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Summary

In the present work we implement a deep learning framework with diffractive layers that
collectively perform digit recognition. Neural networks constitute the computing system
performing deep learning, which differs from any application of artificial intelligence
– enabling machines to automatically learn from experience without being explicitly
programmed – in that it creates the representations essential for classification organizing
them into multiple levels. Our neural network is inspired by a framework recently
introduced in the literature, termed as Diffractive Deep Neural Network (D2NN ). It is
physically formed by multiple layers of diffractive surfaces that collaboratively perform
optical diffraction when an input image is exposed to electromagnetic radiation. During
the training phase implemented on a computer through deep learning’s methods, trainable
parameters represented by the diffractive layers’ transmission coefficients are properly
adjusted. Once completed the numerical stage, the design of the framework is established:
the obtained transmission coefficients provide in fact information about the thickness of
the diffractive layers that, if 3D-printed and settled in their well-suited laboratory setup,
would give rise to a powerful device performing digit classification at the speed of
light. Optical machine learning’s earlier works concerned realizations of programmable
devices performing typical machine learning applications and equipped with optical
components, which satisfy sought-after requirements like speed and power efficiency. In
this line of work, our framework represents a pioneering innovation since, once physically
fabricated, it may execute the specific task for which it is trained, exploiting no power but
the effectiveness of optical diffraction through passive optical layers.
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Introduction

Objects classification is one of the applications which most efficaciously have been im-
proved by deep learning ([1]), in the same way as other innumerable functions, including
speech recognition ([2], [3]), translation of words from different languages ([4], [5]),
object detection ([6], [7], [8], [9]), genomics ([10], [11], [12]) and drug discovery ([13],
[14], [15]).
Among the various machine learning techniques, deep learning is characterized by the
property of creating the representations essential for classification, organizing them into
multiple – hence the name "deep" – levels, by means of brain-inspired computing systems
known as artificial neural networks (ANNs). For object recognition task, at each step of
training process, the neural network is typically shown an input image, labelled with the
corresponding category, and produces a final output, expressing a class or the probabili-
ties that the input belongs to each class, upon processing by intermediate "hidden" layers.
Learning involves adjusting trainable parameters of the system to improve the accuracy
of the ultimate result, by minimizing a measured objective function, which expresses
the distance between real and desired outputs. In standard deep-learning models, many
of the layers implement non-linear input-output mappings, resulting in a comprehensive
framework which performs extremely convoluted functions of its inputs and thus achieves
highly sophisticated tasks.

In the present work, it is implemented an all-optical "deep"1 learning framework with
diffractive layers that collectively perform recognition of hand-written digits, from 0 to
9, provided by the MNIST dataset [16]. When a laser beam of given wavelength is
focused onto an input image, the diffracted electromagnetic radiation is free-space prop-
agated from one layer to the next one and complex-modulated by the trainable phases
of diffractive planes’ transmission coefficients. Each small finite element of any layer
implements Huygens-Fresnel principle [17], acting as source of a secondary wave when
reached by luminous disturbance, and represents the computing unit of the network. By
implementing the angular spectrum method, light is propagated between any two consec-
utive layers, from the input to the output one. This latter incorporates ten photodetectors,

1For reasons detailed in Section 2.1, this specific neural network is not strictly "deep", in the classical
sense of the term

6



Intoduction

each univocally associated to a specific class: the system is trained to focus light onto
the one which identifies the nature of the input digit. Due to implementation of linear
optical functions in any layer dedicated to learning – excluded the output one which
is, in fact, purely involved in detection – this structure definitely represents an attempt
on a trial basis for learning, in the context of neural networks theory addressing use of
non-linear modulus. The quality of performance, quantified by an accuracy specifically
defined as the percentage of correctly predicted examples, constitutes a real unknown.
Confidence in promising results is actually encouraged by the recent innovative achieve-
ments obtained by Lin et al.([18]): they numerically implemented and physically realized
a multilayered linear framework, performing digit recognition, which constitutes, indeed,
the inspiration for our work. However, their structure implements light propagation in
real-space domain at 0.4 THz, in contrast to our Fourier transforms-based description
of electromagnetic with wavelength of 532 nm; moreover, it slightly differs from ours in
the layout and some of its operations result ambiguously defined in their paper and in the
associated supplementary material [19].
Expecting performances lower than the ones of standard state-of-the-art deep learning
systems ([20], [21]), which instead involve implementation of non-linear complicated
functions allowing achievement of extremely intricate tasks, denotes the innovative na-
ture of the present network, whose exploration is essentially motivated by the view of its
physical realization. Once completed the training phase, the design of the framework is
fixed: according to elementary electromagnetic wave’s notions, the trained transmission
coefficients provide information about the thickness distribution of diffractive layers. The
latter could be 3D-printed and settled in their well-suited laboratory setup, giving rise to
a powerful device performing digit classification at the speed of light. The fabrication
technique would consist in two-photon lithography, allowing high resolutions suitable
for featuring each diffractive surfaces’ computing unit, expected to require relevantly
small size when implementing propagation of light at such relatively short wavelength.
Any parameter characterizing the neural network must be setted in view of its potential
experimental implementation, which clearly requires satisfaction of specific conditions
detailed by laboratory tools. Meeting demands detailed by experimental setup along with
numerically pursuing the best possible performances of the machine, during its training,
constitute the core of the present study, based on a fundamental harmony between optical
phenomena regulating image processing, deep-learning methods for object classification
and geometrical issues of structural design.

The explored framework lies in the line of work of neural networks in optical domain, a
research field largely explored since 1985, when Farhat and Pissaltis published a paper
[22] introducing the idea of implementing an ANN through optical interconnections,
which provide considerable advantages with respect to electronic ones, including power
efficiency and capability to realize multiple interconnections and simultaneous parallel
calculations at the speed of light. The number of interconnections does not affect, in fact,
optical signals, which, furthermore, propagate in three-dimensional free space without
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Intoduction

limitations. Many works in the following years, including [23], [22], [24], have explored
the realization of artificial neural networks based on photonics; nevertheless, nonlinear
functions have usually been implemented electronically, due to difficulty in achieving
them by integrating high-power lasers and optical components. Systems with continu-
ously modifiable connections, including an optical implementation of learning networks
with volume holograms storing large number of interconnections [25], have been devised
as powerful physical realizations of ANN, still requiring electrical power for dynamically
regulating weightings of connections.
More recently, many artificial neural networks in optical domain have been based on
nanophotonics: the combination of the latter with ANN is in fact exhibiting and promis-
ing achievements in different fields, such as optical imaging, automatic opticalmicroscopy
and inverse design of photonic devices. Deep learning systems based on nanopthotonics
can be realized by implementing typical operations of neural networks through optical
or optoelectronic components. Computation of non-linear functions is usually achieved
by photodetectors ([26], [27], [28], [29]), electro-optic modulators ([29]), light sources
(LED and laser, [28]), optical amplifiers ([30]); interconnections by free space ([27])
and waveguides ([26], [29], [28]); weighting operations can be realized, instead, with
holograms ([27]) and resonators ([28]).
The late ANN numerically implemented and phisically realized by Lin et al.([18]) is
characterized by basing on all passive elements, in comparison with previous artificial
neural networks composed of optoelectronic neurons, and has recently motivated strictly
related studies (including [31]).
The extraordinary feature motivating this study is thus the realization of a physical de-
vice successfully performing a specific task, upon design based on training the ANN
it intrinsically represents, entailing low power consumption, since integrating no active
component but a mere external laser source.

The present text is structured as follows.
Chapter 1 is dedicated, in Section 1.1, to basic notions of neural networks, in the context
of the more general field of machine learning, and, in Section 1.2.1, to fundamental
physical principles governing electromagnetic waves’ propagation.
In Chapter 2 the core of our research is presented: starting with Section 2.1 briefly intro-
ducing the working principle of the explored diffractive deep neural network, the specific
features characterizing its training are gradually exposed in 2.2. This latter enhances the
crucial exploration, described in Section 2.3, of physical parameters and their consequent
results, reflecting the salient points of our analysis, which has lead to the reaching of
layers’ thickness masks, ready to be physically implemented.
Theory about the planned process of fabrication, two-photon lithography, is provided
in Section 3.1 of Chapter 3, which also includes, in Section 3.2, necessary analysis on
resolution issues, preceding the potential fabrication of the device.
Conclusions are provided in 3.2 and, finally, Appendix 3.2 contains generalities about
diffraction together with its analysis within a specific configuration, exploited in our study.
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Chapter 1

General theory

In order to lay the foundation for the explored diffractive deep neural network, some
basic concepts of neural networks and electromagnetic field theory are introduced in the
present chapter.

1.1 Basic concepts of neural networks
In this general introduction attentionwill bemostly focused on the specific deep learning’s
application of interest: image classification.

1.1.1 Deep learning: a subset of machine learning
Machine learning is a subset of artificial intelligence, consisting of the scientific study of
algorithms and statistical models that computer systems use to perform a specific task,
relying on patterns and inference. Machine learning algorithms are used in a wide variety
of applications which include, besides the here considered image classification ([32],
[33], [34], [35]), language translation ([36], [37], [38], [39]) transcription of speech into
text ([40], [41], [42]), spam-email filtering ([43], [44], [45], [46], [47]), prognosis of
possible drug molecules ([48], [49],[50]) as well as genetics and genomics ([51], [52],
[53]).
Frequently, the above-mentioned applications pervading several aspects of modern so-
ciety, utilize methods from a subset of machine learning, deep learning [1]. The basic
models of general machine learning require some meticulous external guidance that con-
verts the input data into a proper feature vector, used by the learning system to classify
patterns. On the other hand, deep learning’s methods enable a machine to automatically
determine the representations necessary for a specific task with multiple levels of repre-
sentation.
More specifically, the latter applications make use of a layered structure of algorithms
named artificial neural network (ANN), whose design is inspired by the biological neural
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1 – General theory

network of the human brain.

1.1.2 Neural networks
The apparently simple human task of recognizing objects is performed by a brain adapted
during hundreds of millions of years of evolution to perceive the real world. Visual
information is processed in each brain’s hemisphere by the visual cortex, composed of
the primary visual cortex V1. It contains 140 million neurons with tens of billions of
connections between them and receives the sensory inputs from the thalamus, together
with visual areas V2, V3, V4, V5 which enhance image processing’s complexity and
performance.
Despite the shapes specifically characterizing an item are easily recognized by humans,
they are problematic to be expressed algorithmically. Indeed, a rich variety of patterns
characterizes every single object and even the apparently uncomplicated handwritten dig-
its cannot be rigorously recognized with rules, without falling into a myriad of exceptions.
A solution to the above mentioned problem is carried out by artificial neural networks: a
collection of units, termed as neurons, that pattern the operations performed by neurons
in biological brain and are organized in layers linked between them with weighted con-
nections, which transmit information through the network like synapses do in a biological
brain. The set of techniques employed in neural networks allows a machine to be fed
with input data and to automatically devise the representations needed for classification,
as happens in every representation learning method, but with the distinguishing feature
of involving multiple levels of representation, by analogy with visual cortices.
Basically, artificial neurons receive input data (in this case, images), combine linearly
them with an optional threshold (bias) and generate an output through an activation
function. The desired task, such as image classification, is carried out by the terminal
outputs. Neurons of one layer connect only to neurons of the two adjacent layers, namely
the previous one and following one. The so called input layer receives external data,
the output layer generates the final result and all the layers in between these two are
termed as hidden layers. Each connection transfers the output of one neuron as an input
to another neuron and, carrying a weight, allows the computation of the input to a neuron
as a weighted sum of the previous neurons’ outputs.
Networks allowing connections between neurons of the same layer are called recurrent
networks, while in feedforward network the connections form a directed acyclic graph.
The activation function is devised so that a small change in input produces a small change
in output and is non-linear.
To highlight the relationship with biological neurons, it should be noted that in these the
action potential, occurring when a neuron sends information down an axon, fires only if
the potential difference at membranes overcomes a given threshold. An analog principle
holds for artificial neurons, but in this case the response to input data depends on the
specific used activation function and is adapted to the precise role the neuron and the
network are intended to accomplish.
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1 – General theory

It is emphasized that, for complex tasks of pattern recognition typically performed through
deep learning, the activation function is required to introduce a non-linear factor in the
network. The reason for this can be understood by considering the effect of a linear
classifier, currently employed in part of machine learning applications in concomitance
with ad-hoc devised features.
A two-class linear classifier computes a weighted sum of its input components: if the
weighted sum is above a given threshold, the input is categorized into a specific class.
Such operation can be imagined as the separation of a multidimensional input space into
half-spaces by an hyperplane, as sketched in Fig.1.1: all the points in the region on a side
of the hyperplane are classified as "belonging to that category (e.g., red rhombus)", the
others as "not belonging to that category (e.g., blue star)".

Figure 1.1: Two-class (red rhombuses and blue stars) linear classifier

As mentioned above, "shallow" classifiers (like the linear one) are not sufficient on
their own in any machine learning procedure. This is due to the fact that any application
involving recognition requires the output function to be both insensitive to small variations
of input data and sensitive to specific details which may determine the correct classifi-
cation of an element. More specifically, image classification needs the output function
to be insensitive to small variations in orientation and position of the input object and
simultaneously sensitive to specific tiny variations, in order to distinguish, as an example,
two different items in the same position and surrounded by a similar background. By
means of multiple non-linear layers, it is possible to extraordinarily implement convo-
luted functions maximizing both selectivity and invariance. The multilayered structure,
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1 – General theory

proper to deep learning, precisely involves modules computing non-linear functions of
their input and is designed to automatically learn by means of adjustable parameters,
whose operation will be detailed later. This last key characteristics allows to avoid hand-
designed feature extractors and their associated refined expertise, which in non-automatic
learning need instead to be combined with linear classifiers.
From Fig.1.2, it is possible to observe how a neural network, in this simple case including
only two input units, two hidden units and a hidden unit, can make the classes of data
linearly divisible: the input space exhibiting a regular grid with categories of data on the
blue and red lines (left) is altered by the multilayered framework to linearly separate the
two classes (right).

Figure 1.2: Input space’s distortion in a generic multilayer neural network; figure taken
from [1]

Neural networks performing image classification are typically based on supervised
learning: the input data the machine is fed with during training, termed as training set,
is in this case composed of images and their corresponding label. The same holds for
the test set, a different set of examples used to compute the performance of the machine
after training; it contains new images with respect to the training set, with the purpose of
testing the outputs of the system to inputs never seen during training.
The output layer has typically as many neurons as the number of provided classes:
considering classification of digits from 0 to 9, it will therefore have 10 elements, each of
them associated to a different digit and representing the value of probability for the input
image to belong to that specific number. Stated differently, the output vector assigns each
category a score that quantifies how much the considered image is likely to belong to that
specific class.
As regards the trainable parameters that during training regulate themselves until correct
classification is performed with the desired accuracy, they consist of the weights of
connections (denoted as w in the following) and optionally of the biases (b) added to the
summed inputs to a neuron contributing to the argument of the activation function. Small
changes in such parameters must produce small variations in the output of the network,
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1 – General theory

to make the training properly work. In fact, assuming that the system is erroneously
classifying an "8" as a "3", it is intuitive that changes in weights and optionally biases
need to be small, so that the network gradually learns to classify the image as an "8"
and the behavior of the rest of the whole structure is not compromised. Instead, large
variations of trainable parameters as well as binary neurons producing "0" or "1" as an
output could modify the rest of the structure in some complicated way. It is thus required
to use a smooth function, ensuring that a small change ∆wj in the weight linking neuron
j to neuron i and ∆bi in the bias of unit i produce a limited variation ∆outputi in that
neuron’s output, which can thus be properly approximated by:

∆outputi ≈
∑
j

∂outputi
∂∆wji

∆wji +
∂outputi
∂∆bi

∆bi (1.1)

where the sum is extended to all the neurons j connected to the unit i. The linearity of the
the function "outputi" with respect to ∆wj and ∆bi easily allows to obtain any requested
tiny variation in the output through small changes in the trainable parameters.
In this way, a good classification of input data can be obtained; its achievement is
quantified by the so called objective function or cost function, calculating the error (i.e.
a difference) between the obtained output and the target output. The latter could, for
instance, be a canonic array, with a 1 in correspondence of the element referring to the
correct class and remaining components equal to 0.
The aim of the algorithm becomes thus to change weights and biases in order to minimize
the objective function. This is commonly optimized with the stochastic gradient descent
(SGD) iterativemethod, which consists of providing themachine an input set of examples,
computing the errors deriving from the outputs, evaluating the average (over a given set of
examples) negative gradient, which indicates the direction leading the objective function
closer to a minimum, and correspondingly arranging the weights. It is considered as
a stochastic approximation of a gradient descent method, because, at each step of the
iterative process, it is calculated the average gradient over a small set of examples, which
is an estimation of the actual average gradient over the entire training set. At each step
it is taken a new small set of data and the process is repeated until the average of the
objective function stops decreasing.
Considering, for the sake of simplicity, only the set of weights ~w as trainable parameters,
the objective function E to be minimized is expressed as

E(~w) =
1

n

n∑
i=1

Ei(~w)

where n corresponds to the cardinality of the whole training set and Ei is the error
associated to an input. The cost function consists generally of a mean squared error:

E(~w) =
1

2n

n∑
i=1

|output(i)− t(i)|2 (1.2)
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1 – General theory

with output(i) and t(i) denoting respectively the vectors of true outputs and target outputs
obtained with the ith input image.
The SGDmethod performs the following change ofweightwjk for the connection between
the jth and the kth neuron of two consecutive layers:

∆wjk = −η
m<n∑
i=1

1

m

∂Ei
∂wjk

(1.3)

wherem is the cardinality of a small set of data and η > 0 is a step size, called learning
rate.
It is now presented with greater detail the working principle of a specific multi-layer
network, namely the feedforward network represented in Fig.1.3, with one hidden layer
containing three neurons and the input and output layer with respectively five and two
units. The considered structure is defined as fully connected, meaning that every neuron
of one layer linked to every neuron of the next layer; however, different patterns of
connection are in principle be allowed in a neural network.
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1 – General theory

Input layer
IL

Hidden layer
H1

Output layer
OL

...
yj =

∑
i∈ILwijxi

zj = f(yj)

yk =
∑

j∈H1wjkzj

zk = f(yk)

j wjk

... wij k

... ...

... ...

...

i

Output

Output

Figure 1.3: Forward pass in a multilayer neural network

The jth neuron, representing a computation unit of the hidden layer H1, performs the
following operations:

• it combines the input data coming from the previous layer with specific weights, so
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1 – General theory

that the total input yj to the jth neuron is a weighted sum of the outputs from nodes
of the previous layer, namely:

yj =
∑
i∈IL

wijxi

where wij is the connection directed from the ith neuron (of the input layer IL)
producing the output xi, to the jth node of H1. The sum is extended to all the
neurons of IL since the network is fully connected; in a general case, it would be
extended toM ≤ N neurons of the input layer;

• it applies a nonlinear function f(.) to its total input yj:

zj = f(yj)

1 where the non-linear function f may be, according to the most common choices
of the literature, the rectified linear unit f(y) = max(0, y), the sigmoids such as
the hyberbolic tangent f(y) = (ey − e−y)/(ey + e−y) and the logistic function
f(y) = 1/(1 + e−y).

The gradients requested for theminimization of the objective function in the SGDmethod,
or generally in gradient-based optimization algorithms, are computed through the back-
propagation method, if the modules implemented by each layer are smooth enough
functions; this explains the previously presented typical choices of activation function.
The backpropagation procedure is merely an application of the chain rule for derivatives
and it allows to obtain the derivative of the objective function E with respect to each
weight (with reference to Eq.1.3, ∂Ei

∂wjk
for weight wjk) by knowing the gradient of E with

respect to the input of a module, which is in turn computed by "backpropagating" the
gradient with respect to the output of that module. Basically, by starting from the output
layer and progressively getting to the input layer, the derivatives are evaluated at each
module.
The method is described in Fig.1.4, which refers to the same neural network of Fig.1.3.

1if the trainable parameter given by the bias bj of neuron j were, differently from here, considered, it
would add up to the input yj in the argument of f(.), giving as a result zj = f(yj + b)

16



1 – General theory

Input layer
IL

Hidden layer
H1

Output layer
OL

...

∂E
∂zj

=
∑

k∈OLwjk
∂E
∂yk

∂E
∂yj

= ∂E
∂zj

∂zj
∂yj

∂E
∂zk

= zk − tk

∂E
∂yk

= ∂E
∂zk

∂zk
∂yk

j wjk

... wij k

... ...

... ...

...

i

Figure 1.4: Backpropagation in a multilayer neural network

In correspondence of the neuron k at the output layer the derivative of the cost function
E with respect to the output is given by ∂E

∂zk
= zk − tk, considering E = 1

2
(zk − tk)2,

where tk is the target output of neuron k. The derivative of E with respect to the input yk
17



1 – General theory

of that neuron will be instead given, according to the chain rule, by: ∂E
∂yk

= ∂E
∂zk

∂zk
∂yk

, where
∂zk
∂yk

= ∂f(yk)
∂yk

. Once ∂E
∂yk

is known, the derivative of the cost function with respect to the
weight wjk is simply given by ∂E

∂wjk
= zj

∂E
∂yk

, since yk =
∑

j∈H1wjkzj . The gradients are
propagated backwards at each module until the input layer is reached, as shown in the
considered figure.

1.2 Underlying concepts of electromagnetic field theory
This section is dedicated to theoretical tools essential to model electromagnetic propaga-
tion in the neural network of interest.

1.2.1 Fourier optics
The study of classical optics using Fourier transforms goes under the name of Fourier
optics. It is well-known that both the electric field ~E and the magnetic field ~H obey
the wave equation, obtained by manipulating the Maxwell’s equations. Considering the
electric field ~E, the wave equation is:

∇2 ~E(~r, t) =
n2

c2

∂2 ~E(~r, t)

∂2t
(1.4)

where n and c are respectively the refractive index of the medium and the speed of light
in vacuum; ~r and t denote the spatial position and time.
In particular,

n =
ε

ε0

and
c =

1
√
ε0µ0

with ε, ε0 and µ0 referring respectively to the absolute permittivity of the medium, the
vacuum permittivity and the vacuum permeability.
An identical scalar wave equation is obeyed by the components of the vectors ~E and ~H ,
therefore a generic electric field’s component Ei obeys the equation:

∇2Ei(~r, t) =
n2

c2

∂2Ei(~r, t)

∂2t
(1.5)

The same holds for any component Hi of the magnetic field, therefore the behavior of
all the components of ~E and ~H can be written in a compact form through a single scalar
wave equation

∇2u(~r, t) =
n2

c2

∂2u(~r, t)

∂2t
(1.6)
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1 – General theory

For a monochromatic wave, the scalar field u(~r, t) solution of Eq.1.6 is

u(~r, t) = <{U(~r)F (t)} (1.7)

where <{} denotes the "real part", U(~r) is the complex function of spatial position ~r and
F (t)e−j2νt = is the complex function of time, with ν denoting the frequency of the wave.
The factorization emerging in Eq.1.7 separates the spatial and the temporal part of the
scalar field u(~r, t) and allows to reduce complicated two-dimensional mathematical ma-
nipulations to simpler one-dimensional manipulations. Moreover, since the time depen-
dence is generally known a priori, the analysis can be focused on the spatial propagation
for a complete description of the field.

The general solutions of Eq.1.6 do not provide practical and effective information about
a specific case of interest, implemented in the neural network later presented in this
document, which is the evolution of light between two different planes, parallel one with
the other and both perpendicular to the direction of propagation, termed as optical axes.
To examine this, it is necessary to follow the mathematical analysis presented below.
It is considered the Cartesian coordinate system of Fig.1.5, with optical axes oriented
along the positive z direction and the wave incident on a transversal plane (x, y). The
complex field across that plane, positioned at z = 0, is represented by the complex field
U(x, y,0) and the purpose is to calculate the field distribution that appears in correspon-
dence of a second plane parallel plane at a distance z to the right of the first plane.
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1 – General theory

z

(x,y) (x,y)

U(x,y,;z)U(x,y;0)

z=0

Figure 1.5: Field distributions U(x, y; 0) in correspondence of plane (x, y) at z = 0 and
U(x, y; z) in correspondence of a second plane (x, y) at distance z

To this purpose, it is firstly considered the two-dimensional Fourier transform of
U(x, y,0), F{U(x, y,0)}:

A(fx, fy; 0) =

∫∫ +∞

−∞
U(x, y,0) e−j2π(fxx+fyy) dx dy = F{U(x, y,0)} (1.8)

The complex functionA(fx, fy; 0) of spatial frequencies fx, fy is named angular spectrum
and expresses amplitude of each planewave in which the field U(x, y,0) is decomposed.
To highlight the physical meaning of the angular spectrum, it is useful to consider its
inverse Fourier transform:

U(x, y,0) =

∫∫ +∞

−∞
A(fx, fy; 0) ej2π(fxx+fyy) dfx dfy = F−1{A(fx, fy; 0)} (1.9)

The integral above is clearly extended to a set of planewaves, each with an amplitude
corresponding to a couple of values of spatial frequencies (fx, fy).
It is now considered the the spatial part of a simple planewave w(~r, t):

w(~r) = ei
~k·~r (1.10)

where ~k = 2π
λ

(α, β, γ) is the wave vector with magnitude |~k| = 2π
λ
and direction cosines

(α, β, γ) with γ =
√

1− α2 − β2, represented in Fig.1.6:
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1 – General theory

Figure 1.6: Wave vector ~k = 2π
λ

(α, β, γ) with magnitude |~k| = 2π
λ
and direction cosenes

(α, β, γ)

It is clear the complex function A(fx, fy; 0) ej2π(fxx+fyy), in correspondence of the
plane z = 0, can be viewed as a planewave with amplitude A(fx, fy; 0) and direction
cosines related to spatial frequencies:(

α = λfx, β = λfy, γ =
√

1− λf 2
x − λf 2

y

)
(1.11)

As previously emerged and as highlighted in 1.11, the wave vector ~k may be also written
as a function of spatial frequencies fx, fy, fz:

~k = 2π(fx, fy, fz) (1.12)

The angular spectrum of the complex field U across the plane (x′, y′) parallel to the plane
(x, y) and at a distance z > 0 from it is given by:

A(fx, fy; z) =

∫∫ +∞

−∞
U(x, y, z) e−j2π(fxx+fyy) dx dy = F{U(x, y, z)} (1.13)

In order to find out the relation between A(fx, fy; 0) and A(fx, fy; z) or equivalently the
propagation of the angular spectrum, U(x, y; z) is written as:

U(x, y; z) =

∫∫ +∞

−∞
A(fx, fy; z) ej2π(fxx+fyy) dfx dfy = F−1{A(fx, fy; z)} (1.14)
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and is inserted into the following Helmoltz equation 2

∇2U + k2U = 0 (1.15)

It is easily obtained the following differential equation for the angular spectrumA(α
λ
, β
λ
, z):

∂2A(α
λ
, β
λ
, z)

∂z2
+

(
2π

λ

)2

(1− α2 − β2) A

(
α

λ
,
β

λ
, z

)
= 0 (1.16)

whose solution is
A

(
α

λ
,
β

λ
, z

)
= A0 e

j 2π
λ

√
1−α2−β2 (1.17)

where A0 = A(fx, fy, 0). It is clear that the angular spectrum simply propagates as a
planewave. A proper, in the physical sense, expression for A(α

λ
, β
λ
, z) is actually given

by:

A

(
α

λ
,
β

λ
, z

)
= A0 e

j 2π
λ

√
1−α2−β2

circ(α2 + β2 ≤ 1) (1.18)

where the circular function

circ(α2 + β2 ≤ 1) =

{
0, if α2 + β2 > 1

1, if α2 + β2 ≤ 1
(1.19)

ensures that in the expression of A(α
λ
, β
λ
, z) no exponential functions with negative real

exponent can play a role, since they would make the angular spectrum exponentially
decay, basically inhibiting propagation of light. By writing down the following more
compact expression for the propagation of the angular spectrum

A = A0 e
ikzz (1.20)

,where kz = 2π
λ

√
1− α2 − β2, it is clear that the propagation for the complex fieldU may

be devised by antitransforming both the left-hand side and right-hand side of Eq.1.21,
resulting in the convolution

U = U0 ∗ h (1.21)

where
U = F−1{A}

U0 = F−1{A0}

h = F−1{eikzz}

2Such equation is simply obtained by substituting the expression u(~r, t) = <{U(~r)F (t)} into Eq.1.6
and simplifying out the temporal function F (t) acting like a multiplicative factor at each member
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Since h(x, y, z) = − j
λ
ejkr

r
z
r
, with r =

√
x2 + y2 + z2, it is obtained:

U(x, y; z) =

∫∫ +∞

−∞
U0(x′, y′; 0) h(x− x′, y − y′, z) dx′ dy′ =

=− j

λ

∫∫ +∞

−∞
U0(x′, y′; 0)

ejkr

r

z

r
dx′ dy′

(1.22)

with r =
√

(x− x′)2 + (y − y′)2 + z2.
Eq.1.22 is the mathematical expression of the Huygens-Fresnel principle and expresses
the field U(x, y; z) as a superposition of diverging spherical waves ejkr

r
from secondary

sources located at each point of coordinates (x′, y′; 0) on the (x′, y′) plane.

In summary, the propagation of an electromagnetic wave perpendicularly incident on
two parallel planes, one positioned at z = 0 and the second at a distance z > 0 from it,
can be performed in one of the two following equivalent ways:

• working in the frequency domain, that is:

– performing the Fourier transform

A(fx, fy; 0) = F{U(x, y,0)}

– propagating the angular spectrum simply by performing a phase shift of entity
ejkzz, namely

A(fx, fy; z) = A(fx, fy; 0) ejkzz

– finally finding the electromagnetic field at (x, y, z) by antitransforming the
propagated angular spectrum

U(x, y, z) = F−1{A(fx, fy; z)}

• working in the real domain by implementing the Huygens-Fresnel principle:

U(x, y; z) =

∫∫ +∞

−∞
U0(x′, y′; 0) h(x− x′, y − y′, z) dx′ dy′ =

=

∫∫ +∞

−∞
U0(x′, y′; 0)

ejkzz

r

z

r
dx′ dy′

(1.23)

In the diffractive neural network presented in the next chapter, the first approach will be
followed.
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1 – General theory

1.2.2 Relating optical intensity and complex scalar field U(~r)

Since the directly measurable quantity in optics is optical power (proportional to optical
intensity, which is the optical power per unit area), it is essential to associate it to the
complex scalar field U(~r) introduced in the paragraph 1.2.1, as well as to the the electric
field ~E and magnetic field ~H .
The key linking element is the Poynting vector ~S, corresponding to the directional energy
flux, namely the energy transfer per unit area per unit time, of an electromagnetic field.
~S is defined as the vector product of ~E and ~H:

~S = ~E ∧ ~H (1.24)

The SI unit of Poynting vector is the watt per square meter, namely W
m2 .

Therefore, its time average represents the intensity of the electromagnetic field, namely:〈
~S
〉

= I (1.25)

with SI unit given by watt per square meter ( W
m2 ).

Since the modulus of the magnetic field | ~H| and of the electric field | ~E| are related as
follows:

| ~H| =
√

εrε0
µrµ0

| ~E| =
√
ε

µ
| ~E| (1.26)

with εr, µr, ε0, µ0 denoting respectively the relative dielectric permittivity and the relative
permeability of the medium, the vacuum permittivity and the vacuum and permeability,
it holds that

|~S| = εrε0
µrµ0

| ~E|2 =
ε

µ
| ~E|2 (1.27)

The proportionality of the Poynting vector, whose time average represents an intensity,
to the squared modulus of the vector ~E leads to define the intensity of a scalar field at
position ~r as the squared modulus of the complex field U(~r):

I(~r) = |U(~r)|2 (1.28)

In the present work, the complex scalar field U will identify the electromagnetic wave
propagating between any two layers. Analysis concerning the distribution of light onto
any plane will be, instead, performed through its directly measurable intensity I .
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Chapter 2

Diffractive "deep" neural
network

Defined the theoretical basis of our study, it is now possible to get to the core of it. The
aim is to implement a deep learning framework with diffractive layers that collectively
perform digit recognition.
It is worthy to emphasize from the beginning that any aspect, later described, of the
network has been devised in view of its experimental implementation.

2.1 Introduction to the study
As previously mentioned, the studied neural network is inspired by the framework defined
as "D2NN" (Diffractive Deep Neural Network), recently introduced by Xing Lin et al.
in [18] and detailed in the associated supplementary material ([19]). The aim is to train
a neural network that can perform digit classification through deep learning’s method,
with the innovative feature of being all-optical.
Some unique differences in its architecture with respect to standard neural networks
will be emphasized in the course of the description. Nevertheless, it is necessary to
immediately point out a singular aspect: the network is entirely modelled by physical
electromagnetic propagation, therefore no neuron applies non-linear function to its input
data. The layers from the input to the last hidden one (included) are simply passive
elements providing an obstacle to light propagation, thus, by definition, "diffractive" el-
ements causing the angular spectrum’s broadening of the electromagnetic wave incident
on them. A separate discussion is instead required for the output layer, in the following
also named as "detector plane", which is not considered as part of the "diffractive layers".

Actually, referring to the multilayer diffractive setup as a deep neural network is mis-
leading and improper, as reported in the comment [54] on [18]. In fact, since each layer
performs purely linear optical functions, the entire optical system can be described by a
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2 – Diffractive "deep" neural network

single-layer structure (hence a more proper use of quotes around "deep"), far from a real
neural network, like the ones exposed in 1.1.2, which is classically referred as deep for
necessarily relying on a multilayered framework composing non-linear functions, with
the purpose of executing extremely complicated tasks. It is in fact clear that composition
of more linear functions corresponds to a unique linear one and this is reflected, in the
neural network, in the abstract collapse of the multilevel structure into a single layer.
Nevertheless, piling up more layers implementing linear functions makes performances
of the structure improve. As will be detailed shortly, in our framework any diffractive
layer contains precisely N2 trainable parameters, each of them associated to a neuron
and multiplied to the output coming from that specific neuron (for the sake of clarity, it
is again highlighted that, on the other hand, in classical deep learning models the train-
able parameters are essentially the weights regulating the inputs to each neuron of any
hidden layer; as a result, this latter, in a fully-connected network, will contain N2 ×N2

trainable parameters). Incorporating multiple planes in our specific framework proves to
increase classification accuracy, precisely for the involvement of more trainable coeffi-
cients, specifically adjusting themselves in order to accomplish the desired task.
It is worthy to point out that, as will be clearer later, in our framework a further operation
is implemented, specifically in the output layer, which acts similarly to a single-layer
perceptron. A mask, represented by a matrix of zeros and ones, is indeed applied to such
plane, resulting in cutting values of intensity outside the detecting regions: this allows
the "observer" more easily discriminate which detector is the most luminous one. The
perceptron is basically an artificial neuron using the Heaviside step function as activation
function. It constitutes the basic mathematical model for ANNs, developed in the 1950s
and 1960s; nonetheless, as pointed out in 1.1.2, today it is more common to use other
models of artificial neurons (like the sigmoid neuron), implementing non-linear func-
tions.
It is further emphasized that an effective all-optical deep neural network could be imple-
mented by incorporating optical non-linear functions in correspondence of the various
diffractive layers. Being the present multilayered framework the possible base of a po-
tential non-linear optical system, we feel sort of entitled to refer, in the present document,
to it as "deep", sometimes inappropriately neglecting quotes.

Coming back to describe the operation of the considered network, its trainable parameters
are contained in the transmission coefficients of the diffractive layers and are represented
by a phase value. The transmission coefficient tli of the ith neuron placed in layer l at
spatial position (xi, yi, zi) is given by:

tli(xi, yi, zi) = ejφ
l
i(xi,yi,zi) (2.1)

where the phase φli(xi, yi, zi) represents the only adjustable parameter related to the
considered neuron; the total number of trainable parameters in the network corresponds
to the number of neurons in the whole framework, differently from a fully-connected
standard neural network that approximately has as many modifiable parameters as the
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2 – Diffractive "deep" neural network

square of number of neurons. The transmission coefficient tli(xi, yi, zi) of a neuron is
actually composed of both amplitude ali and phase φli terms, namely:

tli(xi, yi, zi) = ali e
jφli(xi,yi,zi)

therefore also the amplitude ali may in principle represent a trainable parameter. Never-
theless, optical losses are neglected, therefore the amplitude is assumed to be a constant
ideally equal to 1.
It is worthy to highlight a further differences with respect to standard deep neural net-
works, still deriving from the fact that the multiple layers are connected by means of
electromagnetic radiation (mathematically described by a complex field, which in Sec-
tion 1.2.1 has been denoted as U ) propagating through them: the inputs to each neuron
are complex-valued rather than real-valued.

During the training phase, implemented on a computer using deep learning’s meth-
ods, the trainable parameters are properly adjusted; once the network has learned with the
desired degree of accuracy, the numerical phase is complete and the design of the network
is established by the obtained phase values. In fact, these give rise to a height map of
the diffractive layers, which, once 3D-printed and settled in a laboratory setup matching
all the conditions imposed before training, compose a powerful device performing the
specific task it was devised for, at the speed of light and without power consumption.
The height map is obtained by evaluating the thickness h of each relatively small "cell" –
corresponding to a neuron – which the layer is subdivided into. With reference to basic
notions of electromagnetic waves, h is given by:

h =
λφ

2π∆n
(2.2)

where λ is the wavelength of the electromagnetic radiation shed onto the image to be
recognized and propagating through the network, while ∆n represents the difference
between refractive index of the medium constituting the fabricated layers and the medium
for propagation of light in the laboratory (air).

2.2 Training of the deep diffractive neural network
In this section, the training process allowing adjustment of the phase value φ of each
neuron is gradually presented.

2.2.1 Architecture and geometry of the framework
It is firstly described the global architecture of the diffractive neural network together with
its geometrical parameters. At the moment, the values of the latter are not made explicit:
they will be presented in concomitance with their corresponding results, to show the
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2 – Diffractive "deep" neural network

flow of work involving their successive modifications and leading to define geometrical
features suitable to experimental implementation of the network.

The neural network design is implemented on Python, using Tensorflow math library.
Since the network is trained as a classifier of handwritten digits from 0 to 9, supervised
learning takes place. The machine is fed with "examples", each including an handwritten
digit image and its corresponding label, provided by the MNIST dataset ([16]), which
has a training set and a test set of respectively 60000 and 1000 examples.
Albeit the number of layers is defined while exploring the system and thus will be spec-
ified in the following, it is instead established a priori that, as previously mentioned, the
input and hidden layers involve neurons with modifiable phase coefficients and form the
subsystem dedicated to learn, while the output layer – in the following, also termed as
"detector plane" – contains ten separated and distinguishable detector regions, basically
performing the operation of classification. The neural network is in fact trained to make
the light concentrate in one detector, out of ten, which is univocally associated to one
specific digit. The detailed operations performed by each component of the network will
be discussed the next paragraph.
Referring to a three-dimensional Cartesian coordinate system, the architecture of the
network consists of a given number of squared layers, laying on (x,y) planes; they are
arranged parallel and at a distance d one with respect to the other, along the z direction.
As an example, an arbitrary simple structure with 3 layers is represented in Fig.2.1.
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z

d

x

y

Input layer

Hidden layer

Output layer

Figure 2.1: Neural network consisting of 3 squared layers, laying on (x, y) planes arranged
parallel and at a distance d one with respect to the other, along the z axes

Each diffractive layer has side L and is formed by N × N neurons, identified by
squared pixels with a finite size δx, as shown in Fig.2.2 for an arbitrary value of N .
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δx

L = N × δx

Figure 2.2: A single diffractive layer of the neural network, with side L and containing
N2 = 82 pixels of size δx

Basically, the unit of calculations receiving input data, evaluating an output and
possessing a transmission coefficient (trainable parameter) corresponds in this framework
to one of the N2 squared pixels of side δx contained in the plane with side L = N × δx.
The latter hosts an image, representing the intensity distribution of the electromagnetic
radiation propagating through the network: that is the reasonwhy, hereinafter, the neurons
of diffractive layer will also be termed as "pixels". It is indeed well known that a pixel
is the smallest unit of information composing a picture, therefore its identification with a
neuron is the key ingredient to implement image classification through a neural network.

2.2.2 Inputs adjustment and forward propagation model
The mechanisms regulating the forward propagation of light are here presented into sub-
divided paragraphs, with the purpose of discussing the progressive interaction of light
with the various diffractive layers, starting from the input and proceeding through the
subsequent ones.

First of all, it is briefly introduced the notation used in the present section:

• x0
i represents the real value of amplitude of the pixel i in the input image, which, as

will be clearer later, is directly projected onto the input layer

• xl=1
i represents the complex value of the neuron i in the input layer (identified as
l = 1, with l indexing layers)

• yli denotes the complex input to pixel i in layer l

• zli is the complex output from neuron i of layer l

• tli = ejφ
l
i represents the transmission coefficient of neuron i at layer l; the spatial

position (xi, yi, zi) of Eq.2.1 is omitted to avoid heavy notation

It is emphasized that a complex field input to or output from a given layer is identified as
anN ×N matrix; each of its elements, labeled by the index i ∈ [1, ..., N2] with a precise
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order maintained equal for any plane, represents the value of the field in correspondence
of the ith pixel (or neuron) of the considered layer.
Despite two indexes (k = 1, ...N ; l = 1, ..., N ) constitute the proper and usual choice
to label an element (at row k and column l) in a 2D matrix, here, apart from expressions
of more complicated element-wise operations, an unique index i = 1, ..., N2 will be used
in order to highlight the univocal association of the matrix element with one of its N2

pixels.
In the following, each above-mentionedN ×N matrix will be denoted by a capital letter,
the same as the lowercase one used to name its internal elements, which are the inputs
or outputs at any single pixel. For instance, X l=1 is the matrix representing the complex
field output from the input layer and has internal elements denoted as xl=1

i , while T l is
the matrix of trainable parameters tli = ejφ

l
i at the first hidden layer.

The connection between the matrix mathematical representation and the physical layer is
identified by the finite size δx of each pixel, which, as shown in the following, will be
involved in any calculation of the electromagnetic radiation - related physical quantities
measurable over a layer.

Image at the input layer

The input handwritten digits provided by theMNISTdatabase (ModifiedNational Institute
of Standards and Technology database) 1 contain of 28× 28 pixels with grayscale values,
from 0 (foreground, black) to 255 (background, white). As an example, an image from
the training dataset is shown in Fig.2.3.

Figure 2.3: Handwritten digit from the MNIST dataset, with 28× 28 pixels

1The dataset has been taken from American Census Bureau employees and high school students
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The real value taken by a pixel quantifies the light intensity in that precise region of
the image.
A laser beam of wavelength of λ, carrying information about the image to be classified,
is projected onto the input layer and propagates through the network. The pixel i of the
input layer (l = 1) has a complex value xl=1

i given by:

xl=1
i = x0

i × tl=1
i = x0

i × ejφ
l=1
i (2.3)

wherex0
i denotes the real-valued amplitude of the image to be classified in correspondence

of the pixel i.
Using matrix notation, Eq.2.3 is written as:

X l=1 = X0 ◦ T l=1 (2.4)

where "◦" denotes the Hadamard (or equivalently entrywise) product 2.
Basically, in the present model no physical distance separates the plane displaying the
input image and the input layer: it is considered a direct projection of light onto the
network’s first layer, whose pixels have complex-valued transmission coefficients with
trainable phase φ.
It is thus clear that the input image must represent a distribution of light’s wave amplitude
that, once multiplied pixel by pixel to the complex exponential functions encoded in
each neuron of the input layer, determines, in correspondence of the latter, a complex
field X l=1. The latter is necessarily (for numerical implementations) a discrete function
assuming the complex value x1

i in correspondence of the neuron i ∈ [1, ..., N2] at position
~ri = (xi, yi, zi) and simply represents an approximation of the continuous complex field
U(x, y, z) introduced in section 1.2.1, which propagates through the network from one
plane to the following one and is diffracted by each of them.
The relationship – shortly detailed – between the value of x0

i and of the ith pixel in
the input MNIST digit must clearly involve a square root operation, since mathematical
analysis of electromagnetic waves’ propagation deals with complex fields whose modulus
squares represent light intensities (Eq.1.28 of paragraph 1.2.2).
Being the N ×N matrix of complex values X l=1 obtained through a Hadamard product
(2.4), the input image and the input layer must have the same dimensions. As discussed
in the next sections, diffractive layers will require to consist of more than N2 = 28× 28,
consequently an image resize will be necessary for the input image. The library of pro-
gramming functions called "OpenCV" (Open source computer vision) provides various
interpolation algorithms to resize images: in this specific case, the "nearest-neighbor
interpolation" turns out to generate an image containing more pixels, without visible
differences with respect to the original one.

2This binary operation takes two matrices of the same dimensions and generates a third matrix of the
same dimension, where each element k, l (at row k and column l) is the product of the two elements k, l of
the original two matrices
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With the purpose of experimentally implementing the studied device based on free-space
optical communication, a low "diffracted beam" divergence is important. The divergence
of the propagating radiation with respect to the optical axes is controlled by measuring the
value of light intensity permeating each plane: if such quantity is approximately constant
from input to output of the network, the diffracted beam can be considered "sufficiently
collimated". To set a reference value, it is established to normalize to 1 the intensity
distribution "summed up" (if it was a continuous function, it would be integrated) over
the input image.
The following operations on the input digits’ pixels are thus performed: the intensity
value Ii at each pixel i = [1, ..., N2] of every MNIST image – like the one of Fig.2.3 – is
scaled down, square-rooted and the resulting amplitude Ai is finally normalized, leading
to the value of x0

i appearing in 2.3:

Ii =⇒ I ′i =
Ii

255
=⇒ Ai =

√
I ′i =⇒ x0

i =
Ai√∑N2

j=1 I
′
j × (δx)2

(2.5)

In this way, the sum of light amplitudes extended to all pixels of each input image satisfies
the following condition:

N2∑
i=1

|x0
i |2(δx)2 = 1 (2.6)

Propagation from input to output layer

The propagation along the z direction of the electromagnetic radiation incident perpen-
dicularly on a diffrative layer and propagating until the next one is implemented in the
neural network by working in the frequency domain. The sequential operations described
below, based on the theory introduced in Section 1.2.1, refer to information propagation
between the input and the first hidden layer.

1. The complex field emerging from the input layer (l = 1) and encoded in theN ×N
matrixX l=1 containing elements xl=1

i (2.3) labeled by i = [1, ..., N2] is 2D discrete
Fourier transformed, giving as a result thematrixA0, which represents a numerically
implemented angular spectrum:

A0 = F{X l=1} (2.7)

2. The angular spectrum A0 is propagated along the distance d between the two con-
sidered layers:

A1 = A0 × ejkzd (2.8)

where kz = 2π
λ

√
1− α2 − β2, withα andβ terming the direction cosenes, according

to the notation of Section 1.2.1
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3. A 2D discrete Fourier antitransform is applied to A1 to give as a result the complex
electromagnetic field Y l=2 input of the first hidden layer (l = 2):

Y l=2 = F−1{A1} (2.9)

4. The entrywise product is performed between Y l=2 and thematrix of the transmission
coefficients of the layer l = 2, T l=2:

Z l=2 = Y l=2 ◦ T l=2 (2.10)

where the ith element of T l=2, given by tl=2
i = ejφ

l=2
i , involves the trainable param-

eter φl=2
i .

The matrix Z l=2 obtained in Eq.2.10 represents the output from the first hidden layer and,
if subjected to operations 1) =⇒ 2) =⇒ 3) =⇒ 4), is propagated until the subsequent
plane. By iterating this procedure, the electromagnetic wave is propagated until the out-
put layer.

The numerical operations presented above are now described with greater detail.

2D Discrete Fourier transform (2D DFT) The 2D Discrete Fourier transform (2D
DFT), generally defined for complex inputs and outputs, can be defined in different ways,
depending for example on the sign of the exponent, or on the used normalization. The
function implemented in the code uses the 2D DFT defined as (referring to Eq.2.11:
A0 = F{X l=1})

A0,ik =
N−1∑
p=0

N−1∑
q=0

X l=1
pq exp

{
−2πj

(
pi

N
+
qk

N

)}
(2.11)

where
i = 0, . . . , N − 1; k = 0, . . . , N − 1

label respectively the row and column of element A0,ik.
The DFT is computed through a very fast algorithm, called "Fast Fourier Transform"
(FFT), which has contributed to the current force of discrete Fourier transform in numer-
ical computations.

In phase 1), it is actually applied, after performing Eq.2.11, a function called "Fast
Fourier Transform shift" (fftshift), which rearranges the matrix A0 by shifting its zero-
frequency components to the center of the spectrum. In particular, the "Fast Fourier
Transform shift" swaps the first quadrant of a matrix with the third, and the second
quadrant with the fourth,
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Discrete form of propagator ejkzd In order to numerically implement the propagator
ejkzd that, applied to the angular spectrum A0 at input layer layer, determines its propa-
gation along distance d hence the angular spectrum A1 = A0 × ejkzd at the first hidden
layer, twoN ×N matrixes Fx and Fy must be defined. Their elements correspond to the
spatial frequencies defining the wave vector ~k = 2π(fx, fy, fx) (Eq.1.12) and are thus
used to calculate the propagator’s exponent:

ejkzd = ej2π
√

( 1
λ

)2−F 2
x−F 2

y d (2.12)

As well-known, the spatial domain is the visible image space, where distances in the
image (in pixels of size δx) correspond to real distances. Fig.2.4 represents, for the sake
of clarity, the simple correspondence between 1D spatial domain (a) to 1D frequency
domain (b,c). The latter, allowing to perform more easily image processing’s operations
that would result complicated in the former, basically represents the value change rate of
pixels.

Frequency domain (b)

(a)

(c)

Spatial domain
0

δx

L = N × δx

0 fx = 1
δx

− 1
2δx

0 + 1
2δx

Figure 2.4: Correspondence between spatial (a) and frequency (b,c) domain

Considering to deal with a large enough number of pixels N in a squared image of
size L, the spatial frequencies fx and fx are defined in the range of frequencies[

0,
1

δx

]
=

[
0,
N

L

]
A frequency domain symmetrical with respect to zero-frequency (c) is taken, in order
to satisfy the Nyquist–Shannon sampling theorem, fundamental when implementing
discrete signals approximating continuous ones. It provides the following sufficient
condition for sampling a continuous signal with no loss of information: for a given
sample rate fx, perfect signal reconstruction is ensured possible for a bandlimit B < fx

2
.

If a higher bandlimit (Fig.2.4-(b)) is used, the image reconstruction (in real space) may
exhibit "aliasing", namely distortions making it different from the proper one, due to the
fact that the frequency signal have cut away fundamental information of the image,when
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sampled.
To summarize, the two N ×N matrixes Fx and Fy have respectively identical rows and
identical columns of N values equally spaced in the range

[− 1

2δx
,+

1

2δx
] = [−N

2L
,+

N

2L
]

By performing the operation "−(F 2
x + F 2

y )" at the exponent of the expression 2.12, all
the possible combinations between any two values of fx and fy are considered and the
N ×N matrix propagator ejkzd can be element-wise multipled by the tensor A0 to allow
propagation of all its elements.

Output layer

The electromagnetic radiation transmitted by the last hidden layer (containing, like every
layer apart from the output one, transmission coefficients with trainable phase) propagates
along the distance d until the output layer. The latter containsN ×N pixels and encodes
the positions of 10 photodetectors arranged on it: pixels with value 1 and 0 represent
respectively presence and absence of a detector in that specific area of the plane. Each
photodetector is associated univocally to a digit and the system is trained to focus light on
a specific detecting region of the output plane, according to the class of the input image.
Basically, once training is complete, photodetectors are expected to light up when the
digit they represent is shown to the machine.
Despite the extension of the detecting regions will be detailed in the next paragraph,
it is anticipated that the total area occupied by photodetectors must occupy a suitable
portion of the output plane to perform proper light detection. Furthermore, detectors
are not in contact with each other and are symmetrically arranged to avoid any biased
configurations, which may lead to lower system’s performance if light is expected to
illuminate the whole plane.
As an example, an output plane of 28× 28 pixels containing 10 detecting regions of size
4 × 4 is shown in Fig.2.5: areas occupied and unoccupied by detectors are respectively
identified by white pixels (with value 1), and black pixels (with value 0).
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Figure 2.5: Photodetectors of size 4× 4 in output plane with 28× 28 pixels

Fig.2.6 highlights the specific positions of photodetectors associated to each digit,
representing the different configurations of output plane depending on the provided input
digit, in an ideal case of perfect learning.

Figure 2.6: Single photodetectors’ positions associated to a specific digit. Top left figure:
after a proper training, the machine fed with a "0" digit is expected to focus light onto the
upper-left corner of the output plane

.
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The mathematical operations performed by the output layer are now detailed:

• It receives an input matrix Y l = Y OL (where l=OL stands for "output layer") of
dimension (N,N) encoding the complex values of electromagnetic field projected
onto it

• It computes the matrix of electromagnetic field’s intensity given as input to the
output layer, Y ′OL. Its ith element yOLi is given by

y′OLi = |yOLi |2(δx)2 (2.13)

where yOLi is the ith element of matrix Y OL and the constant (δx)2 is introduced to
physically associate light intensity to finite area of each pixel.

• It converts Y ′OL into a 1D tensor of dimension (1, N2) denoted as Y ′′OL

• It produces the output matrix ZOL through the following matrix multiplication:

ZOL = Y ′′OL ×DT (2.14)

where DT is the transpose of the matrix D which has dimension (10, N2). Each
row of D with N2 elements encodes the position in the output layer of one specific
detector: pixels of the detecting region are identified by "1", all the others by "0".

As an example, to the arbitrary output layer named as "OL" of dimension (4,4)
(shown in Fig.2.7, which highlights the order of pixel labeling) containing two de-
tectors each formed by 2×2 pixels, the followingmatrix D of dimension (2,42 = 16)
is associated:

D =

[
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

]

The output ZOL is thus an array of dimension (1,#detectors): each of its ele-
ments refers to a specific detector and represents the total light intensity projected
onto that detector.

2.2.3 Error evaluation and backpropagation
The results of the output plane are now compared with the targets and the resulting errors
are backpropagated.
Each single target T is computed as a canonical array of dimension (1,#detectors) – or
equivalently (1,#classes) – with a "1" in correspondence of the ith component, where
i ∈ [0,9] is the label provided by the MNIST dataset together with the corresponding
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Figure 2.7: Output layer "OL" of 4× 4 pixels with two detectors, each marked by yellow
regions of 2 × 2 pixels. It is highlighted the order of labeling pixels, by naming the ith
element of the layer pixel as "ioli".

image to be classified.
The output array ZOL is typically transformed into the normalized vector ZOL

N , whose
element in position i ∈ [0,9] component is computed as:

ZOL
N,i =

ZOL
i∑9

i=0 Z
OL
i

(2.15)

In this way all the components of ZOL sum up to 1, as with T . The word "typically"
of some lines above derives from the fact that some simulations without normalization
have also been implemented, due to reasons described in the following chapter. For the
moment, it is highlighted that in this specific framework normalization is not necessary to
obtain output array’s values in the range [0,1], since the initial normalization performed
in the input image (Eq.2.6) leads to ZOL

i < 1 for each i. Nevertheless, normalization
is generally applied to neural networks’ output arrays when associations with canonical
vectors have to be performed.
The comparison between ZOL

N and T can be performed through the squared error:

Edigit =
1

10

9∑
i=0

(ZOL
N,i − Ti)2 (2.16)

Actually, the exact error which is backpropagated is not the one reported in Eq.2.16 which
refers to a single image (hence the name "Edigit").
In fact, before training the training dataset is divided into an established number of parts,
termed as "batches", since it is not possible to pass the entire database to the neural
network at once. Despite the previous description concerned, for the sake of simplicity,
the output produced by the system fed with a single image, the neural network is instead
fed with all the images of a batch together. More specifically, the input is provided to
the system as a tensor of dimension (BS,N2), where "BS" denotes the "batch size", i.e.
the cardinality of the batch; proper computations lead easily right back to the situation
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described in the previous paragraph.
Consequently, a mean square error Ebatch over the batch size is computed:

Ebatch =
1

BS

BS∑
j=1

Edigit,j (2.17)

Finally, all the Ebatch of all batches are averaged, giving the error of an epoch (defined
shortly) E as a result:

E =
1

#batches

#batches∑
k=1

Ebatch,k (2.18)

E represents the error to be backpropagated through the procedure described 1.1.2, where
the stochastic gradient descent algorithm is automatically implemented by Tensorflow.
An epoch corresponds to the passage of the entire dataset to the neural network only once:
during training, more epochs are settled, since the full dataset has to be passed multiple
times to the machine in order to make it learn. As seen in the literature, the minimal
number of epochs results generally to be 5, but it clearly depends on the implemented
network.
Training duration is properly established by measuring at each epoch some quantities
measuring the quality of learning, including the accuracy. This is used in our diffractive
neural network and is defined as the percentage of correct classifications. Being evaluated
at each epoch, it is given by the average of all the batches’ accuracies. In the following,
the accuracy evaluated at the last epoch in training phase will be denoted as αTR, while
αTE will denote the same quantity evaluated for the test phase.

2.3 Setting of physical parameters and results
The physical parameters of the structure have to be properly setted to both match the
condition of numerically simulated full connectivity and allow the experimental use
of the network after its fabrication. Simultaneously satisfying the two requirements,
so as to obtain good performances of the deep learning model together with robust
conditions for its physical implementation, proves challenging. This is why finding a
good compromise between the two constitutes the core of the present study, riddled with
progressive modifications in both the the physical parameters and the structure of the
network, in a sort of "trial" and error" approach followed on the basis of sometimes
unpredictable simulation results.

2.3.1 Full connectivity and physical implementation’s requirements
As is now known, the considered neural network uses optical diffraction to connect the
neurons at various layers and, on the basis of diffraction notions reported in the Appendix,
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the maximum half-cone diffraction angle θ satisfies

sin(θ) =
λ

δx
(2.19)

where δx is the layer feature size.

θ

xy

z

d
L

ρ

Figure 2.8: Optical diffraction connecting one neuron of a layer to neurons of the
successive plane; the planes have side L and are placed at distance d from each other.
The half-cone diffraction angle is represented by θ, while ρ = arctan(L

d
).

In order to ensure full connectivity of the network, the distance d between two con-
secutive layers of side L must be relatively large, so that light diffracted from any pixel
of a layer spans over the whole following plane at a distance d. Considering a section
of the solid diffraction angle, as shown in Fig.2.8, the angle associated with radiation
transmitted from a neuron placed on the corner of the left-layer is the one requiring the
largest lower limit for full connectivity, namely:

θ ≥ ρ (2.20)

where ρ = arctan(L
d
).

The inequality 2.20 can be equivalently expressed as

tan(θ) ≥ L

d
(2.21)
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or
tan

[
sin−1

(
λ

δx

)]
≥ L

d
(2.22)

with clearly θ, ρ ∈ [0, π
2
].

Starting from the above reported requirements, it is possible to explore appropriate values
of parameters, basing on preconditions established by the practical implementation of the
network.
First of all, an absolutely fixed physical parameter is the wavelength λ of the green laser
pointer, available in the laboratory, emitting at λ = 532nm. The use of this relatively
small wavelength radiation requires a small pixel size δx, in order to allow significant
neurons’ connectivity, as can be noticed by Eq.2.22.
On the other hand, even though submicrometric features are possible in the technique
used to fabricate the layers, two-photon lithography, a minimal size δxmin of pixels needs
to be established, since layers must be extended enough so that they can be handled, once
fabricated, in laboratory. In fact, their side L cannot be made arbitrarily large by increas-
ing N , due to unavoidable time-consuming numerical calculations when N ≥ 100,200.
More specifically, the following range of minimal layer side Lmin has been established

Lmin ∈ [1mm, 2mm] (2.23)

and, by imposing a maximum number of pixels per layer’s side

Nmax ∈ [100,200] (2.24)

the value of δxmin is set to:
δxmin = 5um (2.25)

Furthermore, it is not possible to arbitrarily decrease the quantity L
d
of Eq.2.22, so as

to compensate a relatively large pixel size δx which would exactly make requirements
2.23 and 2.24 amply satisfied. This is due to the fact that the distance d between
two adjacent layers cannot be significantly larger than their dimensions, otherwise their
practical alignment, to be performed through proper optical systems employed in the
laboratory setup, would be unfeasible.
With the premise that design parameters guaranteeing conditions for feasible and practical
laboratory work can be estimated rather than firmly established a priori, the maximum
value of dmax in an experimental implementation with layers of sideLmin is approximated
as:

dmax = 1cm (2.26)

The total number of layers is set to be equal to three, including two diffractive planes with
trainable parameters (input layer and one hidden layer) and the output plane. Aiming at
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physically implementing a network with effective performances as close as possible to the
numerically explored ones, a moderate number of layers is expected to guarantee minimal
error sources in the experimental procedure. In fact, more hidden layers would clearly
prove more challenging to be perfectly aligned between them, most probably leading
to a configuration relevantly different with respect to the trained one, which is instead
intended to establish the design of a physical device performing the desired task.
Actually, simulations with more diffractive layers, up to 5, have been performed to ex-
plore the impact of the number of layers on the machine performance, where the latter is
expected to increase with the former for previous considerations on deep learning models.
As will become clearer later, another important reason for training a machine with differ-
ent physical parameters, which do not match the requirements settled by our laboratory
setup, stands in the comparison of performances achieved by the diffractive deep neural
network introduced in [18] by X.Lin et al. They realized a 5 hidden layers- diffrac-
tive framework, using an illumination system with wavelength of 0.75mm 3 in air, layers
outdistanced of 3cm and of area of 8cm×8cm, covered by 200×200 pixels of size 400um.

It is emphasized that, in all the simulations presented in the next section, the sum over all
pixels of light intensity Y ′OL given as input to the output layer (whose components y′OLi

are defined in Eq.2.13) satisfies the following equation:

N2∑
i=1

|y′OLi |2(δx)2 = 1 (2.27)

and the same holds for the hidden layer/layers, meaning that electromagnetic energy
is conserved over each plane, since it proves to be unchanged with respect to the one
extended at the input layer, determined by Eq.2.6 after the normalization performed in
Eq.2.5.
Energy conservation in correspondence of the different layers arranged along the optical
axes allows to describe the radiation incident on them as a paraxial ray, which is defined
as a ray forming a small angle with respect to the optical axes and, consequently, lying
close to it during propagation.
In optics, when such condition is satisfied, the so called "paraxial approximation" allows
to significantly simplify calculations of the wave propagation. It involves, for the wave
vector ~k = 2π

λ
(α, β, γ) = 2π(fx, fy, fz) represented in Fig.1.6 (α, β, γ are the direction

cosenes) and the angle C = cos−1(γ) spanned by it with respect to the optical axes z, the
following approximations:

sin(C) ≈ C tan(C) ≈ C cos(C) ≈ 1 |k| ≈ |kz| (2.28)

3According to previous considerations (Eq.2.22), a significant larger wavelength allows the use of
noticeably wider layer feature sizes δx and clearly results in larger dimensions of the device.

43



2 – Diffractive "deep" neural network

In the neural network’s simulations presented in the following, the third condition of
Eq.2.28 can be indeed directly verified by evaluating

cos(C) = γ =
√

1− α2 − β2 =
√

1− (λfx)2 − (λfy)2 =
√

1− (λfx)2 − (λfy)2

which, after replacing the maximal value of spatial frequencies fx, fy ∈ [− 1
2δx
,+ 1

2δx
] in

it, will lead to the following relation for any later reported configuration, which has been
numerically trained:

cos(C) =

√
1−

(
λ

2δx

)2

−
(
λ

2δx

)2

=

√
1−

(
λN

2L

)2

−
(
λN

2L

)2

≈ 1 (2.29)

Now, some of the relevant results which have charted the way to phase masks of 200×200
pixels, considered suitable for diffractive layers fabrication, are reported.
Unless specified differently, the error calculation is assumed to be performed starting
from a normalized output vector ZOL

N , whose components ZOL
N,i are obtained through

Eq.2.15. Moreover, the value of batch size will be setted to BS = 8 in all the training
simulations.

2.3.2 Layers with 28 × 28 pixels
In deep learning models performing image classification, neural networks with layers of
few pixels are clearly not expected to perform as good as the ones involving more neurons
in propagation information.
In the present framework, accuracy αtr larger than 80% can be obtained when planes with
a relatively small number of pixels, 28 × 28, are employed. Nonetheless, as described
below, such configurations cannot satisfy the requirements described in Paragraph 2.3.1.

Laser source with wavelength λ = 0.75mm

If larger wavelengths than the one of interest are employed, pixels can clearly increase in
dimension. It is here considered the case of λ = 0.75mm, both to appreciate the change
in physical parameter values (with respect to a network supplied by laser of λ = 532nm)
and and to provide a comparison with the framework developed in [18] by X Lin et al.
Actually, their structure slightly differs from ours in some configuration features and as
specified above it employs N2 = 200× 200 pixels per layer. However, simulations with
λ = 0.75mm and relatively few neurons have represented a timesaving starting point to
verify the reliability of our neural network. The obtained classification accuracy larger
than 80% can in fact be considered promising, by comparison with the values of αtr equal
to 55.64% and 91.75% presented in [18] for respectively one and five diffractive layers
containing much more neurons. Training later performed with N = 200 and exactly the
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same parameters used by X Lin et al. has lead to αtr = 74.70% in our framework with
two diffractive layers.
It is emphasized that accuracies of approximately 80% are generally (at any value N of
pixel involved) considered good in our framework, due to – as already highlighted – the
use of linear representation patterns, totally unusual in deep learningmodels and resulting
from the use of light diffraction for information propagation.

In the case N = 28, the distance between layers, their size and pixels’ dimensions
are respectively given by

d = 5.0cm L = 2.4cm δx ' 0.86mm

A glimpse of the 10000 outputs given by the system during the test phase, after training
performed within 5 epochs, is provided in Fig.2.9 (where, as in the following images,
layers’ regions of maximal and minimal light intensity appear respectively as yellow and
violet, after colors adaptation to better highlight bright pixels with respect to dark ones).
Here, in correspondence of each input digit, an output and a masked output distribution
are represented: the former identifies the light intensity incident on the output plane,
defined as |Y OL|2 in Paragraph 2.2.2; the latter reproduces exactly the output distribution
resulting from the application of a detectors mask. While such mask is not employed
during training since just the real intensity |Y OL|2 must be involved in error evaluation,
it could instead be aligned to the output layer during the experimental phase of network’s
physical implementation. As shown below, the masked output distributions exhibit a
clearer lighting of each photodetector in response of a given input digit (all the specific
correspondences are illustrated in Fig.2.5).
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True labels: 3 7 8 1 1 9 0 4
Predicted labels: 3 7 8 1 1 9 0 4

Figure 2.9: Data from test set; network with two layers of 28× 28 pixels, δx ' 0.86mm,
L = 2.4cm, d = 5.0cm; training performed with 5 epochs, batch size=8.
In each of the two semicolons, from left to right: input digit, intensity distribution incident
on the output plane, intensity distribution incident on the output plane after a detectors
mask has been applied.

All the labels reported Fig.2.9 are predicted correctly by the network, even the "9" in
the second image from the top, on the right, which appears as almost mistaken for a "7"
form the masked output distribution.

Visualization of the network’s performance is allowed by the confusion matrix, shown
here below, displaying the ways in which the classification model is confused when
it makes predictions. Each row of the table corresponds to an actual class, each col-
umn to a predicted class and its elements represent the counts of correct and incorrect
classifications.
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Figure 2.10: Confusion matrix; network with two layers of 28×28 pixels, δx ' 0.86mm,
L = 2.4cm, d = 5.0cm; training performed with 5 epochs, batch size=8

The classification accuracy αtr is reported as a function of the epoch number in
Fig.2.11, where it shows to reach a maximum value approximated as 81.26% in the last
epoch of the training phase.

Figure 2.11: Classification accuracy αtr as a function of the epoch number; network with
two layers of 28× 28 pixels, δx ' 0.86mm, L = 2.4cm, d = 5.0cm
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Laser source with wavelength λ = 532nm

Focusing now on the radiation’s wavelength of interest, 532nm, the following consid-
erations highlight how unfeasible would be to physically implement a neural network
with layers of N = 28. Using pixels of size δx = 10um would still lead to a relatively
moderate ratio L

d
≈ 0.05, but with absolutely extremely small hence not handable objects

of size L = 0.28mm. By increasing the value of δx, it turns out that exploitable layers
with size of the order of few millimeters should be spaced from each other by a relatively
enormous distance d of several centimeters, in order to satisfy the conditions presented
in 2.3.1. For instance, layers with side L = 1.4mm containing pixels of size δx = 50um
would need to be outdistanced of d ≥ 13cm.

Layers of side L = 0.28mm outdistanced by d = 8cm Described the incompat-
ibility of N = 28 and λ = 532nm for experimental realization, the present paragraph
is actually dedicated to analyze some "unrealizable" diffractive networks implemented
with the above parameters. In particular, layers of side L = 0.28mm, containing pixels
of dimension δx = 10um and outdistanced of d = 8cm result in a physically unreal
framework which, by largely satisfying the requirement of full connectivity, reaches in
specific geometrical conditions of the output plane a good classification accuracy over
the training set and can be used to accomplish fast (because of few pixels) and reliable
studies on the detectors’ size.
As shown in Fig.2.12, reporting data extracted from the test phase, the unmasked output
distribution of a network achieving a satisfying classification accuracy αtr ≈ 80.78%
and with detectors of 4× 4 pixels does not prove that the system has correctly classified
the input image. In fact, apart from digit "3" and "1" determining a visible lighting
of the corresponding detector, all the other input images result in an ambiguous "output
distribution" of light intensity and would require to pose the detector mask onto the output
plane in order to be properly classified in the laboratory.
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True labels: 2 3 0 4 1 7 5 8
Predicted labels: 2 3 0 4 1 7 4 8

Figure 2.12: Data from test set, referred to a network with two layers with 28× 28 pixels,
δx = 10um, z = 8cm, detectors of 4× 4 pixels.
ErrorE is evaluated through a normalized output error. Training performedwith 5 epochs
and batches of BS = 8 gives a classification accuracy αtr ≈ 80.78%.
In each of the two semicolons, from left to right: input digit, intensity distribution incident
on the output plane, intensity distribution on the output plane after a detectors mask has
been applied.

Incidence of light onto non detecting regions is due to the fact that during learning the
error E is minimized by attempting to maximize (as far as possible) the element in posi-
tion i of the normalized output array ZOL

n – defined in Eq.2.15 – when digit i ∈ [0,9] is
given as an input. Basically, transmission coefficients of diffractive layers are modified to
make light focus more on the correct photodector with respect to the other nine detecting
regions of the output plane, but not with respect to all the rest of the output plane.
Output plane configurations with 1

4
− 1

5
of the total area covered by detectors – as the ones

illustrated in Fig.2.12 – turn out to produce good performances in deep learning models
of image classification’s literature.
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In order to minimize light intensity distribution in non detecting regions while main-
taining the same layout of the output plane, the following modification in the learning
algorithm is applied: the output array ZOL is no more normalized, so that it represent the
effective light distribution in each photodetector and no more, like ZOL

n does instead, the
relative intensity in each 4 × 4 pixels’ area with respect the other detecting regions. In
this way, the maximization of an element of ZOL should involve light intensity’s increase
in the corresponding detecting region and its simultaneous decrease in all the rest of
the output plane. The modified learning model’s outputs, associated to the same input
images as Fig.2.12, are represented in in Fig. 2.13: one can notice that indeed output
distributions, not significantly different from masked ones, exhibit light mostly focusing
on detection regions and consequently prove sufficient to deduce the system’s predictions.
Nonetheless, the neural network does not show good performances, as is suggested by the
relative small value of classification accuracy αtr ≈ 61.07%. Even though few examples
are obviously not meaningful to represent the system’s performance (as reported at the
bottom of Fig.2.13, the system does in fact correctly predict all the eight digits of the
figure, in spite of an accuracy of only 61.07%), it is clear that, apart from visible recogni-
tion accomplished by the system for digit "4", "1", "7" 4 involving prevailing lighting of a
single detector over all the others, for the remaining input images it would not be possible
to deduce the "predicted labels" with sufficient certainty, by simply looking either at the
output or at the masked output distributions.
This is absolutely not the case of Fig.2.12, where the observer may easily guess machine
predictions reported at the bottom after a quick look to the masked output distribu-
tions, probably except for the one referred to an "insidious" digit "5", whose challenging
classification for the network results indeed in a wrong prediction.

4Digits "1" and "7" are, in fact, among the ones best classified after any training process

50



2 – Diffractive "deep" neural network

True labels: 2 3 0 4 1 7 5 8
Predicted labels: 2 3 0 4 1 7 4 8

Figure 2.13: Data from test set, referred to a network with two layers with 28× 28 pixels,
δx = 10um, d = 8.0cm, detectors of 4× 4 pixels.
Error E is evaluated through a not normalized output error. Training performed with 5
epochs and batches of BS = 8 gives a classification accuracy αtr ≈ 61.07%.
In each of the two semicolons, from left to right: input digit, intensity distribution incident
on the output plane, intensity distribution on the output plane after a detectors mask has
been applied.

The "confusion" of the system emerging from Fig.2.13 is explained by the lack of
normalization of the output array ZOL. Unnormalized output vectors present in fact,
at the end of training phase, a maximum element which is more "distant" from 1 with
respect the highest element of normalized arrays ZOL

n . The machine is basically unable
to adequately modify its internal trainable parameters so as to properly arrange values in
the output obtain and make it sufficiently close to the target one, thus it does not achieve
sufficient learning.
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A different solution to minimize light intensity in non detecting regions of the out-
put plane could be to increase photodetectors’ size. Fig.2.14 shows the outputs obtained
with a network using the same physical parameters as before, except for using detectors
of 7 × 7 pixels, when error calculation is performed with a normalized output vector
ZOL
N .With respect to Fig.2.12, the output distributions are more similar to the masked

output ones; nonetheless, now the latter exhibit just a faint highlighting of the correct
detector, except for some cases of input digits (including "1" and "7", which, as previously
said, are commonly the most correctly classified).

True labels: 2 3 0 4 1 7 5 8
Predicted labels: 2 3 0 4 1 7 6 8

Figure 2.14: Data from test set, referred to a network with two layers with 28× 28 pixels,
δx = 10um, d = 8cm, detectors of 7× 7 pixels.
ErrorE is evaluated through a normalized output error. Training performedwith 5 epochs
and batches of BS = 8 gives a classification accuracy αtr ≈ 74.99%.
In each of the two semicolons, from left to right: input digit, intensity distribution incident
on the output plane, intensity distribution on the output plane after a detectors mask has
been applied.
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A decreasing of training classification accuracy from approximately 80.78% to αtr ≈
74.99% proves the worsening of performances. Making detectors extremely closer to
each other leads to lower accuracy in a system that on average correctly addresses light
onto a single detecting region.

When employing an unnormalized output vector in error backpropagation, an increase
in the value of αtr from 61.07% to 67.86% is instead measured when passing from a
network with 4× 4 detectors to one with 7× 7 detectors in the output layer. In Fig.2.15,
lighting of the correct detector appears clearer when observing the output distributions
(which are not significantly different from the masked ones, as expected with an unnor-
malized vector) with respect to Fig.2.13. This could be due to the fact that an increase
of detectors size, leading to summing up more intensity contributions to each value of
the output array, determines a relevant enhancement in the distribution associated to the
correct detecting area, which therefore results closer to value "1" of the target array; in
this way better learning can be performed in the same number of epochs.
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True labels: 2 3 0 4 1 7 5 8
Predicted labels: 2 3 0 4 1 7 0 4

Figure 2.15: Data from test set, referred to a network with two layers with 28× 28 pixels,
δx = 10um, d = 8cm, detectors of 7× 7 pixels.
Error E is evaluated through a not normalized output error. Training performed with 5
epochs and batches of BS = 8 gives a classification accuracy αtr ≈ 67.86%.
In each of the two semicolons, from left to right: input digit, intensity distribution incident
on the output plane, intensity distribution on the output plane after a detectors mask has
been applied.

In summary, introducing larger detectors leads, when error is evaluated through a nor-
malized output vector, to a not negligible increase in accuracy, nonetheless this quantity
maintains a relatively small value in the view of achieving good learning. Classification
accuracy is instead generally higher when a normalized output array is employed and the
passage from small to relatively large detectors even involves its decrease. Despite the
lack of normalization makes light spread less out of detectors, more importance may be
given to the network’s accuracy; thus it is established to use photodetectors occupying
1
4
− 1

5
of the total output plane’s area, keeping into account to use a masking layer during

experimental phase of physical implementation of the framework.
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2.3.3 Layers with 100 × 100 pixels
As previously described, it is necessary to increase the number N2 of pixels in each
diffractive layer in order to approach to satisfy full connectivity with potentially ex-
ploitable geometrical parameters.
With N = 100 neurons, setting δx = 10um would involve a minimal value dmin of
distance between consecutive layers, given by (according to what seen in Paragraph
2.3.1):

d ≥ Nδx

tan[sen−1( λ
δx

)]
⇐⇒ d ≥ dmin; dmin = 1.8cm

which still turns out to be excessively large with respect to the layer’s side L = 1mm. As
already mentioned, a compromise between full connectivity and possible experimental
use of the network after its fabrication must be found out; therefore, simulations with
d < dmin are explored. They do not show good performances.
With the increase of pixel size δx, larger ratios d

L
are required, hence "making compro-

mises" becomes more challenging: the distance between planes must in fact be setted
to d << dmin in order to obtain an experimentally exploitable framework, resulting in
noticeably worse accuracies with respect to the ones obtained with δx = 10um. The
resulting classification accuracies are summarized in the table below:

L[mm] δx[µm] d[cm] αtr αte
1.0 10.0 0.5 50.0% 65.5%
1.0 10.0 0.6 72.1% 62.5%
1.0 10.0 0.8 75.0% 50.0%
1.0 10.0 1.0 77.6% 62.5%

2.0 20.0 0.4 34.1% 10.0%
2.0 20.0 0.6 40.2% 15.0%
2.0 20.0 0.7 42.8% 15.0%
2.0 20.0 1.8 43.9% 25.0%
2.0 20.0 0.9 47.1% 12.5%
2.0 20.0 1.0 50.1% 25.0%

Table 2.1: Values of αtr and αte and the corresponding geometrical parameters, referred
to a neural network with 2 layers of 100×100 pixels; training is performed with 5 epochs
and BS = 8.

2.3.4 Layers with 200 × 200 pixels
By increasing number of pixels in a layer toN2 = 200×200 and considering δx = 5um,
a minimal distance between layers dmin ≈ 0.93cm is required. Being the layer side
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given by L = 1mm, a moderate ratio d
L
suggests the possibility of a good compromise

between full connectivity and possible network’s handling in experimental phase. The
most relevant results are reported in the table below:

L[mm] δx[µm] d[cm] αtr αte
1.0 5.0 0.5 79.2% 62.5%
1.0 5.0 1.0 78.9% 50.0%

2.0 10.0 0.5 52.2% 25.0%

Table 2.2: Values of αtr and αte and the corresponding geometrical parameters, referred
to a neural network with 2 layers of 200×200 pixels; training is performed with 5 epochs
and BS = 8.

As shown in Table 2.2, increasing the pixel size leads to worse performances for the
same reason described in Paragraph 2.3.3.
The best classification accuracy is even obtained for the network with geometrical param-
eters basing the design of the most easy to handle structure, namely layer side L = 1mm
and distance between planes d = 0.5cm. The corresponding test accuracy shows a mod-
erate value; a relevant difference between αtr and αte is nevertheless common in deep
learning models, since the test set is clearly formed by examples never presented to the
machine during training.
Some examples of output distributions are provided in Fig.2.16, where it is possible to
appreciate a sufficiently net lighting of the correct detector when digits "0", "2", "1",
"6" are given as an input; a moderately ambiguous light intensity appears instead on the
output plane in correspondence of input "9".
Though the use of a detectors mask layer would still improve the "reading" of systems’
predictions in laboratory experiment due to intensity distribution still present in non de-
tecting areas, it is possible to observe lack of light in nine out of ten detecting regions
on the unmasked output layer, resulting in a sort of projection of nine "shadows" tracing
shapes of the photodetectors not associated to the input digit.

56



2 – Diffractive "deep" neural network

True labels: 0 2 4 2 6 1 9 1
Predicted labels: 0 2 4 2 6 1 9 1

Figure 2.16: Data from test set, referred to a network with two layers with 200 × 200
pixels, δx = 5um, d = 0.5cm, detectors of 4× 4 pixels.
Error E is evaluated through a not normalized output error. Training performed with 5
epochs and batches of BS = 8 gives a classification accuracy αtr ≈ 79.2%.
In each of the two semicolons, from left to right: input digit, intensity distribution incident
on the output plane, intensity distribution on the output plane after a detectors mask has
been applied.

The confusion matrix and training accuracy as a function of the epoch number are
represented respectively in Fig2.17 and Fig.2.18.
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2 – Diffractive "deep" neural network

Figure 2.17: Confusion matrix; network with two layers of 200×200 pixels, δx = 5.0um,
L = 1.0cm, d = 0.5cm; training performed with 5 epochs, batch size=8

Figure 2.18: Classification accuracy αtr as a function of the epoch number; network with
two layers of 200× 200 pixels, δx = 5.0um, L = 1.0cm, d = 0.5cm

All in all, the above analyzed case turns out to be the one most satisfying, as far as
possible, the conditions of full connectivity and exploitable geometrical features. The
trained parameters, consisting in the phases of transmission coefficients of each diffractive
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layer, give rise to two phase masks. The figure below represents their absolute values 5:

Figure 2.19: Phasemask of the first (on the left) and of the second (on the right) diffractive
layers of sideL = 1.0cm, constituted by 200×200 pixels and outdistanced of d = 0.5cm.
Training has been performed with 5 epochs and BS = 8.

It is possible to observe from Fig.2.19 that the absolute values of the phases φ of com-
plex transmission coefficients are included in a range extended from 0 to approximately
2π.
Each two phase mask must be converted into a height map, so as to fix the design of the
network for its physical implementation.

5Modulus is taken for each phase value just in order to display clearer maps of the two diffractive layers
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Chapter 3

Physical realization of the
framework

The twomatrixes containing the pixel by pixel height for each diffractive layer are analyzed
Section 3.2. A brief description about two-photon lithography, the technique intended to
be used to fabricate the planes, is instead provided in section 3.1.

3.1 Two-photon lithography (TPL)
Two-photon lithography is a well-established method based on two-photon polymeriza-
tion (TPP) effect, whosemost interesting advantage is to realize 3D complicated structures
that can achieve higher resolution, until-100nm. So far, it has allowed to fabricate an
extensive range of sophisticated nano-machines and photonic devices ([55],[56], [57],
[58], [59], [60], [61]).
It is now briefly described the principle of photolithography, a key process employed in
manufacturing of semiconductor devices and having a prominent role in the fabrication
of micro-and nanostructures, typically accounting for about 30 percent of the cost of
manufacturing.

3.1.1 Basics of photolithography
This technique uses UV light and basically transfers a pattern onto a substrate. As
represented in Fig.3.1, at the beginning of a photolithographic process, the photoresist,
a light-sensitive polymeric resin, is placed on the masking film to be etched, which is in
turn deposited onto the substrate. Then, a mask of pattern, named as photolithographic
mask, is positioned onto the structure, so that the photo-sensitivematerial can bemodelled
according to the desired shape, after exposure to electromagnetic radiationwhichmodifies
its chemical structure, hence its solubility. More specifically, a so called positive resists
undergoes breaking down of its polymers, thus becoming more soluble in the developer,
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3 – Physical realization of the framework

the specific solution used to dissolve specific areas of the resin. In this way, the pattern
remaining onto the wafer is an exact copy of the mask. On the contrary, negative
photoresists become polymerized, hence more difficult to dissolve, under light exposure;
in such case, the patterned resin is the "inverse" of the mask previously aligned onto it.
Afterwards, etching is carried out giving a film of the desired shape and the remaining
regions of the photoresist are finally eliminated.

Figure 3.1: Photolithographic process

The pattern transferred to the photoresist through the lithographic mask is clearly two
dimensional.
Another essentially planar lithographic technique is electron-beam lithography which

61



3 – Physical realization of the framework

uses a focused beam of electrons, instead of light, to expose radiation-sensitive resists.
It allows to obtain nm-scale features without the use of a lithographic mask, which is
indeed constructed through such technique, used in fact for direct writing. Electron-beam
lithography is a low-throughput technique, involving a serial scanning of the film to be
patterned, differently from photolithography which represents a batch process enabling
to expose in few seconds the entire surface of a substrate.
Three-dimensional structures can be obtained through planar lithographic techniques, like
the ones just outlined, by reiterating several times, in sequence, the exposure step and the
resist mask transfer step; nonetheless, this approach requires a considerable experimental
effort. The technology of realizing three-dimensional structures by adding and exposing
photo-sensitive resins layer by layer is classically named as "stereolithography"; UV
laser stereolithography, as well as other 3D techniques including inject printing and the
laser direct writing processes in common use ([62],[63]), can generate structures with a
resolution of only few micrometers. Due to this, 3D lithography based on multi-photon
polymerization is the currently used technique to obtain nanometric three-dimensional
objects.
Conversely to the above mentioned techniques, TPL is intrinsically a 3D structuring
process, since polymerization of the exposed resist occurs only in an extremely small
area of the radiation-sensitive material, where the accumulated energy in the focus spot
of an intense femto-second laser beam reaches the polymerization threshold. Defined as
a mechanism for the fabrication of three-dimensional objects in 1997, when Maruo et al.
([64]) fabricated a spiral structurewith diameter of about 7µm, TPL combines two-photon
absorption (TPA), whose theory was first developed in 1931 by Maria Goppert-Mayer in
her doctoral thesis ([65]), with polymerization.

3.1.2 Two-photon absorption (TPA)
TPA is the simplest variant of multi-photon absorption. a process where more than one
photon are absorbed simultaneously and excite an atom or an ion to a higher energetic
state, with the energy increase equal to the sum of the photon energies. In multi-photon
absorption processes of order n (i.e. involving absorption of n photons), the absorption
rate is proportional to the nth power of the optical intensity, therefore this is a nonlinear
process, differently from one-photon absorption (OPA), where it is linear with the optical
intensity.
This can be seen by considering that, in general photon absorption, from the optical field
to the molecules of the medium an energy transfer occurs, which is quantified by the
imaginary part of the susceptibility. In particular, the absolute value of polarization ~P of
the medium is given by:

P = χ(1)E1 + χ(2)E2 + χ(3)E3 + χ(4)E4... (3.1)

where ~E is the electric field of light interacting with the material and χ(1), χ(2), χ(3),
χ(4) denote tensors representing linear, second-order third-order and forth-order optical
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susceptibilities. Since in resonant processes there is no contribution from the even-order
susceptibilities, like χ(2) and χ(4), the nonlinear absorption is described by the imaginary
parts of χ(3) and χ(5), that affects respectively two-photon and three-photon absorption.
Being the light-matter energy change per unit time and unit volume expressed as:

dW

dt
=
〈
~E · ~P

〉
(3.2)

where square brackets stand for time average, it is obtained that for TPA the energy
absorption rate is:

dW

dt
∝ I2 =(χ(3)) (3.3)

with =() denoting the "imaginary part". Thus, being the two-photon absorption rate
quadratically dependent on light intensity I , it is nearly negligible for low or intermediate
intensities, but becomes instead relevant for very high optical intensities, as happens with
focused laser pulses. This explains why experimental results of TPA were not observed
until 1961, by Kaiser and Garrett ([66]), relatively late with respect to observation in 1928
of Raman scattering 1, whose implementation needs lower intensities, since involving only
one photon’s absorption.
Two-photon absorption can be degenerate or nondegenerate, depending on whether the
energy of the two photons is respectively the same or different. A representation of
degenerate two-photon absorption process in comparisonwithOPA is provided in Fig.3.2:

1Two-photon process where one photon is absorbed and another is emitted essentially simultaneously;
it consists of inelastic scattering of photons by matter and the difference between incident and scattered
photons corresponds to vibrational energy levels of the molecule involved.
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Figure 3.2: Scheme of degenerate two-photon absorption (TPA) process with ν ′ = ν
2

indicating photon frequency in the two-photon excitation beam (left) and of one-photon
absorption (OPA) at frequency ν (right)

In TPAprocesses, electron excitations can occur stepwise or simultaneously. In the first
case, a real intermediate state allows the further pumping of an already excited population
to a higher level, as in two sequential single-photon absorptions, and coherence of the
incident light is not required. In the latter, two photons are absorbed simultaneously
by an electron, which acquires an energy exceeding the energy gap in one excitation
event: a virtual state can be imagined to be formed when the first photon is absorbed.
It remains for short time with respect to the intermediate energy level of simulataneous
TPA and two-photon absorption occur if the second photon arrives before the collapse of
this virtual state. Stepwise and simulataneous TPA are displayed in the figure below:
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Figure 3.3: Scheme of two-photon absorption processes: stepwise on the left, simultane-
ous on the right

3.1.3 Photopolymerization
As previously mentioned, TPA is exploited in two-photon lithography to induce pho-
topolymerization. Molecules more sensitive to light, including photoinitiators and pho-
tosensitizers, are generally added in photopolymers to increase the beginning productivity
of monomers. Upon absorption of photons, photoinitiators, denoted as "I", form active
species, like radicals (R·), that can attack monomers or oligomers. This is the so called
process of photoinitiation, described in the case of TPA as:

I
2h ν

′

−−−→ I∗ −−→ R · (3.4)

where I∗ represents an intermediate state of the photoinitiator after absorbing two photons
of frequency ν ′ .
By considering also photosensitizers (S), namely molecules absorboing light and thrans-
ferring it to photoinitiators, the photinitiationation step is as described as:

S
2h ν

′

−−−→ S∗ ...
I−−→ I∗ −−→ R · (3.5)

The subsequent step is the chain propagation, in which monomer radicals, generated by
the reaction of monomers or oligomers (M ) with photoproduced radicals, combine with
new monomers, and so forth; this process is expressed as:

R · + M −−→ R ·M M−−→ RMM ... −−→ R Mn (3.6)

The so produced chain reaction is stopped by the meeting of two radicals, that establishes
the step of termination, is manifested in one of the following ways:

RMn · + RMm · −−→ RMm+nR (3.7)
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RMn · + RMm · −−→ RMm + RMn (3.8)

3.1.4 Advantages of TPA for 3D lithography
TPA allows to achieve a striking polymerization control, differently from one-photon
absorption. In the latter process it is used a conventional moderate-intensity source and
excitation considerably weakens before the beam reaches the focal point, resulting in
polymerization throughout the beam path in the sample. Instead, if a laser beam with
wavelength so small as to induce TPA is used, only the molecules in close proximity to
the beam’s focus are excited, since, as previously described through Eq. 3.3, the energy
absorption rate depends on the square of light intensity and, moreover, due to the fact
that the section area of light beam increases with the distance from the focus, the light
intensity approximately decreases quadratically with the distance z from the focal plane
2 along the propagation direction. As a result, the two-photon absorption rate diminishes
with the forth power of z and the excitation of the material is maximal at the focus point
and effectually falls off on both sides of the focal plane.
Since no attenuation of light in the photopolymer occurs until the beam reaches the
focus, laser beam penetration is greatly enhanced with respect to polymerization by one-
photon absorption, where themolecules excitationmitigates dramatically before the beam
reaches the focal point, resulting in chemical reactions occurring only on top layer of the
resin. In fact, as previously pointed out, OPA with UV radiation allows to fabricate 3D
structures only using a layer-by-layer stereolithographic approach; moreover, the use of
a mask is required when realizing 2D patterns through UV lasers and direct writing is
possible only by means of electron-beam.
The great advantage provided by TPA is that the location of an excitation volume in the
polymer can be controlled with high precision and resolution, allowing for very small
volume (nearly "single point") polymerization and consequent extraordinarily narrow
voxel (3D pixel) creation in the process of TPL.
Despite the TPA efficiency as wells as the thresholds of polymerization are determined
by the nature of the particular photoresist, it is generally observed that resins intended to
polymerize at UV or visible wavelengths, λ, can be polymerized at 2λ under the condition
that the photon flux density provided by the radiation is high enough to initiate two-photon
absorption. In particular, since photosensitive materials are usually transparent in the
infrared range λIR and highly absorptive in the UV range (λUV ), they can be polymerized
by irradiation with the infra-red light of approximately double wavelength (λIR = 2λUV )
by means of two-photon absorption. TPP with infrared laser pulses can thus be induced
in extremely small volume, "voxels", of the material by focused near-IR femtosecond
laser pulses. Any desired three-dimensional polymeric pattern is fabricated by direct
"writing" into the volume of the photoresist. A simplified depiction of the difference

2The plane perpendicular to the light beam’s optical axes, passing through the focal point, which is in
turn the point where light rays converge.
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between polymerization activated by one-photon and two-photon absorption is given in
the figure below:

Figure 3.4: Simplified illustration of the difference between one-photon (on the left)
and two-photons (on the right) activated polymerization processes, with darker blue
"volumetric" traces representing the polymerized material.

3.2 Thickness maps of diffractive "layers"
The phase masks of each diffractive layer, obtained in Paragraph 2.3.4, are now converted
to height maps through Eq.2.2, here again reported:

h =
λφ

2π∆n
(3.9)

which gives the thickness h of each pixel whose trained parameter is represented by the
phase φ.
As previously mentioned, ∆n represents the difference between the refractive index of
the resin which may be patterned by means of TPL and air (nair = 1). With regards
to the refractive index nresist of photoresists typically used with femtosecond 3D direct
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laser writers, it approximately takes value nresist ≈ 1.5, as results from measurements
reported in the literature.
In particular, in the work performed by Gissibil et al. ([67]), the refractive indexes
for five photoresists, namely IP-S, IP-Dip, IP-L, IP-G and OrmoComp, are obtained
by measuring the critical angle of the total internal reflection for the used materials at
different wavelengths. The results are reported in Fig.3.5:

Figure 3.5: Table extracted from [67], reporting the refractive index measurement of
the photoresists Nanoscribe IP-Dip, micro resist OrmoComp, Nanoscribe IP-G, Nano-
scribe IP-L, and Nanoscribe IP-S. The refractive index values are obtained by measuring
the critical angle of the total internal reflection for the used photoresists at different
wavelengths

Determined the value of ∆n = 0.5, suitable for any material that may be used
in the specific fabrication process, it is necessary to take into account the thickness
resolution achieved in two-photon lithography. Considered that, before contacting a
specific institution, this cannot be precisely known a priori and that a degree of generality
is good to be maintained for the sake of experimental robustness, two possible "extreme"
values of thickness resolution ∆h have been analyzed.
The figure below illustrates the thickness maps of the first (on the left) and second (on
the right) diffractive layers – of side L = 1.0cm, constituted by 200 × 200 pixels and
outdistanced of d = 0.5cm – whose phase values have been shown in Fig.2.19, after
training performed with parameters established under the considerations described in
Paragraph 2.3.4. It is emphasized that, for the sake of clarity in the image, the absolute
values of thickness are represented, like done with the phases in Fig.2.19, despite a
modellation process would occur from any side of each three-dimensional "layer" during
fabrication.
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Figure 3.6: Thickness maps of the first (on the left) and of the second (on the right)
diffractive layers of side L = 1.0cm, constituted by 200 × 200 pixels and outdistanced
of d = 0.5cm. The network has been trained as described in Paragraph 2.3.4. Figures
(a) represent the map directly obtained from the two phase values of Fig.2.19 without
performing approximations provided by resolution, while (b) and (c) show approximated
values which reflect a resolution in thickness of respectively 100nm and 200nm.
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Figures 3.6(a) show the two diffractive layers’ distribution of thickness, where each
pixel value, obtained through Eq.2.2 and expressed in nm, is not approximated: this
"ideal" map clearly cannot reproduce a real fabricated object, since 2PL resolutions
concern at least some tens of nanometers; nonetheless it is useful for comparison with
images below.
Figures 3.6(b) display approximated values h reflecting a fabrication resolution ∆h =
100nm: in particular, the following mapping has been applied to each positive value
h > 0:

• h ∈ [0, 50) =⇒ h = 0nm

• h ∈ [50, 150) =⇒ h = 100nm

• h ∈ [150, 250) =⇒ h = 200nm

• ... and so on and so forth, throughout the whole range of thicknesses which ranges
approximately from 0nm to 1053nm in the first layer and from 0nm to 1184nm in
the second one.

Clearly, only a small part of the range of colors displayed in bar (b) appears in the related
maps. As an example, considering the first diffractive plane, some pixels at the corners
of the square, like the one at position (0,0), take value h ≈ 84nm, which, according to
the color bar on top (a), is represented with tending to red-dark orange color. The same
regions have instead thickness h = 100nm inmaps (b), resulting in a lighter orange shade.

Figures 3.6(c) display approximated values h reflecting a fabrication resolution ∆h =
200nm, leading to the mapping reported below:

• h ∈ [0, 100) =⇒ h = 0nm

• h ∈ [100, 300) =⇒ h = 200nm

• h ∈ [300, 500) =⇒ h = 400nm

• ... and so on and so forth, throughout the whole range of thicknesses.

The pixels at position (0,0) are now dark red, which is indeed the color corresponding to
the value h = 0nm in bar (c).
As one can observe, figures 3.6(c) show less convoluted patterns and lower gradation of
colors/thickness with respect to 3.6(b), clearly due to an increasing homogenisation in
pixel values occurring from the top to the bottom of the figure.

Thickness resolutions ∆h = 100nm and ∆h = 200nm correspond to phase resolu-
tion ∆φ = 2π∆h∆n

λ
approximated respectively as 0.6 and 1.2. By approximating the

phase masks’ values according to such resolutions ∆φ and inserting the so obtained
diffractive layers in the network with geometrical parameters presented in 2.3.4, results
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analogous to the one of Fig.3.7 are obtained at the output layer, after simulating light
propagation through the framework.
In this particular example, it is possible to observe that the net lighting of detector asso-
ciated to digit "2", characterizing the output distribution shown in Fig.3.7(a), weakens,
in comparison to the rest of the plane, in (b) and more relevantly in (c), where pixels’
phase resolutions ∆φ correspond respectively to thickness ones of ∆h = 100nm and
∆h = 200nm. This is clearly expected due to the approximation, more rude as proceed-
ing from the top to the bottom of the figure, of values of transmission coefficients which
have been previously trained to perform the desired task of image recognition. Nonethe-
less, the correct detector still displays an appreciable light intensity, as highlighted by the
output distribution resulting upon application of the proper detector mask, which in fact
obscures the other "confusing" illumination patterns arising in the (unmasked) output
layers (b) and (c).
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Figure 3.7: From left to right: input digit, intensity distribution incident on the output
plane, intensity distribution on the output plane after a detectors mask has been applied, in
a network with diffractive layers with 200× 200 pixels, δx = 5um, d = 0.5cm, detectors
of 4×4 pixels. Results (a), (b), (c) are obtained by numerically simulating the framework
to be physically implemented, where light diffraction is performed by the two layers with
thickness masks reported respectively in 3.6 (a), (b), (c).
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According to numerical analysis, a lithographic resolution of 200nm would still be
expected to lead the physical implemented network to perform digit classification with a
sufficient degree of accuracy.
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It has been trained a neural network with layers collaboratively performing digit clas-
sification, through diffracting an electromagnetic radiation with wavelength of 532 nm,
firstly projected onto the image to be recognized and then free-space propagated between
any two planes, from the input to the output one.
Two layers subject to learning are numerically subdivided into small finite elements: each
of these implements Huygens-Fresnel principle, acting as source of a secondary wave
when reached by luminous disturbance, and further introduces a trainable phase shift,
identifying the transmission coefficient of a single pixel. The comprehensive fine-tune of
such pixel-by-pixel functions, numerically identified by matrices, exactly determines the
automatic learning of the system. This latter is in fact trained to modulate light so as to
focus it onto one specific detecting region of the output plane, depending on the nature
of the input image.
The resulting framework, since composed of two layers purely implementing linear op-
tical functions, is all-optical and "deep". Despite composing more linear functions is
equivalent to a unique linear operation, corresponding to the collapse of the multilayered
structure into a single plane (hence the quotes around "deep"), integrating multiple planes
proves to increase classification accuracy, due to involvement of more coefficients specif-
ically predisposed to achieve the desired task. Our diffractive "deep" neural network
(D2NN ) shows to reach an accuracy of approximately 81.3% when two diffractive layers
of relatively few pixels, 28× 28, are used. This represents an appreciably satisfying per-
formance, considering that deep learning models classically integrate much more layers
containing, on average, a number of pixels two orders of magnitude greater.

Such preliminary result confirms the reliability of our network for further exploration,
which simultaneously concerns optimization of performances and setting of geometrical
parameters suitable for its "real" implementation.
The system is, in fact, devised for being physically exploited in a laboratory: by converting
the trained phases of transmission coefficients into a thickness map for both the diffractive
layers, these latter, once 3D-printed through two-photon lithography, can be integrated
in a specific experimental setup and collaboratively perform the precise classification of
digits they have "virtually" been trained for. The performance of the network can thus be
experimentally tested by illuminating an input image and observing its projection onto the
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output layer: here, maximal brightness should be visible in correspondence of a specific
detecting region, intrinsically associated (during the training phase) to the class of the
digit to be recognized.

The network has thus been entirely designed in view of its experimental application,
involving interpenetration in the present work between strategies, recurrent in deep learn-
ing’s models, to improve the system performance and studies focusing on the robustness
of relevant physical parameters of the framework.
In particular, the system has been setted so as to maximally satisfy the conditions of
full-connectivity between layers (more suitable for numerical implementation), possible
experimental alignment of parallel layers and their comfortable handling. Considering,
according to Huygens principle, diffraction performed by each pixel, the first requirement
implies a small enough ratio between dimension of each layer and its distance from the ad-
jacent one; the second sufficiently short spacing between two consecutive planes and the
third their large enough dimensions. Furthermore, pixels size is simultaneously desired
to be abundantly small, so as to maximize diffraction-based connectivity between layers,
and large enough, in order to minimize, for the sake of time computation, the number of
neurons necessary to form an appreciably extended layer. Progressive analysis, developed
on the basis of numerical results obtained in a sort of "trial" and "error" approach, have
included exploration of various sizes of layers, pixels and detecting regions, as well as
number of pixels and distances between consecutive planes.
The final result is represented by two phase masks associated to two diffractive squared
layers of size 1.0 cm, outdistanced of 0.5 cm and containing 200 × 200 pixels of area
5 × 5 um2. Classification learning is satisfactorily quantified by a training accuracy of
79.2%, reflecting into the net lighting up of a specific region of the output plane, which
definitely denotes possibility of experimentally testing the system’s performance.
Subsequent examinations of the related thickness maps reveal that even a (thickness)
resolution of 200 nm, in two-photon lithographic process, should allow the physically
implemented network to perform classification with sufficient degree of accuracy.

Our study constitutes not only the design of a powerful device performing digit clas-
sification at the speed of light, but also the base for further developments, involving, for
instance, realization of optical deep neural networks achieving considerably sophisticated
tasks through implementation of non-linear optical functions, by means of various mate-
rials, such as crystals, organic films, semiconductor materials. These, undoubtedly more
challenging to be numerically modelled as well as experimentally exploited, with respect
to the photoresist characterizing our potential layers, and to be numerically modelled,
might lay the foundation for promising future studies.
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Appendix: diffraction basics

.1 The origin of the phenomenon

According to the definition provided by Arnold Sommerfeld, "diffraction" refers to any
phenomenon concerning deviation of a ray of light not caused by reflection or refraction.
As is well known, diffraction can be classically observed, besides in several phenomena
of daily life, when it is considered a spherical wave incident on a diaphragm presenting
an opening, which is small enough but bigger than the size of the light source, indeed
represented as a point source in the approximation of spherical wave. If a white screen is
posed beyond the diaphragm, some fringes characterized by maxima and minima of light
intensity are observed close to the bright spot’s boundaries.
Diffraction therefore occurs when an obstacle or a slit is posed along the propagation path
of a wave. As shown in the figure below, simulating the diffraction of a planewave from
a slit, at the boundaries of the latter a discontinuity of the wavefront occurs: the wave
bends at the extremes of the slit and a continuous perturbation is formed.

Figure 8: Simulation of diffraction of a planewave from a slit; image taken from [68]

The Huygens-Fresnel principle, expressed through Eq.1.22 and stating that any in-
finitesimal element of a wavefront can be formally regarded as a secondary source of
spherical waves in phase with the primary wave and with amplitude proportional to the
one of primary wave, constitutes the key for interpreting diffraction. According to it,
when the wave meets an obstacle, its configuration at any point P ′ of the space beyond
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the obstacle needs to be calculated by summing up the contributions of elementary spher-
ical waves emitted by each point of the wavefront in presence of the obstacle. Differently
from the case of free-space propagation where all the non radial contributes, coming from
a wavefront at position P cancel out with each other in P ′ due to destructive interference,
in presence of an obstacle or a slit it is not known a priori the wavefront’s configuration in
a given point beyond it. The wave perturbation at any point is thus the sum of secondary
waves generated from the wavefront in a previous position of its propagation path: the
observed diffraction fringes, consisting in maxima and minima of light intensity, result
from the range of values that the total amplitude, determined by relative phases and
amplitudes of the contributes, can span.

The foundation of the theorymathematically describing and explaining such phenomenon
was laid in 1678 by Huygens, whomanifested his intuition about the identification of each
point of a wavefront as a new source of a secondary spherical perturbation. In 1818, Fres-
nel unified such idea with interference concepts in the meantime provided by Young, by
calculating with relatively high precision the distribution of light in observed diffraction
fringes, basing on some assumptions about the amplitudes and phases of the secondary
waves. Seventy-four years later, Kirchoff built a more solid mathematical formulation
for diffraction theory. The wave diffracted by an aperture is rigorously calculated from
the Kirchhoff diffraction equation, whose parameters had to be arbitrarily assigned in the
derivation of the Huygens–Fresnel equation. Analytical solution of Kirchoff equation are
not possible for several configurations: Fresnel and Fraunofer diffractions are useful to
simplify calculations, while nevertheless exhaustively illustrating the core of diffraction
theory, suiting for the propagation of waves respectively in the near and far fields.

We now consider the simplifications led by Fresnel and Fraunofer approximations to
the diffraction equation 1.22, reported below:

U(x, y; z) =

∫∫ +∞

−∞
U0(x′, y′; 0) h(x− x′, y − y′, z) dx′ dy′ =

=− j

λ

∫∫ +∞

−∞
U0(x′, y′; 0)

ejkr

r

z

r
dx′ dy′

(10)

that is used to calculate the field U(x, y; z), at plane (x, y) placed in position z along
the optical axes, as a (continue) sum of secondary waves generated by the points of a
diffractive aperture, defined over the plane (x′, y′) located at z = 0; such geometry is
represented in Fig.9.
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Figure 9: Diffraction geometry: an aperture, acting as diffracting object on input plane,
and image plane are represented, within a Cartesian coordinate system.

The distance between two given points P ′ = (x′, y′; z = 0) and P = (x, y; z) is
provided by

r =
√

(x− x′)2 + (y − y′)2 + z2 = z

√
1 +

(x− x′)2

z2
+

(y − y′)2

z2

By exploiting the Fresnel approximation

x− x′, y − y′ � z

, meaning that the lateral extension of the region explored by light propagating between
the two planes is smaller than its length, r can be approximated by the binomial expansion
as:

r ≈ z

(
1 +

1

2

(x− x′)2

z2
+

(y − y′)2

z2

)
which basically leads to approximating a spherical wavefront into a parabolical wavefront.
In this way, it is possible to write:

U(x, y; z) ≈ ejkz

jλz

∫∫
x′,y′

U0(x′, y′; 0) ej
k
2z [(x−x′)2+(y−y′)2] dx′ dy′ (11)

Eq.11 can be rewritten as:

U(x, y; z) ≈ ejkz

jλz
e[

jk
2z

(x2+y2)]
∫∫

x′,y′
U0(x′, y′; 0) e[

jk
2z

(x′2+y′2)] e[
−j2π
λz

(xx′+yy′)] dx′ dy′

(12)
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which, by considering the spatial frequencies x
λz

= fx, y
λz

= fy, is in turn expressed as

U(x, y; z) ∝ F
{
U(x, y,0) ej

k
2z

(x′2+y′2)
}

(13)

Considering, ulteriorly, Fraunhofer approximation, given by:

x′2 + y′2 � z

and expressing that the diffraction pattern is viewed at a long distance from the diffracting
object or also at the focal plane of an imaging lens, from Eq.12 it is obtained:

U(x, y; z) ∝
∫∫

x′,y′
U0(x′, y′; 0) e[

−j2π
λz

(xx′+yy′)] dx′ dy′ (14)

thus
U(x, y; z) ∝ F {U(x, y,0)}

which fundamentally expresses that, by illuminating an object (for instance, a circular
aperture) with a monochromatic wave and observing very far away from the object the
pattern distribution, the latter is simply the Fourier transform of the object (the Airy
pattern, in case of a circular hole).

.2 Diffraction from a single slit of infinite length
The most elementary configuration that can be considered as a source of diffraction is the
single slit, here analyzed since at the base of notions reported in the main text.
A monochromatic wave

U(x, y; 0) = u ejkct = a ej
2πct
λ

, with u, λ, c, t denoting respectively magnitude of the wave disturbance, wavelength,
velocity of light and time, is incident onto a diaphragm containing a small opening of
width a and length h � a, where the latter extends along the direction orthogonal to
the plane of observation. The waves propagating along the direction, forming an angle θ
with respect the perpendiculars of the diaphragm, sum up giving rise to a wave that can
be visualized by means of a lens onto the screen, posed at its focal plane and at a distance
D from the diaphragm. Therefore, Fraunhofer approximation is allowed.
With reference to Fig.9, assuming the center of the slit located at x = 0, the expression
14, for each x value, gives the following expression for the amplitude field distribution
on a screen at a distance D, along z direction, from the slit:

U(x, y;D) = u

∫ +a
2

−a
2

e[
−j2π
λz

(yy′)] dy′ = ua sinc
(πua
λD

)
(15)

where the obtained sinc function is represented below:
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Figure 10: Sinc function, describing the amplitude of the field distribution determined
by single slit diffraction

Clearly, themeasurable intensity of the diffraction pattern will be given by themodulus
square of U(x, y;D).
Fig.11 displays the just described configuration:

Figure 11: Single slit diffraction

a
2
sin(θ) represents the phase displacement between the "secondary wave" generated

by the upper extreme of the opening and the one coming from the shit’s central point. The
position of the firstminimumof intensity in the diffraction pattern, formed onto the screen,
is found by imposing destructive interference between the two rays in correspondence of
such plane, namely:

a

2
sin(θ) =

λ

2
(16)
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which gives
a sin(θ) = λ (17)

which can, with good enough approximation, quantify the half-cone diffraction angle θ
of Eq.2.19, determining the position of the bright central region of the intensity pattern
generated on a given plane l, upon diffraction by one of theN2 pixels of size δx contained
in layer l − 1.
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