝜉)

= l 	 l …			 l 𝑎m�m�…m�
`�`�…`�	𝑤m�m�…m�(|𝜉|)	𝜉�

m�𝜉K
m� …

\�V�…V���

V�^_

𝜉�
m�

\�V�

V�^_

\

V�^_

 

 
 
Where 	𝑤m�m�…m�(|𝜉|) is the weight function associated with each term 
	𝜉�
m�𝜉K

m� … 𝜉�
m� 

In the polynomial expansion. Depending on the nature of the nonlocality, 
the weight function representing the degree of interaction may be the 
same or different for each term in the TSE. 
The unknown coefficients, 𝑎m�m�…m�

`�`�…`�, can be determined from the solution 
of 
 
 

l 	l …			 l 𝐴(V�V�…V�)(m�m�…m�)	𝑎m�m�…m�
`�`�…`� = 𝑏V�V�…V�

`�`�…`�

\�m�…m���

m�^_

\�m�

m�^_

\

m�^_

 

 
 
 
In which 𝑞� = 0,… ,𝑁. The coefficient matrix is constructed as 
 
 
𝐴(V�V�…V�)(m�m�…m�)

= D 𝑤m�m�…m�(|𝜉|)	𝜉�
V�um�𝜉K

V�um�

34
… 𝜉�

V�um�𝑑𝑥�𝑑𝑥K …𝑑𝑥� 

 
 
And 
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𝑏V�V�…V�
`�`�…`� = 𝑛�! 𝑛K!…𝑛�! 𝛿V�`�𝛿V�`� …𝛿V�`�. 

 
 
The peridynamic differential operators [2] recovers the local 
differentiation as the size of family 𝐻0 decreases or the number of terms 
in the functions 𝑔\

`�`�…`�(𝜉) increases. It requires the computation of the 
coefficients, 𝑎m�m�…m�

`�`�…`�	, and the condition number of the coefficient 
(shape) matrix, 𝐴(V�V�…V�)(m�m�…m�)	, may become poor for higher-order 
derivatives.  
Therefore, when computing higher-order derivatives, the family size needs 
to be adjusted accordingly. If it is too small, then round-off errors 
dominate, and if it is too large, then the results deviate from local values. 
The coefficients of the PD functions can be determined without any 
difficulty. 
Although it is not a limitation, the weight functions 𝑤m�m�m�(𝜉) can be 
replaced with 𝑤V(|𝜉|) for simplification based on the order of 
differentiation.  
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Chapter 3: Kinematics of Peridynamic, equations of motion and 
applications 

 
 
Peridynamic equations can be used for describe the behaviour, for 
example, of the Timoshenko beam or the Kirchhoff’s plate. This chapter 
will be briefly shown how with the kinematics of Peridynamic can be 
represent the displacement in the Timoshenko beam and Kirchhoff’s plate 
respectively. 
 
3.1 Beam kinematics 
 
As shown in the figure below [8] we can express the trasverse shear angles 
(𝜙(�)	and 𝜙(])) of material points 𝑗 and 𝑘: 
 

𝜙(�) = �
𝑤(�) − 𝑤(])
𝜉(�)(])

− 𝜙(�)𝑠𝑔𝑛�𝑥(�) − 𝑥(])�� 

 
 

𝜙(]) = �
𝑤(�) − 𝑤(])
𝜉(�)(])

− 𝜙(])𝑠𝑔𝑛�𝑥(�) − 𝑥(])�� 
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In which 𝑤(�),	𝜙(�) and 𝑤(]), 𝜙(]) represent the out-of-plane deflection and 
rotation of material points 𝑗 and 𝑘, respectively. The distance between the 
material points is specified as 𝜉(�)(]) = |𝑥(�) − 𝑥(])|. 
If 𝑘 is the point of interest, the transverse shear angle, 𝜙(])(�) can be 
defined [8]: 
 

𝜙(])(�) = �
𝑤(�) − 𝑤(])
𝜉(�)(])

−
𝜙(�) + 𝜙(])

2
𝑠𝑔𝑛�𝑥(�) − 𝑥(])�� 

 
The curvature between the material points 𝑗 and 𝑘 can be defined as 
 

𝑘(])(�) = ~
𝜙(�) − 𝜙(])
𝜉(�)(])

� 

 
 
If 𝑗 is the point of interest the interaction become: 
 
 

𝜙(�)(]) = �
𝑤(]) − 𝑤(�)
𝜉(�)(])

−
𝜙(]) + 𝜙(�)

2
𝑠𝑔𝑛�𝑥(�) − 𝑥(])�� 

 
Or 
 

𝜙(�)(]) = −𝜙(])(�) 
 
 
And 
 

𝑘(])(�) = ~
𝜙(]) − 𝜙(�)
𝜉(�)(])

� 

 
Or 
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𝑘(])(�) = −𝑘(])(�) 
 
 
3.2 Beam equations of motion 
 
 
Focusing on the beam equations of motion we can write the total kinetic 
energy as: 
 

𝑇 =
1
2
l𝜌[�̇�(])

K
�

]^�

+
𝐼
𝐴 �
�̇�(])
K �]	𝑉(]) 

 
Where 𝑉(]) is the infinitesimally incremental volume of material point 𝑘. 
The parameter 𝜌 represent the mass density, 𝐼 is the moment of inertia, 𝐴 
is the cross sectional area of the beam. 
The total potential energy of the system is [8]: 
 

𝑈 = l�	
1
2
l

1
2

�

�^�

|𝑤�(])(�)�𝑘(])(�)� + 𝑤�(�)(])�𝑘(�)(])�}𝑉(�) − 𝑏�(])𝜙(]) 𝑉(])

�

]^�

+ 

	

+l�	
1
2
l

1
2

�

�^�

|𝑤G(])(�)�𝜙(])(�)� + 𝑤G(�)(])�𝜙(�)(])�}𝑉(�) − 𝑏¡(])𝑤(])  𝑉(])

�

]^�

 

 
Where 𝑏�(]) is the body moment and 𝑏¡(]) represent the body force of the 
material point 𝑘. 
Applying the Euler-Lagrange equation: 
 

𝑑
𝑑𝑡

𝜕𝐿
𝜕�̇�(])

−
𝜕𝐿
𝜕𝑤(])

= 0 

 
And 
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𝑑
𝑑𝑡

𝜕𝐿
𝜕�̇�(])

−
𝜕𝐿
𝜕𝜙(])

= 0 

 
Applying the Lagrangian equation L = T – U we can write the following 
equations of motion [8]: 
 

𝜌�̈�(]) +l
1
2 ¤
𝜉(�)(])𝑓P(])(�)

𝜕𝜙(])(�)
𝜕�𝑤(])�

+ 𝜉(�)(])𝑓P(�)(])
𝜕𝜙(�)(])
𝜕�𝑤(])�

	¥ 𝑉(�) − 𝑏¡(])
�

�^�
= 0 

 
 
And 
 

𝜌𝐼
𝐴
�̈�(]) +l

1
2
𝜉(�)(]) ¤𝑓¦(])(�)

𝜕�𝑘(])(�)�
𝜕�𝜙(])�

+ 𝑓¦(�)(])
𝜕�𝑘(�)(])�
𝜕�𝜙(])�

¥ 𝑉(�)	
�

�^�

 

 

+l
1
2
𝜉(�)(]) ¤𝑓P(])(�)

𝜕�𝑘(])(�)�
𝜕�𝜙(])�

+ 𝑓P(])(�)
𝜕�𝑘(�)(])�
𝜕�𝜙(])�

¥ 𝑉(�) − 𝑏�(]) = 0	
�

�^�

 

 
In which 
 

𝑓P(])(�) =
1

𝜉(�)(])
𝜕𝑤G(])(�)(𝜙(])(�))

𝜕𝜙(])(�)
,			𝑓P(�)(]) =

1
𝜉(�)(])

𝜕𝑤G(�)(])(𝜙(�)(]))
𝜕𝜙(�)(])

 

 
 
 

𝑓¦(])(�) =
1

𝜉(�)(])
𝜕𝑤�(])(�)(𝑘(])(�))

𝜕𝑘(])(�)
,			𝑓¦(�)(]) =

1
𝜉(�)(])

𝜕𝑤�(�)(])(𝑘(�)(]))
𝜕𝑘(�)(])
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That represent the peridynamic interaction forces between material points 
j and k. For a linear material behaviour: 
 

𝑓P(])(�) = 𝑐¨𝜙(])(�),					𝑓P(�)(]) = 𝑐¨𝜙(�)(]) 
 

𝑓¦(])(�) = 𝑐y𝑘(])(�),					𝑓¦(�)(]) = 𝑐y𝑘(�)(]) 
 
 
Where 𝑐¨ and 𝑐y are the peridynamic material parameters. 
Finally, substituting the peridynamic forces, we can write the peridynamic 
equations [8]: 
 
 
 

𝜌�̈�(]) = 𝑐¨l�
𝑤(�) − 𝑤(])
𝜉(�)(])

−
𝜙(�) + 𝜙(])

2
𝑠𝑔𝑛�𝑥(�) − 𝑥(])��𝑉(�) + 𝑏¡(])

�

�^�

 

 
And 
 
 

𝜌𝐼
𝐴
�̈�(]) = 𝑐yl

𝜙(�) − 𝜙(])
𝜉(�)(])

𝑉(�)
�

�^�

+
1
2
𝑐¨l~

𝑤(�) − 𝑤(])
𝜉(�)(])

𝑠𝑔𝑛�𝑥(�) − 𝑥(])�
�

�^�

−
𝜙(�) + 𝜙(])

2 �	𝜉(�)(])𝑉(�) + 𝑏�(]) 

 
 

In an integral form: 
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𝜌�̈�(]) = 𝑐¨ D �
𝑤(𝑥,, 𝑡) − 𝑤(𝑥, 𝑡)

𝜉
−
𝜙(𝑥,, 𝑡) − 𝜙(𝑥, 𝑡)

2
𝑠𝑔𝑛(𝑥, − 𝑥)�𝑑𝑉,

3

+𝑏¡(𝑥, 𝑡) 

 
and 
 

𝜌𝐼
𝐴
�̈�(𝑥, 𝑡) = D 𝑐y ~

𝜙(𝑥,, 𝑡) − 𝜙(𝑥, 𝑡)
𝜉 � 𝑑𝑉,

3

+ D ~𝑐¨
1
2
	~
𝑤(𝑥,, 𝑡) − 𝑤(𝑥, 𝑡)

𝜉
𝑠𝑔𝑛(𝑥, − 𝑥)

3

−
𝜙(𝑥,, 𝑡) + 𝜙(𝑥, 𝑡)

2 � 𝜉�𝑑𝑉, + 𝑏�(𝑥, 𝑡) 

 
In which 
 

𝑐¨ =
2𝑘𝐺
𝐴𝛿K

,						𝑐y =
2𝐸𝐼
𝛿K𝐴K

+
1
4
𝑘𝐺
𝐴

 

 
 
Where 𝑘 for example is 5/6 for rectangular cross sections and represent 
the shear correction factor. 
 
3.3 Example: Timoshenko beam under pure bending and transverse force 
loading 
 
 
Considering a static case, the derivatives of the time are equal to zero. For 
compare the peridynamic solution with the analytical solution has been 
considered: 

- L=1 the length of the beam 
- 𝛿 = 3.015Δ𝑥 (𝛿 is the horizon and Δ𝑥 is the grid spacing) 
- Δ𝑥 = 0.01 (distance between material points) 
- 𝐴 = 0.1	 × 0.1	𝑚K (cross sectional area) 



 
 
 

25 

- 𝐸 = 200	𝐺𝑃𝑎 (Young’s modulus) 
- 𝑏� = 3.33 × 10²	𝑁/𝑚K (body load for bending corresponding to an 

applied moment of 𝑀 = 3.33 × 10³	𝑁𝑚) 
- 𝑏¡ = 5 × 10²𝑁/𝑚´ (body load for transverse loading corresponding 

to an applied load of 𝑃 = 5 × 10³	𝑁) 
 

 
The transverse displacement and the rotation for the analytical solution 
the following equations have been considered: 
For transverse loading the vertical displament is: 
 

𝑤 =
𝑃𝑥
𝑘𝐺𝐴

+
𝑃
2𝐸𝐼 ~

𝐿𝑥K −
𝑥´

3 �
 

 
And the rotation is: 
 

𝜙 =
𝑃(2𝐿𝑥 − 𝑥K)

2𝐸𝐼
 

 
 
Regarding the pure bending the transversal displacement is given by: 
 

𝑤 =
𝑀𝑥K

2𝐸𝐼
 

 
And the rotation is: 
 

𝜙 =
𝑀𝑥
𝐸𝐼

 

 
In the figures below [8] is shown the discretization,the applied load and 
the boundary conditions. 
Considering the applied load: 
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Considering the pure banding: 
 

 
 
The variation of rotation and transverse displacement along the 
Timoshenko beam under pure bending is shown in the figure below [8]: 
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The variation of rotation and transverse displacement along the 
Timoshenko beam under transverse force loading is shown in the figure 
below: 
 

 
 
 
 
3.4 Plate kinematics 
 
Regarding the plate, as illustrated in the figure below [8], 𝜙(]) and 𝜙(�) 
represent the rotations between the material points 𝑗 and 𝑘. 
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If 𝑘 is the point of interest the curvature 𝑘(])(�) is given by: 
 
 

𝑘(])(�) = ~
𝜙(�) − 𝜙(])
𝜉(�)(])

� 

 
 
 
Throught coordinate transformation we can write the rotation and 
curvature as: 
 
 

𝜙(�) = 𝜙0(�)𝑐𝑜𝑠𝜃 + 𝜙·(�)𝑠𝑖𝑛𝜃 
 

𝜙(]) = 𝜙0(]) + 𝜙·(])𝑠𝑖𝑛𝜃 
 
 
And 

𝑘(])(�) = ~
𝜙0(�) − 𝜙0(])
𝑥(�) − 𝑥(])

� cosK 𝜃 +~
𝜙·(�) − 𝜙·(])
𝑦(�) − 𝑦(])

� 

 
 
In which 𝑥(�) − 𝑥(]) = 𝜉(�)(])𝑐𝑜𝑠𝜃 and 𝑦(�) − 𝑦(]) = 𝜉(�)(])𝑠𝑖𝑛𝜃. Obviously 
𝜉(�)(]) is the distance between the material points 𝑗 and 𝑘. 
The trasverse shear angles of the points 𝑗 and 𝑘 can be expressed as: 
 

𝜙(�) = 𝜃(])(�) − 𝜙(�) 
 

𝜙(]) = 𝜃(])(�) − 𝜙(]) 
 
 
Considering the material point 𝑘 as the point of interest we can write  the 
transverse shear angle 𝜙(])(�) as: 
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𝜙(])(�) =
𝑤(�) − 𝑤(])
𝜉(�)(])

−
𝜙(�) + 𝜙(])

2
 

 
If 𝑗 is the point of interest: 
 
 

𝜙(�)(]) =
𝑤(]) − 𝑤(�)
𝜉(�)(])

−
𝜙(]) + 𝜙(�)

2
 

 
 
And 
 

𝑘(�)(]) = ~
𝜙(]) − 𝜙(�)
𝜉(�)(])

� 

 
 
It is important to note that 𝜙(�)(]) = −𝜙(])(�) and 𝑘(�)(]) = −𝑘(])(�). 
 
The PD equations of motion at material point 𝑘 can be derived by applying 
the principle of virtual work 
 

𝛿 D (𝑇 − 𝑈)	𝑑𝑡 = 0
»�

»¼
 

 
Where U is the potential energie in the beam or plate and T is the total 
kinetic energie. Solving the Lagrange equation, the principle is satisfied: 
 

𝑑
𝑑𝑡
�
𝜕𝐿
𝜕𝑞]̇

� − �
𝜕𝐿
𝜕𝑞]

� = 0 

 
Where the vector 𝑞] includes the independent field variables (out of plane 
deflection and rotations), and the Lagrangian 𝐿 is defined as: 
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𝐿 = 𝑇 − 𝑈 
 
 
 
3.5 Plate equations of motion 
 
Under shear deformation and bending the total kinetic energy is: 
 

𝑇 =
1
2
𝜌l|�̇�(])

K + �̇�(])
K + �̇�(])

K }𝑉(])
�

]^�

 

 
Integrating throught the thickness and expressing displacements 
component in terms of rotation  (𝑢(]) = −𝑧	𝜙0(]) and 𝑣(]) = −𝑧	𝜙·(])): 
 

𝑇 =
1
2
𝜌l¿D |�̇�(])

K + 𝑧K�̇�0(])
K + 𝑧K�̇�·(])

K }𝑑𝑧
À
K

�ÀK

Á𝐴(])
�

]^�

 

 
Or 
 
 

𝑇 =
1
2
𝜌l~�̇�(])

K +
ℎK

12
�̇�0(])
K +

ℎK

12
�̇�·(])
K � 𝐴(])

�

]^�

 

 
Where ℎ is the thickness of the plate and 𝐴(]) is the infinitesimally small 
incremental area of each material point. 
Summing the micropotentials between material points (𝑤�(])(�)(𝑘(])(�)) 
and 𝑤G(])(�)(𝜙(])(�))), the total potential energy of the plate can be written 
as [8]: 
 

𝑈 =l�
1
2l

1
2

�

�^�

|𝑤�(])(�)�𝑘(])(�)� + 𝑤�(�)(])�𝑘(�)(])�}𝑉(�) −
𝑏�Â(])
ℎ 𝜙Â(])  𝑉(])

�

]^�
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+l�
1
2
l

1
2

∞

𝑗=1

x𝑤�(𝑘)(𝑗) Ã𝜙(𝑘)(𝑗)Ä + 𝑤�(𝑗)(𝑘) Ã𝜙(𝑗)(𝑘)Ä{ 𝑉(𝑗) −
𝑏¡(𝑘)
ℎ
𝑤(𝑘)  𝑉(𝑘)

∞

𝑘=1

 

 
 
In which 𝑏�Â(]) and 𝑏¡(]) are the resultant body moment and body force at 
material point 𝑘. 𝑤(]) and 𝜙Â(]) are the independent variables. 
The resulting Euler-Lagrange equations can be expressed as 
 

𝑑
𝑑𝑡

𝜕𝐿
𝜕�̇�(])

−
𝜕𝐿
𝜕𝑤(])

= 0 

 
 
And 
 

𝑑
𝑑𝑡

𝜕𝐿
𝜕�̇�Â(])

−
𝜕𝐿

𝜕𝜙Â(])
= 0,								𝛼 = 𝑥, 𝑦 

 
 
Applying the Lagrangian equation L = T – U we can write the following 
equations of motion [8]: 
 

𝜌ℎ�̈�(]) = 𝐶¨l~
𝑤(�) − 𝑤(])
𝜉(�)(])

−
𝜙0(�) − 𝜙0(])

2
𝑐𝑜𝑠𝜃

�

�^�

−
𝜙·(�) − 𝜙·(])

2
𝑠𝑖𝑛𝜃�𝑉(�) + 𝑏¡(]) 
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𝜌ℎ´

12
�̈�0(]) = 𝐶yl¤~

𝜙0(�) − 𝜙0(])
𝜉(�)(])

� 𝑐𝑜𝑠𝜃
�

�^�

+ ~
𝜙·(�) − 𝜙·(])

𝜉(�)(])
� 𝑠𝑖𝑛𝜃¥ 𝑐𝑜𝑠𝜃𝑉(�)

+
1
2
𝐶¨l𝜉(�)(]) ~

𝑤(�) − 𝑤(])
𝜉(�)(])

−
𝜙0(�) − 𝜙0(])

2
𝑐𝑜𝑠𝜃

�

�^�

−
𝜙·(�) − 𝜙·(])

2
𝑠𝑖𝑛𝜃� 𝑐𝑜𝑠𝜃𝑉(�) + 𝑏�0(])	 

 

And 

 

𝜌ℎ´

12
�̈�·(]) = 𝐶yl¤~

𝜙0(�) − 𝜙0(])
𝜉(�)(])

� 𝑐𝑜𝑠𝜃
�

�^�

+ ~
𝜙·(�) − 𝜙·(])

𝜉(�)(])
� 𝑠𝑖𝑛𝜃¥ 𝑠𝑖𝑛𝜃𝑉(�)

+
1
2
𝐶¨l𝜉(�)(]) ~

𝑤(�) − 𝑤(])
𝜉(�)(])

−
𝜙0(�) − 𝜙0(])

2
𝑐𝑜𝑠𝜃

�

�^�

−
𝜙·(�) − 𝜙·(])

2
𝑠𝑖𝑛𝜃� 𝑠𝑖𝑛𝜃𝑉(�) + 𝑏�0(])	 

 

It is important to note that the peridynamic interactions, obviously, exist 
only within the horizon of material points. In the equations the constants 
𝐶y and 𝐶¨ can be expressed in terms of G and E as: 
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𝐶¨ =
9𝐸
4𝜋𝛿´

𝑘K,							𝐶y =
𝐸
𝜋𝛿 ~

3ℎ´

4𝛿K
+
27
80
𝑘K� 

 
where 𝑘K is the shear correction factor equal to 𝑘K = 𝜋K/12, and 𝜈 = 1/3. 
It is important to say that PD material parameters are determined for a 
material point whose horizon is completely embedded in the material. 
 
 
 
3.6 Example: Mindlin plate under pure bending and transverse force 
loading 

 
 
Considering a static case, the derivatives of the time are equal to zero. For 
compare the peridynamic solution with the analytical solution has been 
considered: 
 

- 𝐿 = 1	𝑚  (length of the plate) 
- 𝑊 = 1	𝑚 (width of the plate) 
- ℎ = 0.01	𝑚 (thickness of the plate) 
- 𝐸 = 200	𝐺𝑃𝑎 (Young’s module) 
- Δ𝑥 = 0.01	𝑚 (distance between material points) 

 
 
Furthermore, has been considered a fictitious region in the left edge for 
the constrained equal to 3Δ𝑥. The transverse loading is 𝑏¡ = 5 × 10Ë	𝑁/𝑚K 
and the bending load is𝑏�0 = 3.33	 × 10Ë	𝑁/𝑚 (as shown in the next page, 
both applied at the right end of the plate and in a single row of material 
points). 
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Applied load case: 
 
 

 
 

 
Pure bending case: 
 

 
 

 
 

The peridynamic solution [8], now, is compared with the analytical solution 
(FEM). 
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The variation of the rotation (left) and transverse displacement (right) 
along a Mindlin plate under bending loading is reported in the figure 
below: 
 
 

 
 
 
The variation of the rotation (left) and transverse displacement (right) 
along a Mindlin plate under transverse force loading is reported in the 
figure below: 
 
 

 
 

As shown, The peridynimic and the FEM solutions agree well with each 
other; this means that PD equation of motion can accurately capture the 
deformation behaviour of a Mindlin plate. 
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Chapter 4: Refined Zigzag Theory 
 
The RZT formulation is very suitable for thick beams having span-to-
thickness ratios up to five and does not suffer from the use of shear 
correction factor regardless of the material system. The RZT consists of 
four kinematic variables for the beams in a Cartesian coordinates system 
(x,z) , and the displacement components in the 𝑘»À layer in a laminate are 
expressed in terms of in-plane displacement, 𝑢, out-of-plane displacement, 
𝑤, outof- plane slope, 𝜃, and the out-of-plane zigzag amplitude , 𝜓, as 
 

𝑢0](𝑥, 𝑧) = 𝑢(𝑥) + 𝑧	𝜃(𝑥) + 𝜃(])(𝑧)	𝜓(𝑥�) 
 
 

𝑢Í](𝑥, 𝑧) = 𝑤(𝑥) 
 
 
where 𝑧Î[−ℎ, ℎ] is the thickness coordinate. As shown in the figure below  
[11] the beam is comprised of 𝑁 layers having a total thickness of 2ℎ.  
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Each layer of the beam has an arbitrary thickness of 2ℎ(]). The zigzag 
function 𝜙] varies linearly within the 𝑘»À layer and is defined as 
 

𝜙(])(𝜉) =
1
2
(1 − 𝜉)	𝑢(]��) +

1
2
(1 − 𝜉)	𝑢(]) 

 
In which the local variable 𝜉 is defined as 
 

𝜉 = KF�F(Î)�F(Î��)
F(Î)�F(Î��)

						 	𝜉(]��)	£		𝜉	£	𝜉(])  

 
The displacement variable 𝑢(]) is the unknown displacement associated 
with the zigzag functions at the layer interfaces satisfying 𝑢(_) = 𝑢(\) = 0. 
The interface displacements are recursively related as 
 

𝑢(]) = 2ℎ(])𝛽(]) + 𝑢(]��) 
 
 
Where the slope of the zigzag function (in the figure below [3]), 𝛽(])º	𝜙,Í

(]), 
is uniform within the 𝑘»À layer and can be expressed in the form of 
 

𝛽(]) =
𝐺
𝑄³³
(]) − 1						(𝑘 = 1,2, … ,𝑁 − 1) 
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With a weighted-average transverse shear modulus [1] 
 

𝐺 = ¿
1
2ℎ

l
2ℎ(])

𝑄³³
(])ÐÐÐÐÐÐ

\

]^�

Á

��

 

 

Where 𝑄³³
(])ÐÐÐÐÐÐ is the transverse shear modulus of the 𝑘»À layer. 

 
 
The layer-wise strain components can be written in terms of displacement 
components as  
 

𝜖00
(]) = 𝑢,0 + 𝑧𝜃,0 + 𝜙(])𝜓,0 

 
𝛾0Í
(]) = 𝑤,0 + 𝜃 + 𝜙,Í

(])𝜓 
 
 
Where subscript comma denotes differentiation with respect to the 𝑥 and 
𝑧 coordinates. 
The generalized Hooke’s law for the 𝑘»À orthotropic lamina, whose 
principal material directions are arbitrary, is specified as 
 

�
𝜎00
𝜎0Í

�
(])

= Ô
𝑄�� 0
0 𝑄³³

Õ
(])
	�
𝜖00
𝛾0Í

�
(])

 

 
 
In which 𝑄Ö×ÐÐÐÐ represents the axial and transverse ply properties. 
The governing equations of the RZT are derived based on the principal of 
virtual work as 
 

𝛿𝑊� + 𝛿𝑉Ø = 0 
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Where 𝛿𝑊� and 𝛿𝑉Ù  are the virtual work of internal forces and the virtual 
work done by an external distributed normal load, respectively. 
The virtual work of internal forces can be written as 
 

𝛿𝑊� = D D Ã𝜎00
(])𝛿𝜖00

(]) + 𝜎0Í
(])𝛿𝜖0Í

(])Ä 𝑑𝐴𝑑𝑥
Ú

Û

_
 

 
Substituting for the stress and strain components into the last equation 
and integrating over the cross-section of the beam,	𝐴, the virtual work of 
internal forces,	𝛿𝑊� , becomes [1] 
 

𝛿𝑊� = D �𝑁0𝛿𝑢,0 + 𝑀0𝛿𝜃,0 + 𝑀Ü𝛿𝜓,0 + 𝑄0𝛿�𝑤,0 + 𝜃� + 𝑄Ü𝛿𝜓�𝑑𝑥
Û

_
 

 
Where the stress,moment and shear resultants are defined as 
 

𝑁0 = 𝑏lD 𝜎00
(])𝑑𝑧

Í(Î)

Í(Î��)

\

]^�

 

 
 

�𝑀0,𝑀Ü� = 𝑏 �lD 𝑧𝜎00
(])𝑑𝑧, lD 𝜙(])𝜎00

(])𝑑𝑧
Í(Î)

Í(Î��)

\

]^�

Í(Î)

Í(Î��)

\

]^�

� 

 
 
And 
 

�𝑄0, 𝑄Ü� = 𝑏(lD 𝜎00
(])𝑑𝑧,lD 𝛽(])𝜎00

(])𝑑𝑧
Í(Î)

Í(Î��)

\

]^�

Í(Î)

Í(Î��)

\

]^�
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Where 𝑏 is the width of the beam. The constitutive equations expressing 
the relation between stress resultants and derivatives of kinematic 
unknowns, are [1] 
 
 

⎝

⎜
⎜
⎜
⎛	𝑁0
𝑀0
𝑀Ü
𝑄0
𝑄Ü⎠

⎟
⎟
⎟
⎞

=

⎣
⎢
⎢
⎢
⎡
𝐴�� 𝐵�K 𝐵�´ 0 0
𝐵�K 𝐷�� 𝐷�K 0 0
𝐵�´ 𝐵�K 𝐷KK 0 0
0 0 0 𝐹�� 𝐹�K
0 0 0 𝐹�K 𝐹KK⎦

⎥
⎥
⎥
⎤

⎝

⎜
⎜
⎜
⎛

𝑢,0
𝜙,0
𝜓,0

𝑤,0 + 𝜃
𝜓

⎠

⎟
⎟
⎟
⎞

 

 
 
Where the stiffness coefficients can be written as 
 

(𝐴��, 𝐵�K, 𝐷��) = 𝑏lD 𝑄��ÐÐÐÐÐ(])(1, 𝑧, 𝑧K)𝑑𝑧,
Í(Î)

Í(Î��)

\

]^�

 

 
 

(𝐵�´, 𝐷�K, 𝐷KK) = 𝑏lD 𝑄��ÐÐÐÐÐ(])𝜙(])�1, 𝑧, 𝜙(])�𝑑𝑧,
Í(Î)

Í(Î��)

\

]^�

 

 

(𝐹��, 𝐹�K, 𝐹KK) = 𝑏lD 𝑄³³ÐÐÐÐÐ(]) Ã𝛽(]), −�𝛽(])�
K
, �𝛽(])�

K
Ä 𝑑𝑧,

Í(Î)

Í(Î��)

\

]^�

 

 
The virtual work done by an external distributed normal load can be 
written 
 

𝛿𝑉Ø = D 𝑝(𝑥)𝛿𝑤𝑑𝑥
Û

_
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Performing the cross-sectional integration and variation by parts leads to 
the governing equations of equilibrium and boundary conditions as [1] 
 
Equilibrium equations: 
 
 

𝑁0,0 = 0 
	
𝑄0,0 + 𝑝 = 0 
	
𝑀0,0 − 𝑄0 = 0 
	
𝑀Ü,0 − 𝑄Ü = 0 

 
Boundary conditions: 
 

𝑁0 = 0		𝑜𝑟		𝛿𝑢 = 0 
	
𝑀0 = 0		𝑜𝑟	𝛿𝜃 = 0 
	
𝑄0 = 0		𝑜𝑟		𝛿𝑤 = 0 
	
𝑀Ü = 0		𝑜𝑟		𝛿𝜓 = 0 

 
 
Substituting the stress, moment, and shear resultants yields the 
equilibrium equations in terms of the kinematic variables of the RZT: 
 
  
 

𝐴��𝑢,00 + 𝐵�K𝜃,00 + 𝐵�´𝜓,00 = 0 
	
𝐹��(𝑤,00 + 𝜃,0) + 𝐹�K𝜓,0 + 𝑝(𝑥) = 0 

 
𝐵�K𝑢,00 + 𝐷��𝜃,00 + 𝐷�K𝜓,00 − 𝐹���𝑤,0 + 𝜃� − 𝐹�K𝜓 = 0 
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𝐵�´𝑢,00 + 𝐷�K𝜃,00 + 𝐷KK𝜓,00 − 𝐹�K�𝑤,0 + 𝜃� − 𝐹KK𝜓 = 0 

 
 
Where subscript comma denotes differentiation with respect to the 𝑥 
coordinate.  
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Chapter 5: Refined Zigzag Theory by using PDDO 
 

 
The PD form of the equilibrium equations can be obtained by replacing the 
derivatives of the kinematic variables by using the Peridynamic Differential 
Operator. Their PD representation can be specifically written as [1] 
 
 

𝑑`

𝑑𝑥`
𝑓�𝑥(])� = l Ã𝑓�𝑥(�)� − 𝑓�𝑥(])�Ä 𝑔í

`�𝜉(])(�)�𝑑𝑙(�)

\(Î)

�^�

 

 
 
Where 𝜉(])(�) = 𝑥(�) − 𝑥(]), 𝑑𝑙(�) = Δ𝑥 and 𝑝 denotes the order of 
differentiation with respect to 𝑥. The field variable 𝑓 represents the 
unknown kinematic variables of RZT, 𝑢,𝑤, 𝜃	and 𝜓. Also, 𝑔í

`�𝜉(])(�)� is the 
known PD function.  
Applying PDDO we can express the kinematic variables of RZT: 
 
 

𝑢,00 =
𝑑K𝑢
𝑑𝑥K

= l Ã𝑢�𝑥(�)� − 𝑢�𝑥(])�Ä 𝑔íK�𝜉(])(�)�𝑑𝑙(�)

\(Î)

�^�

 

 

𝑤,00 =
𝑑K𝑤
𝑑𝑥K

= l Ã𝑤�𝑥(�)� − 𝑤�𝑥(])�Ä 𝑔íK�𝜉(])(�)�𝑑𝑙(�)

\(Î)

�^�

 

 

𝜃,00 =
𝑑K𝜃
𝑑𝑥K

= l Ã𝜃�𝑥(�)� − 𝜃�𝑥(])�Ä 𝑔íK�𝜉(])(�)�𝑑𝑙(�)

\(Î)

�^�
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𝜓,00 =
𝑑K𝜓
𝑑𝑥K

= l Ã𝜓�𝑥(�)� − 𝜓�𝑥(])�Ä 𝑔íK�𝜉(])(�)�𝑑𝑙(�)

\(Î)

�^�

 

 

𝑤,0 =
𝑑𝑤
𝑑𝑥

= l Ã𝑤�𝑥(�)� − 𝑤�𝑥(])�Ä 𝑔í��𝜉(])(�)�𝑑𝑙(�)

\(Î)

�^�

 

 

𝜃,0 =
𝑑𝜃
𝑑𝑥

= l Ã𝜃�𝑥(�)� − 𝜃�𝑥(])�Ä 𝑔í��𝜉(])(�)�𝑑𝑙(�)

\(Î)

�^�

 

 

𝜓,0 =
𝑑𝜓
𝑑𝑥

= lÃ𝜓�𝑥(�)� − 𝜓�𝑥(])�Ä 𝑔í��𝜉(])(�)�𝑑𝑙(�)

\(Î)

�^�

 

 
 
Substituting in the equations of Refined Zigzag Theory we can write the 
following equations of the RZT using PDDO: 
 
 
 

	1)																				𝐴�� ¿lÃ𝑢�𝑥(�)� − 𝑢�𝑥(])�Ä 𝑔íK�𝜉(])(�)�𝑑𝑙(�)

\(Î)

�^�

Á

+ 𝐵�K ¿l Ã𝜃�𝑥(�)� − 𝜃�𝑥(])�Ä 𝑔íK�𝜉(])(�)�𝑑𝑙(�)

\(Î)

�^�

Á

+ 𝐵�´ ¿l Ã𝜓�𝑥(�)� − 𝜓�𝑥(])�Ä 𝑔íK�𝜉(])(�)�𝑑𝑙(�)

\(Î)

�^�

Á = 0 
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										2)								𝐹�� ¿l Ã𝑤�𝑥(�)� − 𝑤�𝑥(])�Ä 𝑔íK�𝜉(])(�)�𝑑𝑙(�)

\(Î)

�^�

	

+l Ã𝜃�𝑥(�)� − 𝜃�𝑥(])�Ä 𝑔í��𝜉(])(�)�𝑑𝑙(�)

\(Î)

�^�

Á

+ 𝐹�K ¿l Ã𝜓�𝑥(�)� − 𝜓�𝑥(])�Ä𝑔í��𝜉(])(�)�𝑑𝑙(�)

\(Î)

�^�

Á + 𝑝(𝑥) = 0 

 
 
 

3)																			𝐵�K ¿lÃ𝑢�𝑥(�)� − 𝑢�𝑥(])�Ä 𝑔íK�𝜉(])(�)�𝑑𝑙(�)

\(Î)

�^�

Á

+ 𝐷�� ¿l Ã𝜃�𝑥(�)� − 𝜃�𝑥(])�Ä 𝑔íK�𝜉(])(�)�𝑑𝑙(�)

\(Î)

�^�

Á

+ 𝐷�K ¿l Ã𝜓�𝑥(�)� − 𝜓�𝑥(])�Ä 𝑔íK�𝜉(])(�)�𝑑𝑙(�)

\(Î)

�^�

Á

− 𝐹�� ¿lÃ𝑤�𝑥(�)� − 𝑤�𝑥(])�Ä𝑔í��𝜉(])(�)�𝑑𝑙(�)

\(Î)

�^�

+								l Ã𝜃�𝑥(�)� − 𝜃�𝑥(])�Ä 𝑔í_�𝜉(])(�)�𝑑𝑙(�)

\(Î)

�^�

Á

− 𝐹�K ¿lÃ𝜓�𝑥(�)� − 𝜓�𝑥(])�Ä 𝑔í_�𝜉(])(�)�𝑑𝑙(�)

\(Î)

�^�

Á = 0 
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4)																				𝐵�´ ¿l Ã𝑢�𝑥(�)� − 𝑢�𝑥(])�Ä 𝑔íK�𝜉(])(�)�𝑑𝑙(�)

\(Î)

�^�

Á

+ 𝐷�K ¿l Ã𝜃�𝑥(�)� − 𝜃�𝑥(])�Ä 𝑔íK�𝜉(])(�)�𝑑𝑙(�)

\(Î)

�^�

Á

+ 𝐷KK ¿lÃ𝜓�𝑥(�)� − 𝜓�𝑥(])�Ä 𝑔íK�𝜉(])(�)�𝑑𝑙(�)

\(Î)

�^�

Á

− 𝐹�K ¿lÃ𝑤�𝑥(�)� − 𝑤�𝑥(])�Ä𝑔í��𝜉(])(�)�𝑑𝑙(�)

\(Î)

�^�

+								l Ã𝜃�𝑥(�)� − 𝜃�𝑥(])�Ä 𝑔í_�𝜉(])(�)�𝑑𝑙(�)

\(Î)

�^�

Á

− 𝐹�K ¿lÃ𝜓�𝑥(�)� − 𝜓�𝑥(])�Ä 𝑔í_�𝜉(])(�)�𝑑𝑙(�)

\(Î)

�^�

Á = 0 

 
 
 
The unknown quantities in the discrete form of the PD equilibrium 
equations are solved under specified boundary conditions. The discretized 
form of the equilibrium equations can be expressed in terms of the 
unknown kinematic variables 𝑢,𝑤, 𝜃	and 𝜓 as 
 

𝐹(𝑢, 𝑏) = 𝐿𝑢 + 𝑏 = 0 
 
In which the matrix 𝐿 represents the coefficients arising from the PD 
differentiation and the PD unknowns, and the vector 𝑢 contains the PD 
unknowns at each point. The vector 𝑏 includes the known values of at each 
point. 
Also, the boundary conditions can be expressed as constraint equations in 
the form: 
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𝐺𝑢 + 𝑑 = 0 

 
Where the known matrix, 𝐺 contains the coefficients arising from the PD 
differentiation and the PD unknowns, and the vector 𝑑 contains the 
specified known values of constraint equations. 
These field and constraint equations can be combined in a variational form 
using Lagrange multipliers,	𝜆, as 
 
 

𝛿𝑢ï(𝐿𝑢 + 𝑏) + 𝛿[𝜆ï(𝐺𝑢 + 𝑑)] = 0 
 
 
Where 𝛿𝑢 represents arbitrary variations of the unknown vector 𝑢. The 
first variation of the second term on the left-hand side yields 
 

𝛿𝑢ï(𝐿𝑢 + 𝑏) + 𝛿𝜆ï(𝐺𝑢 + 𝑑) + 𝛿𝑢ï𝐺ï𝜆 = 0 
 
The resulting equation can then be written as 
 

�
𝛿𝑢
𝛿𝜆
�
ï

�Ô𝐿 𝐺ï
𝐺 0

Õ Ã
𝑢
𝜆
Ä + �

𝑏
𝑑
�� = 0 

 
For arbitrary variations of 𝛿𝑢 and 𝛿𝜆, the system of algebraic equations for 
the solution of 𝑢 and 𝜆 are obtained as 
 
 

Ô𝐿 𝐺ï
𝐺 0

Õ Ã
𝑢
𝜆
Ä = −�

𝑏
𝑑
� 

 
 
In order to achieve the continuous variation of the transverse shear stress 
through the thickness of the beam, the transverse shear stress is calculated 
from the integration of stress equilibrium equation. The integration of the 
transverse shear stress can be written in the form 



 
 
 

48 

 

𝜎0Í = −D 𝜎00,0
Í

�À
𝑑𝑧 

 
Similarly, it is possible to study the stress:the PD representation of the 
derivative of the in-plane stress component is expressed as 
 
 

𝑑
𝑑𝑥
𝜎00�𝑥(]), 𝑧� = l Ã𝜎00�𝑥(�), 𝑧� − 𝜎00�𝑥(]), 𝑧�Ä𝑔í��𝜉(])(�)�𝑑𝑙(�)

\(Î)

�^�

 

 
 
5.1 Example: Non-symmetric sandwich beam 
 
The following example (in the figure below [1]) shows the comparison and 
the correspondence between the PD-RZT and Refined Zigzag Theory. It will 
be considered a non symmetric sandwich beam under sinusoidal 
transverse pressure 𝑝: 
 

𝑝 = 𝑝_ sin Ã
𝜋𝑥
𝐿
Ä ,						0	£	𝑥£	𝐿	 

 
Where 𝑝_ represents the amplitude of the loading. 
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The length is 𝐿 = 1	𝑚, the width 𝑏 = 0.1	𝑚. The thickness of the upper 
face-sheet is ℎò = 0.02 and o the lower ℎó = 0.01. The core has thickness 
ℎô = 0.07 and finally the total thickness is 2ℎ = 0.1. 
The horizon is 𝛿 = 4Δ𝑥 and the discretization (Δ𝑥) is different along the 
beam: 
 

Δ𝑥 = 0.03	𝑖𝑓		0£		𝑥	£	0.3 
 

Δ𝑥 = 0.01	𝑖𝑓		0.3£		𝑥	£	0.7 
 

Δ𝑥 = 0.03	𝑖𝑓		0.7£		𝑥	£	1 
 
 

	 
The beam in the example is simply supported and the boundary conditions 
are: 
 
 

𝑤 = 𝑁0 = 𝑀0 = 𝑀Ü = 0				𝑓𝑜𝑟	𝑥 = 0, 𝐿. 
 
 
In the results for convenience displacement and stress are normalized: 
 
 
 

(𝑢Ð, 𝑤õ) =
𝜋í𝐷��𝑏
10𝑝_𝐿í

(𝑢, 𝑤),				(𝜎Ð00, 𝜎Ð0Í) =
𝜋K(2ℎ)K𝑏
𝑝_𝐿K

(𝜎00, 𝜎0Í) 

 
 

 
The foam has Young module 𝐸 = 0.104	𝐺𝑃𝑎, shear module 𝐺 =
0.04	𝐺𝑃𝑎, poisson 𝜈 = 0.3. Regarding the faces: 𝐸� = 158	𝐺𝑃𝑎, 𝐸K =
10	𝐺𝑃𝑎, 𝐸´ = 10	𝐺𝑃𝑎, 𝜈�K = 0.32, 𝜈K´ = 0.5, 𝜈´� = 0.32, 𝐺�K = 6	𝐺𝑃𝑎, 
𝐺K´ = 3.2	𝐺𝑃𝑎, 𝐺´� = 6	𝐺𝑃𝑎. 
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The PD solutions are compared with the RZT, in particular it is shown the 
variations of deflection along the beam and the axial displacement. 
In the following figure there is a comparison between PD-RZT and RZT 
(analytical solution) for the normalized deflection along the beam: 

 
 

 
 
 

 
 
Finally it is reported a comparison between PD-RZT and RZT of axial 
displacement, 𝑢Ð,evalutated at �̅� = 1: 
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At the end of the chapter it is reported the comparison of the trend of the 
stresses. 
The in plane stress (𝜎Ð00) is reported in the figure below: 
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The transverse shear stress (𝜎Ð0Í	𝑖𝑛	�̅� = 1, 𝑧)) is: 
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Conclusion 
 
In this thesis it highlighted that with peridynimic it is possible to represent 
the equations of motion of a general static or dynamic case.  
In the first part I introduced the peridynamic and how it can be used to 
discretize a body and in the second chapter I explained the PDDO that are 
essential on the peridynamic to transform a differential equation in an 
integral equation; in order to see an applications of the peridynamic and 
his PDDO I have shown the equations of the kinematics and some 
examples. 
In the second part there is an introduction of Refined Zigzag theory (with 
the main eequations) and in the last chapter the application of PDDO to 
the RZT with an example. 
Furthermore it is rised that the PD model successfully captures the 
displacement (along the beam or the plate) in comparison to the analytical 
solution. 
Not using differential equation, but integral equation, the problem is 
greatly simplified and the system of equations more easly solved. The 
disadvantage is the computational load that increase with the complexity 
of the structure and of the discretization. 
Regarding the computational cost in general we note that using a uniform 
mesh increases the computational calculation so it is better to thicken it in 
the area of interest. 
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