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Chapter 1

Introduction

1.1 Text Generation and VAE

Natural Language Processing consists in the study of how to automatically
process information conveyed in Natural Language, that is, human language.
This thesis is interested in a subset of this domain called Text Generation
which consists in the elaboration of computational system capable of gener-
ating text comprehensible by humans.

More specifically, it is interest in exploring a specific model named Varia-
tional Autoencoders, which is one of the most popular models in the academia
in the time of elaboration of this work.

1.2 Goals

In the context of the VAE, this thesis aims to accomplish two sets of goals.
The first is: to improve the overall performance of the VAE in the text gen-
eration task, the understanding of the most new techniques and reflect upon
how to evaluate Text Generation Models. This shall be done by combining
recent advances in the VAE architectures and by proposing a new technique.
The second set of goals is to explore the applications of the text generation
system to other tasks, analyzing its performance and giving guidance to
future work in the application of VAEs and Text Generation Systems.

1.3 Thesis structure

This thesis is divided into 7 chapter. This one is the first chapter and sum-
marizes the thesis domain and goals.

10



The second chapter consist in a listing of the related work done in the
field. It specifies the scope of research and the state-of-the-art methodologies
applied to that scope.

The third chapter contains the methodology used to develop the thesis. It
list the used datasets, known baselines, the proposed models and the possible
applications of the VAE.

The fourth chapter makes explicit the experimental setup, by specifying
the model training methodology, how the metrics are calculated and giving
explicit dimension of the tested models.

The fifth chapter list the results of all the experiments together with
important baselines, highlighting qualitative examples and presents some
model-specific analysis.

The sixth chapter presents the result for each proposed application to-
gether with some analysis.

Finally, the seventh chapter concludes the work, giving an overview of
the overall result and suggesting directions for future work to be done.
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Chapter 2

Related work

2.1 Scope

2.1.1 Artificial Intelligence

In general and abstract terms, Artificial Intelligence focus on creating ma-
chines capable of realizing complex tasks — normally, tasks that humans per-
forms well. It is not a new idea and it has been present in the human
imaginary for a long time.

There are Greek myths that talk about intelligent robots create by the
god Hephastus. During the beginning of modern age, alchemists proposed
ideas to put mind into matter called Homunculus. And in several societies,
automatons were created to mimic human reasoning and intelligence. Finally,
in recent years, there has being a paramount increase of Artificial Intelligence
elements in pop culture.

Humans always wondered if it is possible to add intelligence and ability of
reasoning to artificial elements. But, the formalization and exploration of the
field using scientific methodology flourished only with the rise of computer
science.

The two main events that gave birth to Artificial Intelligence as a research
field were Alan Turing’s article "Computing Machinery and Intelligence" [1]
and the Darmouth Summer Research Project [2], both in the early 50s. Al-
though, those were water shedding events, they were result of a series of
development in the 200 years before such as Boole algebra, Probability the-
ory and much more.

Turing’s article was innovative, because it devises a very simple procedure
to evaluate an artificial intelligent actor. It is known as Turing test — or
Imitation Game.

It consist of a questioner chatting through a textual interface with what

12



(b) HAL 9000 from Warner
Bros’s 2001: A Spacy Odyssey

Figure 2.1: Al representation through time

she thinks are two other people, a man and a woman. The goal of the
questioner is to decide which one is the woman and which one is the man,
while both of try to pass as a man. Turing’s proposal is to evaluate how many
times the questioner gets the game right, when one of the respondents is a
machine. In other terms, the Artificial Intelligence would have to outperform
the human competitor.

To engage in this full conversation setting, a machine would not only
have to be able to understand and formulate natural language, but also
demonstrate human traits such as authenticity, creativity and even emotion.
It would also have to be able to solve any problem that normally a human
would be able to do, such as math, logic problems, etc.

The other event was The Dartmouth Summer Research Project. It was
a series of discussion sessions that spanned for two months with the attempt
to — in their own words:

"how to make machines use language, form abstractions and con-
cepts, solve kinds of problems now reserved for humans, and im-
prove themselves" from [2]

One important aspect of this proposal is the ability of artificial intelligence
to "improve themselves", in the most basic terms, this can be translated as
the ability of learning and today represents one of the most important field
of Artificial Intelligence research: Machine Learning.

Besides being 50 years old, both those events still influences modern Arti-
ficial Intelligence. As the field moves itself towards domains such as Natural

13
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Figure 2.2: Turing test possible combinations

Language Processing or Image Processing — for example, text summarization
or object recognition, the Turing’s Test becomes the final validation of the
system quality. And now days, the most prominent methodology for solving
AT problems is Machine Learning, that focus on devising algorithms that, as
the Dartmouth Project suggests, allows machines to improve themselves.

Another important aspect to notice is the duality of both proposals.
While the Dartmouth Summer Research Project focus on abstractions, con-
cepts and solving problems — that is, a rationalization of human thought,
the Turing’s Test requires a simulation of human behavior: not always pure
rational, but also presenting characteristics such as emotion, creativity, etc.

Consequently, as explored in [3], it is normal to divide the overall ability
of intelligent agents into two areas: humanly behavior and rational behav-
ior. While some tasks under the Artificial Intelligence domain requires pure
rational behaviour such as optimization problems, other tasks such as text
generation, question answering requires some level of human-like behavior.

Bringing it to concrete world problems, take an example the use of Arti-
ficial Intelligence to make ChatBots for client support — something already
being explored by companies such as Microsoft, Apple and Google. The ex-
pectation regarding this system has an implicit Turing’s test. It is expected
that the system provides a service with quality just as good as a human, with
characteristics such as kindness and empathy.

14



In summary, the Artificial Intelligence as a research field is worried about
creating intelligent actors which are able of both performing rational tasks in
a human-level, but also mimics human behavior outside of the pure rational
domain.

2.1.2 Natural Language Processing

Natural Language Processing is the domain that focus in working with human
language, that is, languages used primarily to human-to-human communica-
tion. It covers both written language, spoken language and sign language in
several formats, from simple image captions to long structured text such as
medical reports.

It may be divided in understanding and generating natural language ar-
tifacts, from the most fined-grain to more holistic tasks. Examples range
from making summaries of long documents or identify the morphology of a
word. It may also combine different languages, such as text translation, or
even interact with other domains such as image processing, for example, by
automatically generating caption for images.

Text (Generation

One of the main tasks in Natural Language Processing is text generation. It
consist in generating text, with or without constraints. One possible mathe-
matical formulation of this task is the following:

Be L the set with all valid text on a specific language, L the set of all
possible text on the same language and Z an origin space, a text generation
system is a function:

Definition 2.1.1. Text Generation Task Be L the set with all valid text
on a specific language, L the set of all possible text on the same language
and Z an origin space, a text generation system is a function:

F:Z — Lwhere LCL (2.1)
That maps values from the origin space Z to text in the "language space".
This function F has a few desirable characteristics:
e The function should map only to valid texts

e The function should be able to map to all possible valid texts

15



They may be expressed as Im F = L. In other terms, only valid term is
desirable, but also diversity in generation. This goal allows to compare dif-
ferent text generation systems. Take for example, the following toy-language
with:

° Word_set W — {|Iall’ “b“’ "C"}
e Language space L= {"abc'","acc',"abb"}

e Valid text L ={"acc","abb'}
And two text generating functions from [0, 1] — L defined as:

'acc' forz<1/3
Fi(z)=1"abb" for 1/3 <2< 2/3

'abec' for2/3<2<1
Fa(z)="acc" Vz e [0,1]

On one hand, F; only generates valid text, but it generates always the
same text — also known as mode collapse. On the other hand, F; generates
two valid text, but it also generates an invalid text.

Therefore, different systems may have different performance regarding
those aspects. Besides all that, the text generation task as proposed is ill-
posed: it is not possible to define L. The "language space" is not just in-
finitely large, but it is also subjective, the definition of a valid text may vary
according to the person evaluating the text.

This problem is normally solved by using reference corpus of text gen-
erated or evaluated by humans. It is used to evaluate the system both in
diversity, ie capability of generating different texts, and quality, ie capability
of generating valid texts. The reference corpus consist on a large amount of
valid examples in the language. Two metrics derived from this approach are
explained below:

Average BLEU@n

The first metric is called BLEU (Bilingual Evaluation Understudy). It was
first presented at [4] and it was created to evaluate Automatic Translation
System, but it has also been used for evaluating text generation system. It
is heavily used in both settings due to its correlation with human judgment.

It needs a set C' of candidates generated by the system and a set R =
{Ry, ..., R,} of references.

16



The core idea of its calculations is the modified precision. But before
explaining it, lets explore the traditional precision and its drawbacks.

The traditional precision would count each word in the candidate that is
present in the references and then divide this by the number of words in the
candidate. But, in this case a phrase with repeated words only, would have
perfect precision. This computation can be reformulated as the following
procedure:

1. Get the set of distinct words in the candidate

2. Filter the set of distinct words in the candidate by the ones that appear
on the reference

3. Count how many times each word appears in the candidate

4. Sum those values and divide by the length of the sequence

The modified precision changes the procedure by adding a new step to
avoid that the repetition of words increases the precision:

1. Get the set of distinet words in the candidate

2. Filter the set of distinct words in the candidate by the ones that appear
on the reference

3. Count how many times each word appears in the candidate

4. Clip those values by the maximum of number of times each
distinct word appears on each reference

5. Sum those clipped values and divide by the length of the sequence

The following example compute the precision using both the first defini-
tion and the procedure of the modified precision:

17



Table 2.1 Example of BLEU calculation

Candidate: a a man man man ski
Reference 1: a man is skiing on the mountains
Reference 2: a man is on skis going down a mountain

Precision Precision Procedure
P = 71““;?1“*0 = % 1. {"a", "man", "ski" }
2. {"a", "man"
3.{2,3}
43

Modified Precision Procedure

. { Ilall’ "ma,n"7 “Ski"}

. { Ilall’ llman"

.{2,3}

A min(2,2), min(1,3)} ={2,1}

6

Ok W N

The modified precision penalizes sentences that repeats lot of words in
other to improve precision. But, using just one word does not guarantee
much fluency. Instead BLEU@n computes several BLEU metrics for different
grams. A gram is a group of words. Below is the representation of the
candidate and reference from the example before in Bigram (n = 2) and
Trigram (n = 3):

Table 2.2 Example of n-grams

Bigram Trigram
Candidate 'a man', "man ski'} | { "a man ski'}
Reference 'a man', "man is", "is | {"a man is", "man is

non non

skiing", "skiing on", "on | skiing", "is skiing on",

the', "the mountains'} | "skiing on the", "on the
mountains'}

In this case, the phrase with repeated words would generate grams like
"man man' that would not match with any gram on the references. A

18



BLEU@n computes the BLEU for grams representation from 1 to n and
averages then geometrically or according to some set of weights:

n

1
BLEU@n = BP x exp(— Y _logp;) (2.2)
iz

Where BP is a Brevity Penalty in case the candidate is too short regarding
the sentences:

1if
pp={ 7" (2.3)
exp(l1—r/c)ifec<r

Where c is the candidate length and r is the length of the reference with
the closest length to the candidate.

The BLEU@n normally used is BLEU@4 or BLEUQ5, which has good
correlation with human judgment. Finally, the Average BLEU@n consist on
averaging the BLEU@n for several generated text from the system against
the reference corpus.

In summary, the Average BLEU@n is a measure of the quality of the text
generation system regarding the reference corpus, where higher is better. But
it is not measure on diversity, since a system that generates only one sentence
will have the BLEU@n of that sentence.

SelfBLEU

In order to measure system diversity, the Self BLEU is used, which was pro-
posed at [5]. As the name says, Self BLEU consist in calculating the BLEU@n
using the generated data as reference. It works as following:

Given a collection of generated text G = [T1, Ty, ..., Ty] we compute the

Self BLEU as:

1 N
SelfBLEUGn = — >~ BLEUGN(T,, [Ty, Tyt Tt s Tel) (24)

i=1

For most text generation systems, it would be impossible to list all gen-
erate text, therefore a sampling approach is used, ie a sample of generated
text is used as the collection. Bellow there are two examples demonstrat-
ing the SelfBLEU computation using BLEU@Q1 without brevity penalty for
simplicity:
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Table 2.3 Example of SelfBLEU@Q1 for different datasets

Text 1: A man is skiing Text 1: A man is skiing

Text 2: A man is on skis Text 2: A boy is skating

Text 3: A woman is skiing Text 3: A woman is swimming
Text 1 1-BLEU: % =1 Text 1 1-BLEU: % =0.5
Text 2 1-BLEU: % =0.6 Text 2 1-BLEU: % =0.5
Text 3 1-BLEU: 2 = 0.75 Text 3 1-BLEU: £ =05
Self-BLEU: % ~ 0.783 Self-BLEU: 0.5

The SelfBLEU@n provides a way of measuring the diversity of a Text
Generation system. In opposition with the Averaged BLEU@n, smaller is
better.

2.1.3 Information Retrieval Task

Information Retrieval is an orthogonal task regarding Natural Language Pro-
cessing. It consist in retrieving information based on a query. It can be posed
as:

Definition 2.1.2. IR Task Given a set of documents D = [dy, ..., d,| and a
query space (2, a information retrieval system is a function IR such that:
IR(q) : Q@ — G(D) = (D) (2.5)

Where G(D) is the set of all permutations of D and (D) is one per-
mutation. In this context, each permutation (D) defines a rank of the
documents.

For example, given the following query and documents, one possible rank
would be:

Table 2.4 Example of Information Retrieval Task

Query: Washington DC Rank:
Document 1: Washington DC | 1st: Washington DC Wiki article
Wiki article 2nd: USA Wiki article

Document 2: Brazil Wiki article 3rd: Brazil Wiki article
Document 3: USA Wiki article

20



It is important to notice that in this context, documents mean any kind
of data and it does not need to be the same type as the query. For example,
some image search websites have text as query and images as document.

In this kind of task, the concept of relevance is important. If a document
is related to the query presented, it is considered relevant to it. But again,
as in the Text Generation task, to formalize this concept and measure it is a
difficult task, mainly due to it subjectivity.

Therefore, in other to provide a evaluation system, references produced
by multiple human judges excluding the ones without consensus.

A set of references consist in a query ¢ and a set D, C D of relevant
documents. The metrics to measure the quality are applied over this set.
The two most common metrics are:

Accuracy

The Accuracy is one of the simplest measures for Information Retrieval sys-
tems. For each set of query and relevant documents, we compute if the
most ranked document is one of the relevant documents. The accuracy is an
average of those indicator variables, ranging from 0 to 1.

Mean Reciprocal Rank

The Accuracy has a problem as measure, because it does not quantify by
how much the system got it wrong. The Mean Reciprocal Rank (MRR) tries
to overcome this by using a different measure: the rank of the first relevant
document. Formalizing the MRR is calculated as:

Definition 2.1.3. Mean Reciprocal Rank

MRR = — fj ! (2.6)
~ N %~ Rank, '

Where Rank,, is the rank of the first relevant document for the nth ref-
erence. It is important to know what is the naive baseline for the MRR. By
naive, we mean a system that randomly order the documents.

Therefore, suppose there are N documents in the search space, the naive
baseline randomly choose between the permutations and there is only one
relevant document per query. The probability of this document being ranked
in the position ¢ is: .

P(Rank =1i) = N
Therefore, the expected MRR is:
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N

1 1 &
E(MRR) = > P(Rank =i)- = — > -
i=1 i NI

Where Hy is the harmonic number. This value is bounded by:

Hy < log(N + 1)
N N

Which is decreasing and, for example, for N = 100, we have the expected
MRR around 0.005.

In conclusion, the MRR provides a better measure for the IR task.

IR in Natural Language Processing

In the Natural Language Processing domain, the Information Retrieval task
must contain natural language elements, that is, the query or the documents
must consist or contain natural languages elements. More specifically, when
the main information is stored in textual form, it is called Text Retrieval.

2.2 State of the art

2.2.1 Neural Networks and Deep Learning

Since the founding of Artificial Intelligence as a research fields, the method-
ologies used to confront the tasks changed over the decades. In the current
moment, the most common and popular methodology is Neural Networks
and Deep Learning.

The core of Neural Networks is in the creation of powerful system using
basic computing units. By composing those units in different architectures,
the network becomes able to learn complex patterns.

The rise and the popularity of this approach is not due only to an inno-
vative way to tackle those problems, but also on the developments of more
powerful hardware and in the rise of the quantity of data available to perform
the training of those networks.

Neuron

The basic computing mentioned previously is called a Neuron. It has this
name, because the Neural Networks are inspired in brain structure and its
ability to learn different tasks. A neuron consist of input signals and an
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Figure 2.4: Feed forward Neural Network

output signal. The most common neuron form is composed by a weighted-
sum and an activation function as seen in figure 2.3. Its equation may be
written as:

y= 1) = (3w +) 27)

The knowledge of the network is coded through the weights w = [wy, ..., w,,]
of the neurons in the network. Those weights are updated during training.
The neurons can be combined to create more complex networks such as the
seen in figure 2.4.

They can also be used to construct layers that process an input vector
into an output vector. One very common layer is the SoftMax, displayed in
figure 2.5, which perform the following computation in order to obtain an
stochastic vector: ()

exp(x;
P e(a) 28
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In this case, the neurons are implementing a specific function and will
have fixed weights.

In summary, the neurons are the building block of the neural networks,
they are used to create complex trainnable layers or to implement useful
functions.

Discrete tokens, Embedding Layer and Output layer

As pointed out before, a Neuron is a simple computational unit that per-
forms weighted-sum, functions, etc. It works with continuous values and
mathematical operations. This presents an obstacle to work with text.

When thinking on the elements of natural language, more specifically,
written natural language, it is composed of tokens: characters, words and
punctuation. Those elements are not only discrete, but they also do not have
any of the most basic operations such as adding, subtracting, multiplying,
ete.

Therefore, special layers are needed to process and output such elements.
Below is described the most common way to confront those problems:

Word input and Embedding Layer

The most common method to deal with class as input of neural networks
is through embeddings. Embeddings are basically a table that maps those
values into real values or vector of real values.

Definition 2.2.1. Embeddings Given a set of tokens (word, sequence of
words or even letters) W, a Embedding function map this to continuous
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values:

Emb: W — R" (2.9)

An well-known example of this function is the one-hot encoding. The
OneHot function can be defined as:

OneHot : W — R (2.10)

For a toy language with W = {"hello”, "world”, "bye”}, a one-hot encod-
ing would be:

OneHot("hello") = [1,0, 0]
OneHot("world") = [0, 1, 0]
OneHot("bye") = [0, 0, 1]

This embedding is a fixed embedding, because the vectors does not change
during training. A more sophisticated approach is to use learn-able vectors
where the embedding would be:

Emb = OneHotToVector o OneHot
where OneHotToVector : R — IR™

For our toy example, we could have

Table 2.5 Example of OneHot Encoding and Embedding

Word OneHot Embedding
"hello" [1,0,0] [0.5,0]
"world" 0, 1,0] [0.25,0.25]
"bye" [0,0,1] [—0.5,0]

Which could be implemented by the network presented in figure 2.6.
The advantage of using this approach are two. The first consist in the
relation that the embeddings have when done in large scale. For example:

Emb("king") — Emb("man") = Emb("queen") — Emb("woman")

25



y1

x2

Figure 2.6: Embedding network toy example

Y1

[ ——t

Feed
Forward
e INetwork

Soft
Max

| —)
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The other advantages is this layer can be trained in generic tasks over
large scale datasets — like datasets from web scrapping — and them be used
for specific tasks systems. Two famous examples of pre-trained embeddings
is GloVe [6] and FastText [7].

This layer presents a fundamental role in the development of Natural
Language Systems.

Output Layer

On the other-hand, to output elements from a set, the Neural Network out-
puts a probability of each value. It does so by combining a Linear Feedfoward
Layer and a Softmax function — as shown in figure 2.7, where the output has
the same size of the set. In this case, the FeedForward network maps the
input vector of size m to an output vector of size n = |W| which is them
normalized to be a stochastic vector.

This probability output vector is them used to choose the more likely

26



element. The most common approach is to select the element with the highest
probability. For the toy example presented before, if p = [0.8,0.1,0.1], the
selected word would be "hello".

Sequence processing and Recursive Neural Networks

As emphasized before, Natural Language Processing deals with several dif-
ferent types of data from short length to long structured text. Take example
the Text Retrieval context, we have both small-size text, such as queries, and
long-size text, such as the references that are used to search for the answer.
But even if we focus on only one sub-domain, we would have different-sized
questions or text.

This variation of length creates an obstacle to apply simple Feedfoward
Networks, due to its constraint on input size. The two most common methods
for dealing with varying size sequences are Convolutional Neural Networks
and Recursive Neural Networks, being the latter the one explored by this
thesis.

Recursive Neural Networks lifts the ban on different size input by pro-
cessing a fixed-size chunk of the input at a time, and using the output as the
input for the next step. Its input is normally divided into state and input.
In the figure 2.8, we have both the basic representation of an RNN and its
operation over an input.

Using the elements presented above — embedding layers, probabilistic out-
put layer and RNN, we can construct a full-functional model that works with
Natural Language. To give an example, take the problem of translating sen-
tences. A common approach is to use an Autoencoder which encodes the
sentence using an RNN and then uses the hidden representation to generate
the sentence in the targeting language. This system is represented in figure
2.9. In those kind of systems, the tokens "<sos>" and "<eos>" are used to
denote the start of the sentence and the end of the sentence, respectively.

This system accepts as input and outputs Natural Language elements.

2.2.2 Neural Networks for Text Generation

To create a Text Generation function, a probabilistic model can be used
in other to learn from available examples. Our goal is to fit the following
probabilistic function:

P(t|z) where z is our control signal and ¢ is the text (2.11)
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Figure 2.9: Neural Translation Model

28



Real data

[

z —| Generator EJAAAAA*DiscrHMMatOrAA» p
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And we may define our F as:
F:Z — L =argmaz,P(t|2) (2.12)

In the probabilistic formulation done, z is now called a latent variable, ie
a hidden representation, that allows us to predict the most likely sentences.

In the deep learning context, there are two famous models to take this ap-
proach to learn P(w|z) using real data. They are the Generative Adversarial
Networks (GAN) and Variational-Autoencoders (VAE).

Generative Adversarial Networks

The Generative Adversarial Network was first presented in [8]. This model
consist in a multiple turns two-players game, connected as describe in figure
2.10 . The players are a generator and a discriminator. The discriminator
must learn do distinguish real examples from artificial ones, created by the
generator. The generator, on the other hand, must try to fool the discrimi-
nator.

The discriminator produces as output a p which is the probability of
the presented sentence to be real. When training the generator, we update
its weights in the direction to make the p higher for the artificial examples
— trying to fool the discriminator. On the other hand, when training the
discriminator, we present it with examples from both the real data and from
the generator, where for the former, it must output a high probability and,
for the latter, it must output a low probability — trying to catch the generator
forgery. Therefore, the networks are trained on opposed goals.

In the work presented in [8], they demonstrate that theoretically, this
game has an equilibrium where the generator fits well the target function,
but training the GAN to reach this equilibrium is far from trivial.
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Nonetheless, it was a really important breakthrough, because the learning
happens in an indirect manner. The generator is never presented with a real
example, but it learns to produce similar examples through feedback from
the discriminator.

Another important aspect is the similarity of this setting with the Tur-
ing’s test. It has an judge which is trying to distinguish between real data
from data generated artificially by an intelligent actor. The research on this
Adversarial Trainning sets seems really promising.

Variational Autoencoders

The Variational Autoencoders were first presented in [9]. It was inspired by
both Autoencoders and Variational Inference. It is composed of two elements:
an encoder and a decoder, displayed at figure 2.11. The VAE goal is to
maximize the likelihood of the dataset:

Definition 2.2.2. Likelihood under VAE Given a dataset X = [z, ..., 2]
of text sentences, the goal of VAE is to learn a parameters 6, such that the
likelihood of generating the dataset W is maximal:

po(W) = ﬁPG(wz‘) (2.13)

Taking the probability for one example, it can be expressed as:

pola) = [ polei2)dz = [ palaidlpo()dz = [ poCelap()dz  (2.14)

Such probability is intractable due to the integral, because the z is nor-
mally a vector in a multidimensional space/ In order to overcome it, the
VAE also learns a distribution g,(z|w;) and uses value sampled from those
distribution to approximate the likelihood.

Therefore, the VAE tries to maximizes a lower bound of the log-likelihood:
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Definition 2.2.3. VAE Goal

—Drr(qs(2]7)[|po(2)) + Eqy (212 [log po(x]2)] (2.15)

Where pp(z) is normally taken as N(0,1). But still the term Dgj —
which stands for Kullback-Leibler divergence — is still intractable because
calculating involves computing an integral of a distribution without a close
form, falling again on integrating over a multi-dimensional domain.

To solve this, the Encoder is constrained to produce parameters of a fam-
ily of distributions, normally a Gaussian: N'(u, o). Therefore, the updated
system is in the figure 2.12. With this close form, the lower bound becomes
tractable. The final form becomes, where L is the number of samples from

q(z|2)):

1
L(X -

3

Z —Drr(qe(2|z:)|[pe(2)) + — Zlogpe (z:]2)

j 1

Where the Dk term may be seem as a regularization term which forces
the values to be around the 0 vector and the log term is the reconstruction
error, since we try to maximize the probability of generating the seem text.

After training, the Decoder may be used as a Text Generating System.

VAE vs GAN

It is important to notice some difference between the GAN and VAE. The
VAE uses the examples directly to learn how to generate text, while the GAN
learns in a more indirect manner. Also, the VAE allows a mapping {z;, z; }
between sentences in the dataset and the latent variables. This allows for
a more guided text generation, where , for example, one can interpolate
between a z; and z; to generate a combination of the two sentences.
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Figure 2.13: Examples of GAN Mode Collapse

Mode collapse and Fidelity

Although being state of the art models, both GAN and VAE suffers from
problems to fit real data. The GAN has a problem called Mode Collapse
while the VAE has a Fidelity problem. FEach problem is well described at
[10] and an overview is given below.

GAN and Mode Collapse

The Mode Collapse consist in the collapse of the diversity of the generative
model. In other words, it concentrates itself in generating a few realistic
examples. This is explained by the optimization objective of the GANs when
the discriminator is fixed and optimal:

KL(PGHPdata) - 2JS<PdataHPG)

Where JS is the Jensen-Shannon distance which is constant for optimal
discriminator. In this context, if we have Pg(x) — 0 and Pye(z) — 1, the
KL term tends to 0. While with the opposite: Pg(z) — 1 and Pyga(z) — 0
means KL — oo.

In the first case, the generator is not covering the realistic data in the
dataset. While, in the second case it is generating data not similar to the
real dataset. Due to the values of the KL term for each case, the generator is
penalized for generating data not similar to the dataset, but it is not penalized
for not generating real data. Therefore, it tries to generate few, realistic
examples, since not covering the full dataset diversity is not penalized. It
could, for example, learn the following distributions shown in figure 2.13.
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Figure 2.14: VAE Fidelity problem

VAE and Fidelity Problem

The VAE, on the otherhand, explicit forces the distribution to be as diffusive
as possible, but this influences its ability to produce realistic examples. In
the image context, it normally means obtaining blurred images. One possible
learned distribution is shown in figure 2.14.

Combining VAE and GAN

There is a proposition of combining VAE and GANs in something called the
VAE-GAN model. Since the VAE decoder may act as the Generator for
GAN setting, it gives the possibility of training it as a GAN. This model was
proposed at [11], but they applied it only to images.
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Chapter 3

Methodology

3.1 Datasets and baselines

3.1.1 Datasets

As any deep learning model, it is necessary to use dataset for training it.
The choice of the dataset has a big impact both in the quality of the model
and in the time that it takes to be trained. With that in mind, three textual
dataset were used for training the models: ImageCOCO [12] and Cranfield
Collection.

The factors took into account when choosing the datasets was their com-
plexity, number of examples and the availability of baselines to compare our
model to. Also, the possibility of using it for the proposed applications.

ImageCOCO

The Common Objects in Context, COCO, is a dataset presented by Microsoft
Research at [12]. It consist of several images with related tasks such as Image
(Classification, Object Localization and Semantic Segmentation. In 2015, a
new task was presented as a challenge: Image Captioning available at [13].
Since this task was evaluated by human judges, this generated a great number
of high quality short-length text. Figure 3.1 displays some of those tasks.

Through out this work, it will be used the subset of ImageCOCO pre-
sented by the TexyGen: A Benchmarking Platform for Text Generations
Models at [5]. It consist of 20,000 samples drawn from the original dataset.
Table 3.1 presents some examples.
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(a) Image Classification (b) Object Localization

The man at bat readies to swing at the A large bus sitting next to a very tall
pitch while the umpire looks on. building.

(c¢) Image Caption

Figure 3.1: COCO tasks

Table 3.1 Examples of captions in ImageCOCO

Examples:

a bicycle replica with a clock as the front wheel.

a bathroom with a sink and shower curtain with a map print.

a cat eating a bird it has caught. a small box filled with four green veg-
etables.

little birds sitting on the shoulder of a giraffe.

This dataset was chosen due to the availability of baselines for several
models and due to it small size, allowing for a rapid iteration and testing of
different architectures.

One important feature is its homogeneity, it does not only have very
similar phrase structures as in the examples shown, but also homogeneous
length. Figure 3.2 shows the distribution of the length of the sequences
for train and test dataset. It can be notice that around 70% of the length
concentrates between 9 and 12.
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ImageCOCO - Train dataset sentence lengths ImageCOCO - Test dataset sentence lengths

0200 0.20
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(a) Train data (b) Test data

Figure 3.2: ImageCOCO Lengths histogram

Cranfield Collection

The Cranfield Collection [14] is a small collection for Information Retrieval
tasks. It contains 255 textual queries and 1400 documents. Table 3.2 shows
an example of a query and a document. The ".I 001" line indicates that the
relevant document is the document with ".I 1" id.

Table 3.2 Cranfield Colleaction Examples

Query example: Document example:
1001 I1
W T

what similarity laws must be obeyed | experimental investigation of the
when constructing aeroelastic mod- | aerodynamics of a wing in a slip-
els of heated high speed aircraft . stream .

A brenckman,m.

.Bj. ae. scs. 25, 1958, 324.

.W <body hidden due to size>

For this work, the Text Retrieval will be used over the title, because the
query and title have similar lengths between them. Also, they have similar
length to ImageCOCO phrases. In further works, one might explore the effect
of the longer phrases in the VAE or the what happens when learning more
heterogeneous datasets, that is, with both short and long phrases. Figure
3.3 displays the distribution of lengths. It is more diverse than ImageCOCO,
but the most examples are in the same region as ImageCOCO.
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Figure 3.3: Cranfield Lengths histogram

CRAN Documents Title Length

(b) Documents

To perform the VAE training, it is necessary to have both train and test
data. To do so, 10% is separate from both queries and documents title to
compose the test dataset.

3.1.2 Baselines

As mentioned in the Related Work, the main metrics for Text Generation
tasks are: SelfBLEU and BLEU, with grams going from 4 to 5. Besides
that, in the VAE context, the metrics of Perplexity, KL loss and NLLoss
are important too, because they measure the quality of the reconstruction
performed by the VAE.

The following table lists the available baseline for some GAN text gen-
eration models applied to the ImageCOCO captions dataset published at

5].

Table 3.3 GANs BLEU metrics from TexyGen

SelfBLEU@4 | SelfBLEUQ5 | Train Train

BLEU@4 BLEU@5
SeqGAN 0.670 0.489 0.530 0.348
MaliGAN 0.606 0.437 0.482 0.312
RankGAN 0.762 0.618 0.601 0.414
LeakGAN 0.848 0.804 0.660 0.470
TextGAN 0.804 0.746 0.596 0.523
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It is important to know that the smaller the Self BLEU is better, since
it indicates a better diversity. While a higger BLEU regarding the test and
training dataset indicates a better similarity to the dataset, therefore a better
fluency.

A BLEU and SelfBLEU Target

As pointed before, the higher the BLEU and the lower the Self-BLEU the
better. Following this logic, and knowing that those quantities vary between
0 and 1, the perfect model would be one with (SelfBLEU, BLEU) = (0, 1).

This target seems way to impossible to be hit. Given that, how could the
SelfBLEU and BLEU metrics can be quantified? What are good values for
that? The big advantage of BLEU is it correlation with human judgment,
but beside that, it is not clear how this metric may be interpreted. And it
may be influenced by several factors: the reference dataset, the number of
references and the number of candidates.

Given this context, this thesis would like to propose a novel target for
BLEU and Self BLEU metrics: the train dataset metrics. The main reason
for this choice is the quality of the train data. Since most of those datasets
are normally produced by humans, they are real representation of world data.
Therefore, their metrics represents a baseline based on real example.

And since that any machine learning model is dependent of the train
data, this presents a normalization regarding the dataset. Take for example
two models:

e A VAE trained with the ImageCOCO with BLEU@5 of 0.30.
e A VAE trained with the Cranfield dataset with a BLEU@5 of 0.23.

Using the current evaluation metric, one could argue that the first model
is more fluent than the second. But the ImageCOCO dataset is a way more
restricted dataset — consisting of image captions. While the Cranfield dataset
is more diverse. By giving, also the metrics of the dataset, the information
is better contextualized and more informative.

For example, the ImageCOCO dataset presents the following metrics:

Table 3.4 ImageCOCO BLEU metrics
SelfBLEU@4 | Self BLEU@5 | BLEU@4 BLEU@5
ImageCOCO | 0.218 0.134 0.531 0.421
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To calculate those metrics, 256 samples were randomly taken from the
dataset and other 500 samples were randomly taken to work as references.

Comparing this result with the baselines presented before, no model is as
good as the train dataset.

Finally, it is interesting to discuss what a model with BLEU@5 bigger
than 0.531 would mean. It would be erroneous to say that this model is
more fluent than the dataset given that the dataset is human generated and
curated. Not because, it is expected for human to be better, but because the
definition of fluency in language is extremely correlated with human judge-
ment. Therefore, the alternative is to consider that the model is repetitive
regarding the dataset, that is, it overuses patterns presents in the dataset.

In conclusion, the proposition is to calculate and use the train dataset
BLEU and SelfBLEU scores as baseline/target for the text generation models.
The two reasons is to provide more context to the Text Generation metrics
and quantify those metrics, avoiding the over-optimization — such as growing
the BLEU way above the train dataset metric.

3.2 Proposed models

3.2.1 Preliminary: State-of-the-art techniques

Two techniques are promising in the improvement of the performance of
the VAE’s. One is a general technique called Aggressive Training, while the
other is specific for sequence processing which is Length-Aware Decoding and
Bag-of-Word (BoW) loss. Below, each technique is described in detail.

Encoder Aggressive Training

One common problem of training VAE’s in the NLP context is what is called
Posterior Collapse. It consist in the following condition g4(z|x) = py(z|z) =
p(z), in other words, in both the inference model (encoder) and the real
model (decoder), the x and z become independent.

The presence of this problem in NLP context can be intuitively explained
by the discreteness of this domain. Since the data consist in sequence of
words, the decoders are recurrent neural networks — auto-regressive models.
Therefore, this models can learn to code relationships between words. For
example, it can learn that an "a" is normally followed by a noum, and there-
fore give more probability to nouns in the vocabulary. The possibility of
deriving those relationships may give the network possibility of improving
itself without deriving any information from the encoder and collapsing the
distributions to bring to 0.0 the KL term.
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Another factor is the loss function used. To explain it, it is necessary to
use the following alternative form of the loss function:

L(X,,0) = logps(x) — Drcr(ge(z])]|po(z]2)) (3.1)

The term Dgp,(qs(2|)||pe(2|2)) forces the true posterior and the inference
posterior to agree as distributions. While the term log pg(x) forces z and z
to be correlated. If the Dy terms overwhelms the other term, g4 and pg
will agree before the network learns the relation between z and x, this mean
that they will crash into the prior, that is g4(z|z) = pe(z|z) = p(2).

One of the proposed solution for this problem is to enforce the dependence
between the x and z by training only the encoder for some epochs. This was
proposed at [15]. By doing that, it forces the model to improve only by
deriving information from the encoder, while the decoder is fixed. Below is
the training algorithm proposed by them, remembering that ¢ is the encoder
parameters and 6 is the decoder parameters.

Algorithm 1 VAE training with controlled aggressive training

1: ¢, 0 < Initialize parameters
2: aggressive < TRUE

3: repeat

4:  if aggressive then

5: repeat

6: X < Random data minibatch

7: Compute gradients g4 < AyL(X; ¢, 0)
8: Update ¢ using gradients g,

9: until convergence

10: X < Random data minibatch

11: Compute gradients gg < AgL(X;0,0)
12: Update 6 using gradients gy

13: else

14: X < Random data minibatch

15: Compute gradients gy, 0 < Ay, 0L(X; ¢, 0)
16: Update ¢, 0 using gradients g4 ¢

17 end if

18: until convergence

This unbalance in the training between the Encoder and the Decoder
improves the performance of the VAE for Natural Language Processing, but
makes the training more costly.
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Figure 3.4: VAE Length-Aware

Length-Aware Decoding and Bag-of-Word Loss

Other two techniques to improve quality of VAE is having Length-Aware
decoder and adding a Bag-of-Words(BoW) Loss over the latent variable.
The first impacts the overall structure of the model and also impacts the
sampling of the latent variable, the latter, on the other-hand, is a technique
to improve encoding quality. Those techniques were explored in conjunction
at [16] where they used VAE with controlled length to generate summaries
of texts. Below, both are explained in details:

Length-Aware Decoding

In the pure VAE setting, information is passed only through the latent vari-
able z. The Length-Aware Decoding consist in adding an input to the decoder
that consist in the expected length of the sentence. Suppose it must decode
the following sentence: "a man is skiing', in the Length-Aware decoding, it
would be done like displayed in figure 3.4.

Obtaining the length as feature is something that can be done both on de-
mand, through a computational unit that would count the number of inputs
that the encoder received or simply by pre-processing the input.

In either way, this technique affects the architecture of the VAE. For
generating new sentences, it is necessary not only to generate a latent vari-
able from the prior, but also generating a length from some distribution, as
described in figure 3.5.

This is something that may affect the quality measures, because there
are several ways of generating a length. On the other-hand, this allows for
a more direct text generating and may enable the usage of the VAE is other
application as explored in future sections.

It is important to make explicit how the Decoder would use the length in
the decoding phase. The most common way of using it is through a technique
called positioning decoding where at each step the expected length is an input
of the RNN. Figure 3.6 shows how this work for a sentence with length 4.
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Figure 3.6: Decoding with length as a feature

Bag-of-Words Loss

This technique has the goal of improving the content representation of the
latent variable. As explained before, due to the recurrent nature of the
Decoder, it may end up learning just the most common succession of words.
To avoid this, a new layer that tries to predict the bag-of-word vector is
added together with a new loss regarding this prediction. This can be very
effective in improving the reconstruction of the phrases. But, by adding a
new loss term, the KL loss may be eclipsed and the continuity of the latent
space compromised.

In more details, a bag-of-word vector is a vector with the dimension of
the vocabulary with 1 in the position of the words that appear on the phrase
and 0 in the position of the word that do not. The prediction vector must
give high probability to the words that appear and low probability for the
words that do not. For example, given the following toy vocabulary, the
bag-of-word for the two phrases is presented at table 3.5:
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Figure 3.7: Bag of Word

Table 3.5 Example of Bag of Words encoding

Vocabulary Phrases:

Hello: 0 "Hello world" — [1, 1, 0]
world: 1 'Bye world" — [0, 1, 1]
Bye: 2

Figure 3.7 shows the new architecture. It is possible to see that this new
architecture forces the latent to encode information about the word present
on the phrase.

3.2.2 Preliminary: Disentangled representation

This last technique is based on two principles. The first consist on training a
network on a easier task and then leveraging that network to help on a more
complex task. The second consist in enforcing content representation on the
latent variable by breaking it into two vectors: a grammatical vector and a
content vector.

The easier task is predicting the grammatical form of the phrase. For
example, given the phrase "a man is skiing", it can be grammatically rep-
resented as "DET NOUM VERB VERB'", where DET means determinant
("a", "the", etc). In this case, the size of the vocabulary is the size of the
Part-of-Speech (POS) vocabulary. For the well-known SpaCy library avail-
able at [17], the POS-vocabulary consist of 17 classes listed below, plus the
start of sentence, end of sentence and padding tokens, respectively "<s>",
'</s>" and "<pad>":
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Table 3.6 Part-of-Speech classes on SpaCy

Acronym Part-of-Speech tag Examples
ADJ Adjective big, old, green
ADP Adposition in, to, during
ADV Adverb in, to, during
AUX Auxiliary in, to, during
CONJ Conjunction in, to, during
CCONJ Coordinating Conjunc- | in, to, during
tion
DET Determiner in, to, during
INTJ Interjection in, to, during
NOUM Noum in, to, during
NUM Numeral in, to, during
PART Particle in, to, during
PRON Pronoun in, to, during
PROPN Proper Noum in, to, during
PUNCT Punctuation in, to, during
SCONJ Subordinating ~ Con- | in, to, during
junction

SYM Symbol in, to, during
VERB Verb in, to, during
X Other to swim, singing, etc

The idea is to train a VAE in the Part-Of-Speech reconstruction task and
then use this VAE as input for the more general VAE. Hopefully, this will
not only improve performance, but will allow the other VAE to encode more
content instead of grammatical features.

The overall-structure is represented in figure 3.8. It is important to un-
derstand the impact of this architecture on the latent space. First, as the
latent space is doubled, it is expected for this to have a higher KL loss term.
Second, this hopefully allows us to have more control over the text genera-
tion process, for example, the content vector or the grammar vector may be
kept fixed while the other is disturbed. This, therefore, provides also a good
manner of qualitative validating the effectiveness of this technique.
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Figure 3.8: VAE with Disentangled representation

Finally, the figure 3.8 does not make explicit how the Content VAE De-
coder uses the output of the Grammar Decoder. For each step. the decoder
outputs a stochastic vector with the size of the POS vocabulary — 19 classes.
There are several way that the Content VAE Decoder may use this vector.
Three are explored. The first consist in adding it as input to the RNN, the
second consist in adding it as input of the predictive layer and the last consist
in scaling it to the size of the vocabulary and multiplying it with the output
of the predictive layer. Figure 3.9 shows the three possibilities that will be
explored.

3.2.3 Explored models

In the following subsections, the trained models are presented with their
respective diagram. This models will be compared in the results section
and according to each architecture, they will be chosen to be used on the
suggested applications.

VAE

This model consist in the VAE on its most basic form. No aggressive training
or architecture modification is made. It is used both as a baseline for the
other models and as a implementation validation of our model. The proximity
of its metric to the presented baselines on the previous sections gives an idea
if it was implemented correctly. Figure 3.10 shows its architecture.
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Aggressive VAE

This model consist in the one proposed at [15], it is therefore a validation
and a baseline model to which the others will be compared to. There is no
change in the architecture regarding the previous model, it just changes the
algorithm used for training.

Aggressive Length-Aware VAE

This is the first novel model proposed in this work. It is a novelty, because
combines two state-of-the-art techniques which have the potential of improv-
ing some aspects of the VAE performance. Its architecture is presented at
figure 3.11

Aggressive Length-Aware + BoW Loss VAE

This model on the other-hand, combines all the first three techniques and
therefore it is one of the most complex one. Its architecture is described at
figure 3.12.

Double-level Aggressive VAE

This is a baseline model for the VAE Disentangled. The reason to add this
double-leval, it is the dimension of the latent space in the VAE Disentan-
gled. Since it has a latent dimension two times bigger then the one for the
other models, it has more computing power and may therefore work better.
By training a Double-level VAE, that is a VAE with RNN with 2-layers, a
baseline with same computing power is used. Its architecture is presented at
figure 3.13.
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Figure 3.14: VAE Disentangled + Length-Aware Architecture

VAE Disentangled + Length-Aware

This is the most complex model propose, because it combines almost all
the proposed techniques. It does not use technique is the Bag-of-Word Loss,
because the disentanglement of representation has a similar goal as this tech-
nique: it tries to force the (content) representation to encode more informa-
tion about the words.

It sets high expectations regarding its property — best performance and
two unrelated representations, which must be validate. To validate the per-
formance, the standard metrics will be used. The disentanglement of the
representations will be validated qualitative in the following manner: the
grammar latent vector will be fixed and several content latent vector will
be sampled and vice-versa. According to the latent vector being sampled,
the feature that the vector represents is expected to vary, while the other is
supposed to be fixed. Its architecture is presented at figure 3.14. It also uses
Aggressive Training.

3.3 Proposed applications

One of the big questions regarding Text Generation systems is their applica-
tion to more concrete tasks such as Text Completation, Question Answering,
Information Retrival, etc. This section explores the application of the VAE
to some of those tasks. It uses the VAE as it is or with really small modifi-
cation to the task. The goal is to identify possible applications of the VAE
which can be further improved in order to work.
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Figure 3.15: Predicting next words with VAE (n is the number of words)

3.3.1 Text Completion task

Writing assistants is one of the domain that has attracted lot of attention.
From Word Grammar Correcting system to recently presented auto-complete
feature on Google’s Gmail service, this kind of system is becoming more
common every day.

Since it is under the umbrella of the Natural Language Processing, this
can be a interesting field to apply the VAE. If the general problem is posed
as a language model where the next word or the next few words must be
predicted, the VAE may be adapted to do so. More precisely, the length-
aware VAE can be a good fit: one can encode the sentence until the known
words, and them decode it by adding one to the length used as input for the
decoder. This allows the network to control the number of predicted words.
Specifically in this context, the model can be used online and retrained as
the user generates more content.

To visually evaluate the quality of the system, phrases from the test
dataset will be capped from 1 to 3 words and our system will be run to predict
the same quantity of capped words. Figure 3.15 presents the operation in
this task, where n is the number of next words, hopefully, this system will
generate relevant suggesting such as: 'l would like to set up a meeting" or
'T would like a cafe". And to give a quantitative idea of the precision of the
model, the Cross Entropy and the Accuracy of the system will be computed
for predicting 1, 2 or 3 words.

Since this is similar to a reconstruction task, it is reasonable to expect that
the model with less CrossEntropy loss will be the best. The tested models
are: Aggressive VAE and Aggressive Length-Aware + BoW Loss VAE.

The ImageCOCO were used due to its low-level complexity and fast train-
ing, but also because it has a very homogeneous length — centered around
10, and phrases really similar.
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3.3.2 Text Retrieval task

This task consist in retrieving related documents according to the query
presented. The possibility of using VAEs to perform such task depends on
the quality of the latent space representation. If the VAE performs well,
its latent space representation is good and similar phrases will be grouped
together. The measure of similarity to be used will be the distance between
the latent representation of the document ant the query, computed using
cosine similarity:.

All VAE may be tested in this task, but the ones chosen were: Length-
Aware + BoW Loss VAE and VAE Disentangled + Length-Aware. For the
second, only the content representation will be used to query the documents.
This selection were made due to the fact the architecture of those models
favors a good content representation in the latent space, while in a "pure'
VAE, the latent representation is responsible for more than just the topics
in the sentence.

The main element of the VAE to be used is the encoder. Any element
that should be in the search space is processed by the encoder generating a
representational mean u. After that, the selected query is used to order this
documents based on the distance. The distance metric is the cosine similarity
which consist in:

similarity = cosf = i (3.2)
a2 |
The evaluation will consist in quantitative evaluation over the Cranfield
Collection dataset. In the second, the question will be used to query the
documents and the accuracy and Mean Reciprocal Rank will be computed
to the dataset.
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Chapter 4

Experimental setup

4.1 Training methodology

In other to select a model that fits well the test dataset and avoids over fit, a
validation dataset is used. At the end of each epoch, the model is evaluated
over the validation dataset. If the loss is not improved after two consecutive
epochs, the learning rate is reduced and the system is brought back to the
smallest loss, that is, the best model insofar. This dynamic is represented in
figure 4.1.

If the learning rate decays 5 times, the training is stopped. This dynamics
starts after a specified epoch, that is, the system has an warm-up period
where it is updated freely without checking the performance in the validation
dataset.

Train Loss and Validation Loss (Learning rate = 1.0) Train Loss and Validation Loss (Learning rate = 0.5)

Previous Best Loss

Figure 4.1: Learning rate annealing
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4.2 KL Loss Annealing

The KL term is a regularization term that makes the posteriori distribution
to be close to the prior distribution. This terms affects the continuity of the
Latent Space which affects the quality of the text generation.

Optimizing this term too early, takes the ability of the network of learning
high-level features of the text and may cause posteriori collapse. Therefore
this term is annealed for a few epochs.

4.3 Training Algorithm

The listing 2 details the training algorithm in a high-level, giving a full un-
derstanding of the training dynamic.

4.4 BLEU and SelfBLEU Calculation

In other to compute the BLEU and the Self BLEU, it is necessary to generate
a few sample from the VAE. The number of samples generated for the com-
putation were 256 and a total of 500 samples were taken randomly from the
training dataset and test dataset. The same process was used to calculate
the metrics of the train dataset, which will be used as baseline. The obtained
numbers are:

Table 4.1 ImageCOCO BLEU metrics

Self Self Train 4- | Train 5- | Test 4- | Test 5-
4-BLEU | 5-BLEU | BLEU BLEU BLEU BLEU
COCO 0.218 0.134 0.531 0.421 0.218 0.134

Those values will be the ones used to compare and evaluate the proposed
models.

4.5 Models Dimension

Every model has basically the same dimension regarding the common layers.
The latent space of every model is 32. The hidden space, that is the dimension
of the state in the RNNs, are 1024. And every decoder has a dropout layer
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Algorithm 2 Full VAE training algorithm

model < Initialize model
learning__rate <— Initialize learning rate
KL _weight < 0.0
KL anneal rate < Initialize KL Anneal rate
decay count, epoch < 0,0
number _of decay < 0
train__dataset, validation dataset <— Load data
best loss < o0
repeat
Train model with train_dataset
loss < validate(model, validation__dataset)
KL _weight < max(1.0, KL_ weight)

= = e e
Ll

if best loss > loss then

best_loss + loss

number_of decay < 0

Save best model so far
else

if epoch > 15 then

number__of _decay <— number__of decay +1

20: end if

= = e

21: end if

22:

23:  if number_of decay = 2 then
24: number_of decay < 0

25: model < Load best model
26: learning _rate <— W
27 end if

28: until decay count =5

o4



on input and output of 0.5. Finally, the embedding layer is of size 512. Those
values were taken from the models at [15].
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Chapter 5

Results for Explored Models

In this section, the results for each explored model is presented together with
some specific analysis. The metrics mentioned before and some qualitative
examples are displayed both for the reconstruction and generation task.

Finally, the last subsection presents a summarizing table together with
the baselines and an analysis.

5.1 VAE

This model consist in the most simple VAE and as it will be shown, presents
a model collapse problem. The training metrics resulting are presented in
table 5.1.

Table 5.1 Training results for VAE

Perplexity KL-loss Cross-Entropy
Loss
VAE 71.68 0.032 52.2794

It is important to notice the low value of the KL-loss indicating a poste-
riori collapse, since very little information is provided in the encoding phase.
This suspicion is confirmed by the examples for the Reconstruction Task
presented in table 5.2 and table 5.3.
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Table 5.2 Reconstruction Task examples in train dataset for VAE

Train dataset

Expected: a doorway looking into a demolished bathroom
Actual: a man and woman sit on a bench in the middle of the street

Expected: two people riding horses along a trail
Actual: a man is sitting on a bench next to a bike with a bike next to it

Expected: two cosplaying people pose for a photo
Actual: a man in a suit and tie is standing in front of a motorcycle

Expected: an airplane just landed on the runway
Actual: a man and woman riding a motorcycle down a street with a
woman on the back

Expected: a kitchen with a window some cupboards
Actual: a man and woman riding a motorcycle on a race track
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Table 5.3 Reconstruction Task examples in test dataset for VAE

Test dataset

Expected: a <unk> herself to catch a frisbee
Actual: a man in a helmet is standing in front of a motorcycle with a
woman on the back

Expected: a <unk> bear partly submerged in water
Actual: a man and woman sit on a bench in front of a building

Expected: some pasta with broccoli <unk> and sauce
Actual: a man and woman sit on a bench in front of a building with a
steeple

Expected: two bears touching noses standing on rocks
Actual: a man and woman sit on a bench in front of a building

Expected: a statue of a three horse carriage
Actual: a man and woman riding a motorcycle down a street with a
woman on the back

The examples for the Text Generation task also provide this insight. They
are presented in table 5.4.

Table 5.4 Generation Task examples for VAE

Generated:

a man and woman sit on a bench next to a bike and a river

a man riding a motorcycle with a woman on the back of it

a man in a blue shirt and a black motorcycle with a red blanket in the
background

a man in a suit and tie is standing in front of a motorcycle

This gives a sense of what to expect for the BLEU and Self BLEU. Since
the examples are extremely repetitive, but very fluent, one might expect a
high BLEU and SelfBLEU, which is the case. The results are presented at
table 5.5.
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Table 5.5 BLEU metrics for VAE

Self BLEU@4 | Self BLEU@5 | Train Train

BLEU@4 BLEU@5
COCO 0.218 0.134 0.531 0.421
VAE 0.984 0.979 0.677 0.579

As discussed before, here is an example of a model of a BLEU higher
than the computed BLEU for the dataset. In this case, although very fluent,
the examples are extremely reptitive, and the high value of BLEU is not an
indicative of high quality, but of repetitiveness.

5.2 Aggressive VAE

This model should present way better results than the previous, since the
Aggressive training would avoid the posteriori collapse. The training results
are presented at table 5.6.

Table 5.6 Training results for Aggressive VAE

Perplexity KL-loss Cross-Entropy
Loss
VAE 71.68 0.032 52.27
AggressiveVAE| 43.32 5.89 46.11

Therefore, it is reasonable to expect more diversity and a better result in
the reconstruction task. The results are presented in table 5.7 and 5.8.

59



Table 5.7 Reconstruction Task examples in train dataset for Aggressive
VAE

Train dataset

Expected: a door way looking into a demolished bathroom
Actual: a white toilet sitting in a bathroom next to a white sink

Expected: two people riding horses along a trail
Actual: a giraffe standing next to a bike with a fence in the background

Expected: two cosplaying people pose for a photo
Actual: two men in a kitchen with a dog in a kitchen with a dog in her
hand

Expected: an airplane just landed on the runway
Actual: a group of people sitting on a snowy slope with a large commer-
cial airplane on the tarmac

Expected: a kitchen with a window some cupboards
Actual: a large passenger jet taking off from an airport runway with
passengers on either side
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Table 5.8 Reconstruction Task examples in test dataset for Aggressive VAE

Test dataset

Expected: a <unk> herself to catch a frisbee
Actual: a young man standing next to a woman in a kitchen

Expected: a <unk> bear partly submerged in water
Actual: a person that is holding a camera in a bowl with a camera in
her hand

Expected: some pasta with broccoli <unk> and sauce
Actual: a table with multiple monitors and a cup of coffee and papers

Expected: two bears touching noses standing on rocks
Actual: there are two people riding bikes on a side walk

Expected: a statue of a three horse carriage
Actual: an old photo of a plane flying in a clear sky

One can also notice the diversity of the generated phrases — displayed at
table 5.9 — when compared with the previous example.

Table 5.9 Generation Task examples for Aggressive VAE

Generated:

a man is sitting on a bench next to a black dog on a leash a bathroom
with a white toilet , sink , and shower curtain

a large group of sheep in front of a group of motorcycles

a woman in a kitchen with a carton of food and a pot of food

a living room with a television , chair , and a tv on the side

Most of the examples are fluent and somehow related with the input
sentence, but there are some problems. Some sentences are repetitive —
such as "a living room with a television , chair , and a tv on the side', or
incoherent — such as "a person that is holding a camera in a bowl with a
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camera in her hand" and finally, the generated phrases show a tendency of
been very verbose. Therefore, it is expected a better SelfBLEU, while keeping

or reducing the fluency. Those results are presented in table 5.10.

Table 5.10 BLEU metrics for Aggressive VAE

SelfBLEU@4 | Self BLEU@5 | Tain Train
BLEU@4 BLEU@5
CcOCO 0.218 0.134 0.531 0.421
VAE 0.984 0.979 0.677 0.579
Aggressive | 0.743 0.650 0.617 0.484
VAE

The closeness of the BLEU@4 and BLEU@Qb5 to the baseline, indicates a
better fitness of this model to the dataset. It is also interesting to point the
correlation between the Self BLEU and the Train BLEU: a model with lower
BLEU also has a lower SelfBLEU.

5.3 Aggressive Length-Aware VAE

This model makes the Length an explicit feature, and therefore, it is expected
to improve the reconstruction task and be less verbose. Also, it creates a
discussion about how to sample the length for the Text Generation task.
Due to that, in the Text Generation results, three length prior distribution
will be explored.

The training results are presented in the table below:
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Table 5.11 Training results for Aggressive Length-Aware VAE

Perplexity KL-loss Cross-Entropy
Loss
VAE 71.68 0.032 52.2794
AggressiveVAE | 43.32 5.89 46.11
Length-Aware | 34.71 4.60 43.40
Aggressive-
VAE

Given the value of the Cross-Entropy Loss, the results for the reconstruc-
tion task are expected to be better:

Table 5.12 Reconstruction Task examples in train dataset for Aggressive
Length-aware VAE

Train dataset

Expected: a door way looking into a demolished bathroom
Actual: a bathroom with a sink and toilet

Expected: two people riding horses along a trail
Actual: two people riding motorcycles and a bus

Expected: two cosplaying people pose for a photo
Actual: two men are standing by a picture

Expected: an airplane just landed on the runway
Actual: an airplane is taking off the runway

Expected: a kitchen with a window some cupboards
Actual: a kitchen with a washing machine ...
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Table 5.13 Reconstruction Task examples in test dataset for Aggressive
Length-aware VAE

Test dataset

Expected: a <unk> herself to catch a frisbee
Actual: a small bathroom with a toilet

Expected: a <unk> bear partly submerged in water
Actual: a giraffe in the snow covered

Expected: some pasta with broccoli <unk> and sauce
Actual: the desk with many snacks and sprinkes

Expected: two bears touching noses standing on rocks
Actual: two men are standing on a table

Expected: a statue of a three horse carriage
Actual: a building with a clock tower

5.3.1 Length Prior Distribution

For a few phrases, the reconstruct phrase is pretty similar to the expected
one, showing the improvement. The results for the generated phrases are:

Table 5.14 Generation Task examples for Aggressive Length-aware VAE

Generated:

a white toilet seat

a kitchen with a toilet , sink and a window

a man riding a motorcycle down the street in the city
a bathroom that is very clean

As pointed before, this model raises the questions of which prior to use
for sampling length, when generating text. Three options were explored:
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normal-fitted prior, discrete-fitted prior and uniform distribution. The last
two have the advantage of generating only discrete length values that were
present on the dataset. The results are:

Table 5.15 BLEU metrics for different Length Prior Distributions on the
context Aggressive Length-aware VAE

Self BLEU@4 | Self BLEU-5 | Train Train
BLEU@4 BLEUQ@5
Normal 0.720 0.595 0.552 0.433
Discrete fit- | 0.772 0.670 0.575 0.459
ted
Uniform 0.795 0.715 0.608 0.482

There are not big variations regarding the prior used. In this thesis, the
diversity will be favored, therefore, in the following models were is needed to
sample the length, the normal distribution will be used.

Then, the metrics for this model are:

Table 5.16 BLEU metrics for Aggressive Length-aware VAE

SelfBLEU@4 | SelfBLEU@Q5 | Tain Train
BLEUQ4 BLEU@b5

CcOCO 0.218 0.134 0.531 0.421
VAE 0.984 0.979 0.677 0.579
Aggressive 0.743 0.650 0.617 0.484
VAE
Length- 0.720 0.595 0.552 0.433
Aware
Aggressive
VAE

This models improves by little the previous model, but it approach more
the baseline, therefore, it is a good improvement.
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Figure 5.1: Input length vs Generated length

Length effectiveness

Finally, it is important to evaluate the effectiveness of the length as a feature,
to do so, the length of the generated sentence is plot against the input length
to check the correlation between the two which can be seen in 5.1.

As one can see in figure 5.1. The input length is extremely correlated
with the output length — with a correlation coefficient of 0.993. Therefore,
the network learned to use the input length to control the generation.

5.4 Aggressive Length-Aware + BoW Loss
VAE

This model adds a new loss with the goal to improve the latent representation
and at the risk of obfuscating the KL loss. Therefore, it is expected a bigger
KL-loss and a smaller Cross-Entropy loss:

66



Table 5.17 Training results for Aggressive Length-Aware VAE + BoW Loss

Perplexity KL-loss Cross-Entropy

Loss

VAE 71.68 0.032 52.2794

AggressiveVAE | 43.32 5.89 46.11

Length-Aware 34.71 4.60 43.40

AggressiveVAE

Length- Aware | 19.67 20.01 36.45

Aggressive-

VAE 4+ BoW

Loss

The reconstruction tasks has the following results:

Table 5.18 Reconstruction Task examples in train dataset for Aggressive
Length-aware + BoW Loss VAE

Train dataset

Expected: a door way looking into a demolished bathroom
Actual: a doorway looking into a bathroom

Expected: two people riding horses along a trail
Actual: two people riding horses along a trail

Expected: two cosplaying people pose for a photo
Actual: two old photo of a women pose

Expected: an airplane just landed on the runway
Actual: an airplane on the runway unoccupied

Expected: a kitchen with a window some cupboards
Actual: a kitchen with a window and cupboards
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Table 5.19 Reconstruction Task examples in test dataset for Aggressive
Length-aware + BoW Loss VAE

Test dataset

Expected: a <unk> herself to catch a frisbee
Actual: a person standing next to a field

Expected: a <unk> bear partly submerged in water
Actual: a man in a big kitchen

Expected: some pasta with broccoli <unk> and sauce
Actual: a modern kitchen with some kind

Expected: two bears touching noses standing on rocks
Actual: two domestic - animals on a table

Expected: a statue of a three horse carriage
Actual: a statue of a three horse carriage

For the Generation Task, a worse result is expected. The reason is the
high KL term. It indicates that during training, the latent vectors were
distant from the prior. While, during the generation they will be close,
because they are sampled from it. Since the model will be working on an
"unexplored" latent area, the results expected will work poorly.

Table 5.20 Generation Task examples for Aggressive Length-aware + BoW
Loss VAE

Generated:

a crowd of people standing at his crowd of people

a woman crosses a motorbike as a woman and a bullhorn
a jet on the wall next to the ocean

a knife on a shiny side car
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As expected, the phrases here, although grammatically correct, are very
incoherent, correlating words weirdly. The metrics for this model are:
And the metrics:

Table 5.21 BLEU metrics for Aggressive Length-aware + BoW loss VAE

SelfBLEU@4 | SelfBLEU@5 | Tain Train
BLEU@4 BLEU@5

COCO 0.218 0.134 0.531 0.421
VAE 0.984 0.979 0.677 0.579
Aggressive 0.743 0.650 0.617 0.484
VAE
Length- 0.720 0.595 0.552 0.433
Aware
Aggressive
VAE
Length- 0.446 0.306 0.330 0.225
Aware
Aggressive
VAE +
BoW Loss

This is the first model that presents a lower BLEU regarding the COCO
baseline. And as we see, it indicates a low level of fluency. But on other-
hand, it presents a very low SelfBLEU indicating a better diversity if phrases.
Finally, until now, this model is the better on the reconstruction task.

5.5 Double-level Aggressive VAE

As pointed before, this model was chosen due to the computational power of
it which is closed to the next proposed models. As the following table can
show, just adding a more units — without changing dataset — did not improve
the performance.

69



Table 5.22 Training results for Double-level Aggressive VAE

Perplexity KL-loss Cross-Entropy

Loss

VAE 71.68 0.032 52.2794

AggressiveVAE | 43.32 5.89 46.11

Length-Aware 34.71 4.60 43.40

AggressiveVAE

Length-Aware 19.67 20.01 36.45

AggressiveVAE

+ BoW Loss

Double-level 84.44 3.64 54.28

Aggressive

VAE

The reconstruction tasks has the following results:
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Table 5.23 Reconstruction Task examples in train dataset for Double-level
Aggressive VAE

Train dataset

Expected: a door way looking into a demolished bathroom
Actual: a white toilet sitting in a bathroom next to a white sink and a
window

Expected: two people riding horses along a trail
Actual: two people are walking a dog on the side of a road with a crowd
of people walking by

Expected: two cosplaying people pose for a photo
Actual: a group of people sitting on a bench in front of a large church

Expected: an airplane just landed on the runway
Actual: an airplane is parked on the runway with a service truck parked
in the background in the background

Expected: a kitchen with a window some cupboards
Actual: a kitchen with a stove , microwave , and wooden cabinets with
a large window in the background
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Table 5.24 Reconstruction Task examples in test dataset for Double-level
Aggressive VAE

Test dataset

Expected: a <unk> herself to catch a frisbee
Actual: a large passenger jet flying through a cloudy sky in a cloudy sky

Expected: a <unk> bear partly submerged in water
Actual: a man standing in a kitchen with a dog watching her hands and
him is in the background

Expected: some pasta with broccoli <unk> and sauce
Actual: an airplane with people on the ground and waiting at an
intersection for a city street with two cars

Expected: two bears touching noses standing on rocks
Actual: a group of people sitting on a bench in front of a small church

Expected: a statue of a three horse carriage
Actual: a small bathroom with a toilet , sink , and a shower stall , with
a shower , and a shower stall

For the Text Generation task:

Table 5.25 Generation Task examples for Double-level Aggressive VAE

Generated:

a person riding a motorcycle down the middle of a street with a red light
in the background

people are walking across the street while a dog licks a dog that is walking
the bike

an orange and white cat sitting on top of a wooden table near a microwave
the large aircraft is on the runway at an airport
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It is interesting to note how verbose this model is. Both in the reconstruc-
tion task and generation task, it generates phrases with very high length.
The results for the metrics are:

Table 5.26 BLEU metrics for Double-level Aggressive VAE

SelfBLEU@4 | SelfBLEU@QS5 | Tain Train
BLEUQ4 BLEU@b5

COCO 0.218 0.134 0.531 0.421
VAE 0.984 0.979 0.677 0.579
Aggressive 0.743 0.650 0.617 0.484
VAE
Length- 0.720 0.595 0.552 0.433
Aware
Aggressive
VAE
Length- 0.446 0.306 0.330 0.225
Aware
Aggressive
VAE +
BoW Loss
Double- 0.764 0.690 0.605 0.489
level Ag-
gressive
VAE

5.6 VAE Disentangled + Length-Aware

This model uses a network that tries to predict the POS and other that tries
to predict the phrase. To construct this model, we first train the model on
the POS task and after that we use this model to construct the more general

one.

The results for the Grammar model are:
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Table 5.27 Training results for Grammar VAE

Perplexity KL-loss Cross-Entropy Loss
1.87 4.90 7.72

The low perplexity value indicates a very good success in predicting the
right token.

To construct the general model, three model were suggested to integrate
the grammar model: Logits@Input, Logits@Output and Logits@Dot. Before
presenting the qualitative examples of this model, below is the result for each
option:

Table 5.28 Training results for all options of VAE Disentangled + Length-
aware

Perplexity KL-loss Cross-Entropy
Loss
Logits@Input 33.74 4.74 43.50
Logits@Output | 34.86 4.33 43.90
Logits@Dot 47.55 2.16 47.74

In order to compare the KL-loss of this model to the KL-loss of other
models, one must add the Grammar Model KL-loss, in this case: 4.90. This
is done in the general model tables.

The metrics for the text generation:
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Table 5.29 BLEu metrics for all options of VAE Disentangled + Length-

aware
SelfBLEU@4 | Self BLEU@5 | Tain Train
BLEU@4 BLEU@b)
COCO 0.218 0.134 0.531 0.421
Logits@Input| 0.628 0.468 0.434 0.300
Logits@Output0.536 0.383 0.353 0.232
Logits@Dot | 0.630 0.478 0.339 0.221

The Loigits@Dot is the worst option, because it has a very low BLEU
and a very high Self BLEU. While the others presents a trade-off between
high BLEU and high Self BLEU, due to the correlation of this two models.
In this case, we will opt for the Logits@Input due to its BLEU values closer
to the dataset baseline.

Therefore, the results for the model in question compared to others are:

Table 5.30 Training results for VAE Disentangled + Length-Aware

Perplexity KL-loss Cross-Entropy

Loss

VAE 71.68 0.032 52.2794

AggressiveVAE | 43.32 5.89 46.11

Length-Aware 34.71 4.60 43.40

AggressiveVAE

Length-Aware 19.67 20.01 36.45

AggressiveVAE

+ BoW Loss

Double-level Ag- | 84.44 3.64 54.28

gressive VAE

VAE Disen- | 33.74 9.64 43.50

tangled +

Length- Aware

5



The examples for the Reconstruction Task:

Table 5.31 Reconstruction Task examples in train dataset for VAE Disen-
tangled + Length-Aware

Train dataset

Expected: a door way looking into a demolished bathroom
Actual: a bathroom with a white toilet

Expected: two people riding horses along a trail
Actual: two people are on the ground

Expected: two cosplaying people pose for a photo
Actual: a kitchen with white and a ceiling

Expected: an airplane just landed on the runway
Actual: an airplane is at the airport terminal

Expected: a kitchen with a window some cupboards
Actual: a kitchen with a window above it
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Table 5.32 Reconstruction Task examples in test dataset for VAE Disen-
tangled + Length-Aware

Test dataset

Expected: a <unk> herself to catch a frisbee
Actual: a man is being flown by

Expected: a <unk> bear partly submerged in water
Actual: a large bathroom with two stuffed animals

Expected: some pasta with broccoli <unk> and sauce
Actual: this bathroom with toilet paper and toilets

Expected: two bears touching noses standing on rocks
Actual: two people sitting on the side

Expected: a statue of a three horse carriage
Actual: a close up of a car

For the Generation Task:

Table 5.33 Generation Task examples for VAE Disen-tangled + Length-
Aware

Generated:

a kitchen with a kitchen is white

a black and bathroom is on to

a car in a a city at a city street

a motorcycle a motorcycle in front next to a bicycle

Finally, the metrics compared to other models:
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Table 5.34 BLEU metrics for VAE Disentangled + Length-Aware

Self BLEUQ4 | Self BLEU@5 | Tain Train
BLEU@4 BLEU@5

COCO 0.218 0.134 0.531 0.421
VAE 0.984 0.979 0.677 0.579
Aggressive 0.743 0.650 0.617 0.484
VAE
Length- 0.720 0.595 0.552 0.433
Aware
Aggressive
VAE
Length- 0.4464 0.3061 0.330 0.225
Aware
Aggressive
VAE +
BoW Loss
Double-level | 0.764 0.690 0.605 0.489
Aggressive
VAE
VAE Dis- | 0.628 0.468 0.434 0.300
entangled
+ Length-
Aware

Therefore, this model presents reasonable results regarding BLEU and
SelfBLEU. One question that arises is the effectiviness of the Grammar rep-

resentation.

Grammar and Content Representation Effectiveness

To analysis it, the sensibility of the output regarding noise added to the

latent variable will be tested in a qualitative manner.

The procedure consist in adding noise to the latent representation of a
phrase. The Noise values vary from [0.01,0.1,0.5,1.0] and we disturb one
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representation at a time — content and grammar. The result for the first 3
examples in the train dataset are below:

79



Table 5.35 Analysis of effectiveness of latent disentangled representation

Example 1: "a motorcycle parked on a road with a surfboard on the side'

Noise | Content Grammar
0.01 | "amotorcycle parked on a road with | "a motorcycle parked on a road with
a surfboard on the side' a surfboard on the side"
0.10 | "a motorcycle parked on a road with | "a motorcycle parked on a road with
a surfboard on the side' a surfboard on the side"
0.50 | "a motorcycle parked on a road with | "a motorcycle parked on a road with
a surfboard on the side" a surfboard on the side"
1.00 | "a motorcycle parked in a parking | "a motorcycle parked in front of a

lot with trees in the background'

building with graffiti on it"

Example 2: "a bathroom with a white sink and a sink and shower"

Noise | Content Grammar

0.01 | "a bathroom with a white sink and | "a bathroom with a white sink and
a sink and shower' a sink and shower'

0.10 | "a bathroom with a white sink and | "a bathroom with a white sink and
a sink and toilet" a sink and shower'

0.50 | "a bathroom with a toilet , sink , | "a bathroom with a toilet , sink |,
and a shower' and a shower'

1.00 | "a bathroom with a large mirror and | "a bathroom with a white sink and

a large mirror above"

white and white toilet"

Example 3: "three giraffes standing in front

of a large building"

Noise | Content Grammar

0.01 | "three giraffes standing in front of a | "three giraffes standing in front of a
large building" large building"

0.10 | "three giraffes standing in front of a | "three giraffes standing in front of a
large building" large building"

0.50 | "three giraffes standing in front of a | "several giraffes standing in front of
large church" a large building"

1.00 | "three people are standing in a | "several  different  motorcycles

kitchen holding food"

parked in front of a fenced area'
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Although not perfect, we can notice that the representation is a little
effective. If one takes the example 2 into consideration, it may notice the
change from ")" to "and", or the phrase moving from simple nouns to the
combination adjective + noun: 'sink"' to "white sink". While only in the
content new elements are added such as "mirror".

In a less degree, this can also be notice in the example 3, the change from
"giraffes" to "people" or "building" to "church'. Finally, it is importance to
notice that the sensitivity for both representation is around 0.5.

5.7 Conclusions

As it was shown, both the length-aware technique and the disentangled are
somehow effective in their propose. They allow for the generation task to be
more controlled, giving the generator the ability to control length, content
and grammar. But they are not as effective as expected.

It is also to important to compare all the proposed models. To do that,
the plots in figure 5.3 was produced. It contains the Self BLEUs versus the
BLEU for all model.

As we can see, the disentangled produces results similar to the addition of
the Bag-of-Word loss, while keeping the KL weight more low (9.64 vs 20.01).
Which can be seen as an improvement.

Finally, all the models distribute themselves along a line that correlates
SelfBLEU and BLEU, while the dataset presents a reasonable high BLEU
while keeping the SelfBLEU. This gives an idea of a possible direction that
generative models research should work on: making the Self BLEU and
BLEU uncorrelated.
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SelfBLEU@4 vs Train BLEU@4

Type of Architecture/Training
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® Agoressive VAE
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Figure 5.2: All models metrics for BLEU@4: The models show a cor-
relation between BLEU and SelfBLEU. Aggressive + Length VAE and Ag-
gressive + Length + BoW VAE are inspired by other papers. Grammar +
Content VAE is the novel architecture suggested in this work.
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SelfBLEU@S vs Train BLEU@5

Type of Architecture/Training
1o ® Dataset

Non-Aggressive VAE
Agoressive VAE

Agressive + Length VAE
Agressive + Length + BoW VAE

Double-level VAE
Grammar + Content VAE Logits@Out
Grammar + Content VAE Logits@ln

Grammar + Content VAE Logits@Dot
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Figure 5.3: All models metrics for BLEU@5: The models show a cor-
relation between BLEU and SelfBLEU. Aggressive + Length VAE and Ag-
gressive + Length + BoW VAE are inspired by other papers. Grammar +
Content VAE is the novel architecture suggested in this work.

83



Chapter 6

Results for Proposed
Applications

6.1 Auto-complete

As pointed before, the VAE may be used to predict next words, by encoding
the words known so far and them predicting the next one. It is intuitively
to think that length-aware VAE will perform better in this use case and this
will be one of the ideas that will be validated. Two models will be tested:
Aggressive VAE and Agressive VAE Length-Aware with BoW loss, which will
be referred as AVae and AVaeBow in the tables. This has the goal of both
validating the impact of using length as a feature for this task.

Besides that, there are two possible decoding strategy: forcing or loop.
The first consist in using the known words as input of the decoder at each
step. The second consist in looping the predicted word into the decoder at
each step. The former is expected to work better in terms of accuracy.

Below are a few examples for each model and decoding strategy, varying
from 1 to 3 predicted words. First the examples, with forcing decode strategy:
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Table 6.1 Examples of auto-completing with forcing decode

Predicting 1 word:

Example 0: some people that are hanging out in the "snow'"

AVae: "kitchen"
AVaeBow: "distance"

Example 1: a close-up of an orange on the side of the "road"
AVae: "road"
AVaeBow: "road"

Example 2: this little boy wearing a jacket is holding a red "apple"
AVae: "umbrella
AVaeBow: "shirt'

Predicting 2 words:

Example 0: some people that are hanging out in "the snow"
AVae: "the <pad>"
AVaeBow: "the room'"

Example 1: a close-up of an orange on the side of "the road'
AVae: "a <pad>"
AVaeBow: "the road'

Example 2: this little boy wearing a jacket is holding a "red apple"
AVae: "banana phone"
AVaeBow: 'little shirt"

Predicting 3 words:

Example 0: some people that are hanging out "in the snow'
AVae: "of <pad> to"
AVaeBow: "on side view"

Example 1: a close-up of an orange on the side "of the road'
AVae: "of <pad> <pad>"
AVaeBow: "of side walk'

Example 2: this little boy wearing a jacket is holding "a red apple’
AVae: "a <pad> <pad>"
AVaeBow: "a little cat"

And without forcing:
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Table 6.2 Examples of auto-completing without forcing decode

Predicting 1 word:

Example 0: some people that are hanging out in the "snow'"
AVae: "with"
AVaeBow: "red"

Example 1: a close-up of an orange on the side of the "road"
AVae: "of"
AVaeBow: "walk'

Example 2: this little boy wearing a jacket is holding a red "apple"
AVae: "standing'
AVaeBow: "shirt'

Predicting 2 words:

Example 0: some people that are hanging out in "to them'
AVae: "with a'
AVaeBow: "to some'

Example 1: a close-up of an orange on the side of "road walk'
AVae: "street </s>"
AVaeBow: "empty snowy"

Example 2: this little boy wearing a jacket is holding a "red apple"
AVae: "banana in"
AVaeBow: '"is smiling"

Predicting 3 words:

Example 0: some people that are hanging out "air to them'
AVae: "bench next to"
AVaeBow: "on the side"

Example 1: a close-up of an orange on the side "of the road'
AVae: "the side of"
AVaeBow: "an empty snowy"

Example 2: this little boy wearing a jacket is holding "a red apple"
AVae: "a banana standing"
AVaeBow: "a jacket and'

As expected, the using forcing during decode, provides better results.
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Also, the presence of "<pad>" or "</s>" in the simple Aggressive VAE
indicates it has problems to get the correct length right. While this does not
happen with the AVaeBow. As a general result, the AVaeBow performs well,
getting the right word in a few examples, or at least generating consistent

phrases.

To compare this two models in a quantitative manner, we compute the
Accuracy and NNLoss for each model and decoding strategy.

Table 6.3 Results for auto-complete predicting 1 word

Forcing Non-Forcing
Perplexity NLLLoss Perplexity NLLLoss
AVae 90.01 4.50 80,017 11.29
AVaeBow | 7.38 2.00 91.83 4.52
Table 6.4 Results for auto-complete predicting 2 words
Forcing Non-Forcing
Perplexity NLLLoss Perplexity NLLLoss
AVae 849.79 13.49 350.72 11.72
AVaeBow | 37.52 7.25 41.47 7.45
Table 6.5 Results for auto-complete predicting 3 words
Forcing Non-Forcing
Perplexity NLLLoss Perplexity NLLLoss
AVae 38.60 10.96 44.40 11.38
AVaeBow | 7.26 5.95 15.69 8.26
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It is important to notice that the system is not predicting bigrams or
trigrams. It is predicting each word and computing the loss for each word. If
for example, it predicts "the room" and the expected result is "the snow", the
correct prediction of the word "the" affects the NLLLoss and the perplexity,
which explain in part why the perplexity varies from predicting one word
or three words. When predicting two or three words, normally there are
words such as "the", "to" and "of" which are easier to predict. Nonetheless,
it would be more correct to predict the bigrams and trigrams, obtaining a
more precise evaluation.

As expected the AVawBow has better values of loss being more adequate
for this application. But unfortunately, the accuracy is still very low, indi-
cating the need to improve the model to be useful for such setting. Some of
the alternatives would be to change the decoding strategy for more words,
by using techniques such as beam-search.

6.2 Text Retrieval

To analyze the quality of the VAE for the Text Retrieval, the Cranfield
Dataset will be used. In this section, models that favors good content rep-
resentation in the latent space will be tests, more specifically, the Agreesive
VAE with Length-Aware and BoW loss and the Agressive VAE Disentangled
with Logits@In will be tested and compared.

The first step consist in training the models with the Cranfield Dataset.
The table 5.4 shows a few examples of queries and documents titles. It is
easy to notice the difference regarding the ImageCOCO. In this case, since the
dataset consist of title of documents, there is a bigger diversity on the format
of the phrases. On the otherhand, the queries repeat an certain structure.
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Table 6.6 Cranfield Colleaction Queries and Titles

Queries:
what similarity laws must be
obeyed when constructing aeroe-
lastic models of heated high speed
aircraft .

what problems of heat conduc-
tion in composite slabs have been
solved so far .

what chemical kinetic system
is applicable to hypersonic aerody-
namic problems.

Documents titles:

experimental investigation of the
aerodynamics of a wing in a slip-
stream .

simple shear flow past a flat
plate in an incompressible fluid of
small viscosity .

one-dimensional  transient heat
conduction into a double-layer slab
subjected to a linear heat input for
a small time internal .

This difference between this dataset and ImageCOCO may bring different
performance. Table 5.5 presents the result of training for each model:

Table 6.7 Training with Cran Collection

Perplexity KL-loss Cross-Entropy
Loss

Length-Aware 42.96 10.45 57.64
AggressiveVAE
+ BoW Loss
VAE Disentan- 60.64 2.18 62.92
gled + Length-
Aware

The results are worse than with ImageCOCO, given that the vocabulary
of the Cranfield Collection is smaller. Besides that, it was necessary to do
two modification to obtain VAE where the posteriori did not collapse. The
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start KL Weight had to be reduced to 0.001 and the KL Weight was clipped
to 0 every time the Kullback-Leibler Loss was smaller than 2. This indicates
that the VAE is extreme sensible to an increase in the length of the phrases.
This will definitly be a research topic for extending the usage of VAEs.

Regarding the performance Text Retrieval over the Cran Collection, the
Accuracy and Mean Reciprocal Rank (MRR) obtained are displayed on table
5.6.

Table 6.8 Text Retrieval in Cran Collection using VAE

MRR
Length-Aware AggressiveVAE + 0.0072
BoW Loss
VAE Disentangled + Length-Aware 0.0038

As we can see the results are really poor, our Text Retrieval system would
be most of the time wrong. And due to the poorly results, it is impossible
to compare the two models. If eventually one would like to explore the VAE
in such context, it is necessary to explore several twists both in training and
architecture to obtain better results.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis was started with two goals: improve the performance and under-
standing of the most recent advances in the Variational AutoEncoders for
Text Generation and explore possible application of such system.

Regarding the first goal, three main contributions were made. The first
consist in proposing a twist in how we evaluate text generation performance.
Instead of using the maximum BLEU and minium Self-BLEU as targets,
it was suggested using the values computed for the training dataset using
samples drawn from it. As presented in figure 5.3, some models presents a
BLEU higher than the dataset baseline which was human generated, there-
fore, improve those models regarding BLEU would be a misleading target.
The dataset baseline provides a more reasonable target that may help direct
efforts in a more promising direction.

The second consist in demonstrating the correlation between the Self-
BLEU and BLEU in VAEs models. It is clear that when the Self-BLEU drops
the BLEU also does it, while the dataset baseline has a low Self-BLEU and
high BLEU. This correlation is a problem for the improvement of VAE and
efforts to develop techniques that improve only one metric without affecting
much of the other is a interesting research topic.

Finally, the third contribution consist in the Disentangled VAE. This
technique has a similar goal as the Bag of Word loss — improve content
representation on the latent space, but accomplishes it in a different manner.
It provides results similar regarding metrics to the BoW technique while
mantaining the Kullback-Leibler loss smaller them the BoW, which is a good
indicative. Unfortunately only one architecture/training configuration were
tested, leaving plenty space for more experimentation.
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Regarding the application of Text Generation model, two possibilities
were explored: text completion and text retrieval. In the first, we can see an
improvement of one model regarding the other, but the accuracy and quality
of the results seems way too low to be used as a product.

In the Text Retrieval, the VAE performed extremelly poor, not being able
to get the correct document more them 2 times in 340.

Regarding application, although this work presented ways of using VAE
in such context, much more study and exploration is necessary to maybe
consider the VAEs in such setting.

In conclusion, since the first presentation of the VAE, lot of improvement
were made and for smaller datasets some really coherent phrases were gen-
erated. But there are still open question of how to improve this model to
be more useful and without doubt there is one big question of what is the
usage of such models. Although some application were explored, the results
are way low to compete against tailored system for such tasks. Lot of im-
provement must be made for such general-purpose model — Text Generation,
to be used in more specific tasks.

7.2 Future Work

Given the results obtained in this works, a few lines of works would be
interesting to explore. This thesis would like to highlight a few:

7.2.1 Dataset’s BLEU and Self-BLEU as target

One of the minor proposals of this work was to use the BLEU and Self-
BLEU of the train dataset as target for the text generation models. Although
intuitively coherent, this must still be explored to see if it provides better
classification of Text Generation models.

Such exploration must be aimed in comparing BLEU and Self-BLEU of
several datasets and seeing how they differ. Comparing the effect of changing
the number of samples generated or references used, for several datasets and
models. Finally, checking if there is correlation between the distance of the
metrics to the dataset target with human judgment. If proven coherent, such
target might provide more information for the develop of Text Generation
models.
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7.2.2 Disentanglement Architectures

The most novel contribution of this work is the Disentanglement VAE archi-
tecture. It is seed idea is to have two networks representing two different,
and hopefully, orthogonal, parts of the sentences. Such architecture was rel-
atively successful to provide results similar to the application of the Bag of
Word loss. Therefore, it might be interesting to explore some variations.
Some suggestion is use other type of grammatical features, below is a list of
some we find interesting:

e Rule-based morphology such as Verb Form and Verb Tense
e Dependency parsing results
e Entity recognition

Most of those are fully available in SpaCy library, allowing for rapid
iteration.

Another interesting exploration topic is how the two networks are trained.
Focusing on simplicity, we opted for training the Grammar network sepa-
rately and keep it fixed during the training of the content network. A few
variations of this setting could be:

e Keeping the Grammar network trainable
e Pre-training the Content network in a Bag of Word prediction task
e Training both together in a multi-task setting

The multi-task setting seems as a very challenging one. As we saw with
the Bag of Word loss, the add of other losses tends to shadow the Kullback-
Leibler loss — a fundamental aspect of the VAE. Therefore, exploring this
might need some study and analysis on how to assign different weights to
each loss.

7.2.3 Training strategy for VAE

During the exploration of the VAE for the Text Retrieval task, we notice
the difficult to parameterize it to avoid mode collapse — even already using
Aggressive learning, when the dataset changed. Therefore, more robust and
less dataset dependent strategies are needed. One interesting aspect is the
value of the Kullback-Leibler loss for best models. It tends to be around 3
to 6 and intuitively we believe this value is correlated with the size of the
latent space, an aspect interesting to explore. Below are some suggestions of
research topics:
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o Check for estimates of Kullback-Leibler ideal loss values.

e Change the Kullback-Leibler weight according to the distance of the
Kullback-Leibler to a giver range target

e Perform Aggressive training on-demand, according to the value of the
Kullback-Leibler loss.

But as saw before, this problem is created in part due to the architecture
used in the decoder (RNNs). Such architecture drives the network to learn
the most common succession of words while ignoring the latent space. Several
techniques mitigate this problem such as Drop-out layer of the decoder and
adding the latent vector as input in every step.

7.2.4 Combinging VAE and GANs

As proposed in [11], it is possible to VAE and GAN in training. Given
this and the results obtained in the BLEU metrics, we think that combining
the two VAE models with better SelfBLEU — Aggressive Length-aware +
Bag-of-Word Loss and VAE Disentangled + Length-aware Logits@QOutput,
with some of the GAN models might drive the model to have good results
regarding the SelfBLEU and BLEU metrics. But this creates the complexity
of training GAN in Text that normally involves doing reinforcement learning
as in [18§]

7.2.5 General VAE Architecture

As pointed before, the architecture of the decoder influences a lot the ef-
fectiveness of training the VAE. Therefore, it is interesting to suggest a few
alternatives that allow for a more high-level training inspired in the architec-
ture of the Question Answering system proposed at [19]:

e Multi-level decoder with high-level network, that is, that receives the
output of all previous levels

e Attentive encoder and decoder, that is, instead of receiving previous
state use attention layer in all previous states

Other aspects to be explored the usage of pre-trained embedding layer in
both the encoder and decoder. It is also interesting to explore the effect of
using the same layer in both encoder and decoder.
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7.2.6 Usage of VAE and Text Generation Systems

Finally, one part explored was the application of the VAE. For the proposed
application, in deep studies are necessary to understand how to use the VAE
in such context. It is also interesting to explore the usage trained VAE as
part of another network.

7.2.7 Conclusion

Its been 6 years that the VAE were presented. Since them, lot of research
has be done to improve and apply those models, but nonetheless, most of
the models applied to Natural Language Processing are not text generative
— that is, focused on predicting classes or learning vectors — or are attention-
based and huge models such as GPT-2 [20], which was trained with 40GB of
data, the Transformer [21] and BERT [22].

That setting is a little bit overwhelming, because as generative models
become bigger, the need for resources to train it also grows, forcing most of
the research to concentrate in big hubs with the disposition of resources to
train such models.

It is in our opinion that models such as VAE and GAN may give the
possibility of developing useful generative models that are less demanding
regarding resources. But it has not been an easy task to do so.

95



Bibliography

[1] Turing, A. M., Computing Machinery and Intelligence. Mind 49: pages
433 — 460 (1950)

2] McCarthy, J., Minsky, M. L., Rochester, N., Shannon, C. E.,; A Proposal
for the Dartmouth Summer Research Project on Artificial Intelligence
(1955)

[3] Russel, S., Norvig, P., Artificial Intelligence: A Modern Approach. Pren-
tice Hall (2009)

[4] Papineni, K., Roukos, S., Ward, T., Zhu, W., BLEU: a Method for Auto-
matic Evaluation of Machine Translation. Proceedings of the 40th Annual

Meeting of the Association of Computational Linguistics, pages 311 — 318
(2002)

[5] Zhy, Y., Lu, S., Zheng, L., Guo, J., Zhang, W., Wang, J., Yong, Y., Texy-
Gen: A Benchmarking Plataform for Text Generation Models. CoRR
(2018)

[6] Pennington, J., Socher, R., and Manning, C. D. GloVe: Global Vectors
for Word Representation

[7] Bojanowski, P., Grave, E., Joulin, A. and Mikolov, T., Enriching Word
Vectors with Subword Information. CoRR (2016)

[8] Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley,
D., Ozair, S., Courville, A., and Bengio, Y., Generative Adversarial Nets.
NIPS Proceeding (2014)

9] Kingma, D. P. and Welling, M., Auto-encoding Variational Bayes. (2013)

[10] Mi, L., Shen, M. and Zhang, J. A Probe Towards Understanding GAN
and VAE Models. CoRR (2018)

96



[11] Larsen, A. B. L., Sgnderby, S. K. and Winther, O.. Autoencoding beyond
pixels using a learned similarity metric. CoRR (2015)

[12] Tsung, Y. L., Maire, M., Belongie, S. J., Bourdev, L. D., Girshick, R.
B., et al, Microsoft COCO: Common Objectives Context. CoRR (2014)

[13] Cui, Y., Ronchi, M. R., Tsung, Y. L., Dollar, P., and Zitnick, L.
COCO 2015 Image Caption Task, at cocodataset.org, (2015). Accessed
the September 5 2019.

[14] Richmond A. P. Review of the cranfield project. Wiley Periodicals (1963)

[15] He, J., Neubig, G., and Berg-Kirkpatrick, T. Lagging Inference Networks
and Posterior Collapse in Variational Autoencoders. CoRR (2019)

[16] Schumann, R. Unsupervised Abstractive Sentence Summarization using
Length Controlled

[17] SpaCy library at https://spacy.io/, (2015). Accessed the September 15
2019

[18] Yu, L., Zhang, W., Wang, J. and Yu, Y. SeqGAN: Sequence Generative
Adversarial Nets with Policy Gradient. CoRR (2016).

[19] Zhu, C., Zeng, M. and Huang X. SDNet: Contextualized Attention-
based Deep Network for Conversational Question Answering. CoRR
(2018)

[20] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I.
Language Models are Unsupervised Multitask Learners. OpenAl (2019)

[21] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A., Kaiser, L. and Polosukhin, I. Attention is All you need. CoRR (2017)

[22] Devlin, J, and Chang, M., and Lee, K., and Toutanova, K. BERT: Pre-
Training of Deep Bidirectional Transformers for Language Model. CoRR
(2018)

97



	List of Figures
	List of Tables
	Introduction
	Text Generation and VAE
	Goals
	Thesis structure

	Related work
	Scope
	Artificial Intelligence
	Natural Language Processing
	Information Retrieval Task

	State of the art
	Neural Networks and Deep Learning
	Neural Networks for Text Generation


	Methodology
	Datasets and baselines
	Datasets
	Baselines

	Proposed models
	Preliminary: State-of-the-art techniques
	Preliminary: Disentangled representation
	Explored models

	Proposed applications
	Text Completion task
	Text Retrieval task


	Experimental setup
	Training methodology
	KL Loss Annealing
	Training Algorithm
	BLEU and SelfBLEU Calculation
	Models Dimension

	Results for Explored Models
	VAE
	Aggressive VAE
	Aggressive Length-Aware VAE
	Length Prior Distribution

	Aggressive Length-Aware + BoW Loss VAE
	Double-level Aggressive VAE
	VAE Disentangled + Length-Aware
	Conclusions

	Results for Proposed Applications
	Auto-complete
	Text Retrieval

	Conclusion and Future Work
	Conclusion
	Future Work
	Dataset's BLEU and Self-BLEU as target
	Disentanglement Architectures
	Training strategy for VAE
	Combinging VAE and GANs
	General VAE Architecture
	Usage of VAE and Text Generation Systems
	Conclusion


	Bibliography

