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Summary

Classification is a typical task in the field of data mining. Classifying an observation means
assigning it to a category of examples labeled data by means of a learning algorithm.
Classification models are often developed using data where the event associated to one
of the classes is rare. We can think about a clinical study, where the data collected by a
screening program usually include few patients with the disease, rarity class, and many
healthy people. Such models tend to achieve a poor accuracy in classifying observations
belonging to the rarity class. We defined this kind of problems as class imbalanced.
The main purpose of this master thesis is the investigation of the problem of classification
in imbalanced data sets. First, a theoretical study about the nature of the problem and
the state of art solution has been presented. Then, a real application of the problem has
been described through a case of study coming from the insurance market.

The class imbalanced problem can be considered one of the challenging problem in data
mining, as it is present in many real-world domains such as computer science, epidemiol-
ogy, finance and so on. This has brought along a growth attention from both academia
and industry. It is very meaningful in theory and in practice to investigate the classifica-
tion of imbalanced data sets.
To this end, this thesis work can be divided into two parts. In the first part, a discussion
about the problem of data imbalanced itself has been presented. It has been studied why
the skewed distribution negatively affects the accuracy of the standard classifiers. The
reason behind it has to be found inside the classifier learning process structure, that is
often built for balanced training examples. It means that equally misclassification costs
are assigned inside the classes. This leads to a biased towards the majority class.
However the imbalanced distribution of the data is not the only factor that hinder the
learning task. Several data intrinsic characteristics have been analyzed such as: the
presence of small disjuncts, the overlapping between classes, the presence of noise and
borderline examples. It has been shown how they affected the learning process, exasper-
ating the imbalanced problem.
To conclude this first part of the work, the state of art solutions have been described. They
can be divided into four groups: data level, algorithm level, cost-sensitive and ensembles
methods. Data level approaches act directly on the training set, employing resampling
methods to balance the class distribution. Resampling techniques can be categorized
into three groups: undersampling, oversampling and hybrids. More in detail, several
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undersampling and oversampling techniques have been illustrated. Among the oversam-
pling approaches SMOTE and its variations (Boorderline SMOTE, Safe-Level SMOTE,
ADASYN) have been described. It has been identified the main drawback of these meth-
ods, that is the blind choice of the k nearest neighbors considered to generate the new
synthetic examples. A new novel method called "Automatic determination of neighbor-
hood size", able to solve this problem, has been explained. Among the undersampling
techniques four data cleaning approaches have been described: Edited nearest neighbors
rule, Tomek Link, One side selection and Neighborhood cleaning rule. Their objective
is to clean the majority class examples from noisy and borderline examples in order to
have a smoother decision boundary. Lastly, a cluster based sample approach has been
described.
Algorithm level or internal approaches aim to improve the existing learning process in
favour to the minority class. This kind of method requires specific knowledge about the
classifier and the data domains application. Among these techniques we have the Ker-
nel based methods, the Active learning methods and One class learning methods. Cost
sensitive approaches include data level, algorithm level or both mixed. The objective of
this kind of solutions is to assign different misclassification cost to each class. There are
two main ways to implement cost sensitive methods: Direct methods and Meta-learning
methods. The direct methods act inside the learning process adding cost sensitive ele-
ments, while the meta algorithms act on the training data. The latter can modify the
data on pre-processing step, resampling the examples according with cost sensitive de-
cision matrix, or at the end of the process acting to the classification threshold. As a
combination of all these approaches there are the ensembles. They are built with the
aim of improving the performance of a single classifier by training several classifiers and
then aggregate their prediction. The two most famous ensemble techniques are Bagging
and Boosting. Bagging methods generate different bootstrapped training dataset. The
model is trained on each boostrapped training set and then all the predictions are aver-
age. Boosting procedure on the other hand, combines weak classifiers in other to produce
produce a powerful "committee". The ensembles methods do not need to modify the base
classifiers. In imbalance context, they generally act on the ensembles learning algorithm,
inserting data level approaches and cost sensitive frameworks.

In the second part of the thesis it has been presented a case of study developed dur-
ing an internship in Reale Mutua Assicurazioni. The company is interested in exploiting
information about data regarding RCA quotations. The business aim is to detect impor-
tant information about the client’s price sensitivity. The collected data coming from an
online sales channel "Segugio". Among all the quotations recorded, only 1% have been
converted into a policy. This means that the number of positive class examples (converted
policies) is very imbalanced compared with the number of negative examples (not con-
verted policies). In order to handle the imbalanced class problems two set of experiments
have been proposed. In the first ones, three different undersampling and three different
oversampling techniques are applied to balance the class distributions. The performances
of these approaches have been compared in terms of F-measure, employing four classifiers
: Decision tree classifier, Random Forest classifier, Logistic Regression, Support Vector
Classifier. Also the performances in the original imbalanced dataset have been taken into
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account. From these experimental results, it is emerged the incapability of all the classifier
to better recognize element of the minority class, that corresponds to low values of recall
measures. When an increase of this value has been recorded, such as in the Decision tree
(80%) and Random forest (84%), applying RUS techniques, a drop in the precision, (4.5%
and 5% respectively) has been registered resulting in low F-measure scores (8%, 10%).
Tomek Link and Neighborhood cleaning rule, on the other side, were not been able to
delete a high number of examples from the majority class, leaving the training dataset
imbalanced as in the original scenario. When the oversampling techniques are employed,
a number of positive elements equals to the difference with the number of the examples in
the majority class are generated. As our imbalanced was about 1%, a very high number
of new samples are generated inside the training set. When we test the training model on
each validation fold, that is not affected by oversampling, the results are a degradation
of all the classifiers performances. Despite this, Decision Tree classifier without the ap-
plication of any re-sampling techniques resulted as the best model, but with a recall only
about 64%. This is compensated by a high precision, about 80%, that lead the F-measure
about 74%, that is best value among all the tested approaches.
Once it has been identified the best classifier and the best re-sampling techniques the first
part of the experiments is concluded.
In the second part of the experiments, an algorithm level approach is employed to improve
the performance of the best control algorithm. To this end, a study of the performances
employing Gradient boosting decision tree classifier has been carried out. The Gradient
boosting classifier has been shown to be a very powerful classifier able not only to reach
the highest performance in terms of F-measure (84%), precision (93%) and recall (74%),
but also to give us information about the importance of the variables in our model. Un-
derstand what happens inside the "black-box" is of primary relevance in business decision
contests. The results suggested that the gross amount is the most relevant features and
it plays a fundamental role in the discrimination between the classes. Finally, it has been
carried out an example of the limitation of this model. It has been observed a drop in the
model precision (43%), when the extreme values of gross amount are excluded from the
training dataset, and so we have more or less the same values of this variable among both
the classes. In this scenario it would be interesting to investigate the interaction between
the others most informative variables, in order to understand which factors influence the
client’s price sensitivity.
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Chapter 1

Introduction

This master thesis aim to investigate the classification in imbalanced dataset. To this end
and theoretical and practical investigation of the problem is carried out. This work, is
divided into two parts. In the first four Chapters theoretical arguments to explain the
imbalanced class problems will be carry out. In the last two Chapters a real application
of the problems will be presented through a case of study. The structure of this work, is
the following.
In the Chapter 2, an investigation about the nature of the problem is presented. The study
of some intrinsic characteristics of the data such as the problem of the small disjuncts,
the overlapping between classes, the presence of noise and borderline examples, shows
in which way they affected the learning process when the imbalanced between classes is
present.
In Chapther 3 the state of art solution are analyzed. In deep we will examined some data
level approaches. Among the oversampling method we will analysed: SMOTE, Borderline-
SMOTE, Safe-Level SMOTE, ADASYN, AND-SMOTE, CBO. [[4],[8],[3],[11],[34],[15]].
Between the undersampling will be analyzed: Edited Nearest neighbor, Tomek link, One
side selection, Neighborhood cleaning rule, and a cluster besed undersampling techniques
[31],[27],[16],[18], [33]
. In Chapter 4 will be found a description of three well known classifiers together with a
brief explanation of the reasons that take these classifiers to be biased towars the major-
ity class. The classifiers will be described are : the support vector machine, the logistic
regression and the decision tree.
In the Chapter 5 the case of study will be presented. It will be described the contex-
tualization but also the structure on the data collected by the company and that wil e
analyzed in Capther 6. Here, we can find all the experimental results.
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Chapter 2

Problem statement

2.1 The nature of problem

In the last decade many machine learning approaches have been developed to cope with
the imbalance learning problem. The awareness about the latter is growing since it finds
application in many domains such as computer science, f.i. face recognition, epidemiology,
f.i. medical diagnosis in rare disease, finance, f.i. detection of fraud detection, and so on.

In all these cases the imbalance is a direct result of the dataset nature, this type of
imbalance is called intrinsic.

In contrast with this definition there is the extrinsic imbalance, when the imbalance is
caused by the biasing in the data acquisition process. In order to clarify this definition we
can think about a dataset that is generated by a stream of balanced data over a specific
time interval. If during the acquisition interval the transmission of the data has occasional
interruption, then, the results dataset, can be imbalanced [10]. So we have obtained an
imbalance dataset from a balanced data space.

Class imbalance can furtherly be cathegorized in absolute or relative [29]. The former
class is based on samples associated to exceptional event that are generally difficult to
observe, so they are rare in an absolute sense. On the other hand objects may not be rare
in an absolute sense but are rare relative to other objects. An imbalance can be defined
relative when many positive or negative example can be observed but the imbalance ratio
is high [[29]].

In the next section the main problems that arise in mining imbalanced data are dis-
cussed and analyzed.
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2 – Problem statement

2.2 The problem of skewed distribution
By definition a dataset is "imbalanced" if its imbalance ratio (IR) is > 1.

IR = N+

N−
(2.1)

where N− and N+ are the number of examples belonging to the minority and the
majority class respectively.

The minority examples are usually the most important instances to be learnt but, as
we said in the previous section, they are difficult to acquire because their are associated
with extraordinary or costly events. As a result their representation inside the dataset is
weakened by the strong presence of the majority class instances.

However, the main problem that has to be faced with imbalanced dataset, is that
standard classifier are biased towards the majority class. This behaviour is influenced by
different factors: for example the classifier learning process would be designed with the
objective of optimize global metrics such as prediction accuracy. This results in a good
coverage around the majority class while the minority examples are misclassified.

The skewed class distribution is not the only responsible of the performance degra-
dation. There are several data intrinsic characteristics that must be taken in account in
order to achieve a better performance and a complete understanding of the problems.

2.3 The problem of small disjuncts
The minority concepts may additionally contain sub-concepts with limited instances, sur-
rounded by majority class examples [Fig 2.1].

This scenario causes degradation in the classifier and it is known as problem with small
disjuncts. A great number of studies demonstrated that small disjuncts have a higher
error rate than large disjuncts [ [30], [15],[28],[12]].

More in detail, when a classifier tries to learn instances, it creates several disjuncts,
which are joined with a subconcept of the original concept. The coverage of a disjuncts
corresponds to the number of training examples correctly classified. If that coverage is low,
a disjuncts is considered small. The classifier bias, the presence of noise attributes and
the size of the training set make small disjuncts more error prone. Different approaches
has been used to face this problem such as the deletion of all small disjuncts or the use
of statistical significant testing to ensure the importance of small disjuncts in order to
remove only the subconcepts that are not significant. All these strategies lead to poor
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2.4 – The problem of overlapping between the classes

Figure 2.1: Illustrazion of small disjunct (a) and overlapping (b) [[25]]

performances [[12]].

Recently, [15] proposed a cluster-based oversampling method to deal with class imbal-
ance and small disjuncts simultaneously. This method is able to identify rare cases and to
re-sample them as well as to avoid the creation of small disjuncts in the learned hypothesis.

2.4 The problem of overlapping between the classes
Overlap appears when instances of two different classes coexist in the same region of the
data space. As a consequence, the training examples belonging in that region have equal
prior probability estimations, making them very difficult to be learnt.

In [7] the authors showed that overlap could play a major role in determining classifier
performance w.r.t. imbalance.

In [24] several experiments are conducted with different synthetic dataset with the
purpose of testing various imbalance ratio and degree of overlap. It has been inferred that
the class probability distribution is not the only factor that results in a loss of performance
of the learning system but it is also related to the level of overlapping among the classes.

Another important contribution is made by [5] that investigated the relationship be-
tween imbalance and overlap. In particular, they demonstrated that trying to solve over-
lap problem separately lead to a more complex learning system w.r.t. the imbalance one.
When the two factors are acting in concert, they cause difficulties that are more severe
than one would expect by examining their effects in isolation.

In other to validate their hypothesis, the authors employed different synthetic dataset
varying the imbalance ratio, the degree of overlap, both of them jointly and testing the
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2 – Problem statement

performances through SVM classifier. Their results showed that, for small training size
and an elevate imbalance level, the classifier performance worsen, the complexity of SVM
problems grows proportional to the overlap level and the training size. Furthermore SVMs
reach a breaking point when imbalance and overlap level are very high, this point is cor-
related with the peak of complexity.

2.5 The problem of noisy examples

Noisy examples are instances of one class located deep inside the region of other class,
these samples are corrupted in the attribute value or in class labels.

In the case of imbalance dataset, the presence of noisy examples have a huge impact in
the learning of the subconcepts or minority class instances. The learner should be modified
in order to cover noisy examples taking to the undesirable effect of having small-disjuncts.

In order to avoid this scenario, some overfitting techniques, such as pruning, are com-
monly used, but in this way some important minority instances will be neglected.

In [26] an empirical study on the effect of class imbalance and class noise is designed
on eleven different learning algorithm and seven data sampling techniques. The authors
identify which approaches are more robust in imbalance and noise dataset. Their results
showed that many classification algorithm are more sensitive to noise than imbalance, but
as imbalance increases in severity, it plays a larger role in the performance of classifiers
and sampling techniques.

2.6 The problem of borderline examples

Another problem of high interest is the high or low presence of instances located in the
area surrounding class boundaries, named borderline examples. The latter is strictly re-
lated with the overlapping between classes.

As we can see (Fig 2.2) these examples have a huge impact in the determination of the
boundary’s shape, and the presence in concert of noise instances will take them to move
to the wrong side of the decision boundary.
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2.6 – The problem of borderline examples

Figure 2.2: Illustration of the decision boundary in presence of borderline examples [in[25]]

In classification problems the better the definition of borderline area, the more accurate
identification of the different classes will be. In [21] the authors presented an experimental
study in which they investigate the impact of noise and borderline examples in the mi-
nority class on classifier performances. Their results showed that the borderline examples
affect performance of a classifier leading to degradation.
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Chapter 3

State of art solutions

A large number of approaches have been proposed to deal with the class imbalance prob-
lem. These proposal can be organized into three categories depending on how it face the
class imbalance.

1. Algorithm level.
The algorithm level (internal) approaches aim to improve the existing classifier learn-
ing process in favour of minority. This kind of method demands specif knowledge
about the classifier and the data domain applications. Consequently, they have low
generality.

2. Data level.
Data level (external) approaches introduce preprocessing step where the training
instances class distribution is altered getting more balanced samples, in order to
decrease the skewed class distribution during the learning process that allow classifier
to perform in conditions similar to the standard classification. A dataset can be re-
sampling through three ways: over-sampling the minority class, under-sampling the
majority class or with a combination of the two previous approaches. Although
data level approaches have the advantage to be independent from the underlying
classifier they present some drawbacks. Undersampling the majority class we can
exclude potentially useful data while oversampling the minority class can increase
the likelihood of overfitting. Additionaly will be difficult to maintain the same data
distribution after oversampling because the presence of overlapping between classes
is more probably.

3. Cost sensitive.
Cost sensitive include data level, algorithm level or both levels mixed. The aim of
this of solutions is to assign different misclassification cost to each class and therefore
to minimize higher cost error. The standard public dataset do not contain costs, that
are very hard to set because their strictly dependence on the dataset characteristics.
As a consequence overfitting is highly likely when searching to find the most probable
costs.
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3 – State of art solutions

4. Ensembles of classifier.
Another group of techniques that have been very popular in the last decade are
Ensembles of classifier. The basic idea behind this approach is to train several
classifier and then aggregate their prediction to output a single class label. Not only
multiple classifier could have better performance than a single one, but also convey
diversity for avoiding the overfitting of some algorithms. The two main techniques
are Bagging and Boosting.
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3.1 – Data level techniques

3.1 Data level techniques
3.1.1 Oversampling methods
The simplest oversampling method is random oversampling. Through this method exact
copies of existing instances are made, this increases the likelihood of overfitting. In order
to deal with this problem several approaches have been proposed.

SMOTE [[4]] :

For each minority class samples the k nearest neighbours belonging to the same class
are found, then new synthetic examples are generated by linearly interpolating some or
all of them. During the process the number of positive nearest neighbours selected to
generate the new examples is chosen randomly. This method, compared to the random
oversampling with replacement, improves the performances. The reason of this behavior
is linked with the decision region built in the two scenarios. When random oversampling
is used, the decision region of the minority class, as the the number of positive examples
grows, can shrink. On the other hand, SMOTE acts in order to enlarge the decision
region of minority class generating correlated points, increasing the coverage inside this
class. The greatest drawback of SMOTE is that it generates data samples from each
minority class examples, neglecting majority class distribution.

Figure 3.1: Illustration of SMOTE technique [[13]]

As we can see in the figure 3.1 the synthetic minority examples c and d are generated
very close to majority examples, this increases the probability to face with the overlapping
between classes problem.
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3 – State of art solutions

In order to solve this problem, several adaptive sampling methods have been proposed
in the last years, including SMOTE variants and cluster-based methods. Some represen-
tative works are next described.

Borderline SMOTE [[8]]:

In this method only examples near to the borderline of the positive class are over-sampled.
The borderline examples are of main importance in the determination of a robust decision
boundary, as they are frequently misclassified.

In borderline SMOTE a new parameter m is introduced, the nearest neighbors size of
a minority example. Employing this parameter, the ratio ri is computed, as the number
of majority examples finding among the m nearest neighbors of each minority example.
Successively this number is used to categorize examples as: "noise" (ri = 1), "danger"
(0.5 < ri < 1), and "safe" (ri < 0.5). The "danger" examples are the easiest misclassified
inside the positive class, so only this kind of sample is taken into account inside the model.

For each danger examples, a number s of its positive nearest neighbors are selected,
and for each of them a new synthetic sample is generated according with SMOTE tech-
nique. The approach described below is called B-SMOTE1.
The authors proposed also B-SMOTE2. In B-SMOTE2 also the negative nearest neigh-
bors of "danger" examples are over-sampled. The generated negative examples are as
close as possible to the positive ones. The described methods outperform the Random
oversampling and SMOTE in terms of true positive rate and F-measure.

Figure 3.2: Examples of safe, noise and danger instances [[10]]

Sefe-Level SMOTE (SL-SMOTE) [[3]]:

In this work each positive instances is assigned to a "safe-level". The "safe-level" of a
positive instance is defined as number of its k nearest neighbors belonging to the same
class.
Another important parameter to take into account is the "safe-level ratio". It is the ratio
between safe-level of a positive instances and the safe-level of one of its nearest neighbors.
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3.1 – Data level techniques

The SL-SMOTE algorithm starts selecting a positive instance p and one of its positive
nearest neighbors n, then the safe level of p and n and their safe-level ratio are computed.
Five scenarios can be identified according with the different values safe-level ratio (slr).

1. slr= ∞ and sl(p) = 0.
This means that both p and n are noise examples, so they are not considered for the
generation of new synthetic instances.

2. slr= ∞ and sl(p) > 0.
A new instance is generated, duplicating p.

3. slr= 1
In this case both p and n are safe examples, so new synthetic instances are generated
interpolating these points.

4. slr>1 and slr<1.
In the first case p is safer than n and so new synthetic instances are created closer
to p. The second case is the inverse.

Through this algorithm the new synthetic examples are collocated in a safe region, avoid-
ing the overlapped and noisy ones. The authors have shown that the proposed method
reaches higher values of F-measure and precision compared to those of SMOTE and Bor-
derline SMOTE, using C4.5 decision tree.

ADASYN [[11]]:

The key idea in ADASYN algorithm is to adaptively assigns to each minority class exam-
ples the number of synthetic samples that must be generated using a weight distribution.
For each examples xi belonging to the minority class the k nearest neighbors are found.
Then, the ratio ri between the number of majority examples present in the k nearest
neighbors and the number of k is computed and normalized (r̂i). After that, the number
of synthetic examples to generate for each xi is expressed by the total number of synthetic
samples to be generated for the minority class multiplied by r̂i. In this way more synthet-
ics instances are created for those samples that are more difficult to learn, leading to an
adaptively decision boundary shift towards these instances. For performances assessment
the authors employed decision tree as classifier and G-mean as metric. Their results have
shown that the new method outperforms SMOTE.

All the previous methods that have been illustrated, used a common parameter k, the
number of nearest neighbors. An improper value of this parameter might lead to poor
decision boundary and overlap between classes. In particular we can identify two common
scenarios ([34]):
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3 – State of art solutions

1. Minority noise instances in majority cluster.
If we consider the rectangular noisy examples in Fig 3.3 (a), techniques such as
SMOTE, ADASYN and Borderline-SMOTE with a k equal to 5, admit the generation
of synthetic samples from these points. This results in a increment of false positive
rate.

2. Presence of small disjuncts.
Small disjunct stays for sub-cluster made up minority class instances. In this case if
the value of k is higher than the size of any minority cluster, it is likely the generation
of synthetic instances inside the majority region. This scenario is illustrated in Fig
3.3 (b) when an instance of B cluster is selected. Moreover, the analogous problems
could show when the minority class is characterized by a complex distribution [Fig
3.3 (c)].

Figure 3.3: Problems observed with incorrect k value [[34]]

These examples suggest that the parameter k must be set carefully. It means that a
different number of nearest neighbors have to be selected for each minority class examples,
according with their characteristics. To this end the follow method is proposed.

Automatic determination of neighborhood size in SMOTE (AND) ([34]):
AND method aims to determine the k size of each minority class examples. For that
purpose, for each example xi belonging to the minority class, hyper-rectangular regions
are built. These regions are constructed in the following way:

regioni,k = ∩pj=1[min(xi,j , nk,j),max(xi,j , nk,j)]

where n is the kth nearest neighbors, and p is the features dimensional space. Next the
union on K (total number of neighbors) is performed. Each time a new neighbor is taken
into account, classification is performed according the following rule: the objects inside
the region are classified as positive while those outside as negative. Accumulating the
regions, more majority objects are included at each iterations, as a results the precision
decreases.
The drop point of this measure is employed to set the best k parameter, and it is used as in
SMOTE techniques. The only variant is that the new synthetic points are not generated
interpolating a generic positive instance with one or all its k nearest neighbors, but are
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generated inside the region. The main advantages of this method is that the synthetic
samples are generated in order to preserve the original distribution of minority class.
The authors have compared the CART classifier performances applying SMOTE, AND-
SMOTE, ADASYN, AND-ADASYN in terms of AUC-ROC and AUC-PR.
The results have shown that the application of this new approach to SMOTE and ADASYN
lead to a classification improvement.

All the previous analyzed techniques are named "distance based". The main drawbacks
of this kind of methods is that they do not suffer the similarity between data. As a
consequence one of the main problem of imbalanced class, "the small disjuncts", has not
been handled with accuracy.
A cluster based oversampling approach is now proposed.

Cluster based oversampling (CBO)[[15]]

The CBO aims to solve within and between class imbalanced in parallel. First, the
train instances belonging to both the classes are clustered employing K-means algorithm.
Then, the majority and minority class examples are randomly oversampled. The majority
class examples are oversampled in order to reach the same size of the largest majority
cluster. The instances of each minority class clusters are oversampled until every cluster
that contains a number of samples equal to the ratio between majority class size and the
number of minority class clusters made. This approach inherits from K-means, a main
property. The clusters are built to have a within cluster variation as small as possible. As
a result, CBO method is able to easily identify rare cases and re-sample them individually.
The author have been demonstrated that this new approach performs better than random
undersampling and oversampling, and An’s oversampling.

Based on this approach others cluster based oversampling methods are developed such
as the Kmeans SMOTE, DBSMOTE, A-SUWO [[6],[2],[22]].
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3.1.2 Undersampling methods
Random undersampling belances the minority class through the random elimination of
sampling belonging to the majority class. Through this blind approach potentially useful
data might be discard leading to an increase of the learner loss. To overcome these issues
several approaches based on cleaning techniques are proposed such as:

Edited Nearest Neighbor (ENN) [31]:
The basic rule’s of this techniques is to remove each majority class examples misclassified
by at half of its k nearest neighbors. If we named M the majority class training set and
with S the set of the saved instances, then the EEN algorithm can be described as follows:

1. let S = M .

2. for each xi inM , drops xi from S if it is misclassified by K-nearest neighbors classifier.

3. return S.

This approach cleans up the majority class from noisy and borderline examples, leading
to a smoother decision boundary and a greater classifier accuracy.

Tomek Links [27]:
Tome links, finds a pair of minimally distanced nearest neighbors belonging to opposite
classes. More precisely given an instances pair xi and xj where xi ∈ P (set of positive
samples) and xj ∈ N (set of negative samples) and d(xi, xj) the distance between xi and
xj , we said that they make a Tomek link if not exist xk such that d(xi, xk) < d(xj , xj) or
d(xj , xk) < d(xi, xj). Therefore when two instances that participate to a Tomek link, are
either noisy or borderline. A good practise is to remove from training set majority class
examples that realise a Tomek link. In this way are preserved all minimally distanced
neighbor belongs to the same class, leading to well defined clusters in the training set
which turn improves classification performance.

Figure 3.4: Tomek link illustration ([10])

One sided selection (OSS) [16]:
The aim of this method is to shrink the majority class set deleting noise, borderline and
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redundant examples in order to soften the sensitivity of imbalanced classes distribution.
The OSS procedure starts with the creation of a set C called consistent subset. A subset
C of the training set T is consistent if correctly classified all the element in T employed
1-NN. Next all the examples that participate to a Tomek Link are remove to C. The
authors compare the performances of two classifiers training with the training set without
changing, the training set without noisy and borderline examples, and that make by OSS.
The last case lead to improvement of the G-means in all the scenarios.
The major drawbacks of OSS is its extremely sensitivity to the noisy examples as they are
removed from the training set.We remember that noisy examples are proud-misclassified.
Keeping some noisy examples in the training set, might improve the capability of the
learner to recognize them. To this end the following method is proposed.

Neighborhood cleaning rule [18] :
It is based on the same principles of OSS but to remove the noisy examples is used Edited
nearest neighbors rule. The ENN approach preserve more data than Tomek Link. The
authors employed the last method basing on the idea that is difficult to maintain a global
good accuracy while the dataset is reduced, and so including in the dataset characteristic
of the data such as noise might improve classification. The resulting method give more
emphasis to data cleaning than data reduction.
The proposed algorithms follows the following steps:

1. The training set T is divided in two set: P that contains the instances of the minority
class and M that contains the others instances.

2. In M are found the noisy elements throught ENN and put in a new setA.

3. Next the three nearest neighbors that miscalssified element in C e that lies in M are
moved in a set B. To avoid the elimination of an excessive number of element in C,
in the B construction only 0,5|C| elements are take into account.

4. Finally the new training set S = T − ({A} ∪ {B})

Experimental results have shown that NCN outperfoms RUS and OSS in terms of True
Positive rates when 3-NN and C4.5 classifiers are employed.

Cluster based sample (SBC) [33] :
SBC undersampling approach aim to preserve majority class distribution. The method
starts with the clusterization of all the training examples. The clusters including more
majority class objects respect to the minority ones, are the most meaningful, as they rep-
resent faithfully the characteristics of the majority class objects. The majority instances
of these kind of clusters are then undersampling in random way, taking into account the
ratio between majority and minority objects inside each cluster.
The authors proposed others five approaches based on SBC, changing the way in which
the majority object are selected in inside each cluster. For examples SBCNM-1, SBCNM-
2, SBCNM-3, SBCMD employ NearMiss family methods to identify majority instances.
NearMiss family methods have the goal to remove majority class objects nearest or far-
thest to the minority ones, using K-NN algorithm.
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The authors have demonstrated that the classical SBC method reaches a high performance
in terms of positive class accuracy compare to RUS, NearMiss2, SBCNM-1, SBCNM-2,
SBCNM-3, and SBCMD, using back propagation neural network.
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Chapter 4

Classification models

Classification is a typical task in the field of data mining. In classification setting we
have a set of training observations (x1, y1), (x2, y2), . . . , (xn, yn) where x express the set of
features that lies in a m-dimensional space X, and y is the response qualitative variable
that takes values in k-dimensional space Y , representing the categorical domains. The
training set Tn is employed to build a classifier, through a rule RTn : X −→ Y . The rule
RTn divided the input space X in subspaces, according to the corresponding labels such
that:

P (Yi|x)
P (Yj |x) > t ∀i /= j (4.1)

where P (Yi|x) is the conditional probability for Y to belong to the class i given the
information about the variable x, while t stays for the threshold over that the observation
x is associated the class i. In order to estimate the probabilities 4.1 several methods
have been proposed, which can be categorized into two main groups: Frequentist and
Bayesian approaches. The first ones assumes that the P (x|Yi) comes from a parametric
distribution for example a Gaussian distribution (Linear discriminant analysis) while the
seconds employed a non parametric estimation for this probability (Decision Tree). We
will focused only to binary classification, in this context the response variable can assume
only two values, that is Y = {Y0, Y1} [[20]].
The classification models that will be described are: Logistic regression, Support vector
machines, Decision tree, Random Forest and finally Gradient Boosting.
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4.1 Logistic Regression
The logistic regression models the probability that Y belongs to a particular category via
linear function in x, that gives outputs between 0 and 1, called logistic function:

P (Y = 1|X) = eβ0++β1X1+···+βpXp

1 + eβ0++β1X1+···+βpXp
(4.2)

where X = (X1, . . . , Xp) are the p predictors.
After simple calculation we find:

log P (Y = 1|X)
P (Y = 2|X) = β0 + β1X1 + · · ·+ βpXp (4.3)

The left side of 4.3 is named logit, while its argument is called odds.
The coefficients θ = {β0, . . . , βp} are unknown and must be estimated, based on the train-
ing data. Logistic regression models are generally fitted employing maximum likelihood
method. The conditional likelihood of Y given X can be expressed:

pk(xi, θ) = P (Y = k|X = xi, θ) (4.4)

The two class problems is generally encoded with 0/1 outputs, yi = 1 when k = 1 and
yi = 0 when k = 2.
The likelihood for N observations can be formulated as:

l(θ) =
N∏
i=1

p(xi, θ)yi(1− p(xi, θ))1−yi (4.5)

taking the log on the both sides and after some manipulations we can write the log-
likelihood :

l(θ) =
N∑
i=1

yi(β0 + βTxi)− log(1 + eβ0+βT xi) (4.6)

Learning the models means to estimate the parameters θ that maximize the likelihood.
To this end the gradient’s computed ignoring β0 :

∇βl(β) =
N∑
i=1

(yi − p(xi, β))xi (4.7)

and the Hessian :

∇2
βl(β) = −

N∑
i=1

xix
T
i p(xi, β)(1− p(xi, β)) (4.8)

as p(xi, β)(1 − p(xi, β)) ≥ 0, the Hessian of lβ is semidefinite negative so lβ can be
represented by a concave function. For a concave function we can always find maximum
points through numerical methods such as Newton-Raphson. [9] [14]

In [23] a study on the effects of class imbalanced on maximum likelihood logistic
regression has been conducted, showing the tendency of this model to under-predict the
conditional probability of the minority class.
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4.2 Support vector machine
SVM finds a optimal separate hyperplane between separable e non separable classes.
Given training data {xi, yi}Ni=1 with yi = ±1, a hyperplane is defined as:

{x : f(x) = β0 + βTx} (4.9)

where ‖β‖ =1.
If the classes are separable exist infinite function f(x) such that yif(xi) > 0 ∀i.
Therefore we have to use a criteria to decide which separate hyperplane to use.
In SVM the maximal margin hyperplane is chosen. As the term suggest the maximal
margin hyperplane is the hyperplane with the farthest minimum distance to the training
observations. Therefore construct the maximum margin hyperplane implies the resolution
of the following optimization problem :

max
β0,...,βp ‖β‖=1

M (4.10)

s.t. yi(β0 + βTxi) ≥M (4.11)

According with the constraint each observation must lie on the correct side of the hyper-
plane and at with a minimum distance M from it.
If overlap between classes is allowed, the margin is called soft.
The hyperplane in this case is built with the objective of correctly separete most of train-
ing observations, but also to permit the existence of some misclassified examples.
To this end the optimization problem can be rewrite :

max
β0,...,βp ‖β‖=1

M (4.12)

s.t. yi(β0 + βTxi) ≥M(1− εi) (4.13)

s.t. εi ≥ 0
N∑
i=1

εi ≤ C (4.14)

In 4.14 εi are named slack variables.
This variables tell us the collocation of the ith observation respect to the hyperplane and
the margin, while C parameter indicates the amount of observations that can violate the
margin. The instances that lie on the margin or on the wrong side of the margin are
known as support vector.
As we can observed form the optimization problem formulation only the support vectors
influenced the classification. Therefore the parameter C control the bias-variance trade-off
of the support vector.
In imbalanced data context if the parameter C is not high the SVM builds a margin that
is the largest as possible with low cumulative error, resulting in a classifier that learn to
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classify all the examples as negative.
The cumulative error about the positive class don’t lead a significant contribution to the
classification. Moreover as the degree of imbalanced increase also the proportion between
negative and positive support vector becomes imbalanced [9] [14].
As a consequence a test observation near to the boundary is more likely classified as
negative as its neighborhood consist of only negative support vector [[1],[32]].

4.3 Decision Tree
Tree based method segments predictors space into rectangular regions, and then fit a
sample model inside each regions.
Given training observations {xi, yi}Ni=1, with xi ∈ Rp, we have to split the predictor space
into distinct boxes R1, . . . , RJ .

Firstly a splitting variables Xj and a split point s are considered, that determine the
pair of half-planes:

R1(j, s) = {X|Xj ≤ s} R2(j, s) = {X|Xj > s} (4.15)

the value of j and s are chosen to minimize:

Q1 +Q2 (4.16)

where Q1 and Q2 stay for measure of node impurity, inside R1 and R2 respectively.

The most popular measure of node impurity are : the classification error rate, the Gini
index, the cross-entropy.

In a generic node j belong to the region RJ with Nj observations, we can defined:

p̂jk = 1
Nj

∑
xi∈Rj

I(yi = k) (4.17)

it represents the proportion of observation in the node j that belong to the class k.

The classification error rate express the fraction of training observation in the region
Rj do not classified in the most common class:

E = 1−max
k

p̂jk (4.18)

The Gini index’s a measure of the total variance inside a class K in the region Rj :

K∑
k=1

p̂jk(1− p̂jk) (4.19)
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As small values of the Gini index show that the node is composed by observations of one
class, it is also see as a measure of the node purity.

The cross-entropy deviance is quite similar to the Gini index and it is defined as :

−
K∑
k=1

p̂jk log p̂jk (4.20)

After the first split the process is replicated for all the regions up to a stopping criteria
is not reach.

During the classifier building process we have used measure of node impurity to determine
the best splitting criterion.
All these measures are minimized when 4.17 reach values high values.
In the binary classification task this means that the most frequent occurring class is cho-
sen at each iteration.
For imbalanced dataset this results in splitting rules that promotes the majority class.
Therefore inside each region are found association rules with high confidence but not with
high significant and rules with low confidence, i.e. those involve the minority class, are
discarded. [[19]] [9] [14].
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Chapter 5

Case study from the insurance
domain

The insurance market is all about the concepts of risk and management of risk. Nowadays
insurance companies have compiled huge volume of data and extract meaningful informa-
tion is the new challenge task. Machine learning techniques are employed by insurers
to device strategy for customer acquisition and retention, to risk assessment, to claims
prediction but also to develop procedure for prices optimisation. The last is the focus of
this case study.

Reale Mutua Assicurazioni is interested to exploit information about RCA quotation,
in order to test client’s price sensitivity and consequently, to adjust the policy price dy-
namically. The price optimisation procedure give the opportunity to increase the client
loyalty in the long period but also to maximize the profit of the company.
In the next section a detailed description of the case study is provided.

5.1 Case study description
The insurance company collected every day thousand of RCA quotation. Of all these
quotation only a 1% are converted namely are signed. This means that we are going to
handle high imbalanced data, with a positive class (converted policies) that have a greater
importance respect to the majority ones for the domain experts.
In order to understand the nature of the imbalanced problem it is necessary to describe
the procedure through which a client can request a quotation, and the way in which the
data that will analyzed are collected.
In this case of study are considered only the online quotation and in particular those
coming from the most used sale channels: "Segugio".
The customer that would request a quotation for a RCA policy through Segugio, must
insert the demanding personal data in the channel. Based on these data the channel dis-
played a policy price. The client can decide to sign the policy and so to fix an appointment
in the agency or to not sign the policy.
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An main information is that the policy price is not static, but it changes during the time.
As a results the clients demand several quotations before accept the proposed price. This
is the main factor that influenced the imbalanced class distribution in this case of study.

5.2 Features enrichment
In this section are described the available dataset and then the process of features extrac-
tion.

There are two types of dataset: those coming from Segugio and those that coming
directly from the company. The data coming from Segugio can be divided into three main
areas:

1. Registry dataset.
Inside this category there are both contractor than owner registry data (if they
are not the same person) i.e : name and surname, city of residence, date of birth,
profession.

2. Vehicle characteristics dataset.
These are the data includes in the car booklet i.e set-up, model, date of enrolment,
covered kilometers.

3. Insurance client history dataset.
The risk certificate contains the information about the insurance client history i.e
number of accidents, distance from the last accidents,the effective data, the risk
class, but overall the merit category.

The company dataset contains all the parameters employed by the company to assign
the policy price but also includes the information about the conversion (or not) of the
policy.

All these dataset are not ready for the analysis, some preprocessing steps are needed to
built our final dataset. First of all they have been merged in a unique dataset according
with the primary keys that were in common. The others operation are following described

5.2.1 Data preprocessing
Data preprocessing is a fundamental step in Machine Learning as the quality of our data
have a huge impact on the model learning. Therefore is really important analyze our data
before training our model. The following steps are applied in this context:

1. Handling Nan values

2. Standardization

3. Elimination of features with low variance
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4. Correlation analysis

1. Handling Nan value
In any real word dataset we face with null values. It might means that this type of
information or is not available or it could be the results of some previous elaboration
of the dataset. As no model can deal these values we have to manage it. To this end
two main approach are possible:

(a) Drop
We can decided to drop the rows or columns that contains null values, but it
is not the best approach as it could lead to loss of information, especially in
little dataset. Frequently could happen that a high number of Nan’s value are
associated to a particular features, so if it don’t give a lot of information into
the model we can deleted it.

(b) Imputation.
We can substitute missing value through: customized function, mean or median
along the column, or a constant.

Firstly is used the isnull() function presents in pandas, in order to have the number
of null value for each fields, then the columns with more then 0.70 % for Nan’s value
are removed. For the others cases according with the domain experts is decided
to substitute the Nan’s values with a great number out of range of each sample
belonging to the dataset. This choice is taken with the prospective to preserve
important information.

2. Standardization
Standardization is process to put variables on the same scale. This process helps to
compare samples belonging to different scale. For example Percentuale sconto aggre-
gatore range values(0,1) while importo premio lordo annuo range values (500,3000)
so the learning model usually give more weight to the second variable. Through
standardization we can compare scores between different types of variables.
The score is defined in this way: zi,j = xi,j−µj

σj
.

Therefore for each sample xi,j we subtract the column mean e dived for the column
standard deviation.

3. Elimination of features with low variance.
It is decided to delete features with variance equal to zero, so those that have the
same value for all samples. This type of variable doesn’t give contribution to the
model explanation. For example codice canale estrazione is a code that identify sales
channels of the policy and it is always the same for all samples (Fig 5.1)
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Figure 5.1: Example of features with variance equal to zero

4. Correlation analysis
Correlation analysis is perform to identify the strength of relationship between a pair
of variables.
The Person correlation index coefficient between two random variables X and Y is
defined as:

ρ =
∑
i(xi − x̄)(yi − ȳ)√∑
i(xi − x̄)2(yi − ȳ)2 = Cov(X, Y )

V ar(X)V ar(Y ) − 1 ≤ ρ ≤ 1

A high correlation means that two variables have a strong relationship.
As we can see from the Fig ?? there are some group of variables highly correlated. An
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Figure 5.2: Some examples of strong correlation between variables

important examples is provided by the features that include the "importo" denom-
ination (Fig 5.2). The variable importo premio lordo annuo is strongly correlated
with importo premio netto annuo, importo ssn, importo imposte, importo premio rca.
This means that if we try to predict the value of importo premio lordo annuo using
the correlated variable through a linear regression we have a low mean square error
and high variance explained (Fig 5.3).

Figure 5.3: Output of importo premio lordo annuo’s prediction through its most correlated
variables

All the information included in importo premio lordo annuo can be explained through
the others variables.
Therefore take in account correlated features means to have redundant information
in our dataset.
A good practice is to remove the features with correlation coefficient greater than a
threshold.
In our case we have chose threshold equal to 0.80.
Before the elimination of these features is necessary to make a point.
The correlation coefficient is more influenced by the negative class, as this represents
99% of our samples.
Therefore it is useful to analyze separately, the behavior of the variables inside the
minority class.
Analyzing the correlation inside the positive class (Fig 5.4 (b)) we can point out that
the high correlation between the variables that express an amount is not preserved
at all.
As an examples ′importo_premio_rca′ and ′importo_premio_netto_annuo′ in the
all dataset had a correlation coefficient equals to 0.95, while inside the positive class
this value is decrease up to 0.66.
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(a) Correlation matrix all dataset

(b) Correlation matrix positive class

Figure 5.4: Correlation matrices

Figure 5.5: Amounts correlation positive class
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In view of this are eliminated from our features set only the variables that have
strong correlation in both scenarios.

The final datset contains 190K samples and 50 features. The imbalance between the
two classes is about 1 %. Now we are ready to process our data, set up configuration and
experiments are described in the next chapter.
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Chapter 6

Experiments

The experiments can be divided into two part.
In the first Decision tree classifier, Random Forest classifier, Logistic Regression, Support
Vector Classifier are used with the parameters in table 6.1. Each classifiers performances
is evaluated in terms of F-measure. This measure is obtained after a stratified five-folds
cross validation. The final F-measure is the average of the values obtained in the five
validation sets. The classifiers are applied on the original set and on the sets obtained
employing several re-sampling techniques (table 6.2). From these experimental results it
is emerged the incapability of all the classifier to better recognize element of the minority
class, that corresponds to low values of recall measures. When this value sightly increase
such as in decision tree and random forest, applying RUS techniques, a drop in the preci-
sion is registered resulting in low F-measure scores. Despite this, Decision Tree classifier
without the application of any re-sampling techniques results the best model, but with
a recall only about of 64%. This is compensated by a high precision of % 80 that lead
the F-measure about 74%, that is best value among all the tested approaches. A very
similar results in terms of F-measure is obtained employing Tomek Link and Neighbor-
hood cleaning rule as preprocessing techniques and decision tree as classifiers. As these
two cleaning techniques are not able to delete a significant amount of majority examples
from the training set, the training set in the original scenario and in this two cases are
quite the same. Once it has been identified the best classifier and the best re-sampling
techniques the first part of the experiments is concluded.

In the second part of the experiments an algorithm level approach is employed to
improve the performance of the best control algorithm. To this end a study of the Gradient
boosting decision tree classifier will be carried out. In the Gradient boosting classifier the
imbalanced classes is handle by the learning process itself and we will see that there is
not the need to employ any data level techniques. It is able to reach the highest value
of F-measure 84%, including a recall of 78%. A great advantage of the gradient boosting
classifier is the easy interpretability of its results. In the last part of this chapter an analysis
of the variables importance inside this model will be presented but also an example of the
model limitations.
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6.1 Experimental design
All the experiments have been carried out using Jupiter Notebook in which it is installed
Python 3.7 version. Jupiter notebook sever was executed remotely on an Azure Databricks
cluster with 14.0 GB Memory, 4 Cores, 0.75 DBU.

Before testing any models it is important to split our dataset into training and test set
(sometimes we used also a validation set) in order to avoid over or under fitting.
This may happen when we built a model that performances very well on the training set
but it will be not so accurate in front of new data.
This means that the model is not generalizable so we can not extend our prediction to
others data.

In Sklearn there is a sublibrary model selection that contain the ”train_test_split”
function which require:

• the training size

• the test size

• if we want to shuffle the data before splitting

• if we want to split the data in a stratified way, using the class label for example.

• if we want to shuffle the data of instances to put in the training and test set

Our dataset consists in 196K samples and 50 features. It is decided to put the test size
equal to 0.20, to shuffle the data and especially to stratified respect to the class label
in order to train a model with the same criticality of the original dataset. The training
set is next divided into five stratified folds. Four of these folds are used for training the
classifiers and the last block as validation set. This further splitting is made in order
to validate the best parameters configuration for a classifier or the best performances
towards different model. In this way, once the control method (or the best configuration
of parameters) is identified it can be tested on a new set of data, that we have called test
set. This procedure lead to a great reduction of the chance of overfitting problems.

The classifiers employed are:

• Support vector machine

• Logistic Regression

• Random forest

• Decision tree
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Algorithm Parameter Value

SVC
C (penalty) 1

Kernel Linear
Logistic Regression penalty l2

Random
Forest

max_features 2
√
n_features

number_estimators 100
criterior Gini

Decision
Tree

min_samples_leaf 5

Criterior Gini

Table 6.1: Experimental setting for classical classification algorithm

In order to evaluate the classification performances, the following measure of perfor-
mances are employed:

• Precision (P)

• Recall (R)

• F1 score (F1)

• Specificity (TN)

• The area under the Receiver Operating Characteristic (AUC)

One way to solve the imbalanced learning problems is to modify the class distribution
in the training data by under or over sampling.
In the following experiments several re-sampling techniques are compered (Table 6.2), in
order to investigate their contribution on the classifiers performances.

Re-sampling strategy Technique Reference

Undersampling
RUS

Tomek link [27]
Neighborhood cleaning rule [18]

Oversampling
ROS

SMOTE [4]
Kmeans SMOTE [17]

Table 6.2: Re-sampling tested techniques
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6.2 Experiments results on the resampling techniques
This section aim is twofold. Firstly we want to analyze the impact of several resampling
strategy on our imbalanced dataset. To this end several under and oversampling perfor-
mances are compered in terms of F-measure metric including also the performance in the
original dataset. According with this study we want to establish if the data level approach
is able to solve the imbalance problem and which are the best strategy and best classifiers
performances.
The average and standard deviation F-measure results on the five test sets of the cross
validation process for each classifiers and each preprocessing techniques are shown in Fig
6.4. From this graph it is excluded the Logistic Regression as its performances are re-
sulted very low and unchanged in all the problems and so it is not considered of interest
for this analysis. In tables 6.1,6.4,6.5 are reported more detailed information including
the precision, recall,specificity and AUC mean values for each problem.
As one might be expect the performances applying random undersample is the worst for
all classifiers. The random undersampling delete from the majority class elements in a
random way up to a balance with the number of minority class elements is reached. This
lead to the elimination of 99% of our training data, and consequently to a high loss of infor-
mation resulting in very poor performances. On the opposite scenario when over-sampling
techniques are employed, a number of positive elements equals to the difference with the
number of the examples in the majority class are generated. In this scenario we have an
extreme number of new samples. The training set size in each folds doubles respect to the
natural set of data. When we test the training model on each validation folds, that is not
subject to oversampling, the results is a degradation of all the classifiers performances.
Only the average F-measure value obtained with random oversampling when the decision
tree is used as classifier is not so corrupted. In other to better understand this results,
we remember that the F-measure metric is a weighted average of precision and recall. If
we look at the results in table 6.5 we can observe that all the precision values, compares
to the values of the underlying performances in the imbalanced dataset, in table 6.3, are
interested by a huge drop. This means that including a great number of new positive
examples into the training sets, lead to an increase in the false positive rate. Classifiers
tends to overestimate the elements of the majority class.

The best performances are obtained: in the original scenario, applying Tomek Link and
Neighborhood cleaning rule. The the last two are two data cleaning techniques. Tomek
Link and Neighborhood cleaning rule act on the original dataset deleting from the ma-
jority class all the noise and borderline examples. In Figure 6.5 we can observe that only
applying the Neighborhood rules we can observe a slight reduction on the majority class
examples. On mean are deleted 567 majority examples on each training folds sets applying
Tomek link, and 3432 with NCR techniques.

From this preliminary analysis is revealed that the decision tree classifier is the most
robust classifiers. While these data-level approaches are not able to handle effectively
the imbalanced problems. In order to ascertain this statements a statistical analysis is
following carry out.
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One-way ANOVA is a practical statistical technique to evaluate if two or more popu-
lation means are different or not, or better, to understand if different treatments are able
to produce a concrete effect on the control variable. In this case it is tested if the F-
measure values obtained by the decision tree are influenced by three types of treatments:
the Tomek Link, Neighborhooh cleaning rule and any resampling.
Firstly, it is necessary to fit a linear regression model to predict the F-measure value in
function of the treatments and to check from this previous analysis if this model explained
a significant amount of variance or not. The results in Fig 6.1 shows that the F-statistic
of the model is about 2.007 and the p-values 0.154, this tells us that the there is not a
significant difference in groups means. It is pointed out by the p-values of the coefficients
in the output, that are all greater than 0.05. This p-values are the results of the t-test
between each mean groups and the intercept, that corresponds to the model without re-
sampling. In order to ascertain the linear regression outputs we can see from the figure
6.2 and the figure 6.3 that normality and homoscedasticity of the residuals are verified.

Figure 6.1: Linear regression results
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Figure 6.2: Residuals normality distribution

Figure 6.3: Residuals homoschedasticity

In conclusion the performance of the Decision tree applying Tomek Link, Neighborhood
cleaning rules and in the natural scenario are statistically equivalent. Now that we have
identify the best models we can test them on the test set.

The results on the test set shows that the Decision tree better performs when we don’t
employed any resampling techniques. The corresponding F-measure are 77.6% , 62.5%,
64.1%.

It is relevant now, to reintroduce our objective of this study. On one side we want to
analyze the impact of imbalanced data on classifiers performances, on the others we want
also to find a models that give us meaningful information about the positive class and
high accuracy on the underlying class. The decision tree recall is only about 64% . In the
next section it is applied a new technique to improve this value.
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(a) Test set confusion matrix natu-
ral scenario

(b) Test set confusion matrix apply-
ing Tomek Link

(c) Test set confusion matrix apply-
ing NCL

Algorithm P R F1 TNR AUC
SVC 0.809 0.454 0.474 0.97 0.716
LR 0.011 0.383 0.022 0.674 0.528
RF 0.975 0.419 0.585 0.99 0.70
DT 0.808 0.642 0.741 0.99 0.82

Table 6.3: Experimental results with the natural sets

Classifier Technique P R F1 TNR AUC
SVC RUS 0.056 0.50 0.08 0.75 0.55
LR RUS 0.011 0.383 0.02 0.675 0.52
RF RUS 0.05 0.869 0.108 0.85 0.85
DT RUS 0.045 0.803 0.086 0.834 0.818
SVC Tomek link 0.214 0.614 0.168 0.69 0.65
LR Tomek link 0.011 0.38 0.02 0.675 0.528
RF Tomek link 0.980 0.428 0.591 0.99 0.711
DT Tomek link 0.895 0.654 0.775 0.99 0.826
SVC NCR 0.605 0.653 0.450 0.783 0.718
LR NCR 0.011 0.393 0.022 0.671 0.532
RF NCR 0.976 0.416 0.583 0.99 0.708
DT NCR 0.863 0.624 0.724 0.99 0.811

Table 6.4: Under-sampling experimental results49
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Figure 6.4: Average and standard deviation F-measure values results on the resampling
experiments

Figure 6.5: Training classes distribution applying undersampling techniques

Classifier Technique P R F1 TNR AUC
SVC ROS 0.0118 0.686 0.034 0.553 0.619
LR ROS 0.010 0.353 0.020 0.675 0.513
RF ROS 1 0.291 0.450 1 0.645
DT ROS 0.677 0.690 0.683 0.99 0.843
SVC SMOTE 0.038 0.728 0.567 0.069 0.673
LR SMOTE 0.010 0.352 0.02 0.675 0.513
RF SMOTE 0.909 0.092 0.167 0.99 0.546
DT SMOTE 0.365 0.346 0.354 0.994 0.67
SVC KMeans 0.054 0.713 0.09 0.594 0.65
LR KMeans 0.010 0.352 0.020 0.675 0.513
RF KMeans 0.471 0.352 0.271 0.996 0.674
DT KMeans 0.471 0.352 0.271 0.996 0.674

Table 6.5: Over-sampling experimental results
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6.3 Experiments results on the gradient boosting clas-
sifier

In this section it is employed a boosting ensemble method to handle with the imbalanced
data problem: the Gradient boosting decision tree classifiers. As we have see in the de-
scription of this model the gradient boosting tree classifiers is built using small decision
tree as "weak learner". The boosted tree is the sum of each tree. The revolutionary idea
inside the gradient boosting algorithm is that each tree is fitted on the negative gradient
of the loss function computed on boosted tree obtained in the previous iteration. At each
iteration, the estimated constants assigned to each nodes in the new boosted tree, are op-
timized on the errors committed by their predecessors. We will see that this strategy lead
to a very powerful model not only able to handle the imbalanced class problems, but also
to give us interpretative results, that will have a main role in the business decision context.

Firstly it will be presented the experiments results of the classifier applied on our im-
balanced dataset. Then an explanation of the variables importance is carried out. Lastly
is presented an example of the model limitations.

Tuning Hyper-parameters
In the Gradient boosting classifier as many complex algorithm is subject to overfitting.

In order to handle this issue it is of main importance the role of two hyperparameters:

• Learning rate
The learning rate controls the residuals impact on the final output in each decision
tree. Lower values are generally preferred as they give high robustness to the model

• Number of estimators
Number of sequential tree to be model. There’s a trade-off between the learning
rate and the number of trees needed, so it is necessary to jointly cross validate these
parameters.

To this end a grid search is implemented using a five folds cross validation and F-
measure criterion to evaluate the performances.

Parameters Values
Num_estimators [500,600,700,800,1000]
Learning rate [0.01,0.05,0.10]

CV 5
scoring F1

Table 6.6: Hyperparameter cross validated

The output of this grid search 6.6 points out that the best parameters are: 1000
iterations and a learning rate of 0.10.
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Figure 6.6: Grid search best model

With the same procedure seen for the resampling method are computed the metrics
measures for the gradient boosting classifiers on the imbalanced dataset. In fig 6.7 are
reported the average values of recall, precision and f-measure. The gradient boosting
classifier reach a recall of 78% compare with the 64% of the decision tree and a f-measure
about 84% against the 74% of the other classifier.

Figure 6.7: Comparison of the performance measures on DT and GB

Gradient boosting classifier with this parameter configuration outperform all the oth-
ers methods. It is able to recognized the element of the positive class preserving a high
precision rate.

In order to understand if this model is overfitting our data, the trend between train-
ing and test loss function it is analyzed.
The configuration of the Gradient boosting classifier that it is choose in this test, em-
ployed the binomial negative likelihood loss. The plot in Fig 6.9 shows that the training
and test error scores follow the same trend. As one can be attend the test loss function
lies above the training ones. Moreover this graph demonstrate also that after a number
of iteration equal to 500 more or less the complexity of model increases but there is no an
improvement in the error function.
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Figure 6.8: Confusion matrix

Figure 6.9: Comparison of loss deviance in the training and in the test set

Once establish the robustness of our model we can employed it to extract important
interpretable information about the relationship between the target response and the
predictors.
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6.3.1 Results interpretation
The Gradient boosting classifiers is not only able to achieve the highest accuracy on
the positive class, but it gives also interpretable results. In the business cases it is of
fundamental importance as the interest of what happen inside the "black-box" might help
the decision makers.
In this subsection’s presented an investigation about the relative importance of the features
on the output variables.

Figure 6.10: Features relative importance gradient boosting classifier

The gradient boosting classifier gives us an important metric to evaluate the contribu-
tion of each features in the target output: the relative features importance. We remember
that the relative variables importance quantifies the improvements that of each predictor
gives in the squared-error when it is used as splitting variables on the decision tree. In the
Figure 6.10 is displayed the relative variables importance for each features in dataset. As
one might be expect the features that are discriminant for classification are the "amounts",
followed by geographical information. This means that the customer is clearly influenced
by the policy price when he have to decide if sign or not the contract. This statement will
be latter explained.
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Now that it is known that only a limited group of variables are relevant for the clas-
sification, the features space we will be built according with their importance scores.
For each value of the features importance scores a subset of variables is introduced into
the model, then the new model with the subset of features selected is validated through
five folds cross validation and the mean F-measure is collected.

Figure 6.11: Features validation selection F-measures scores

Figure 6.12: Confusion matrix performance with the eight most important features

The graph (6.11) shows that only the features with the eight highest scores gives an
improvements on the models in terms of F-measure, then it reaches a platau. Accordingly
with these results the model is retrained and tested (6.12)

6.3.2 An example of the model limitations
In this subsection some limitation of our models are carried out.
From the previous section is carried out that the " gross amounts" is the most important
variable in our model. This variables is the most influence in the discrimination between
the two classes in the classification task.
An analysis of its distribution inside the target classes and in the whole dataset might be
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of interest to understand its behavior.

If we look at the distribution of this variable inside the dataset ( Figure 6.13) we can
observe the presence of a long right tail, or better of values that are very far from the
mean. Through the standardization of this distribution we can easily detect these extreme
values. To this end it is chosen a z_score grater than 2.5 (red line in 6.13). Before delete
this examples from our training set we can observe from the scatter plot in Figure 6.14
that they are discriminating between the classes. Or, raher, all the quotation with a gross
amount greater than this z_score belongs to the class of the not converted.

Figure 6.13: Gross amount distribution

It is natural to wonder what happens in our classification process if these extreme values
are put out from our training set. The confusion matrix in Figure 6.15 shows a drop in
the precision measure in this scenario. This means that the classifier is less accurate when
it faces very similar gross amounts inside both the classes.

Figure 6.14: Scatter plot between the gross amount and labels
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Figure 6.15: Confusion matrix performance after the elimination of gross amount extreme
values

In conclusion the gradient boosting classifier is a very powerful classifier able not
only to reach a high performances in an extreme imbalance scenario, but also to give us
very useful information about the importance of the predictor inside the models. But in
business decision context it is important to take into account the phenomena observed at
last, and to investigate the others factors that will be determinant or more discriminant
in this scenario.
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Chapter 7

Conclusion

The main purpose of this thesis concerns the investigation of the problem of classification
in imbalanced data. First, a theoretical study about the nature of the problem and the
state of art solutions has been presented. Through this study, has been pointed out
that there are two main ways to handle the issues of imbalanced data. We can act
directly on the training data applying several resampling strategies in order to balanced
the classes distributions, or we can modify the existing learning algorithms for biasing
the process towards minority class. In the case of study examined in this thesis both the
strategies are experimented on a real imbalanced data. Three undersampling and three
oversampling techniques were applied on the trainind dataset and their performances
among three different classifiers were compared . It has been demonstrated that every
data level algorithm were not capable of solving the imbalanced data problem. Random
undersampling was the one that showed the worst performances among all the classifiers,
as it deleted a huge amount of sampling in other to balance the classes taking to the
loss of information. In case of SMOTE and K-means SMOTE it has been observed the
opposite scenario. In the training over-sampled folds are introduced on mean 118k new
synthetic examples belonging to the positive class and when the classifiers are tested in
the imbalanced validation folds their performances is very poor independent from the
classifier. Tomek Link and Neighborhood cleaning rule, on the other side, are not able to
delete a sufficient number of examples from the majority class, their performance in the
case of random forest and decision tree is the same of that in the original dataset. From
this first analysis emerged that the decision tree classifier is the more robust classifier
and its best performance is reach in the base case without any resampling approach. It
reached a F-measure about 74%, a precision of 80% and a recall only about 64%. In
order to increase the recall value the performance of the gradient boosting decision tree
classifiers is tested. In the gradient boosting classifiers each decision tree is fitted on the
residuals, that minimizing the loss function. The boosted tree is the sum of each tree.
It has been shown to be a very powerful classifiers able not only to reach the highest
performance in terms of F-measure, precision and recall (that is about 74%) but also to
gives us information about the importance of the variables in our model. Understand
what happens inside the "black-box" is of primary relevance in business decision contest.
The results has been suggest that the gross amount is the most relevant features. It plays
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a fundamental role in the discrimination between the classes. It has also been an example
of the limitation of this model. When the extreme values of gross amount are excluded
from the training dataset, and so we have more or less the same value of this variable
among both the classes , a drop in the model precision has been observed.

7.1 Future works
The future developments of this work are twofold. On one side one could think to improve
the gradient boosting model performance on the critical scenario observed. In this partic-
ular cases it will be studied the interaction effects between the others important variables
in order to understand if there are some others factors that might influence customer de-
cision in this context. On the other side integrating new data in the model will be studied
the customers behaviors on a larger temporal space.
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