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ABSTRACT
Recurrent neural networks are currently subject to intensive research efforts to solve temporal computing problems. Neuromorphic pro-
cessors (NPs), composed of networked neuron and synapse circuit models, natively compute in time and offer an ultralow power solution
particularly suited to emerging temporal edge-computing applications (wearable medical devices, for example). The most significant road-
block to addressing useful problems with neuromorphic hardware is the difficulty in maintaining healthy network dynamics in recurrent
neural networks. In animal nervous systems, this is achieved via a multitude of adaptive homeostatic mechanisms which act over multiple
time scales to counteract network instability induced via drift, component failure, or learning processes such as spike-timing dependent plas-
ticity. One such mechanism is neuronal intrinsic plasticity (IP) where a neuron adapts its parameters which govern its excitability to fire
around a target rate. The approach employed in state of the art NPs, based on a central volatile memory remotely setting model parameters,
critically constrains parameter variety and bandwidth rendering realization of these essential mechanisms impossible. This paper demon-
strates how reconfigurable nonvolatile resistive memories can be incorporated into neuron and synapse circuits allowing memory to be
truly colocalized with the computational units in the computing fabric and facilitating the realization of massively parallel local plastic-
ity mechanisms in neuromorphic hardware. Exploiting nonconventional programming operations of HfO2 based RRAM (stochastic SET
and the RESET random variable), we propose a technologically plausible IP algorithm and demonstrate its use in the case of a recur-
rent neural network topology whereby the system self-organizes to sustain stable and healthy network dynamics around a target firing
rate.
© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5108663., s

I. INTRODUCTION

While problems in artificial intelligence regarding static data
(e.g., images) have been largely solved,1 effective processing of
temporal datasets (speech, biomedical signals) remains challeng-
ing. Whereas static data are encoded in intensity, temporal data
are encoded in intensity and time and therefore systems capa-
ble of extracting useful temporal features are required to retain

information on the history of a data sequence. Popular approaches
in feature extraction and classification of temporal data make use
of recurrent artificial neural network and long-short term mem-
ory network models trained via back-propagation through time
algorithms.2 While these approaches achieve state of the art per-
formance, their staggering training time and power consumption
pose severe drawbacks for emerging edge-computing applications.3

Spiking neural network (SNN) topologies such as recurrent SNNs
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and liquid state machines (LSMs)4 are now receiving increased
attention with the promise of performing ultralow power tem-
poral processing through emulation of the computational princi-
ples observed in animal nervous systems.5,6 These neural network
topologies, and their spike-based plasticity mechanisms, can now
be emulated in an emerging class of computing system referred
to as neuromorphic processors (NPs).7,8 Neuromorphic processors
interconnect analog or digital neuron and synapse circuit models,
intended to emulate neural dynamics, in a reconfigurable manner
allowing neural networks to be realized in a highly parallel com-
puting system. NPs utilizing analog circuit models boast the low-
est power consumption and consequently are the most suited for
emerging ultralow power edge-computing applications. State of the
art analog NPs typically use centralized volatile memories to set
parameters of the distributed neuron and synapse models. How-
ever, this approach poses severe drawbacks and constrains state
of the art NPs as will be described in Sec. V. Furthermore, it has
been demonstrated that in order to maintain healthy dynamics in
recurrent neural networks, therein dynamics that permit effective
computation, a variety of adaptive homeostatic plasticity mecha-
nisms are required.9,10 These homeostatic mechanisms counteract
sources of network instability arising from drift, component fail-
ure, or learning processes such as spike-timing dependent plastic-
ity which could result in networks becoming excessively excited
or inactive. One such mechanism is neuronal intrinsic plasticity
(IP) whereby a neuron adapts its excitability to fire around a tar-
get firing rate.11,12 In analog NPs, realization of such mechanisms
over large time scales and network sizes is extremely challeng-
ing, resulting from severe constraints imposed by the technology.
In this paper, we propose that hybrid neuromorphic circuit mod-
els, which incorporate nonvolatile resistive memories (RRAM) into
CMOS circuits, can solve substantial problems facing NPs in lack
of parameter variety, power consumption, temperature instabil-
ity, and the implementation of the massively parallel local neural
and synaptic plasticity mechanisms. Specifically, we demonstrate
how to incorporate HfO2 based one transistor one resistor (1T1R)
RRAM structures into a differential pair integrator (DPI) neuron
circuit and a DPI synapse circuit. We then show how measured,
nonconventional properties of the memory’s RRAM SET (stochas-
tic SET) and RESET (random variable RESET) programming
operations can be exploited by further local circuits to realize mas-
sively parallel local plasticity mechanisms—such as neuronal intrin-
sic plasticity. Finally, we show in a spiking neural network simula-
tion that a recurrent spiking neural network topology, composed
of hybrid DPI neurons (employing the proposed algorithm) and
DPI synapses, can self-organize and fire ensemble around a target
rate.

II. HYBRID NEUROMORPHIC CIRCUITS
The basis of hybrid neuromorphic circuits is the 1T1R struc-

ture13,14 depicted in Fig. 1(a). A resistive memory (R1 or R2) is
connected in series with either a PMOS or a NMOS selector tran-
sistor (T1 or T2). The transistor has two roles: (1) to determine
the share of total programming voltage V top − Vbot (Vprog) that is
seen over the resistive memory and (2) to limit the current flowing
through the device during a programming operation. Both objec-
tives are achieved by modulating Vgate when a nonzero Vprog exists.

FIG. 1. The one-transistor-one-resistor structure and the mechanism of resis-
tance modulation. (a) 1T1R circuit schematic. (b) Oxygen vacancy based working
principle of the two restive states.

There are two standard RRAM programming operations called
SET and RESET and two resulting memory states called the low
(LRS) and high (HRS) resistive states. For the case of oxide-based
RRAM (OxRAM) [Fig. 1(b)], a thin layer (tens of nanometers) of
a transition metal oxide (TMO) material is sandwiched between
two metal electrodes and can have its resistance modified through
application of electrical pulses. The resistance of the TMO depends
largely on the number of oxygen vacancies which are created or
removed through voltage induced reduction-oxidation (REDOX)
reactions with the electrodes. In the case of bipolar OxRAM, a pos-
itive Vprog (V set), applied to the top electrode, creates an oxygen-
poor conductive filament through which electrons can flow. This
positive voltage pulse is a SET programming operation which puts
the device into the LRS. This oxygen-vacancy based conductive fil-
ament can thereafter be disrupted with application of a negative
Vprog (Vreset) voltage pulse in a RESET operation flipping a device
into the high resistive state. This is normally achieved through
application of a positive pulse to the bottom electrode. In tradi-
tional memory applications, the LRS and HRS are used to repre-
sent a binary 1 or 0 by means of resistance thresholding. Unlike
volatile memory technologies, the memory state persists in the
absence of a power supply and is therefore referred to as nonvolatile
memory (NVM).

Ion channels within neuronal membranes regulate the flow of
ionic current into and out of the cell’s somatic body which acts as
a capacitor. Essentially, they represent transient or fixed resistances
which regulate flow of charge between an extracellular battery and
this capacitor and serve as a fundamental building block of animal
nervous systems. In the same fashion, we propose that (volatile15

and nonvolatile14,16) resistive memory technologies, as a parallel
to ion channels, can serve as the fundamental building blocks
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in the construction of artificial hybrid neuromorphic computing
systems.

A. Hybrid DPI neuron
The most straightforward, yet still computationally useful, neu-

ron models are the leaky-integrate and fire (LIF) models. They cap-
ture the essence of a neuron’s ability to integrate charge on its
somatic membrane upon synaptic excitation while simultaneously
leaking away this charge in time. Furthermore, upon reaching a
threshold of accumulated charge, the neuron fires and emits an out-
put pulse which can be propagated to the synaptic inputs of other
LIF model neurons. The hybrid differential pair integrator neuron
model in Fig. 2(a) captures these behavioral features in an hybrid
CMOS-RRAM circuit. Upon the injection of input current, charge
is integrated onto capacitor C1. The amount of integrated charge
depends on the ratio of the resistance values 1T1R2 (green) to 1T1R1
(blue) and therefore allows for gain tuning. The charge which is inte-
grated onto C1 leaks to ground at a rate defined by the resistance of
1T1R2 (green). If the rate of integration sufficiently exceeds the rate
of the leak, then a threshold voltage is reached (V th1) (here defined
using an OPAMP comparator) and an output inverter sets Vout to
a logic high. During this firing event, capacitor C2 is charged via
the now open current source M4. As soon as the capacitor exceeds
V th2, transistor M5 opens and shunts V in to ground—bringing to
an end the pulse. Transistor M5 remains shunted to ground for
the period the voltage on capacitor C2 remains in excess of V th2,
defined by the rate the charge leaks to ground through 1T1R3. The
RRAM 1T1R1 and 1T1R2 affect the neuron input time constant and
input gain, while 1T1R3 defines the neuronal refractory period. The
effect of each of the individual resistances was studied in Ref. 17.

Two waveforms with different resistance configurations, obtained
through SPICE simulation, plot V in and Vout under a periodic cur-
rent spike train (1 μs pulse-width of 100 nA every 250 μs), are shown
in Fig. 2(b).

B. Hybrid DPI synapse

While the input currents in Fig. 2(a) were simple pulses, the
synaptic currents injected into neurons in biology exhibit temporal
properties which are important for neural computation.18 Circuit
models exist for mimicking synaptic dynamics for use in neuro-
morphic processors.19 The simplest model is that of the exponen-
tial synapse whereby, during an input voltage pulse (modeling a
presynaptic action potential), the output current is stepped and then
decays exponentially in time. This is the behavior of the hybrid dif-
ferential pair synapse circuit in Fig. 3(a). Upon a V in pulse, a current
proportional to the value of 1T1R2 (green) flows from C1 to ground.
As this current flows, during an active high V in pulse, the voltage at
C1 reduces and turns on transistor M3, allowing an output current
to flow (which can be injected into a neuron circuit model). This
voltage over C1 continues to reduce for as long as the voltage differ-
ence between C1 and the potential divider node between 1T1R1 and
1T1R2 is large enough to keep the diode connected transistor M1
turned on—therefore, 1T1R1 imposes a limit on the magnitude of
the output current. After an input pulse comes to an end, so does the
reduction of the voltage over C1, and instead, the capacitor charges
up again linearly via a leakage current from 1T1R3 (red). This results
in an exponential reduction in the output current. A SPICE simula-
tion in Fig. 3(b) gives two examples of the output current waveform
after an input voltage pulse for two configurations of the three 1T1R

FIG. 2. The hybrid differential pair integrator neuron circuit
and its behavior. (a) Hybrid differential pair integrator neu-
ron circuit where 1T1R structures are used to set the input
gain, time constant, and refractory period. All NMOS tran-
sistors have a width/length of 650 nm/250 nm, while the
PMOS transistors are 1.2 μm/250 nm. Capacitors C1 and
C2 are both 1 pF. (b) The circuit is stimulated with a train
of square current pulses (1 μs pulse-width of 100 nA every
250 μs) where the input voltage, output voltage, and input
current are plotted. The supply voltage is 1.2 V consistent
with the voltage rating for the 130 nm CMOS technology
used in simulation. Two resistance configurations are pre-
sented which are (top) R1 = 1 GΩ, R2 = 1 GΩ, R3 = 1 GΩ,
and (bottom) R1 = 40 MΩ, R2 = 1 GΩ, R3 = 40 MΩ.
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FIG. 3. The hybrid differential pair integrator synapse circuit and its behavior. (a)
Hybrid differential pair integrator synapse circuit where 1T1R structures are used
to set a weight per synapse and current gain and the time constant of the expo-
nential current decay per column in a synaptic array. All NMOS transistors have a
width/length of 650 nm/250 nm, while the PMOS transistors are 1.2 μm/250 nm.
Capacitor C1 is 1 pF. (b) During an input voltage pulse (red pulse of 1.2 V with a
1 μs pulse-width), the output current is incremented. After the pulse, the current
exponentially decays to zero. The current waveform for two different configura-
tions are shown—current 1 (R1 = 10 MΩ, R2 = 500 kΩ, R3 = 1 GΩ) and current
2 (R1 = 10 MΩ, R2 = 375 kΩ, R3 = 500 MGΩ). The supply voltage is 1.2 V
consistent with the voltage rating for the 130 nm CMOS technology used in
simulation.

structures which augment the hybrid circuit. It should be noted
that, although in Fig. 3(a) one synapse circuit contains one capaci-
tor, inside neuromorphic processors7 multiple synapse circuits share
(along a row or column of a synaptic array) a capacitor and superim-
pose their currents onto it. This helps reconcile the small footprint of
a synapse circuit with the large footprint of a 1pF capacitor without
compromising on large (biological) time constants.

III. NONCONVENTIONAL PROPERTIES OF HfO2 BASED
RRAM

HfO2 based RRAM are conventionally used as binary devices
switching between a low and a high resistance state in a determin-
istic way for standard memory applications. Here by contrast, we
would like to treat the SET operation as a stochastic process using a
subthreshold Vprog . In addition, we view, as a result of the HRS cycle-
to-cycle variability, the RESET operation as a random variable con-
ditioned on Vprog and Vgate. These real device properties can be used
to develop technologically plausible neuromorphic and in-memory

computing stochastic algorithms, such as in-memory Markov pro-
cesses.20 The stochastic SET and RESET random variables of HfO2
based RRAM 1T1R structures with Ti/TiN electrodes, integrated
monolithically in 130 nm CMOS process,14,16 are characterized in
this section. A scanning electron microscope image of a wafer cross
section, with CMOS and HfO2 based RRAM on the same substrate,
is shown in Fig. 4 where the memories have been deposited between
metal layers 4 and 5 in the back-end-of-line and can be interfaced to
CMOS circuits in the front-end-of-line through vias between metal
layers 3, 2, and 1.

A. Stochastic SET
Traditionally, a SET programming pulse is applied which

ensures with certainty that a functioning device transitions from
the HRS to the LRS. However, for the case of subthreshold SET
pulses (here below V set = 1.4 V), the HfO2 based RRAM exhibits a
nondeterministic switching mechanism whereby the probability of a
device being SET has a dependence on the SET voltage applied over
the device.21 In order to characterize this probability-voltage rela-
tionship, devices in a 4 kbit (16 × 256) 1T1R matrix were subject
to a sweep of subthreshold SET pulses (devices were reinitialized
to an initial HRS state between V set steps). A resistance threshold
of 20 kΩ defines a SET device from the one which remains in the
HRS. The fraction of SET devices after the subthreshold SET pulse
had been applied defines the SET probability per voltage across the
matrix. The cumulative distributions (CDFs) of the 4096 devices
in the matrix for a sweep of V set are plotted in Fig. 5(a). As V set
increases, devices are more likely to transition from the HRS dis-
tribution (right) to the LRS distribution (left). Furthermore, it is
interesting to note that even for deep subthreshold pulses the result-
ing LRS resistance values fall under the 20 kΩ threshold and into
the LRS distribution despite a small (relative to standard SET con-
ditions) applied programming voltage. The probability extracted at
each V set is plotted in Fig. 5(b) for 3 different pulse-widths (100 ns,
500 ns, and 10 μs). The probability-voltage relationship is seen to be

FIG. 4. HfO2 based RRAM is integrated monotonically in the back-end-of-line with
CMOS transistors in the front-end-of-line in a 130 nm CMOS process. This process
permits design of hybrid circuits where RRAM can coexist physically above CMOS
circuits on the same chip. The HfO2 thin film is shown zoomed within the inner red
box, and the location of the CMOS is marked by the text transistor.
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FIG. 5. Viewing the SET operation as a stochastic process, there is a sigmoidal
relationship between SET probability and SET voltage for subthreshold (less than
1.4 V) voltage pulses. (a) Cumulative distributions of device states after sub-
threshold programming pulses for a sweep of SET voltages. Those assuming a
resistance below a 20 kΩ threshold are defined as SET in the low resistive state.
(b) The probability of setting a device has a sigmoidal dependence on the voltage
of the SET programming pulse where the slope of the sigmoid can be increased
using longer SET programming pulses.

sigmoidal where a small degree of control in the slope of the sigmoid
can be exerted by varying the pulse-width.

1. Intercycle/cell variability
The sigmoidal relationship between the SET voltage and the

corresponding switching probability (verified across multiple dies

and wafers) describes well the properties of the stochastic SET for
a population of memories. In the case of the hybrid circuits, single
structures are integrated into single cells, and therefore, it becomes
important to understand the variability in the switching probabil-
ity between single devices. In order to characterize this, 100 cycles
of subthreshold SET operations were performed with a subset of
V set voltages. The switching probability, per device, corresponds to
the number of times it was SET over the 100 cycles. The deviation
between the probability of a single device and the mean probabil-
ity (the mean of all devices over 100 cycles) is plotted for three
mean probabilities in a heatmap in Fig. 6. Soft reds and blues cor-
respond to devices with switching probabilities equal to or close to
the mean per applied SET voltage. Stronger reds and blues indicate,
by contrast, devices which have a switching probability significantly
less (blue) or greater (red) than this mean. It is clear from visual
inspection that a substantial device-to-device (D2D) variability in
the switching probability is present. This D2D variability is cap-
tured more explicitly using a boxplot in Fig. 7. Here, the median
(blue horizontal line), ±25% percentile (red box), ±50% percentile
(red whiskers), and ±95% percentile (blue points) are plotted. The
dispersion is most pronounced at voltages corresponding to prob-
abilities between 0.2 and 0.8. For example, for V set = 1 V, the
median probability is approximately 0.6, but half of the device pop-
ulation, defined by the limits of the purple box, exhibit SET prob-
abilities between 0.3 and 0.85. The NIST test suite SP800-2222 was
used in order to evalaute if a spatial correlation in the D2D SET
probability existed across the matrix. This test suite is commonly
used to validate random number generators by running 15 tests on
the generator output, especially searching for spatial correlations.
The number walk, composed of the complete 4 kbits of the matrix
over 100 cycles, passes the full suite of tests. According to these
tests, the D2D spatial correlation can be confidently considered as
nonsignificant.

B. RESET random variable
The objective in a standard RESET operation is to switch the

device to the HRS (from the LRS) such that the resulting resis-
tance state is comfortably above the resistance threshold while also
maximizing the device endurance. Unlike the abrupt nature of the

FIG. 6. Switching probability for each device in a 16 × 256 cell 4 kbit matrix colored based on its deviation from the mean switching probability over a 4 kbit 1T1R matrix.
Strong reds and blues indicate a significant deviation, while softer shades show cells close to the mean probability.
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FIG. 7. Device to device variability captured with a boxplot. Here, the median (blue
horizontal line), ±25% percentile (red box), ±50% percentile (red whiskers), and
±95% percentile (blue points) are plotted.

SET operation, the RESET is a gradual process23 where the resis-
tance becomes greater with consecutive RESET pulses. Also, unlike
in the SET, the HRS resistance is strongly influenced by the value
of Vreset and Vgate. Therefore, although often done, it is artificial to
extract a RESET probability-voltage relationship. However, this does
not say that by any means the RESET operation is deterministic.
On the contrary, the process governing the oxygen-vacancy filament
dissolution is clearly also random as observed in the cycle-to-cycle
(C2C) variability in the HRS resistance value (for identical program-
ming conditions). Therefore, due to this inherent C2C variability,
the RESET operation in HfO2 based RRAM can be viewed as sam-
pling from a probability distribution (PDF) and therein treated as a
random variable. The relationship between Vreset , Vgate and the C2C
HRS distribution (mean resistance and two standard deviations),
obtained with 100 cycles on a single device, is plotted in Fig. 8(a).
The gate voltage has the effect of limiting the HRS PDF mean resis-
tance for an increasing RESET voltage. Before this saturation, there
is a clear region where mean C2C resistance can be controlled with
the applied programming voltages. In the case of Vgate = 4 V, HRS
resistances span a range of 5 orders of magnitude with the highest
values, using the strongest measured conditions (Vreset = 4 V and
Vgate = 4 V), slightly below 1 GΩ. In the context of hybrid neuro-
morphic circuits Fig. 2(a), this translates as being able to vary neural
time constants over 5 orders of magnitude and, assuming capacitors
on the order of pF, permits neural time constants in the millisecond
regime to be obtained. For applications addressing real-time prob-
lems in a natural environment, it is essential that the time constant of
network dynamics and the environment be matched whereby many
environmental processes have time constants on the order of mil-
liseconds. It should be noted that for strong RESET programming
conditions, the endurance of the devices degrades significantly. In
order to better define the distribution shape, a single device was
cycled 1000 times at two RESET conditions [Vgate = 4 V and Vreset
= 2 V (red) and Vgate = 4 V and Vreset = 1.5 V (blue)] in Fig. 8(b).
Consistent with previous results,16 the HRS C2C probability density
can be well described by a log-normal distribution, as in Fig. 8(b).
Therefore, the RESET operation can be viewed, specifically, as a

FIG. 8. Treating the RESET high resistive state cycle to cycle variability as sam-
pling from a log-normal random variable and the dependence on RESET pro-
gramming conditions. (a) The mean (data points) and the spread at two standard
deviations (shaded region) of the HRS resistance state are plotted for a range
of V reset for a sweep of Vgate. (b) Two examples of HRS distributions for differ-
ent RESET programming parameters [Vgate = 4 V and V reset = 2 V (red) and
Vgate = 4 V and V reset = 1.5 V (blue)]. The distributions can be well fitted using
a log-normal probability distribution where the standard deviation of the underlying
normal distribution is between 0.4 and 0.5.

random variable where the PDF is a log-normal distribution with
a mean conditioned on Vgate and Vreset during a RESET operation.
The standard deviations (of the underlying normal distribution to
the log-normal) were extracted and found to be between 0.4 and
0.5, inline with measured dispersion for the same technology.24 Note
that previous results have demonstrated an additional influence of
the recent history of HRS states on the current state for weak pro-
gramming conditions (low Vreset), whereby a correlation exists over
the course of tens of cycles.25

IV. TECHNOLOGICALLY PLAUSIBLE INTRINSIC
PLASTICITY

Intrinsic plasticity has proven essential in maintaining healthy
dynamics in recurrent neural networks.9 However, to map and
export such algorithms onto state of the art neuromorphic
processors is not currently technologically plausible resulting
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from the constraints detailed in Sec. V. Technological plausibility
demands distributing nonvolatile memory throughout the comput-
ing fabric such that, like in biology, memory and computation are
colocalized and indistinguishable. We have shown how this can be
achieved using hybrid neuron and synapse circuit models. We also
characterized nonconventional computational properties of oxide-
based RRAM that can be exploited in implementing stochastic algo-
rithms. In this section, we outline a technologically plausible intrin-
sic plasticity algorithm, based on these properties, and evaluate its
performance.

A. Algorithm
Intrinsic plasticity requires that individual neurons self-

organize to fire around a target rate.9 We propose that a neuron can
measure its own firing rate and, at fixed intervals (here 400 ms), com-
pare this rate with a target and, based on this difference, perform
SET/RESET cycles on 1T1R1 and 1T1R2 of the hybrid DPI neu-
ron [Fig. 2(a)]. These parameters control the input gain and input
time constant and thus determine the neuron excitability. Since after
every RESET operation the RRAM resamples its resistance value,
the behavioral properties of the neuron will change accordingly. The
algorithm is depicted in Fig. 9. We propose to periodically gener-
ate SET voltage pulses with an amplitude as a function of the fir-
ing rate difference, directly over the neuron’s incorporated 1T1R
structures. This exploits their inherent switching probability-voltage

FIG. 9. Diagram of the proposed intrinsic plasticity algorithm. The hybrid DPI neu-
ron has two RRAM 1T1R that set the properties of the neuron model (green
circle). The neuron propagates a spike/pulse train to an integrator circuit (light
blue block) which transforms the discrete voltage pulses into a continuous analog
voltage encoding its activity. This signal (blue waveform) is compared with a tar-
get (black dashed line), and periodically (black pulse train), the error is evaluated
(red pulses). Based on these differences, SET voltage pulses are generated (red
block) over the incorporated 1T1R structures in their high resistive states. This
intrinsically makes a stochastic decision on whether its resistance value should be
resampled. If the device is SET, the resistance is below 20 kΩ, and then it is imme-
diately RESET at which point the resistance values of the neuron memories are
resampled from a log-normal PDF (navy blue block) corresponding to the inherent
probability density of the HRS C2C resulting from a RESET operation. Previous
work has shown that the pulse generator can control the applied SET voltage for
a given error17 between the target and measured rates. This also allows a toler-
ance to be introduced whereby a specified level of error is tolerated before the
resampling probability becomes nonzero.

dependence [Fig. 5(b)] to make a decision on whether to resam-
ple their resistance values or not. Circuits have been previously
described that allow SET voltage pulses to be a precisely controlled
function of the firing rate difference.17,26 This allows for the resam-
pling probability sigmoid to be a function of the firing rate differ-
ence and also for the sigmoid function properties (horizontal shift
and slope) to be artificially augmented to realize a probability-error
(error between the target and measured rates) sigmoid. A tolerance
can be introduced for example. This tolerance sets a minimum error
between the target rate and the measured one that is tolerated before
the resampling probability for a neuron becomes nonzero. The tol-
erance is an important quantity in the algorithm. A value too small
will prevent convergence to a stable state, since the neuron param-
eters will be highly sensitive to small fluctuations in activity. At the
other extreme, an excessively large tolerance would prevent a neuron
from organizing itself at all. Additionally, the relationship for over-
firing and underfiring can also be set independently. We propose
that 1T1R1, since it impacts only the gain, should resample from an
HRS PDF with a mean equal to its current resistance value, while
1T1R2 should resample from an HRS PDF with a mean shifted by
a constant learning rate from its previous value. The learning rate
multiplied by the current resistance value and then added to or sub-
tracted from this value gives the value of the new mean. Since 1T1R2
has a positive correlation with the firing rate (as it governs the input
time constant), this mean shift should be positive for underfiring and
negative for overfiring.

B. Recurrent neural network with hybrid IP neurons
Spiking recurrent neural network topologies mapped onto neu-

romorphic processors will be essential in effectively solving emerg-
ing low-power temporal edge-computing problems. Current neuro-
morphic processors will struggle to meet the requirements of such
applications since they cannot implement the local, massively par-
allel plasticity mechanisms, such as neuronal intrinsic plasticity,
required to obtain and sustain healthy recurrent network dynam-
ics. In this section, we demonstrate, through spiking neural network
simulation, the effect of the proposed algorithm on the topology
illustrated in Fig. 10. In this topology, an input layer (blue) of 12

FIG. 10. The recurrent spiking neural network topology used in simulation. An
input Poisson group (blue) feeds forward to an excitatory neuron population which
are hybrid DPI neurons with intrinsic plasticity (green). A population of inhibitory
neurons (red) is excited by the excitatory population and feeds back with inhibit-
ing synapses that impose an upper limit for the mean firing rate in the excitatory
population.
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Poisson neurons27 feed-forward into a recurrently connected exci-
tatory population of 35 neurons (green) with a connection proba-
bility of 0.75. Poisson neurons are neurons which fire at random
intervals such their interspike time PDF is a decaying exponen-
tial function. The excitatory neurons have a 0.2 chance to connect
recurrently amongst themselves. There is no spatial connectivity
kernel as is the case for LSMs.4 In addition, the excitatory popu-
lation excites an inhibitory population (red). The neurons in this
population recurrently connect amongst themselves and also project
inhibitory synapses to the excitatory population—putting on the
brakes via negative feedback when it is excessively excited. The
neurons in the excitatory population are equipped with intrinsic
plasticity. The tolerance is set to 70 Hz for both overfiring and under-
firing, while the learning rates for 1T1R2 were 0.05 and 0.3 for over-
firing and underfiring, respectively. All synapses are the hybrid DPI
synapses of Fig. 3(a), the neurons in the excitatory population are
hybrid DPI neuron models [Fig. 2(a)], while the inhibitory popu-
lation are simply LIF neuron models. The resistance values of the
hybrid neurons are bounded within the order of the measured values
in Fig. 8(a).

First, for illustrative purposes, the mean firing rate and stan-
dard deviation in the firing rate for the 35 excitatory neurons are
plotted in the absence of an IP algorithm in Fig. 11(a). The mean
rate oscillates around a natural frequency of 200 Hz, while the stan-
dard deviation amongst firing rates within the population is 50 Hz.
By contrast, Fig. 11(b) plots the same metrics for a single run of the
simulation where the neurons in the excitatory population employ
the proposed IP algorithm—given a target of 120 Hz. After an ini-
tial transient period of excessive firing, the network self-organizes in
5.5 s and then settles in a configuration where the mean firing rate
respects the stipulated target. The standard deviation amongst the
firing rates is 38 Hz. Finally, in Fig. 11(c), the number of SET/RESET
programming cycles (during each 400 ms refresh) drops from an
initial count of 34 cycles to 2.1 cycles. Low RRAM switching activ-
ity is an equally important indication of convergence since not
only should the network mean tend to the target (while maintain-
ing an acceptable standard deviation amongst the individual rates
in the population) but the switching activity should also cease (or
become negligible). The HRS C2C log-normal standard deviation
(of its underlying normal distribution) was set to 0.5 [as measured
in Fig. 8(b)], while it was assumed that the D2D variability in the
stochastic SET was zero (which was of course measured not to be
the case). The effect of the D2D SET variability is evaluated in
Sec. IV B 1. The performance of the network can be described by the
three performance metrics which are annotated in Figs. 11(b) and
11(c)—time to convergence (T), standard deviation amongst firing
rates after convergence (B), and number of SET/RESET cycles after
convergence (C).

1. Impact of device variability
The two nonconventional RRAM programming operations

come with inherent variability. The C2C variability in the HRS after
a RESET operation corresponds to the standard deviation (of the
underlying normal distribution) of a log-normal PDF, while the
D2D variability in the stochastic SET has the effect of an undesired
horizontal shift of the probability-error sigmoid (therefore impact-
ing the tolerance and horizontally shifting it from the intended

FIG. 11. Spiking neural network simulation. Intrinsic plasticity allows the recurrent
network to self-organize to fire at a target rate while also minimizing standard devi-
ation and SET/RESET resampling cycles. (a) RNN of neurons without IP firing at
their natural frequency. (b) RNN of IP neurons co-organizing to fire around the tar-
get in 5.5 s in this single simulation. The standard deviation settles to 38 Hz after
convergence. (c) After convergence, the number of SET/RESET cycles drops to
near zero.
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value). We determine their effect by using the defined performance
metrics [annotated in Figs. 11(b) and 11(c)—time to convergence
(T), standard deviation amongst firing rates after convergence (B),
and count of SET/RESET cycles after convergence (C)] averaged
over 3 independent runs from randomly initialized parameters. We
first examine the impact of the C2C HRS variability on the network
in Figs. 12(a) and 12(b). It is seen for low values of standard devi-
ation of the C2C HRS PDF that the network struggles to settle to a
mean precisely equal to the target—although it has a low standard
deviation amongst firing rates and low count of SET/RESET cycles
after converging. This is likely linked to the result of Fig. 12(b) that
the convergence time drops for a higher C2C HRS standard devi-
ation up to 0.5 and suggests that due to the wider lognormal PDF
the network is able to explore a wider range of resistance values
faster. However, for values larger than 0.5, the convergence time is
then seen to increase. Most likely, this results from the C2C HRS
PDF becoming too wide, and the step taken from the previous con-
figuration is too large and not sufficiently correlated. With a lower
C2C HRS standard deviation, the network resistances change more
gradually; hence, when the network arrives to a mean rate within
the specified tolerance, the memories stop resampling their param-
eters before reaching the exact target. The measured value of the
C2C HRS standard deviation (of the underlying normal distribu-
tion) was between 0.4 and 0.5. Within this range, the algorithm
is seen to find a sweet spot and converge significantly faster than
values higher or lower. This leads to the conclusion that the intrin-
sic C2C HRS variability has a positive impact on performance. In
Figs. 12(c) and 12(d), the same metrics are plotted but for the case of
D2D SET variability. Here, we sample undesired horizontal shifts in
the probability-error sigmoid from a normal distribution for each
device. Therefore, each has a permanent offset from the desired
value which impacts the effective tolerance. The time to convergence
in Fig. 12(d) increases with a greater standard deviation of the nor-
mally distributed shifts in the probability-error sigmoid. However,
the standard deviation amongst the neuron firing rates, the mean
distance from the target firing rate, and the count of SET/RESET
cycles appear to be largely unaffected. This result is encouraging
since it appears that, even in the presence of significant D2D vari-
ability, the IP algorithm allows the network to self-organize and
find a configuration which can compensate for the nonideal devices
and fire around the target at the expense of a longer period of
self-organization.

2. Power consumption
A SET/RESET cycle, required to resample a parameter, incurs a

fixed penalty in energy, and therefore, such an algorithm will con-
sume an amount of energy proportional to the update rate (here
400 ms) and the number of devices in a network which have under-
gone a SET/RESET cycle during this periodic update. Under stan-
dard programming operations (SET: V set = 2 V, Vgate = 1.3 V and
RESET: Vreset = 3 V, Vgate = 3 V, both with a programming pulse-
width of 100 ns), the 1T1R structures studied in this paper consume
approximately 50 pJ per SET/RESET cycle. Neurons also pay an
energy penalty every time they spike (for the DPI neuron in 180 nm
CMOS, this is 800 pJ). This is therefore an order of magnitude
more expensive than a SET/RESET cycle and approximately two
orders of magnitude more frequent. Clearly, as is the case in biology,

FIG. 12. The impact of cycle-to-cycle variability in the RESET and device-to-device
variability in the subthreshold SET on performance metrics of the intrinsic plasticity
algorithm acting on the recurrent spiking neural network are studied. (a) Impact of
the standard deviation (of the underlying normal) in the cycle-to-cycle high resis-
tive state resistance log-normal probability density function (following a RESET)
on the mean firing rate and standard deviation in the firing. (b) Impact of the stan-
dard deviation (of the underlying normal) in the cycle-to-cycle high resistive state
resistance log-normal probability density function (following a RESET) on conver-
gence time and the number of SET/RESET cycles after convergence. (c) Impact of
normally distributed device-to-device SET probability standard deviation on firing
rate and standard deviation in firing rate. (d) Impact of normally distributed device-
to-device SET probability standard deviation on convergence time and the number
of SET/RESET cycles.
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FIG. 13. The cumulative energy consumed by a recurrent neural network firing
at its natural frequency (red) and the same network implementing the described
intrinsic plasticity algorithm (green).

it becomes advantageous to expend a small amount of energy
to reduce the (comparatively) much greater energy consumed via
neural activity. As an illustrative example, we plot the cumula-
tive energy consumption of the two networks in Fig. 11(b) (one
employing IP and the other firing at its natural rate) in Fig. 13.
Since the target firing rate (120 Hz) is significantly lower than
the natural rate (200 Hz) the energy consumed, despite the cost
of initial organization, is reduced by half. This demonstrates the
opportunities in energy management of the algorithm in applica-
tions in which the system is not connected to a reliable source
of power—wearable medical devices in between charging, for
example.

V. ADVANTAGES OF HYBRID SYSTEMS
The dynamics of a neural network are set by the parameters of

its neurons and synapses. These parameters can include, for exam-
ple, the integration time constant for the synaptic dynamics and
neurons, neural refractory period, synaptic efficacy, and neuron’s
gain and adaptation time constant.19 In state of the art mixed-signal
neuromorphic processors, such parameters are stored digitally in
registers inside bias generator blocks which control the bits of cur-
rent digital to analog converters (DACs) which in turn propagate
voltages to bias transistors inside the neuron and synapse circuit
models. By contrast, what we have proposed in this paper decentral-
izes the memory from the volatile digital programmable bias gen-
erators by distributing nonvolatile memories throughout the com-
puting fabric such that they are incorporated into the neuron and
synapse circuit models themselves. The benefits of our approach are
multifold:

● The bias generator block burns static power which grows
with the number of parameters allowed to be on the chip.
In hybrid systems, the static power consumption reduces to
zero as the transistor biases are replaced by incorporated,
passive resistive memories.

● State of the art NPs are often forced to compromise on
parameter variety such that all of the neurons on a core are

obliged to share the same model parameters. If parameters
were not shared, the static power consumption and the area
consumed by wires (metal lines) running across the chip for
connecting the biases explode with the number of param-
eters. For hybrid systems, each circuit model has its own
parameter set by the incorporated RRAM without area or
static power overhead. Such an approach also enables the
self-organization of individual parameters locally.

● The effect of transistor mismatch is highly detrimental in
subthreshold CMOS circuits and therefore in NPs. Since
each neuron and synapse model can be individually config-
ured, the models can locally compensate for the mismatch
present in each circuit model via self-organization (through
intrinsic plasticity, for example).

● In state of the art NPs, the parameters are stored in volatile
memories which lose their information when they are
power cycled and hence must be reprogrammed. There-
fore, they are obliged to constantly dissipate static power
to maintain their information. Thanks to the nonvolatil-
ity of resistive memory in hybrid systems, they can be
powered on and off without requiring reprogramming and
do not require static power to be consumed to retain
information.

● Since parameters are remotely set by bias generators, it is
required to reprogram the bias generator whenever they
are updated. To implement local plasticity mechanisms per
model neuron (foregoing the massive power and area draw-
backs this would entail), it would be required to read out
the firing rate of every neuron and reprogram bias genera-
tors per neuron using a “computer in the loop” approach.
This imposes a bandwidth limitation resulting from the von
Neumann bottleneck that still exists between the distributed
model circuits and the centralized digital memory despite
the distributed nature of the circuit models themselves. In
hybrid systems, the RRAM incorporated into the circuits can
be configured locally by additional analog circuits, therefore
imposing no limitations on the bandwidth of local plasticity
mechanisms.

● A final advantage of using RRAM to determine model
parameters, over subthreshold CMOS transistors, is their
increased stability under temperature fluctuations. The
drain source resistance of transistors biased in the sub-
threshold regime, as required in neuromorphic processors to
realize biological time constants (in the millisecond regime),
is famously sensitive to small fluctuations in temperature.
This is detrimental for neuromorphic processors since dur-
ing an application, if the ambient temperature drifts, so will
the behavior of the models from those desired. This change
in resistance is an exponential function of the ratio of the
material activation energy over the temperature change. The
measured activation energy of RRAM28 is an order of mag-
nitude lower than that measured for CMOS transistors29

and so allows for reduced sensitivity of model circuits on
temperature changes. However, for large temperatures, care
should be taken over the choice of electrodes. While the
electrodes (Ti/TiN) of the technology considered in this
paper have demonstrated good retention during tempera-
ture cycling (between room temperature up to 200 ○C), other
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technologies (Pt/Pt electrodes for example) can lose their
state completely for increases in temperature.30

To quantify the benefits of our approach with respect to the
state of the art, we estimate and compare the power and area con-
sumption required by an example state of the art NP vs a system
embracing the hybrid approach. On the Dynapse chip,7 as an exam-
ple, each bias parameter on average consumes about 4 μW of power.
If the chip were to have unique parameters for each neuron, assum-
ing only 3 parameters required per neuron (time constant, gain and
refractory period), each neuron would burn 12 μW of power. This
power consumption means, with only 1000 individually parameter-
ized neurons, we already burn a hugely undesirable 12 mW of static
power. Moreover, to route the 3 aforementioned biases to each neu-
ron from a bias generator, assuming the 4th metal layer in 180 nm
technology (same as Dynapse), 1.5 μm2 of area is required. For
1000 neurons, this number grows to 1.5 mm2 which is equivalent
to half of a whole silicon chip. In comparison, the hybrid approach
consumes no static power and needs no routing to bias model
circuits.

VI. CONCLUSIONS
In this paper, we proposed that hybrid neuromorphic cir-

cuits, those incorporating resistive memories into CMOS neuron
and synapse models, can solve a number of problems faced by
a fully CMOS approach to neuromorphic processors. Hybrid sys-
tems will allow parameter variety and static power consumption
to be increased and decreased, respectively, by orders of magni-
tude and, when compared to deep sub-threshold CMOS neuron and
synapse models, the model parameters will exhibit greater stability
over an extensive temperature range. Furthermore, the state of the
memories can be modified by local circuits in order to implement
massively parallel local plasticity mechanisms—currently impossi-
ble with existing approaches. In this paper, we explored noncon-
ventional properties of HfO2 based OxRAM, namely, the stochas-
tic SET operation and the RESET random variable. Using these
operations, we proposed and demonstrated a technologically plau-
sible intrinsic plasticity algorithm which allowed DPI neurons inter-
connected by DPI synapses to realize a recurrent neural network,
to self-organize and fire around a target firing rate. The hybrid
RNN was able to find a configuration which exhibited the healthy
and stable network dynamics required to find use in ultralow
power edge-computing problems confronted with data of a temporal
nature. Encouragingly, the measured cycle-to-cycle HRS variabil-
ity was seen to be beneficial for computation, while the intrinsic
plasticity algorithm was able to mitigate negative effects of high
device-to-device SET probability variability at the expense of longer
time to convergence. Like in biology, where there exists a fantas-
tic variety of cell types, resistive memories also come in many fla-
vors and exhibit diverse properties. In addition to the stochastic
properties of OxRAM (studied in this paper), the volatile resis-
tive states in silver based conductive bridge RAM can be used to
store volatile short term information,15 while the gradual resis-
tance changes in phase change memories can be used to real-
ize incremental changes in nonvolatile parameters.31 This work
opens up the door to not only the potential of using resistive
memories as fundamental building blocks of neuron and synapse
models in useful neuromorphic processors but also illustrates why

they are a necessity in facilitating future neuromorphic proces-
sors to address ultralow power embedded temporal edge-computing
problems.
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