
POLITECNICO DI TORINO

Master of Science in Mathematical Engineering

Master’s Degree Thesis

Study of Mutually Exclusive Invariants
in Planning Processes

Supervisors Candidate
Prof. Fabio Fagnani Joseph Stanton
Prof. Sara Bernardini

Academic Year 2019-2020

Abstract

My initial task in this thesis was to understand what Automated Planners are,
what Mutual Exclusive Invariants are and the sufficient conditions one could use to
find Mutual Exclusive Invariants within Temporal Planners. Then using as input
the Domains and Problem Instances taken from the International Competition on
Automated Planning and Scheduling (ICAPS) in PDDL2.1 I implemented eight
checks found within the Temporal Invariant Synthesiser (TIS) algorithm to find
these Invariants. This was done using Object Oriented Programming in Python in
which I constructed in an automated manner the Templates (Potential Invariants)
and searched if any criteria of conditions could be met to prove the Templates
Invariance. The main focus when searching for Invariants was the concept of Safety
of Actions with respect to Templates. Furthermore, it was necessary to understand
the concepts of Matching and Coverage in order to work on a Lifted Level. The
results produced were positive and using the Invariants found by the synthesizer it
is possible to generate fewer Multi-State Variables.

List of Tables

1.1 Durative Action Schema in its Instantaneous Action Schemas form. 9

2.1 Durative Action Schema Up seen as a triple of instantaneous action
schemas. 17

2

Contents

List of Tables 2

1 Introduction 5
1.1 Overview of Planning Processes and PDDL 5

2 Overview of Invariant Synthesis 11
2.1 Invariants . 11

3 Implementation 23

4 Experiments 27

5 Related Work and Conclusion 29

A Invariant Synthesiser Code 31

B Domains 61

Bibliography 67

3

4

Chapter 1

Introduction

1.1 Overview of Planning Processes and PDDL
Artificial Intelligence is a broad field and only through many years of study and
research can one truly have a relative grasp of what that spectrum entails. Re-
search into this particular field began during world war two and really took off
shortly after with the works of Alan Turing and John McCarthy. Before moving
on to discussing classical planning a more general question that will be briefly dis-
cussed is what AI is. There are several definitions for AI however many of these
only encompass certain aspects of it. A general description of AI is a machine
or computer program that thinks and learns. AI divides itself into two schools
of thought, these approaches lead to an agent behaving humanistically or ratio-
nally. In most cases an AI agent is often a hybrid of the two. Classical planning
consists of thinking rationally and originates from logic, the purpose of which is
the creation of an agent which operates according to the information it receives.
This information is interprated according to the logical notation which has been
used to construct the agent, the agent then operates accordingly to reach a certain
goal if feasible or the best outcome that is possible. Humans do not need a plan
when operating, only when dealing with long and complex tasks do humans need
to explicitly plan. AI planning consists of the study and deliberation of this process.

The main objective of AI is the construction of intelligent entities which can de-
velop in an automated manner a set of actions from which one can proceed to
resolve a problem. This is done through the creation of a controller which can
determine which actions to take in order to find a solution. As the agent is the one
choosing the actions it must know the effects of the actions it takes and must be
able to observe if only partially the "world" in which it functions, an unobservable
process cannot be planned. A combination of three approaches can be taken in
the development of the controller, using machine learning techniques, logical pro-
gramming and the method which is the focus of this thesis which involves the use

5

1 – Introduction

of planning processes. For the AI agent to be able to create a plan the "world"
in which it operates must first be defined, a domain of the problem is created.
A problem instance is then defined outlining the specific parameters (number of
objects, state variables, etc...). Once the bot is aware of the specific problem it
is then possible to attempt to solve it by searching through the state space. The
set of actions available to it which are defined in the domain are used to reach
the particular state the agent would like to move in to. Heuristic algorithms such
as Dijkstra’s or A∗ algorithms are used to attempt to find a solution if one is present.

One of the faults with using planning processes involves scalability, the number
of state variables created for even simple problems is astronomical, an example of
this would be the Wumpus problem which even with a small grid and a limited
number of holes and monsters can produce a surprising number of state variables.

Through the use of Invariants (a property of the environment which is always sat-
isfied), the number of state variables can be reduced. The primary objective of
this thesis will focus on theory related to Mutually Exclusive Invariants and the
implementation of the algorithm TIS (Temporal Invariant Synthesis) which uses
a set of checks and controls to find them. Since working from a grounded level is
inefficient this algorithm will be implemented from a lifted level in which predicates
are only partially grounded (not grounded with constants) in order to carry out a
computationally efficient search. This will be discussed in further detail later on,
beforehand a brief explanation of how planning processes are defined is provided
along with a quick overview of the main programming language PDDL (Planning
Domain Definition Language) used to create them.

Planning processes were originally written in STRIPS (Stanford Institue Research
Problem Solver), a first order predicate language which defines a domain based
on a set of atoms with variables or objects of a specified type, these atoms define
the relationships between the objects. [2] A planning process can be defined as a
basic state model consisting of:

• A finite and discrete space S

• A known initial state s0 ∈ S

• A non-empty set SG ⊆ S of goal states

• Actions A(s) ⊆ A applicable in each state s ∈ S

• f(a, s) is the deterministic transition function where sÍ = f(a, s) is the
state that follows s after doing action a ∈ A(s)

• c(a, s) is a positive cost for doing action a in a state s

6

1.1 – Overview of Planning Processes and PDDL

A sequence of applicable actions A = (a0, a1, ..., an) is known as a plan, these actions
generate a state sequence S = (s0, s1, ..., sn+1) where sn+1 is a goal state.
The formal definition for a planning instance is also provided below:

Definition 1.1.1. Simple Planning Instance A simple planning instance is
defined as a pair

I = (D,P)

where D = (F,R,A, arity) is a tuple consisting of function symbols, relation sym-
bols, actions, and an arity mapping of all these symbols onto their respective arities.
P = (O, Init, G) is a tuple consisting of the objects in the domain, the initial state
specification and the goal state specification.

The Atm atoms of the planning instance are the expressions formed by apply-
ing the relation symbols in R onto the objects in O.

Init consists of a set of literals formed from the atoms in Atm as well as a set
of propositions asserting initial values for a subset of the primitive numeric ex-
pressions in the domain. These assertions each assign a single primitive numeric
expression of the domain. These together form an initial state (or set of initial
states) from which the particular problem instance must be resolved.

PDDL is standard language used to format planning processes. An action-centred
language, PDDL was created based on the STRIPS formulation of planning prob-
lems, it has a syntax similar to Lisp. It can make use of numerical fluents as well
as predicates when defining a domain and its problem instance. It is important to
note that PDDL and planning processes make a distinction between the domain of
a problem and its problem instance. This is important as it allows for testing plan-
ners with respect to other problem instances in order to measure their efficiency.
Planning processes did not take into account for time originally in PDDL and the
sets of actions created were instantaneous Ai only. [1] An instantaneous action can
be formulated with the following sets:

• Vα ⊆ V , Schema Variables

• Pre+
α , Positive Preconditions

• Pre−
α , Negative Preconditions

• Eff+
α , Add Effects

• Eff−
α , Delete Effects

These preconditions and effects are sets of formulas l of the form: (∀v1, ..., vk : q)
where:

7

1 – Introduction

• q is an atomic formula: q = r(vÍ
1, ..., v

Í
n) with r ∈ R and arity(r) = n ≥ k

• {v1, ..., vn} ⊆ {vÍ
1, ..., v

Í
n} ⊆ V are the quantified variables in l

• {vÍ
1, ..., v

Í
n} \ {v1, ..., vn} ⊆ Vα are the schemas variables in l

For notation we refer to the preconditions and effects of an action as Prea =
Pre+

a ∪ Pre−
a and Effa = Eff+

a ∪ Eff −
a . The action sets GAi and GAd refer to

the set of instantaneous and durative ground actions. It is possible to execute an
action a in state s if Pre+

a ⊆ s and Pre−
a ∩ s = ∅ where a is an action that has been

mapped using a grounding function to correpond with the problems objects.

With the introduction of PDDL2.1 further changes were made allowing for the
insertion of durative actions, time and plan metrics. [5]

1

2 (define (domain satellite)
3 (:requirements :strips :equality :typing :durative-actions)
4 (:types satellite direction instrument mode)
5 (:predicates
6 (on_board ?i - instrument ?s - satellite)
7 (supports ?i - instrument ?m - mode)
8 (pointing ?s - satellite ?d - direction)
9 (power_avail ?s - satellite)

10 (power_on ?i - instrument)
11 (calibrated ?i - instrument)
12 (have_image ?d - direction ?m - mode)
13 (calibration_target ?i - instrument ?d - direction))
14

Listing 1.1. Example of PDDL2.1 Domain Format.

Durative actions allowed for the introduction of problems which require sequential
planning, durative actions can be sequential or continuous.

Definition 1.1.2. [6] (Plans). A plan P , with durative actions for a planning
instance, I, consists of a finite collection of times actions which are pairs, each either
of the form (t, a), where t is a rational-valued time and a is a simple action name -
an action schema name together with the constants instantiating the arguments of
the schema, or of the form (t, a[tÍ]), where t is a rational-valued time, a is a durative
action name and tÍ is a non-negative rational-valued duration.

[1] The simple plan π induced by Π is the set of instantaneous timed actions such
that:

1. (t, a) ∈ π for each (t, a) ∈ Π where a is an action.

8

1.1 – Overview of Planning Processes and PDDL

2. (t, ast) ∈ π and (t+ tÍ, aend) ∈ π for all (t,Da[tÍ]) ∈ Π, where Da is a durative
action.

3. ((ti + ti+1)/2, ainv) ∈ π for each (t,Da[tÍ]) ∈ Π and for each i such that t ≤
ti < (t+ tÍ), where ti and ti+1 are in the time happening sequence of Π.

For each durative action (t,Da[tÍ]) ∈ Π, the simple plan π contains the instanta-
neous timed actions (t, ast), (t+ tÍ, aend) and ((ti + ti+1)/2, ainv). A plan Π and its
corresponding induced plan π is admissible if concurrent instantaneous actions are
non-interfering between each other and actions happening inside a durative action
Da = (ast, ainv, aend) are non interfering with the action ainv. More precisely if

• (t, a), (t, b) ∈ π imply that a and b are non-interfering.

• (t,Da[tÍ]) ∈ Π and (s, b) ∈ π for some time s ∈ (t, t + tÍ) imply that ainv and
b are non-interfering.

In the PDDL2.1 domain instantaneous and durative actions are found in a set
of actions Aa. The durative action can be broken down into a schema of three
instantaneous actions Dα = (αst, αinv, αend), the start action, the invariant ac-
tion and the end action. The schemas share a common set of variables with
VDα = Vαst = Vαinv = Vαend . Depending on the annotation of the durative ac-
tion the effects can either be immediate (in which case they are contained in the
effects within the start action αst) or delayed (in which case they can be found in
the αend) containing preconditions and effects. The invariant action αinv never has
any effects (Effαinv = ∅).

In order to obtain the sets of actions GAi and GAd we manipulate the action
schemas in the set GAa. The flattening operation allows for us to eliminate con-
ditional effects and existentially quantified formulae. Once we have obtained a
flattened schema α the formulas found in the conditions and effects are normalised.
After applying these two operations we are left with a set of formulas l of the form
∀v1, ..., vk : q, q being the atomic formula. The notation Pre+

α and Eff+
α indicate the

set of the positive formulas that are positive in α and Pre−
α and Eff−

α indicate the
set of the positive formulas that are negative in α.

αstr αinv αend

Pre+
αstr = Pre+str

Dα Pre+
αinv = Pre+inv

Dα Pre+
αend = Pre+end

Dα

Pre−
αstr = Pre−str

Dα Pre−
αinv = Pre−inv

Dα Pre−
αend = Pre−end

Dα

Eff+
αstr = Eff+str

Dα Eff+
αinv = ∅ Pre+

αend = Eff+end
Dα

Eff−
αstr = Eff−str

Dα Eff−
αinv = ∅ Eff−

αend = Eff−end
Dα

Table 1.1: Durative Action Schema in its Instantaneous Action Schemas form.

9

1 – Introduction

Another particular characteristic of durative actions are their overall conditions,
these conditions must be satisfied while the action is being carried out and some-
times must also be satisfied at the end of the action. This distinction must be
held into account when looking at the feasibility of carrying out actions. The
use of time in planning processes whether continuous or sequential leads to the
introduction of concurrent planning. In layman terms it is possible to carry out
actions simultaneuosly when feasible. This is of particular interest as when carrying
out Invariant Synthesis the templates (or invariant candidates) must be checked
with respect to the actions within the domain. These checks involve analysing the
properties of an action, in the case of durative actions in particular instances it is
necessary to carry out cross checking of action couples to see if they are "pairwise
relevant non-overlapping" or "relevant right isolated". These last checks are relevant
as not only do they allow us to search for invariants in which weaker conditions
apply, they also be useful in the debugging of actions written within the domain.

10

Chapter 2

Overview of Invariant
Synthesis

2.1 Invariants
[1] In the PDDL2.1 language, an invariant of a planning process is a property of
the world states such that when it is satisfied in the initial state Init, it is satisfied
in all the reachable states SΓ.

Definition 2.1.1. [1] (Mutual Exclusion Invariant). A set of ground atoms
Z ∈ S is a mutual exclusion invariant set when, if at most one element of Z is true
in the initial state, then at most one element of Z is true in any reachable state,
namely:

|Z ∩ Init| ≤ 1 ⇒ |Z ∩ S| ≤ 1, ∀s ∈ SΓ

A basic example of this can be shown looking at the Drivelog problem in which we
have the template:

{empty(v1), driving(d, v2)}

where d (driver) is the counted variable and v1 and v2 are fixed, this invariant states
that no more than one driver at any point can drive a particular truck.
As stated earlier in order to identify a given Invariant it is necessary to work using
a template applying checks through the template onto a set of action schemas. In
order to handle complexity quite often we use invariant templates to indicate and
analyse several invariant sets. Before we can go into further detail about these
templates it is necessary to introduce a few preliminary definitions which allow for
their creation.

Definition 2.1.2. [1] (Template) Any Template τ can be referred to as a pair
(C,FC) where:

11

2 – Overview of Invariant Synthesis

• C is a set of components with each component c being a tuple of the form
< r/k, p > where r is the relation symbol in R of arity k = arity(r), and
p ∈ 0, ..., k being the counted variable.

• FC is an admissible partition of FC .

When there is only one possible partition FC = {FC} this is known as a trivial
partition, we simply write that τ = (C).

Definition 2.1.3. [1] (Admissible Partition). Given a set of components C and
corresponding set of fixed variables FC , an admissible partition of FC is a partition
FC = G1, ..., Gs such that |Gj ∩ Fc| = 1 for each c ∈ C.

If two elements (c1, i) and (c2, j) of FC belong to the same set of the partition FC ,
we use the notation (c1, i) ∼ (c2, j).

An example of a trivial partition can be found in the FloorTile problem, if we look
at the Template:

τ = {(c1,1), (c2, 0), (c3, 0)}

where c1 = < RobotAt/2,0 >, c2 = < Painted/2, 1 >, c3 = < Clear/1,1 >. The
counted variable for c1 is r (robot), for c2 is c (colour) and for c3 there is no fixed
counted variable.

It is important to note that by defintion any admissible partition must be done
such that every component contains the same number of fixed variables. If we look
at the following components:

c1 =< r/3, 0 > c2 =< l/3, 1 > c3 =< q/2, 2 >

with the corresponding variables in the relations r(x, y, z), l(a, b, c), q(u, v) then
we find that the following partitions can be made:

{{y, a, u}, {z, c, v}}, {{y, c, u}, {z, a, v}}, {{y, a, v}, {z, c, u}}, {{y, c, v}, {z, a, u}}

In order to carry out any checks between actions and any template it is necessary
to introduce the concept of Template Instance Weight.

Definition 2.1.4. (Template Instance Weight). Let γ be an instance of template
τ with instantiation γ(τ). Then the weight w(γ, s) of γ in state s is the number of
ground atoms of its instantation true in s:

w(γ, s) = |γ(τ) ∩ s|

12

2.1 – Invariants

With the introduction of Template Instance Weight it is possible to discuss the
concept of safety (strong or otherwise). A candidate Template τ is an invariant if
it meets certain necessary and sufficient conditions which can be checked using this
weight, an example of a necessary condition being that all instantaneous actions
Ai be strongly safe.

Definition 2.1.5. A set of Actions A is said to be strongly γ-safe if, for each s ∈ SA
where w(γ, s) ≤ 1, the successor state sÍ = ξ(s, A) also satisfies w(γ, sÍ) ≤ 1.

Definition 2.1.6. [1] For a template τ , a set of actions A ⊆ GA is strongly safe if
it is strongly γ-safe for every instance γ.

As a consequence of the previous definition we find the following:

Corollary 2.1.1. [1] For a template τ , τ is an invariant if for each a ∈ GA, a is
strongly safe.

Before we proceed with the theory related to the classification of actions since
this thesis mainly looks at checking for mutually exclusive invariants on a lifted
level it important to discuss the creation of the classes via the matching operation.
As stated before working on a grounded level is not practical when searching for
invariants as the complexity of our problem would be astronomical as shown in
the beginning due to the massive state space created. To avoid this we analyse our
state space on a lifted level. Given an action schema, if one istantiation a∗ = gr∗(α)
satisfies P then all istantiations a = gr(α) satisfy P and the property P of ground
actions is said to be liftable. By carrying out matching we can couple an action
schema to a template allowing us to search if a ground formula is present in γ(τ).

Definition 2.1.7. [1] (Matching). Consider a template τ = (C,FC) and an action
schema α ∈ A. A formula l that appears in α is said to match τ via the template’s
component c =< r/k, p >∈ C if:

i. Rel[l] = < r/k >; and

ii. if l is universally quantified VarQ[l]={p}

Given two formula’s l and lÍ in α, we say that they are τ -coupled (and we write
l ∼τ lÍ) if:

1. l and lÍ individually match τ via the components c and cÍ; and

2. if (c, i) ∼FC , Var[l, i]=Var[lÍ, j]

In other words two components within a template τ are matching if their fixed
variables are the same and are allocated to the same τ . - class L.

Proposition 2.1.1. For a template τ = (C,FC) and an action schema α,∼τ is an
equivalence relation.

13

2 – Overview of Invariant Synthesis

Definition 2.1.8. [1] (τ-class). For a template τ = (C,FC) and an action schema
α, an equivalence class of literals with respect to ∼ τ is called a τ - class.

Remark 2.1.1. [1] Given a formula l in the action schema α that matches the
template τ via component c =< r/k, p >. The potential structures of l are shown
below:

p = k, l = r(v0, ..., vk−1), ∀i vi ∈ Vα

p < k, l = r(v0, ..., vk−1), ∀i vi ∈ Vα

p < k, l = (∀vp : r(v0, ..., vk−1)), ∀i /= p vi ∈ Vα

Given two formulas l1 and l2 in the action schema α that match the template τ
via the components c1 =< r1/k1, p1 > and c2 =< r2/k2, p2 >. The τ - coupling
condition l1 ∼τ l2 is equivalent to having any pair of fixed vairables meet the
following condition:

(c1, j) ∼FC (c2, h)⇒ v1
j = v2

h

Definition 2.1.9. [1] (Pure action schemas). Considering a template τ , an
action schema α and a τ -class L of formulas in α, we define αL to be the action
schema where we only consider formulas belonging to L. More precisely αL is the
action schema such that

Pre±
αL

= Pre±
α ∩ L Eff±

αL
= Eff±

α ∩ L

αL is referred to as an action schema.

One more concept we need to introduce before analysing and classifying pure action
schemas αL on a lifted level is the concept of coverage. This is only used in the case
where we are dealing with relevant weightless actions however quite often this is
found to be the case. When analysing coverage we must first fix an action schema
α and a τ - class L of its formulas. We are introducing the concept of weight at
a lifted level. This is at a level of formulas in L that lets us distinguish between
simple and universally quantified formulas. In particular if l ∈ L, we define wl = 1
if l is simple, and wl = w if l is universally quantified where w = |O|. For a subset
A ⊆ L, we define w(A) = q

l∈Awl. When all formulas in L are simple w(·) is just
simple cardinality. Moreover if c is a component of τ , then wc is equal to one if c
does not have a counted variable and w in the instance that c does have a counted
variable.

Definition 2.1.10. [1] (Coverage) Consider a component c ∈ τ . We let Lc be
a subset of formulas in L that match τ through the component c. A subset of
formulas M ⊆ L is said to cover the component c if w(M ∩Lc) = wc. M is said to
cover τ if M covers every component c ∈ τ .

14

2.1 – Invariants

Remark 2.1.2. [1] Given a component c ∈ τ , all the possible ground atoms gen-
erated by c are in gr(M) if and only if M covers c. In particular, γ(τ) = gr(M) if
and only if M covers τ .

In the majority of cases components do have counted variables and since most
actions more often than not do not this leads to a lack of coverage but there
will be more detail on this particular case later. Returning to the theory related
safety looking at the previous corollary this is found to be a sufficient condition
such that a template τ is an Invariant. Instantaneous actions must satisfy this
condition such that an invariant exists however as we shall see later on a template
can be an invariant even if not all actions are strongly safe. Before we move on to
discuss other forms of safety we should first look at the characterisation of actions
with respect to strong safety. Following the structure of preconditions and effects,
instantaneous actions can be classified into four categories. After categorising them
we will then show how each class is linked to strong safety. It is important to note
that all theory related to safety and the checks within TIS shall be explained from
a lifted level as this is how the checks were implemented. The following definitions
are formally analogous to the definitions related to the classification of istantiated
actions on a grounded level, preconditions and effects of aγ are simply replaced
with the respective ones found in αL.

Definition 2.1.11. [1] (Classification of pure action schemas). A pure action
schema αL is:

• unreachable for τ if w(Pre+
αL

) ≥ 2

• heavy for τ if w(Pre+
αL

) ≤ 1 and w(Eff+
αL

) ≥ 2

• irrelevant for τ if w(Pre+
αL

) ≤ 1 and w(Eff+
αL

) = 0

• relevant for τ if w(Pre+
αL

) ≤ 1 and w(Eff+
αL

) = 1

Definition 2.1.12. [1] (Classification of relevant action schemas). The pure rel-
evant action schema αL is weighty when it has a single relevant precondition:
w(Pre+

αL
) = 1. A is weightless if w(Pre+

αL
) = 0.

A weighty action schemas αL is either:

• balanced for τ if Pre+
αL
⊆ Eff +

αL
∪ Eff −

αL

• unbalanced for τ if Pre+
αL
∩ (Eff +

αL
∪ Eff −

αL
)

A weightless action αL is either:

• bounded for τ if L covers τ

15

2 – Overview of Invariant Synthesis

• unbounded for τ if L does not cover τ

Following on from before in order to do be able to work on a lifted it is important
to note the following corollary:

Corollary 2.1.2. [1] Strong safety is a liftable property. Moreover an action
schema α is strongly safe if and only if, for every τ - class of formulas L of α,
αL is unreachable, irrelevant, balanced or bounded.

Two examples will now be introduced to help clarify the theory provided in the
previous section, the first example illustrates the concept of strong safety in action
sequences (on a grounded level). Strong safety in an action sequence does not
mean that all the actions within that sequence are strongly safe. Usually in order
to have any form of safety only the action ast∗L need be (along with a few other
conditions which may vary). The second example instead will look at matching
and the classification of actions on a lifted level.

Example 2.1.1. (Strong Safety in Action Sequences) Consider a template τ ob-
tained from the domain CityCar, in this particular case for simplicity we will look
at this from a grounded level. Assume that we have an instance γ(AtGarage(g, xy−
final, Starting(m, g), Clear(xy−final), AtCarJun(m,xy−final), Arrived(m,xy−
final)) which corresponds with the action sequence A = (carStart, carArrived)
where carStart and carArrived are actions with the following composition:

Pre+
carStart = {AtGarage(g, xy − final), Starting(m, g), Clear(xy − final)},

Eff+
carStart = {AtCarJun(m,xy − final)} ,Eff −

carStart = {Clear(xy − final), Starting(m, g)}

and
Pre+

carArrived = {AtCarJun(m,xy − final)},

Eff +
carArrived = {Clear(xy − final), Arrived(m,xy − final)}

Note how carStart is γ - unreachable and therefore is not strongly γ - safe while
carArrived is γ - heavy and not strongly γ - safe. The action sequence overall is γ
- unreachable and as a result strongly γ - safe. It is important to understand these
concepts when dealing with action sequences as when searching for safety as we
shall see later on by changing the action sequence (by adding irrelevant actions) it
is possible to render an action sequence unsafe.

Example 2.1.2. (Matching with L - classes). Looking at the floortile problem
when looking at the template τft with the following (and only) admissible partition
Fc = {(c1, 1), (c2, 0), (c3, 0)} with the components having these respective relations:

c1 =< robotAt/2, 0 >, c2 =< painted/2, 1 >, c3 =< clear/1, 1 >

16

2.1 – Invariants

Given the following when analysing the durative action Up we obtain the L - classes:
L0 = {robotAt(r, x), clear(x)} and L1 = {robotAt(r, y), clear(y)}. Since the compo-
nent painted is not found amongst the action schema preconditions and effects it
is excluded from the classes. The original action schema we have from the action is:

α UpStr UpInv UpEnd

Pre+
α {RobotAt(r, x), Clear(y)} {up(y, x)} ∅

Pre−
α ∅ ∅ ∅

Eff+
α ∅ ∅ {RobotAt(r, y), Clear(x)}

Eff−
α {RobotAt(r, x), Clear(y)} ∅ ∅

Table 2.1: Durative Action Schema Up seen as a triple of instantaneous action
schemas.

After obtaining the classes and carrying out a filtering of the action with respect
to each L - class we obtain the following action schemas:

α UpSt
L0 UpInv

L0 UpEnd
L0

Pre+
α {RobotAt(r, x)} ∅ ∅

Pre−
α ∅ ∅ ∅

Eff+
α ∅ ∅ {Clear(x)}

Eff−
α {RobotAt(r, x)} ∅ ∅

α UpSt
L1 UpInv

L1 UpEnd
L1

Pre+
α {Clear(y)} ∅ ∅

Pre−
α ∅ ∅ ∅

Eff+
α ∅ ∅ {RobotAt(r, y)}

Eff−
α {Clear(y)} ∅ ∅

Looking at the two starting pure action schemas UpstL0 and UpstL1 it is quite clear that
they are both irrelevant. When analysing UpendL0 and UpendL1 instead both are found
to be unbounded and are therefore not strongly safe with respect to τ however that
does not mean they could not be weakly safe.

Going into further detail about the bounded case it can be shown that a bounded
action set is even safer than the balanced case. This can illustrated by taking
into account all the predicates present within the bounded actions. Given the
relevant predicate p, such that Eff+

Aγ = {p}, since A is bounded the rest of the

17

2 – Overview of Invariant Synthesis

istantiation γ(τ) \ {p} is accessed negatively such that γ(τ) = PreAγ ∪EffAγ . Since
A is weightless by definition |Pre+

Aγ | = 0 and given Eff+
Aγ = {p} we find that

γ(τ)\{p} = Pre−
Aγ ∪Eff

−
Aγ as a result this shows that the weight found after execut-

ing a bounded set will be exactly one since all the possible predicates other than p
are contained within the negative parts of the action.

The focus of this thesis will focus mainly on analysing all forms of safety in durative
actions. In order to do this it is necessary to understand what other forms of safety
exist and lift the last remnants of notation that are necessary to search for safety. A
less strong form of safety is individual safety, the formal definition is the following:

Definition 2.1.13. [1] Individually Safe Actions: A sequence of action sets A =
(A1, A2, ..., An) is individually γ-safe if for every sequence of states (s0, ..., sn) ∈ SA
we have that

w(γ, s0) ≤ 1 =⇒ w(γ, si) ≤ 1 ∀i = 1, ..., n

The following proposition shows that it is possible for templates to be invariants
when simple safety exists despite this being a relatively weak property.

Proposition 2.1.2. [1] Given a template τ , assuming that for every executable
simple plan π its happening sequence Aπ is individually γ - safe with respect to
every instance γ. Then τ is said to be an invariant.

The consequences due to the subtle differences between the case of individual safety
and strong safety are difficult to understand however using an example we can
understand why individual safety is a weak property and not robust enough to
prove the existence of invariants. Subsequences of individually safe sequences may
not be individually safe, this is shown in the following example.

Example 2.1.3. [1] Consider an action set A = (a1, a2) and a set of states SA =
{(s0, s1, s2)|q /∈ s0 s1 = s0 ∪ qÍ, s2 = s1} which are compatible with A. Since a2 by
hypothesis is applicable in s1 and s1 = s0 ∪ qÍ therefore q /∈ s0 as a result. A is
individually γ - safe since w(γ, si) ≤ 1 for every state si ∈ SA. Now looking at a
subsequence of A we find that A1

1 = (a1) is not individually γ - safe as a result of
a1 being unbounded and therefore not strongly γ - safe.
We will see how by adding a γ - irrelevant action it is possible to cause a failure in
γ - safety of the sequence A. Now consider an action set Ã = (a1, b, a2) with a set of
states compatible with Ã : SÃ = {(s0, s1, s2, s3)|s1 = s0∪{qÍ}, s2 = s1\{q}, s3 = s2}.
Notice how q can be in s0 in this case as the action b guarantees the applicability
of a2, if q ∈ s0 as a1 adds qÍ to s0 and w(γ, s1) = 2 meaning the new sequence is
not individually γ - safe.

The difference is subtle and yet crucial, in the case of individual safety, only for a
particular predefined sequence (of states) does safety apply where as in the case of

18

2.1 – Invariants

strong safety no matter which order of actions occurs safety will always be present
no matter the set of states. Individual γ-safety is a weak property as even if a
sequence of actions is individually safe its subsequences may not be. Therefore
alone it is not sufficient to prove the invariance of a template.

Definition 2.1.14. [1] Executable and Reachable Actions. The sequence
A = (A1, A2, ..., An) is called:

• executable if SA /= ∅

• γ-(un)reachable if SA(γ) /= ∅ (SA(γ) = ∅)

The previous definition is useful when a template is istantiated and therefore only
good for a grounded level. The following proposition is of far more significance as
it is used in the algorithm when analysing the executability of durative actions Dα.
[1] Looking at the postconditions Γ+ and Γ− of an auxillary action α∗, where:

Γ+
α = (Pre+

α \ Eff −
α) ∪ Eff +

α , Γ−
α = (Pre−

α \ Eff +
α) ∪ Eff −

α

and the auxiliary action Dα = (αst∗ , αend∗) is a sequence of action schemas in which
the action αinv has been incorporated into the action schemas αst and αend in a
manner such that we obtain the following:

Eff±
αst∗

= Eff±
αst , Pre±

αst∗
= Pre±

αst ∪ (Pre±
αinv \ Eff

±
αst)

Eff±
αend∗

= Eff±
αend , Pre±

αend∗
= Pre±

αend ∪ Pre±
αinv

Proposition 2.1.3. [1] Executability of auxillary durative actions is a liftable
property. Precisely, Dα∗ is executable if and only if:

Γ+
αst∗
∩ Pre−

αend
∗

= Γ−
αst∗
∩ Pre+

αend
∗

= ∅

where

Just as it is done on a grounded level on a lifted level proving that an action is
executable is a sufficient condition to prove that an action Dα∗L is reachable.

Definition 2.1.15. Reachable Action Schemas. Dα∗L is said to be reachable
if it is executable and

w(Pre+
αst∗
∪ (Pre+

αend∗
\ Eff+

αst∗
) ≤ 1

Definition 2.1.16. [1] Safe Actions. A sequence of action setsA = (A1, A2, ..., An)
is γ - safe if it is executable and the subsequences of Ak1 are individually γ - safe
for every k = 1, ..., n.

19

2 – Overview of Invariant Synthesis

Remark 2.1.3. [1] Note that if A = (A1, A2, ..., An) is γ - safe, the first action set
A1 must necessarily be strongly γ - safe. In the other direction, note that if A is
executable and every Aj for j = 1, ..., n is strongly γ - safe then A is γ - safe.

This leads to the following definition in the classification of possible types of safety
in relation to action sequences, there are only two types, strongly and weakly safe
actions.

Definition 2.1.17. [1] Strongly and Weakly Safe actions. A sequence of
action sets A = (A1, A2, ..., An) is:

• Strongly γ - safe if it is executable and every Aj for j = 1, ..., n is strongly γ -
safe.

• Weakly γ - safe if it is γ - safe but not strongly γ - safe.

The following theorem ensures that the concept of safe sequences is robust to the
insertion of irrelevant actions.

Theorem 2.1.1. [1] Consider a γ - safe sequence A = (A1, A2) and γ - irrelevant
action sets B1, B2, ..., Bn. Then the sequence Ã = (A1, B1, B2, ..., Bn, A2) is either
non-executable or γ-safe.

Definition 2.1.18. [1] Safe Durative Action Schemas. A durative actionDα∗L
is is said to be weakly safe of type(x) where x ∈ {a, b, c, d} if the following conditions
are satisfied:

1. Dα∗L is reachable

2. αst∗L is strongly safe

3. αend∗L is unbounded

4. Dα∗L satisfies one of the following conditions:

(a) αst∗L irrelevant, w(Pre+
αst∗L

) = 1,Pre+
αst∗L
⊆ Eff −

αst∗L

(b) αst∗L irrelevant, w(Pre+
αst∗L

) = 1,Pre+
αst∗L

* Eff −
αst∗L

,Pre+
αst∗L
⊆ EffαendL

(c) αst∗L irrelevant, w(Pre+
αst∗L

) = 0,Pre+
αst∗L
∪ Eff −

αst∗L
∪ EffαendL

covers τ

(d) αst∗L relevant, Eff+
αstL
⊆ EffαendL

Elaborating on the rational behind the previous definition, looking at condition (2)
it is quite logical why the only case in which weak safety can be found is when αend∗L
is unbounded, in the event that:

• αend∗L were irrelevant or bounded then due to αst∗L also being strongly safe the
durative action Dα∗ would be strongly safe.

20

2.1 – Invariants

• αend∗L were heavy or unbalanced then Dα∗ could not be safe. This proposition

Corollary 2.1.3. [1] Safety for durative auxillary actions is a liftable property.
Da∗ = gr(Dα∗L) is safe if and only if:

• Dα∗ is executable

• For every τ - class L of formulas in Dα, one of the following conditions hold:

(a) Dα∗L is strongly safe
(b) αst∗L is strongly safe and Dα∗L is unreachable
(c) Dα∗L is weakly safe of type(x) where x ∈ {a, b, c, d}

Now that we have explained all of the necessary concepts related to safety it is
finally possible to show a concrete sufficient condition such that a template τ could
be an invariant. The following corollary was the basis for the majority of the checks
that I implemented within the TIS algorithm, all the Invariants that were found.

Corollary 2.1.4. [1] Given a template τ , if the set of instantaneous action schemas
Ai, and the set of Ad durative action schemas satisfy the following properties:

1. For every (Dα,L) ∈ AdC(wk, τ), then Dα∗L is weakly safe of type(a)

2. For every (α,L) ∈ AC(τ) \ (Ast)C(wk, τ) ∪ AendC(wk, τ)) then αL is either
irrelevant or balanced.

Then τ is an invariant.

21

22

Chapter 3

Implementation

In order to implement the TIS algorithm it was necessary to make use of Object Ori-
ented Programming to create the objects Template, Component and Predicate. A
component as stated in the theory is an object containing a predicate and a counted
variable, the predicate objects were obtained from the parser which translated the
domain file from its format in PDDL into a readable format that Python would
be able to read. Once a component object is created it is then possible to start to
create Templates. Only templates containing more than one argument were con-
sidered for the initial templates (which contained only a single component since the
synthesizer takes a bottom up approach when searching for templates). This is due
to the fact that a single component would be able to have an admissible partition
only in the instance that it has one fixed variable and one counted variable. It would
be possible to create an admissible partition for a single component template with
one argument however this would be equivalent to grounding the template which
bears little relevance when analysing templates on a lifted level. At this point a
set of candidate templates was created such that I could start testing for possible
invariants, each candidate template was cycled through the method checkBalance
which received in input the template itself as well as the task, a translated format
of the domain obtained from the parser, this was done in order to have the relevant
actions available to test against the template.

The first check implemented was to see if there were any actions to test against the
template, in the event that were none then this resulted in a Trivial Template being
found. The code was written in a manner such that in the instance that this occured
the function would exit and return None resulting in the template being placed in
the list of Trivial Templates. In the event that relevant actions were found the code
would carry on with the next step of entering into an internal method checkAction-
Balance which would carry out matching with respect to every action in order to
obtain the Pure Action Schemas and then proceed with using the majority of the
checks within the TIS algorithm to check every action schema. The creation of

23

3 – Implementation

the pure action schemas was broken down into three phases. The first consisted of
obtaining the relevant components within the template τ that matched the action
predicates. Filtering through the action preconditions and effects only components
in the template that matched predicates within action schemas were kept, predi-
cates with the same name but different argument variables were different entities.
A list of lists is created as a result with each list containg the predicate along with
there respective arguments and their fixed argument in the last index. This list of
lists was used to create the L-classes, running through the fixed variables list which
was created from the list of lists, L-classes were then formed by grouping predicates
which had the same fixed argument variable together. Orgininally the code was de-
signed to create L - classes for each action segment however after looking through
the theory again it was changed to create classes based on the predicates found
within the durative action instead of splitting the action up. In the last step which
followed on from the creation of the L-classes it was necessary to run through the
action schema again and proceed with creating the pure action schema with respect
to every L-class. The pure action schemas obtained would contain only predicates
that matched up with predicates found within that particular L-class. This results
in the creation of three dictionaries for the pure action schemas of every action, the
three dictionaries represent a segment of the durative action with each dictionary
containing the pure action schema of every L-class for that particular segment of
the durative action. After some deliberation I decided to proceed with the creation
of a further two dictionaries for the auxillary action schemas as well. These schemas
had the same structure as the pure action schemas with the main difference be-
ing that the preconditions for each segment had been modified as seen in the theory.

In order to maintain some structure to my code and retain the information created
from carrying out matching I decided to create a list of tuples with each tuple con-
taining the action along with its pure and auxillary pure action schemas. Several
for loops for the actions were carried out when running through the TIS algorithm,
the main one was fundamental as it was necessary to carry out the instantaneous
checks for each pure action schema. The results obtained for every schema of every
action were saved within a dataframe to keep hold of the information for the checks
that would follow as well as to allow for the creation and export of a csv file for the
template being analysed. The results of one particular template can be seen below:

In the event that one of the schemas was found to be Heavy or Unbalanced the
function would return a False boolean value and exit resulting in the template be-
ing scrapped in the false invariant list. This list can later be looked at to search for
possible candidates by modifying them manually as part of the guess, check and
repair approach which is quite common when carrying out Invariant Synthesis. In
the instance that no heavy, unbalanced or unbounded action schemas were found

24

3 – Implementation

Action Class Class_Id Result Section
0 left [’robot-at’, [’?r’, ’?x’], 0] L_0 Irrelevant Start
1 left [’robot-at’, [’?r’, ’?y’], 0] L_0 Irrelevant Start
0 left [’robot-at’, [’?r’, ’?x’], 0] L_0 Unbounded End
1 left [’robot-at’, [’?r’, ’?y’], 0] L_0 Unbounded End
0 up [’robot-at’, [’?r’, ’?x’], 0] L_0 Irrelevant Start
1 up [’robot-at’, [’?r’, ’?y’], 0] L_0 Irrelevant Start
0 up [’robot-at’, [’?r’, ’?x’], 0] L_0 Unbounded End
1 up [’robot-at’, [’?r’, ’?y’], 0] L_0 Unbounded End
0 right [’robot-at’, [’?r’, ’?x’], 0] L_0 Irrelevant Start
1 right [’robot-at’, [’?r’, ’?y’], 0] L_0 Irrelevant Start
0 right [’robot-at’, [’?r’, ’?x’], 0] L_0 Unbounded End
1 right [’robot-at’, [’?r’, ’?y’], 0] L_0 Unbounded End
0 down [’robot-at’, [’?r’, ’?x’], 0] L_0 Irrelevant Start
1 down [’robot-at’, [’?r’, ’?y’], 0] L_0 Irrelevant Start
0 down [’robot-at’, [’?r’, ’?x’], 0] L_0 Unbounded End
1 down [’robot-at’, [’?r’, ’?y’], 0] L_0 Unbounded End

then strong safety is present within all the action schemas and the function returns
True indicating that it is an invariant. This is a vary strong property and rarely
occured when looking at different domains. In the event that an unbounded action
schema is found my code would skip the part related to checking if the action in
question is a durative or instantaneous action under the presumption that my code
is to be used solely for durative action schemas. The code therefore proceeds with
the step of checking for executability for the actions containing unbounded schema.
Since the unbounded schemas cannot be strongly safe the only other possible form
of safety we can search for is weak safety. Therefore it is necessary to check for
reachability and as a consequence search for executabilty within the action schemas
that are unbounded. In the event that all the unbounded action schemas are reach-
able it is also necessary to check for strong safety with respect to the group of
auxillary start actions GAst∗L.

In the final few checks if all the unbounded actions are found to be executable
and all the auxillary start actions are found to be strongly safe then we search
for type(a) simple safety within all the durative actions that contain an unbounded
schema. If all these respective durative action are found to be simply safe of type(a)
and if in the last checks no action schemas are found to be unreachable or bounded
then we have found an invariant.

25

26

Chapter 4

Experiments

In the domains that were tested all the action schemas were found to either be
irrelevant or unbounded. As a result the majority of checks were carried out with
respect to each action, what was of interest was seeing that most of the invari-
ants found were as a result of Corollary 2.1.4. I tested my code on three domains
in particular, the satellite domain, the drivelog domain and the floortile domain.
Most of the checks were carried out on single component templates, in the event
that a template was found not to be an invariant these templates could then be
adjusted. If a template is found to have a heavy or unbalanced action schema
then nothing can be done to rectify the template not being an invariant. If how-
ever a template was found to not be an invariant due to one of its action schemas
being unbounded and not meeting the sufficient criteria to be an invariant then
something can be done. Based on the particular unbounded action schemas other
components which share common argument variables with the templates compo-
nents within the particular unbounded action schemas can be added. One should
analyse carefully the components that could be added, if a component is found
to not add any further value to the search then it should not be considered. For
example when looking at the floortile problem several trivial invariants were found
due to their components irrelevance, the predicates up, down, left, right when anal-
ysed as singular component templates were all found to be trivial invariants as
they were all contained within the overall conditions and therefore all the actions
against which the action schemas would be tested would lead to an irrelevant clas-
sification. In order to speed up this process a get_threats method was used, this
would retrieve the set of actions with respect to each predicate of each component
that could potentially be a "threat" to the invariance of the template. If no actions
were found (due to the predicates within the template only being within the overall
conditions of each action) then that template is considered trivial. Returning to
the adjusting of non invariant templates any predicates that share a common argu-
ment variable with the template components and are deemed relevant (are found

27

4 – Experiments

not to be trivial) are possible candidates to adjust the template, these branch can-
didates can then be added to the template creating a new template object and
then be ran through the checks again to see if a sufficient condition is met. An
example of a template which was found following this procedure is the template
τ with the admissible partition {(robotAt(r, x), 0), (clear(x), 1)}. After discovering
that (robotAt(r,x), 0) as a template is not an invariant we search for possible com-
ponents to add, we find the predicate (clear, 1) and after reapplying the checks
we find that it is an invariant. Following in another direction we also find the
template {(robotAt(r, x), 0), (painted, 1), (clear(y), 1)} this also is an example of a
more complex invariant.

28

Chapter 5

Related Work and
Conclusion

The majority of the checks within the algorithm were implemented, it was neces-
sary to carry out non - safe mutex in order to be able to use these checks when
searching for invariants. In the event that the algorithm arrived at one of two
points in which a check is not implemented and in the instance that the previous
checks did not result in proving that the template is not an invariant then it is
assumed that we are dealing with an invariant. This is a common procedure when
constructing invariant synthesisers. The last two checks deal with finding invariants
based on the corollaries which find that the durative actions Ad are either all relevat
right isolated or are all pairwise relevant non overlapping. This theory has been
omitted as these checks were not implemented. Another part of the code which
could be added to fully complete the implementation of the algorithm is the use
of the guess, check, repair approach. Currently the code only checks for singular
component templates, other templates can be checked for however. In order to do
this one must create the template within the find_invariants method within the
file new_invariant_finder.py.
The finding of these invariants is useful as it allows for the invariant sets of boolean
state variables found in the PDDL2.1 domains to be tranformed to multi-valued
state variables in another language which allows for this.
Another type of invariant which could be searched for using the TIS algorithm are
metric invariants however further research has yet been done in this field of study.
In the end the code successfully found several invariants within temporal planning
domains, all of these invariants were found as a result of corollary 2.1.4.

29

30

Appendix A

Invariant Synthesiser Code

This appendix contains the code I wrote in order to implement the TIS algorithm,
some of the intermediary code has been omitted however all the objects and prin-
ciple methods used can be found here.

1 import pddl
2 import invariants
3 from template import Template
4 from component import Component
5

6

7 def generate_components (predicate):
8 predicate_component_list = []
9

10 for idx in range(len(predicate . arguments)+1):
11 predicate_component_list . append (Component (predicate , idx))
12

13 return predicate_component_list
14

15

16 def generate_initial_templates (components):
17 initial_candidates = []
18

19 for component in components :
20

21 if len(component . predicate . arguments)!= component .
counted_variable and len(component . predicate . arguments)!=1:

22 list_component = component
23 initial_candidates . append (Template (list_component))
24

25 return initial_candidates
26

27 def find_invariants (task):
28

29 components = set ()
30 for predicate in task. predicates :

31

A – Invariant Synthesiser Code

31 components . update (generate_components (predicate))
32

33 components = sorted (frozenset (components))
34

35 component1 =None
36 component2 =None
37 component3 =None
38

39 for component in components :
40

41 if(component . predicate .name ==’robot -at’ and component .
counted_variable ==0):

42 component1 = component
43

44 if(component . predicate .name ==’painted ’ and component .
counted_variable ==1):

45 component2 = component
46

47 if(component . predicate .name ==’clear ’ and component .
counted_variable ==1):

48 component3 = component
49

50

51 example_template = [component1 , component2 , component3]
52

53 print " generating invariant candidates "
54 candidates = generate_initial_templates (components)
55

56 if not all(x is None for x in example_template):
57 t = Template (example_template)
58 t. __addFixedArgument__ (component1 , 1)
59 t. __addFixedArgument__ (component2 , 0)
60 t. __addFixedArgument__ (component3 , 0)
61 candidates . insert (0,t)
62

63 seen_candidates = set(candidates)
64

65 def enqueue_func (invariant):
66 if invariant not in seen_candidates :
67 candidates . append (invariant)
68 #List for invariant candidates to be seen
69

70 #List of already examined invariant candidates
71 seen_candidates .add(invariant)
72

73 balance_checker = Balance_Checker (task)
74

75 list_trivial_templates = []
76 list_templates_true = []
77 list_not_template = []

32

A – Invariant Synthesiser Code

78

79 for possible_template in candidates :
80 [component . predicate .name for component in possible_template .

components]
81 tuple_template_action_results , number = possible_template .

check_balance (balance_checker , task , enqueue_func)
82

83 if tuple_template_action_results == None:
84 list_trivial_templates . append (possible_template)
85

86 elif tuple_template_action_results :
87 list_templates_true . append ([possible_template , number])
88

89 else:
90 list_not_template . append ([possible_template])
91

92 print(tuple_template_action_results)
93

94 return list_templates_true , list_trivial_templates

Listing A.1. main.py

1

2 class Component (object):
3

4 def __init__ (self , predicate , counted_variable):
5 self. predicate = predicate
6 self. counted_variable = counted_variable
7

8 def __getNumberFixedVariables__ (self):
9

10 check = True
11 if len(self. predicate . arguments)== self. counted_variable :
12 check = False
13

14 return (len(self. predicate . arguments) - check)
15

16 def __getNumberArguments__ (self):
17 return len(self. predicate . arguments)
18

19 def __getPredicate__ (self):
20 return self. predicate
21

22 def __getPredicateName__ (self):
23 return self. predicate .name

Listing A.2. component.py

1

2 from component import Component
3 import collections as col

33

A – Invariant Synthesiser Code

4 import pddl
5 import pandas as pd
6 import csv
7

8 class Template (object):
9

10 def __init__ (self , components):
11 self. fixed_variables = []
12

13

14 if isinstance (components , Component):
15 #This doesn ’t work exactly as the each predicate must

have the same number of fixed variables as the others .
16

17 #if len(components . predicate . arguments)!= components .
counted_variable :

18 if len(components . predicate . arguments) <=2:
19

20 self. components = [components]
21

22 for i in range(components . counted_variable):
23 self. fixed_variables . append ((components , i)

)
24

25 for i in range(components . counted_variable +1, len(
components . predicate . arguments)):

26 self. fixed_variables . append ((components , i))
27

28 def __addFixedArgument__ (self , component , fixedArgument):
29 if(len(self. fixed_variables)<self.

__getNumberFixedArguments__ ()*len(self. components)):
30 if(isinstance (component , Component) and isinstance (

fixedArgument , int)):
31 if(component in self. components):
32 if(fixedArgument <=(component .

__getNumberArguments__ () -1)):
33 if((component , fixedArgument) not in self.

fixed_variables):
34 self. fixed_variables . append ((component ,

fixedArgument))
35 else:
36 raise ValueError (’WARNING : Fixed argument

value is bigger than the number of arguments .’)
37 else:
38 raise ValueError (’WARNING : object inserted was

NOT a Component !!’)

Listing A.3. template.py (Template)

1 def obtain_pure_action_schemas (task , action):
2

34

A – Invariant Synthesiser Code

3

4 def matching_components (task , predicate_set):
5

6 predicates = predicate_set [:]
7 # predicates2 = predicate_set [:]
8 l_class_list = []
9

10 fixed_argument_list = []
11 for predicate in predicates :
12 fixed_argument_list . append (predicate [1][

predicate [2]])
13

14 unique_fixed_argument_list = []
15

16 for argument in fixed_argument_list :
17 if argument not in

unique_fixed_argument_list :
18 unique_fixed_argument_list . append (

argument)
19

20 for argument in unique_fixed_argument_list :
21 l_class = [predicate for predicate in

predicates if predicate [1][predicate [2]]== argument]
22 l_class_list . append (l_class)
23

24 sifted_l_class_list = [l_class for l_class in
l_class_list if l_class]

25 return sifted_l_class_list
26

27

28 relevant_predicates_start = []
29 relevant_predicates_mid = []
30 relevant_predicates_end = []
31

32 for component in self. fixed_variables :
33

34 for effect in action . get_add_start_peffects ():
35 if(effect . predicate == component [0]. predicate .

name):
36 if([effect .predicate , [arg.name for arg in

effect .args], component [1]] not in relevant_predicates_start):
37 relevant_predicates_start . append ([

effect .predicate , [arg.name for arg in effect .args], component
[1]])

38

39 for condition in action . get_pos_start_conds ():
40 if(condition . predicate == component [0].

predicate .name):
41

35

A – Invariant Synthesiser Code

42 if([condition .predicate ,[arg.name for arg
in condition .args], component [1]] not in
relevant_predicates_start):

43 relevant_predicates_start . append ([
condition .predicate ,[arg.name for arg in condition .args],
component [1]])

44

45 for effect in action . get_del_start_peffects ():
46 if(effect . predicate == component [0]. predicate .

name):
47 if([effect .predicate , [arg.name for arg in

effect .args], component [1]] not in relevant_predicates_start):
48 relevant_predicates_start . append ([

effect .predicate , [arg.name for arg in effect .args], component
[1]])

49

50 for condition in action . get_neg_start_conds ():
51 if(condition . predicate == component [0].

predicate .name):
52 if([condition .predicate ,[arg.name for arg

in condition .args], component [1]] not in
relevant_predicates_start):

53 relevant_predicates_start . append ([
condition .predicate ,[arg.name for arg in condition .args],
component [1]. counted_variable])

54

55 for condition in action . get_pos_all_conds ():
56 if(condition . predicate == component [0].

predicate .name):
57 if([condition .predicate ,[arg.name for arg

in condition .args], component [1]] not in
relevant_predicates_start):

58 relevant_predicates_mid . append ([
condition .predicate ,[arg.name for arg in condition .args],
component [1]])

59

60 for condition in action . get_neg_all_conds ():
61 if(condition . predicate == component [0].

predicate .name):
62 if([condition .predicate ,[arg.name for arg

in condition .args], component [1]] not in
relevant_predicates_start):

63 relevant_predicates_mid . append ([
condition .predicate ,[arg.name for arg in condition .args],
component [1]])

64

65 for effect in action . get_add_end_peffects ():
66 if(effect . predicate == component [0]. predicate .

name):

36

A – Invariant Synthesiser Code

67 if([effect .predicate , [arg.name for arg in
effect .args], component [1]] not in relevant_predicates_start):

68 relevant_predicates_end . append ([effect .
predicate , [arg.name for arg in effect .args], component [1]])

69

70 for condition in action . get_pos_end_conds ():
71 if(condition . predicate == component [0].

predicate .name):
72 if([condition .predicate ,[arg.name for arg

in condition .args], component [1]] not in
relevant_predicates_start):

73 relevant_predicates_end . append ([
condition .predicate ,[arg.name for arg in condition .args],
component [1]])

74

75 for effect in action . get_del_end_peffects ():
76 if(effect . predicate == component [0]. predicate .

name):
77 if([effect .predicate , [arg.name for arg in

effect .args], component [1]] not in relevant_predicates_start):
78 relevant_predicates_end . append ([effect .

predicate , [arg.name for arg in effect .args], component [1]])
79

80 for condition in action . get_neg_end_conds ():
81 if(condition . predicate == component [0].

predicate .name):
82 if([condition .predicate ,[arg.name for arg

in condition .args], component [1]] not in
relevant_predicates_start):

83 relevant_predicates_end . append ([
condition .predicate ,[arg.name for arg in condition .args],
component [1]. counted_variable])

84

85 predicates = relevant_predicates_start +
relevant_predicates_mid + relevant_predicates_end

86

87 aux_relevant_predicates_start =
relevant_predicates_start [:]

88 aux_relevant_predicates_end = relevant_predicates_end
[:]

89

90 for predicate in relevant_predicates_mid :
91 if(predicate [0] not in [relevant_predicates [0] for

relevant_predicates in relevant_predicates_start]):
92 aux_relevant_predicates_start . append (predicate)
93

94 if(predicate [0] not in [relevant_predicates [0] for
relevant_predicates in relevant_predicates_end]):

95 aux_relevant_predicates_end . append (predicate)
96

37

A – Invariant Synthesiser Code

97

98 relevant_predicates = [relevant_predicates_start ,
relevant_predicates_mid , relevant_predicates_end]

99

100 all_predicates = relevant_predicates_start +
relevant_predicates_mid + relevant_predicates_end

101 predicates = []
102

103 for predicate in all_predicates :
104 if predicate not in predicates :
105 predicates . append (predicate)
106

107 l_classes = matching_components (task , predicates)
108

109

110 pure_action_schema_start = {"L_"+str(i) : l_classes [i]
for i in range(len (l_classes))}

111 pure_action_schema_mid = {"L_"+str(i) : l_classes [i] for
i in range(len (l_classes))}

112 pure_action_schema_end = {"L_"+str(i) : l_classes [i] for
i in range(len (l_classes))}

113

114 auxiliary_action_schema_start = {"L_"+str(i) : l_classes
[i] for i in range(len(l_classes))}

115 auxiliary_action_schema_end = {"L_"+str(i) : l_classes [i
] for i in range(len(l_classes))}

116

117 def create_pure_action_schemas_start (action , values):
118 # Returns a list [positive_preconditions ,

negative_preconditions , positive_effects , negative_effects]
119 # for the pure action schema for a T_class
120 list_effects_condtions_start = []
121

122 intersecting_pos_preconds_start = []
123 list_effects_condtions_start . append (

intersecting_pos_preconds_start)
124 intersecting_neg_preconds_start = []
125 list_effects_condtions_start . append (

intersecting_neg_preconds_start)
126 intersecting_pos_effs_start = []
127 list_effects_condtions_start . append (

intersecting_pos_effs_start)
128 intersecting_neg_effs_start = []
129 list_effects_condtions_start . append (

intersecting_neg_effs_start)
130 list_effects_condtions_start . append (values)
131

132 # Obtaining positive effects
133 for effect in action . get_add_start_peffects ():

38

A – Invariant Synthesiser Code

134 arguments = [arg.name for arg in effect .
args]

135 for predicate in values :
136 if effect . predicate == predicate [0]:
137 if arguments == predicate [1]:
138 intersecting_pos_effs_start .

append (effect . predicate)
139

140 # Obtaining negative effects
141 for effect in action . get_del_start_peffects ():
142 arguments = [arg.name for arg in effect .

args]
143 for predicate in values :
144 if effect . predicate == predicate [0]:
145 if arguments == predicate [1]:
146 intersecting_neg_effs_start .

append (effect . predicate)
147

148 # Obtaining positive conditions for L schema
149 for cond in action . get_pos_start_conds ():
150 arguments = [arg.name for arg in cond.args]
151 for predicate in values :
152 if cond. predicate == predicate [0]:
153 if arguments == predicate [1]:
154 intersecting_pos_preconds_start

. append (cond. predicate)
155

156 # Obtaining negative conditions for L schema
157 for cond in action . get_neg_start_conds ():
158 arguments = [arg.name for arg in cond.args]
159 for predicate in values :
160 if cond. predicate == predicate [0]:
161 if arguments == predicate [1]:
162 intersecting_neg_preconds_start

. append (cond. predicate)
163

164 return list_effects_condtions_start
165

166 def create_pure_action_schemas_end (action , values):
167

168 list_effects_conditions_end = []
169

170 intersecting_pos_preconds_end = []
171 list_effects_conditions_end . append (

intersecting_pos_preconds_end)
172 intersecting_neg_preconds_end = []
173 list_effects_conditions_end . append (

intersecting_neg_preconds_end)
174 intersecting_pos_effs_end = []

39

A – Invariant Synthesiser Code

175 list_effects_conditions_end . append (
intersecting_pos_effs_end)

176 intersecting_neg_effs_end = []
177 list_effects_conditions_end . append (

intersecting_neg_effs_end)
178 list_effects_conditions_end . append (values)
179

180 # Obtaining positive effects
181 for effect in action . get_add_end_peffects ():
182 arguments = [arg.name for arg in effect .

args]
183 for predicate in values :
184 if effect . predicate == predicate [0]:
185 if arguments == predicate [1]:
186 intersecting_pos_effs_end .

append (effect . predicate)
187

188 # Obtaining negative effects
189 for effect in action . get_del_end_peffects ():
190 arguments = [arg.name for arg in effect .

args]
191 for predicate in values :
192 if effect . predicate == predicate [0]:
193 if arguments == predicate [1]:
194 intersecting_neg_effs_end .

append (effect . predicate)
195

196 # Obtaining positive conditions for L schema
197 for cond in action . get_pos_end_conds ():
198 arguments = [arg.name for arg in cond.args]
199 for predicate in values :
200 if cond. predicate == predicate [0]:
201 if arguments == predicate [1]:
202 intersecting_pos_preconds_end .

append (cond. predicate)
203

204 # Obtaining negative conditions for L schema
205 for cond in action . get_neg_end_conds ():
206 arguments = [arg.name for arg in cond.args]
207 for predicate in values :
208 if cond in predicate [0]:
209 if arguments == predicate [1]:
210 intersecting_neg_preconds_end .

append (cond. predicate)
211

212 return list_effects_conditions_end
213

214 def create_pure_action_schemas_mid (action , values):
215

216 list_conditions_mid = []

40

A – Invariant Synthesiser Code

217 intersecting_pos_preconds_mid = []
218 list_conditions_mid . append (

intersecting_pos_preconds_mid)
219 intersecting_neg_preconds_mid = []
220 list_conditions_mid . append (

intersecting_neg_preconds_mid)
221 list_conditions_mid . append (values)
222

223 # Obtaining positive conditions for L schema
224 for cond in action . get_pos_all_conds ():
225 arguments = [arg.name for arg in cond.args]
226 for predicate in values :
227 if cond. predicate == predicate [0]:
228 if arguments == predicate [1]:
229 intersecting_pos_preconds_mid .

append (cond. predicate)
230

231 # Obtaining negative conditions for L schema
232 for cond in action . get_neg_all_conds ():
233 arguments = [arg.name for arg in cond.args]
234 for predicate in values :
235 if cond. predicate == predicate [0]:
236 if arguments == predicate [1]:
237 intersecting_neg_preconds_mid .

append (cond. predicate)
238

239 return list_conditions_mid
240

241 def create_aux_pure_action_schemas_start (action , values
):

242 # Returns a list [positive_preconditions ,
negative_preconditions , positive_effects , negative_effects]

243 # for the pure action schema for a L_class
244

245 list_aux_action_schema_start = []
246

247 intersecting_pos_preconds_start = []
248 intersecting_neg_preconds_start = []
249 intersecting_pos_effs_start = []
250 intersecting_neg_effs_start = []
251 intersecting_pos_preconds_mid = []
252 intersecting_neg_preconds_mid = []
253

254 # Obtaining positive effects
255 for effect in action . get_add_start_peffects ():
256 arguments = [arg.name for arg in effect .

args]
257 for predicate in values :
258 if effect . predicate == predicate [0]:
259 if arguments == predicate [1]:

41

A – Invariant Synthesiser Code

260 intersecting_pos_effs_start .
append (effect . predicate)

261

262 # Obtaining negative effects
263 for effect in action . get_del_start_peffects ():
264 arguments = [arg.name for arg in effect .

args]
265 for predicate in values :
266 if effect . predicate == predicate [0]:
267 if arguments == predicate [1]:
268 intersecting_neg_effs_start .

append (effect . predicate)
269

270 # Obtaining positive conditions for L schema
271 for cond in action . get_pos_start_conds ():
272 arguments = [arg.name for arg in cond.args]
273 for predicate in values :
274 if cond. predicate == predicate [0]:
275 if arguments == predicate [1]:
276 intersecting_pos_preconds_start

. append (cond. predicate)
277

278 # Obtaining negative conditions for L schema
279 for cond in action . get_neg_start_conds ():
280 arguments = [arg.name for arg in cond.args]
281 for predicate in values :
282 if cond. predicate == predicate [0]:
283 if arguments == predicate [1]:
284 intersecting_neg_preconds_start

. append (cond. predicate)
285

286 # Obtaining positive conditions for L schema
287 for cond in action . get_pos_all_conds ():
288 arguments = [arg.name for arg in cond.args]
289 for predicate in values :
290 if cond. predicate == predicate [0]:
291 if arguments == predicate [1]:
292 intersecting_pos_preconds_mid .

append (cond. predicate)
293

294

295 # Obtaining negative conditions for L schema
296 for cond in action . get_neg_all_conds ():
297 arguments = [arg.name for arg in cond.args]
298 for predicate in values :
299 if cond. predicate == predicate [0]:
300 if arguments == predicate [1]:
301 intersecting_neg_preconds_mid .

append (cond. predicate)
302

42

A – Invariant Synthesiser Code

303

304 # ADDING POSITIVE PRECONDITIONS
305 set_pos_preconds_start = set(

intersecting_pos_preconds_start)
306 set_pos_preconds_mid = set(

intersecting_pos_preconds_mid)
307 set_pos_effects_start = set(

intersecting_pos_effs_start)
308 pos_preconds_start = set_pos_preconds_start .

union(set_pos_preconds_mid - set_pos_effects_start)
309 list_aux_action_schema_start . append (list(

pos_preconds_start))
310

311 # ADDING NEGATIVE PRECONDITIONS
312 set_neg_preconds_start = set(

intersecting_neg_preconds_start)
313 set_neg_preconds_mid = set(

intersecting_neg_preconds_mid)
314 set_neg_effects_start = set(

intersecting_neg_effs_start)
315 neg_preconds_start = set_neg_preconds_start .

union(set_neg_preconds_mid - set_neg_effects_start)
316 list_aux_action_schema_start . append (list(

neg_preconds_start))
317

318 # ADDING START_EFFECTS (they remain the same as
the normal actions)

319 list_aux_action_schema_start . append (
intersecting_pos_effs_start)

320 list_aux_action_schema_start . append (
intersecting_neg_effs_start)

321

322 # ADDING THE L_CLASS
323 list_aux_action_schema_start . append (values)
324

325 return list_aux_action_schema_start
326

327 def create_aux_pure_action_schemas_end (action , values):
328

329 list_aux_action_schema_end = []
330

331 intersecting_pos_preconds_end = []
332 intersecting_neg_preconds_end = []
333 intersecting_pos_effs_end = []
334 intersecting_neg_effs_end = []
335 intersecting_pos_preconds_mid = []
336 intersecting_neg_preconds_mid = []
337

338 # list_effects_conditions_end . append (values)
339

43

A – Invariant Synthesiser Code

340 # Obtaining positive effects
341 for effect in action . get_add_end_peffects ():
342 arguments = [arg.name for arg in effect .

args]
343 for predicate in values :
344 if effect . predicate == predicate [0]:
345 if arguments == predicate [1]:
346 intersecting_pos_effs_end .

append (effect . predicate)
347

348 # Obtaining negative effects
349 for effect in action . get_del_end_peffects ():
350 arguments = [arg.name for arg in effect .

args]
351 for predicate in values :
352 if effect . predicate == predicate [0]:
353 if arguments == predicate [1]:
354 intersecting_neg_effs_end .

append (effect . predicate)
355

356 # Obtaining positive conditions for L schema
357 for cond in action . get_pos_end_conds ():
358 arguments = [arg.name for arg in cond.args]
359 for predicate in values :
360 if cond. predicate == predicate [0]:
361 if arguments == predicate [1]:
362 intersecting_pos_preconds_end .

append (cond. predicate)
363

364 # Obtaining negative conditions for L schema
365 for cond in action . get_neg_end_conds ():
366 arguments = [arg.name for arg in cond.args]
367 for predicate in values :
368 if cond. predicate == predicate [0]:
369 if arguments == predicate [1]:
370 intersecting_neg_preconds_mid .

append (cond. predicate)
371

372 # Obtaining positive conditions for L schema
373 for cond in action . get_pos_all_conds ():
374 arguments = [arg.name for arg in cond.args]
375 for predicate in values :
376 if cond. predicate == predicate [0]:
377 if arguments == predicate [1]:
378 intersecting_pos_preconds_mid .

append (cond. predicate)
379

380 # Obtaining negative conditions for L schema
381 for cond in action . get_neg_all_conds ():
382 arguments = [arg.name for arg in cond.args]

44

A – Invariant Synthesiser Code

383 for predicate in values :
384 if cond. predicate == predicate [0]:
385 if arguments == predicate [1]:
386 intersecting_neg_preconds_mid .

append (cond. predicate)
387

388 # ADDING POSITIVE PRECONDITIONS
389 set_pos_preconds_end = set(

intersecting_pos_preconds_end)
390 set_pos_preconds_mid = set(

intersecting_pos_preconds_mid)
391 pos_preconds_end = set_pos_preconds_mid .union(

set_pos_preconds_end)
392 list_aux_action_schema_end . append (list(

pos_preconds_end))
393

394 # ADDING NEGATIVE PRECONDITIONS
395 set_neg_preconds_end = set(

intersecting_neg_preconds_end)
396 set_neg_preconds_mid = set(

intersecting_neg_preconds_mid)
397 neg_preconds_end = set_neg_preconds_mid .union(

set_neg_preconds_end)
398 list_aux_action_schema_end . append (list(

neg_preconds_end))
399

400 # ADDING END_EFFECTS (they remain the same as
the normal actions)

401 list_aux_action_schema_end . append (
intersecting_pos_effs_end)

402 list_aux_action_schema_end . append (
intersecting_neg_effs_end)

403

404 # ADDING THE L_CLASS
405 list_aux_action_schema_end . append (values)
406

407 return list_aux_action_schema_end
408

409 for key , value in pure_action_schema_start . iteritems ():
410 if value:
411 pure_action_schema_start [key] =

create_pure_action_schemas_start (action , value)
412

413 for key , value in pure_action_schema_mid . iteritems ():
414 if value:
415 pure_action_schema_mid [key] =

create_pure_action_schemas_mid (action , value)
416

417 for key , value in pure_action_schema_end . iteritems ():
418 if value:

45

A – Invariant Synthesiser Code

419 pure_action_schema_end [key] =
create_pure_action_schemas_end (action , value)

420

421 for key , value in auxiliary_action_schema_start .
iteritems ():

422 auxiliary_action_schema_start [key] =
create_aux_pure_action_schemas_start (action , value)

423

424 for key , value in auxiliary_action_schema_end . iteritems
():

425 auxiliary_action_schema_end [key] =
create_aux_pure_action_schemas_end (action , value)

426

427 pure_action_schemas = []
428 pure_action_schemas . append (pure_action_schema_start)
429 pure_action_schemas . append (pure_action_schema_mid)
430 pure_action_schemas . append (pure_action_schema_end)
431

432 auxiliary_pure_action_schemas = []
433 auxiliary_pure_action_schemas . append (

auxiliary_action_schema_start)
434 auxiliary_pure_action_schemas . append (

auxiliary_action_schema_end)
435

436 return pure_action_schemas ,
auxiliary_pure_action_schemas

Listing A.4. Matching and Pure Action Schemas Method

The following code consists of the methods used for the checks when implementing
the TIS algorithm.

1

2 def instantaneous_action_checks (action , key , schema , time_period):
3 if(len(schema [0]) >=2):
4 result = pd. DataFrame ({’Action ’: action .name , ’

Class_Id ’: key , ’Class ’: schema [4], ’Section ’: time_period , ’
Result ’: ’Unreachable ’})

5 return result
6

7 if(len(schema [0]) <=1):
8 if((len(schema [2]) ==0)):
9 result = pd. DataFrame ({’Action ’: action .

name , ’Class_Id ’: key , ’Class ’: schema [4], ’Section ’:
time_period , ’Result ’: ’Irrelevant ’})

10 return result
11

12 #Is the action heavy?
13 if(len(schema [2]) >=2):
14 result = pd. DataFrame ({’Action ’: action .

name , ’Class_Id ’: key , ’Class ’: schema [4], ’Section ’:
time_period , ’Result ’: ’Heavy ’})

46

A – Invariant Synthesiser Code

15 return result
16

17

18 if(len(schema [2]) ==1):
19

20 if(len(schema [0]) ==1):
21

22 pos_effects = set(schema [2])
23 neg_effects = set(schema [3])
24 union_effects = pos_effects .union(

neg_effects)
25 pos_preconditions = set(schema [0])
26 inter_effects_with_pos_preconditions =

pos_preconditions . intersection (union_effects)
27

28 if pos_preconditions in union_effects :
29 result = pd. DataFrame ({’Action ’:

action .name , ’Class_Id ’: key , ’Class ’: schema [4], ’Section ’:
time_period , ’Result ’:’Balanced ’})

30 return result
31

32 elif not
inter_effects_with_pos_preconditions :

33 result = pd. DataFrame ({’Action ’:
action .name , ’Class_Id ’: key , ’Class ’: schema [4], ’Section ’:
time_period , ’Result ’:’Unbalanced ’})

34 return result
35

36 if(len(schema [0]) ==0):
37

38 template_predicates = set ([component .
predicate .name for component in self. components])

39

40 #Class Predicates
41 l_class_predicates = set ([predicate [0]

for predicate in schema [4]])
42 if(l_class_predicates ==

template_predicates):
43

44 #Here I am checking that the
predicates do not have a counted variable , if they do then I
assume it is unbounded which it is in the majority of cases

45 for predicate in l_class_predicates
:

46 for component in self.
components :

47 if(predicate == component .
predicate .name):

48 if(component .
counted_variable < len(component . predicate . arguments)):

47

A – Invariant Synthesiser Code

49 result = pd.
DataFrame ({ ’Action ’: action .name , ’Class_Id ’: key , ’Class ’:
schema [4], ’Section ’: time_period , ’Result ’: ’Unbounded ’})

50 return result
51

52 result = pd. DataFrame ({’Action ’:
action .name , ’Class_Id ’: key , ’Class ’: schema [4], ’Section ’:
time_period , ’Result ’: ’Bounded ’})

53 return result
54

55

56

57 else:
58 result = pd. DataFrame ({’Action ’:

action .name , ’Class_Id ’: key , ’Class ’: schema [4], ’Section ’:
time_period , ’Result ’: ’Unbounded ’})

59 return result
60 else:
61 print(’ERROR IN INSTANTANEOUS

CLASSIFICATION CODE !!’)
62 result = pd. DataFrame ({’Action ’: action .

name , ’Class_Id ’: key , ’Class ’: schema [4], ’Section ’:
time_period , ’Result ’: ’UNCLASSIFIED ’})

63 return result

Listing A.5. Instantaneous Action Check Method

1 def check_type_a_simple_safety (aux_start_schema):
2

3 type_a_bool = False
4

5 if(len(aux_start_schema [0]) ==1):
6 pre_cond_pos_start = set(aux_start_schema [0])
7 effs_neg_start = set(aux_start_schema [3])
8

9 if pre_cond_pos_start . issubset (effs_neg_start):
10 print(" Weakly safe of Type(A)")
11 type_a_bool = True
12

13 return type_a_bool

Listing A.6. Type(a) Simple Safety Check Method

1 def check_simple_safety (action_schema_result , pure_schemas ,
aux_schemas):

2 # Should I use proposition 75 (page 36) and
definition 76 (Executability and Reachability)

3 #I DON ’T NEED TO CHECK FOR EXECUTABILITY SINCE THIS
CHECK WAS DONE BEFORE

4 bool_simple_safety = False
5 aux_start_schema = aux_schemas [0]

48

A – Invariant Synthesiser Code

6

7 aux_pre_cond_pos_start = set(aux_start_schema [0])
8 aux_effs_neg_start = set(aux_start_schema [3])
9

10 pure_end_schema = pure_schemas [2]
11 pos_end_effs = set(pure_end_schema [2])
12 neg_end_effs = set(pure_end_schema [3])
13 end_effects = pos_end_effs .union(neg_end_effs)
14

15 if(action_schema_result == " Irrelevant "):
16

17 if check_type_a_simple_safety (aux_schemas):
18 bool_simple_safety = True
19 return bool_simple_safety
20

21 elif(len(aux_start_schema [0]) ==1):
22 if aux_pre_cond_pos_start not in

aux_effs_neg_start and aux_pre_cond_pos_start in end_effects :
23 print(" Weakly safe of Type(B)")
24 bool_simple_safety = True
25 return bool_simple_safety
26

27 elif(len(aux_start_schema [0]) ==0):
28

29 aux_pre_cond_neg_start = set(
aux_start_schema [1])

30 cover_check_union = aux_pre_cond_neg_start .
union(end_effects , aux_effs_neg_start)

31 template_predicates = set ([component .
predicate .name for component in self. components])

32

33 l_class_predicates = [predicate [0] for
predicate in aux_start_schema [4]]

34

35 if template_predicates == cover_check_union
:

36 for predicate in l_class_predicates :
37 for component in self. components :
38 if(predicate == component .

predicate .name):
39 if(component .

counted_variable == len(component . predicate . arguments)):
40 print(" Weakly safe of

Type(C)")
41 bool_simple_safety =

True
42 return

bool_simple_safety
43

44 elif(action_schema_result == " Relevant "):

49

A – Invariant Synthesiser Code

45

46 pure_start_schema = pure_schemas [0]
47 pos_start_effs = set(pure_start_schema [2])
48

49 if pos_start_effs in end_effects :
50 print(" Weakly safe of Type(D)")
51 bool_simple_safety = True
52 return bool_simple_safety
53

54

55 return bool_simple_safety

Listing A.7. Simple Safety Check Method

1

2 def executability_check (action):
3 # PROPOSITION 75 (pg36) EXECUTABILITY
4

5 bool_result = True
6

7 # POSITIVE START CONDITIONS
8 pos_start_cond = set ([predicate . predicate for

predicate in action . get_pos_start_conds ()])
9

10 # POSITIVE INTERMEDIATE CONDITIONS
11 pos_inv_cond = set ([predicate . predicate for

predicate in action . get_pos_all_conds ()])
12

13 # POSITIVE START EFFECTS
14 pos_start_effect = set ([predicate . predicate for

predicate in action . get_add_start_peffects ()])
15

16 # NEGATIVE START EFFECTS
17 neg_start_effect = set ([predicate . predicate for

predicate in action . get_del_start_peffects ()])
18

19 # NEGATIVE END CONDITIONS
20 neg_end_cond = set ([predicate . predicate for

predicate in action . get_neg_end_conds ()])
21

22 # NEGATIVE INTERMEDIATE CONDITIONS
23 neg_inv_cond = set ([predicate . predicate for

predicate in action . get_neg_all_conds ()])
24

25 # NEGATIVE START CONDITIONS
26 neg_start_cond = set ([predicate . predicate for

predicate in action . get_neg_start_conds ()])
27

28 # POSITIVE END CONDITIONS
29 pos_end_cond = set ([predicate . predicate for

predicate in action . get_pos_end_conds ()])

50

A – Invariant Synthesiser Code

30

31 AUX_pos_start_cond = pos_start_cond .union(
pos_inv_cond - pos_start_effect)

32 AUX_pos_postconditions_start = pos_start_effect .
union ((AUX_pos_start_cond - neg_start_effect))

33

34 AUX_pre_end_cond = neg_end_cond .union(neg_inv_cond)
35

36 check_executability_1 =
AUX_pos_postconditions_start . intersection (AUX_pre_end_cond)

37

38 #If empty then the action is executable
39 AUX_neg_start_cond = neg_start_cond .union(

neg_inv_cond - neg_start_effect)
40

41 AUX_neg_start_postconditions = neg_start_effect .
union(AUX_neg_start_cond - pos_start_effect)

42

43 AUX_positive_end_conditions = pos_end_cond .union(
pos_inv_cond)

44

45 check_executability_2 =
AUX_neg_start_postconditions . intersection (
AUX_positive_end_conditions)

46

47 if(check_executability_1 or check_executability_2):
48 bool_result = False
49

50 return bool_result

Listing A.8. Action Executability Check

1 def check_auxilary_action_reachable (action , action_tuples):
2

3 action_tuples_aux_schemas = [action_tuple [2] for action_tuple
in action_tuples]

4

5 for aux_action_schemas in action_tuples_aux_schemas :
6 for key in aux_action_schemas [0]:
7

8 cond_pos_start = set(aux_action_schemas [0][key][0])
9 cond_pos_end = set(aux_action_schemas [1][key][0])

10 eff_pos_start = set(aux_action_schemas [1][key][2])
11

12 reachable_test_set = cond_pos_start .union(
cond_pos_end - eff_pos_start)

13 if len(reachable_test_set) >1:
14 return False
15

16 return True

51

A – Invariant Synthesiser Code

Listing A.9. Auxiliary Action Reachable Check

1 def final_check (action , action_tuples , unbounded_pure_actions ,
aux_action_df):

2

3 #(8) FINAL CHECK FOR SIMPLE SAFETY
4 action_start_results_filter = action_df [’Section ’

]== ’Start ’
5 action_start_results = action_df [

action_start_results_filter]
6

7 unbounded_actions_start_filter =
action_start_results [’Result ’]== ’Unbounded ’

8 unbounded_actions_start = action_start_results [
unbounded_actions_start_filter]

9

10 end_unbounded_pure_actions_filter =
unbounded_pure_actions [" Section "]== ’End ’

11 end_unbounded_pure_actions = unbounded_pure_actions
[end_unbounded_pure_actions_filter]

12

13 string_list_unbounded_actions = set(
end_unbounded_pure_actions [" Action "]. astype (str). values . tolist
())

14 unbounded_end_action_tuples = [action_tuple for
action_tuple in list_action_tuples if action_tuple [0]. name in
string_list_unbounded_actions]

15

16 if not unbounded_actions_start .empty:
17 print unbounded_actions_start
18 return False
19

20 elif not end_unbounded_pure_actions .empty:
21

22 start_aux_action_df_filter = aux_action_df ["
Section "]== ’Start ’

23 start_aux_action_df = aux_action_df [
start_aux_action_df_filter]

24

25 for action_tuple in unbounded_end_action_tuples
:

26 action_name_filter =
end_unbounded_pure_actions [" Action "] == action_tuple [0]. name

27 action_name = end_unbounded_pure_actions [
action_name_filter]

28

29 class_Ids = set(action_name [" Class_Id "].
astype (str). values . tolist ())

30

52

A – Invariant Synthesiser Code

31 for class_id in class_Ids :
32 aux_action_filter = start_aux_action_df

[’Action ’]== action_tuple [0]. name
33 aux_action = start_aux_action_df [

aux_action_filter]
34

35 class_id_filter = aux_action [" Class_Id "
]== class_id

36 action_class_id_result = aux_action [
class_id_filter]

37

38 irrelevant_result_filter =
action_class_id_result [’Result ’]== ’Irrelevant ’

39 irrelevant_result =
action_class_id_result [irrelevant_result_filter]

40

41

42 class_id_pure_action_schemas = [schema [
class_id] for schema in action_tuple [1]]

43 class_id_aux_pure_action_schemas = [
schema [class_id] for schema in action_tuple [2]]

44

45 if not irrelevant_result .empty:
46 if not check_simple_safety (’

Irrelevant ’, class_id_pure_action_schemas ,
class_id_aux_pure_action_schemas):

47

48 return False
49

50 balanced_result_filter =
action_class_id_result [’Result ’]== ’Balanced ’

51 balanced_result =
action_class_id_result [balanced_result_filter]

52

53 bounded_result_filter =
action_class_id_result [’Result ’]== ’Bounded ’

54 bounded_result = action_class_id_result
[bounded_result_filter]

55

56 if not balanced_result .empty or not
bounded_result .empty:

57 if not check_simple_safety (’
Relevant ’, [schema [class_id] for schema in action_tuple [1]] , [
schema [class_id] for schema in action_tuple [2]]):

58

59 return False
60

61 else:
62

63 return False

53

A – Invariant Synthesiser Code

64 return True

Listing A.10. Final Check

1

2 def algorithm_1 (self , actions_to_check):
3 action_schema_section = [’Start ’, ’Inv ’, ’End ’]
4

5 # action_df contains all the results for the
instantaneoues checks for every action relevant to the template
.

6 action_df = pd. DataFrame (None , columns =[’Action ’, ’
Class_Id ’, ’Class ’, ’Section ’,’Result ’])

7 aux_action_df = pd. DataFrame (None , columns =[’Action ’, ’
Class_Id ’, ’Class ’, ’Section ’,’Result ’])

8

9 list_action_tuples = []
10

11 for action in actions_to_check :
12

13 list_action_schemas = []
14 pure_action_schemas , auxiliary_pure_action_schemas

= obtain_pure_action_schemas (task , action)
15 list_action_schemas . append (pure_action_schemas)
16

17 for action_schema in pure_action_schemas :
18

19 #For every action I introduce a boolean , if any
of the pure action schemas

20 # reveal that an invariant doesn ’t exist the
bool_result returns FALSE

21

22 bool_result = True
23 for key , schema in action_schema . iteritems ():
24 if(pure_action_schemas .index(action_schema)

!=1):
25 time = action_schema_section [

pure_action_schemas .index(action_schema)]
26 result = instantaneous_action_checks (

action , key , schema , time)
27 action_df = pd. concat ([action_df ,

result], sort = True)
28

29

30 #Here I create a tuple containing all the
corresponding action_schemas corresponding to a durative action
’s durative action schema

31 action_tuple = tuple ([action , pure_action_schemas ,
auxiliary_pure_action_schemas])

32 list_action_tuples . append (action_tuple)
33

54

A – Invariant Synthesiser Code

34 template_list = [str(component . predicate) + "_" + "{" +
str(component . counted_variable) + "}" for component in self.

components]
35 file_name = ""
36

37 for component in template_list :
38 file_name += " " + component
39

40 file_name = file_name . replace (":", "")
41 file_name = file_name . replace ("?", "")
42 file_name = file_name . replace (" ", "_") + ".csv"
43

44 action_df . to_csv (path_or_buf = file_name)
45

46 print(action_df)
47

48 #(1) CHECK FOR HEAVY OR UNBALANCED ACTIONS
49 unbalanced_pure_actions_filter = action_df [’Result ’]== ’

Unbalanced ’
50 unbalanced_pure_actions = action_df [

unbalanced_pure_actions_filter]
51

52 heavy_pure_actions_filter = action_df [’Result ’]== ’Heavy
’

53 heavy_pure_actions = action_df [
heavy_pure_actions_filter]

54

55 if not unbalanced_pure_actions .empty or not
heavy_pure_actions .empty:

56 number = 1
57 print(" Possibly Not Invariant ")
58 return False , number
59

60 #(2) CHECK FOR UNBOUNDED ACTIONS
61 number = 2
62 unbounded_pure_actions_filter = action_df [’Result ’]== ’

Unbounded ’
63 unbounded_pure_actions = action_df [

unbounded_pure_actions_filter]
64 print(unbounded_pure_actions)
65

66 if not unbounded_pure_actions .empty:
67

68 #(4) CHECK FOR EXECUTABILITY OF UNBOUNDED ACTIONS
69 number = 4
70

71 unbounded_actions = set(unbounded_pure_actions ["
Action "]. astype (str). values . tolist ())

55

A – Invariant Synthesiser Code

72 unbounded_action_tuples = [action_tuple for
action_tuple in list_action_tuples if action_tuple [0]. name in
unbounded_actions]

73

74 for action_tuple in unbounded_action_tuples :
75 action_to_check = action_tuple [0]
76 result = executability_check (action_to_check)
77

78 if not result :
79 print(" POSSIBLY NOT INVARIANT ")
80

81 for action_tuple in list_action_tuples :
82 aux_action_schemas = action_tuple [2]
83 for action_schema in aux_action_schemas :
84 for key , schema in action_schema . iteritems

():
85

86 aux_action_schema_section = [’Start ’, ’
End ’]

87 time = aux_action_schemas .index(
action_schema)

88

89 if(time ==0):
90 result =

instantaneous_action_checks (action_tuple [0], key , schema ,
aux_action_schema_section [time])

91 aux_action_df = pd. concat ([
aux_action_df , result], sort = True)

92

93

94 unbounded_aux_pure_actions_filter = aux_action_df [’
Result ’]== ’Unbounded ’

95 heavy_aux_pure_actions_filter = aux_action_df [’
Result ’] == ’Heavy ’

96 unbalanced_aux_pure_actions_filter = aux_action_df [
’Result ’] == ’Unbalanced ’

97

98 unbounded_aux_pure_actions = aux_action_df [
unbounded_aux_pure_actions_filter]

99 heavy_aux_pure_actions = aux_action_df [
heavy_aux_pure_actions_filter]

100 unbalanced_aux_pure_actions = aux_action_df [
unbalanced_aux_pure_actions_filter]

101

102 #(5) STRONGLY SAFE ACTIONS CHECK
103 number = 5
104 if not unbounded_aux_pure_actions .empty or not

heavy_aux_pure_actions .empty or not unbalanced_aux_pure_actions
.empty:

105 print(unbounded_aux_pure_actions)

56

A – Invariant Synthesiser Code

106 print(" POSSIBLY NOT INVARIANT : NOT STRONGLY
SAFE")

107 return False , number
108

109 # OBTAINING THE auxiliary ACTION SCHEMA
INSTANTANEOUS CHECKS

110 for action_tuple in list_action_tuples :
111 aux_action_schemas = action_tuple [2]
112 for action_schema in aux_action_schemas :
113 for key , schema in action_schema . iteritems

():
114 time = aux_action_schemas .index(

action_schema)
115 if(time ==1):
116 result =

instantaneous_action_checks (action_tuple [0], key , schema ,
aux_action_schema_section [time])

117 aux_action_df = pd. concat ([
aux_action_df , result], sort = True)

118

119

120 #(6) CHECKING FOR SIMPLE SAFETY FOR THE DURATIVE
ACTIONS OF UNBOUNDED ACTION SCHEMAS

121

122 number = 6
123 for action_tuple in unbounded_action_tuples :
124 aux_action_schemas = action_tuple [2]
125

126 action_aux_filter = aux_action_df [’Action ’] ==
action_tuple [0]. name

127 action_aux = aux_action_df [action_aux_filter]
128 #print(action_aux)
129

130 action_filter = action_df [’Action ’] ==
action_tuple [0]. name

131 action_pure_results = action_df [action_filter]
132

133 for action_schema in aux_action_schemas :
134

135 for key , schema in action_schema . iteritems
():

136

137 id_aux_filter = action_aux [’Class_Id ’]
== key

138 aux_action_schema_results = action_aux [
id_aux_filter]

139

140 id_filter = action_pure_results [’
Class_Id ’] == key

57

A – Invariant Synthesiser Code

141 pure_action_schema =
action_pure_results [id_filter]

142

143 print(pure_action_schema)
144

145 time = aux_action_schemas .index(
action_schema)

146 action_schema_start_filter =
aux_action_schema_results [’Section ’] == "Start"

147 aux_action_schema_start =
aux_action_schema_results [action_schema_start_filter]

148

149 action_schema_end_filter =
aux_action_schema_results [’Section ’] == "End"

150 aux_action_schema_end =
aux_action_schema_results [action_schema_end_filter]

151

152 print(aux_action_schema_start)
153

154

155 if ’Irrelevant ’ in
aux_action_schema_start . values and ’Unbounded ’ in
aux_action_schema_end . values :

156

157 aux_pure_action_schemas_start_end =
aux_action_schemas [0][key]

158

159

160 if not check_type_a_simple_safety (
aux_pure_action_schemas_start_end):

161

162 print ’A pure action schema is
not Type (a) simply safe (Definition 78) ’

163

164 # STRONG SAFETY - IRRELEVANT ,
HEAVY , BALANCED , BOUNDED ..."""

165 #SO IF UNBALANCED , HEAVY OR
UNBOUNDED THE AUX ACTION IS NOT STRONGLY SAFE !!!!

166

167 #(7Y) CHECK AUX_END FOR STRONG
SAFETY AND CHECK FOR REACHABILITY

168

169 aux_end_actions_filter =
action_aux [’Section ’]== ’End ’

170 aux_end_actions_results =
action_aux [aux_end_actions_filter]

171

172

unbalanced_aux_end_actions_filter = aux_end_actions_results [’
Result ’]== ’Unbalanced ’

58

A – Invariant Synthesiser Code

173 unbalanced_aux_end_actions =
aux_end_actions_results [unbalanced_aux_end_actions_filter]

174

175 heavy_aux_end_actions_filter =
aux_end_actions_results [’Result ’]== ’Heavy ’

176 heavy_aux_end_actions =
aux_end_actions_results [heavy_aux_end_actions_filter]

177

178

unbounded_aux_end_actions_filter = aux_end_actions_results [’
Result ’]== ’Unbounded ’

179 unbounded_aux_end_actions =
aux_end_actions_results [unbounded_aux_end_actions_filter]

180

181

182 if
check_auxiliary_action_reachable (action , list_action_tuples)
and unbalanced_aux_end_actions .empty and
unbounded_aux_end_actions .empty and heavy_aux_end_actions .empty
:

183 # Corollary 73 and Def 90
184 print(’INVARIANT FOUND !!’)
185 return True , number
186

187 else:
188 number = 8
189 if "robot -at" in [component

. predicate .name for component in self. components]:
190 print(’analyse ’)
191 #(8) Final Check
192

193

194 final_check = final_check (
action , list_action_tuples , unbounded_pure_actions ,
aux_action_df)

195

196 if final_check :
197 return True , number
198

199 else:
200 return False , number
201

202 #(7N) CHECK FOR UNREACHABLE OR BOUNDED ACTION
SCHEMAS

203 bounded_pure_actions_filter = action_df [’Result ’]==
’Bounded ’

204 bounded_pure_actions = action_df [
bounded_pure_actions_filter]

205 unreachable_pure_actions_filter = action_df [’Result
’]== ’Unreachable ’

59

A – Invariant Synthesiser Code

206 unreachable_pure_actions = action_df [
unreachable_pure_actions_filter]

207

208 if bounded_pure_actions .empty and
unreachable_pure_actions .empty:

209 # DEFINITION 70/71
210 print(’INVARIANT FOUND !!’)
211 return True , number
212

213 #(8) Final Check
214 number = 8
215 if final_check (action , list_action_tuples ,

unbounded_pure_actions , aux_action_df):
216 return True , number
217

218 else:
219 return False , number
220

221 else:
222 return True , number
223

224 return bool_result

Listing A.11. TIS Algorithm Checks Method

60

Appendix B

Domains

The following appendix contains the domains which were used when testing the
algorithms effectiveness when searching for invariants. [5]

1

2 (define (domain floor-tile)
3 (:requirements :typing :durative-actions)
4 (:types robot tile color - object)
5

6 (:predicates
7 (robot-at ?r - robot ?x - tile)
8 (up ?x - tile ?y - tile)
9 (down ?x - tile ?y - tile)

10 (right ?x - tile ?y - tile)
11 (left ?x - tile ?y - tile)
12 (clear ?x - tile)
13 (painted ?x - tile ?c - color)
14 (robot-has ?r - robot ?c - color)
15 (available-color ?c - color)
16 (free-color ?r - robot))
17

18 (:durative-action change-color
19 :parameters (?r - robot ?c - color ?c2 - color)
20 :duration (= ? duration 5)
21 :condition (and (at start (robot-has ?r ?c))
22 (over all (available-color ?c2)))
23 :effect (and (at start (not (robot-has ?r ?c)))
24 (at end (robot-has ?r ?c2))))
25

26 (:durative-action paint-up
27 :parameters (?r - robot ?y - tile ?x - tile ?c - color)
28 :duration (= ? duration 2)
29 :condition (and (over all (robot-has ?r ?c))
30 (at start (robot-at ?r ?x))
31 (over all (up ?y ?x))
32 (at start (clear ?y)))

61

B – Domains

33 :effect (and (at start (not (clear ?y)))
34 (at end (painted ?y ?c))))
35

36 (:durative-action paint-down
37 :parameters (?r - robot ?y - tile ?x - tile ?c - color)
38 :duration (= ? duration 2)
39 :condition (and (over all (robot-has ?r ?c))
40 (at start (robot-at ?r ?x))
41 (over all (down ?y ?x))
42 (at start (clear ?y)))
43 :effect (and (at start (not (clear ?y)))
44 (at end (painted ?y ?c))))
45

46

47 ; Robot movements
48 (:durative-action up
49 :parameters (?r - robot ?x - tile ?y - tile)
50 :duration (= ? duration 3)
51 :condition (and (at start (robot-at ?r ?x))
52 (over all (up ?y ?x))
53 (at start (clear ?y)))
54 :effect (and
55 (at start (not (robot-at ?r ?x)))
56 (at end (robot-at ?r ?y))
57 (at start (not (clear ?y)))
58 (at end (clear ?x))))
59

60 (:durative-action down
61 :parameters (?r - robot ?x - tile ?y - tile)
62 :duration (= ? duration 1)
63 :condition (and (at start (robot-at ?r ?x))
64 (over all (down ?y ?x))
65 (at start (clear ?y)))
66 :effect (and (at start (not (robot-at ?r ?x)))
67 (at end (robot-at ?r ?y))
68 (at start (not (clear ?y)))
69 (at end (clear ?x))))
70

71 (:durative-action right
72 :parameters (?r - robot ?x - tile ?y - tile)
73 :duration (= ? duration 1)
74 :condition (and (at start (robot-at ?r ?x))
75 (over all (right ?y ?x))
76 (at start (clear ?y)))
77 :effect (and (at start (not (robot-at ?r ?x)))
78 (at end (robot-at ?r ?y))
79 (at start (not (clear ?y)))
80 (at end (clear ?x))))
81

82 (:durative-action left

62

B – Domains

83 :parameters (?r - robot ?x - tile ?y - tile)
84 :duration (= ? duration 1)
85 :condition (and (at start (robot-at ?r ?x))
86 (over all (left ?y ?x))
87 (at start (clear ?y)))
88 :effect (and (at start (not (robot-at ?r ?x)))
89 (at end (robot-at ?r ?y))
90 (at start (not (clear ?y)))
91 (at end (clear ?x))))
92)
93

Listing B.1. FloorTile Domain.

1

2 (define (domain satellite)
3 (:requirements :strips :equality :typing :durative-actions)
4 (:types satellite direction instrument mode)
5 (:predicates
6 (on_board ?i - instrument ?s - satellite)
7 (supports ?i - instrument ?m - mode)
8 (pointing ?s - satellite ?d - direction)
9 (power_avail ?s - satellite)

10 (power_on ?i - instrument)
11 (calibrated ?i - instrument)
12 (have_image ?d - direction ?m - mode)
13 (calibration_target ?i - instrument ?d - direction))
14

15

16

17

18 (:durative-action turn_to
19 :parameters (?s - satellite ?d_new - direction ? d_prev -

direction)
20 :duration (= ? duration 5)
21 :condition (and (at start (pointing ?s ? d_prev))
22 (over all (not (= ?d_new ? d_prev)))
23)
24 :effect (and (at end (pointing ?s ?d_new))
25 (at start (not (pointing ?s ? d_prev)))
26)
27)
28

29

30 (:durative-action switch_on
31 :parameters (?i - instrument ?s - satellite)
32 :duration (= ? duration 2)
33 :condition (and (over all (on_board ?i ?s))
34 (at start (power_avail ?s)))
35 :effect (and (at end (power_on ?i))
36 (at start (not (calibrated ?i)))

63

B – Domains

37 (at start (not (power_avail ?s)))
38)
39

40)
41

42

43 (:durative-action switch_off
44 :parameters (?i - instrument ?s - satellite)
45 :duration (= ? duration 1)
46 :condition (and (over all (on_board ?i ?s))
47 (at start (power_on ?i))
48)
49 :effect (and (at start (not (power_on ?i)))
50 (at end (power_avail ?s))
51)
52)
53

54 (:durative-action calibrate
55 :parameters (?s - satellite ?i - instrument ?d - direction)
56 :duration (= ? duration 5)
57 :condition (and (over all (on_board ?i ?s))
58 (over all (calibration_target ?i ?d))
59 (at start (pointing ?s ?d))
60 (over all (power_on ?i))
61 (at end (power_on ?i))
62)
63 :effect (at end (calibrated ?i))
64)
65

66

67 (:durative-action take_image
68 :parameters (?s - satellite ?d - direction ?i - instrument ?m -

mode)
69 :duration (= ? duration 7)
70 :condition (and (over all (calibrated ?i))
71 (over all (on_board ?i ?s))
72 (over all (supports ?i ?m))
73 (over all (power_on ?i))
74 (over all (pointing ?s ?d))
75 (at end (power_on ?i))
76)
77 :effect (at end (have_image ?d ?m))
78)
79)
80

Listing B.2. Satelitte Domain.

1

2 (define (domain driverlog)
3 (:requirements :typing :durative-actions)

64

B – Domains

4 (:types location locatable - object
5 driver truck obj - locatable)
6

7 (:predicates
8 (at ?obj - locatable ?loc - location)
9 (in ?obj1 - obj ?obj - truck)

10 (driving ?d - driver ?v - truck)
11 (link ?x ?y - location) (path ?x ?y - location)
12 (empty ?v - truck)
13)
14

15 (:durative-action LOAD-TRUCK
16 :parameters
17 (? obj - obj
18 ?truck - truck
19 ?loc - location)
20 :duration (= ? duration 2)
21 :condition
22 (and
23 (over all (at ?truck ?loc)) (at start (at ?obj ?loc)))
24 :effect
25 (and (at start (not (at ?obj ?loc))) (at end (in ?obj ?truck))))
26

27 (:durative-action UNLOAD-TRUCK
28 :parameters
29 (? obj - obj
30 ?truck - truck
31 ?loc - location)
32 :duration (= ? duration 2)
33 :condition
34 (and
35 (over all (at ?truck ?loc)) (at start (in ?obj ?truck)))
36 :effect
37 (and (at start (not (in ?obj ?truck))) (at end (at ?obj ?loc))))
38

39 (:durative-action BOARD-TRUCK
40 :parameters
41 (? driver - driver
42 ?truck - truck
43 ?loc - location)
44 :duration (= ? duration 1)
45 :condition
46 (and
47 (over all (at ?truck ?loc)) (at start (at ? driver ?loc))
48 (at start (empty ?truck)))
49 :effect
50 (and (at start (not (at ? driver ?loc)))
51 (at end (driving ? driver ?truck)) (at start (not (empty ?truck)))

))
52

65

B – Domains

53 (:durative-action DISEMBARK-TRUCK
54 :parameters
55 (? driver - driver
56 ?truck - truck
57 ?loc - location)
58 :duration (= ? duration 1)
59 :condition
60 (and (over all (at ?truck ?loc)) (at start (driving ? driver ?

truck)))
61 :effect
62 (and (at start (not (driving ? driver ?truck)))
63 (at end (at ? driver ?loc)) (at end (empty ?truck))))
64

65 (:durative-action DRIVE-TRUCK
66 :parameters
67 (? truck - truck
68 ? loc-from - location
69 ? loc-to - location
70 ? driver - driver)
71 :duration (= ? duration 10)
72 :condition
73 (and (at start (at ?truck ? loc-from))
74 (over all (driving ? driver ?truck)) (at start (link ? loc-from ?

loc-to)))
75 :effect
76 (and (at start (not (at ?truck ? loc-from)))
77 (at end (at ?truck ? loc-to))))
78

79 (:durative-action WALK
80 :parameters
81 (? driver - driver
82 ? loc-from - location
83 ? loc-to - location)
84 :duration (= ? duration 20)
85 :condition
86 (and (at start (at ? driver ? loc-from))
87 (at start (path ? loc-from ? loc-to)))
88 :effect
89 (and (at start (not (at ? driver ? loc-from)))
90 (at end (at ? driver ? loc-to))))
91

92)

Listing B.3. Driverlog Domain.

66

Bibliography

[1] S. Bernardini, F. Fagnani, D. Smith, Extracting mutual exclusion invariants
from lifted temporal planning domains, 2018.

[2] H. Geffner, A Concise Introduction to Models and Methods for Automated Plan-
ning, 2013.

[3] S. Russell, P. Norvig, Artificial Intelligence - A Modern Approach, 2009.
[4] A. Coles, Tutorial: Introduction to AI Planning,

https://www.youtube.com/watch?v=EeQcCs9SnhU , 2013
[5] ICAPS Competitions http://icaps-conference.org/index.php/Main/Competitions
[6] M. Fox, D. Long An Extension to PDDL for Expressing Temporal Planning

Domains

67

	List of Tables
	Introduction
	Overview of Planning Processes and PDDL

	Overview of Invariant Synthesis
	Invariants

	Implementation
	Experiments
	Related Work and Conclusion
	Invariant Synthesiser Code
	Domains
	Bibliography

