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Summary

The control on wave propagation phenomena has always been of great in-
terest. This extends as much in the scientific community as for engineering,
where such control could be exploited for creating a great variety of new
technologies. From telecommunication, where optical fibres brought unprece-
dented speed in data transfer, to seismology, where deflecting seismic wave is
becoming a realistic opportunity, controlling waves has now become of fun-
damental interest for the development of our modern day society and the
introduction of metamaterials allowed great advancements in this field. First
discovered in electromagnetism, the concept of metamaterial soon reached
other fields where this control is one of the main goals. By introducing artifi-
cial, well determined, structures inside the natural composition of a material,
it was possible to give it additional properties that would not be present in
nature.

Elasto-dynamics is the branch of acoustics that focuses on the study of
deformations inside solids and thus on the mechanical wave propagation in
this kind of materials. In the last two decades, an increasing interest has ac-
quired the possibility of guiding and manipulating elastic waves by means of
metamaterials. Indeed, by introducing artificial, well determined, structures
inside standard materials, it was demonstrated that it is possible to give addi-
tional properties that would not be present in nature. In elastic materials the
introduction of new properties can be achieved exploiting at least two differ-
ent physical mechanisms, i.e. by means of periodic structures and/or locally
resonant structures. These lead to different types of behaviour and thus are
referred with different names: phononic crystals and acoustic metamaterials
(respectively). Additionally, they can either involve a physical structure (e.g.
pillars, holes) or a structurization in the material properties (i.e. materials
with different elastic properties arranged in the same structure).

Among all the properties that can be induced in this way, the possibility
of creating acoustic band gaps in the material frequency response stands out
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with respect to the others. This is because the deterministic introduction of a
band gap can be exploited in a variety of ways, ranging from simple acoustic
insulators to more complex devices that make use of non linear effects. For
instance it is possible to obtain waveguiding effects that are selective with
respect to the wave frequency, which can then be used for demultiplexing
frequency components of an elastic wave. Similarly, it is possible to achieve
selective focusing of specific wavelengths that can be used for detecting higher
order harmonics generated by the presence of non linear effects, (which are
typically associated to defects in a structure). Another very interesting ap-
plication involves the field of seismology, where acoustic metamaterials are
currently being studied for deflecting surface seismic waves.

The main limit that these fascinating new materials encounter is the in-
trinsic static nature of their structure. This is to say that when the periodic
or the resonant structures have been introduced into the material, there are
little things that can be done in order to change their properties. Nonetheless
there have been numerous attempts for controlling and tuning the proper-
ties of these structures even after their creation. Among the techniques that
have been proposed we can mention the exploitation of piezoelectric effects,
temperature variations, mechanical stressing or even radio waves.

This thesis work, instead, aims at creating a tunable metamaterial con-
trolled by photonic radiation, hence light, by exploiting a photo-induced vari-
ation of the elastic properties of a material. Among the stimuli responsive
materials, photo-responsive materials have shown a great number of advan-
tages, especially in terms of remote control (allowing to be governed from
distance they reduce the influence of the control system on the active part
of a device) and time of the response of the material to the external stimuli.
For the purpose of this work it was chosen to deal with photo-responsive
polymers because, recently, they have shown themselves capable of chang-
ing both optical properties and even topography as a response to the proper
illumination. Therefore a responsivity in terms of elastic properties varia-
tion is also plausible. Moreover polymers offer many advantages in terms of
production simplicity, hence costs, and also allow the control of the level of
responsivity during the fabrication process. In particular it was chosen to
use polydimethylsiloxane as a base material.

The goal of this thesis is therefore to design, fabricate and validate a tun-
able phononic crystal realized with photo-responsive polydimethylsiloxane
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(PDMS). With this intention, photo-responsivity will have the role of induc-
ing the structurization of the metamaterial, by changing the elastic properties
only where the material is illuminated by the projection of a determined pat-
tern.

Outline

The thesis is divided into three main chapter that describe three different
types of studies that were carried out in order to approach the problem. The
first study was meant at dealing with the theoretical background required for
understanding the interaction between elastic waves and the structures the
materials is composed of. The second study instead had the aim to produce
a numerical model able to support the creation of acoustic band gaps into
the proposed structures. While the third part consisted in the experimental
characterisation of some photo-responsive polymeric samples reacting to the
presence of illumination.

The theoretical description of chapter 1 covers three fundamental aspects
of the analysis. First, in order to give an explanation for the existence of
shear and compressive stress waves, a mathematical derivation of the wave
equation valid for elastic deformations in solid is provided. Such derivation
is useful to understand why the two types of waves can behave independently
one from the other, when present in bulky infinite media. Then a brief de-
scription of the problem of waveguides in elastic media is presented, allowing
to handle the concepts of guided modes and dispersion relations. And finally
the problem of metamaterials is analysed from multiple standpoints and using
different intuitive approaches. Here the difference between phononic crystals
and acoustic metamaterials is carefully described together with the methods
that have been used in literature to produce tunable metamaterials.

In chapter 2 two methods for dealing with the numerical analysis of meta-
materials using the software COMSOL are presented. One is based on full
sample analysis, where the geometry of the model is meant at solving the
equations for the displacement field distribution for the entire structure of
interest in stationary conditions (here the model represent a closed system,
i.e. no boundary condition), while the other one focuses on the elementary
cell that composes the phononic crystal structure (where proper boundary
conditions need to be applied). In order to reduce computational cost, the
full sample analysis was performed in two dimensions, which then forced
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the periodicity of the phononic crystal to be one dimensional. During these
analysis the necessity of including attenuation inside the numerical model is
pointed out.

Chapter 3 follows with a detailed description of the experimental setup
and the measurement performed in order to acquire information from some
PDMS samples. For the projection of patterned light, a one dimensional (in
terms of periodicity) mask was used. Moreover a subsection of the chapter is
entirely dedicated to polydemethylsiloxane in order to investigate its elastic
properties, the method for the preparation of the samples and the technique
used for inducing its photo-responsivity.
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Chapter 1

Theoretical background

In order to understand how to control elastic waves propagating in solid
media, it is important to understand how they work and which are the mi-
croscopic mechanisms that influence their behaviour. It is thus necessary to
have a look on the theoretical aspects capable of describing such mechanisms,
even if with a far-from-exhaustive presentation. Although elastic waves can
be studied both referring to liquid and solid media, this presentation is fo-
cused on the latter in order to avoid confusion and ambiguity.

It is necessary to first understand the underlying formalism that describes
deformations inside solid media, then it will be possible to derive the equation
of motion and extract important information from it. With such background
it is easier to understand the basic principles of wave-guiding, and thus to
understand the phenomenon of modal dispersion. Finally it will be possible
describe the underlying principles behind metamaterial and phononic crys-
tals.

Notice that all the information contained in section 1.1 have been retrieved
from [1, Ch. I and III]
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Theoretical background

1.1 From an elastic deformation to a propa-
gating wave

1.1.1 Strain and Stress
Strain

Consider a body of a given solid material. In rest conditions, imagine to
associate to each constituting atom a point in space of given coordinate r =
(x1, x2, x3). When a deformation is applied to the body, its atoms will change
arrangement, therefore the vector r will be changed as well r′ = (x′1, x′2, x′3).

Instead of speaking about atoms and in order to allow differential analysis
to take place, it is better to consider the body as a continuum. Thus replace
the concept of atoms, tiny elements that build up the body, with infinitesi-
mal volumes, tiny portion of spaces that can be localised with. It is easier
to directly refer to them as points of the body.

If we consider the position of any point of the solid body before (r) and
after (r′) a deformation, we can define a displacement vector

u = r′ − r. (1.1)

Consider now what happens at the distance between two close points A
and B. The difference of their position vectors will be referred as dr. There-
fore distance dl before the deformation is simply dl2 = |dr|2.

After the deformation instead it is possible to write it as a function of the
displacement vector dr′ = dr+du, where du is just the difference between the
displacements of the two points. Therefore the distance after deformation
can be written:

dl′2 =
∑
i

(dxi + dui)2 =
∑
i

(
dx2

i + du2
i + 2dxidui

)
(1.2)

where dxi are the components of the vector dr.
It is useful to decompose the differential of the displacement vector (du) into
its derivatives with respect to the coordinate system:

du =
∑
k

∂u
∂xk

dxk,

where the partial derivative is applied to all the components of du.
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1.1 – From an elastic deformation to a propagating wave

Thus we can rewrite eq. (1.2) as:

dl′2 = dl2 +
∑
i


∑

k

∂ui
∂xk

dxk

2

+ 2dxi
∑
k

∂ui
∂xk

dxk

 (1.3)

The squared term can be written in the form∑
k

∂ui
∂xk

dxk

2

=
∑
k

∑
l

∂ui
∂xk

dxk
∂ui
∂xl

dxl

In order to simplify the notation, from now on it will be used the index
notation in which the presence of an index (i, k, l, etc.) implies the presence
of a summation over all the components of the vector (i.e. dl2 = ∑

i dx
2
i and

dl2 = dx2
i are equivalent).

Eq. (1.3) thus takes the form

dl′2 = dl2 + ∂ui
∂xk

dxk
∂ui
∂xl

dxl + 2 ∂ui
∂xk

dxkdxi. (1.4)

By rearranging the indexes1 it is possible to rewrite eq. (1.4) in the form

dl′2 = dl2 + 2uikdxidxk, (1.5)

where uik is called the strain tensor , written in the symmetrical form

uik = 1
2

(
∂ui
∂xk

+ ∂uk
∂xi

+ ∂ul
∂xi

∂ul
∂xk

)
(1.6)

Since in most of the cases the deformation of the body is small, the second
order term is usually neglected, thus writing the strain tensor in the simpler
form

uik = 1
2

(
∂ui
∂xk

+ ∂uk
∂xi

)
. (1.7)

And what is the effect on the infinitesimal volume dV ?
By definition the volume will be the product of its infinitesimal elements
dV = dx1dx2dx3 and dV ′ = dx′1dx

′
2dx

′
3. Since

dx′1 = dx1 + du1 = dx1 (1 + ∂u1/∂x1) ,

1In the middle term of the right had side of the equation invert the index i with the
index l, and then rewrite the rightmost term as ∂ui/∂xkdxkdxi + ∂ui/∂xkdxkdxi. Finally
swap index i with k on one of the latter terms only.
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Theoretical background

which in terms of strain tensor is simply dx′1 = dx1 (1 + u11), the infinitesimal
volume after deformation will be

dV ′ = dV (1 + u11)(1 + u22)(1 + u33).

By expanding and neglecting the high order terms, the previous expression
can be written in the form

dV ′ = dV (1 + uii) , 2 (1.8)

i.e. the diagonal element of the strain tensor represent the relative variation
of the infinitesimal volume. If they are null, it means that the volume is
remaining constant even after the deformation.

Stress

Consider now the forces acting inside the body. Since the forces will be
distributed inside the entire volume, the total force acting on a given volume
will be given by the integral over the volume of the force per unit of volume.
i.e.

F =
∫

fdV.

Where the integral can be applied to each component of f separately. If, for
each component of the force per unit of volume (fi), we can write such force
as the divergence of a given vector field σi, then following the Gauss theorem
for the divergence we can write

Fi =
∫
fidV =

∮
σi · n dΣ =

∮
σiknkdΣ, (1.9)

where n is the vector normal to the infinitesimal portion of surface dΣ. In
such form, the tensor σik is called stress tensor which is such that

fi = div (σi) = ∂σik
∂xk

.

It is interesting to understand the meaning of the elements of the stress
tensor. From eq. (1.9) it is possible to say that the quantity σiknkdΣ is the
i-th component of the force acting on the surface nkdΣ, where the latter
represent the projection of the surface ndΣ on the plane perpendicular to

2Notice the index notation.
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1.1 – From an elastic deformation to a propagating wave

the k-axis. Imagine, for instance, to take as dΣ a small area parallel to the
xy-plane. In such case σiz would be the i-th component of the force per unit
area perpendicular to the xy-plane. Therefore, in general, σzz will be parallel
to the z-axis, while σxz and σyz will be perpendicular to it.

A good example is when the body is going through a situation of hydro-
static compression (uniform compression from all sides). In this situation
there would be a pressure p acting uniformly on every element of the surface
of the body. Thus on the surface there will be an opposite force which com-
ponents can be written as −pnkdΣ. This is equivalent to what comes from
eq. (1.9) if the stress tensor is expressed in the form

p = σikδik, (1.10)

where δik is a Kronecker delta, i.e. the diagonal elements of the stress tensor
correspond to a compressive stress, while the off diagonal elements correspond
to shear stress.

It is possible to demonstrate that the stress tensor is symmetric by per-
forming an analysis over the total momentum [1, p. 6].

Stress vs. Strain

In order to understand the relations that interconnect stress and strain, it is
important to have a look at the thermodynamics of the deformation.

The first question do be asked is the amount of work W performed by the
internal forces during deformation.

W =
∫
δWdV =

∫
δf · dudV,

which is the force spent on the deformation, integrated over the volume.
Thanks to the definition of the density per unit volume, and integrating by
part, it is possible to write

W =
∫
δWdV =

∮
σikδuinkdΣ−

∫
σik

∂δui
∂xk

. (1.11)

If the body is considered to be of infinite size, and not deformed toward
infinity, it is possible to neglect the first integral3. By rewriting the second

3The surface is located at infinite where there is no deformation.
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term
∂δui
∂xk

= 1
2δ

(
∂ui
∂xk

+ ∂uk
∂xi

)
,

it is possible to recognize the strain tensor, thus allowing to write

δW = −σikδuik, (1.12)

which is valid only for small deformations.
It is then possible to demonstrate, starting from equation (1.12) and fol-

lowing standard thermodynamics (see [1, p. 9]), that the stress tensor can be
written as a function of the Gibbs free eneregy G at fixed temperature

σik = ∂G

∂uik

∣∣∣∣∣∣
T

. (1.13)

Since in absence of a deformation the body is not subjected to stress (i.e.
uik = 0 ⇒ σik = 0), from eq. (1.13) follows that the expression of G must
not contain any linear term in uik.4 Therefore the expression of the Gibbs
free energy must contain only second degree terms5 in the displacement.
There are two ways of obtaining a scalar from a tensor: summing all the
squares of the diagonal elements (u2

ii) or summing the squares of all elements
(u2
ik). In such case G takes the form

G = G0 + 1
2λu

2
ii + µu2

ik, (1.14)

where the quantities λ and µ are constants called Lamé coefficients.
If the sum of the diagonal elements of the strain tensor is null, it means

that the relative variation of volume is null as well (see equation (1.8)).
Therefore if, during a deformation, the term in λ is null, the volume is not
changing upon deformation and it takes the name of pure shear deformation.
The opposite case is the already seen hydrostatic compression in which the
strain tensor takes the form uik = const× δik.
Since any deformation can be seen as a combination of pure shear and hy-
drostatic compression it is useful to rewrite the strain tensor in the form

uik =
(
uik −

1
3ullδik

)
+ 1

3ullδik. (1.15)

4Otherwise the partial derivative could become non-null even for uik = 0.
5In first approximation, neglecting higher order terms.
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1.1 – From an elastic deformation to a propagating wave

In this way the term inside the parenthesis represents pure shear deformation,
since its diagonal elements are all null, while the term outside on the right has
the form of an hydrostatic compression. By substituting these expressions in
equation (1.14), the Gibbs free energy takes the form

G = 1
2Ku

2
ll + µ

(
uik −

1
3ullδik

)2
, (1.16)

where K = (λ+ 2
3µ).6

From eq. (1.16) it turns out that even the free energy can be written as a
combination of hydrostatic compression and pure shear elements. Indeed the
constant K takes the name of bulk modulus (or modulus of hydrostatic
compression) while µ is called shear modulus (or modulus of rigidity).

In order to go further in the derivation and computing the relation be-
tween the stress tensor and the strain tensor, it is necessary to compute the
differential of the Gibbs free energy. In general the differential is written in
the form dG = ∂G/∂x1dx1 +∂G/∂x2dx2, where x1,2 are two generic variables
from which G depends. In the present case, the two variables can be taken
as the compressive strain and the shear strain (eq. (1.15)), thus rewriting the
differential of G for constant temperature as

dG =
[
Kullδik + 2µ

(
uik −

1
3ullδik

)]
duik. (1.17)

From equation (1.13) then the relation between stress and strain tensors at
constant temperature follows as:

σik = ∂G

∂uik

∣∣∣∣∣∣
T

= Kullδik + 2µ
(
uik −

1
3ullδuik

)
. (1.18)

It is rather interesting to compute the inverse of this relation and obtain
the strain tensor as a function of the stress tensor

uik = δikσll/9K +
(
σik − 1

3δikσll/2µ
)
, (1.19)

from which it is evident the linear dependence of the strain tensor with
respect to the stress tensor. This is nothing but the Hook’s law applied to
an elastic deformation, which hold for small deformations only.

6See appendix (A.1) for all the detailed passages.
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1.1.2 Elasto-dynamics
Before moving forward and computing the equations for motion and wave
propagation, it is useful to introduce two new constants, which are widely
used in elasto-dynamics: the Young’s modulus E and the Poisson’s ratio ν.

In order to introduce them, it is first necessary to analyse a simple example:
the homogeneous deformation (in terms of extension or compression) of a
rod. Let the rod extend along the z-axis. Let a force applied to its end
be uniformly distributed on the surface generating a pressure p. Since the
pressure is applied along the z-axis only, all the components of the stress
tensor will be null, except for σzz = p which equals the pressure. From
eq. (1.19) it is straight forward that all components uik : i /= k will be null
as well. What is left are the diagonal terms

uxx = uyy =− 1
3

( 1
2µ −

1
3K

)
p, uzz =1

3

(1
µ

+ 1
3K

)
p (1.20)

The Young’s modulus is defined such that uzz = p/E, where uzz gives the
relative lengthening of the rod. Therefore

E = 9Kµ
(3K + µ) (1.21)

The other two components instead give a measure of the transverse com-
pression (or expansion) of the rod. The Poisson’s ratio is defined such that
uxx = −νσzz. Therefore

ν = 1
2

(3K − 2µ)
(3K + µ) (1.22)

Notice that ν varies between −1 < ν < 1/2.

Since they are both just constants, it is now useful to rewrite the stress
strain relation in terms of Young’s modulus and Poisson’s ratio:

σik = E

1 + ν

(
uik + ν

1− 2νullδik
)

(1.23)

uik = [(1 + ν)σik − νσllδik] /E (1.24)
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1.1 – From an elastic deformation to a propagating wave

The Wave Equation

With all these information at hands, computing the equation describing the
dynamics of an elastic deformation should be easy. The equation of motion
comes by equating the internal stresses to the inertial term, as long as no
external force is acting on the body,

ρüi = ∂σik
∂xk

.

Substituting in the latter the result from (1.23) and the definition of the
strain tensor in (1.7), one obtains7

ρüi = E

2(1 + ν)
∂2ui
∂x2

k

+ νE

2(1 + ν)(1− 2ν)
∂2ul
∂xi∂xl

, (1.25)

which can be finally written in vectorial form

ρü = E

2(1 + ν)∆u + νE

2(1 + ν)(1− 2ν)∇ (∇ · u) . (1.26)

Even if it is more complicated than the simple D’Alambert equation, this
is exactly the wave equation for elastic waves propagating in a solid isotropic
medium. In order to understand it properly it is usefull to start from the
simplest example of propagating wave.

Consider a plane wave propagating into an infinite isotropic medium.
Imagine this wave to be propagating on the x-axis. Performing all the deriva-
tives in eq. (1.26), many terms disappear upon derivation, and what remains
are three distinct equations for the components of the displacement vector u

∂2ux
∂x2 −

1
c2
l

∂2ux
∂t2

=0, ∂2u⊥
∂x2 −

1
c2
t

∂2u⊥
∂t2

=0 (1.27)

where u⊥ can be either uy or uz.
In this form the traditional wave equation can be easily recognized. These

two equations basically suggest that there can exist two completely inde-
pendent waves, both propagating along the x-direction, but different in the
sense that one produces a displacement parallel to the propagation direction
with speed cl (compressive wave or p-wave) while the other one produces a

7For the detailed mathematical steps see appendix A.2
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displacement perpendicular to it and propagating with speed ct (shear wave
or s-wave). The two propagation velocities can be written in the form

cl =
√√√√ E(1− ν)
ρ(1 + ν)(1− 2ν) , ct =

√√√√ E

2ρ(1 + ν) . (1.28)

It is interesting to compare the two velocities. It is straight forward that
cl =

√
2 1−ν

1−2ν ct. By considering the range of values that ν can assume, it is
always true that cl >

√
4/3 ct and diverges for ν very close to 1/2 (as well as

for ν approaching −1).

It is actually possible to write the wave equation in terms of p- and s-waves
even for the case of generic waves (not planar). Rewriting (1.26) in terms of
transverse and longitudinal velocities one gets

c2
t∆u + (c2

l − c2
t )∇ (∇ · u) = ü. (1.29)

It is always possible to decompose the displacement vector into a trans-
verse component and a longitudinal component, in such a way that the fol-
lowing relations are satisfied

∇ · ut = 0 and ∇ ∧ ul = 0, (1.30)

where the operation ∇∧ is a curl operation and ∇· is a divergence operation.
In order to obtain a more compact form of the equation, it is necessary to
perform some manipulations. First substitute u with ul + ut

c2
t∆(ul + ut) + (c2

l − c2
t )∇ (∇ · ul) = ül + üt. (1.31)

By performing the divergence operation on both sides, it is possible to extract
the longitudinal part only. After some mathematical arrangements, following
few identities for vectorial calculus (see appendix A.3 for the details), one
finally gets

∇ · (ül − c2
l∆ul) = 0 (1.32)

Since from the definition (1.30) also the ∇∧
(
ül − c2

l∆ul
)

= 0, it means that
the argument of (1.32) is identically null, thus leading to a wave equation for
p-waves

∂2ul
∂t2
− c2

l∆ul = 0. (1.33)
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In a very similar manner, by performing the curl on the wave equation
(1.31), after similar manipulations and using the identity (1.30), a similar
equation for shear waves can be obtained

∂2ut
∂t2
− c2

t∆ut = 0. (1.34)
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1.2 Guiding waves
If one was dealing solely with bulk waves in infinite media, the only peculiar
aspect present with respect to a normal wave propagation problem would be
the simultaneous presence of transverse and longitudinal waves propagating
at different speeds. From any other standpoint equations (1.33) and (1.34)
are trivial wave equations. Instead, when it come to finite systems, thus in
presence of many interfaces, things becomes more complicated.

To understand this it is useful to have a look at the known analytical
solutions, whose derivation will not be presented here.

1.2.1 Wave in finite systems
What it is not obvious at first sight is that since s- and p- waves can coexist,
a pure wave of one type hitting an interface can be partially transformed
into the other type, i.e. a reflected p-wave will generate also a shear stress
that will propagate as an s-wave and vice versa. Indeed at an interface the
stresses and the displacement must satisfy four condition of continuity and
therefore for each incident wave one may expect to have two reflected waves
and two refracted waves [2, Ch. 5.4].

Figure 1.1: Scheme of an incident longitudinal wave reflecting on a surface and
producing both longitudinal and transverse waves.

For the sake of understanding which are the consequences, consider a semi
infinite bulk material which surface is not in contact with an elastic material.
Such interface is called free boundary and interfaces between solids an air are
typically considered as such. By imposing the tangential component of the
k-vector (spatial frequency) of the incident and refracted waves to be equal,
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one obtains the Snell law
sin θ
sin θ′ = c

c′
(1.35)

where θ and c are the incident angle and wave speed, while θ′ and c′ are the
reflected ones.

As it was pointed out, an incident wave of one type will produce two
reflected waves. Imagine therefore the incident wave to be purely longitudinal
(i.e. c = cl). It is rather obvious that the reflected longitudinal wave will be
propagating at the same speed, which means

c′ = cl → θ′l = θ. (1.36)

For the reflected transverse wave it is not the case, therefore it is possible to
manipulate the Snell’s law and extract the reflected angle

c′ = ctl → θ′t = arcsin
(
ct
cl

sin θ
)

(1.37)

Known solutions

As it is well known in electromagnetism, the presence of an interface or mul-
tiple interfaces can lead to the generation of waves which field is confined in a
specific region of space, usually referred as guided modes. They are generated
by the interference of multiple reflections of the wave, that usually creates a
stationary field on the plane perpendicular to the propagation direction.

As it has been shown, elastic waves colliding an interface go through this
phenomenon of mode conversion, therefore the interference among multiple
reflections can be very hard to analyse. Nonetheless there are a few particu-
lar cases which solution is well known and are worth noticing since they are
responsible for the propagation in many real case scenarios.

In case there is a single interface with a purely elastic material (e.g. air
or vacuum), there can exist two types of surface waves.
The firsts are called Rayleigh waves. They are characterized by out of plane
elliptical displacement along the yz-plane (where z is the propagation direc-
tion). The wave height has to be much smaller than the thickness of the
material. Waves on the surface of a liquid (sea waves) are a familiar example
of those.

The second type of surface waves are called Love waves. They are distin-
guished by transverse oscillation on the xz-plane, i.e. parallel to the surface.
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(a)
(b)

Figure 1.2: Distribution of the displacement vector for (a) Rayleigh waves and (b)
Love waves. Images are taken from [3].

(a) (b)

Figure 1.3: Distribution of the displacement vector for Lamb waves (a) fundamental
symmetric mode and (b) fundamental antisymmetric mode. Images are taken
from [3].
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In case instead the material is confined in an infinite plate between two
(free) interfaces a particular type of guided waves can occur called Lamb
waves. Fore these waves the motion of the displacement vector is quite com-
plex, but they subdivide into two main categories: symmetric and antisym-
metric. To understand them better, see figure 1.3.

1.2.2 Dispersion relations
Whenever a boundary condition has to be satisfied, that is to say, whenever a
wave is not anymore free to propagate in the bulk of a material, plane waves
may not represent a solution for the wave equation. The main characteristic
of a plane wave is that it posses a linear relation that connects the wave
vector with the angular frequency

k = ω

c
,

that is to say their propagation velocity is constant in frequency.
When boundaries are imposed, the wave equation usually takes a form that

finds solutions only if the wave vector satisfies a specific relation with respect
to the angular frequency. Such relation takes the name of dispersion relation
and contains many important information about the propagation of a wave
inside the given structure. Moreover there can exist different eigenmodes
able to propagate in the structure and each of them can have a different
dispersion relation. In such case the dispersion relation could be written in
the form

ki = ki(ω), or ω = ω(ki) (1.38)

where the propagation velocity depends on the angular frequency and the
index i refers to a given eigenmode.

It is interesting to notice that it is called dispersion relation because when
a wave packet is injected in this kind of system, components of the packet
having different frequencies will propagate at different speeds, resulting in a
physical spatial dispersion of the wave packet.

Finding the dispersion relation for a given problem is thus a critical step
in the analysis of wave propagation behaviour, but it is not always possible
to find analytical solutions for it. In such cases finite element analysis is
usually able to find good approximations both for the field distributions and
the dispersion relation.
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String with foundation

A useful example from which to extract the dispersion relation is the analysis
of flexural modes into a string that has been anchored to the ground by means
of springs [4, Ch. 2], here referred as foundation.

Figure 1.4: Schematic representation of the string with foundation problem.

For vertical deformation inside string it is possible to demonstrate that
the governing equation takes the form

T
∂2u(x,t)
∂x2 + q(x,t) = ρü(x,t), (1.39)

where u is the vertical displacement of the string, T is its tension, ρ its
density and q is an external force (per unit of length) acting in the vertical
direction on the string. In case the foundation is present (as in figure 1.4),
the springs act as the external force thus

q(x,t) = −Ku(x,t).

By writing the solution in the form

u(x,t) = Aei(kx−ωt),

and substituting the two in the governing equation 1.39, one easily gets(
−k2 − K

T
+ ω2 ρ

T

)
Aei(kx−ωt = 0.

From the latter the dispersion relation can be extracted and written in the
form

ω =
√√√√T
ρ

(
k2 + K

T

)
. (1.40)

It is easy to find that when the foundation is not present (q(x,t) = 0), the
dispersion relation takes a linear form ω =

√
T
ρ k.
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Figure 1.5: Dispersion relation for a (transverse) wave propagating in a string with
a foundation.

By observing at figure 1.5 it becomes clear what was the effect of the
foundation on the propagation of a wave, even showing the formation of a
band gap at low frequencies.

This example was analysed not only due to its simplicity, but also because
it is a peculiar case where propagation at low frequency is forbidden by the
constrains imposed on the system and not by the presence of attenuation.
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1.3 Metamaterials
It is now well known from other disciplines that the introduction of peri-
odic structures into wave conducting materials can produce new unexpected
effects. First among them there is crystallography and solid state physics,
where the study of periodic atomic structures has allowed an incredibly deep
understanding of the behaviour of electrons inside atomic crystals, opening
the doors to microelectronics. Then researchers noticed that the same math-
ematical methods could be applied also to electromagnetism and Maxwell
equations because Bloch theory was possible due to the intrinsic wave nature
of elementary particles, thus building the basement for the new field of pho-
tonic crystals. The passage towards other fields involving wave propagation
was only natural.

In electromagnetism these periodically structured materials took the name
of metamaterials where the prefix meta comes from the Greek and means
above, beyond. The name wanted to underline that by means of such arti-
ficial structures it was possible to introduce new properties that go beyond
the normal properties of the material alone [5].

In acoustics there is usually a distinction between acoustic waves in fluids
and elastic waves in solids, since the constitutive equations are different [6].
Nonetheless these waves are very similar in nature and these structured ma-
terials are usually referred with the common name of acoustic metamaterials
or phononic materials (PM, sometimes distinguished in acoustic PMs and
elastic PM).

Actually, due to its peculiar properties, in the case of elastic structured
materials, the wordmetamaterial has not the same meaning as in electromag-
netism. This is because in elasto-dynamics there are two ways of introducing
new properties in a material by means of the structures, and the two have
distinct physical driving mechanisms:

• introducing periodic crystal-like structures, exploiting Bragg’s effect;

• introducing resonant structures that act as absorber at specific frequen-
cies, producing local resonant effect.

Due to this distinction in the origin of the two phenomena, they also take
different names. The firsts are typically referred as phononic crystals or elas-
tic phononic materials, and are the latter that maintain the name of acoustic
metamaterials. Nonetheless the boundary between the two is not commonly
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agreed and often the name metamaterial tends to include both categories,
also because sometimes both mechanism are included in the same structure.
In other fields, such as fluid acoustics and electromagnetism, this distinction
does not exist.

But which are the “new” properties that characterise these materials?
The first and most noticeable one is the introduction of acoustic band

gaps in the frequency response of the material. This is to say by introducing
such structures there will be certain ranges of acoustic frequencies able to
propagate freely inside the materials and others that will be completely at-
tenuated. The reason of this attenuation is better explained in the following
subsections.

Additionally to this, among those frequencies which are able to pass, there
are some bands that exhibit unique refractive characteristics. Negative mass
or negative bulk modulus can also occur, and, when they occur together,
it is possible to obtain negative refraction [7–10] very similarly to what is
observed in electromagnetism when both permittivity and permeability are
negative [11, 12]. There, negative refraction is very attractive phenomenon
that could be used for the creation of the so called perfect lens [13], which
allows to overcome the diffraction limit, ideally increasing the resolution at
will.

An interesting possibility of usage of those properties is in selective focus-
ing [14], where the structure could allow for passing only those frequencies
which (equivalent) refractive index allows for focusing in a given region of
space. This is a technique that can be very useful in the field of non-linear
acoustics and also for structural health monitoring [15, 16].

Another option is to use phononic crystal for waveguiding. The fascinating
use of this option is obtained by inserting in the lattice a sort of ’line of
defects’ (i.e. removing the structurization inside a given path), and this
allow to introduce new additional propagating modes that have been shown
to be confined inside the defect line [17].

1.3.1 Phononic crystals
The theoretical analysis of phononic crystals8 ought almost everything to the
field of Block wave analysis in Solid State Physics. The key concept is that

8Remember that in this context phononic crystal is a synonym for elastic Phononic
Materials (PM).
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waves propagating in periodic structures tend to scatter more when their
wavelength is close to the periodicity of the structure. Then these scattered
waves are able to interfere with each others in Bragg-like fashion, and for
certain frequencies interfere destructively, thus producing forbidden acoustic
bands.

The main problem with elastic wave scattering in these structures is the
presence of multiple types of waves (see section 1.2.1) that propagate at
different speeds. When considering the same temporal frequency, different
propagation velocities imply different wavelengths and therefore the interac-
tion with the periodic structure might have effect for one type of wave an not
for the others. Here is where Bloch theory comes handy, being able to treat
the problem as a whole, allowing to find band gaps valid for all the types of
waves which take the name of global band gaps [18].

The Bragg reflector

Before getting through the key passages of Bloch wave theory it is useful to
have a look at a simple case of Bragg scattering where it is evident how the
interference of scattered waves produces a band gap: the Distributed Bragg
Reflector (DBR).

(a) (b)

Figure 1.6: (a) One dimensional multilayer structure. (b) Single unit of the multi-
layer structure.

Consider a one dimensional sequence of two materials having different
elastic properties as shown in figure 1.6a (one dimensional in the sense that
it has periodicity only in one direction). Imagine for instance that a longitu-
dinal wave is propagating along the direction perpendicular to the interface
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between the materials. Such configuration, from the wave perspective, can
be seen as a sequence of two types of interfaces: interface between material
A and B and vice versa.

When encountering each interface part of the wave will be transmitted
and part will be reflected. The propagation of the wave will be determined
by the interference of all the waves reflecting and transmitting at the various
interfaces which, for such simple geometry, will be propagating along the
x-direction.

The simplest approach to this problem is to consider only the elementary
unit of the sequence in fig. 1.6b, and study the problem only from a phase
perspective while neglecting for a moment the exact value of transmission
or reflection. Consider the wave starting from the beginning of material A,
crossing the interface where it is partially transmitted in material B, reach
the second interface where it is partially reflected and then come back to the
beginning of A.

Given that the two materials extend for length la and lb, the phase shift
occurring in each material, for the wave that crossed it, can be easily written
as

φx = kxlx = 2π
λx
lx.

Destructive interference is obtained for

φ = 2πf
ca

la + 2πf
cb

lb = mπ,

where cx is the propagation velocity in material X. By rearranging the terms
and extracting the frequency, the Bragg condition is finally obtained.

fm = mπ

2

(
la
ca

+ lb
cb

)
(1.41)

This simple relation tells when in the single unit the best condition for
destructive interference occurs. Of course this is an oversimplification, be-
cause other then neglecting the actual value of the amplitudes of the waves,
also the effect of multiple reflections is ignored. Nonetheless, when it comes
to consider a sequence of those single units, the effect of such destructive
interference is amplified and results in the creation of a band gap centred at
the frequency given by 1.41.

The spectral width of the band gap is associated with the contrast between
the propagation velocities in the two different media. For electromagnetism,
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in photonic crystals it is possible to obtain a simple expression for the spectral
width in the case in which la = lb [19]:

∆f
f0

= 4
π

arcsin nb − na
nb + na

.

Since the optical refractive index can be expressed in therms of the wave
propagation velocity nx = c0/cx

9, such expression can be generalised to the
generic wave problem in the form

∆f
f0

= 4
π

arcsin ca − cb
ca + cb

, (1.42)

which is valid as log as the wave satisfies D’Alambert equation. In sec-
tion 1.1.2 it was shown that transverse and longitudinal waves in elastic
media do respect such equation.

If one is interested to compute the total transmissivity and reflectivity of
a sequence of N single units, it is necessary to consider also reflectivity and
transmissivity of the two interfaces. Then it would be possible to find and
analytical approximation for it [20] or otherwise treat the problem with a
transfer matrix approach and use it to compute frequency response of an
arbitrary sequence.

But this is beyond the scope of this work and is no further treated.

Bloch theory

Whenever dealing with waves propagating in periodic structures Bloch the-
ory is surely one of the strongest technique to gather information on their
behaviour. It was first developed for the study of atoms arranged in a crys-
tal structure and for the electrons that move in the periodic potential the
nuclei generate, but it is more general and can be applied wherever a peri-
odic function is introduced in the constituting equation of wave propagation.
Periodicity that could be for instance the presence of a periodic potential in
a crystal, the periodic variation of the optical refractive index in a photonic
crystal, or the periodic variation of the elastic properties (e.g. the Young’s
modulus) inside a solid material. Indeed Bloch theory is actually a particu-
lar case of the so called Floquet theory, used to analyse ordinary differential
equations with periodic coefficients.

9c0 is the speed of light and it cancels out when substituting in the expression.
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The presence of the infinite periodic lattice, also called Bravais lattice,
allows to reduce the analysis on the elementary cell composing the lattice.
The elementary cell, usually called primitive cell, is the smallest portion of
the lattice that, when repeated in space, can fill the entire lattice without
overlapping. The most powerful tool of the lattice analysis is the possibility
to consider a reciprocal lattice.

Despite its rigorous definition, in order to understand the reciprocal lattice
imagine first to consider a plane wave propagating inside a three dimensional
Bravais lattice in the form

Ψ = eik·r.

Such wave will have a spatial periodicity along a given direction determined
by the wavevector k. Such periodicity is generally different from the period-
icity of the lattice, but there is a certain set of wavevectors that match the
periodicity of the lattice. Therefore the reciprocal lattice is defined by the
set of wavevectors G which spatial periodicity matches the periodicity of the
lattice [21].

By defining R = na1,ma2, la3 (with ai period in direction xi and n, n, l ∈
Z) as the vector that fully describes the lattice, then it is straight forward
that

eG(r+R) = eG·r, (1.43)
from which the definition of the reciprocal lattice vector follows

eG·R = 1 −→ G ·R = 2πm. (1.44)

Bloch theorem than states that the eigenstates of an electron propagating
in a periodic potential can be written as the product of a periodic function
f̃(r) and an exponential term [21];

Ψn(r) = eikrf̃n(r), (1.45)

which implies that Ψn(r + R) = eikRΨn(r). And f̃(r) can be decomposed in
its Fourier series in the reciprocal space, because it is periodic

f̃n(r) =
∑
G

cn,Ge
iG·r.

Since the electron wavefunction is a combination of its eigenstates, it is
also true that

Ψ(r + R) = eikRΨ(r). (1.46)
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It can be demonstrated that the latter result (often referred as an alter-
native expression for the Bloch theorem) is valid for any wave propagating
in periodic structures.

The importance of the reciprocal lattice lies on the fact that, in practical
terms, it is nothing but the Fourier transform of the real space and allows to
solve the wave equation by decomposing the solution into its Fourier series,
which then brings to the solution of an eigenvalue problem. Moreover, as
the direct lattice can be entirely described by observing the primitive cell,
also called Wigner-Seitz cell, the very same is valid for the reciprocal lattice,
where the primitive cell takes the name of First Brillouin Zone (FBZ).

The so called band diagram is nothing but the collection of the eigen-
frequencies (for the eigenvalue problem) determined for every point in the
first Brillouin zone. Thus it brings a dispersion relation that connects the
wavevector k to the temporal (angular) frequency ω. Since it would be graph-
ically troublesome to actually represent it for every point it the FBZ, usually
it is represented along some segments inside it.

From the monoatomic chain to FEM analysis

In order to understand the mechanism underlying phononic crystal, it is very
useful to have a look at the simple example of 1D atomic crystal, i.e. the
monoatomic and diatomic chains [6].

Figure 1.7: Graphical representation of the monoatomic chain problem.

Imagine first a one dimensional chain composed by an infinite number of
identical masses M connected via a spring having elastic constant K at a
distance a. For this type of 1D lattice the primitive cell is composed by a
single mass. Each mass can be located in space with any multiple of a. The
displacement of the n-th mass is referred as un.

Upon displacement of one of the masses the springs will generate forces in
the system and the equation of motion will be given by the balancing of the
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forces acting on/from the neighbouring masses. Therefore for the n-th mass,
the total force acting on it will be given by the effect of the the springs on
the right and on the left.

Mün = −K[(un − un−1)︸ ︷︷ ︸
left spring

− (un+1 − un)︸ ︷︷ ︸
right spring

]. (1.47)

Assuming that Bloch theorem (1.46) is valid, it is possible to seek for a
solution in the form10

un = ei(kr−ωt)ũ(r),

where the n dependence is hidden in r = na and ũn can be decomposed in
its Fourier series

ũn =
∑
G

cGe
iG·na.

It is possible to substitute it in the previous expression and obtain

−Mω2e−iωt
∑
G

cGe
i(k+G)n = −Ke−iωt

∑
G

cGe
i(k+G)n[2− ei(k+G)a − ei(k+G)a],

from which one can remove redundant terms and extract the angular fre-
quency

ω =
√

2K
M

[1− cos((k +G)a)] = 2
√
K

M

∣∣∣∣∣sin
((k + 2πm/a)

2 a

)∣∣∣∣∣ , (1.48)

since for this problem G = 2πm/a.
Equation 1.48 brings a dispersion relation that connects the angular fre-
quency with the wavevector of a wave propagating in the lattice.

Despite the intrinsic meanings hidden in such relation, the interesting part
for the purpose of this thesis is how to obtain, it because this approach can
be extended to give an intuitive derivation of the Finite Element Method
approach. From the diatomic chain problem this will be more evidenced.

For this new problem the primitive cell contains two atoms with different
masses, therefore, for balancing the forces, it will be necessary to consider
also the internal interactions. For simplicity let the spring constant be the
same everywhere and the distance between atom equal to a/2. The first mass

10It is equivalent to say that the assumption is that the displacement is caused by a
wave propagating inside the chain.
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Figure 1.8: Graphical representation of the diatomic chain problem.

n-th primitive cell is referred as un,1 and the other as un,2. For each of the
two mass there will be a different equation of motion:

M1ün,1 = −K[(un,1 − un−1,2)− (un,2 − un,1)],
M2ün,2 = −K[(un,2 − un,1)− (un+1,1 − un,2)].

Writing the solution directly in the form

un,1 = A1e
i(kna−ωt),

un,2 = A2e
i(k(n+1/2)a−ωt),

where the Ai term takes into account for amplitude and phase difference
between the two masses. Substituting and cancelling redundant terms (see
appendix A.4) one gets a pair of coupled equations that have to be true
simultaneously [

(2K −M1ω
2) −(2K cos ka/2)

−(2K cos ka/2) (2K −M2ω
2)

] [
A1
A2

]
= 0. (1.49)

Since the two equations are coupled, in order to have non trivial solutions
for A1 and A2, it is necessary for the determinant of the matrix to be zero,
which is nothing but an eigenvalue problem. Performing such operation
allows to find a relation that links the angular frequency ω to the wavevector
k, thus obtaining the band diagram. The peculiar part of such band diagram
is that the presence of the second mass has introduced a band gap in the
dispersion relation, as shown in figure 1.9.
Again, despite the hidden meanings of such band diagrams, here the inter-
esting part is the presence of the eigenvalue problem, because it places the
basement for finite element method analysis.

Summarising, the matrix that defines the eigenvalue problem in 1.49 was
obtained by considering three types of contribution: the inertia of the masses,
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Figure 1.9: Band diagram resulting from the dispersion relation for the monoatomic
and diatomic chains.

the interaction between the two masses inside the elementary unit and the
interaction of the latter with those outside the elementary units. Therefore
it is possible to see that the matrix defining it can be expressed with three
different matrices:

• one containing an inertial term involving the two masses, referred as
mass matrix [M ];

• one containing information about the internal interactions by means of
the springs, referred as stiffness matrix [K];

• one containing information with the interaction between the atoms inside
the elementary cell and the boundaries, called boundary matrix [B].

In formulas this translates in

[M ] = [I]
[
−M1
−M2

]
, [K] = [I]

[
2K
2K

]
, [B] =

[
0 −(2K cos ka/2)

−(2K cos ka/2) 0

]
;

(1.50)

where [I] is the identity matrix. In this way the matrix defining the problem
can be written as the sum o the three matrices [M ]ω2 + [K] + [B].

Imagine to have now a primitive cell containingN different masses. Analysing
the problem in the same way will produce the same three matrices containing
separate information about the inertia, the internal forces and the bound-
aries, which can then be combined in order to create an eigenvalue problem.
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A finite element approach is able to extract these three matrices even
from more complicated problems where each mass is substituted with infor-
mation about a point in a mesh, and the spring constants about the inter-
actions between neighbouring points. In any case the stiffness matrix will
always contain information about the interactions internal to the primitive
cell, while the mass matrix will contain information about the inertia of the
problem and the boundary matrix about the interaction with other primitive
cells.

In such, more complicated problems, extracting an analytical expression
for the dispersion relations, and thus the band diagram, is practically im-
possible. As shown for the two mass problem (eq. (1.50)), the wavevector
appears only in the boundary matrix. By numerically imposing a value for
the wavevector k in the boundary matrix, it is possible to solve the eigenvalue
problem, thus finding a numerical solution both for the eigenfrequency and
also the coefficients Ai. By solving the eigenvalue problem for all the wanted
k of the first Brillouin zone, it possible to build the infamous band diagram.

1.3.2 Acoustic metamaterials
Phononic crystals were the first type of structured material studied for the
manipulation of elastic waves, since they were following the same “line” as
photonic crystals in electromagnetism. Then in the year 2000 Liu et al. [22]
where able to create an acoustic metamaterial in which the acoustic band gap
occurred at frequencies for which the wavelength was two orders of magnitude
greater than the dimension of the structure. In normal phononic crystal the
interaction with the structure happens in the form of scattering, therefore
the wavelength has to be comparable to the size of the structure. This is
why metamaterial are considered a completely different class with respect to
phononic crystals.

At first the resonant structures were introduced inside the primitive cell of
a periodic structure, but soon researchers realised that the periodicity is not
actually necessary [23, 24]. This fact, together with the ability of using struc-
tures orders of magnitude smaller than the wavelength they interact with,
makes them extremely attractive for seismic applications [25, 26], but also to
allow the creation of low frequency band gaps. Moreover the possibility to
free from the constrain of periodicity allows to create the so called rainbow
traps, where resonators having different resonant frequencies are combined
together to form larger band gaps (again in [23, 24]).
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For this type of structured materials, the equivalent 1D chain example
would be the mass-in-mass problem, where for each mass in the chain there
is a secondary mass attached to it and to it only (fig. 1.10). For such

Figure 1.10: Graphical representation of the mass-in-mass chain problem.

example it is possible to show that, if M2 << M1, the gap starts exactly at
the resonant frequency of the inner spring-mass system, and that it possesses
a negative equivalent mass11 in those frequencies in between the gap [27].

But for a better understanding of the gap formation it is easier to have
a look at how a single resonator acts at the passage of a wave. It is easy
to imagine that the resonator acts as an absorber at those frequencies for
which it resonates. Obviously it cannot absorb indefinitely, therefore it either
dissipate the stored energy or re-irradiated it as a reflected and/or transmit-
ted wave. The frequency response of a typical resonator shown in figures
1.11b and 1.12 gives an intuitive understanding of the phenomenon. It is
well known that the amplitude plot of the frequency response will have an
asymptote at the resonant frequency (or a Lorentzian shape if attenuation is
taken into account), while the phase diagram goes through a reverse of phase
when going from frequencies before the resonance an those above. Ideally
the transition is abrupt at the resonant frequency, but in practise will be a
smooth transition due to damping.

It is thus clear that when the resonator will re-irradiate at a frequency
greater than the resonant frequency, it will have a phase shifted by π·rad
which therefore interferes destructively with the propagating wave. Obvi-
ously the frequency cannot be much greater than the resonance because,
otherwise the stored (and re-irradiated) energy will not be sufficient to inter-
fere destructively.

11The mass that an equivalent monoatomic chain should have in order to display the
same properties.
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(a) (b)

Figure 1.11: (a) Band diagram for the mass-in-mass chain problem (ωi =
√
Ki/Mi).

(b) Frequency response of a typical resonator: (top) amplitude vs. frequency
and (bottom) phase vs. frequency.

Figure 1.12: Simple graphical representation of a resonator absorbing and re-
emitting energy both in transmission and in reflection.

1.3.3 Tunable metamaterials

Phononic crystal and acoustic metamaterial have demonstrated to be able
to control elastic waves in a variety of ways.The main limit that they en-
counter is the static nature of their structure. That is to say that once the
periodic structure is created, there are little things that can be done in or-
der to change a phononic crystals properties; once the resonant structures in
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acoustic metamaterials are created it is not easy to change their resonance
frequency.

In order to have control on the metamaterial properties it is necessary to
either posses live control on the structure size and shape or on the material
elastic properties. Unfortunately exerting such control in a reversible man-
ner is not trivial and its achievement can be a deal breaker for the field of
metamaterials.

There have been numerous attempts in creating tunable metamaterials
and phononic crystals. Changing the structure means to physically change
the shape or the size of the features in the material, therefore it is something
that can affect only partially the behaviour of the system. Even though there
are some cases in which this is possible to some extent, surely it is impossible
to let the periodic structure or a resonator appear and disappear at will. For
instance it is possible to create a fixed matrix consisting of hollow cavities
that can be filled with different fluids. Thus the acoustic band gap will be
located according to the fluid properties [28].

When it comes to control the elastic properties of a material, there is in-
stead a variety of phenomenon that can be exploited. Researcher were able
to exploit magneto elastic materials in order to induce changes in the acous-
tic response of phononic crystals [29, 30]. Multiple studies have shown the
possibility of using temperature variations as source for the elastic properties
variation, both in the case of phononic crystals [31] and acoustic metamateri-
als [32]. Even the possibility of making use of electric fields [33, 34] and also
radio waves [35] was shown. The most interesting results were probably ob-
tained for acoustic metamaterials, because changing the resonant frequency
of a structure is typically not troublesome. For instance it was possible to
even exploit the resonance frequency of a piezoelectric resonator connected
to a shunt system [36]. The shunt system is able to change the resonance
of the piezoelectric component and thus shifting the location of the band gap.

Another option that has yet to be investigated, which is actually the reason
why this thesis work was conducted, is the possibility of using light as a
mean to change the elastic properties of a material. For this purpose is thus
necessary to use a photo-responsive material which responsivity would imply
a change in Young’s modulus, density or even Poisson’s ratio.

Here is where polymers become particularly handy, since they come in
a wide variety of properties and tend to be easy and cheap to produce.
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Moreover it is often possible to introduce in the polymer matrix a photo-
responsive molecule which is then able to affect the properties of the matrix
itself. A better explanation on how this could be happening is better given
in section 3.2. For now is only important to know that a change in the steric
hindrance of the doping molecule when absorbing energy from a photon may
affect also the polymer chains in which it is surrounded, thus vary locally the
elastic properties of the polymer.

A photo-responsive material could then be used as the base material for
creating either a metamaterial (MM), with resonant structures on it, or a
phononic crystal (PC), which periodic structure may or may not be already
present. Then a photon beam can be used to affect the resonant structures
of the MM, which will lead to a deformation of the acoustic band gaps, or
to affect the periodic structure of the PC, or even to directly induce a PC
structure by means of the projection of a pattern. This latter option is the
one that seems more appealing and innovative and that is investigated in this
thesis work, because it offers the possibility of inducing a structurization (of
the elastic properties only) in a material that is completely unstructured.

The main problem with polymers is that they tend to be very sensitive to
temperature variations, due to the (often) low glass transition temperature.
Therefore one of the hardest challenges of this approach will be the distinction
between the effect of the photo-responsivity on the elastic properties and the
effect of the temperature increase caused by the thermal relaxation of the
excited molecules.
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Chapter 2

Numerical models

Before performing any experiment it is always a good practice to add sup-
port to one’s arguments with numerical information, by means of numerical
models and/or computer support. This becomes particularly necessary when
it comes too hard (or even impossible) to obtain analytical solutions. Elastic
wave propagation in solid media is often one of these problems.

Indeed when one has to consider also interfaces, i.e. any finite size prob-
lem, the analytical solution becomes so hard to obtain that the problem is
treated only numerically more often than not. Especially when it comes to
control elastic waves by means of metamaterials or phononic crystals, com-
puter aided design is fundamental.

In order to numerically analyse the behaviour of elastic waves in solids,
there are four main options that comes into play:

1. Finite Element Modeling (FEM)

2. Finite Difference Time Domain (FDTD)

3. Plane Wave Expansion (PWE)

4. Transfer Matrix (TM)

The first consists in solving the stationary problem of the differential equa-
tions governing elastic waves using approximations by means of finite ele-
ments, thus finding the stationary behaviour of the displacement vector for
each given frequency. The second one consists in solving the time dependent
wave equation in order to find the time evolution of the displacement vector,
evolving from a given initial condition. The third one consists in transform-
ing the constituting equations into an eigenvalue problem and finally the last

47



Numerical models

one consists in computing the transmission matrix for the elementary compo-
nents constituting the structure, and combining them by simply multiplying
one with the other.

For the purpose of this work, it was chosen to deal only with FEM analy-
sis. The main reason lays in the fact that the extraction of the band diagram,
thus the frequency response, of metamaterials and phononic crystals is more
easily computed by means of FEM analysis, while with the FDTD technique
is harder because it requires to know a priori the distribution of the displace-
ment (the shape) of the eigenmodes in order to properly excite them.
Moreover the implemented method is very similar to PWE, since it requires
to find the eigenmodes of the elementary cell. Instead the transfer matrix
approach, even if it is probably the (conceptually) simplest, was discarded
because it can be applied only to very simple geometries. Nonetheless it
should be noted that all these methods are typically used in parallel, in or-
der to integrate the information acquired by each of them.

In the present work, in order to perform FEM analysis, it was chosen
to use the software toolkit COMSOL Multiphysics®[37], by means of the
acoustics module. The following chapter contains a description of all the
tests and geometries which numerical solution has been computed with such
tool, together with comments and analysis of the results.

Before performing the elementary cell analysis, it was decided to begin
with a full sample analysis in order to gather some basic information on
the properties of the material involved (PDMS) [37]. The basic idea is to
compute the stationary solution of the elastic wave equation, for a geometry
similar to the one of the samples that will be used in the experimental setup.
The geometry for the numerical problem is going to include some regions in
which the material properties are left unchanged, while others (the structure)
will posses different values (to which extent is the case of study).

In order to study the stationary frequency response of a model, it is nec-
essary to include in the problem something that acts as an input source. In
FEM analysis the way of introducing an input is by means of the bound-
ary condition. In particular a prescribed deformation is forced on the input
boundary .
Then, during the stationary analysis, the solver will find a solution for the
given set of frequencies, where for each frequency the input boundary is forced
to vary sinusoidally at such frequency, with amplitude equal to the prescribed
value. This is to say that by prescribing a boundary to be displaced along
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the x-direction of a given amount X, the solver finds the stationary solution
for the problem in which such boundary varies position in time according to
the function y = Xsin(ωt).
It is good practice to prescribe an acceleration instead of a direct defor-
mation, in order to keep the energy entering in the system constant while
varying the frequency.

The elastic properties used in the computation have been chosen to re-
semble those of polydimethylsiloxane, since it was chosen to deal with this
material for this whole thesis work. During the preliminary study the values
suggested by the material library of [37] were be used (since the exact values
of the results are not important there), and then those values were adjusted
according to the literature and some measurement performed in parallel.

2.1 Simplest usable model
In order to understand the limits and the possibilities of this method it is
useful to start with a simple geometry. The best way to simplify a problem
is to reduce its dimensions. Since during the whole duration of this work
the intention is to work with a slab material, it was chosen to use as basic
geometry a two-dimensional slab. It is well known that performing a 2D
simulation is like simulating a 3D problem in which the missing dimension
extend indefinitely. This is to say that the simulated 2D rectangle is like a
section of a slab that is infinite along one direction only (as it is better shown
in figure 2.1).

The metamaterial-like structure is the simplest one could get: the periodic
repetition of two materials with different elastic properties. Obviously in the
real experiment these two materials will not be different, but the intention
is to induce such variation of the elastic properties (into specific regions of
the sample) by means of light and the material photo-responsivity. Indeed
the actual purpose of these computations is to understand to what extent
light has to modify the elastic properties of the material in order to obtain a
detectable result in the acoustic response of the material.

The first problem to be faced is to choose how to compute the output,
i.e. from where to extract a frequency response, since the response is spacial
dependent. As shown in fig. 2.1, the structure is basically divided in three
parts:
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(a)

(b)

Figure 2.1: (a) Actual 2D simulated geometry. (b) Equivalent 3D (infinite) geometry.

• the left side where the input boundary lays;

• the central part where the periodic structure is located;

• and a right part which represent the output region.

Since computing the output at one of the right boundary would be too limit-
ing, it was chosen to consider as the output the modulus of the displacement
averaged over the entire output region. In order to allow for a fair compar-
ison, also the input was considered to be the average of the modulus of the
displacement, computed in the entire input region.

In a nutshell

I = 1
A in

∫
Ain

|u|2dxdy, O = 1
Aout

∫
Aout

|u|2dxdy (2.1)

And the transmission spectrum is obtained taking the ratio between output
and input

T (ω) = O(ω)
I(ω) . (2.2)

Sometimes it will be shown the logarithm of the transmission spectrum in
order to show high attenuation details.

The second problem to be faced is to choose which parameters to vary
in the central part in order to observe relevant information in the frequency
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response. The central region will be therefore a repetition of two material
one with the elastic parameters set to be the default value, and another one
which parameters are varied in order to simulate the photo-responsivity of
the material. The latter region will be referred as excited. The sequence of
these two material, which is called a cell, will be repeated N times.
The length of the sample was arbitrarily chosen to keep the computational
cost reasonable, while allowing for the repetition of a sufficient number of
elements in the central region. The remaining parameters can be changed in
such a way that different behaviours of the structure can be observed (e.g.
to vary the location and or the width of the band gab).

The elastic properties that can be controlled are the Young’s modulus E,
the Poisson’s ratio ν and the density ρ. Instead for changing the location and
shape of the acoustic band gap, it is possible to change either the periodicity
Λ of the structure or the fill factor FF .1 By observing at the wave equation
(1.26), it is possible to see that a variation in the Young’s modulus has
a similar effect to a variation of density, even if in the opposite direction.
Therefore, for the purpose of this study, varying the first will be sufficient to
gather information on the problem.
Changing the Poisson’s ration could be instead troublesome. The reason for
this it not trivial. For PDMS its value is very close to 0.5, therefore one
of the terms in the wave equation tend to diverge (in particular the p-wave
velocity cl (1.33)) which is obviously unphysical. Anyway despite the choice
of its exact value, it has to be noted that slight variations of its value may
produce huge variation on the propagation velocities, which is very unlikely
to occur in a real life situation. For this reason it was chosen not to study
the effect of a variation of the Poisson’s ratio.

The central part will be characterised by a contrast between the Young’s
modulus of the excited part and its default value. Such contrast will be
referred with the Greek letter ε = Ex/E0, where x suffix refers to the excited
material (i.e. the part of the central structure which Young’s modulus has
been changed).

2.1.1 Lateral input
For the first set of models, the input boundary is set to be the leftmost side
of the rectangle in figure 2.1. The prescribed displacement on such boundary

1In the present case the FF is defined as the ratio between the area of the material of
one type over the total area of the elementary cell.
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is imposed to be either longitudinal or transverse only (with respect to the
main axis of the geometry).
Then, even if it might seem unphysical, to the top and bottom boundaries
there have been imposed periodic boundary conditions (PBC) of the continu-
ity type, i.e it is as if the top and bottom boundary are joint together. This
was done in order to emulate a sort of infinite domain along the y-direction,
which is fair enough for the type of input it is inserted in the system (since
the latter is perpendicular to the boundary at which PBC are applied), and
should allow to excite pure p- and pure s-waves. Basically in this way the
central region should act as a Bragg reflector. Finally, to the right side a free
boundary condition (FBC) is imposed.

(a)

(b)

Figure 2.2: (a) Example of spectral response il log-log scale for the parameters: E =
2 MPa, ν = 0.49, h = 1 cm, Λ = 5 mm, FF = 0.5,ε = 0.5. (b) Distribution of
the displacement vector at f = 10 kHz.

Just to have a look at how the result looks like, on figure 2.2 an example
of result is presented. The parameter for which the problem was solved are
written in the caption. It is possible to see the presence of a band gap roughly
centred at ≈9 kHz and also observe the higher order gaps.
Notice that if it really was an infinite domain along the y-direction, such type
of input would correspond to a simple plane wave. Therefore it is possible
to compare the location of the band gap with the one that comes from an
analysis of the phononic crystal as if it was of Bragg type. As it was already
shown in section 1.3.1, for a p-wave the Bragg condition is satisfied for:

f = m

2Λ

(
FF

clx
+ 1− FF

cl0

)−1
, (2.3)
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where x suffix refers to the excited material (i.e. the part of the central
structure which Young’s modulus has been changed) and m is any positive
integer. Since the contrast is defined on the Young’s modulus it’s better to
rewrite it

f = mcl0
2Λ

(
FF√
ε

+ (1− FF )
)−1

, (2.4)

Substituting the values

Changing the Young’s modulus

The first analysis was performed by studying the effect of reducing the
Young’s modulus in the excited part of the central region. The reason for this
is actually because when considering the real situation of azo-doped PDMS
illuminated by a laser, one actually expect a softening of the material, thus
a reduction of E.

The Young’s modulus is thus varied in a range 0.75 kPa < E < 750 kPa,
while the other parameters are collected in table 2.1.

Parameter Value Unit
ν 0.49 �
E0 750 kPa
ε 0.1÷ 0.9 �
Λ 5 mm

Parameter Value Unit
h 1 cm
L 20 cm
N 20 �
FF 0.5 �

Table 2.1: Parameters of the first studied model. The problem is solved for different
values of the contrast ε.

In figure 2.3 the transmission spectrum is shown for multiple values of the
Young’s modulus. A new problem has been solved for each of those values.
First of all it has to be noted that these are not proper transmission spectra
because they can reach values greater than the unity. This obviously comes
from the fact that they are computed as the ratio of two averages (2.2). At
high frequency instead the spectrum seems to become noisy, which is the
result of the numerical error inevitably occurring when the wavelength of the
propagating wave reaches a value close to the mesh size. In such conditions
the FEM approach looses its efficacy.

Nonetheless it is possible to observe the presence of multiple gaps forming
inside the spectrum As expected from the Bragg condition (2.4) the gap

53



Numerical models

(a) (b)

Figure 2.3: Transmission spectra for various values of the contrast, with parameters
in table 2.1. Notice that both x- and y-axis are plotted in log scale. (a) The
input displacement is headed toward the x-direction, i.e. longitudinal wave
excitation. (b) The input displacement is headed toward the y-direction, i.e.
transverse wave excitation.

shifts toward low frequency when E is reduced in magnitude. This happens
because a reduction of E implies also a reduction of the propagation velocity
inside the excited region. By testing the Bragg condition for each value of
the contrast the table 2.2 is obtained and there is perfect agreement with
location of the centre of the band gap even for the second order band gaps.

ε fl,gap ft,gap
0.1 5.5 kHz 0.8 kHz
0.3 8.1 kHz 1.1 kHz
0.5 9.5 kHz 1.3 kHz
0.7 10.5 kHz 1.5 kHz
0.9 11.2 kHz 1.6 kHz

Table 2.2: Expected centre of the bang gap for various values of contrast according
to eq. (2.3). To be compared to figure 2.3.

Another thing worth noticing is the increase of bandwidth with the in-
crease of contrast, which again is expected for a Bragg reflector.
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(a) (b)

Figure 2.4: Transmission spectra for various values of the periodicity with param-
eters in table 2.3. Notice that both x- and y-axis are plotted in log scale.
(a) The input displacement is headed toward the x-direction, i.e. longitudinal
wave excitation. (b) The input displacement is headed toward the y-direction,
i.e. transverse wave excitation.

Changing the spacing

A new test was performed to observe the evolution of the band gap when
changing the periodicity of the central structure, while keeping fixed the value
of the contrast. The parameters used for these test are summarised on table
2.3.

Parameter Value Unit
ν 0.49 �
E0 750 kPa
ε 0.3 �
Λ 1÷5 mm

Parameter Value Unit
h 1 cm
L 20 cm
N 20 �
FF 0.5 �

Table 2.3: Parameters of the first studied model. The problem is solved for different
values of the periodicity Λ.

The results in fig 2.4 show clearly a shift of the band gap while changing
the periodicity.
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2.1.2 Top input
The previous tests were performed in order to directly observe if elastic waves
developing in a material produced ‘Bragg’ interference patterns when anal-
ysed with the tools provided by COMSOL [37]. But in order to have more
realistic result it is necessary to make a few changes. First and foremost the
periodic boundary conditions have to be removed.

(a) (b)

Figure 2.5: (a) Figure 2.3a, reported here for comparison. (b)Transmission spectra
for various values of the contrast, when the PBC are removed from the model
in figure 2.1a. All other parameter are the same as for (a).

In figure 2.5 a comparison between the case with and without PCB is
performed. As it is shown in fig. 2.5b, without PBC small band gaps are
still forming, but their location is not as predictable as before. Interestingly
enough, if one were to compare the location of the band gap for this new
case with the one were the input displacement was set perpendicular (fig-
ure 2.3b), one would find better agreement. As if the longitudinal input,
that was supposed to excite mainly longitudinal waves, had more effect in
producing shear waves. This happens because the analysed geometry can no
longer be considered a bulk material, but it behaves as a waveguide.

Since without PBC the geometry represent a real section of a slab, it
might be useful to use a more realistic input source. Therefore a prescribed
displacement was imposed onto a portion of the top boundary, that can
be better understood by observing figure 2.6a. Notice that in this case the
displacement is imposed only in the direction perpendicular to the boundary.

Also the height has to be set such that the model in fig. 2.6a becomes
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a realistic representation of the section of a slab, thus should be set for a
thinner value. Moreover, the reduction of the height allows for creating a
finer mesh which improves the resolution at high frequency.

Parameter Value Unit
E0 2 MPa
ν 0.4997 �
ε 0.1÷0.9 �
Λ 2 mm

Parameter Value Unit
h 2.5 mm
L 7 cm
N 20 �
FF 0.5 �

Table 2.4: Parameters of the model without PBC.

Performing some studies on PDMS, as it will be described in the next
chapter, it appears that the Young’s modulus can be modified during the
preparation of the samples. Therefore for this model it was chosen to use a
value that better fits better the real samples Young’s moduli.
Moreover this elastomer has a peculiarity: even though E can be adjusted
at will, the propagation velocity does not change much [38]. In order to take
into account for this fact even in the computations, the value of the Poisson’s
ratio was changed in order to obtain a propagation velocity for the longitu-
dinal waves comparable with the one proposed in [38], where the author
measured the longitudinal velocity of a polydimethylsiloxane sample with
different hardnesses. More details on the topic are presented in section 3.2.

The parameters for the new model are all summarised in table 2.4.

With these new, more realistic, conditions the results are not satisfying,
if not worst. It is hard to uniquely identify band gaps, which suggest that
the confinement along the y-direction forbids to treat the problem as simple
Bragg reflector. A this point the geometry has to be considered a waveguide,
where the effect of the dispersion of modes cannot be ignored. Nonetheless
the introduction of a global band gap should still be possible, even if not with
a predictable location (which is the whole point of these numerical compu-
tations).

It will be shown in the next sections and in the next chapter, that the
main problem for these results comes from the nature of PDMS of being an
almost perfect rubber. The fact that the value of the Poisson’s ratio is so
close to 0.5 makes the difference between longitudinal and transverse waves
velocities diverge (see the relation (1.28)). Therefore the various modes that
can propagate inside the waveguide can have very different velocities (orders
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(a)

(b)

Figure 2.6: (a) New geometry. (b) Transmission spectra for various values of the
contrast for the new geometry; parameters in table 2.4. Notice that both x-
and y-axis are plotted in log scale.

of magnitude), which makes creating a band gap valid for all these modes very
difficult as well. By taking into account for the attenuation of the material,
this problem will partially be solved.
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2.2 Elementary cell analysis: Band diagram
and band gaps

The best way to study and analyse the behaviour of metamaterials and/or
phononic crystals, is to study the elementary cell or the elementary resonator
that composes them.

In the case of phononic crystals, the analysis of the primitive cell is per-
formed in order to extract the band diagram. For metamaterials which reso-
nant structure is embedded in the primitive cell of a lattice, the band diagram
can be computed using the very same technique.

A description of the extraction of the band diagram has already been
given in section 1.3.1. It basically consists in solving an eigenvalue problem
by looking for the eigenmodes of the primitive cell, after the assignment of
proper boundary conditions at the borders.

In the particular case of COMSOL, once the primitive cell is created, the
study has to be set as eigenfrequency. At those boundaries for which the
periodicity exists, PCB of Floquet type are imposed. These allow to force
a value for k-vector at the boundaries, and then find a set of corresponding
eigenfrequencies.

In order to show the validity of this technique, first some results presented
in the literature are reproduced. Then an analysis of the same structures is
performed using the properties of the material and of the samples used in
the experimental part of this thesis work.

2.2.1 Literature comparison
The first structure that was analysed is an example that was proposed in a
PhD thesis work [39] where a two dimensional periodic structure2 is analysed
by means of FEM and COMSOL.

The proposed structure is presented in figure 2.7. The material used for the
structure was aluminium having properties ρ =2699 kg m−3, E =70.3 GPa
and ν =0.3436. Unfortunately the author forgot to mention the exact values
used for the periodicity a and the internal square side m, therefore three

2As in previous subsection this is equivalent to a three dimensional structure, infinite
in the direction of the missing dimension.
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(a)
(b)

Figure 2.7: (a) Structure of a 3D phononic crystal, periodic only in one direction.
(b) 2D primitive cell.

values for the first where used in this work, while the second was extracted
from the figure (m ≈ 2

5a).
Since the structure is periodic only along the x-direction, periodic bound-

ary condition are only applied at the boundaries perpendicular to this di-
rection, while for all the others Free Boundary Conditions are imposed. A
wave propagating in the structure can therefore propagate only along the
x-direction, which means that the FBZ will be limited to the kx vector.
The results proposed in figure 2.8 show the formation of a band gap. De-
pending on the primitive cell square side, the whole band diagram is scaled
accordingly. As one may expect the grater a is (i.e. the thicker the slab in
figure 2.7a is), the lower are the frequencies in the band diagram and, for
a ≈=1 mm the band gap is found to be very similar to what proposed in [39].
The remaining non matching features of the band diagram can be accounted
for the improper value of the m

a ratio, and further testing would be pointless
since perfect matching for the next structure will be shown (which size is
perfectly known).

The second comparison is made with the results proposed on [40] where the
structure in figure 2.9 is analysed. This consist of a infinite slab of thickness
h covered with cross like holes with periodicity a both in x- and y-directions.
In this case the PBC have to be applied (separately) to the side facing the
x-direction and the side facing the y-direction, while on the others FBC are

60



2.2 – Elementary cell analysis: Band diagram and band gaps

(a) (b)

Figure 2.8: (a) Results from [39] (the blue line is the one to be reproduced) and (b)
reproduced results. Notice that on the x-axis there is the reduced wavevector
k∗
x = kx

π a.

imposed.
The structure parameters are a =20 mm, h = 3

5a, b = 18 mm and c =
3 mm, and the material is considered to be made out of PVC with ρ =1430 kg m−3,
E =3 GPa and ν =0.4.

This time, the periodicity develops in two dimensions, the FBZ will extend
for both kx and ky. Due to symmetrical reasons the band diagram is usually
represented in the so called irreducible Brillouin zone and the result is shown
in figure 2.10.

Figure 2.9: Primitive cell of a 3D phononic crystal analysed, periodic along the x-
and y-directions.
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The band diagram shows the presence of two global band gaps and perfect
matching is found with respect to literature.

(a) (b)

Figure 2.10: (a) Results from [40] and (b) reproduced results. Notice that on the
x-axis there is the reduced wavevector where Γ → (k∗

x = 0, k∗
y = 0), X →

(k∗
x = 1, k∗

y = 0) and M → (k∗
x = 1, k∗

y = 1).

2.2.2 PDMS structures
Since the previous structures were able to show the formation of a band gap,
it seems natural to use them, changing the intrinsic material with the one
proposed for this thesis work, i.e. substitute aluminium with polydimethyl-
siloxane.

For the first structure (fig. 2.7) the formation of a band gap is shown, but
the frequency at which it forms is much lower than what happened for the
aluminium case. This obviously is addressed to the material properties since
PDMS has a Young’s modulus at least three orders of magnitude smaller than
aluminium. Moreover section 3.2 will show that the presence of attenuation
makes impossible dealing with such low frequencies.

This structure revealed to be not usable for the application this thesis is
aiming to produce. As shown in the next chapter, in practice the pattern
will be created by means of light projected on top of a slab-like sample. It is
necessary, even in the numerical model, for any section along the thickness
of the slab to be identical. For this reason the second pattern suits the best.
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Figure 2.11: Band diagram for the structure in figure 2.7, where aluminium has been
replaced with PDMS.

The structure in figure 2.9 was analysed changing the intrinsic material
from PVC to PDMS and the presence of a band gap (fig. 2.12a) can be seen
even for this case. However, this kind of primitive cell does not contain

(a) (b)

Figure 2.12: (a) Band diagram for the structure in figure 2.9 where PVC was replaced
with PDMS. (b) Same structure, but the internal hole has been filled with
PDMS having modified elastic properties.

any part with different elastic properties, therefore it is does not resemble
the configuration where an external illumination has changed the material
elastic properties. Following the same meaning as in the previous section,
the contrast between the inner and outer Young’s moduli was set to ε =0.5.
Unlikely the result in figure 2.12b clearly shows the absence of any gap.
Even reducing the thickness (and all other features) by ten times produces
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no different result.

(a)

(b)

Figure 2.13: (a) Band diagram for the structure in figure 2.9 where PVC was replaced
with PDMS and the size reduced by ten times. (b) Same structure, band
diagram centred at higher frequencies.

From the study of the various band diagrams one thing seems to be in-
evitable: this kind of study performed on PDMS focuses only on low fre-
quency modes. But this is not compatible with the result from section 3.2.2
that clearly shows the impossibility of working at low frequencies using slab-
like PDMS samples. Performing instead a study of the same kind but forcing
the creation of the band diagram for high frequencies is completely useless,
and the reason is evident in figure 2.13b. At high frequencies the FEM model
detects too many modes that can hardly be distinguished one from the other.

The only option left do be done is to include in the numerical models also
the effect of attenuation.
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2.3 Including attenuation
When it comes to interference phenomena, and particularly in metamaterials
and phononic crystals, attenuation and dumping are hardly welcome. Atten-
uation tends to reduce the formation of band gaps by reducing the formation
of interference and therefore it may change the behaviour of the material
even in unpredictable ways.

The reason is simple: if attenuation is present it means that the more
a wave travels the more its amplitude is reduced, and therefore it is more
unlikely for it to interfere (constructively or destructively) with another wave.
For metamaterials and phononic crystals this is extremely deleterious.
Another way of seeing the problem is by thinking of the effect of attenuation
on the spectrum of a wave. It is well known that even for a pure single
frequency excitation, damping will induce in the generated wave a broadening
of its spectral line, thus introducing new spectral components. The wider is
the spectrum of a wave, the harder it is for it to interfere with other waves.

Nonetheless sometimes it is impossible to avoid attenuation effects and
therefore it is necessary to include it also in numerical models, by including
the intrinsic viscosity of the material involved.

In the previous section it was shown how FEM could be used to extract the
band diagram from the primitive cell of a phononic crystal. In few words the
technique consists in finding the eigenmodes of the primitive cell structure
when at this is applied particular (periodic) boundary conditions.

The effect of viscosity of PDMS has to be introduced in this study also
to allow to numerically reproduce zero transmission at low frequencies, as
the laboratory measurement are showing 3.2.2. For an eigenvalue problem,
including attenuation doesn’t mean to exclude low frequency modes, instead
it means that the found solutions will have complex eigenvalues. With this
kind of analysis it is practically impossible to distinguish between propagat-
ing and non propagating modes. This means that the standard method used
for the analysis of the primitive cell cannot be used any more.

One option is to proceed with the same model (fig. 2.6a and tab. 2.4)
used in the first section of this chapter and include the effect of viscosity.
For this purpose a value for the shear viscosity of ηs =0.5 Pa s was used. In
order to simplify the problem the full model proposed in figure 3.13 was not
implemented and also the bulk viscosity was neglected since its value can be
even one order of magnitude smaller that the shear one.
Another option could be to give up on FEM analysis and shift to FDTD
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method, but this will not be performed in this work.

It should be noted that in the following many information presented in
the next chapter (more precisely in section 3.2) will be used, therefore some
information will be presented here without additional explanations.

2.3.1 Cut-on frequency
Before analysing the model and look for the formation of a band gap in the
frequency response, it is necessary to verify if the model is able to reproduce
the behaviour of the samples presented in section 3.2.2. Basically rod-like
and slab-like PDMS samples show the presence of a cut-on frequency which
value seems to be related to smallest feature (thus the thickness) of the
structure. This cut-on frequency was not present in any of the numerical
models analysed so far.

For this kind of analysis the presence of the pattern (the regions hav-
ing different Young’s modulus) is not necessary. Therefore the pattern was
removed by simply imposing the contrast to be ε = 1. Then the numeri-
cal problem was solved using different values of the thickness h in order to
observe the consequent behaviour of the transmission spectrum.

(a) (b)

Figure 2.14: (a) Obtained transmission spectrum for different values of the thickness.
(b) Cut-on frequency value as a function of the thickness h.

The result of the computation shows no transmission in a wide range of
frequencies as a consequence of taking into account for the viscosity. Since
the full model of figure 3.13 was not implemented, at low frequencies there
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still is transmission, but it not important as long as it is possible to extract
the value of the cut-off frequency.
In figure 2.14 this operation was performed for many values of thickness
and then the value of the cut-on frequency is extracted for each of them.
Figure 2.14b shows also that between the two there is a relation of the type
fcut ∝ 1/x.

2.3.2 Recovering the band gap
Even though the obtained cut-on frequencies were not perfectly matching
the ones from the samples of sec. 3.2.2, it is reasonable to say that there is a
very good agreement. It is now necessary to study how the system behaves
when the periodic structure is reinserted in the model.

(a) (b)

Figure 2.15: Transmission spectrum for the geometry in figure 2.6a and parameters
in table 2.4, plus ηs =0.5 Pa s. Result for multiple values of (a) the contrast
and (b) the fill factor (the latter fixing ε = 0.5).

Therefore the structure proposed in fig. 2.6a was analysed, using again
the parameters in tab. 2.4. The results are reported in figure 2.15 and they
clearly show the formation of a wide band gap. Unexpectedly the value of
the cut-on frequency strongly varies when the contrast is changed. For low
values of contrast the transmission spectrum seems to never reach the unity
value, therefore the formation of the band gaps becomes of minor relevance
(everything is attenuated).

For this numerical analysis the expected centre of the gap (according to
the Bragg condition) is always lower than the one resulting from the figure.

67



Numerical models

For instance for ε = 0.5 the Bragg condition is satisfied for fg =222 kHz,
while in the computation the centre of the gap is close to 280 kHz and at
222 kHz the gap is not even present.

Another study that might be of interest for the experimental work is on
the effect of the fill factor FF on the band gap. Thus the numerical model
was solved again, fixing the value of the contrast to ε = 0.5 while changing
FF in the range 0.2÷0.8.
The result in figure 2.15b shows a slight variation of the central frequency
of the gap when the FF varies and also an effect on the cut-on frequency is
observed.

Conclusions

In this chapter it was possible to demonstrate that taking into account the
material attenuation is fundamental to properly model the acoustic response
of polydimethylsiloxane. Therefore it was shown that the analysis of the
elementary cell is practically impossible, while it becomes necessary to relay
on full sample analysis.

Nonetheless it was also shown, in the full sample model, that it is still
possible to introduce an acoustic band gap in the frequency response of the
material, as long as the Young’s modulus in the illuminated regions changes
at least by 20%÷ 30% with respect to the rest value.
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Chapter 3

Experimental study

The numerical model were able to provide some useful results. They were able
to support the possibility of introducing a band gap by means of changing the
elastic properties of the sample in local regions. However, the unavailability
of the standard methods used for the analysis of the primitive cell forbids to
make predictions when dealing with complex patterns, and therefore it forces
the experimental research to proceed following less reliable assumptions.

This chapter aims to present the experimental work that allowed to gather
information about the acoustic behaviour of some photo-responsive polymeric
samples when they are illuminated with a simple pattern. Due to time lim-
itation, this has to be considered a preliminary analysis because only the
pattern studied in the numerical analysis (section 2) was tested in the lab
and, unfortunately, more complex and two dimensional patterns were not
tested.

3.1 Experimental setup
Combining optics when working with acoustic instruments is not a standard
procedure (except when dealing with Doppler Vibrometers), therefore for the
purpose of this work it was necessary to create an ad-hoc setup.

The setup basically consist of a sample holder which can handle two ul-
trasound piezoelectric probes and one sample beneath them. An amplifier is
used to bring the signal from a signal generator to the injecting probes and
an oscilloscope is used to read the output coming from the other probe. Then
a LASER is used to illuminate the sample in a region between the two probes
and a mask is placed in the middle of the optical path in order to create the
pattern. Both the acquisition from the oscilloscope and the control of the
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LASER where performed by means of MATLAB.
A scheme of the setup is shown in figure 3.1.

(a) (b)

Figure 3.1: (a) Acoustic setup. (b) Optical setup.

3.1.1 Acoustic setup
The probes used for the injection and sensing of ultrasound waves are two
piezoelectric probes from DAKEL1. Their frequency response is centred at
250 kHz and they are typically used in structural health monitoring, for lis-
tening the ultrasound waves produced by the micro-movements of a structure
caused by wearing and ageing (acoustic emission experiments).

The sample holder consist of a polyurethane basement fixed onto a rigid
metallic structure. Such basement has to be able to isolate the sample from
the environment and it is necessary because the flexibility of the samples
forbids to use any configuration where the latter is suspended in air.

The probes are then fixed to the metallic structure to which the basement
is attached. In this way the sample can be placed in between the basement
and the probes, which can then be tightly fixed, forming a stable firm con-
figuration. The stability of this configuration is fundamental because, due
to the soft nature of the polymer composing the sample, any little change
in position of the probe may produce changes in the shape of the acquired

1Diagnostics department of ZD Rpety, CZ; visit www.dakel.cz
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spectrum. If happening during the acquisition of the spectral time evolution
in an experiment, it would nullify the entire acquisition series.

(a) (b)

Figure 3.2: (a) Sample holder. (b) Probes.

The contact between the probes was at first enhanced by means of eco-
graphic gel and then substituted with simple bi-adhesive tape.2

The signal was produced by an arbitrary waveform generator from Agi-
lent - 33500 Series. Then it is amplified with a voltage amplifier from FLC
Electronics (which amplifies the signal by twenty times) and it is injected in
one of the two probes placed on the sample holder. The signal is collected
by means of an high definition oscilloscope from Agilent - DSO9024H which
bandwidth reaches 250 MHz.

The spectral response is obtained by injecting a signal with a wide fre-
quency spectrum and simply comparing it with the spectrum of the output.
If such signal is created by means of the sweep function of the waveform gen-
erator, its spectrum can be considered approximately uniformly distributed
along a given range of frequency. The sweep function creates a signal in the
form

y = A0 sin(ω(t)t),

2The reason for this change is described in the following sections.
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(a) (b)

Figure 3.3: (a) Oscilloscope. (b) Waveform generator and amplifier.

where ω(t) varies linearly between a minimum and a maximum frequency,
and then it is repeated in time.

The acquired signal is then analysed in a post-processing procedure by
means of Fast Fourier Transform algorithm (FFT) in order to extract the
output spectrum from the recorded signal. Since the input spectrum is prac-
tically "flat"3, it is possible to directly consider the spectrum of the output
signal as the frequency response of the sample under test, without the need
to compute the ratio of output versus input. It should be noted that, for
the very same reason, in this way the actual value in terms of decibel of the
frequency response is meaningless. Nonetheless all measurement were per-
formed using a signal with the same amplitude and acquiring using the same
parameters on the instruments, which makes the various spectra comparable.

3.1.2 Optical setup

The illumination is provided by a 532 nm torus LASER from Laser Quantum.
The unit is controlled by an mpc 3000 controller, which can be driven via
serial port using simple commands sent with MATLAB. The LASER can
provide a power ranging between 50 mW - 750 mW.

3The Fourier transform of a sweep function in approximately flat over the range of
frequencies the sweep covers.
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(a) (b)

Figure 3.4: (a) Whole setup. (b) Zoom on the focusing lens and pin-hole.

The LASER beam exiting from the LASER box has a diameter of ap-
proximately 1.7 mm, therefore it is necessary to increase its size in order to
illuminate a wider spot on the photo-responsive sample. For the purpose
the beam is first focused onto a pin-hole, which allows to clean the spatial
distribution of the beam, and then it is collimated again using a 25 mm lens
with focal length of 75 mm. This creates a beam of approximately 25 mm in
diameter.

The sample holder is then place onto a vertical rail for positioning the
sample perpendicularly to the LASER beam. A mask can then be placed in
the middle of the beam path, in order to project a patterned illumination,
and it may be combined with a lens in order to also scale the latter. The
mask is places on top of a rotating element in order to allow the deformation
of the projected pattern.
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3.2 Polydimethylsiloxane
It is now necessary to give some information about the polymer used for the
samples.

Figure 3.5: Molecular structure of polydimethylsiloxane [41].

Polydimethylsiloxane, usually known with its acronym PDMS, is an elas-
tomer that gained a great popularity in the field of MEMS and micro-fluidics
(e.g. [42, 43]). The reason for its popularity comes from its ease of use which
allows the creation of very precise elastic micro-structures. It is flexible, op-
tically transparent and it is inert to many organic/inorganic compounds. In
the above mentioned fields devices and structures can be created by simply
pouring the polymer onto prestructured stamps, by means of the casting
technique. Moreover it has a relatively low cost.

Other than those, the main reason why this material was chosen to per-
form these studies comes from the possibility of inducing light responsiveness
by introducing in the polymer matrix a chromophore molecule. In the follow-
ing subsection the mechanism behind these photo-responsive chromophores
will be presented.

Previous works have already shown the capabilities of light responsive
polymers. In [44] researchers have shown how the refractive index of an
azo-doped PDMS thick membrane could be illuminated with a Gaussianly
distributed beam, at a wavelength at which the responsiveness is greater,
and change reversibly the refractive index according the beam spatial distri-
bution. Therefore the graded refractive index, which can be approximated
with a parabolic behaviour close to the centre of the beam, could be used
as a tunable lens acting on those wavelengths to which the membrane is
most transparent. In [45] the authors were able to create photo-responsive
polymeric substrates in which micro-pillars deformed their shape along the
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direction of the polarisation of the illumination. Then use these substrates
to force, or partially confine, the growth of substrate sensitive cancer cells,
along and by means of the pillar direction. In [46] the authors were able to
observe strong mechanical deformations onto a suspended light responsive
micro-membrane.

Light responsiveness is not the only way to change the properties of a
material by means of a stimulus. In facts they are part of a broader category
of the stimuli-responsive materials, which introduces the concept of smart
materials, and these results, together with many others [47], shows how such
materials could be used for new promising applications.

For the purpose of this thesis work, the stimuli responsiveness of such
materials has to imply a change in its elastic properties. Since many of these
smart materials are able to show a mechanical response upon illumination
[45, 46, 48], a variation of the elastic properties is also to be expected.

The reason why it was chosen to focus on light responsiveness is rather
intuitive. First and foremost the use of light allows for remote control, which
allows to decouple the control system from the actual device. Moreover,
thanks to simple or, if necessary, complex optical setups it is possible to have
a very high precision in such control, both spatially and temporally. Fore
instance the use of a spatial light modulator could be used for the projection
of any desired pattern, and controlling it by means of a computer could open
for new possibilities by integration with AI.

3.2.1 Inducing light responsivity
In the framework of light responsive materials, it is typical to use chro-
mophore molecules to induce the desired photo-responsivity. These molecules
exhibit the ability of switching between two conformational states, upon ab-
sorption of properly energized photons. These two states have distinct spec-
troscopic and physical properties and, when embedded inside the atomic
structure of a material, a switch between the two can induce a change also in
the bulk properties of the material [49]. Properties that could include shape,
phase, wettability, permeability and solubility [50].

One of the most studied photochromic molecules is the so called azoben-
zene, together with its derivatives. It is an aromatic molecule in which two
phenyl rings are connected by a nitrogen double bond, which indeed is called
azo-linkage. Such bond is absorbent in the UV, and partially in the visible,
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part of the spectrum.
The thing that characterizes azobenzene as a photochromic molecule is

the photo-isomerization between a trans and a cis state [51]. Upon absorp-
tion of a photon from the azo-linkage, the molecule passes from a thermally
stable trans-form to a metastable cis-form. Basically, as shown in figure 3.6,
the metastable form is characterized by a 90° twisting of the phenyl rings
relative to the plane of the azo bond.
The reversible reaction toward the stable state occurs either by thermal re-
laxation or photon emission. The time scale at which an azobenzene can
relax to the trans-state can range from the order of second to even hours.

Figure 3.6: Geometrical representation of the photo-isomerization of azobenzene,
from trans (E) to cis (Z). Image taken from [51].

In order to incorporate the photochromic molecule into a polymer, there
are two main possibilities. The easiest way is to create a guest-host system
by dissolving the molecule into the polymer matrix. Surely cost effective,
because simply mixing the two constituent together is sufficient, it is not
very efficient in terms of effects transferred on the polymer matrix. This
is because the molecule is not bonded to the polymer chains, thus can be
subjected to aggregation or even macroscopic phase separation.
To overcome these problems the molecule can be chemically attached to the
polymer backbone. A simple representation of these two methods is presented
in 3.7.

Azo-doped PDMS

Since in previous works [44] polydimethylsiloxane samples were successfully
doped in order to obtain photo-responsive thick membranes, it was chosen
to follow the same method for creating the sample, which is well described
in [52, ch. 4.1].
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Figure 3.7: Schematic representation of (a) simple guest-host system and (b) chro-
mophore functionalized side-chain polymers. Image taken from [52].

The developed material is a mixture of PDMS and poly(Dispersed Red
1 Methacrylate), resulting into a simple guest-host system (fig. 3.7). The
former is made with a kit from Dow Corning (DOWSIL™ 184 Silicone Elas-
tomer Kit), which consist of a base and a curing agent. Using different
relative amounts of the two produces samples with different hardness and
the extent of this is discussed in the following subsection. The doping is thus
made with pDR1M, which is basically a colourant that offers good miscibility
with PDMS (thanks to the presence of the methyl group). The powder sold
by Sigma Aldrich was used.

Therefore the samples are prepared in the following way:

1. pDR1M is dissolved in toluene (anhydrous, ≥ 99.8 %, Sigma Aldrich)
with a concentration of 2wt.%, without stirring but using an ultrasound
bath for 1h40min;

2. the proper amount of the solution is vigorously mixed with the PDMS
base and the whole is left resting, either in low vacuum or under the
fume hood, to allow for the solvent to evaporate;

3. the desired amount of curing agent is added to the mixture, stirred and
kept in low vacuum for some minutes (not for too long otherwise the risk
is to solidify before its casting) in order to remove all the air bubbles;

4. finally the (yet) viscous liquid is poured onto the stamp and kept into
an oven at 60 ◦C for at least 2h, for thermal curing.

The author of [52] found that the amount of pDR1M-toluene solution to
be added on the PDMS base, in order to get the best results, should be 70 µL
of the solution for every 5 mL of base. For the purpose of this thesis such
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(a)
(b)

Figure 3.8: (a) Azo-doped samples used in the experimental study. (b) Absorbing
spectrum of copolymers based on Dispersed Red 1 Methacrylate, taken from
[53].

concentration is too low in order to obtain considerable effects in the acoustic
response of the sample, therefore samples with higher concentration were
produced: (70,150,250,700)µL for every 5 mL of base used, which corresponds
to a relative volumetric concentration of (1.4, 2.9, 4.8, 12.3)%. Such samples
are represented in figure 3.8.

Actually the exact amount used is not to be trusted, because pDR1M
wasn’t able to completely dissolve into toluene and some residuals were
present in grains at the bottom of the container. This might caused by
the ageing of the pDR1M powder. Obviously the solution was inserted into
the polymer base taking care of avoiding those grains too.

The samples characteristics are summarized in table 3.1.

3.2.2 The elastic properties
Polydimethylsiloxane is a very flexible polymer having an extensively cross
linked matrix that makes it an elastomer. Being a (silicon) rubber, it’s
Poisson’s ratio is very close to 0.5. Since it is such a popular material for
a variety of applications, it has also been studied in great details and its

78



3.2 – Polydimethylsiloxane

Sample # Thickness Length Width base/curing pDR1M sol %
1 3 mm 106 mm 22 mm 10:1 1.4 %
2 4 mm 101 mm 16 mm 10:1 2.9 %
3 2.5 mm 159 mm 16 mm 10:1 4.8 %
4 2 mm 126 mm 16 mm 3:1 12.3 %

Table 3.1: parameters for the samples presented in figure 3.8.

properties are well known.
In terms of elastic properties, the main interesting fact that one comes

across is the possibility of tuning the hardness of the material just by changing
the base to curing agent ratio. In multiple studies researchers have shown
the variation of various elastic properties as a function of the base to cure
ratio. In [54] they were able to show the trend of the Young’s modulus when
reducing such ratio by measuring with stress-strain technique. In [55] the
authors were able to report a roughly linear relation between the amount of
cross linker (curing agent) and the resulting E (one of the authors reported
more results in its PhD thesis work [56]). Since their results were used as
a reference for creating the PDMS samples for this thesis work, they are
reported in figure 3.9.

As it was already mentioned in one of the previous chapter, there is one
peculiarity about these relation. In [38] researchers found out that changing
the hardness of the material does not affect the propagation velocity in the

Figure 3.9: Graphic representation of the dependence of E as a function of (a) the
cross linker to base ratio and (b) the base to curing agent ratio. Image taken
from [55].
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same way. Actually they measured the propagation velocity of p-waves and
seen a very slight variation, if not null, upon variation of the base to cure
ratio. For values ranging fro 10:1 to 2:1 the velocity was measured of being
between 1050 m s−1 and 1100 m s−1.

Instead, if one were to consider the relation found in fig. 3.9 and insert
it in equation (1.28), he would find a square root behaviour of the velocity
with respect to the curing agent amount.

cl =
√√√√ E(1− ν)
ρ(1 + ν)(1− 2ν)

For the range of values previously mentioned the Young’s modulus varies
≈ 2 MPa to & 4 MPa, which means that it basically doubles its value. This
should translate into an increase of cl of about

√
2 times which, as explained,

it was not measured. This phenomenon might be explained by inserting some
values in these equations.

Considering for instance a fixed propagation velocity of cl = 1070 m s−1,
with density ρ = 970 kg m3 and Young’s modulus E = 2 MPa (which corre-
spond to 10:1 base to cure ratio), one finds that the corresponding Poisson’s
ratio has to be ν ≈ 0.4997. If instead one considers E = 4 MPa while imag-
ining both the velocity and the density to be constants, he finds ν ≈ 0.4994
which is a relative variation of only −0.06%. That is to say that an extremely

(a) (b)

Figure 3.10: Relations between ν, E and cl for (a) constant E = 2 MPa and (b)
constant cl = 1070 m s−1.
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small variation of the Poisson’s ratio is sufficient to keep the propagation ve-
locity constant, because its value is too close to 0.5 that is a singularity in
expression 1.28. This is well understood by observing figure 3.10 where the
relations between ν, E and cl are translated into plots.

Information from the sample testing

In order to have a quick (and rough) verification of the propagation velocity
behaviour, a few samples of plain PDMS were produced and their acoustic
response was measured using the apparatus described in section 3.1. The
samples are rod-like with a rectangular section

(a)
(b)

Figure 3.11: (a) Scheme of the probes location when measuring the time of flight.
(b) Example of burst signal with the output response.

To measure the propagation velocity the best method is to measure the
time of flight (tof ) of an acoustic burst signal. In order to measure it, two
ultrasound probes are located at the two extreme ends of the sample on the
section perpendicular to their main axis (fig. 3.11a). This type of sample
will surely presents some waveguiding properties (presence of multiple modes
and their dispersion), nonetheless the one proposed should be the best con-
figuration to excite mainly longitudinal waves. Then, by means of a signal
generator and an amplifier, a burst wave packet is injected from one probe.
The burst consist of a brief signal, sometimes having a pulse shape or some-
times being a short sequence of sinusoidal periods. In this case it was chosen
to use ten periods of a sinusoid of frequency 200 kHz (period 5 µs). The time
of flight is then measured with an oscilloscope as the time between the first
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peak recorded from the output probe and the first peak of the input burst, i.e
the velocity of the fastest deformation to reach the other end of the sample.

Then the velocity is computed as the ratio between the rod length and
the tof. As shown in table 3.2, despite the exact value (which is comparable
with the results from [38]) the constancy of the propagation velocity upon
variation of the Young’s modulus is verified.

Base:Cure Length tof c0
5:1 85.0 cm±0.5 mm 82.2 µs±0.1 µs 1031 m s−1±7 m s−1

10:1 84.0 cm±0.5 mm 81.6 µs±0.1 µs 1029 m s−1±7 m s−1

20:1 83.5 cm±0.5 mm 82.0 µs±0.1 µs 1017 m s−1±7 m s−1

Table 3.2: Measured data for the three rod-like samples.

Another useful information that could be measured is the frequency re-
sponse of the samples. For this measurements the probes are located on one
of the top side and the sample is placed on top of a insulating foundation.
Transmission spectrum then obtained as explained in section 3.1.1. The in-
put spectrum (i.e. the sweep function frequency limits) was set to be limited
between 30 kHz and 600 kHz.

(a)
(b)

Figure 3.12: (a) Picture of the three rod-like samples. (b) Their frequency response.
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The first thing that one inevitably notices is the presence of two boundary
in the transmission spectrum. While the upper limit is just the limit of the
input spectrum, the lower limit seems to be behaving as a cut-on frequency.
This behaviour was not to be expected. The second thing is that the cut-on
location doesn’t seem to follow any trend with respect to the value of the
Young’s modulus.

Even though the PDMS is known to be a good acoustic insulator [57], a
cut-on in its frequency response was not predicted. There are few cases in
which it is possible to obtain complete attenuation at low frequency:

1. presence of a foundation as in section 1.2.2;

2. limits in the response of the probes;

3. quality of the contact between probes and sample;

4. a waveguiding effects, thus dispersion of the propagating modes;

5. a frequency dependent absorption coefficient for PDMS.

The firsts three possibilities are easily verifiable. To avoid the foundation it
was simply necessary to use place the probes as in figure 3.11a. This didn’t
produce any result significantly different from fig. 3.12b. Then, neither
changing the probe or substituting the ultrasound gel with bi-adhesive tape
gave any relevant change in the cut-on frequency.

In order to verify the fourth possibility it is sufficient to modify the geom-
etry of the samples. In particular the cut-off frequency of mode dispersion
often depend on the size of the minimal feature of the structure. Therefore
a change in height should be sufficient to observe a variation of the spectral
position of the cut-on frequency. For this purpose another couple of sample
were created with different heights and from their spectral response it is clear
that there is a strong dependence on it. In table 3.3 the values of the cut-on
frequencies are collected for all these samples.

These results surely confirm that the dispersion of the propagating modes
is playing a significant role in introducing a cut-on frequency. Nonetheless
it would be wrong to assume that it depends only on that. Indeed for such
simple slab-like or rod-like geometries it is not known (at least not by the
author of this work) of any configuration for which the dispersion relation for
the fundamental mode propagating in the waveguide should posses a cut-on
frequency. Or better, the only know configuration is in presence of a foun-
dation, which has been demonstrated not to be the case.
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Base:cure height fcut
5:1 5.6 mm 103 kHz
10:1 5.9 mm 113 kHz
20:1 5.7 mm 109 kHz
20:1 3.3 mm 174 kHz
10:1 2.5 mm 205 kHz
10:1 0.5 mm 620 kHz

Table 3.3: Measured cut-on frequency for the three rod-like samples (plus two sam-
ples with smaller height) extracted from their spectra. Values are qualitative
because the cut-on is not always sharp.

Another case where low frequency waves cannot propagate is when the
wavelength of the propagating wave is smaller then the total length of the
sample. In such condition indeed reflected and propagating waves inevitably
interfere destructively, but with longer samples it was seen only a worsening
of the signal and an increase of the cut-on frequency.

Therefore there’s only one option left to consider, the presence of attenu-
ation of elastic waves into the material.

Viscoelasticity

In elasto-dynamics the general assumption is that for small deformations
Hook’s law holds, but this means that only one side of the coin is taken
into account. In the infamous mass-spring model it is well known that it is
necessary to introduce a dissipative term in order to make the model more
realistic: the dashpot.

When a deformation in a solid is no more elastic, it mean that it starts
to creep, i.e. the deformation becomes permanent. The creeping mechanism
can be considered as a flow inside the solid, therefore it is possible to study
it in the same way as in viscous fluids. The field the studies such type of
dissipative flow is called Rheology and those solids which present both elastic
and viscous properties are called viscoelastic solids [58, ch. 12, 13].

Even if in some way every solid posses some viscoelastic properties, they
can usually be neglected. For many polymers instead it is not the case and
viscoelasticity plays a significant role in their mechanical behaviour, thus in
their acousto-elastic properties too. This means that to fully characterise
a polymeric medium, such as the PDMS samples used in these work, it is
necessary to know both the bulk longitudinal and shear attenuation values
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Figure 3.13: Viscosity vs. shear rate with fitting model. Image taken from [59].

[4, ch. 17]. As it was already shown in the previous chapter, the knowledge
of the shear stress attenuation is fundamental for creating numerical models
capable of emulating the real behaviour of the used samples.

Fortunately the shear viscosity of PDMS was fully characterised by the
producer (Dow Corning) of the product used for this work and were published
in [59]. Their results clearly shows a strong dependence of the viscosity of
PDMS depending on the shear frequency and are reported in figure 3.13.
They surely explain way attenuation at low frequencies was so strong in
the samples and, by inserting this information in the numerical model, it is
possible to explain also the behaviour of the cut-on frequency when changing
the thickness of the samples (section 2.3).

85



Experimental study

3.3 The acoustic response
The set up described at the beginning of this chapter was finally used in
order to measure the effect of illumination on the photo-responsive materials
and on their frequency response. The samples used are the ones described in
table 3.1. These were created in order to be neither too thin, since the cut-on
frequency of the sample tend to increase the thinner the sample (as explained
in the previous section), nor too thick, otherwise the projected light crossing
the sample would deliver an uneven distribution of power along the thick-
ness (since an exponential decay of the latter is expected inside an absorbing
material).

In order to observe a global effect on the photo-responsivity, the samples
were first illuminated with an homogeneous distribution of light, on a circular
spot (with size r ≈25 mm) located in a point in between the two probes. A
collimated LASER beam at a wavelength of 532 nm was used for the illumi-
nation. This allowed to gather information on the variation of propagation
velocity together with the effect observed on the spectrum.

Then the samples were illuminated according to the pattern used in the
numerical analysis and the time variation of the spectrum was recorded.

One issue encountered during the acquisition of the spectra was their sta-
bility in time. Indeed even if let resting in place on the sample holder, the
transmission spectrum of the samples was experiencing deformations and
variation in time in such a way that two spectra measured in a time range
of few hours may not have been reliably comparable. The main cause of this
issue was the usage of ecographic gel placed in between the probes and the
sample in order to improve the contact. Therefore it was substituted with
bi-adhesive tape, that still wasn’t effective in the long run. Other effects that
could be playing an important role are temperature variations, the sample
holder stiffness (and its ability to maintain the probes properly still) and
probably also the fact that PDMS is an elastomer, which makes it soft and
deformable.

For the single measure this is not a big issue. When the spectra are
modified due to the isomerization of the azo-molecule, they return to their
original condition when the excitation is removed. Nonetheless comparing
spectra measured at a time distance of hours or even days becomes inappro-
priate. Therefore each measurement sequence will have to be considered as
a stand alone measurement.
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Figure 3.14: Example of variation in time of the transmission spectrum for one of
the samples, without presence of illumination and when ecographic gel is used
for improving the contact between sample and probes. Measured on sample #
3.

It is important to remember that the lower limit of the spectra are present
due to the properties of the sample, because the input sweep function start
always at a frequency between 30 kHz and 100 kHz (depending on the specific
measurement), while the upper limit is always present due to the upper limit
of the sweep function.

3.3.1 Unstructured illumination
As shown in table 3.1 the samples where produced using different amount of
azo-dopant. The effects of photo-excitation should be more evident the more
the samples are doped.

In order to analyse the effect of the photo-responsivity the first things
to analyse are the variations of the transmission spectrum recorded as ex-
plained in 3.1.1. The moment the recording starts, the LASER is turned
on, producing a circular illumination spot on the sample. Then, it is kept
on for long enough such to obtain a stable variation of the spectrum, which
accounted for approximately five minutes. In the meanwhile, the spectrum
shape is acquired every 10 s. After the LASER is turned off the sample starts
relaxing and the spectrum is recorded until it reaches its initial shape.

From the plots in figure 3.15 it is possible to observe that the first sample,
which has little doping, shows the least sensitivity, while the other samples
show significant variations on the spectrum.
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(a) (b)

Figure 3.15: Comparisons between the effect of light onto three different samples.
(a) Spectrum without illumination in blue and after 5 min of illumination in
red. (b) Time evolution of the spectrum; the black line represent the moment
when the LASER is turned off.

Elastic properties variations

When illuminating the sample without projecting any pattern, the elastic
properties should be varying approximately uniformly in the illumination
spot. Therefore one can imagine that the propagation velocity of a wave
propagating inside the material is going to change only in the region of the
spot.

In order to measure the propagation delay it is necessary to perform a time
of flight (tof ) measurement. With respect to the configuration used in section
3.2.2, this time the sample has to stay horizontally on the sample holder and
the two probes cannot face each other. Therefore, when a burst signal is in-
jected from one probe, the propagating wave will have to encounter multiple
reflections and the exact distance that it travels to cannot be known a priory.
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Approximating the illumination spot to a rectangle in the centre of the
slab, the sample can be modelled as a one dimensional line in which there
is a central region where the wave propagates at a different velocity. It is
straight forward that the time to travel from one end to the other can be
expressed as

t1 = L− lx
c0

+ lx
cx
, (3.1)

where the x index refer to the central, illuminated, region and it is fixed to
a value of 2.5 cm (size of the collimated LASER beam), while L is the total
length of the sample.

In chapter 2 it was introduced the concept of contrast as the ratio between
the Young’s modulus in the illuminated region (Ex) and the value at rest, in
such a way that Ex = εE0 and that the propagation velocity of a bulk wave
(eq. (1.28)) could be written as

cx =
√
εc0.

Even if this time it would be completely wrong to assume that the propaga-
tion velocity is the one of a bulk wave, it is still reasonable to assume that
the dependence on the contrast still holds. This assumption allows to extract
the value of the contrast from the expression of the propagation delay (3.1)

ε =
(

lx
t1c0 − L+ lx

)2
. (3.2)

Since c0 can be measured from the propagation delay on the sample when
there is no illumination, i.e. c0 = L/t0, the previous equation takes an even
more compact form

ε =
 1(

t1
t0
− 1

)
L
lx

+ 1

2

. (3.3)

Thanks to this simple expression, even if the exact value of the total length
travelled is not known, it is possible to obtain a good estimate of the variation
of the elastic properties.
In figure 3.16 it is possible to understand how to extract the tof from the
burst signal. This operation was performed for three samples and then the
contrast was computed. The options for the value of the total length were:

• to consider the minimum distance between the two probes (Lp);

• to consider the distance between the centre of the two probes (Lc);
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(a) (b)

Figure 3.16: (a) Effect of illumination on the burst signal. (b) Zoom in the region
where the output signal starts. Measured on sample # 2.

Sample # Length type Value t0 t1 ε

1
Lp 63.5 mm

96 µs 98 µs
0.90

Lc 88.0 mm 0.87
Lt 112.5 mm 0.84

2
Lp 56 mm

87 µs 90 µs
0.86

Lc 80.5 mm 0.81
Lt 101 mm 0.77

Table 3.4: Results from the time of flight analysis.

• to consider the total length of the sample (Lt).

Obviously none of these options are correct, but the corresponding result will
still give useful information. These are collected in table 3.4 and show that
only in the best case scenario the contrast will be sufficient to generate a band
gap wide enough to be significantly visible in the spectrum. At least this is
what the numerical analysis performed in sections 2.1, 2.3 are suggesting
(more precisely in figures 2.6, 2.15).

3.3.2 Pattern projection
The previous subsection proved that there is evidence of a variation of prop-
agation velocity inside the material when the azo-doped samples are illu-
minated with the proper light source. But in order to gain control over
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the propagating elastic waves, it is necessary to induce such variations in a
structured manner.

The created samples do not posses any predefined structure and, in par-
ticular, they do not posses any resonant structure, therefore the effect of
illumination is not going to create or alter any metamaterial-like behaviour
(no resonant mechanism present). Instead light could be used to induce a
phononic crystal-like alteration of the elastic properties by simply projecting
a periodic pattern on the material. This surely looks an attractive opportu-
nity and this thesis represents a first attempt in this direction.

The projection of a pattern could be done in several ways, for instance
by means of a computer controlled spatial light modulator (SLM) or even a
digital micromirror device (DMD). For the purpose of this work though, it
was chosen to use a simpler approach in order to perform a feasibility study,
i.e. a masks to be placed in front of the collimated beam.

The shape of the mask was chosen in order to recreate the pattern pro-
posed in sections 2.1, 2.3, even though it is a one dimensional pattern which
in a 3D solid might not be sufficient. The mask was 3D printed using an
extrusion 3D printer and it is shown in figure 3.17.

Figure 3.17: Mask used for the projection of the pattern.

The measurements were performed by controlling both the LASER and
the time acquisition via MATLAB, thus activating the LASER for 5 min and
recording the receiving signal every ten seconds for at least twenty minutes
since the activation of the LASER. The samples were illuminated with and
without masks in order to compare the effect on the spectrum in the two cases
and, since using the mask reduces the total power reaching the samples, also
the effect using different power were measured.

In figure 3.18 the effect of illumination (using the maximum power avail-
able from the LASER) on the spectrum when the mask is present is compared
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Figure 3.18: Time evolution of the spectral variations. Comparison of the spec-
tral variation upon illumination for the sample # 3. The black dashed line
corresponds to the moment the LASER is turned off.

to the effect when it is not present. The latter was acquired in three ways,
the first using the maximum power available, the second using 90% of that
value and the last one using 80% of it. In the figure the salient variation
where highlighted and it seems that the effect of the presence of the mask
is very similar to the effect without mask, but using 90% of the maximum
available power.

In order to insert some variations on the projected pattern, the mask was
tilted along the axis perpendicular to the LASER beam as shown in figure
3.19. Due to simple optical perspective, the generated pattern is still going be
formed by alternating lines, but the spacing between them (the periodicity)
and the relative width of the single line with respect to the spacing (the fill
factor) will change, together with the total power reaching the sample.

Since period and fill factor of the induced structurization are changed,
one would expect that the corresponding variations in the spectrum would
be subjected to an increment (or reduction) in size, or possibly a shift in
frequency. At least if such variations were strictly correlated to the presence
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Figure 3.19: Picture of the tilted mask together with the pattern it generates

(a)

(b)

Figure 3.20: Comparison of the spectral variation upon illumination for the sample
# 3 when using the mask at different tilt angle (same acquisition series as
figure 3.18). (a) Spectra after five minutes of illumination compared with
their rest value. (b) Time evolution of the spectral variations; black dashed
line corresponds to the moment the LASER is turned off.

of the projected pattern. Unfortunately, from figure 3.20 it is difficult, or not
even possible, to observe a variation of such, while they seem more correlated
to the variations in the total injected power.
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One final test was performed in order understand if the structure induced
by the projected patter was producing any effect. In the middle between the
mask and the sample a lens was placed (from Thor Labs, specification focal
length 100 mm, diameter 5.8 cm) in order to magnify the projected pattern.
In this way the total projected power is the same, while the power density
changes. The lens should then be used to create an image of the mask on the
material by using the simple lens law, where both the object and its image
have to change position in order to change the magnification factor. Since
the light coming from the LASER is collimated, the magnification of the im-
age forming on the sample depend only on the distance from the lens to the
sample. Therefore it was chosen to simply insert the lens in the middle be-
tween the mask and the sample, and consider only the distance lens-sample.
Even though, in this way, the exact value of the magnification is not known,
for this preliminary analysis it is sufficient to understand if there is a consis-
tent difference between the various pattern generated.

For this final acquisition it was chosen to illuminate the sample for only
two minutes in order to reduce heating and degradation of the photosensitive
molecules. The mask was kept at a tilting angle of 8° in order to obtain a fill
factor of approximately 50%. The results are collected in figures 3.21, where
the variations of the spectrum were recorded for three different distances of
the lens, first with the mask in front of the beam and then without it.

Even in this case it not possible to claim a dependence of the variations
of the spectrum from the size of the pattern .

Conclusions

In this final chapter of this thesis it was possible to record important vari-
ations in the acoustic response upon illumination, but unfortunately it was
not possible to show a direct correlation between the presence of the one
dimensional mask and the acoustic spectral behaviour. For the kind of sam-
ple we used, a one dimensional mask might not be sufficient in order to
induce a global band gap, even if the numerical model was showing contrary.
Indeed the latter, being a two dimensional model, might not represent a
good simplification of the real samples. It is therefore necessary to extend
the experimental, and possibly the numerical, analysis also to more complex
bi-dimensional patterns.

Nonetheless there was proof of an induced variation of −10% ÷ −20%
for the Young’s modulus inside the material after illumination with light
(assuming only the Young’s modulus is being affected, leaving the density
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Figure 3.21: Time evolution of the spectral variations. Comparison of the spec-
tral variation upon illumination for the sample # 4. The black dashed line
corresponds to the moment the LASER is turned off.

and the Poisson’s ratio invariant) which is just below the minimum value
that the numerical analysis pointed out. Nonetheless with more complex
two dimensional patterns it might still be possible to obtain more distinct
phononic crystal effects.

Moreover it shell be noted that polydimethylsiloxane is an elastomer and
its nature makes it more suited for insulating application rather than for
a metamaterial. Other than attenuation, the huge difference between the
shear and compressive wave propagation velocities created problems in the
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numerical analysis, forbidding the primitive cell analysis and the extraction
of the band diagram. For the slap-like samples that are required for this
work, a more rigid, hence stiffer, material would be better suited, allowing
also for measuring in configurations where the sample is suspended (better
propagation of Lamb waves, that often dominate in thin media).

The study presented in this thesis work has to be therefore considered a
preliminary study. More analysis have to be carried out in order to obtain
more effective results. The numerical models could be created using FDTD
analysis instead of FEM. Masks with more complex pattern should be tested.
And finally, the polymer used for the work could be changed, maybe shifting
to stiffer polymers, which attenuation coefficient can be neglected.
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Appendix A

Mathematical
Demonstrations

A.1 Gibbs free energy
It was said that the Gibbs free energy and the strain tensor could be expressed
in the form

G =G0 + 1
2λu

2
ii + µu2

ik,

uik =
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1
3ullδik

)
+ 1

3ullδik.

The term in λ has only diagonal terms, thus only the hydrostatic compression
term remains
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Since uiiull = ∑
i,l uiiull = (∑l ull)2 = u2

ll the Gibbs free energy can be written
as

G =G0 + 1
2

(
λ+ 2

3µ
)
u2
ll + µ

(
uik −

1
3ullδik

)2
.

A.2 The wave equation
It was said that the equation of motion for a deformation in an elastic body
is

ρüi = ∂σik
∂xk

.

It was also said that the stress tensor has the form

σik = α(uik + βullδik),

where α = E
1+ν and β = ν

1−2ν . Performing its derivative

∂σik
∂xk

= α
∂uik
∂xk

+ αβ
∂ (ullδik)
∂xk

.

Remembering the definition of the strain tensor (1.7)1,

∂σik
∂xk

= α

2
∂ (∂ui/∂xk)

∂xk
+ α

2
∂ (∂uk/∂xi)

∂xk
+ αβ

∂ (δik∂ul/∂xl)
∂xk

= α

2
∂2ui
∂x2

k

+ α

2
∂2ui
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+ αβ
∂2ul
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.

Since the sum over l and the sum over k are independent

∂σik
∂xk

= α

2
∂2ui
∂x2

k

+ α

(
β + 1

2

)
∂2ui
∂xk∂xi

.

Finally, subtituting the values for α and β one gets equation (1.25).

1notice that while uik refers to the strain tensor, ui refers to the i-th compontent of
the strain vector u
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A.3 Extracting p- and s-wave equations
The wave equation takes the form

c2
t∆(ul + ut) + (c2

l − c2
t )∇ (∇ · ul + ut) = ül + üt,

where ul + ut = u and they satisfy the following relations

∇ · ut = 0 and ∇ ∧ ul = 0,

where the operation ∇∧ is a curl operation and ∇· is a divergence operation.
Performing the divergence on both sides it is possible to write

c2
t∇ ·∆(ul + ut) + (c2

l − c2
t )∇ · ∇ (∇ · ul + ∇ · ut) = ∇ · (ül + üt)

c2
t∆(∇ · ul) + (c2

l − c2
t )∇ · ∇ (∇ · ul) = ∂2∇ · ul

∂t2

c2
t∆(∇ · ul) + (c2

l − c2
t )∆ (∇ · ul) = ∇ · ül
c2
l∆ (∇ · ul) = ∇ · ül

where many terms cancelled out thanks to the relation ∇ · ut = 0. Finally
obtaining

∇ · (c2
l∆ul − ·ül) = 0.

The identities used for the previous steps were: ∇ · ∇(x) = ∆(x) (which is
the definition of Laplatian) and ∇ · ∆(x) = ∇ · ∇(∇ · x) = ∆(∇ · x), for
any generic vector field x.

A.4 Diatomic chain
The balance of forces in the elementary unit for a diatomi chain has the form

M1ün,1 = −K[(un,1 − un−1,2)− (un,2 − un,1)],
M2ün,2 = −K[(un,2 − un,1)− (un+1,1 − un,2)].

For the first mass:

−M1ω
2A1e

ikna = −K[(A1e
ikna]− A2e

ik(n+1/2−1)a)− (A2e
ik(n+1/2)a − A1e

ikna)],
−M1ω

2A1 = −K[(2A1 − A2e
−ika/2 − A2e

+ika/2)],
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and finally
(2K −M1ω

2)A1 − (2K cos ka/2)A2 = 0.

For the second mass instead:

−M2ω
2A2e

ik(n+1/2)a = −K[(A2e
ik(n+1/2)a − A1e

ikna)+
− (A1e

ik(n+1)a − A2e
ik(n+1/2)a)],

−M2ω
2A2e

+ika/2 = −K[(2A2e
+ika/2 − A1 − A1e

+ika)],
−M2ω

2A2 = −K[(2A2 − A1e
−ika/2 − A1e

+ika/2)],

and finally
(2K −M2ω

2)A2 − (2K cos ka/2)A1 = 0.
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