
Politecnico di Torino

Engineering and Management

MSc Thesis

Emergency humanitarian logistics: models
and algorithms for evacuation planning

Supervisor:
Prof. Marco Ghirardi

Candidate:
Salvatore Caristo

Academic year 2018/2019

A Nonna Caterina e Zio Santo

Emergency humanitarian logistics: models and
algorithms for evacuation planning

Salvatore Caristo

October 2019

Contents

1 Introduction 5
1.1 Linear Programming, Combinatorial Optimization and Solver 6
1.2 Constraint generation in theory 7
1.3 Matheuristics in theory . 7

2 Problem 9
2.1 Description . 9
2.2 Fields of application . 9
2.3 Mathematical models . 10

2.3.1 Equipment of problem 10
2.3.2 Model B . 11
2.3.3 Model S . 12
2.3.4 Model F . 12
2.3.5 Interpretation of constraints 13
2.3.6 Setting of parameters 14

3 Algorithms 19
3.1 Constraint generation in practice 19
3.2 Matheuristics in practice . 21

4 Results 23
4.1 Scenarios comparison in B+S model 24
4.2 Uniform scenario . 24

4.2.1 B vs B+S . 25
4.2.2 Comparison of algorithms 26
4.2.3 B+S vs B+S+F in Matheuristics environment 28

4.3 Concentrations scenario . 30
4.3.1 B vs B+S . 30
4.3.2 Comparison of algorithms 31
4.3.3 B+S vs B+S+F in Matheuristics environment 33

5 Conclusion 35

3

4 CONTENTS

A Xpress IVE codes 37

B Excel data 45

Chapter 1

Introduction

This thesis deals with an emergency humanitarian problem aiming to plan
and control the evacuation time of a building. The main tools used for han-
dling the problem are linear programming models. Our implementation is
based on models originally engineered for many problems like routing design
and strategical positioning of hospitals, shipping centers, hubs, warehouses
and in logistics. In the different proposed configurations, our mathematical
model is able to optimize the evacuation time from the building, deciding the
routing path for all the evacuees and their assigned emergency exits, with
different variants on the evacuation path modelling. But it is also able, in
a planning phase, to choose which subset of candidate positions for emer-
gency exits is preferable in terms of expected evacuation time. The real
case exploited to test this work is the emptying of Palazzo Camponeschi in
L’Aquila during an earthquake. Several solution algorithms have been im-
plemented and tested: both exact (the models themselves and their solution
through the constraints generation techniques, often able to solve more effi-
ciently models with a huge number of constraints), and heuristic (a variant
of the constraint generation algorithm, designed for solving larger problem
instances). The computer that runs the solver, indispensable for solving the
mathematical programming models is an Asus core i5, 8th Gen, 1.8 GHZ
with 8 Gb of RAM memory under Windows 10 Home 64-bits, and the solver
is Xpress IVE with the Mosel language. The first chapter introduces the
main components used in the following. Chapter 2 addresses the problem
itself in detail, introducing the linear programming models and the parame-
ter setting. Chapter 3 describes in practice the algorithms in support of the
model resolution and finally, chapter 4, outlines the results.

5

6 CHAPTER 1. INTRODUCTION

1.1 Linear Programming, Combinatorial Op-
timization and Solver

The study of this thesis falls back in the wide field of Operational Research.
To be more specific, the subject lies in a branch of Linear Programming that
is Zero-one linear programming where some variables are restricted to be
binary. The goal is to interpret a real problem and turning it into a system of
inequalities and this process is known as Mathematical Programming (MP).
Since the system can be very large and very difficult to solve, NP-Hard to put
it in technical terms, some algorithms may be required to solve the problem
within a reasonable time. Those used to solve the problem are classified into
three groups [1]:

• Exact algorithms (see 1.2): they guarantee to find an optimal solution
but may take an exponential number of iterations.

• Heuristic algorithms (see 1.3): they can’t guarantee the quality of the
solution, in fact, it may be sub-optimal. They don’t guarantee to find
the solution in a polynomial time, either.

• Approximation algorithms: they do guarantee a sub-optimal solution
in a polynomial time through the setting of a bound on the degree of
sub-optimality for example by stopping the algorithm after a certain
time-limit.

In the first lines of this section, has not been said that, in addition to
the inequalities, an objective function must be optimized. This leads to
the definition of combinatorial optimization: it deals with problems where
the best solution must be chosen among a finite (although large) number
of alternatives. The best solution is the one dictated right by the objective
function.

All this work is made possible by the use of a Mixed Integer Programming
solver which employs technologies, a suite of pre-processing tools, algorithms
and frameworks and possibly row and column generation functionality for
reaching the target [2].

1.2. CONSTRAINT GENERATION IN THEORY 7

1.2 Constraint generation in theory
Besides the resolution of the whole problem, i.e. the system of inequalities,
that is indeed an exact algorithm, under this family one more approach has
been exploited which is Constraint Generation. This one, instead of solving
the whole problem with a large number of constraints (and consequently with
a run-time that may be large), solves a reduced problem (smaller in terms
of number of constraints) and then a particular condition is checked: if the
condition is violated, further constraints are added to the reduced problem
and the check is repeated (. . . and so on, as long as the condition is violated),
otherwise the solver stops with a solution (if there is one). In other words,
constraints are added only if needed. Is this process advantageous? Perhaps,
it depends on the number of times that the particular condition is violated
and therefore the number of times that a smaller problem must be resolved.

1.3 Matheuristics in theory
As told, an exact approach can be very time consuming when the problem
dimensions are large. In those cases, a lot of different heuristic algorithms
have been proposed in order to find a ”good enough” solution in a limited
amount of time (greedy algorithms, local search, metaheuristics such as tabu
search, genetic algorithms, etc.). More recently, matheuristics have been pro-
posed. The main idea is to use a solver not with the aim to find the optimal
solution, but in order to iteratively solve smaller sub-problems, through a
heuristic scheme. A presentation of possible uses of an LP solver inside a
heuristic algorithm can be found in [2].

8 CHAPTER 1. INTRODUCTION

Chapter 2

Problem

2.1 Description
On the night of April 6, 2009 a brutal earthquake rated 6.3 on the MMS
shook the whole centre of Italy, devastated thousands of lives causing dead,
wounded and refugees, pulverized hundreds of municipalities sparing nothing:
houses, hospitals and schools leveled, as well as the components of the rich
historical and artistic heritage like churches, basilicas and nobiliary buildings.
Among the latter in L’Aquila, Palazzo Camponeschi, under study in this
work: pure baroque style facade with eclectic taste and 14-th century interior.
It suffered severe damages but not for the first time in fact the building has
already suffered in 1703 during another devastating earthquake that deeply
damaged the structure elements and therefore has been redesigned, restored
and consolidated.

2.2 Fields of application
As made guess in the previous section, this problem can be and it is applied
to the tragic event of an earthquake. Here is addressed the problem of evac-
uating a building as quickly as possible. In addition to this application the
problem can be implemented to suit several other problems in humanitarian
logistics for different types of disasters like fires for example in which some-
body has to reach as soon as possible a shelter, a fire extinguisher etcetera.
Other than that it could be exploited for designing routings and in distri-
bution logistics could be applied for location problems where the issue is
locating something like a warehouse, a shipping center, a hub or a hospital.
In general can be adapted to any situation in which something has to move
through a network towards something else in order to quickly meet a certain
goal.

9

10 CHAPTER 2. PROBLEM

2.3 Mathematical models
In this section there will be exhibited three LP problems [5]: the first one and
the simplest allows persons to evacuate without taking into account the real
rules of a real evacuation. During the manifestation of such critical event in
fact it is not possible to fork while leaving a unit cell and furthermore each
arc can be travelled only in one and only direction (because it is practically
impossible to think to control the path each single individual will follow dur-
ing evacuation). These considerations are controlled by further constraints
in the second model. The third and final model has a different goal: it can be
used in a planning phase, in order to choose between a given set E of shelters
a subset e that will save more people in a given amount of time. These three
LP problems are called respectively B (like ’Basic’), S (like ’Straightforward
evacuation’) and F (like ’Filtering’).

2.3.1 Equipment of problem
Here there will be presented the tools of the problem:

• A graph G(V,A) is required to represent the characteristics of the build-
ing at hand.

– V corresponds to set of vertexes in which the building has been
embedded. Every node has a maximum load capacity and can be
crossed in any direction in a single time slot. Vs is a subset of V
which contains vertexes labeled as ”safe place”.

– Set of arcs A corresponds to the connections between adjacent
nodes not interrupted by walls. Capacity of links is determined
by type thereof.

• Decision variables are:

– xti = number of persons in vertex i at time t. Initial occupation is
supposed to be known.

– ytij = number of persons leaving cell i towards cell j from time t
to time t+1.

– zij = binary variable. Its value is 1 if the flow from i to j is allowed,
0 otherwise.

2.3. MATHEMATICAL MODELS 11

• Parameters of the graph model are:

– N = set where each element ni corresponds to the capacity of cell
i.

– Qij = max capacity of link from i to j, therefore neglecting con-
gestion.

– Time is described through the set T = {1, 2, . . . , τ}.
– δ = percentage that rules congestion. It allows to entry in a unit

cell only to a fraction of the effective available seats.
– Γ−1

i = set of predecessor cell to cell i.
– Γi = set of successor cell to cell i.
– di = initial occupation of cell i.
– e = dimension of subset of exits.
– B = budget to comply with.
– ci = cost of the exploitation of the i-th exit.
– Vf = set of vertexes that can actually fork.

All these parameters are contained in the input data file or passed
directly through the solver scene.

2.3.2 Model B
O.F. = min

Ø
i/∈Ns

xτi

Subject to:

xt=2
i = xt=1

i +
Ø

j∈Γ−1(i)
yt=1
ji −

Ø
j∈Γ(i)

yt=1
ij + d(i) ∀i, j ∈ V (2.1)

xti = xt−1
i +

Ø
j∈Γ−1(i)

yt−1
ji −

Ø
j∈Γ(i)

yt−1
ij ∀i, j ∈ V ; t ∈ T | t > 1 (2.2)

ytij + ytji ≤ Qij ∀i, j ∈ V ; t ∈ T (2.3)

Ø
j∈Γ(i)

ytji ≤ xti ∀i, j ∈ V ; t ∈ T (2.4)

12 CHAPTER 2. PROBLEM

Ø
j∈Γ−1(i)

ytji ≤ (Ni − xti)δ ∀i, j ∈ V ; t ∈ T (2.5)

xti ≥ 0 ∀i ∈ V ; t ∈ T (2.6)

ytij ≥ 0 ∀i, j ∈ V ; t ∈ T (2.7)

2.3.3 Model S
In order to avoid forks out a unit cell and bi-directional flows across a link,
comes into play the binary variable zij and few new constraints are added:

Ø
j

zij = 0 ∀i ∈ Vs; j ∈ Γ(i) (2.8)

Ø
j

zij = 1 ∀i ∈ ((V − Vs)&(V − Vf)); j ∈ Γ(i) (2.9)

ytij ≤ Qij(zij) ∀i, j ∈ V ; t ∈ T (2.10)

ytji ≤ Qij(1− zij) ∀i, j ∈ V ; t ∈ T (2.11)

zij ∈ {0, 1} ∀i, j ∈ V (2.12)

2.3.4 Model F
Following constraints are needed for selecting among ’E’ exits only a portion
’e’ of them.

Ø
j∈Γ−1(i)

zji ≤ e ∀i ∈ Vs; j ∈ Γ−1(i) (2.13)

. . . and, if using an exit is a matter of money according to the necessity
of meeting the budget ’B’, also the following:

Ø
j∈Γ−1(i)

cjzji ≤ B ∀i ∈ Vs; j ∈ Γ−1(i) (2.14)

2.3. MATHEMATICAL MODELS 13

2.3.5 Interpretation of constraints

Constraint
reference

Interpretation

2.1 At time 2 the number of people found in a vertex is given by
the previous occupation of the same vertex plus the initial
occupation plus the number of persons who arrived minus
number of people who left.

2.2 For each time greater than 2, the number of people found in a
vertex is given by the previous occupation of the same vertex
plus the number of persons who arrived minus the number of
people who left.

2.3 Flow between two nodes can never exceed the capacity of the
link.

2.4 Temporary occupation on a node must be less than the ca-
pacity of the cell.

2.5 The real number of persons who can enter a node is a fraction
of the actual available residual capacity. This for taking into
account factors like congestion e panic.

2.6 Obviously node occupation can’t be negative.
2.7 . . . as well as the flow between two connecting units.
2.8 Persons who have reached the safe place must stay there.
2.9 Out of a cell people must go always in the same direction,

forks are not allowed. . . unless the i-th vertex belongs to the
set Vf . Actually exists a portion of nodes out of which it is
possible to fork, in particular it is possible for cells inside a
room.

2.10 The capacity of a link is associated to a binary variable in
order to allow the flow one way only.

2.11 The capacity of a link is associated to a binary variable in
order to allow the flow one way only.

2.12 The variable that rules flows in one direction is binary, pre-
cisely.

2.13 The number of exits could be imposed smaller than the actual
maximum number.

2.14 In addition the number of exits have to meet a budget as a
matter of cost for installing or keeping open or keep in service
the way out.

Table 2.1: Interpretation of constraints

14 CHAPTER 2. PROBLEM

2.3.6 Setting of parameters
In order to reflect reality during the expression of a quake, the model must be
parameterized by taking into account walking velocity, door width, human
behavior, links and nodes capacity.

As already mentioned in 2.1 the building examined in this study is Palazzo
Camponeschi. It all starts with the blueprints. This has been split into 108
unit cells as you can see in figure 2.1 and 2.2 and this grid has been therefore
converted in the graph in Figure 2.3.6 [6]. Node zero represents the outside
of the building, nothing more than a safe place. Once reached the latter,
people are out of the woods and can’t leave it by re-entering in the building.
For this reason, node 0 has infinite capacity while all the others are able to
contain 1.25 persons per square meter according to UK fire safety regulations.
As regards link capacity it is determined by type thereof. In particular is
adopted a free flow walking speed of 1.20 m/s [4] multiplied by the width
of the bond shared: it could be a door or the full side of the cell. The
pedestrian free flow velocity is different when people travel over the stairs,
in this situation the speed is 0.76 m/s [3].

2.3. MATHEMATICAL MODELS 15

Figure 2.1: Ground floor of the Palazzo

16 CHAPTER 2. PROBLEM

Figure 2.2: Top Floor of the Palazzo

In addition to these experimental data, takes over δ in such a way as tak-
ing into account congestion and human behavior like panic. Its value is set to
0.75, this mean that only the 75% of the actual flow is able to move. As re-
gards the initial occupation of the vertexes have been addressed two scenarios.
In the first one people are uniformly distributed, in particular there are 5 per-
sons in any node (excluding the node 0 obviously) whereas in the second sce-
nario people are distributed in a more concentrate manner and in less nodes,
in particular in nodes {54,56,57,60,61,62,63,66,67,68,69,72,73,77,78,79,80,81,
82,83,84,85} there are {25,24,25,25,25,25,25,24,24,24,24,24,24,25,28,28,28,28,
25,20,20,20} respectively. Let’s call these scenarios respectively ”Uniform”
and ”Concentrations”. In both cases the total amount of people is equal to
540, a bit more of the peak registered during an event on 29 September 2017,
when the simultaneous presence of 528 persons was recorded.

2.3. MATHEMATICAL MODELS 17

Fi
gu

re
2.

3:
Pa

la
zz

o
C

am
po

ne
sc

hi
in

th
e

fo
rm

of
gr

ap
h

18 CHAPTER 2. PROBLEM

Chapter 3

Algorithms

Once defined the ”rules” (2.3.6), the first goal has been finding the minimum
total evacuation time through a logarithmic search. In other words trying
different values of τ until the first instant that had empty the Palazzo, hence
everybody was safe, would be found. Let’s call it τsafe. Since τsafe could
be quite large, the solver could have trouble solving a problem, in particular
due to run-time. For this reason had to take measures from an algorithmic
standpoint. All the codes can be found in Appendix A.

3.1 Constraint generation in practice
The first approach has been the Constraint Generation in support of Straight-
forward model which is too large. It is said in advance that the practical
example can be found at the end of this section. The point is to let Xpress
IVE solve the Basic problem 2.3.2 which takes only a few seconds to find
the optimal solution, then it was checked whether there were manifestation
of behaviors not tolerated (like forks out of a node or bi-directional flows
in a connection) and if so, the constraints of 2.3.3 were added to those tar-
geted vertexes/arcs, the ones that do not act properly. . . and so on. This
is repeated until there were no longer forks or bi-directional flows. In the
end, constraints (2.9), (2.10), (2.11), (2.12), are applied only to a portion
of nodes, not to all. The key point is to solve one huge problem or several
smaller problems. Is it faster? In the next chapter, results will show that,
in this specific case, the constraint generation approach is always worse in
terms of run-time. For this part of the work, algorithms designed are two:
”C” and ”G”. ”C” loops on the dimension T (time) hence it is looked up the
first moment in which forks (or bi-directions) occur and then the constraints,
thus also the problem, are refreshed by binding the nodes that for first are
affected by the undesired behavior. . . and the next check will start from time

19

20 CHAPTER 3. ALGORITHMS

1 because with the new updated model, the undesired behavior may happen
before the time found in the previous loop.

Example:

1. Inner loop = 1...τ

2. Fork spotted out of node 7 at time 32.

3. Refresh model by adding proper constraints to node 7

4. Inner loop = 1...τ

5. Fork spotted out of node 19 at time 4.

6. Refresh model by adding proper constraints to node 19

7. Inner loop = 1...τ
...

”G” loops on the dimension V (number of vertexes) therefore are looked
up all the forking cells, constraints are added, problem is refreshed and a
new set of forking nodes is searched.

Example:

1. Inner loop = 1...Vmax (node 0 obviously excluded)

2. Fork spotted out of nodes 7 and 26 respectively at time 32 and 70

3. Refresh model by adding proper constraints to nodes 7 and 26

4. Inner loop = 1...Vmax

5. Fork spotted out of node 19 and 67 respectively at time 4 and 13.
Observation: if in the first iteration it had been added the constraint
in node 7 only, maybe once refreshed the problem, there would be no
other forks. The algorithm would be over. . . but it’s not.

6. Refresh model by adding proper constraints to node 19 and 67

7. Inner loop = 1...Vmax
...

The C algorithm is more ’correct’, has the pro of adding less constraints
but the con of taking more run-time. Although the G algorithm has the con

3.2. MATHEURISTICS IN PRACTICE 21

of adding more constraints, these generate a smaller domain of solutions for
the benefit of run-time.

In both cases the check of forks and bi-directions at every iteration is
performed in sequence: first are searched forks only. When there are no
more forks, check for bi-directions starts. From here on out the check is
executed in parallel, both forks and bi-directions. From various tests, this
execution emerged as faster than checking for anomalies in parallel from the
beginning.

3.2 Matheuristics in practice
This approach intervenes in case the previous algorithm is not fast enough. It
is said in advance that the practical example follows in this section. The aim
is to solve the problem several times with an ad-hoc algorithm as mentioned
in the previous section (3.1), by accepting on each iteration the current so-
lutions just found and by adding them in the form of new constraints to the
next iteration that, being stricter, favors run-time saving. Always? The next
chapter will show that Matheuristics is competitive since in some instances
run-time is lower (then better) than with an exact algorithm.

Example:

1. First iteration, first resolution.

2. Reading of results: since node 85 forked, constraints (2.9) were added
and the corresponding solutions are:

z(85, 80) = 1

and
z(85, 86) = 0

3. New constraints are added in order to keep these solutions:

z(85, 86) <= 0

and
z(85, 80) >= 1

4. Second iteration, second resolution.

...

22 CHAPTER 3. ALGORITHMS

This process is always (in this study, not universally) faster than a Con-
straint Generation algorithm but has a drawback: the solutions at each iter-
ation are temporary, they are only valid for the optimum of the temporary
sub-problem, not for the complete problem that would have been solved with
the pure constraint generation algorithm. By forcing those values in fact, the
optimum solution of the problem may worsen.

Chapter 4

Results

In this section will be exhibited and compared results related to different
launches of the solver in order to draw conclusions on the behavior of the
evacuation of Palazzo Camponeschi. The dimensions in question will be
’number of persons’, ’run-time’, ’algorithms’ and ’scenarios’. Some graphs
will follow in order to better view the results. The first section compares the
straightforward model (B+S) in both scenarios in terms of time of evacuation.
After this, scenarios will be taken separately (Uniform first in section 4.2 and
Concentrations then in section 4.3) and analyzed by showing for each one the
relevant comparisons. All measure of time are expressed is seconds. For any
detail of data used, check in appendix Figures B.1, B.2.

23

24 CHAPTER 4. RESULTS

4.1 Scenarios comparison in B+S model
Due to much accentuated congestion issues in the Concentrations scenario,
the full emptying of the building is delayed compared to the one of the
Uniform scenario. See Table 4.1 and Figure 4.1.

0

100

200

300

400

500

600

2 22 42 62 82 102 122 142 162

P
eo

p
le
 t
ra
p
p
ed
 in
si
d
e
P
al
az
zo

Time

B+S model: emptying comparison in the two scenarios

Uniform

Concentrations

Figure 4.1: Emptying in both scenarios

τsafe [s] Scenario
91 Uniform
173 Concentrations

Table 4.1: B+S model: comparison of τsafe in both scenarios

4.2 Uniform scenario
In this section will be shown some differences under Uniform scenario in
terms of emptying time and in terms of run-time. The first one is between B
and B+S model, in the second subsection will be compared the algorithms
used and in the third subsection model B+S vs B+S+F.

4.2. UNIFORM SCENARIO 25

4.2.1 B vs B+S
Under Uniform scenario, in this subsection, B and B+S models are compared.

The τsafe in the model B+S is delayed by 1 second, see Table 4.2 and
Figure 4.2. Note that model B is a lower bound of model B+S and therefore
τsafe of the former will always be less than or equal to τsafe of the latter.

If this comparison is played on the run-time dimension, emerges the graph
in Figure 4.3. Whereas run-time of model B increases very slowly, the other
one undergoes significant surges. In this graph as in all the following graphs
of run-times comparison, the exponential trend proves the NP-hardness of
the problem in question and oscillations can be mitigated, in order to obtain
a smoother function, by an approximation algorithm as described in section
1.1. The instruction to achieve that is:

setparam(”XPRS MAXTIME”, timelimit)
where ”timelimit” must be set to the desired value.

-100

0

100

200

300

400

500

600

2 5 10 15 20 40 45 50 55 60 80 85 89 90 91

P
eo

p
le
 t
ra
p
p
ed
 in
si
d
e
P
al
az
zo

Time

Emptying comparison

B B+S

Figure 4.2: Uniform scenario, emptying: Basic model vs Straightforward
evacuation model

26 CHAPTER 4. RESULTS

0

50

100

150

200

250

300

2 12 22 32 42 52 62 72 82

R
u
n
-t
im

e

Time

Run-time comparison

B

B+S

Figure 4.3: Uniform scenario: run-time: Basic model vs Straightforward
evacuation model

τsafe [s] Model
90 B
91 B+S

Table 4.2: Uniform scenario: comparison of τsafe in the two primary models

4.2.2 Comparison of algorithms
B+S, B+S Constraint Generation and B+S Matheuristics are compared in
this subsection under Uniform scenario.

The functions of emptying in the three cases coincide (Figure 4.4). It is
no surprise that function B+S coincides with B+S Constraint Generation
because both are exact methods and therefore they lead to the same results,
but so is the fact that B+S Matheuristics function almost coincides (except
for tmax = 90, see Figure B in appendix) because it cannot be taken for
granted. Although τsafe (Table 4.3) are the same, run-times are quite differ-
ent, above all for B+S Constraint Generation which is one that takes longer
to solve the problem (Figure 4.4). The other two act differently: while B+S
is faster than B+S Matheuristics (in terms of run-time) in the first half of
the graph, things are reversed in the second half.

4.2. UNIFORM SCENARIO 27

0

100

200

300

400

500

600

2 5 10 15 20 40 45 50 55 60 80 85 89 90 91

P
eo

p
le
 t
ra
p
p
ed
 in
si
d
e
P
al
az
zo

Time

Emptying comparison

B+S

B+S Constraint Generation

B+S Matheuristics

Figure 4.4: Uniform scenario, emptying: algorithms in comparison

0

500

1000

1500

2000

2500

3000

2 12 22 32 42 52 62 72 82

R
u
n
-t
im

e

Time

Run-time comparison

B+S

B+S Constraint Generation

B+S Matheuristics

Figure 4.5: Uniform scenario: run-time: algorithms in comparison

28 CHAPTER 4. RESULTS

τsafe [s] Algorithm
91 B+S
91 B+S Constraint Generation
91 B+S Matheuristics

Table 4.3: Uniform scenario: comparison of τsafe in the three algorithms

4.2.3 B+S vs B+S+F in Matheuristics environment

B+S is compared to B+S+F model, both performed with matheuristics un-
der Uniform scenario.

As can be seen in Figure 4.6 and as well as can be expected, exploiting two
exits instead of three, therefore setting the ”e” parameter of constraint 2.13
equal to 2, delays the τsafe (see Table 4.4). With reference to Figure 2.3.6,
the exits chosen for the way out are the 34-th and the 3-rd, thus the 49-th was
discarded. With regard to run-time, Figure 4.7 shows that the curves take
turns a bunch of times. The latest data are collected obviously for B+S+F
model only because Palazzo in B+S model was already empty in those times.
Noteworthy the last reading in which the run-time rises abruptly.

0

100

200

300

400

500

600

2 5 10 15 20 40 45 50 55 60 80 85 89 90 91 105 110 115 116

P
eo

p
le
 t
ra
p
p
ed
 in
si
d
e
P
al
az
zo

Time

Emptying comparison

B+S Matheuristics

B+S+F Matheuristics

Figure 4.6: Uniform scenario: emptying with Matheuristics: B+S vs B+S+F

4.2. UNIFORM SCENARIO 29

0

50

100

150

200

250

300

2 22 42 62 82 102

R
u
n
-t
im

e

Time

Run-time comparison

B+S Matheuristics

B+S+F Matheuristics

Figure 4.7: Uniform scenario: run-time: Matheuristics for B+S and B+S+F
in comparison

τsafe [s] Model
91 B+S Matheuristics
116 B+S+F Matheuristics

Table 4.4: Uniform scenario: comparison of τsafe obtained with Matheuristics
in B+S and in B+S+F

30 CHAPTER 4. RESULTS

4.3 Concentrations scenario
In this section will be shown some differences under Concentrations scenario
in terms of emptying time and in terms of run-time.

The first one is between B and B+S model, in the second subsection will
be compared the algorithms used and in the third subsection model B+S vs
B+S+F.

4.3.1 B vs B+S
Under Concentrations scenario, in this subsection, B and B+S models are
compared.

By just looking at the graph in Figure 4.8 it is possible to better notice
the differences between the two functions compared to the similar case of the
uniform scenario (Figure 4.2). In the present case in fact the τsafe (Table
4.5) of the straightforward model is a lot farther.

Run-time of the Basic model slowly increases whereas in the B+S model
it grows with an exponential trend (Figure 4.9).

0

100

200

300

400

500

600

2 22 42 62 82 102 122 142 162

P
eo

p
le
 t
ra
p
p
ed
 in
si
d
e
P
al
az
zo

Time

Emptying comparison

B

B+S

Figure 4.8: Concentrations scenario, emptying: Basic model vs Straightfor-
ward evacuation model

4.3. CONCENTRATIONS SCENARIO 31

0

100

200

300

400

500

600

700

800

2 22 42 62 82 102 122 142 162

R
u
n
-t
im

e

Time

Run-time comparison

B

B+S

Figure 4.9: Concentrations scenario: run-time: Basic model vs Straightfor-
ward evacuation model

τsafe [s] Model
116 B
173 B+S

Table 4.5: Concentrations scenario: comparison of τsafe in the two primary
models

4.3.2 Comparison of algorithms
B+S, B+S Constraint Generation and B+S Matheuristics are compared in
this subsection under Concentrations scenario.

The functions of emptying are the same (Figure 4.10) as also the τsafe
(Table 4.6) even if should be stressed that there are less measurements due
to run-time issues (Figure 4.10) for the Constraint Generation algorithm.

32 CHAPTER 4. RESULTS

0

100

200

300

400

500

600

0 25 50 75 100 125 150 175

P
eo

p
le
 t
ra
p
p
ed
 in
si
d
e
P
al
az
zo

Time

Emptying comparison

B+S Constraint Generation

B+S Matheuristics

B+S

Figure 4.10: Concentrations scenario, emptying: algorithms in comparison

0

100

200

300

400

500

600

700

800

900

2 22 42 62 82 102 122 142 162

R
u
n
-t
im

e

Time

Run-time comparison

B+S Matheuristics

B+S

B+S Constraint Generation

Figure 4.11: Concentrations scenario: run-time: algorithms in comparison

4.3. CONCENTRATIONS SCENARIO 33

τsafe [s] Algorithm
173 B+S
173 B+S Constraint Generation
173 B+S Matheuristics

Table 4.6: Concentrations scenario: comparison of τsafe in the three algo-
rithms

4.3.3 B+S vs B+S+F in Matheuristics environment
B+S is compared to B+S+F model, both performed with matheuristics un-
der Concentrations scenario.

Although B+S+F Matheuristics empties a little slower (see Figure 4.12),
the final result τsafe is the same (Table 4.7), contrary to Figure 4.6; this also
means that in this specific case there is no difference between using two doors
(the 3-rd and the 34-th way out) and three doors, the outcome is the same.
As regard run-time, as before in Figure 4.7, the curves take turns a bunch of
times (see Figure 4.13).

0

100

200

300

400

500

600

0 25 50 75 100 125 150 175

P
eo

p
le
 t
ra
p
p
ed
 in
si
d
e
P
al
az
zo

Time

Emptying comparison

B+S Matheuristics

B+S+F Matheuristics

Figure 4.12: Concentrations scenario: emptying with Matheuristics: B+S vs
B+S+F

34 CHAPTER 4. RESULTS

0

100

200

300

400

500

600

700

800

900

2 22 42 62 82 102 122 142 162

R
u
n
-t
im

e

Time

Run-time comparison

B+S Matheuristics

B+S+F Matheuristics

Figure 4.13: Concentrations scenario: run-time: Matheuristics for B+S and
B+S+F in comparison

τsafe [s] Model
173 B+S Matheuristics
173 B+S+F Matheuristics

Table 4.7: Concentrations scenario: comparison of τsafe obtained with
Matheuristics in B+S and B+S+F

Chapter 5

Conclusion

This work was born with the aim of crafting and delivering a framework that
consists in few algorithmic options for any problem in section 2.2, particularly
for Humanitarian emergency problems. Computational tests have proven
that there is not an obvious best algorithm choice, since the outcomes depend
by the intrinsic characteristics of the problem in question e this leads to a
competitiveness of the tools adopted. Although the framework lacks of a
predominant procedure, there are two discriminating factors. The first one
is the phase in which the analysis shall be applied for a matter of available
time: in a planning phase, in general this time is large and hence it is possible
and favorable to exploit an exact algorithm; in case of short of time, it is
more likely to consider using a heuristic approach. The second factor is the
real case itself: in case of a large enough available time, it is undoubtedly
preferable an exact algorithm since in this case, with a heuristic algorithm,
people could get hurt because of potential sub-optimal results.

35

36 CHAPTER 5. CONCLUSION

Appendix A

Xpress IVE codes

All the codes of all the models follow in this section in sequence: Model B
then Model B+S and finally Model B+S ConGen. The latter can optionally
be used to perform Model B+S+F with Matheuristics.

37

model Caristo_Model_B

uses "mmxprs"

uses "mmsystem"

!setparam("XPRS_verbose", true)

setparam("REALFMT", "%1.15f")

declarations

 Nmax = 108

 Tmax = 90 change this

 delta= 0.75

 TIMESLOTS= 1..Tmax

 NODES= 0..Nmax

 SourceNode: array(NODES) of integer ! =1 The node is a source node

 SinkNode: array(NODES) of integer ! =1 The node is a safe place

 Graph: array(NODES, NODES) of integer ! Graph matrix

 Q: array(NODES, NODES) of real ! Flow that can exit/enter max

 N: array(NODES) of integer ! Node Capacity

 d: array(NODES) of integer ! Initial occupation

 x: array(NODES, TIMESLOTS) of mpvar !occupation

 y: array(NODES, NODES, TIMESLOTS) of mpvar !flow

 z: array(NODES, NODES) of mpvar ! =1 --> fork allowed

end-declarations

initializations from "InputDatasConcentrationsScenario.txt" !Switch between:

!InputDatasConcentrationsScenario.txt and InputDatasUniformScenario.txt

 Graph

 SourceNode

 SinkNode

 d

 N

 Q

end-initializations

! (1)

forall(i in NODES) do

 x(i,2) = x(i,1) + sum(j in NODES | Graph(j,i) = 1) y(j,i,1) - sum(j in NODES

| Graph(i,j) = 1) y(i,j,1) + d(i)

end-do

! (2)

forall(i in NODES, t in TIMESLOTS | t>2) do

 x(i,t) = x(i,t-1) + sum(j in NODES | Graph(j,i) = 1) y(j,i,t-1) - sum(j in

NODES | Graph(i,j) = 1) y(i,j,t-1)

end-do

! (4)

forall(i in NODES, t in TIMESLOTS | t>0) do

 sum(j in NODES | Graph(i,j) = 1) y(i,j,t) <= x(i,t)

end-do

! (3)

forall(i, j in NODES | Graph(j,i) = 1, t in TIMESLOTS | t>0) do

 y(j,i,t)+y(i,j,t) <= Q(i,j)

end-do

! (5)

forall(i in NODES, t in TIMESLOTS | t>1) do

 sum(j in NODES | Graph(j,i) = 1) y(j,i,t-1) <= (N(i)-x(i,t-1))*delta

end-do

ObjSum := sum(i in NODES | SinkNode(i) = 0) x(i,Tmax)

start_time := time(SYS_NOW)

minimize(ObjSum)

end_time := time(SYS_NOW)

writeln("OF = ", getobjval, " - time = ", end_time-start_time, " ms.")

end-model

model Caristo_Model_B_S

uses "mmxprs"

uses "mmsystem"

!setparam("XPRS_verbose", true)

setparam("REALFMT", "%1.15f")

declarations

 Nmax = 108

 Tmax = 90 change this

 delta= 0.75

 TIMESLOTS= 1..Tmax

 NODES= 0..Nmax

 SourceNode: array(NODES) of integer ! =1 The node is a source node

 SinkNode: array(NODES) of integer ! =1 The node is a safe place

 Graph: array(NODES, NODES) of integer ! Graph matrix

 Q: array(NODES, NODES) of real ! Flow that can exit/enter max

 N: array(NODES) of integer ! Node Capacity

 d: array(NODES) of integer ! Initial occupation

 x: array(NODES, TIMESLOTS) of mpvar !occupation

 y: array(NODES, NODES, TIMESLOTS) of mpvar !flow

 z: array(NODES, NODES) of mpvar ! =1 --> fork allowed

end-declarations

initializations from "InputDatasConcentrationsScenario.txt" !Switch between:

!InputDatasConcentrationsScenario.txt and InputDatasUniformScenario.txt

 Graph

 SourceNode

 SinkNode

 d

 N

 Q

end-initializations

! (1)

forall(i in NODES) do

 x(i,2) = x(i,1) + sum(j in NODES | Graph(j,i) = 1) y(j,i,1) - sum(j in NODES

| Graph(i,j) = 1) y(i,j,1) + d(i)

end-do

! (2)

forall(i in NODES, t in TIMESLOTS | t>2) do

 x(i,t) = x(i,t-1) + sum(j in NODES | Graph(j,i) = 1) y(j,i,t-1) - sum(j in

NODES | Graph(i,j) = 1) y(i,j,t-1)

end-do

! (4)

forall(i in NODES, t in TIMESLOTS | t>0) do

 sum(j in NODES | Graph(i,j) = 1) y(i,j,t) <= x(i,t)

end-do

! (3)

forall(i, j in NODES | Graph(j,i) = 1, t in TIMESLOTS | t>0) do

 y(j,i,t)+y(i,j,t) <= Q(i,j)

end-do

! (5)

forall(i in NODES, t in TIMESLOTS | t>1) do

 sum(j in NODES | Graph(j,i) = 1) y(j,i,t-1) <= (N(i)-x(i,t-1))*delta

end-do

! (8)

forall(i in NODES | SinkNode(i)=1) do

 sum(j in NODES | Graph(i,j) = 1) z(i,j) = 0

end-do

forall(i in NODES) do

 forall(j in NODES | (Graph(i,j)=1)) do

 forall(t in TIMESLOTS | t > 0) do

 ! (10)

 y(i,j,t) <= Q(i,j)*z(i,j)

 !(11)

 y(j,i,t) <= Q(i,j)*(1-z(i,j))

 end-do

 !(12)

 z(i,j) is_binary

 end-do

end-do

forall(i in NODES | SinkNode(i)=0 and ForkFree(i)=0) do

 !(9)

 sum(k in NODES | Graph(i,k) = 1) z(i,k) = 1

end-do

ObjSum := sum(i in NODES | SinkNode(i) = 0) x(i,Tmax)

start_time := time(SYS_NOW)

minimize(ObjSum)

end_time := time(SYS_NOW)

writeln("OF = ", getobjval, " - time = ", end_time-start_time, " ms.")

end-model

model Caristo_B_S_ConGen_and_Matheur_and_B_S_F

uses "mmxprs"

uses "mmsystem"

!setparam("XPRS_verbose", true)

setparam("REALFMT", "%1.15f")

declarations

 Nmax = 108

 Tmax = 90 change this

 delta= 0.75

 TIMESLOTS= 1..Tmax

 NODES= 0..Nmax

 SourceNode: array(NODES) of integer ! =1 The node is a source node

 SinkNode: array(NODES) of integer ! =1 The node is a safe place

 Graph: array(NODES, NODES) of integer ! Graph matrix

 Q: array(NODES, NODES) of real ! Flow that can exit/enter max

 N: array(NODES) of integer ! Node Capacity

 d: array(NODES) of integer ! Initial occupation

 x: array(NODES, TIMESLOTS) of mpvar !occupation

 y: array(NODES, NODES, TIMESLOTS) of mpvar !flow

 z: array(NODES, NODES) of mpvar ! =1 --> fork allowed

end-declarations

initializations from "InputDatasConcentrationsScenario.txt" !Switch between:

!InputDatasConcentrationsScenario.txt and InputDatasUniformScenario.txt

 Graph

 SourceNode

 SinkNode

 d

 N

 Q

end-initializations

! (1)

forall(i in NODES) do

 x(i,2) = x(i,1) + sum(j in NODES | Graph(j,i) = 1) y(j,i,1) - sum(j in NODES

| Graph(i,j) = 1) y(i,j,1) + d(i)

end-do

! (2)

forall(i in NODES, t in TIMESLOTS | t>2) do

 x(i,t) = x(i,t-1) + sum(j in NODES | Graph(j,i) = 1) y(j,i,t-1) - sum(j in

NODES | Graph(i,j) = 1) y(i,j,t-1)

end-do

! (4)

forall(i in NODES, t in TIMESLOTS | t>0) do

 sum(j in NODES | Graph(i,j) = 1) y(i,j,t) <= x(i,t)

end-do

! (3), !(10)

forall(i, j in NODES | Graph(j,i) = 1, t in TIMESLOTS | t>0) do

 y(j,i,t)+y(i,j,t) <= Q(i,j)

 y(i,j,t) <= Q(i,j)*z(i,j)

end-do

! (8)

forall(i in NODES | SinkNode(i)=1) do

 sum(j in NODES | Graph(i,j) = 1) z(i,j) = 0

end-do

! (12)

forall(i, j in NODES | Graph(j,i) = 1) do

 z(i,j) is_binary

end-do

! (5)

forall(i in NODES, t in TIMESLOTS | t>1) do

 sum(j in NODES | Graph(j,i) = 1) y(j,i,t-1) <= (N(i)-x(i,t-1))*delta

end-do

(! Uncomment the following lines to run model B+S+F with Matheuristics

! (2.12)

forall(i in NODES | SinkNode(i)=1) do

 sum(j in NODES | Graph(j,i) = 1) z(j,i) <= 2

end-do

!)

ObjSum := sum(i in NODES | SinkNode(i) = 0) x(i,Tmax)

start_time := time(SYS_NOW)

flag:=1

while(flag=1) do

 flag:=0

 minimize(ObjSum)

 (! Uncomment the following lines to run with Matheuristics

 forall(i in NODES | (i in ITERATION)) do

 forall(j in NODES | (Graph(i,j)=1)) do

 if(getsol(z(i,j)) = 1) then

 z(i,j)>=1

 flag:=1

 end-if

 if(getsol(z(i,j)) = 0) then

 z(i,j)<=0

 flag:=1

 end-if

 ITERATION-={i}

 end-do

 end-do

 !)

 forall(i in NODES | SinkNode(i)=0 and ForkFree(i)=0) do

 i_biforca := 0

 cont:=0

 forall(j in NODES | (Graph(i,j)=1)) do

 forall(t in TIMESLOTS | t>0 and (getsol(y(i,j,t)) > 0.001)) do

 cont := cont + 1

 break

 end-do

 if(cont>1) then

 i_biforca:=1

 break

 end-if

 end-do

 if (i_biforca = 1) then

 flag := 1

 writeln("ALERT FORK: node ", i)

 ITERATION+={i}

 !(9)

 sum(k in NODES | Graph(i,k) = 1) z(i,k) = 1

 end-if

 end-do

 if(flag=0)then

 forall(i in NODES) do

 forall(j in NODES | (Graph(i,j)=1)) do

 vij:=0

 vji:=0

 forall(t in TIMESLOTS | t > 0) do

 if(getsol(y(i,j,t)) > 0) then

 vij:=1

 end-if

 if(getsol(y(j,i,t)) > 0) then

 vji:=1

 end-if

 if(vij=1 and vji=1)then

 writeln("WARNING: bi-directonal flow between ", i, " and

", j)

 !(11)

 y(j,i,t) <= Q(i,j)*(1-z(i,j))

 flag:=1

 break

 end-if

 end-do

 end-do

 end-do

 end-if

end-do

end_time := time(SYS_NOW)

writeln("OF = ", getobjval, " - time = ", end_time-start_time, " ms.")

end-model

Appendix B

Excel data

45

46 APPENDIX B. EXCEL DATA

tm
ax

O
F

ru
n
­tim

e [s]
O
F

ru
n
­tim

e [s]
O
F

ru
n
­tim

e [s]
O
F

ru
n
­tim

e [s]
O
F

ru
n
­tim

e [s]

2
5
4
0

0
,0
3
2

5
4
0

0
,0
4
6

5
4
0

0
,0
5
4

5
4
0

0
,0
5
3

5
4
0

0
,1

5
5
2
1
,4
6

0
,0
5
3

5
2
1
,4
6

0
,1
1
6

5
2
1
,4
6

0
,7
3
3

5
2
1
,4
6

0
,8
3
4

5
2
5
,7
8

1

1
0

4
9
0
,5
6

0
,1
1
6

4
9
0
,5
6

0
,2
1
6

4
9
0
,5
6

8
,1

4
9
0
,5
6

3
,1

5
0
2
,0
8

1
,5

1
5

4
5
9
,6
6

0
,1
6
2

4
5
9
,6
6

0
,3
4
7

4
5
9
,6
6

6
,5

4
5
9
,6
6

3
,2

4
7
8
,3
8

3
,4

2
0

4
2
8
,7
6

0
,2
2
3

4
2
8
,7
6

0
,5
2
4

4
2
8
,7
6

3
4
,7

4
2
8
,7
6

5
,4

4
5
4
,6
8

4
,5

4
0

3
0
5
,1
6

0
,4
8
8

3
0
5
,1
6

1
,9

3
0
5
,1
6

4
5
,2

3
0
5
,1
6

1
1
,2

3
5
9
,8
8

3
1
,2

4
5

2
7
4
,2
6

0
,5
4
7

2
7
4
,2
6

2
,3

2
7
4
,2
6

2
1
,9

2
7
4
,2
6

2
2
,7

3
3
6
,1
8

1
6
,4

5
0

2
4
3
,3
6

0
,5
8

2
4
3
,3
6

3
,2

2
4
3
,3
6

2
2
9
,5

2
4
3
,3
6

1
3
,9

3
1
2
,4
8

4
3
,2

5
5

2
1
2
,4
6

0
,7
0
9

2
1
2
,4
6

5
7
,2
7

2
1
2
,4
6

1
5
7
,6

2
1
2
,4
6

1
2
,2

2
8
8
,7
8

1
3

6
0

1
8
1
,5
6

0
,7
6
6

1
8
1
,5
6

1
2
,6

1
8
1
,5
6

1
0
3
,1

1
8
1
,5
6

1
1
,4

2
6
5
,0
8

1
1
,3

8
0

5
7
,9
6

1
,3

5
7
,9
6

1
0
0
,2

5
7
,9
6

3
5
5
,1

5
7
,9
6

3
7
,4

1
7
0
,2
8

2
9
,8

8
5

2
7
,0
6

1
,5

2
7
,0
6

1
0
5

2
7
,0
6

1
5
3
,6

2
7
,0
6

2
0
,1

1
4
6
,5
8

2
0

8
9

2
,3
4

1
,7

2
,3
4

1
2
3
,9

2
,3
4

3
1
3
,7
2
1

2
,3
4

4
3
,1

1
2
7
,6
2

3
2
,3

9
0

0
1
,7
3

0
,2

2
8
1
,7

0
,2

2
4
0
2
,2

0
,9
6

5
5
,3

1
2
2
,8
8

1
0
5
,3

9
1

0
1
2
5
,5

0
1
3
7
,4

0
3
9
,1

1
1
8
,1
4

3
7
,3

1
0
5

5
1
,7
8

4
2

1
1
0

2
8
,0
8

5
1

1
1
5

4
,3
8

5
4
,1

1
1
6

0
2
8
5
,6

B
B
+S

B
+S M

ath
eu
ristics

 B
+S+F M

ath
eu
ristics

B
+S C

o
n
G
en

Figure
B.1:

D
ata

collected
under

U
niform

scenario

47
tm

ax
O
F

ru
n
­t
im

e
[s
]

O
F

ru
n
­t
im

e
[s
]

O
F

ru
n
­t
im

e
[s
]

O
F

ru
n
­t
im

e
[s
]

O
F

ru
n
­t
im

e
[s
]

2
5
4
0

0
,0
1
5

5
4
0

0
,0
5
3

5
4
0

0
,0
5
3

5
4
0

0
,0
8
4

5
4
0

0
,0
5
4

5
5
4
0

0
,0
5
3

5
4
0

0
,1
1
5

5
4
0

0
,1
8
5

5
4
0

0
,5

5
4
0

0
,2
5
4

1
0

5
4
0

0
,1

5
4
0

0
,2

5
4
0

1
,4

5
4
0

2
,2

5
4
0

1

1
5

5
2
2

0
,1
7
9

5
2
5
,6

0
,4
1
7

5
2
5
,6

2
4
,6

5
2
5
,6

1
0

5
2
8
,4
8

6
,1

2
0

4
9
6
,0
2

0
,2
2
1

5
0
5
,8

1
,5

5
0
5
,8

4
5
,2

5
0
5
,8

1
5
,9

5
1
5
,5
2

1
5
,1

4
0

3
9
1
,6
2

0
,6
1
8

4
2
6
,6

6
,5

4
2
6
,6

4
1
8
,7

4
2
6
,6

7
8
,8

4
3
8
,4
8

3
2
,2

4
5

3
6
5
,5
2

0
,8
1
8

4
0
6
,7
8

2
1
,5

4
0
6
,8

3
2
9
,6

4
0
6
,8

9
1

4
1
8
,6
8

6
2
,1

5
0

3
3
9
,4
2

0
,8
4
4

3
8
7

7
,8

3
8
7

1
1
7
,3

3
9
8
,8
8

6
6
,8

5
5

3
1
3
,3
2

1
,1

3
6
7
,2

3
1
,7

3
6
7
,2

4
8
,6

3
7
9
,0
8

3
8
,1

6
0

2
8
7
,2
2

1
,2

3
4
7
,4

1
9
,6

3
4
7
,4

9
2
2
,2

3
4
7
,4

1
9
6
,1

3
5
9
,2
8

1
2
8
,7

8
0

1
8
2
,8
2

1
,8

2
6
8
,2

4
0

2
6
8
,2

1
5
8
9
,2

2
6
8
,2

6
4
,1

2
8
0
,0
8

1
4
1

8
5

1
5
6
,7
2

2
,2

2
4
8
,4

2
6
,7

2
4
8
,4

1
4
5
,7

2
6
0
,2
8

1
0
8

8
9

1
3
5
,8
4

2
,4

2
3
2
,5
6

9
3
,3

2
3
2
,5
6

1
7
8
,7

2
4
4
,4
4

9
0
,2

9
0

1
3
0
,6
2

2
,4

2
2
8
,6

4
0

2
2
8
,6

9
4
4
,6

2
2
8
,6

1
3
3
,3

2
4
0
,4
8

8
4
,9

9
1

1
2
5
,4

2
,3

2
2
4
,6
4

9
0
,5

2
2
4
,6
4

6
5
,4

2
3
6
,5
2

1
0
4
,3

9
5

1
0
4
,5
2

2
,8

2
0
8
,7
9

6
9
,1

2
0
8
,8

4
8
,2

2
2
0
,6
8

1
2
3
,2

1
0
0

7
8
,4
2

3
,6

1
8
9

1
1
0

1
8
9

6
5
,9

2
0
0
,8
8

1
1
5
,7

1
1
5

0
,1
2

5
,6

1
3
2
,4
8

3
1
1
,9

1
3
2
,4
8

3
1
1

1
4
4
,3
6

2
3
5

1
1
6

0
5
,7

1
2
9
,9
6

1
7
2
,6

1
2
9
,9
6

1
4
7
,7

1
4
1
,8
4

2
2
1
,8

1
6
0

1
9
,0
8

5
7
9
,4

3
2
4
0
0

1
9
,0
8

4
2
9
,9

1
9
,0
8

6
4
2

1
6
5

7
,6
8

4
6
7
,6

7
,6
8

1
8
5
,3

7
,6
8

7
8
6
,8

1
7
0

2
,2
8

7
0
5
,5

2
,2
8

3
9
1
,5

2
,2
8

4
6
1
,7

1
7
2

0
,1
2

7
8
8
,1

0
,1
2

1
3
1
0
,6

0
,1
2

2
0
5
6
,1

1
7
3

0
5
3
7
,9

0
5
5
8
,1

0
2
3
4
7
,9

 B
+S
+F
 M

at
h
eu
ri
st
ic
s

B
B
+S

B
+S
 C
o
n
G
en

B
+S
 M

at
h
eu
ri
st
ic
s

Fi
gu

re
B.

2:
D

at
a

co
lle

ct
ed

un
de

r
C

on
ce

nt
ra

tio
ns

sc
en

ar
io

48 APPENDIX B. EXCEL DATA

Bibliography

[1] Laura Galli: Computational Complexity Theory
http://www.di.unipi.it/optimize/Courses/RO2IG/aa1718/
Complexity_theory.pdf

[2] Michael O. Ball. Heuristics based on Mathematical programming, Surveys
in Operations Research and Management Science 16,1 (2011) 21-38

[3] Jiang CS, Deng YF, Hu C, Ding H, Chow WK. Crowding in platform
staircases of a subway station in China during rush hours, Safety Science
47,7 (2009) 931-938

[4] Ye J, Chen X, Yang C, Wu J. Walking behavior and pedestrian flow char-
acteristics for different types of walking facilities, Transportation Research
Record: Journal of the Transportation Research Board 2048 (2008) 43-51

[5] Marco Ghirardi. Evacuation Models, Polito

[6] Claudio Arbib, Henry Muccini, Mahyar Tourchi Moghaddam. Applying a
network flow model to quick and safe evacuation of people from a building:
a real case, University of L’Aquila

49

50 BIBLIOGRAPHY

Ringraziamenti

Al traguardo di questo percorso è doveroso spendere delle sincere parole
di ringraziamento destinate a delle persone in particolare. Grazie al Prof.
Marco Ghirardi, una di quelle persone che controbilancia le esperienze neg-
ative provocate dagli ostacoli dell’università, estremamente umile e disponi-
bile, e che con queste sue qualità ha decorato il finale della mia carriera
accademica. Grazie alla pazienza, alla generosità e al sostegno della mia
famiglia che non ha mai smesso di partecipare positivamente ai miei pro-
getti, fondamentale. Grazie a tutti quei miei amici e quelle persone che mi
hanno dedicato un qualsiasi momento attraverso una qualsiasi azione volta a
farmi sorridere, a confortarmi, a motivarmi e a migliorarmi. Grazie dunque
a chi ha remato a mio favore perché mi ha reso forte ma grazie anche a chi
non ha avuto fiducia in me perchè mi ha reso brillante.

51

